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Monetary-Fiscal Forward Guidance

Paweł Kopiec∗

Abstract

When central banks announce cuts to future interest rates, the expected
costs of government debt service decrease, generating additional resources in
future budgets. This paper demonstrates that if the rational-expectations
assumption is dropped, fiscal authority can exploit those gains by spending
them on future transfers and, by announcing those transfers to households
today, can enhance the output effects of forward guidance. Employing a ver-
sion of the New Keynesian setup featuring bounded rationality in the form of
level-k thinking, I derive an analytical expression capturing the output effects
of that additional fiscal announcement. Subsequently, a similar formula is de-
rived in a tractable heterogeneous agent New Keynesian model with bounded
rationality, uninsured idiosyncratic risk, and redistributive effects of transfers.
Finally, I use these analytical insights to explore the effects of the forward-
guidance-induced fiscal announcement in a fully-blown heterogeneous agent
New Keynesian framework with level-k thinking calibrated to match US data.
The findings suggest that fiscal communication can amplify the output effects
of standard forward guidance by 66%. Moreover, those gains can reach 120%
when the debt-to-GDP ratio doubles. This suggests that forward guidance en-
riched with fiscal announcements about future transfers can be considered an
effective policy option when both monetary and fiscal policies are constrained,
e.g., during liquidity trap episodes accompanied by high levels of public debt.

JEL Classification: D31, D52, D81, E21, E43, E52, E58
Keywords: Forward Guidance, Monetary Policy, Fiscal Policy, Heterogeneous

Agents, Bounded Rationality

∗SGH Warsaw School of Economics, al. Niepodległości 162, 02-554, Warsaw, Poland. E-
mail: pkopie@sgh.waw.pl. Financial support of the Polish National Science Centre (Grant
2021/42/E/HS4/00142) is greatfully acknowledged. I thank Paweł Doligalski, Jacek Suda, Yinxi
Xie for helpful discussions and comments.

1



1 Introduction

Forward guidance (FG) - a type of unconventional monetary policy based on promises
about future interest rates - was initially considered useful for mitigating recessions
in liquidity traps (see, e.g., Eggertsson and Woodford (2003)). The Great Reces-
sion of 2008-2009 and the Global Financial Crisis accompanied by nominal interest
rates reaching the zero lower bound made central bankers turn their attention to
FG which, as a consequence, became a standard element of the monetary toolkit
(Blinder et al. (2017)).

When the central bank cuts future interest rates, future borrowers - including
fiscal authority - gain additional resources in their budgets. I use this elementary
monetary-fiscal interaction to construct a simple fiscal policy aimed at boosting the
FG effects. In particular, I analyze the scenario under which fiscal authority ex-
ploits those resources on future transfers and, symmetrically to the central bank, it
announces them to households today to stimulate their current consumption spend-
ing, which gives rise to the so-called fiscal forward guidance.1 The FG extended by
the fiscal announcement described above is henceforth referred to as monetary-fiscal
forward guidance (MFFG).

Augmenting the standard FG with fiscal announcement has several desirable
properties. First, the additional fiscal stimulus requires neither a rise in the level
of government debt nor increase in taxes (either current or future). As such, it
overcomes the problems associated with standard fiscal stimuli that are related to
tax-adjustment costs, tight borrowing constraints or high sovereign spreads driven
by a rise in debt. Second, the amount of additional fiscal resources generated by FG
(and thus the aggregate value of transfers to households) increases in the amount of
the maturing public debt. Therefore, MFFG can be viewed as a useful stabilization
tool when both monetary and fiscal policies are constrained (by the ZLB and high

1I restrict the timing of the fiscal stimulus - it is deployed exactly in the same period as the
future monetary shock. Naturally, one could think of alternative stimuli that are implemented
sooner or earlier than the monetary policy shock and are still financed with additional resources
generated by monetary easing (this is possible because if, e.g., the alternative stimulus occurs
earlier, the government can issue additional debt to finance it and this debt is then repaid in the
period of the monetary shock’s arrival using the resources saved on debt service costs). Unlike the
fiscal forward guidance, however, this would involve changes to the path of government debt. In
particular, in the case of the current stimulus financed with a rise in debt, constraints imposed on
the government by financial markets (e.g., debt crisis) may exlcude such a policy option.
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Figure 1: Policy rates and debt to GDP ratios in the largest advanced economies in
2006-2016

Notes: the left panel displays policy rates (Fed funds rate, the BOJ call rate, and the rate of main
refinancing operations of ECB).

government debt, respectively), which was the case during the Great Recession in
the largest advanced economies (see Figure 1). Third, fiscal transfers directly affect
household budget constraints and therefore this fiscal measure is well-understood
by households.2

In this paper, I argue that dropping the rational-expectations assumption in
favor of bounded rationality is key for fiscal forward guidance to affect economic
allocation and, in particular, to have an impact on current output.3 To see this,
note that rational agents are aware of the mechanisms governing the economy and,
in particular, they recognize that the FG announcement (about lower interest rates)
relaxes fiscal constraints in the future. Thus, as it is shown formally in my article,
the value of an additional information announced by the fiscal authority to rational
households is zero and thus their consumption behavior remains unchanged. As
a consequence, there is no difference between the effects of MFFG and FG when

2Note that it is not the case if an announcement about an alternative fiscal policy measure,
i.e., government spending, is considered. It is because the effectiveness of the latter requires that
households recognize the dependence of their incomes on government expenditures, which is not
true if their rationality is bounded. More specifically, it can be inferred from the proof of Theorem
1 that when bounded rationality takes the form of level-k thinking, there is no difference between
MFFG and FG if fiscal authority announces changes to future government spending.

3I consider transfers instead of government spending because the latter may feature zero effects
if agents’ rationality is severly limited (see Bianchi-Vimercati et al. (2021)).
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agents are rational.4 By contrast, if households feature bounded rationality, they
are not (fully) aware of the impact of changes to policy rates on the fiscal budget
and thus fiscal forward guidance is able to influence their choices by enriching their
current information sets.

Importantly, bounded rationality assumed in this paper is a widely-accepted
ingredient in macroeconomic models studying the effects of announcements about
future policy actions. In particular, the departure from rational expectations allows
for obtaining plausible predictions about the FG effectiveness in models, that may
otheriwse exhibit explosive dynamics in response to future interest rates (the so-
called “FG puzzle”).5

The second premise is that
The main goals of this paper are the theoretical analysis of the MFFG effects and

their quantitative assessment. To this end, I follow the exposition strategy applied in
a related paper by Farhi and Werning (2019) and use a sequence of tightly-related
models of ascending complexity. Starting with the standard representative agent
New Keynesian model (RANK) extended with level-k thinking, I derive a closed-
form expression for the MFFG effectiveness measured with the elasticity of output
in period 0 with respect to changes to future interest rates (i.e., at time τ > 0).
Moreover, to isolate the effects of fiscal forward guidance, I present an analytical
formula describing the difference between output elasticities under MFFG and FG.
Most importantly, I find that it if the rationality of agents is sufficiently low (k ≤ τ),
the fiscal announcement induced by FG becomes non-neutral, i.e., it affects current
output. Moreover, while the effectiveness of MFFG relies solely on the mechanism
of intertemporal substitution scaled by a factor related to cognitive constraints of
agents, the difference between output elasticities under MFFG and FG depends on
the severity of bounded rationality, the amount of maturing government debt, and

4Note that the rational-expectations assumption implies a deep asymmetry in the abilities of
the central bank and fiscal authority to communicate future policies when the fiscal guidance
(coordinated with the standard FG) is considered.

5Numerous papers sought for estimating the FG effects and, starting from Del Negro et al.
(2023), found that a workhorse model for monetary policy analysis - the standard New Keynesian
setup - generates explosive dynamics of output and inflation in response to the central bank’s
promise to cut policy rates below the natural interest rate in the future. This unrealistic feature of
the representative agent New Keynesian model was often attributed to the rational-expectations
assumption (see seminal contributions by Angeletos and Lian (2018), Farhi and Werning (2019),
Garcia-Schmidt and Woodford (2019), and Gabaix (2020), among others).
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marginal propensisties to consume.
In general, RANK turns out to be a useful starting point for the analysis of

MFFG and the effectivenes of the fiscal announcement. By definition, however, it is
unable to capture the redistributive effects of transfers. To address this point and
to preserve the tractability of the analysis, I extend RANK with level-k thinking by
introducing incomplete insurance markets and idiosyncratic income risk. I then use
the resulting framework (the so-called tractable heterogeneous agent New Keyne-
sian model - THANK, see Bilbiie (2019)) for deriving analytical formulas describing
the analogous objects as those obtained in RANK. The transmission of MFFG is
considerably more complex than in RANK: in addition to the intertemporal substi-
tution channel, the elasticity of output in period 0 with respect to interest rates at τ
depends on changes to interest earnings in τ , the redistributive effects of transfers in
τ and their impact on aggregate demand that influences output in τ . As in RANK,
all those terms are scaled with terms describing the bounded rationality friction. By
contrast, the term describing the difference between MFFG and FG effectiveness is
very similar to its RANK counterpart.6

Equipped with an organizing framework provided by RANK and THANK, I use
a tightly related heterogeneous agent New Keynesian (HANK) model, calibrated to
match the moments characterizing the US economy, to quantify the output elas-
ticities with respect to future interest rate shocks under MFFG and calculate the
effectiveness of fiscal forward guidance (given by the difference in output elasticities
between MFFG and FG). In the benchmark simulation featuring debt to GDP equal
to 55%, I find that the additional fiscal announcement raises the FG effectiveness
measured with the interest rate elasticity of output by up to 66% (for transfers
targeted towards low-income earners). Importantly, I find that the additional fiscal
announcement is most effective when agents’ rationality is severely bounded, which
are exactly the circumstances for which the standard FG is least effective and thus
improving its effectiveness is most desired (see Farhi and Werning (2019)). Moreover,
I consider an additional scenario under which debt to GDP doubles when compared
to the benchmark and I find that fiscal announcement raises the FG effectiveness by
120%. This corroborates the intuition described when discussing the properties of
fiscal forward guidance above: the effectiveness of the fiscal announcement increases

6It depends on bounded rationality, the amount of maturing government debt, and marginal
propensisties to consume. Additionally, it is non-zero only if k ≤ τ .
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in public debt. Therefore, the MFFG can be viewed as a policy option for economies
facing the ZLB and high public debt.

The rest of the paper is organized as follows. Section 2 discusses the related
literature. In Section 3, I derive the interest rate elasticity of output related to
MFFG in the RANK model. Section 4 displays an analogous outcome for THANK.
Section 5 quantifies MFFG in the calibrated HANK model. Section 6 concludes.

2 Literature

Eggertsson and Woodford (2003) use the RANK model and analyze the role of FG
in mitigating recessions in the economy facing a liquidity trap. They find that the
monetary authority is able to eliminate the recession if it commits to holding nomi-
nal interest rates equal to zero for some additional period of time after the economic
crisis. As shown by Del Negro et al. (2023), however, such extensions of low interest
rates may give rise to explosive dynamics of output and inflation - the so-called
“FG puzzle”. Numerous researchers searched for realistic extensions of the RANK
model able to generate more realistic predictions of the FG effects. In the seminal
paper, McKay et al. (2016) extend RANK by incorporating uninsured idiosyncratic
income risk (incomplete markets) and find that this additional ingredient resolves
the “FG puzzle”, i.e., the possibility of occasionally binding borrowing constraints
significantly lower the elasticity of aggregate demand to future interest rates. This
conclusion was undermined by Werning (2015) and Hagedorn et al. (2019), who
showed that the “FG puzzle” may dissappear, persist or even get aggrevated under
incomplete markets, depending on the income redistribution scheme.7 Motivated
by those findings, Farhi and Werning (2019) analyze the role of the interactions be-
tween incomplete markets and bounded rationality in mitigating the responsiveness
of current output to future interest rates. They find that, if both frictions are in
place, the FG effectiveness is considerably constrained when compared to RANK.
Moreover, Angeletos and Lian (2018), Garcia-Schmidt and Woodford (2019), and
Gabaix (2020) study the model with complete markets and find that bounded ratio-

7Relatedly, Bilbiie (2019) and Bilbiie (2020) use THANK and argue that eliminating the “FG
puzzle” requires that the income share of high MPC agents is countercyclical. Additionally, Acharya
and Dogra (2020) construct the PRANK model (i.e., Pseudo RANK) and demonstrate that the
cyclicality of income risk determines whether idiosyncratic income risk resolves the “FG puzzle”.
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nality alone helps to resolve New Keynesian anomalies, including the “FG puzzle”.8

Additionally, Iovino and Sergeyev (2023) use the model with bounded rationality to
analyze the macroeconomic effects of quantitative easing.

Alternative resolutions to the “FG puzzle” include Campbell et al. (2019) and
Michaillat and Saez (2021). First of them develops the model of imperfect imper-
fect central bank communications. By contrast, I follow Farhi and Werning (2019)
by analyzing credible monetary and fiscal policy announcements where the first of
them is fully incorporated into the expected yield curve. Moreover, I assume that
households and firms have to form indirect expectations about other forward-looking
variables crucial for agents’ decisions (e.g., future income levels). Similarly to Farhi
and Werning (2019), I use level-k thinking to model this dichotomy between directly
and indirectly observed future variables. To resolve the New Keynesian anomalies,
Michaillat and Saez (2021) incorporate wealth into the utility function. Such social-
status considerations are absent in my work.9

Auclert et al. (2020) and Dobrew et al. (2023a) use models with bounded ra-
tionality and incomplete markets to analyze the effects of conventional monetary
policy. In particular, Auclert et al. (2020) use the HANK model with sticky house-
hold expectations and highlight a central role of investment for the propagation of
monetary policy shocks. Dobrew et al. (2023a) find that market incompleteness is
not an important determinant of the effectiveness of make-up strategies. They draw
opposite conclusions for the significance of bounded rationality.

Angeletos and Sastry (2021) discuss the dilemma whether central banks should
use forward guidance about the policy instrument (nominal interest rates) or an-
nounce targets for economic outcomes (e.g., unemployment) and show that the latter
communication becomes more desirable if general equilibrium (GE) feedbacks are
powerful enough. By contrast, my paper concentrates on the coordination of an-
nouncements rather than on the choice between them. Woodford and Xie (2019)
and Woodford and Xie (2022) study the role of transfers in a liquidity trap using

8Dobrew et al. (2023b) use the framework developed by Gabaix (2020) to compare the effective-
ness of inflation targeting and history-dependent monetary rules under ZLB. Similar problems are
studied by Dupraz et al. (2022) in the model developed by Garcia-Schmidt and Woodford (2019).
Additionally, Dupraz and Marx (2023) apply the framework by Garcia-Schmidt and Woodford
(2019) to study the anchoring of inflation expectations.

9Note that models with wealth in utility function feature rational expectations and, by con-
struction, the effects of the fiscal forward guidance discussed in this paper are zero.
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a representative model with bounded rationality (captured with a limited foresight
of agents) and argue that the resulting failure of the Ricardian equivalence implies
that the analyzed fiscal policy can stimulate output. They abstract, however, from
the additional fiscal policy announcement induced by FG and from household het-
erogeneity that are investigated in my paper.

Intuitively, bounded rationality influences the extent to which agents understand
the equilibrium effects of policy interventions. In that context, Angeletos and Lian
(2018) and Farhi et al. (2020) study the size of the government-spending multiplier
in economies with cognitive limitations and Bianchi-Vimercati et al. (2021) compare
the effectiveness of stimuli based on either higher government spending or tax cuts
and conclude that the latter exhibit larger output effects when the level of cognitive
sophistication is low.

The impact of incomplete markets on the conduct of fiscal policy has been re-
cently studied by Angeletos et al. (2023) who explore the possibility of self-financing
deficits. Additionally, Wolf (2021) uses an analytical model with occasionally-
binding borrowing constraints to establish an equivalence between interest rate cuts
and stimulus payments (that take a form of uniform transfers).

