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Abstract. We address the issue of estimation and inference in dependent non-
stationary panels of small cross-section dimensions. The main conclusion is that the
best results are obtained applying bootstrap inference to single-equation estimators.
SUR estimators perform badly, or are even unfeasible, when the time dimension is
not very large compared to the cross-section dimension.
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1 Introduction

The estimation of cointegrating relationships in heterogenous, dependent
panels can be considered a still largely unsettled problem. Although efficient
system methods are available (FIML by Groen and Kleibergen, 2003, DSUR
by Mark, Ogaki and Sul, 2005, FM-SUR by Moon, 1999), they are all feasible
only when (i) the number of time observations (T ) is much larger than that
of cross-section observations (N), and, (ii), there is no cointegration across
units. Since both conditions are highly unlikely to hold two questions arise.
First, is this really a problem from the empirical point of view? The second
question stems from considering that efficiency improvements are desirable
in order to have more accurate asymptotic interval estimates and tests. Since
simulation inference applied to standard single-equation estimators has been
shown to deliver good results (see e.g., Psaradakis, 2001, Chang, 2004, Fachin,
2007), do we really need to use a system estimator? The first aim of our paper
is thus to compare the estimation performances of single-equation and system
estimators in non-stationary panels with short-run dependence across units.
Since FM-SUR (contrary to DSUR) is feasible in systems of the dimension
typically encountered in practice, we will concentrate on this estimator and
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its single-equation analogue, FM-OLS (Phillips and Hansen, 1990). Second,
we will compare simulation and asymptotic inference performance of the FM-
OLS estimator with those delivered by asymptotic inference on the FM-SUR
estimator. We shall now first discuss the bootstrap inference procedures (sec-
tion 2), then present the design and results of our Monte Carlo experiment
(section 3), while some conclusions are drawn in section 4.

2 Bootstrap procedures

Consider for the sake of simplicity the case of two I(1) variables, Y and X,
observed on a panel of N units and T time observations. We assume a lin-
ear long-run equilibrium relationship, with possibly heterogenous coefficients,
holds in all units. Formally:

yit = θi + βix1it + uy
it (1)

where xit = xit−1 + ux
it. In both cases i = 1, . . . , N , and t = 1, . . . , T.

Bootstrap inference involves two key steps: first, constructing the pseudo-
datasets; second, defining the test statistics or confidence intervals to be
used. Let us examine them in turn.

When constructing pseudo-data sets from non-stationary dependent pan-
els the key point is to reproduce the presence of dependence both in the time
series and in the cross-section dimensions. The former aspect has been the
subject of the vast debate, whose details are beyond the scope of this paper
(for a review, see Politis, 2003). As in Di Iorio and Fachin (2007), we will
obtain the bootstrap noises applying the Stationary Bootstrap (SB; Politis
and Romano, 1994) to the residuals of the FM regressions. To preserve the
cross-unit dependence structure we simply need to resample the entire T ×N
matrix of residuals. The systematic part of the bootstrap Data Generating
Process (DGP) will depend on the purpose of the exercise: in the case of
hypothesis testing it is the result of estimation under the null hypothesis to
be tested, while for interval estimation of unconstrained estimation.

Summing up, when the aim is testing the hypothesis H0: βi = β
(0)
i the

bootstrap DGP is:

y∗

it = θ̂i + β
(0)
i x1it + u∗y

it (2)

while for interval estimation we use

y∗

it = θ̂i + β̂ix1it + u∗y
it (3)

where α̂i, β̂i are the unconstrained FM-OLS estimates. In both cases û∗y
it

is obtained applying a Stationary Bootstrap algorithm to the unconstrained
residuals ûy

it = yit − θ̂i − β̂ix1it. A thorough discussion of the choice of
mean block length is included in Paparoditis and Politis (2003). As usual,
in the cases of two-tailed tests the bootstrap estimate of the p-value will be
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p∗ = prop(|t∗b | > t), with t = s−1
βi