This work is related to papers studying the role of fiscal policy at the ZLB. Sem-
inal contributions by Woodford (2011), Eggertsson (2011), Christiano et al. (2011),
and Rendahl (2016) use the standard RANK model and find that government spend-
ing multipliers are potentially large in liquidity traps. This policy, however, requires
a rise in taxes or government debt to finance additional government expenditures.
By contrast, the policy studied in my paper does not increase the levels of these fis-
cal instruments (current or future), which is potentially desirable when fiscal policy
is constrained by either tax-adjustment costs or borrowing constraints. A related
strand of literature studies the role of the interactions between monetary policy
and public debt. Rachel and Summers (2019) argue that higher levels of public
debt help to avoid ZLB episodes and Bhattarai et al. (2023) find that QE, which
lowers the maturity of government bonds, is effective in liquidity traps because it
generates expectations about low interest rates in the future. Both mechanisms
are different from the one analyzed in my article. Billi and Walsh (2022) evaluate
the role of super-active fiscal policy rules (involving substantial rises in government
debt in adverse economic conditions) in the standard New Keynesian model with
occasionally-binding ZLB. By contrast, the MFFG discussed in this paper keeps the
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path of public debt unchanged. Gali (2020) studies a money-financed fiscal stimu-
lus as a policy option in a depressed economy that relies neither on lower nominal
interest rates (which is constrained at the ZLB) nor on rises in government debt
(which is not feasible when its level is high or when the economy is facing a debt
crisis). Thus, MFFG studied in this paper can be viewed as an alternative to the
stimulus analyzed in Gali (2020).

There are empirical works corroborating the impact of policy announcements on
current household spending. As for monetary policy, Coibion et al. (2023) study the
impact of FG communication on households’ expectations about future inflation,
mortgage rates and unemployment rate. They find that changes to perceived real
interest rates driven by FG lead to shifts in household spending on durable goods
and document horizon effects (i.e. lower responsiveness of households to policy an-
nouncments about more distant interest rate changes). Agarwal and Qian (2014)
find that household consumption rises considerably after fiscal policy announce-
ments about transfers and document significant anticipation effects captured by the
consumer response financed via credit cards.

It seems that the closest paper to mine is Farhi and Werning (2019). My work
can be viewed as a modification of their analysis that adds positive public debt and
explores the resulting monetary-fiscal interactions. I also follow their exposition
strategy that is based on a set of models starting from those allowing for analytical
characterizations and leading to more realistic quantitative setups that can be solved
only numerically.10

3 Monetary-fiscal forward guidance in RANK

I start by analyzing the effects of MFFG in the standard New Keynesian setup.
Despite its simplicity, this parsimonious model offers important insights into the
determinants of fiscal forward guidance efficacy that remain valid in the model with
incomplete insurance markets.

10In the analytical part, I develop the THANK model (instead of the continuous-time OLG
analyzed in Farhi and Werning (2019)) featuring level-k thinking to give rise to the aggregate
demand channel of transfers (see Oh and Reis (2012)) that would be otherwise absent in the
continuous-time OLG model (because, by construction, the measure of the constrained, high-MPC
agents is zero).
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3.1 Environment

Time is infinite and divided into discrete subperiods indexed with t ∈ {0, 1, 2, ...}.
The demand block consists of forward-looking identical households (consumers) of
measure one. It is assumed that prices are perfectly rigid and thus ouptut is demand-
driven (see, e.g., Angeletos and Lian (2018), Bilbiie (2019), Farhi and Werning
(2019), Auclert et al. (2023b)). From the Fisher equation, this assumption can be
alternatively interpreted as a situation when the central bank is able to control
real interest rates. The government consists of two branches: monetary and fiscal
authority. There are two markets: for consumption goods and assets (government
bonds). I introduce bounded rationality by assuming that consumers form expecta-
tions using level-k thinking.

3.2 Households

Consumers discount future utility streams with discount factor β ∈ (0, 1) and it is
assumed that the instantaneous utility function u takes the following form:

u (c) = c1− 1
σ − 1

1 − 1
σ

where σ > 0 is the intertemporal elasticity of substitution.
Household maximizes lifetime utility given by:

max
{ct,bt+1}+∞

t=0

E0

∞∑
t=0

βt · u (ct) (1)

subject to a sequence of budget constraints:

∀t≥0 ct + bt+1 − (1 − θ) · bt = Rt · θ · bt − Tt + Trt + Yt

where ct is consumption in period t, bt are asset (bond) holdings accumulated in
t − 1, Rt is the nominal return on bonds (that equals to the real return under
perfectly rigid prices), θ denotes the maturity of bonds (where θ ∈ [0, 1] and where
θ = 1 corresponds to one-period bonds). Moreover, to highlight the role of the
FG-induced fiscal transfer, I introduce a distinction between taxes Tt and transfers
Trt: the latter are financed by additional fiscal gains generated by the monetary
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shock while the former finance the usual (i.e., steady-state) debt service costs of the
government. Additionally, by Yt I denote the pre-tax income and by Υt I denote the
after-tax income, i.e.:

Υt ≡ −Tt + Trt + Yt.

3.3 Monetary authority

I consider monetary policy scenarios analyzed in Farhi and Werning (2019): mone-
tary authority keeps Rt at the constant level that equals to its steady state value R
(steady-state value of nominal interest rate) and it deviates from this strategy only
once, i.e., in period τ .11 This period can be thought of as the time when the policy
change (announced in period 0) materializes. More formally, the monetary rule is
described by:

Rt =

R if t ̸= τ,

R + dR if t = τ.
(2)

In what follows, I calculate the elasticities of output in period 0 with respect to the
announced monetary policy changes for τ ∈ {1, 2, ...} where τ = 1 corresponds to
the standard monetary policy shock.

3.4 Fiscal authority

Fiscal budget constraint is:

∀t≥0 Tt +Bt+1 − (1 − θ) ·Bt = Trt +Rt · θ ·Bt

where Bt is the level of aggregate government debt.
I assume the following fiscal rules: first, fiscal authority keeps the level of public

debt unchanged:
∀t≥0 Bt = B̄

where B̄ > 0 is a parameter, which implies that MFFG is neutral for the aggre-
gate stock of government bonds. Transfers are financed with additional resources

11I follow the convention that variables without time subscripts denote their values in the sta-
tionary equilibrium/steady state.
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generated by a change to the monetary policy rate:

∀t≥0 Trt = − (Rt −R) · θ · B̄

and taxes cover debt-service costs in the steady state:

∀t≥0 Tt = T = (R − 1) · θ · B̄.

3.5 Market clearing

The resource constraint for the market of goods is:

ct = Yt

and the market clearing condition for assets is:

bt = Bt.

Both of them are satisfied for all t ≥ 0.

3.6 Consumption function

Before formulating the equilibrium defimition, it is useful to define the consumption
function (see Kaplan et al. (2018), Farhi and Werning (2019), Auclert et al. (2023b),
among others).

In particular, in the forward-looking RANK model, the solution to the household
problem (1) takes the following form (note that Tt is constant over time and thus
can be omitted as an argument of the consumption function):

∀t≥0 ct = C
(
Rt, Yt, T rt, {Rt+m, Yt+m, T rt+m}m>0

)
.

Note that under MFFG, the paths of transfers and interest rates are directly ob-
served by households. By contrast, households have to form expectations about
future values of output. As discussed, I use level-k thinking when modeling that
process. By contrast, under the standard FG, only interest rates are observed di-
rectly and future values of both output and transfers are determined by level-k
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thinking.

3.7 Equilibrium

We are in a position to define the equilibrium in the RANK model with level-k
thinking:

Definition. The equilibrium in RANK with level-k thinking under MFFG is
{
Y k
t

}
t≥0

such that for each t ≥ 0, given {Rt+m, T rt+m}m≥0 and for all k ≥ 1:

∀t≥0 Y
k
t = C

(
Rt, Y

k
t , T rt,

{
Rt+m, Y

k−1
t+m , T rt+m

}
m>0

)
,

where {Y 0
t }t≥0 = {Y }t≥0 (i.e. level-0 expectations correspond to the steady state

equilibrium) such that market clearing conditions, monetary and fiscal rules hold.
Under the FG, for each t ≥ 0 in the equation above: {Trt+m}m>0 is replaced
with

{
Trk−1

t+m

}
m>0

, Trt is replaced with Trkt and, additionally, it is assumed that{
Tr0

t+m

}
m>0

= {0}m>0.

3.8 Interest rate output elasticities in general equilibrium

This subsection presents the main results for the RANK model: the output elasticity
in period 0 with respect to the MFFG communication about monetary shock and
fiscal transfer in period τ and the difference between elasticities under MFFG and
FG that captures the impact of fiscal forward guidance (see Theorem 1).

Before presenting those outcomes, it is useful to characterize the optimal re-
sponse of household consumption in period 0 (in partial equilibirum) to sequences
of infinitesimal deviations of interest rates and after-tax income levels {dRt, dΥt}t≥0

from their steady-state values (for analogous characterizations in the RANK model
see Angeletos and Lian (2018) and Angeletos and Sastry (2021)):

Lemma 1. Under the optimal behavior of households, dc0 implied by sequences
{dRt, dΥt}t≥0 satisfies:

dc0 =
∞∑
t=1

βt ·
[
−β · θ · c · σ · dRt + 1 − β

β
·
(
θ · B̄ · dRt−1 + dΥt−1

)]
.
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All proofs are delegated to the Appendix. Note that the equation in Lemma 1
is a linearized version of the non-linear equation that characterizes aggregate con-
sumption function in Farhi and Werning (2019).12 I use the linearized formulation
because it allows for obtaining analytical results in general equilibrium not only in
RANK but also when analyzing the THANK model in Section 4.

Note that Lemma 1 implies that the marginal propensity to consume (MPC) in
RANK reads:

MPC ≡ dc0

dY0
= 1 − β (3)

Let us denote the intertemporal marginal propensity to consume (iMPC, see Auclert
et al. (2023b)) with respect to a one-period-ahead income shock as iMPC. From
Lemma 1:

iMPC ≡ dc0

dY1
= β · (1 − β) . (4)

Before moving to Theorem 1, let us introduce several useful definitions.
By R̄, I denote the effective rate on assets in the steady state:

R̄ ≡ R · θ + 1 − θ

where R = R̄ in the economy with one-period debt (i.e., when θ = 1).
The elasticity of output in period 0 with respect to a monetary policy shock in

period τ under level-k thinking of order k and under MFFG is denoted by:

ϵ (τ, k) ≡ − R̄

Y
· dY (τ, k)

dR
(5)

where dY (τ, k) is the deviation of output in period 0 from its steady-state value
resulting from a one-time monetary shock (and the induced fiscal transfer) in period
τ . The analogous object for the equilibrium with FG is denoted by ϵ̂ (τ, k). More-
over, the difference between output elasticities under MFFG and FG is denoted by
∆ϵ (τ, k):

∆ϵ (τ, k) ≡ ϵ (τ, k) − ϵ̂ (τ, k) .

Finally, let us denote by F the cumulative distribution function of the binominal dis-
12See p. 3905 in their paper.
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tribution (describing the probability of obtaining k−1 successes in τ−1 independent
trials with success probability 1 − β):

F (k − 1|τ − 1, 1 − β) =
k−1∑
l=0

 τ − 1
l

 · βτ−l−1 · (1 − β)l

for k ∈ {1, 2, ..., τ}. Its value is equal to 0 for k < 1 and 1 for k > τ .
The corresponding probability mass function is:

f (k − 1|τ − 1, 1 − β) =



 τ − 1

k − 1

 · βτ−k · (1 − β)k−1 for k ∈ {1, 2, ..., τ}

0 otherwise

We can now formulate the main result for the RANK economy:

Theorem 1. Consider a monetary policy shock in period τ > 0 in the RANK model
under level-k thinking of order k and under the MFFG. We have:

ϵ (τ, k) = F (k − 1|τ − 1, 1 − β) · θ · σ

and the impact of fiscal forward guidance is:

∆ϵ (τ, k) = f (k − 1|τ − 1, 1 − β) · iMPC

1 −MPC
· R̄ · B̄ · θ

c
.

First, note that as Theorem 1 shows, bounded rationality is crucial for the ad-
ditional fiscal announcement to have real effects. Indeed, if k > τ then f = 0 and
thus ∆ϵ (τ, k) = 0, i.e., there is no difference in the output reaction between MFFG
and FG. By contrast, ∆ϵ (τ, k) is positive for k ≤ τ , i.e., if agents’ cognitive frictions
are sufficiently severe. As we shall see, the neutrality of fiscal forward guidance for
k > τ continues to hold in THANK and it is almost exactly satisfied in the quantita-
tive HANK model. The neutrality of the additional fiscal announcement in RANK
for k > τ follows from the fact that sufficiently rational agents recognize that the
additional fiscal transfer in period τ exactly offsets the change to interest earnings
in that period and thus fiscal forward guidance is neutral for their consumption
behavior.
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Second, notice that k > τ implies F = 1, which corresponds to the Rational
Expectations Equilibrium (REE), i.e.:

ϵ (τ, k) = θ · σ.

This means that the effectiveness of policy MFFG does not depend on horizon τ

(i.e., the model features the “FG puzzle”).
Third, observe that the effectiveness of MFFG (measured with ϵ (τ, k)) is an

increasing function of k for k ≥ 1 (F is a cdf and, as such, grows with k). To
put it differently, MFFG is more effective when agents become more rational. By
contrast, the impact of k on the effectivenes of fiscal forward guidance ∆ϵ (τ, k) is
ambiguous. The reasons underlying this fact have an economic interpretation that
can be illustrated using the equation that follows from the proof of Theorem 1:

∆ϵ (τ, k) =
τ−k+1∑
t=1

βt · 1 − β

β
· ∆ϵ (τ − t, k − 1) . (6)

The interpretation of the equation above follows from Lemma 1: the output effects
of fiscal forward guidance of horizon τ under bounded rationality featuring level
k equal the impact of changes to income levels between periods 1 and τ − k + 1
on aggregate demand in period 0. Those changes to income levels, in turn, are
driven by fiscal forward guidance and the expectations about them are formulated
by agents using level-k thinking and thus they are equal to output effects of fiscal
forward guidance computed in the k−1-th iteration of the equilibrium computation
process. This, coupled with the fact that the model is forward-looking and features
no aggregate state variables, means that these income changes can be expressed as:
∆ϵ (τ − 1, k − 1) for period 1, ∆ϵ (τ − 2, k − 1) for period 2, etc. The upper bound
on the sum in equation (6) follows from the fact that:

∆ϵ (k − 2, k − 1) = ∆ϵ (k − 3, k − 1) = ... = 0

as shown in Theorem 1. We have now the following trade-off affecting the mono-
tonicity of f (k − 1|τ − 1, 1 − β) in k (and thus the monotonicity of ∆ϵ (τ, k)). On
the one hand, as agents become more rational, they value the information conveyed
by fiscal forward guidance less - they are sufficiently smart and realize that monetary
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policy shock at τ affects the constraint of the fiscal authority in that period, which
induces transfers to households. This effect is captured with the number of elements
of sum in equation (6) that decreases with k. On the other hand, however, more
rational agents recognize that any change to their income at τ affects the economy
in all previous periods down to period 0 which, in turn, magnifies the reaction of
aggregate demand (and output due to the assumed perfectly rigid prices) in period
0. Thus the cost of the missing information (about fiscal transfers that stimulate
the economy between 0 and τ) tends to increase with k. For instance, consider a
rise of k from 1 to 2. For k = 1 we have:

∆ϵ (τ, 1) =
τ∑
t=1

βt · 1 − β

β
· ∆ϵ (τ − t, 0) = βτ−1 · θ · σ (7)

i.e., the sum collecting the income effects consists of one element only - i.e., the
impact of fiscal forward guidance on the expectations about receiving additional
income (i.e., fiscal transfer) in period τ . For k = 2 we have:

∆ϵ (τ, 2) =
τ−1∑
t=1

βt · 1 − β

β
· ∆ϵ (τ − t, 1)

=
τ−1∑
t=1

βt · 1 − β

β
· βτ−t−1 · θ · σ

where I used equation (7). In other words, if k = 2 then the sum in condition (6)
consists of τ − 1 elements which captures the fact that, in contrast to k = 1, the
agents who feature k = 2 start recognizing the impact of general equilibrium effects
of fiscal forward guidance on the path of their future incomes which, in turn, affects
consumption and output at t = 0.