(β̂i−β
(0)
i ), t∗b = s∗−1

βi
(β̂∗

ib−β̂i), and β̂ and β̂∗

ib

are the FM-OLS estimates of βi computed respectively on the actual and on
the b−th boostrap pseudo-dataset (b = 1, . . . , B). Finally, sβi

and s∗βi
are the

estimated standard errors of these estimators. One simple way to compute
confidence intervals is to take the desired quantiles (Q)of the distribution

of the β̂∗′

ibs. An α-level confidence interval for βi is then simply given by

[Qα/2(β̂
∗

i ), Q1−α/2(β̂
∗

i )], where β̂∗

i =
[
β̂∗

i1 . . . β̂∗

iB

]
is the vector of estimates

obtained from the B bootstrap datasets. In principle, basing the interval
on a pivotal quantity should deliver better results. Psaradakis (2001) sug-

gests the percentile-t interval [β̂i − Q1−α/2(t
∗

b)sβi
, β̂i − Qα/2(t

∗

b)sβi
], where

the Gaussian quantiles used in asymptotic inference are replaced by those of
the bootstrap distribution (empirical estimate of the unknown small sample
distribution of the studentized statistic). The superiority of the second type
of interval depends entirely upon the quality of the estimates of the standard
errors (see e.g., Kilian, 1999). Hence, in our study we shall compute both
type of intervals.

3 Monte Carlo experiment

3.1 Design

Moon and Perron (2004) carried out a simulation study in a traditional seem-
ingly unrelated equations set-up of small system size (at most 4 equations,
with up to 300 observations), concluding that system estimators were overall
superior to single-equation ones. However, in non-stationary panel analysis
the number of equations (units) is typically larger and that of time observa-
tions smaller. For instance, an international macroeconomic panel including
data at annual frequency starting at the early 1970’s for the largest world
or european economies will have 10-20 units and 30-40 time observations.
Does Moon and Perron’s conclusion hold for this sort of systems as well?
To shed some light on the issue we will run a simulation experiment based
on the DGP by Moon (1999). As we will see, our conclusions will in fact
be rather different from Moon and Perron’s. The details of the DGP are as
follows. In each unit of the panel two right-hand side I(1) variables (X1, X2)
and a left-hand side variable (Y ) are linked by a linear long-run equilibrium
relationship:

yit = θi + β1ix1it + β2ix2it + uy
it, i = 1, . . . , N ; (4)

xkit = xkit−1 + ux
kit, k = 1, 2; i = 1, . . . , N. (5)

The regression coefficients are generated as Uniform variates, respectively
θi ∼ Uniform(2, 4) and βki ∼ Uniform(1, 3), where k = 1, 2. The errors of
equations (5) and (4) are drawn from a Multivariate Normal distribution with
non-diagonal covariance matrix, so that there is feedback across equations and
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units. More precisely, letting ux
t = [ux′

1tu
x′
2t . . .ux′

Nt]
′, where ux′

it = [ux
1itu

x
2it]

′

and u
y
t = [uy

1tu
y
2t . . . uy

Nt]
′, we have

[
u

y
t

ux
t

]

(N+2N)×1

= MN

([
0

0

]
,

[
R ∆
∆′ Φ

])

(N+2N)×(N+2N)

,

where R is a full N ×N matrix governing the dependence across units in the
uy′

it s, ∆ is a N ×2N matrix governing the dependence between the ux and uy

noises, and finally Φ is a 2N × 2N matrix governing the dependence in the
ux′s within and across units. Since Moon and Perron report the performances
of both FM-OLS and FM-SUR estimators to be negatively affected by the
degree of endogeneity of the X’s, we decided to control accurately δ, impos-
ing the homogeneity assumption. In our simulations we considered different
values for δ, concluding that the relative performance of system and single-
equation estimators does not seem to change with the degree of endogeneity.
Here for space constraints we will thus report only results for δ = 0.4. The ∆
matrix has a block form ensuring that there is constant correlation between
the noise of any X and that of the relevant Y equation, and no correlation
across units:

∆
N×2N

=





δ δ 0 0 . . . 0 0
0 0 δ δ . . . 0 0
...