Intuitively, as Theorem 1 shows, both ∆ϵ and ϵ increase with the amount R̄·B̄·θ
c

of
standardized maturing debt, which indicates that MFFG can be useful in liquidity
traps in economies facing large amount of public debt.

Note that Theorem 1 indicates that the relative rise in the effectiveness of MFFG
when compared to FG, which is given by:

∆ϵ (τ, k)
ϵ̂ (τ, k) = ∆ϵ (τ, k)

ϵ (τ, k) − ∆ϵ (τ, k) ,

17



is independent of debt maturity θ, which occurs because θ affects the effectiveness
of both FG (denominator) and fiscal forward guidance (numerator).

Finally, let us relate Theorem 1 to Proposition 2 in Farhi and Werning (2019).
Note that under the MFFG and θ = 1 the first formula in Theorem 1 boils down to
the one obtained in their paper because:

F
(
k − 1|τFW , 1 − β

)
· σ =

∑k−1
m=0

(
R̄ − 1

)
·∑τF W −1

s0=0 ·∑τF W −1−s0
s1=0 ·... ·∑τF W −1−sm−2

sm−1=0 1
R̄τF W

where τFW = τ − 1 is the timing convention followed in their paper. This implies
that MFFG (and not FG) in the model with government debt is a direct counterpart
of FG in the model without public debt (analyzed in Farhi and Werning (2019)).

4 Monetary-fiscal forward guidance in THANK

This section repeats the exercises conducted in the RANK model in a framework
extended to capture household heterogeneity and precautionary motives. This ex-
tension is aimed at studying the dependence of the MFFG effects on various types
of transfers (e.g., uniform, targeted) announced by fiscal authority together with FG
communicated by the central bank. By construction, such an analysis is impossible
in RANK. More specifically, I extend the heterogeneous agent setup introduced by
Bilbiie (2019) by introducting level-k thinking. I use his framework as a starting
point for my investigation because it allows for preserving analytical tractability in a
model featuring income heterogeneity, uninsured idiosyncratic income risk and pos-
itive government liquidity.13 As such, it also serves as a useful device that bridges
the analyses of MFFG in RANK and HANK (conducted in Sections 3 and 5, re-
spectively).

13The last feature becomes possible because of the ’island’ structure of the Bilbiie’s model. All
this means that I diverge from the exposition strategy by Farhi and Werning (2019): i.e., instead of
analyzing a tractable OLG in continuous time to give rise to the notion of incomplete markets, I use
the framework by Bilbiie (2019) which, additionally, allows for capturing precautionary motives.
An additional motivation for this deviation is that in the continuous-time OLG model the mass of
constrained agents is zero which annihilates the effects of transfers targeted to those agents.
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4.1 Environment

The main difference when compared to the RANK model is the demand block that
is taken from the paper by Bilbiie (2019). Supply side and monetary policy is the
same as in RANK. The conduct of fiscal policy is analogous to the RANK but is
adjusted to address the presence of household heterogeneity in the model. As in
RANK, there are two markets: for consumption goods and for assets. Moreover, as
in Section 3, I depart from the assumption about rational expectations by assuming
that consumers form expectations using level-k thinking.

4.2 Households

It is assumed that a unit mass of households lives on two islands: the first is popu-
lated by agents of type S (agents having access to financial markets) and the second
by agents of type H (constrained, i.e., not having access to financial markets). In
every period, agents face the risk of being reallocated to another island. More specif-
ically, the probability of staying on island S and H is s and h, respectively, where
s, h ∈ (0, 1). The measures of ergodic populations on islands H and S (see Bilbiie
(2019)) are:

λ = 1 − s

2 − s− h
, 1 − λ = 1 − h

2 − s− h
,

respectively.
All households constitute a family governed by a family head that makes con-

sumption and savings decisions on behalf of agents of type S and H. Additionally,
to give rise to uninsured income risk, it is assumed that the family head is unable
to move resources across both islands within a period. It is assumed that pre-tax
incomes of agent H and S (denoted by Y H

t and Y S
t , respectively) satisfy:

∀t≥0
Y H
t

Y S
t

= ω ∈ (0, 1) (8)

which is the first assumption needed for the incomplete-markets irrelevance (see
Werning (2015) and Farhi and Werning (2019)) to hold in the THANK model with
positive government liquidity. The incomplete-markets irrelevance is defined as a
situation when there are no differences in the effects of policy announcements on
current output between RANK and the model with incomplete markets. As such, the
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incomplete-markets irrelevance serves as an important benchmark. Note, however,
that equation (8) is insufficient for the incomplete-markets irrelevance to hold in
THANK and has to be complemented with additional conditions (discussed below).
Observe, that THANK nests RANK as a special case. Specifically, for s = 1, h = 0,
and ω = 1 THANK is equivalent to RANK analyzed in the previous section.

The end-of-period-t real asset values per capita on islands H and S are ZH
t+1 and

ZS
t+1, respectively and the beginning-of-period-t + 1 real asset value per capita on

island H and S are BH
t+1 and BS

t+1, respectively. As in Bilbiie (2019), this implies
the following laws of motion:

B
S
t+1 = s · ZS

t+1 + (1 − s) · ZH
t+1,

BH
t+1 = (1 − h) · ZS

t+1 + h · ZH
t+1.

I denote the taxes levied on households H and S by THt and T St , respectively and
the corresponding transfers are TrHt and TrSt . The Bellman equation describing the
maximization problem of the family head is:

Vt
(
BS
t , B

H
t

)
= max

{cH
t ,c

S
t ,Z

H
t+1,Z

S
t+1}

{
(1 − λ) · u

(
cSt
)

+ λ · u
(
cHt
)

+ β · Vt+1
(
BS
t+1, B

H
t+1

)}
(9)

cSt + ZS
t+1 − (1 − θ) ·BS

t = Rt · θ ·BS
t − T St + TrSt + Y S

t

cHt + ZH
t+1 − (1 − θ) ·BH

t = Rt · θ ·BH
t − THt + TrHt + Y H

t

ZS
t+1, Z

H
t+1 ≥ 0

where cSt /c
H
t is consumption of a household on island S/H and Vt is the value

function in period t. Analogously to RANK, I denote the after-tax incomes by:
ΥS

t ≡ −T St + TrSt + Y S
t ,

ΥH
t ≡ −THt + TrHt + Y H

t .

As in Bilbiie (2019), I consider the equilibrium with ∀t≥0 Z
H
t+1 = 0, i.e., when

households of type H are constrained (hand-to-mouth).
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4.3 Monetary authority

The conduct of monetary policy is the same as in RANK (see subsection 3.3), i.e.,
Rt is given by:

Rt =

R if t ̸= τ,

R + dR if t = τ.

4.4 Fiscal authority

Both the government budget constraint and fiscal rules are simple generalizations
of those analyzed in RANK. In particular, the budget constraint is:

∀t≥0 (1 − λ) · T St + λ · THt +Bt+1 − (1 − θ) ·Bt

= (1 − λ) · TrSt + λ · TrHt +Rt · θ ·Bt.

As in RANK, government debt is constant over time:

∀t≥0Bt = B̄ > 0

Analogously to RANK, taxes are constant and finance steady-state debt service
costs:

T St = B̄

1 − λ
·
(
R̄ · s− 1

)
, THt = B̄ · R̄

1 − λ
· (1 − h) . (10)

Those conditions are the second assumption guaranteeing that the incomplete-
markets irrelevance holds in THANK.

As before, transfers are financed with a windfall resulting from the monetary
shock:

TrSt = − 1 − δ

1 − λ
· (Rt −R) · θ · B̄, T rHt = − δ

λ
· (Rt −R) · θ · B̄ (11)

where δ ∈ [0, 1] governs the way the windfall is redistributed. In particular, I
consider:

δ =


1 − s neutral transfers,

λ uniform transfers,

1 targeted transfers.

The value of parameter δ that corresponds to neutral transfers is the last re-
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quirement that has to be satisfied (together with conditions (8) and (10)) to give
rise to the incomplete-markets irrelevance in the model with public debt. Uniform
transfers are equal for both H and S households. Targeted transfers, in turn, are
directed solely towards high MPC (i.e. households of type H).

4.5 Market clearing

The sequence of the resource constraints is:

∀t≥0 λ · cHt + (1 − λ) · cSt = Yt (12)

and the set of market clearing condition for assets is:

∀t≥0 (1 − λ) · ZS
t = Bt (13)

note that it follows because ZH
t = 0 for H households.

4.6 Consumption function

In the THANK model, consumption functions characterizing the solution to the
maximization problem (9) are:

∀t≥0 c
S
t = CS

(
Rt, Y

S
t , T r

S
t ,
{
Rt+m, Y

H
t+m, Y

S
t+m, T r

H
t+m, T r

S
t+m

}
m>0

)
,

∀t≥0 c
H
t = R̄ · (1 − h) · B̄ − THt + TrHt + Y H

t .

Observe that that THt and T St are omitted as arguments of function CS because
taxes are constant over time. Unconstrained households receive a direct announce-
ment

{
Rt+m, T r

H
t+m, T r

S
t+m

}
m>0

under MFFG and have to form expectations about{
Y H
t+m, Y

S
t+m

}
m>0

. As in RANK, I use level-k thinking to model that process. Ad-
ditionally, under the standard FG, households S have to form expectations about{
TrHt+m, T r

S
t+m

}
m>0

using level-k thinking. Households H do not need to formulate
expectations because they are hand-to-mouth.
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4.7 Equilibrium

Equilibrium in THANK with level-k thinking is defined as follows:

Definition. The equilibrium in THANK under the MFFG is
{
Y H,k
t , Y S,k

t , Y k
t

}
t≥0

such that given
{
Rt+m, T r

H
t+m, T r

S
t+m

}
m≥0

for each k ≥ 1:

∀t≥0 Y
k
t = CS

(
Rt, Y

S,k
t , T rSt ,

{
Rt+m, Y

H,k−1
t+m , Y S,k−1

t+m , T rHt+m, T r
S
t+m

}
m>0

)

+λ ·
(
R̄ · (1 − h) · B̄ − THt + TrH,kt + Y H,k

t

)
where

{
Y H,0
t , Y S,0

t , Y 0
t

}
t≥0

=
{
Y H , Y S, Y

}
t≥0

such that market clearing conditions,
monetary and fiscal rules hold. Under FG,

{
TrHt+m, T r

S
t+m

}
m>0

is replaced with{
TrH,k−1

t+m , T rS,k−1
t+m

}
m>0

and
{
TrSt , T r

H
t

}
with

{
TrS,kt , T rH,kt

}
in the formula above

and, additionally,
{
TrH,0t+m, T r

S,0
t+m

}
m>0

= {0, 0}m>0.

4.8 Interest rate output elasticities in general equilibrium

In contrast to RANK, the intra-period reallocation of resources across households
in the model with uninsured idiosyncratic risk may affect aggregate demand of
households and, as such, may have an impact on aggregate output (see Oh and
Reis (2012)). In the analyzed THANK model, this reallocation is driven by hetero-
geneous changes to interest earnings driven by a monetary policy shock and fiscal
transfers. Therefore, before moving to the analysis of interest rate output elasticities
in THANK, it is useful to formulate the following object:

Lemma 2. The output elasticity with respect to a 0-horizon monetary shock (i.e.,
for τ = 0) is:

ϵ (0|δ) = −B̄ · R̄ · θ
Y

· 1 − λ+ λ · ω
1 − λ

· (1 − δ − s)

Note that ϵ (0|δ) is encapsulating the impact of a monetary shock on output that
works through heterogeneous interest earnings and transfers related to that shock
(the latter are determined with parameter δ). Moreover, the output elasticity in
Lemma 2 is proportional to the standardized real value of the maturing government
debt B̄·R̄·θ

Y
. Observe that ϵ (0|δ) is increasing in δ for all possible parametrizations

and maximized for δ = 1 (i.e., for transfers targeted towards constrained agents)
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and its value equals to 0 for neutral transfers (i.e., when the changes to interest
earnings are exactly offset by the transfer received for each agent).

Let us now formulate the counterpart of Lemma 1 in the THANK model (which
extends the results in Angeletos and Lian (2018) and Angeletos and Sastry (2021)
to the model with incomplete markets). To guarantee the uniqueness of the con-
sumption response characterization, it is assumed that:

s · ω + h < 1. (14)

We have:

Lemma 3. Under the optimal behavior of households, dcS0 implied by sequences{
dRt, dΥH

t , dΥS
t

}
t≥0

satisfies:

dcS0 = 1
β · R̄ · s

·
∞∑
t=1

Mt ·
[
−θ · cS · σ

R̄
· dRt + β · R̄ · (1 − s)

ω
1
σ

+1
·
(
θ ·BH · dRt + dΥH

t

)

+β · R̄ · s− M
M

·
(
θ ·BS · dRt−1 + dΥS

t−1

)]

where M is the larger root of Ψ
(

1
M

)
= 0 and where Ψ is a quadratic polynominal

with coefficients expressed as functions of the model’s parameters.

The closed-form expression for M is shown in the Appendix. The comparison of
Lemmas 1 and 3 implies that M in THANK plays an analogous role to β in RANK
- it discounts the impact of future changes to income levels and interest rates on
current consumption of household S.

Lemma 3 implies that MPC of household S is:

MPCS ≡ dcS0
dY S

0
= 1 − M

β · R̄ · s
(15)

and the iMPC of the S household with respect to a one-period-ahead income shock
(a unit of consumption good out of which δ is received in state H and 1 − δ in state
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S):14

iMPCS (δ) ≡ M
β · R̄ · s

·
[
β · R̄ · (1 − s)

ω
1
σ

+1
· δ
λ

+ β · R̄ · s− M
M

· 1 − δ

1 − λ

]
. (16)

Note that, unlike ϵ (0|δ), iMPCS (δ) is not an increasing function of δ for all possible
parameter values (i.e. indipendently of the model parametrization). This occurs
because there is a trade-off between transfering income to state H and S in the
future: on the one hand, increasing δ (i.e., the proportion of resources directed to
state H in the next period) boosts cS0 because higher future income in the state in
which consumer is constrained reduces current precautionary motives. On the other
hand, if s is sufficiently high, state H materializes with a relatively low probability
and thus additional resources transferred to that state are valued less.

The elasticity of output in period 0 with respect to a monetary policy shock
in period τ > 0 under level-k thinking of order k under the MFFG and transfers
governed by parameter δ is denoted by:

ϵ (τ, k|δ) ≡ − R̄

Y
· dY (τ, k|δ)

dR
(17)

where dY (τ, k|δ) is the reaction of output in period 0 to a shock in period τ . The FG
counterpart of ϵ (τ, k|δ) is denoted by ϵ̂ (τ, k|δ) and the difference between interest
rate elasticities of output under MFFG and FG is denoted by ∆ϵ (τ, k|δ):

∆ϵ (τ, k|δ) ≡ ϵ (τ, k|δ) − ϵ̂ (τ, k|δ) . (18)

We now turn to the main result formulated for THANK:

Theorem 2. Consider a monetary policy shock featuring horizon τ > 0 in the THANK
model under level-k thinking of order k and under the MFFG. We have:

ϵ (τ, k|δ) = F (k − 1|τ − 1, 1 − M) · θ · σ︸ ︷︷ ︸
intertemporal substitution

− F (k − 1|τ − 1, 1 − M) · iMPCS (1 − s)
1 − MPCS

· R̄ · B̄ · θ

cS︸ ︷︷ ︸
interest earnings

14Naturally, MPCH = 1 and iMPCH = 0.
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+ F (k − 1|τ − 1, 1 − M) · iMPCS (δ)
1 − MPCS

· R̄ · B̄ · θ

cS︸ ︷︷ ︸
transfers (restribution)

+ F (k − 2|τ − 1, 1 − M) · (1 − M) · ϵ (0|δ)︸ ︷︷ ︸
transfers (GE effects)

and the impact of fiscal forward guidance is:

∆ϵ (τ, k|δ) = f (k − 1|τ − 1, 1 − M) · iMPCS (δ)
1 − MPCS

· R̄ · B̄ · θ

cS

Comparison of Theorems 1 and 2 shows that although the MFFG transmission
is considerably more sophisticated in THANK than in RANK (i.e., ϵ (τ, k|δ) is sub-
stantially more complex than ϵ (τ, k)), the isolated effects of fiscal forward guidance
captured by ∆ϵ (τ, k|δ) in THANK have a very similar structure to ∆ϵ (τ, k) in
RANK.

Incomplete insurance markets give rise to three additional transmission channels
of the MFFG when compared to RANK (in the latter model it is driven solely
by intertemporal substitution). First of them is associated with interest earnings:
changes to interest rates in period τ have a differentiated impact on households
incomes due to heterogeneous asset holdings. Note that the impact of that channel
is negative for an expansionary monetary policy shock (i.e., for dR < 0) because it
lowers interest earnings. Second, monetary shock in period τ induces transfers in
that period. Households in period 0 expect to receive them at time τ , which boosts
aggregate demand and output in period 0. Both the interest earnings and transfers
channels are proportional to the standardized value of public debt R̄·B̄·θ

CS . Note that
neutral transfers with δ = 1−s offset the impact of the interest earnings channel and
thus the net effect of both channels on ϵ (τ, k|δ) is zero. Third, transfers in period
τ reallocate resources across households featuring different MPC levels affecting
aggregate demand and thus income at time τ , which, in turn, influences private
spending at time 0.

Analogously to RANK, the transmission of MFFG is more powerful when agents
become more rational - all transmission channels are multiplied by term F which
increases in k. Note that, as in Farhi and Werning (2019), the impact of MFFG on
current output is influenced by the interaction of incomplete markets and bounded
rationality: 1 − β that enters F in RANK is replaced with 1 − M in THANK.
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Moreover, as in RANK, there exists a threshold value for k above which ϵ (τ, k|δ)
is a constant function of k and corresponds to the REE. More specifically, the
level-k and REE equilibria feature identical responses to monetary policy shocks if
k ≥ τ + 1. If additionally δ = 1 − s then ϵ (τ, k|δ) = ϵ (τ, k), i.e., the incomplete
markets irrelevance holds.

Note that, unlike ϵ (τ, k|δ), the effects of fiscal forward guidance captured by
∆ϵ (τ, k|δ) are very similar to their RANK counterpart. The crucial difference is
that ∆ϵ (τ, k|δ) depends on δ in THANK, which results from the impact of the
transfer type δ on iMPC (δ) - i.e., the way a unit rise in disposable income is
redistributed between two possible states (in which households are either constrained
or unconstrained) in the future. As the monotonicity of iMPC (δ) is parameter-
dependent (see the discussion that follows formula (16)), a quantitative model is
needed to evaluate the type of transfer maximizing the MFFG transmission. This
exercise is conducted in Section 5 using the fully-blown HANK model.

Similarly to RANK, the impact of cognitive constraints on ∆ϵ (τ, k|δ) is ambigu-
ous and a more formal discussion of that issue follows the line of reasoning presented
in Section 3 - it suffieces to replace β with M in the formal analysis of formulas (6)
and (7).

Finally, as in RANK, the relative impact of the fiscal announcement when com-
pared to FG effectiveness:

∆ϵ (τ, k|δ)
ϵ (τ, k|δ) − ∆ϵ (τ, k|δ) (19)

is independent of θ.

5 Monetary-fiscal forward guidance in HANK

This section lays out a quantitative model with uninsured idiosyncratic risk that
is based on Auclert et al. (2023a). The departure from the two-island structure
analyzed in the previous section implies that wealth distribution becomes a relevant
state variable which, coupled with precautionary motives that give rise to concave
consumption functions, implies that linear aggregation does not obtain and therefore
the model ceases to be analytically tractable. I consider three versions of the model
in the quantitative exercise. The first differs from THANK only in that it features a
non-degenerate wealth distribution and allows for bridging the THANK model with
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the analysis based on HANK. In the second variant of HANK (which is referred
to as the benchmark), perfectly rigid prices are replaced with the standard New
Keynesian Phillips Curve (NKPC). There is only one difference between the second
HANK and the third model: the latter features higher value of the government
debt. I use those three calibrations of the same HANK model to highlight the role
of interactions between demand and supply in the propagation of MFFG and to
study the impact of debt level on the effectiveness of MFFG. The former is achieved
by comparing the first and the second variants of HANK and the latter is attained
by analyzing the differences between the second and third version of the model.

5.1 Environment

The demand block is based on the canonincal Bewley-Huggett-Aiyagari model of in-
complete markets. More specifically, I use a version of the model analyzed by Auclert
et al. (2023a) (extended to capture bounded rationality) because it guarantees the
similarity of the problems solved by households in HANK and in THANK/RANK
(in particular, the assumptions made by Auclert et al. (2023a) imply zero profits and
inelastic labor supply as in RANK and THANK). Moreover, it allows for dealing
with the so-called MPC-MPE-Multipliers trilemma discussed in their paper. The
supply side is represented by the standard NKPC but, as mentioned, I consider also
a variant of HANK with perfectly rigid prices to bridge the quantitative analysis
with exercises in Sections 3 and 4. The conduct of fiscal policy is analogous to
RANK and THANK. The conduct of monetary policy generalizes the monetary rule
(2) to the model with NKPC. There are three markets in the model: for consump-
tion goods, assets and, labor. Moreover, as in previous sections, I depart from the
assumption about rational expectations and use level-k thinking, instead.

5.2 Households

There is mass one of households facing changes to idiosyncratic labor productivity
levels yt governed by a Markovian process featuring transition probability P (yt+1|yt).
The instaneous utility function is:

u (c) − v (n) = c1− 1
σ − 1

1 − 1
σ

− γ · n
1+ 1

ϕ

1 + 1
ϕ
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where γ > 0 is a parameter and ϕ > 0 is Frisch elasticity of labor supply. The
Bellman equation associated with the maximization problem of a household that
enters period t with asset holdings b and productivity level y is:

Vt (b, y) = max
{ct,bt+1}

{u (ct) − v (nt) + β · EtVt+1 (bt+1, yt+1)} (20)
ct + bt+1 − (1 − θ) · b = Rt·θ

Πt
· b− Tt + Trt (y|δ) + y · Wt

Pt
· nt

bt+1 ≥ 0

where Vt is value function, Wt is nominal wage, Pt denotes the price of consumption
goods, Πt is gross inflation rate:

Πt ≡ Pt
Pt−1

,

T rt (y|δ) is the transfer received by household with productivity y under transfer
policy δ. Due to the assumed labor market structure (see subsection 5.3), nt is taken
as given by households. Thus, the solution to the maximization problem (20) are
two policy functions: ct (b, y) and bt+1 (b, y). As we shall see, Wt/Pt = 1 and firm
profits are zero, which coupled with the fact that nt is exogenous for households,
implies that the budget constraint of the problem (20) is a direct counterpart of
budget constraints in RANK/THANK.

5.3 Labor unions and producers of consumption goods

As in Auclert et al. (2023a), nominal wages are negotiated by labor unions. Each
union offers a different labor variety Nj,t (with j ∈ [0, 1]) and nominal wage Wj,t to
producers of consumption goods and maximizes welfare of its members (i.e. house-
holds) together with the quadratic disutility from wage adjustment, subject to labor
demand. In particular, labor union j solves the following problem:

Ft (Wj,t−1) = max
Wj,t, Nj,t

{∫
(u (ct) − v (nt)) dµt (b, y) (21)

−ψ

2 ·
∫ (

Wj,t

Wj,t−1
− 1

)2

+ β · EtFt+1 (Wj,t)
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subject to:

Nj,t =
(
Wj,t

Wt

)−ξ
·Nt

which is a generalization of the problem considered by Erceg et al. (2000) in RANK,
developed by Auclert et al. (2023b) and Auclert et al. (2023a), where µt (b, y) is the
measure of households with assets b and productivity level y, ψ is the parameter of
wage-adjustment, and Nt is aggregate labor. The solution to problem (21) is the
standard NKPC (see Auclert et al. (2023b) for derivation):

(
ΠW
t − 1

)
· ΠW

t = ξ

ψ
·Nt ·

(
v′ (Nt) − ξ − 1

ξ
·
∫
y · u′ (ct (b, y)) dµt (b, y)

)

+β ·
(
ΠW
t+1 − 1

)
· ΠW

t+1 (22)

where ΠW
t ≡ Wt/Wt−1 is the gross inflation rate of nominal wages.

Moreover, Wt and the union-specific wages Wj,t satisfy the following relationship:

Wt =
(∫ 1

0
W 1−ξ
j,t dj

) 1
1−ξ

where parameter ξ > 0 governs the substitutability between labor varieties that are
packed by competitive labor packers using technology:

Nt =
(∫ 1

0
N

ϵ−1
ϵ

j,t dj
) ϵ

ϵ−1
.

Packed labor services are then sold to producers of consumtpion goods who operate
a linear technology:

Yt = Nt

and maximize profits:
Pt · Yt −Wt ·Nt.

It is assumed that they are perfectly competitive, which implies that:

Pt = Wt
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and thus:
ΠW
t = Πt.

This means that producers generate zero profits which implies that household max-
imization problems in RANK, THANK and HANK are analogous.

5.4 Monetary authority

I follow Farhi and Werning (2019) and generalize the monetary rule from THANK
and RANK to account for the presence of the NKPC:

Rt =


R if t < τ

R + dR if t = τ

R ·
(

Πt

Π

)ϕΠ if t > τ

where ϕΠ > 0 is the Taylor rule parameter.

5.5 Fiscal authority

Analogously to RANK and THANK, the government budget constraint reads:

∀t≥0 Tt +Bt+1 − (1 − θ) ·Bt = Trt + Rt

Πt

· θ ·Bt.

The fiscal policy rules are as follows. First, the real value of government debt is
constant over time:

∀t≥0 Bt = B̄ > 0.

Taxes finance the steady state level of debt service costs:

Tt =
(
R

Π − 1
)

· θ · B̄.

Aggregate transfers equal to:

Trt = −
(
Rt

Πt

− R

Π

)
· θ · B̄

i.e., Trt is financed with a windfall resulting from the monetary shock at t = τ .
As in THANK, I consider three redistribution schemes:
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Trt (y|δ) =



b
B̄

· Trt neutral transfers

Trt uniform transfers
1∫

y∈Y dµt(b,y) · Trt targeted transfers

where Y is the set of income levels of households that are entitled to targeted
transfers.

5.6 Market clearing

Let us specify the time-evolution of the household distribution. The internal consis-
tency of the model requires that the Markovian changes to labor productivity and
optimal saving policies induce the following law of motion of µt (b, y):

∀t≥0 µt+1 (B,Y) =
∫ [

I{bt+1(b,y)∈B} · P (yt+1 ∈ Y|y)
]
dµt (b, y)

where B and Y are Borel subsets of spaces of assets holdings and labor productivity
levels, respectively and I is the indicator function.

Additionally, I standardize the aggregate labor productivity and the population
size:

∀t≥0

∫
ydµt (b, y) =

∫
dµt (b, y) = 1.

Market clearing condition for labor is:

∀t≥0,j∈[0,1] nt = Nt = Nj,t,

and for consumption goods it reads:

∀t≥0

∫
ct (b, y) dµt (b, y) = Yt,

The market clearing condition for assets it is given by:

∀t≥0

∫
bt+1 (b, y) dµt (b, y) = Bt+1
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5.7 Consumption and wage-setting functions

Given that Wt = Pt, Yt = nt, Πt = ΠW
t , and Tt is constant over time, the aggregate

consumption can be formulated as:

Ct ≡
∫
c
(
b, y|Rt,Πt, T rt (·|δ) , Yt, {Rt+m,Πt+m, T rt+m (·|δ) , Yt+m}m>0

)
dµt (b, y) .

Now, adopting this formulation to level-k and the MFFG I define:

Ck
t ≡

∫
c
(
b, y|Rt,Πk

t , T rt (·|δ) , Y k
t ,
{
Rt+m,Πk−1

t+m, T rt+m (·|δ) , Y k−1
t+m

}
m>0

)
dµkt (b, y)

(23)
and, moreover, I denote:

ckt (b, y) ≡ c
(
b, y|Rt,Πk

t , T rt (·|δ) , Y k
t ,
{
Rt+m,Πk−1

t+m, T rt+m (·|δ) , Y k−1
t+m

}
m>0

)
. (24)

Notice that, under the standard FG, Trt+m is replaced with Trk−1
t+m and Trt is re-

placed with Trkt in formulas (23) and (24). The saving policy under level-k is defined
as:

bkt+1 (b, y) ≡ (1 − θ) · b+ Rt · θ
Πt

· bt − Tt + Trt (y|δ) + y · Wt

Pt
· nt − ckt (b, y) .

It is assumed that, symmetrically to households, the forward-looking labor unions
are subject to bounded rationality and use level-k thinking to forecast the values of
future aggregate variables that are not announced by the government. To this end,
let us first define:

Ωt ≡ ξ

ψ
·Nt ·

(
v′ (Nt) − ξ − 1

ξ
·
∫
y · u′ (ct (b, y)) dµt (b, y)

)
.

Using this definition and ΠW
t = Πt let us rewrite the NKPC as:

(Πt − 1) · Πt = Ωt +
+∞∑
m=1

βm · Ωt+m
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Thus, under level-k thinking, we have the following condition summarizing the op-
timal price-setting behavior of labor unions:

(
Πk
t − 1

)
· Πk

t = Ωk
t +

+∞∑
m=1

βm · Ωk−1
t+m. (25)

5.8 Equilibrium

We can now define the equilibrium in HANK:

Definition. The equilibrium in HANK under MFFG is:
{
Πk
t , Y

k
t ,Ωk

t

}
t≥0

,
{
µkt
}
t≥0

,{
ckt (b, y)

}
t≥0

,
{
bkt+1 (b, y)

}
t≥0

such that given {Rt, T rt (y|δ)}t≥0 and given µk0 =
µ0 for each k ≥ 1: given {Rt+m}m≥0, {Trt+m (y|δ)}m≥0,

{
Πk−1
t+m, Y

k−1
t+m

}
m>0

, and{
Πk
t , Y

k
t

}
functions ckt (b, y), bkt+1 (b, y) solve household problem (20) for each t ≥ 0,

given
{
Ωk−1
t+m

}
m>0

and Ωk
t inflation Πk

t solves (25), the government budget constraint
holds and the monetary policy rule is satisfied, the law of motion of measure µkt is
induced by the Markovian process P (yt+1|yt) and policy function bkt+1 (b, y), market
clearing conditions are satisfied. Additionally,

{
Π0
t+m, Y

0
t+m

}
m>0

= {Π, Y }m>0 and{
Ω0
t+m

}
m>0

= {Ω}m>0. Moreover, under FG, {Trt+m (y|δ)}m>0 is replaced with{
Trk−1

t+m (y|δ)
}
m>0

and Trt (y|δ) is replaced with Trkt (y|δ) in the specification of
variables taken as given by households, where

{
Tr0

t+m (y|δ)
}
m>0

= {0}m>0.

5.9 Calibration

Steady state of the model is calibrated to match the moments characterizing the US
economy. Time period is a quarter.

First, it is assumed that the idiosyncratic labor productivity process is specified
as in Krueger et al. (2016) (i.e., labor productivity is affected by persistent and
transitory shocks denoted by ϵŷ and ϵy, respectively):

log yt+1 = log ŷt + ϵy,t+1

log ŷt+1 = ρ · log ŷt + ϵŷ,t+1

where ŷt is the persistent component of the process where ϵy ∼ N
(
0, σ2

y

)
, ϵŷ ∼

N
(
0, σ2

ŷ

)
, and ρ ∈ (0, 1). I discretize the persistent component of the process using
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the Rouwenhorst algorithm and I use the Gauss-Hermite quadrature to approximate
the transitory component.

To match the average MPC in the US economy, β is assumed to be uniformly
distributed:

β ∼ U
[
β, β

]
.