...
...

. . .
...

0 0 0 0 . . . δ δ




.

We instead allow heterogeneity across units in the dependence parameters,
generating them as Uniform(0.3, 0.4) random variates; without loss of gen-
erality we assume different X’s in the same unit to be orthogonal. Letting

φ
(ij)
lk = cov(ux

li, u
x
kj), the covariance between the noise of Xl in the ith unit

and Xk in the jth unit, we then have:

Φ
2N×2N

=





1 0 φ
(12)
11 φ

(12)
12 . . . φ

(1N)
11 φ

(1N)
12

0 1 φ
(12)
21 φ

(12)
22 . . . φ

(1N)
21 φ

(1N)
22

φ
(21)
11 φ

(21)
12 1 0 . . . φ

(2N)
11 φ

(2N)
12

φ
(21)
21 φ

(21)
22 0 1 . . . φ

(2N)
21 φ

(2N)
22

...
...

...
...

. . .
...

...

φ
(N1)
11 φ

(N1)
12 φ

(N2)
11 φ

(N2)
12 . . . 1 0

φ
(N1)
21 φ

(N1)
22 φ

(N2)
21 φ

(N2)
22 . . . 0 1





The choice of the time and cross-section sample sizes have been fixed trying
to strike a balance between empirical relevance, which suggests medium N ′s
and small T ′s, and the requirements of the SUR estimator, which is feasible
only with a rather large T/N ratio. We thus fixed N = 5, 10 and T = 50, 100.
Finally, we set the number of bootstrap redrawings (B) and Monte Carlo
simulations (M) to 1000.
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3.2 Results

In Tables 1 and 2 we report summary statistics of the performances of re-
spectively FM-OLS and FM-SUR estimators, further averaging over units
and variables the usual Monte Carlo means.
Point estimation performance is evaluated by the average absolute relative
bias 100× (2N)−1

∑2
k

∑N
i | M−1

∑M
m (β̂kim − βki)β

−1
ki | while the dispersion

by the relative Monte Carlo standard error. The first remark in order is that
the SUR procedure turned out to be practically unfeasible for T = 50 and
N = 10. The covariance matrix, although not exactly singular, was always
so ill-conditioned that the estimators turned out to be highly numerically
unstable even using a generalised Moore-Penrose inversion routine. Hence,
we do not report them here.

Table 1
FM-OLS: Estimation and Inference Performance

Coverage Type I Err

T N bias s.e. Asy boot boot-t Asy boot

50 5 0.64 3.40 84.99 89.71 90.08 15.01 2.78
10 0.57 4.49 86.00 90.23 90.27 14.00 3.36

100 5 0.25 1.86 90.40 91.99 92.00 9.60 0.78
10 0.20 1.88 90.55 91.93 93.34 9.45 3.51

bias: 100 × (2N)−1
P

2

k

P

N

i
| M−1

P

M

m
(bβkim − βki)β

−1

ki
|

s.e.: (2N)−1
P

N

i

P

2

k

»„

q

M−1
P

M

m
(bβkim − bβ

ki
)2

«

β−1

ki

–

× 100;

Coverage: proportion of 5% confidence intervals including the true
value of the coefficient of interest;