Finally, it is assumed that targeted transfers are received by the bottom 25% of
labor income earners (which pins down set Y).

The values of calibrated parameters and the associated calibration targets are
displayed in Table 1. I consider θ = 1 (i.e., one-period debt), which is standard in
the literature and, as argued in Sections 3 and 4, this choice is innocuous for the
main quantitative result (i.e. the relative increase in the effectiveness of FG that can
be attributed to fiscal forward guidance). I set ψ = 700 to match the NKPC slope in
Auclert et al. (2023a). I set σ = 1 (log-utility from consumption) as in McKay and
Reis (2016). The substitution between labor varieties ξ is equal to 7 as in Auclert
et al. (2023a) and labor disutility γ is set to standardize Y = 1. Frisch elasticity
ϕ is equal to 0.5 as in McKay and Reis (2016). Parameters σy, σŷ, ρ are quarterly
counterparts of the values reported by Krueger et al. (2016). The responsiveness of
monetary policy to inflation (i.e., ϕΠ) is equal to 1.5, which is a standard value in
the literature. The value of government debt B̄ is set to match the ratio between
debt and annual GDP equal to 55% as in Auclert et al. (2023a). The upper bound
of the distribution of β (i.e., β̄) equals 0.988 to match the annual gross real interest
rate of 1.02. The lower bound for β (i.e., β) is set to match the quarterly MPC of
0.25 as in Auclert et al. (2023a). Finally, the steady-state value of gross nominal
interest rate is consistent with the zero net inflation and the targeted real interest
rate (i.e., it satisfies the Fisher equation).

5.10 Simulations

I now report the quantitative results for three variants of the HANK model. As
in Sections 3 and 4, first of them assumes perfectly rigid prices/wages (ψ → +∞,
with other parameters equal to their calibrated values) and is intended to bridge the
quantitative analysis with the analytical part. Second variant of the model features
ψ < +∞, with all parameters equal to their values in Table 1. This is the so-called
benchmark (baseline simulation). This model features a non-degenerate NKPC and
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Table 1: Parameter values
Parameter Description Value Target/Source

θ debt maturity 1 one-period debt

ψ wage-adjustment cost 700 NKPC slope (Auclert et al. (2023a))

σ intertemporal substitution 1 McKay and Reis (2016)

ξ substitution between labor varieties 7 Auclert et al. (2023a)

γ labor disutility parameter 0.86 Y = N = 1

ϕ Frisch elasticity 0.5 McKay and Reis (2016)

ρ autocorrelation (persistent component) 0.99 Krueger et al. (2016)

σŷ standard error (persistent component) 0.10 Krueger et al. (2016)

σy standard error (transitory component) 0.11 Krueger et al. (2016)

ϕΠ Taylor rule parameter 1.5 standard value

B̄ government debt 2.2 Auclert et al. (2023a)

β discount factor (patient households) 0.988 annual R/Π of 2%

β discount factor (impatient households) 0.970 MPC (Auclert et al. (2023a))

R steady state nominal interest rate 1.005 Π = 1

its comparison to the first version of HANK allows for isolating the impact of the
interactions between the demand and supply blocks on the propagation of MFFG.
Finally, I consider the MFFG effects in a variant of HANK in which the value of B̄ is
100% higher than in the baseline. The comparison of the second and third versions
of HANK allows for quantifying the influence of public debt on the effectiveness of
MFFG and fiscal forward guidance.

HANK with ψ → +∞. Let us start with the HANK model featuring perfectly
rigid prices. Figure 2 displays the interest rate elasticities of output corresponding
to a monetary policy shock at horizon τ accompanied by the fiscal announcement
about transfers. I consider both REE and level-k equilibria and three types of
transfers: neutral, uniform, and targeted. The left panel shows that the interest
rate elasticity corresponding to MFFG with neutral transfers and REE satisfies
the incomplete market irrelevance, i.e., it is a constant function of τ that equals
σ = 1, which coincides with the value of output elasticity in RANK under REE
(see Theorem 1 for k > τ). This echoes the conclusion by Werning (2015): the
assumption of incomplete markets is insufficient to resolve the FG puzzle in the
standard New Keynesian model. As the solid lines (representing elasticities under
level-k thinking) show, bounded rationality fixes that problem because lower values
of k lead to significant horizon effects (i.e. a decreasing relationship between τ and
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Figure 2: Interest rate elasticities of output in HANK with perfectly rigid prices
under MFFG for neutral, uniform and targeted transfers.

Notes: Interest rate elasticities of output in period 0 computed for a one-time drop in interest rates equal to dR = −0.0025 (i.e. a
one-percentage-point decrease in nominal rates in annual terms) that occurs in period τ - see formula (17) for three types of transfers
in period τ (induced by monetary shock): neutral, uniform, and targeted. Dashed lines correspond to the rational expectations
equilibria and solid lines denote output elasticities under level-k thinking. Different thickness of solid lines represent different values
of k.

ϵ (τ, k|δ)), as discussed in Farhi and Werning (2019). As the middle panel shows,
the effectiveness of MFFG is larger when transfers become uniform - the increase
for τ = 1 ranges from 38% to 66% for level-k equilibrium featuring k = 1 and REE,
respectively. The analogous numbers for the MFFG with targeted transfers amount
to 45% and 83%. In other words, the increasing progressivity of transfers raises the
effectiveness of the MFFG.

Let us turn to the effectiveness of the fiscal forward guidance measured with
∆ϵ (τ, k|δ), i.e., the difference in the interest rate output elasticities between MFFG
and FG (see formula (18)). As shown in Figure 3, the effectiveness of the fiscal
announcement is the largest in the case of targeted transfers for both bounded
rationality and under REE. As explained by formula ∆ϵ (τ, k|δ) in THANK (see
Theorem 2), this result hinges on the value of iMPC (δ) that is affected by two op-
posite effects.15 On the one hand, transfers that are directed to future states where
the income is low (and where the chances of becoming constrained is substantially
higher) curb precautionary motives in period 0 and stimulate aggregate demand

15See the discussion that follows formula (16).
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Figure 3: Difference between interest rate elasticities of output under MFFG and
FG in HANK with perfectly rigid prices for neutral, uniform and targeted transfers.

Notes: Difference (between MFFG and FG) in interest rate elasticities of output in period 0 computed for a one-time drop in interest
rates equal to dR = −0.0025 (i.e. a one-percentage-point decrease in nominal rates in annual terms) that occurs in period τ . This
difference is specified by formula (18) for three types of transfers in period τ (induced by monetary shock): neutral, uniform, and
targeted. Solid lines denote output elasticities under level-k thinking. Different thickness of solid lines represent different values of k.

which, given perfectly rigid prices, translates into a rise in output. On the other
hand, the chance of the materialization of low-income states for high-income house-
holds in period 0 (who feature higher responsiveness to signals about future income
shocks than the poor and constrained) is small given the substantial persistence of
labor productivity process ρ. As Figure 3 displays, the former force dominates the
latter and thus fiscal forward guidance is most effective for targeted transfers.

Importantly, note that the difference in output elasticities between MFFG and
FG is not monotonic in k (as predicted by the RANK and THANK): it first in-
creases in k and then, when agents are sufficiently rational (i.e. when k > τ), it
drops to values that are close to zero. The intuition behind the increasing relation-
ship between k and ∆ϵ (τ, k|δ) is analogous to RANK and THANK: when k is low
and increases to k + 1, more rational agents realize that the fiscal announcement
stimulates output in periods 1, 2, ..., τ−1 which boosts aggregate demand in period
0.

To interpret those results quantitatively, let us normalize ∆ϵ (τ, k|δ) and divide
its value by the interest rate output elasticity corresponding to the standard forward
guidance (see formula (19)). Figure 4 shows the values of the corresponding ratios.
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Figure 4: The ratio between fiscal and monetary forward guidance effectiveness in
HANK with perfectly rigid prices for neutral, uniform and targeted transfers.

Notes: The difference (between MFFG and FG) in interest rate elasticities of output in period 0 computed for a one-time drop in
interest rates equal to dR = −0.0025 (i.e. a one-percentage-point decrease in nominal rates in annual terms) that occurs in period τ ,
standardized by the interest rate elasticity corresponding to the standard FG (see formula 19) for three types of transfers in period τ
(induced by monetary shock): neutral, uniform, and targeted. Solid lines denote output elasticities under level-k thinking. Different
thickness of solid lines represent different values of k.

Note that the standardized effectiveness of fiscal forward guidance is “polarized”: it
is almost constant for k ≤ τ and then it drops to values close to zero for k > τ and
it is almost constant, too. The mid and right panels show that the relative change
to the FG effectiveness driven by the additional fiscal announcement may reach
50% under uniform transfers and up to 56% under targeted transfers. Moreover,
these relative gains from the fiscal announcement are substantial even for horizons
exceeding a year (about 30% for both uniform and targeted transfers) and are present
for k ≤ τ . I.e., they are most powerful when agents are least rational and when
the standard FG is least effective (see Farhi and Werning (2019)). Recall that, as
argued in Sections 3 and 4, those quantitative assessments is robust to changes to
debt maturity.

HANK with ψ < +∞ - baseline simulation. Let us now allow for in-
teractions between aggregate demand and the supply side by analyzing the model
with standard nominal rigidities, i.e., the supply side ceases to be passive and it
is governed by the NKPC instead. Figure 5 shows interest rate elasticities of out-
put in this variant of the HANK model. By comparing it to Figure 2, it can be
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Figure 5: Interest rate elasticities of output in HANK (benchmark with the NKPC,
ψ < +∞) under MFFG for neutral, uniform and targeted transfers.

Notes: Interest rate elasticities of output in period 0 computed for a one-time drop in interest rates equal to dR = −0.0025 (i.e. a
one-percentage-point decrease in nominal rates in annual terms) that occurs in period τ - see formula (17) for three types of transfers
in period τ (induced by monetary shock): neutral, uniform, and targeted. Dashed lines correspond to the rational expectations
equilibria and solid lines denote output elasticities under level-k thinking. Different thickness of solid lines represent different values
of k.

concluded that relaxing the assumption about constant prices leads to an increas-
ing relationship between interest rate elasticity of output and the MFFG horizon
under REE. This becomes particularly apparent if left panels of both figures (i.e.,
the panels corresponding to neutral transfers) are compared: while the output elas-
ticity is a constant function of τ when ψ = +∞, its dynamics becomes explosive
if ψ < +∞ reflecting mechanisms analogous to a dynamic beauty contest between
firms and households analyzed by Angeletos and Lian (2018). As the rationality
of both households and firms becomes more constrained, however, the reaction of
current output exhibits horizon effects, as predicted in Farhi and Werning (2019).
Additionally, observe that similarly to the case when ψ → +∞, the MFFG is most
effective under targeted transfers.

Let us turn to the difference between output elasticities under MFFG and FG
displayed in Figure 6. Similarly to the case with perfectly rigid prices, the an-
nouncement of additional fiscal transfer is most effective when it is targeted. There
is, however, an important difference between the values of ∆ϵ (τ, k|δ) in the HANK
featuring ψ = +∞ and the baseline (compare Figures 3 and 6): the interactions
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Figure 6: Difference between interest rate elasticities of output in HANK (bench-
mark with the NKPC, ψ < +∞) between MFFG and FG for neutral, uniform and
targeted transfers.

Notes: Difference (between MFFG and FG) in interest rate elasticities of output in period 0 computed for a one-time drop in interest
rates equal to dR = −0.0025 (i.e. a one-percentage-point decrease in nominal rates in annual terms) that occurs in period τ . This
difference is specified by formula (18) for three types of transfers in period τ (induced by monetary shock): neutral, uniform, and
targeted. Solid lines denote output elasticities under level-k thinking. Different thickness of solid lines represent different values of k.

between the supply side and the demand block (absent in the former model) imply
that ∆ϵ (τ, k|δ) increases in k more dynamically for the lowest values of k, so that
the absolute effectiveness of fiscal forward guidance peaks at k = τ and is signif-
icantly higher than for k = 1. This more pronounced reaction of output to fiscal
communication in the economy with more rational agents when k ≤ τ can be at-
tributed to the fact that they recognize the presence of the dynamic beauty contest
between the demand and the supply blocks that additionally propagates the effects
of fiscal forward guidance.

The standardized effectiveness of fiscal guidance (see Figure 7) is less “polarized”
than under ψ → +∞, i.e., its value features more variation for k ≤ τ than in
the model with perfectly rigid prices. This can be explained by the impact of the
agents’ awareness of the dynamic beauty contest between firms and households which
increases in k and leads to more pronounced output effects of fiscal forward guidance.
Note that if the interactions between aggregate demand and the supply side are taken
into account, the value added of the fiscal announcement to the output effects of
FG may reach 58% under uniform transfers and 66% under targeted transfers. As
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Figure 7: The ratio between fiscal and monetary forward guidance effectiveness in
HANK (benchmark with the NKPC, ψ < +∞) for neutral, uniform and targeted
transfers.

Notes: The difference (between MFFG and FG) in interest rate elasticities of output in period 0 computed for a one-time drop in
interest rates equal to dR = −0.0025 (i.e. a one-percentage-point decrease in nominal rates in annual terms) that occurs in period τ ,
standardized by the interest rate elasticity corresponding to the standard FG (see formula 19) for three types of transfers in period τ
(induced by monetary shock): neutral, uniform, and targeted. Solid lines denote output elasticities under level-k thinking. Different
thickness of solid lines represent different values of k.

in the model with perfectly rigid prices, the gains from the fiscal forward guidance
are present for k ≤ τ , i.e., they are most powerful when agents are least rational
and when the standard FG is least effective.

HANK with ψ < +∞ and high debt. Finally, let us discuss the role of
public debt in boosting the effects of the standard FG through a coordinated fiscal
communication. To this end, consider the model, in which the real value of govern-
ment debt is 100% higher than in baseline and compute the FG and fiscal forward
guidance in the economy featuring the new stationary equilibrium corresponding to
higher aggregate level of liquid assets. Figure 8 shows the ratio between current
output effects of the fiscal announcement and the effectiveness of the standard FG
(see formula (19)).16 Comparison with Figure 7 shows that higher public debt sub-
stantially amplifies the positive impact of the additional fiscal announcement on the
effectiveness of the standard FG. Specifically, it may increase the FG effectiveness
by up to 108% under uniform transfers and up to 120% under targeted transfers,

16Figures displaying the total effectiveness of MFFG and the absolute impact of fiscal forward
guidance are delegated to the Appendix.
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Figure 8: The ratio between fiscal and monetary forward guidance effectiveness in
HANK (model with the NKPC and high debt) for neutral, uniform and targeted
transfers.

Notes: The difference (between MFFG and FG) in interest rate elasticities of output in period 0 computed for a one-time drop in
interest rates equal to dR = −0.0025 (i.e. a one-percentage-point decrease in nominal rates in annual terms) that occurs in period τ ,
standardized by the interest rate elasticity corresponding to the standard FG (see formula 19) for three types of transfers in period τ
(induced by monetary shock): neutral, uniform, and targeted. Solid lines denote output elasticities under level-k thinking. Different
thickness of solid lines represent different values of k.

i.e., the standardized fiscal forward guidance effects are almost two times larger than
in the baseline.

6 Conclusions

In this paper, I discussed the coordination of fiscal policy announcements with FG
aimed at boosting the effects of the latter. To this end, I considered a simple fiscal
policy under which future transfers (financed with the expected budget gains result-
ing from FG) are announced to agents today to stimulate their current consumption.
Using the RANK model with level-k thinking, I showed analytically that the impact
of this fiscal communication becomes positive when agents feature bounded ratio-
nality. I then extended that framework by incorporating uninsured idiosyncratic
income risk and derived the closed-form expressions characterizing the transmis-
sion of coordinated monetary-fiscal announcements and the isolated impact of fiscal
forward guidance on current output in THANK. Using these analytical insights, I
explored a related fully-blown HANK model with bounded rationality to quantify

43



the output effects of FG enriched with fiscal communication. I found that fiscal
forward guidance about transfers targeted towards 25% of the poorest (in terms
of labor income) is able to raise the FG effects by 66% when debt-to-GDP ratio
equals to 55%. This positive impact of fiscal forward guidance may reach 120% in
the economy with debt-to-GDP ratio equal to 110%. Given this and the fact that
the proposed policy does not increase neither taxes nor debt (along their transition
paths) the MFFG can be viewed as a potentially effective stabilization tool in the
economy where both the standard fiscal and monetary policies are constrained by
high public debt levels and the ZLB, respectively.
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Appendix

Proofs

Before going to the proofs of statements presented in the main text, let us proof two
helpful lemmas. First of them is a simple consequence of the Pascal identity:

Lemma 4. Let a and b be positive integers and a > b. We have: a

b

 =
 a− 1
b− 1

+
 a− 2
b− 1

+ ...+
 b− 1
b− 1

 .
Moreover, if a > c > b: a

b

−

 c

b

 =
 a− 1
b− 1

+
 a− 2
b− 1

+ ...+
 c

b− 1

 .
Proof. To prove the first equation, we use the Pascal identity in a repetitive way: a

b

 =
 a− 1
b− 1

+
 a− 1

b

 =
 a− 1
b− 1

+
 a− 2
b− 1

+
 a− 2

b



= ... =
 a− 1
b− 1

+
 a− 2
b− 1

+ ...+
 b

b− 1

+
 b

b



=
 a− 1
b− 1

+
 a− 2
b− 1

+ ...+
 b

b− 1

+
 b− 1
b− 1



where I used the fact that
 b− 1
b− 1

 =
 b

b

. Second equation holds because:

 a

b

 =
 a− 1
b− 1

+
 a− 1

b

 =
 a− 1
b− 1

+
 a− 2
b− 1

+
 a− 2

b



= ... =
 a− 1
b− 1

+
 a− 2
b− 1

+ ...+
 c

b− 1

+
 c

b
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which is equivalent to: a

b

−

 c

b

 =
 a− 1
b− 1

+
 a− 2
b− 1

+ ...+
 c

b− 1


which I wanted to show.

Second lemma plays an important role in the proofs related to THANK:

Lemma 5. In the THANK model with the monetary policy shock at horizon τ > 0
and monetary-fiscal rules specified as in Section 4 we have:

ω ·
(
dY S

t − dT St
)

= dY H
t − dTHt for t ≥ 0, (26)

cH

cS
= ω and cS = Y

1 − λ+ λ · ω
in the steady state, (27)

dY S
0 = dcS0 = dY0

1 − λ+ λ · ω
. (28)

Proof. Identity (26) follows immediately from the fact that, by condition (10), taxes
are constant over time and thus:

dT St = dTHt = 0

Then, from equation (8) we obtain condition (26).
From ZH = 0 (H households are constrained), from (13) in the steady state, from

(10), households’ budget constraints in the stationary equilibrium can be rewritten
as:

cS + B̄

1 − λ
+ B̄

1 − λ
·
(
R̄ · s− 1

)
= R̄ · s · B̄

1 − λ
+ Y S

cH + 0 + B̄

1 − λ
· R̄ · (1 − h) = R̄ · (1 − h) · B̄

1 − λ
+ Y H

which boils down to:
cS = Y S, cH = Y H .

Now, from (8):
cH

cS
= ω
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and, from the resource constraint (12):

cS = Y

1 − λ+ λ · ω
.

Finally, let us prove condition (28). From the budget constraint of household S,
from ZH

0 = 0, R0 = R (the last follows because τ > 0 and hence interest rate is
equal to its steady state value in period 0):

cS0 + ZS
1 = R̄ ·BS

0 + T S0 + 0 + Y S
0 .

Now, given (10) and from the market clearing for assets (13):

cS0 + B̄

1 − λ
= R̄ · s · B̄

1 − λ
+ Y S

0

where I used the fact that B = s · B̄
1−λ which implies:

cS0 = Y S
0 .

Analogously, in period 0, the budget constraint of household H satisfies:

cH0 + 0 = R̄ · (1 − h) · B̄

1 − λ
− R̄ · (1 − h) · B̄

1 − λ
+ Y H

0

and so:
cH0 = Y H

0 .

We now plug cS0 = Y S
0 and cH0 = Y H

0 into the resource constraint (12) in period 0:

λ · Y H
0 + (1 − λ) · Y S

0 = Y0

which together with condition (8) gives:

Y S
0 = Y0

1 − λ+ λ · ω

which, together with cS0 = Y S
0 and, after taking differences, yields equation (28).

We are now in a position to prove statements from Sections 3 and 4.
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Proof of Lemma 1

The Euler equation associated with the households problem is:

u′ (Rt · θ · bt − Tt + Trt + Yt − bt+1 + (1 − θ) · bt)

= β·(Rt+1 · θ + 1 − θ)·u′ (Rt+1 · θ · bt+1 − Tt+1 + Trt+1 + Yt+1 − bt+2 + (1 − θ) · bt+1)

where I have used budget constraint to substitute for consumption. Note that in
the Lemma we consider infinitesimal deviations of variables from their steady-state
values and thus all variables in the Euler equation can be rewritten as Xt = X+dXt

where dXt is an infinitesimal deviation of variable Xt from its steady state value X.
Using the Taylor approximation and subtracting u′ (c) = β · (R · θ + 1 − θ) · u′ (c)
from both sides yields:

u′′ (c) · [R · θ · dbt + dRt · θ · b− dTt + dTrt + dYt − dbt+1 + (1 − θ) · dbt] (29)

= β · dRt+1 · θ · u′ (c)

+β · (R · θ + 1 − θ) · u′′ (c)

· [R · θ · dbt+1 + dRt+1 · θ · b− dTt+1 + dTrt+1 + dYt+1 − dbt+2 + (1 − θ) · dbt+1] .

Note that from the Euler equation in the steady state we have: β ·(R · θ + 1 − θ) = 1
or, equivalently β · R̄ = 1. Moreover, using the assumed functional form of u:

u′ (c)
u′′ (c) = −c · σ.

Thus, we can rewrite equation (29) can be rewritten as:

dbt+2 + dbt+1 ·
(
−1 − R̄

)
+ dbt · R̄

= − (dRt · θ · b− dTt + dTrt + dYt)

−β · θ · c · σ · dRt+1 + (dRt+1 · θ · b− dTt+1 + dTrt+1 + dYt+1) .

By denoting the RHS of the equation by Dt+1 and shifting the indices backwards
we obtain:

dbt+1 + dbt ·
(
−1 − R̄

)
+ dbt−1 · R̄ = Dt.
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Using lag operator L we get:

(
1 +

(
−1 − R̄

)
· L + R̄ · L2

)
· dbt+1 = Dt (30)

Factorizing:

1 +
(
−1 − R̄

)
· L + R̄ · L2 = (1 − λ1 · L) · (1 − λ2 · L)

= 1 − (λ1 + λ2) · L + λ1 · λ2 · L2

which implies that: 1 + R̄ = λ1 + λ2

R̄ = λ1 · λ2

and gives the following quadratic equation:

ψ (λ1) = λ2
1 +

(
−1 − R̄

)
· λ1 + R̄

with the following roots: λ1 = 1

λ2 = R̄ > 1

which allows for rewriting equation (30) as:

(1 − L) ·
(
1 − R̄ · L

)
· dbt+1 = Dt.

The root exceeding unity - R̄ - is used for solving the equation forwards:

(1 − L) · dbt+1 = Dt

1 − R̄ · L
+ c̃ · R̄t

To obtain a bounded solution constanc c̃ is set to zero and we then rewrite:

(1 − L) · dbt+1 = Dt

1 − R̄ · L

⇔ (1 − L) · dbt+1 =
−
(
R̄ · L

)−1
·Dt

1 −
(
R̄ · L

)−1
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⇔ (1 − L) · dbt+1 = −
+∞∑
m=1

Dt+m

R̄m
.

Note that in the Lemma we consider period t = 0 for which db0 = 0 (because it is a
pre-determined state variable). So:

db1 = −
+∞∑
m=1

Dm

R̄m
. (31)

Now, from the budget constraint in period 0 we have (we use db0 = 0 again):

dc0 + db1 = dR0 · θ · b− dT0 + dTr0 + dY0.

We use it to substitute for db1 in equation (31):

dc0 = −
+∞∑
m=1

Dm

R̄m
+ dR0 · θ · b− dT0 + dTr0 + dY0

Using the definitions of Dt and Υt:

dc0 =
+∞∑
m=1

−β · θ · c · σ · dRm + (dRm · θ · b+ dΥm) − (dRm−1 · θ · b+ dΥm−1)
R̄m

+dR0 · θ · b+ dΥ0.

Reordering terms:

dc0 =
+∞∑
m=1

−β · θ · c · σ · dRm − (dRm−1 · θ · b+ dΥm−1)
R̄m

+
+∞∑
m=0

dRm · θ · b+ dΥm

R̄m
.

Regrouping further:

dc0 =
+∞∑
m=1

−β · θ · c · σ · dRm

R̄m
+

+∞∑
m=0

dRm · θ · b+ dΥm

R̄m
·
(

1 − 1
R̄

)
.

using β · R̄ = 1 (steady state version of the Euler equation) and B̄ = b (market
clearing condition for assets) yields:
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dc0 =
∞∑
m=1

βm ·
[
−β · θ · C · σ · dRm + 1 − β

β
·
(
θ · B̄ · dRm−1 + dΥm−1

)]

which we wanted to show. QED.

Proof of Theorem 1

It is convenient to first prove the statement in the Theorem re-expressed in terms of
dY (τ, k) (the deviation of output in period 0 from its steady-state value resulting
from a one-time monetary shock, see equation (5)). I.e., we want to show that under
MFFG: if k > τ then, we have

dY (τ, k) = −θ · σ · β · c · dR (32)

if k ≤ τ then we have

dY (τ, k) = F (k − 1|τ − 1, 1 − β) · (−θ · σ · β · c · dR) (33)

and the difference in output response between MFFG and FG (where the latter is
denoted by d̂Y (τ, k)) is:

∆dY (τ, k) = dY (τ, k) − d̂Y (τ, k)

= f (k − 1|τ − 1, 1 − β) · (1 − β) ·
[
−θ · B̄ · dR

]
. (34)

Before going to the main proof of (32)-(34), let us make several useful remarks.
Remarks. Note that the model has no time-varying state variables and thus it

is purely forward-looking. Therefore, for m > τ we have Ym = Y and thus dYm = 0.
Moreover, given the assumed fiscal rule for taxes, we have dTm = 0 for all m ≥ 0.
Additionally, dRm = dTrm = 0 for all m ≥ 0 but for m = τ . Moreover, note that if
k ≥ 1 and τ = 0 then the equilibrium in period 0 satisfies (see the definition of the
equilibrium in RANK):

Y k
0 = C

(
R + dR, Y k

0 , T r0, {R, Y, 0}m>0

)
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Tr0 = −dR · θ · B̄

which is, in fact equivalent, to the Rational Expectations Equilibrium, which (in
RANK) implies that Y k

0 = Y , as transfers have no real effects. In other words,
dY (τ = 0, k) = 0. Additionally, note that for τ > 0, the agents featuring k ≥ 2
expect that the equilibrium described by those two equations materializes in period
τ .

dY (τ, k) in the case when k > τ . Let us start with the proof of expression
(32), i.e., dY (τ, k) in the case when k > τ . I will use the induction method.
I.e., I first prove the statement for τ = 1 and then, by assuming that it holds for
{1, 2, ..., τ − 1} I show that it is true for any τ > 1.

Let us start with τ = 1. The characterization of dc0 in that case is (see Lemma
1):

dc0 = β ·
[
−β · θ · σ · c · dR1 + 1 − β

β
· (θ · b · dR0 − dT0 + dTr0 + dY (τ, k))

]

+β2 ·
[
0 + 1 − β

β
· (θ · b · dR1 − dT1 + dTr1 + dY1)

]
.

Let us modify the equation above by: replacing dc0 with dY (τ, k) (equilibrium
condition), plugging:

dT0 = dTr0 = dR0 = dY1 = dT1 = 0

(see “Remarks”), replacing dR1 = dR and Tr1 = −dR · θ · B̄. This gives:

dY (τ, k) = −θ · σ · β · c · dR

which is identical to (32).
I now show that the result holds for any τ > 1 if it holds for {1, 2, ..., τ − 1}.

Substitute the equilibrium condition dc0 = dY (τ, k) into the characterization from
Lemma 1 and use “Remarks” to get:

dY (τ, k) = β ·
[
0 + 1 − β

β
· (θ · b · 0 − 0 + 0 + dY (τ, k))

]
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+β2 ·
[
0 + 1 − β

β
· (θ · b · 0 − 0 + 0 + dY (τ − 1, k − 1))

]
+...

+βτ−1 ·
[
0 + 1 − β

β
· (θ · b · 0 − 0 + 0 + dY (2, k − 1))

]

+βτ ·
[
−θ · σ · β · c · dR + 1 − β

β
· (θ · b · 0 − 0 + 0 + dY (1, k − 1))

]

+βτ+1 ·
[
0 + 1 − β

β
·
(
θ · b · dR − 0 − dR · θ · B̄ + 0

)]
.

Now, by the principle of induction we assume that statement (32) holds for 1, 2, ...,
τ − 1 and thus (note that for all terms below we have k − 1 > τ − 1 because we
consider the case k > τ so we can use induction)

dY (τ − 1, k − 1) = ... = dY (2, k − 1) = dY (1, k − 1)

= −θ · σ · β · c · dR

and the market clearing for assets implies b = B̄. All this means implies that:

dY (τ, k) = β · 1 − β

β
· [−θ · σ · β · c · dR]

+...

+βτ−2 · 1 − β

β
· [−θ · σ · β · c · dR]

+βτ−1 ·
[
−θ · σ · β · c · dR + 1 − β

β
· [−θ · σ · β · c · dR]

]

Reformulating:
dY (τ, k) = (1 − β) · [−θ · σ · β · c · dR]

+β · (1 − β) · [−θ · σ · β · c · dR]

+β2 · (1 − β) · [−θ · σ · β · c · dR]

+...

+βτ−3 · (1 − β) · [−θ · σ · β · c · dR]
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+βτ−2 · (1 − β) · [−θ · σ · β · c · dR] + βτ−1 · [−θ · σ · β · c · dR]

which after canceling terms gives:

dY (τ, k) = −θ · σ · β · c · dR.

dY (τ, k) in the case when k ≤ τ . Let us turn to the case when k ≤ τ now. By
contrast to the proof of the case when k > τ , the induction method is now applied
to index k (instead of τ). In what follows, I first prove formula (33) for k = 1 (and
for all τ > 0). Next, I prove it for any k assuming that formula (33) holds for k− 1.

Let us start with k = 1. Observe that, using Lemma 1 and “Remarks”, for all
τ > 0:

dc0 = β ·
[
0 + 1 − β

β
· dY (τ, 1)

]
(35)

+β2 ·
[
0 + 1 − β

β
· dY (τ − 1, 0)

]
+...

+βτ−1 ·
[
0 + 1 − β

β
· dY (2, 0)

]

+βτ ·
[
−θ · σ · β · c · dR + 1 − β

β
· dY (1, 0)

]

+βτ+1 ·
[
0 + 1 − β

β
·
(
θ · b · dR − 0 − dR · θ · B̄ + 0

)]
.

We now use the fact that b = B̄ and the fact that for k = 0 agents expect the steady
state to hold in the future. The latter implies that:

dY (1, 0) = dY (2, 0) = ... = dY (τ − 1, 0) = 0.

Imposing the equilibrium condition (i.e., dc0 = dY (τ, 1)), yields:

dY (τ, 1) = βτ−1 · (−θ · σ · β · c · dR)
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which completes the proof for k = 1 because:

F (0|τ − 1, 1 − β) =
0∑
l=0

 τ − 1
l

 · βτ−l−1 · (1 − β)l = βτ−1.

Let us now show that formula (33) holds for 1 < k ≤ τ . Again, using Lemma 1,
formula for dY (τ, k) for k > τ , and “Remarks”:

dc0 = β ·
[
0 + 1 − β

β
· dY (τ, k)

]

+β2 ·
[
0 + 1 − β

β
· dY (τ − 1, k − 1)

]
+...