Since this (T,N) combination can be considered rather representative of
the sample sizes used in applied work on non-stationary panels (with indeed
the time sample often actually smaller than this one) this is an important
finding. In the other cases both estimators are essentially unbiased even with
the smaller time sample, although the SUR estimator is always somehow
more biased than the OLS one. For instance, for T = 50, N = 5 and δ = 0.2
the average relative bias is 0.40% for the former and 0.34% for the latter. The
Monte Carlo standard errors are very similar, with again the single-equation
estimator always slightly superior to the SUR one (for the same case, respec-
tively 3.98% and 3.41%). Coverage and Type I errors of Gaussian inference
on FM-OLS are both disappointing, with severe overrejection and undercov-
erage. For the same parameters combination quoted above the Type I error
of a 5% test is 14.63% and the coverage, as a consequence, 85.37%. Both
problems are partially solved using the bootstrap, although coverage is infe-
rior to nominal for both the basic and the studentized intervals (respectively,
89.38% and 90.11% ) and the test underrejects (Type I error 2.36%). On the
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other hand, the performance of asymptotic inference on the SUR estimator is
simply disastrous, with Type I errors close to 50% when T is not large with
respect to N (that is, always for T = 50 and when N = 10 for T = 100)
and around 20% even in the more favorable case of T = 100, N = 5. The
reason for this extremely poor performance, not obvious from the bias and
Monte Carlo variability statistics, is found in Table 3: the detailed results for
the case T = 50, N = 5, δ = 0.41 show that the standard formulas for the
variance of the SUR estimator grossly underestimate its actual variance.

Table 2
FM-SUR: Estimation and Inference Performance

Coverage Type I Err

T N bias s.e. Asy Asy

50 5 0.79 4.04 52.56 47.44
10 - - - -

100 5 0.35 1.94 79.72 20.28
10 0.51 2.22 55.48 45.52

-: not available (numerical overflow);
all symbols and abbreviations: see Table 1

Table 3
Bias and Variability of FM-OLS and FM-SUR estimators

T = 50, N = 5, δ = 0.4

bias MC s.e. bσ bσ − MC s.e

Unit OLS SUR OLS SUR OLS SUR OLS SUR

1 β1 −0.13 0.44 5.1 5.3 3.8 2.2 1.2 3.1
β2 0.25 0.57 6.4 7.9 5.2 3.0 1.2 4.9

2 β1 −0.33 0.21 3.0 3.2 2.3 1.4 0.7 1.9
β2 1.09 1.27 6.0 6.6 4.7 2.7 1.4 3.9

3 β1 0.65 0.60 10.7 13.6 8.1 4.3 2.6 9.3
β2 −0.38 0.35 5.7 6.8 4.3 2.3 1.4 4.5

4 β1 0.52 2.34 9.8 12.7 8.2 4.5 1.6 8.2
β2 −0.38 0.01 3.8 4.4 3.1 1.8 0.8 2.7

5 β1 2.35 0.96 11.1 13.5 8.5 4.6 2.6 9.0
β2 0.23 1.10 4.7 5.3 3.6 2.1 1.1 3.2

MC s.e. : Monte Carlo s.e.; bσ : average estimated standard error ×100;
other symbols and details: see Table 1.

4 Conclusions

Our main conclusion is very simple: on the basis of our simulation exercise
the best option in non-stationary panel analysis seems to be given by single-

1 Detailed results for the other cases do not provide any additional insights and
thus are not reported here, but, as customary, available on request.
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equation estimators with bootstrap inference. The potential efficiency gains
of SUR-type estimators remain such even in the restrictive case of no long-run
relationships across units. In fact, when the time dimension is not very large
relatively to the cross-section dimension the covariance matrix is likely to
be so ill-conditioned to make the resulting estimates essentially meaningless.
Further, even when some meaningful point estimates can be obtained, their
variance is likely to be grossly underestimated by standard formulas, with
disastrous effects on inference. These conclusions are in stark contrast to
Moon and Perron’s (2004). However, this should not come as a surprise.
The properties of SUR estimators depend critically upon the quality of the
estimate of the covariance matrix. Obtaining good estimates may be an easy
task in small systems, such as those examined by Moon and Perron, but may
became very difficult in even slightly larger systems, such those considered
in our study.
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