+βτ−k+2 ·
[
0 + 1 − β

β
· dY (k − 1, k − 1)

]

+βτ−k+3 ·
[
0 + 1 − β

β
· (−θ · σ · β · c · dR)

]
+...

+βτ−1 ·
[
0 + 1 − β

β
· (−θ · σ · β · c · dR)

]

+βτ ·
[
−θ · σ · β · c · dR + 1 − β

β
· (−θ · σ · β · c · dR)

]

+βτ+1 ·
[
0 + 1 − β

β
·
(
θ · b · dR − 0 − dR · θ · B̄ + 0

)]
.

Using the induction method, I assume that formula (33) holds for k − 1. Given the
equilibrium condition dc0 = dY (τ, k), we get:

dY (τ, k) = (36)

= β · 1 − β

β
·
k−2∑
l=0

 τ − 2
l

 · βτ−l−2 · (1 − β)l · (−θ · σ · β · c · dR)

+β2 · 1 − β

β
·
k−2∑
l=0

 τ − 3
l

 · βτ−l−3 · (1 − β)l · (−θ · σ · β · c · dR)
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+...

+βτ−k+1 · 1 − β

β
·
k−2∑
l=0

 k − 2
l

 · βk−l−2 · (1 − β)l · (−θ · σ · β · c · dR)

+βτ−k+2 · 1 − β

β
· (−θ · σ · β · c · dR)

+...

+βτ−2 · 1 − β

β
· (−θ · σ · β · c · dR)

+βτ−1 ·
[
−θ · σ · β · c · dR + 1 − β

β
· (−θ · σ · β · c · dR)

]

+βτ ·
[
0 + 1 − β

β
·
(
θ · b · dR − 0 − dR · θ · B̄ + 0

)]
.

I now use the market clearing condition for assets b = B̄ and regroup/cancel terms
to obtain:

dY (τ, k) = (−θ · σ · β · c · dR)

×

(1 − β) ·

 τ − 2
0

 · βτ−2 · (1 − β)0 + ...+
 τ − 2
k − 2

 · βτ−k · (1 − β)k−2



+ (1 − β) ·

 τ − 3
0

 · βτ−2 · (1 − β)0 + ...+
 τ − 3
k − 2

 · βτ−k · (1 − β)k−2


+...

+ (1 − β) ·

 k − 2
0

 · βτ−2 · (1 − β)0 + ...+
 k − 2
k − 2

 · βτ−k · (1 − β)k−2


+βτ−k+1

}
Rewriting:

dY (τ, k) = (−θ · σ · β · c · dR)

×

(1 − β) ·

 τ − 2
0

+
 τ − 3

0

+ ...+
 k − 2

0

 · βτ−2 · (1 − β)0

+ (1 − β) ·

 τ − 2
1

+
 τ − 3

1

+ ...+
 k − 2

1

 · βτ−3 · (1 − β)1
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+...

+ (1 − β) ·

 τ − 2
k − 3

+
 τ − 3
k − 3

+ ...+
 k − 2
k − 3

 · βτ−(k−1) · (1 − β)k−3

+ (1 − β) ·

 τ − 2
k − 2

+
 τ − 3
k − 2

+ ...+
 k − 2
k − 2

 · βτ−k · (1 − β)k−2

+βτ−k+1
}
.

I use Lemma 4:
dY (τ, k) = (−θ · σ · β · c · dR)

×

(1 − β) ·

 τ − 1
1

−

 k − 2
1

 · βτ−2 · (1 − β)0

+ (1 − β) ·

 τ − 1
2

−

 k − 2
2

 · βτ−3 · (1 − β)1

+...

+ (1 − β) ·

 τ − 1
k − 2

−

 k − 2
k − 2

 · βτ−(k−1) · (1 − β)k−3

+ (1 − β) ·

 τ − 1
k − 1

 · βτ−k · (1 − β)k−2

+βτ−k+1
}
.

I now group together all positive terms with binominal coefficients (and do the same
for negative terms):

dY (τ, k) = (−θ · σ · β · c · dR)

×


 τ − 1

1

 · βτ−2 · (1 − β) + ...+
 τ − 1
k − 1

 · βτ−k · (1 − β)k−1



−

 k − 2
1

 · βτ−2 · (1 − β) + ...+
 k − 2
k − 2

 · βτ−k−1 · (1 − β)k−2


+βτ−k+1

}
. (37)
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Now, note that we have: k − 2
1

 · βτ−2 · (1 − β) + ...+
 k − 2
k − 2

 · βτ−k−1 · (1 − β)k−2

= βτ−1−(k−2) ·

 k − 2
1

 · βk−3 · (1 − β) + ...+
 k − 2
k − 2

 · (1 − β)k−2



= βτ−k−1 ·

1 −

 k − 2
0

 ·
︸ ︷︷ ︸

=1

βk−2

 (38)

which follows from the fact that the probability masses of the binominal distribution
add up to unity: k − 2

0

 · βk−2 +
 k − 2

1

 · βk−3 · (1 − β) + ...+
 k − 2
k − 2

 · (1 − β)k−2 = 1.

Applying formula (38) to equation (37) yields:

dY (τ, k) = (−θ · σ · β · c · dR)

×


 τ − 1

1

 · βτ−2 · (1 − β) + ...+
 τ − 1
k − 1

 · βτ−k · (1 − β)k−1

+
 k − 2

0

 · βk−2 · βτ−k+1

 .
Given that

 k − 2
0

·βk−2·βτ−k+1 =
 τ − 1

0

·βτ−1 (as
 k − 2

0

 =
 τ − 1

0

),

we get:

dY (τ, k) = (−θ · σ · β · c · dR) ·
k−1∑
l=0

 τ − 1
l

 · βτ−1−l · (1 − β)l ,

so:
dY (τ, k) = (−θ · σ · β · c · dR) · F (k − 1|τ − 1, 1 − β) ,
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which proves formula (33).
∆dY (τ, k) in the case when k > τ . Given that we have computed dY (τ, k)

corresponding to MFFG above, it is sufficient to compute d̂Y (τ, k) and take the
difference:

dY (τ, k) − d̂Y (τ, k)

to get ∆dY (τ, k).
Note that as τ ≥ 1 is considered, k > τ implies that k ≥ 2. This, given

“Remarks”, means that agents anticipate fiscal transfer (induced by monetary shock
at horizon τ) even if it is not announced by fiscal authority. This, in turn, implies
that the line of reasoning applied when calculating dY (τ, k) (for k > τ) can be
applied here, too. Thus: dY (τ, k) = d̂Y (τ, k) and therefore ∆dY (τ, k).

∆dY (τ, k) in the case when k ≤ τ . Given formulas (33) and (34), proving
formula (34) is equivalent to showing that:

d̂Y (τ, k) = (−θ · σ · β · c · dR) · F (k − 1|τ − 1, 1 − β) (39)

+f (k − 1|τ − 1, 1 − β) · (1 − β) · θ · B̄ · dR

To obtain this result for d̂Y (τ, k), I use the induction method: I start by proving
it for k = 1 and then I show that it holds for k > 1 if it holds for k − 1.

Let us begin with k = 1. Observe that, using Lemma 1 and “Remarks”, for all
τ > 0:

dc0 = β ·
[
0 + 1 − β

β
· d̂Y (τ, 1)

]

+β2 ·
[
0 + 1 − β

β
· d̂Y (τ − 1, 0)

]
+...

+βτ−1 ·
[
0 + 1 − β

β
· d̂Y (2, 0)

]

+βτ ·
[
−θ · σ · β · c · dR + 1 − β

β
· d̂Y (1, 0)

]

+βτ+1 ·
[
0 + 1 − β

β
· (θ · b · dR − 0 − 0 + 0)

]
.

Note that, in contrast to dc0 related to MFFG (see formula (35)), the impact of the
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fiscal announcement −dR · θ · B̄ is absent in the formula above. By the same token
as in the case of MFFG:

d̂Y (1, 0) = d̂Y (2, 0) = ... = d̂Y (τ − 1, 0) = 0

and, after imposing equilibrium conditions dc0 = d̂Y (τ, 1), b = B̄ we obtain:

d̂Y (τ, 1) = βτ−1 · (−θ · σ · β · c · dR) + βτ−1 · (1 − β) ·
(
θ · B̄ · dR

)
which is consistent with formula (39).

Let us consider the case when k > 1. As discussed in “Remarks”, k > 1 implies
that households are sufficiently rational to anticipate fiscal transfers induced by the
future monetary policy shock. So, using the reasoning applied in the case of MFFG,
we can reformulate the characterization of dc0 (see Lemma 1) to get:

dc0 = β ·
[
0 + 1 − β

β
· d̂Y (τ, k)

]

+β2 ·
[
0 + 1 − β

β
· d̂Y (τ − 1, k − 1)

]
+...

+βτ−k+2 ·
[
0 + 1 − β

β
· d̂Y (k − 1, k − 1)

]

+βτ−k+3 ·
[
0 + 1 − β

β
· (−θ · σ · β · c · dR)

]
+...

+βτ−1 ·
[
0 + 1 − β

β
· (−θ · σ · β · c · dR)

]

+βτ ·
[
−θ · σ · β · c · dR + 1 − β

β
· (−θ · σ · β · c · dR)

]

+βτ+1 ·
[
0 + 1 − β

β
·
(
θ · b · dR − 0 − dR · θ · B̄ + 0

)]
.

I now use the induction method: I assume that formula (39) holds for k − 1. This,
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after using the equilibrium condition dc0 = d̂Y (τ, k), implies that:

d̂Y (τ, k) = β · 1 − β

β
·

k−2∑
l=0

 τ − 2
l

 · βτ−l−2 · (1 − β)l · (−θ · σ · β · c · dR)

+
 τ − 2
k − 2

 · βτ−k · (1 − β)k−2 · (1 − β) ·
(
θ · B̄ · dR

)

+β2 · 1 − β

β
·

k−2∑
l=0

 τ − 3
l

 · βτ−l−3 · (1 − β)l · (−θ · σ · β · c · dR)

+
 τ − 3
k − 2

 · βτ−k−1 · (1 − β)k−2 · (1 − β) ·
(
θ · B̄ · dR

)
+...

+βτ−k+1 · 1 − β

β
·

k−2∑
l=0

 k − 2
l

 · βk−l−2 · (1 − β)l · (−θ · σ · β · c · dR)

+
 k − 2
k − 2

 · β0 · (1 − β)k−2 · (1 − β) ·
(
θ · B̄ · dR

)
+βτ−k+2 · 1 − β

β
· (−θ · σ · β · c · dR)

+...

+βτ−2 · 1 − β

β
· (−θ · σ · β · c · dR)

+βτ−1 ·
[
−θ · σ · β · c · dR + 1 − β

β
· (−θ · σ · β · c · dR)

]

+βτ ·
[
0 + 1 − β

β
·
(
θ · b · dR − 0 − dR · θ · B̄ + 0

)]
.

Now, by taking the difference between dY (τ, k) (see equation(36)) and d̂Y (τ, k)
above, we obtain the following formula for ∆dY (τ, k):

∆dY (τ, k) = β · 1 − β

β
·

 τ − 2
k − 2

 · βτ−k · (1 − β)k−2 · (1 − β) ·
(
−θ · B̄ · dR

)
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+β2 · 1 − β

β
·

 τ − 3
k − 2

 · βτ−k−1 · (1 − β)k−2 · (1 − β) ·
(
−θ · B̄ · dR

)
+...

+βτ−k+1 · 1 − β

β
·

 k − 2
k − 2

 · β0 · (1 − β)k−2 · (1 − β) ·
(
−θ · B̄ · dR

)
.

Which implies:
∆dY (τ, k) =

(
−θ · B̄ · dR

)

×

 τ − 2
k − 2

 · βτ−k · (1 − β)k +
 τ − 3
k − 2

 · βτ−k · (1 − β)k

+...+
 k − 2
k − 2

 · βτ−k · (1 − β)k
 .

Now, I use Lemma 4 to obtain:

∆dY (τ, k) =
(
−θ · B̄ · dR

)
·

 τ − 1
k − 1

 · βτ−k · (1 − β)k

=
(
−θ · B̄ · dR

)
·

 τ − 1
k − 1

 · βτ−1−(k−1) · (1 − β)k−1 · (1 − β)

= f (k − 1|τ − 1, 1 − β) · (1 − β) ·
[
−θ · B̄ · dR

]
which is identical to formula (34). This means that we proved formulas (32)-(34)
and we are in a position to show that expressions in Theorem 1 hold. To this
end, it suffices to standardize equations (32)-(34) and multiply them by − 1

dR
· R̄
Y

to
re-express them as elasticities (see equation (5)).

For k > τ we have:
ϵ (τ, k) ≡ − R̄

Y
· dY (τ, k)

dR

= − R̄

Y
· (−θ · σ · β · c · dR)

dR
= θ · σ = F (k − 1|τ − 1, 1 − β) · θ · σ,

where I used the fact that β · R̄ = 1 (i.e., the steady-state version of the Euler
equation) and that c = Y (equilibrium condition in the steady state).
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For k ≤ τ we obtain:

ϵ (τ, k) ≡ − R̄

Y
· dY (τ, k)

dR

= − R̄

Y
· F (k − 1|τ − 1, 1 − β) · (−θ · σ · β · c · dR)

dR

= F (k − 1|τ − 1, 1 − β) · θ · σ.

Finally, let us turn to ∆ϵ (τ, k):

∆ϵ (τ, k) ≡ − R̄

Y
· ∆dY (τ, k)

dR

= − R̄

Y
·
f (k − 1|τ − 1, 1 − β) · (1 − β) ·

[
−θ · B̄ · dR

]
dR

= f (k − 1|τ − 1, 1 − β) · iMPC

1 −MPC
· θ · B̄ · R̄

c

where I used formulas for MPC and iMPC (see equations (3) and (4)) and the equi-
librium condition c = Y in the steady state. This completes the proof of Theorem
1. QED.

Proof of Lemma 2

Let us consider an arbitrary period t and the monetary policy shock dR that arrives
at time t + τ where τ = 0. Note that from the resource constraint (see equation
(12)):

λ · dcHt + (1 − λ) · dcSt = dYt

which is equivalent to:

dYt = (1 − λ) ·MPCS ·
[
dY S

t − dT St + dTrSt + dR · θ · s · ZS
]

+λ · 1 ·
[
dY H

t − dTHt + dTrHt + dR · θ · (1 − h) · ZS
]

where I used the fact that MPCH = 1 and that ZH = 0 in the stationary equilib-
rium. Fiscal rule adopted in the THANK model implies that dT St = 0 and dTHt = 0.
Therefore:

dYt = (1 − λ) ·MPCS ·
[
dY S

t + dTrSt + dR · θ · s · ZS
]

(40)

67



+λ · 1 ·
[
dY H

t + dTrHt + dR · θ · (1 − h) · ZS
]
.

Let us now turn to the aggregate budget constraint of households in period t:

(1 − λ) ·
[
cSt + ZS

t+1

]
+ λ ·

[
cHt + ZH

t+1

]
= (1 − λ) ·

[
R · θ ·BS

t − T St + TrSt + Y S
t

]
+λ ·

[
R · θ ·BH

t − THt + TrHt + Y H
t

]
.

Using the market clearing for assets (equation (13)) and ZH
t = 0 (implying BS

t =
s · B̄

1−λ and BH
t = (1 − h) · B̄

1−λ) and the resource constraint for goods (equation (12)):

Yt + (1 − λ) · B̄

1 − λ

= (1 − λ) ·
[
R · θ · s · B̄

1 − λ
− T St + TrSt + Y S

t

]

+λ ·
[
R · θ · (1 − h) · B̄

1 − λ
− THt + TrHt + Y H

t

]
.

Taking the differences (and using dT St = 0 and dTHt = 0 again) yields:

dYt = (1 − λ) ·
[
dR · θ · s · B̄

1 − λ
+ dTrSt + dY S

t

]
(41)

+λ ·
[
dR · θ · (1 − h) · B̄

1 − λ
+ dTrHt + dY H

t

]
.

From equation (11) we have:

(1 − λ) · dTrSt + λ · dTrHt = −B̄ · dR · θ

and given that:

(1 − λ) · dR · θ · s · B̄

1 − λ
+ λ · dR · θ · (1 − h) · B̄

1 − λ

= B̄ · dR · θ
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where I used the fact that λ
1−λ = 1−s

1−h . Thus, equation (41) becomes:

dYt = (1 − λ) · dY S
t + λ · dY H

t

which together with condition (8) implies:

dY S
t = 1

1 − λ+ λ · ω
· dYt, dY H

t = ω

1 − λ+ λ · ω
· dYt.

We plug those expressions for dY S
t and dY H

t into condition (40) and use equations
(11) and (13) to get:

dYt = (1 − λ) ·MPCS ·
[

1
1 − λ+ λ · ω

· dYt − 1 − δ

1 − λ
· B̄ · dR · θ + dR · θ · s · B̄

1 − λ

]

+λ ·
[

ω

1 − λ+ λ · ω
· dYt − δ

λ
· B̄ · dR · θ + dR · θ · (1 − h) · B̄

1 − λ

]
.

Rearranging:

dYt ·
(1 − λ) ·

(
1 −MPCS

)
1 − λ+ λ · ω

=
(
1 −MPCS

)
· (1 − δ − s) · B̄ · θ · dR

which gives the formula for the output reponse to monetary shock featuring horizon
0:

dYt = 1 − λ+ λ · ω
1 − λ

· (1 − δ − s) · B̄ · θ · dR

which multiplied by − 1
dR

· R̄
Y

yields:

−dYt
dR

· R̄
Y

= −B̄ · R̄ · θ
Y

· 1 − λ+ λ · ω
1 − λ

· (1 − δ − s)

and therefore:

ϵ (0|δ) = −B̄ · R̄ · θ
Y

· 1 − λ+ λ · ω
1 − λ

· (1 − δ − s) .

This completes the proof. QED.
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Proof of Lemma 3

The Euler equation of the unconstrained agent is:

u′
(
cSt
)

= β · R̄t+1 ·
[
s · u′

(
cSt+1

)
+ (1 − s) · u′

(
cHt+1

)]
.

Plugging the budget constraints of both agents yields:

u′
(
R̄t ·

[
s · ZS

t + (1 − s) · ZH
t

]
+ ΥS

t − ZS
t+1

)
= β · R̄t+1 · s · u′

(
R̄t+1 ·

[
s · ZS

t+1 + (1 − s) · ZH
t+1

]
+ ΥS

t+1 − ZS
t+2

)
+β · R̄t+1 · (1 − s) · u′

(
R̄t+1 ·

[
(1 − h) · ZS

t+1 + h · ZH
t+1

]
+ ΥH

t+1 − ZH
t+2

)
.

Note that we consider the situation when ZH
t = 0 for all t. Rewriting the variables

in terms of deviations from the steady state (i.e., as Xt = X + dXt where dXt is an
infinitesimal deviation of variable Xt from its steady state value X) and using the
Taylor approximation and subtracting the steady-state version of the Euler equation
of the unconstrained agent yields:

u′′
(
cS
)

·
(
s · R̄ · dZS

t + s · ZS · dR̄t + dΥS
t − dZS

t+1

)
(42)

= β ·
[
s · u′

(
cS
)

+ (1 − s) · u′
(
cH
)]

· dR̄t+1

β · R̄ · s · u′′
(
cS
)

·
(
s · R̄ · dZS

t+1 + s · ZS · dR̄t+1 + dΥS
t+1 − dZS

t+2

)
+β · R̄ · (1 − s) · u′′

(
cH
) (
R̄ · (1 − h) · dZS

t+1 + (1 − h) · ZS · dR̄t+1 + dΥH
t+1

)
.

Note that from the steady-state version of the Euler equation for the unconstrained
agent:

β ·
[
s · u′

(
cS
)

+ (1 − s) · u′
(
cH
)]

u′′ (cS) =
u′
(
cS
)

R̄
· 1
u′′ (cS)

Rearranging further under the assumed specification of the utility function:

u′
(
cS
)

R̄
· 1
u′′ (cS) = −σ · cS

R̄
.
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Let us use this outcome to reformulate equation (42) divided by β · R̄ · s · u′′
(
cS
)
:

dZS
t+2 −

1 + β · R̄2 ·
(
s2 + (1 − s) · (1 − h) · ω− 1

σ
−1
)

β · R̄ · s

 · dZS
t+1 + 1

β
· dZS

t (43)

= 1
β · R̄ · s

·
(

−σ · cS

R̄

)
· dR̄t+1 + s · ZS · dR̄t+1 + dΥS

t+1

+1 − s

s
· ω− 1

σ
−1 ·

[
(1 − h) · ZS · dR̄t+1 + dΥH

t+1

]
− 1
β · R̄ · s

·
(
s · ZS · dR̄t + dΥS

t

)
where I used Lemma 5 when replacing cH

cS with ω. I define:

Dt+1 ≡ 1
β · R̄ · s

·
{(

−σ · cS

R̄

)
· dR̄t+1 (44)

+β · R̄ · s ·
(
s · ZS · dR̄t+1 + dΥS

t+1

)
+β · R̄ · (1 − s) · ω− 1

σ
−1 ·

[
(1 − h) · ZS · dR̄t+1 + dΥH

t+1

]
−
(
s · ZS · dR̄t + dΥS

t

)}
which allows for rewriting equation (43) (after shifting indices backwards) as:

1 −
1 + β · R̄2 ·

(
s2 + (1 − s) · (1 − h) · ω− 1

σ
−1
)

β · R̄ · s
· L + 1

β
· L2

 · dZS
t+1 (45)

= Dt.

where L is the lag operator. I factorize the polynominal:

1 −
1 + β · R̄2 ·

(
s2 + (1 − s) · (1 − h) · ω− 1

σ
−1
)

β · R̄ · s
· L + 1

β
· L2

= (1 − λ1 · L) · (1 − λ2 · L)

= 1 − (λ1 + λ2) · L + λ1 · λ2 · L2
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which implies that:


1+β·R̄2·
(
s2+(1−s)·(1−h)·ω− 1

σ −1
)

β·R̄·s = λ1 + λ2

1
β

= λ1 · λ2

This, in turn, implies the following quadratic equation:

λ2
1 −

1 + β · R̄2 ·
(
s2 + (1 − s) · (1 − h) · ω− 1

σ
−1
)

β · R̄ · s
· λ1 + 1

β︸ ︷︷ ︸
≡Ψ(λ1)

= 0.

First, note that Ψ (0) > 0. Second, we now show that Ψ (1) < 0. Observe that:

1 −
1 + β · R̄2 ·

(
s2 + (1 − s) · (1 − h) · ω− 1

σ
−1
)

β · R̄ · s
+ 1
β
< 0

⇐⇒

β · R̄ · s− 1 − β · R̄2 ·
(
s2 + (1 − s) · (1 − h) · ω− 1

σ
−1
)

+ R̄ · s < 0.

Now, β · R̄ · s < 1 so to obtain Ψ (1) < 0, it is sufficient to show that:

−β · R̄2 ·
(
s2 + (1 − s) · (1 − h) · ω− 1

σ
−1
)

+ R̄ · s < 0

which can be re-expressed as:

s < β · R̄ ·
(
s2 + (1 − s) · (1 − h) · ω− 1

σ
−1
)

and given that β · R̄ =
(
s+ (1 − s) · ω− 1

σ

)−1
(from the steady-state version of the

Euler equation of the unconstrained household), we get:

s <
s2 + (1 − s) · (1 − h) · ω− 1

σ
−1

s+ (1 − s) · ω− 1
σ

and thus:
s2 + s · (1 − s) · ω− 1

σ

< s2 + (1 − s) · (1 − h) · ω− 1
σ

−1
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which is equivalent to the assumed condition (14).
All this implies that polynominal Ψ has a root between (0, 1) and another root is

strictly larger than one. From the symmetry between λ1 and λ2, I denote the lower
root by λ1 and the larger one by λ2:

λ1 = 1
2 ·

1+β·R̄2·
(
s2+(1−s)·(1−h)·ω− 1

σ −1
)

β·R̄·s −
√

∆


λ2 = 1
2 ·

1+β·R̄2·
(
s2+(1−s)·(1−h)·ω− 1

σ −1
)

β·R̄·s +
√

∆


where:

∆ =
1 + β · R̄2 ·

(
s2 + (1 − s) · (1 − h) · ω− 1

σ
−1
)

β · R̄ · s

2

− 4 · 1
β
.

Now, the root that exceeds unity (i.e. λ2) is used for solving the difference equation
(45) forward:

(1 − λ1 · L) · dZS
t+1 = Dt

1 − λ2 · L
+ c̃ · λt2

where c̃ is a constant associated with the general solution to the difference equation.
To obtain bounded solution, I impose c̃ = 0, which yields:

(1 − λ1 · L) · dZS
t+1 = Dt

1 − λ2 · L

⇔ (1 − λ1 · L) · dZS
t+1 = − (λ2 · L)−1 ·Dt

1 − (λ2 · L)−1

⇔ (1 − λ1 · L) · dZS
t+1 = −

+∞∑
m=1

Dt+m

λm2
.

Let us now consider period t = 0. From the household’s S budget constraint in
period 0:

dCS
0 + dZS

1 = R̄ · dBS
0 + dR̄0 ·BS + dΥS

0 .

Given that BS
0 is pre-determined we have dBS

0 = 0. By the same token, dZS
0 = 0

and therefore:
(1 − λ1 · L) · dZS

1 = −
+∞∑
m=1

Dm

λm2

=⇒

73



dR̄0 ·BS + dΥS
0 − dCS

0 = −
+∞∑
m=1

Dm

λm2

⇐⇒

dCS
0 =

+∞∑
t=1

Dt

λt2
+ dR̄0 ·BS + dΥS

0 .

I rewrite this equation using the definition of Dt (see equation (44)) and after de-
noting M ≡ 1

λ2
:

dCS
0 = 1

β · R̄ · s
·

+∞∑
t=1

Mt

{(
−σ · cS

R̄

)
· dR̄t

+β · R̄ · s ·
(
s · ZS · dR̄t + dΥS

t

)
+β · R̄ · (1 − s) · ω− 1

σ
−1 ·

[
(1 − h) · ZS · dR̄t + dΥH

t

]
−
(
s · ZS · dR̄t−1 + dΥS

t−1

)}
+dR̄0 ·BS + dΥS

0 ,

which, after observing that dR̄t = θ · dRt, BS = s ·ZS, and BH = (1 − h) ·ZS (note
that ZH = 0), can be rewritten as:

dcS0 = 1
β · R̄ · s

·
∞∑
t=1

Mt ·
[
−θ · cS · σ

R̄
· dRt + β · R̄ · (1 − s)

ω
1
σ

+1
·
(
θ ·BH · dRt + dΥH

t

)

+β · R̄ · s− M
M

·
(
θ ·BS · dRt−1 + dΥS

t−1

)]

which we wanted to show. QED.

Proof of Theorem 2

As in the case of the proof of Theorem 1, let us first prove the statement of Theorem
2 re-expressed in terms of dY (τ, k|δ) (the deviation of output in period 0 from its
steady-state value resulting from a one-time monetary shock, see equation (17)).
Therefore, I start by showing that the following formula is true (and then argue
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that it is equivalent to the one in Theorem 2):

dY S (τ, k|δ) = f (k − 1|τ − 1, 1 − M) ·
{

−σ · cS

R̄
· dR̄ (46)

+β · R̄ · (1 − s)
ω

1
σ

+1
·
(

(1 − h) · B̄ · dR̄
1 − λ

− δ

λ
· B̄ · dR̄

)

+
(
β · R̄ · s− M

)
·
(
s · B̄ · dR̄

1 − λ
− 1 − δ

1 − λ
· B̄ · dR̄

)}

+F (k − 2|τ − 1, 1 − M) ·
{

−σ · cS

R̄
· dR̄

+ (1 − M) · dY (0, k − 1|δ)
1 − λ+ λ · ω

+β · R̄ · (1 − s)
ω

1
σ

+1
·
(

(1 − h) · B̄ · dR̄
1 − λ

− δ

λ
· B̄ · dR̄

)

+
(
β · R̄ · s− M

)
·
(
s · B̄ · dR̄

1 − λ
− 1 − δ

1 − λ
· B̄ · dR̄

)}

before showing this result, let us make several remarks to which I refer in the rest
of the proof.

Remarks. Note that as the distribution of agents across two islands is constant
over time, the model has no time-varying state variables and thus, like RANK, it is
purely forward-looking. Therefore, for m > τ we have Ym = Y and thus:

dYm = dY H
m = dY S

m = 0.

Moreover, given the assumed fiscal rule for taxes (see formula (10)), we have dTHm = 0
and dT Sm = 0 for all m ≥ 0. Additionally:

dRm = dTrHm = dTrSm = 0

for all m ≥ 0 but for m = τ .
Finally, by the same token as in the “Remarks” in the proof of Theorem 1, note

that for the case when τ = 0, REE is equivalent to the level-k equilibrium for all
k ≥ 1 which, in turn, implies that for τ > 0, agents featuring k ≥ 2 fully anticipate
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the fiscal transfer induced by the monetary policy shock at horizon τ (irrespectively
of the fiscal announcement).

dY S (τ, k|δ) in the case when k > τ . Let us start with the proof of expression
(46), i.e., dY S (τ, k|δ) in the case when k > τ . I will use the induction method.
I.e., I first prove the statement for τ = 1 and then, by assuming that it holds for
{1, 2, ..., τ − 1} I show that it is true for any τ > 1.

Let us start with τ = 1. The characterization of dcS0 in that case is (see Lemma
3 and note that dR̄ = θ · dR, BS = s · B̄

1−λ , and BH = (1 − h) · B̄
1−λ ):

dcS0 = 1
β · R̄ · s

· M ·
[
−cS · σ

R̄
· dR̄ (47)

+β · R̄ · (1 − s)
ω

1
σ

+1
·
(

(1 − h) · B̄

1 − λ
· dR̄ + dY H (0, k − 1|δ) + dTrH1

)

+β · R̄ · s− M
M

· dY S (1, k|δ)
]

+ 1
β · R̄ · s

· M2 · β · R̄ · s− M
M

·
(
s · B̄
1 − λ

· dR̄ + dY S (0, k − 1|δ) + dTrS1

)

which follows from “Remarks”. Additionally, from the proof of Lemma 2, we have:

dY H (0, k − 1|δ) = ω · dY (0, k − 1|δ)
1 − λ+ λ · ω

, dY S (0, k − 1|δ) = dY (0, k − 1|δ)
1 − λ+ λ · ω

,

which, together with: Lemma 5 (implying dcS0 = dY S (1, k|δ)), multiplication of
both sides of equation (47) by β · R̄ · s, division of both sides of equation (47) by M,
the addition of

(
1 − β·R̄·s

M

)
·dY S (1, k|δ) to both sides of (47) allows for reformulating

equation (47) as follows:

dY S (1, k|δ) = −cS · σ
R̄

· dR̄

+β · R̄ · (1 − s)
ω

1
σ

+1
·
(

(1 − h) · B̄
1 − λ

· dR̄ + ω · dY (0, k − 1|δ)
1 − λ+ λ · ω

− δ

λ
· B̄ · dR̄

)

+
(
β · R̄ · s− M

)
·
(
s · B̄
1 − λ

· dR̄ + dY (0, k − 1|δ)
1 − λ+ λ · ω

− 1 − δ

1 − λ
· B̄ · dR̄

)

76



We now use the steady-state version of the Euler equation: β·R̄·(1−s)
ω

1
σ

+ β · R̄ · s = 1:

dY S (1, k|δ) = −cS · σ
R̄

· dR̄ + (1 − M) · dY (0, k − 1|δ)
1 − λ+ λ · ω

+β · R̄ · (1 − s)
ω

1
σ

+1
·
(

(1 − h) · B̄
1 − λ

· dR̄ − δ

λ
· B̄ · dR̄

)

+
(
β · R̄ · s− M

)
·
(
s · B̄
1 − λ

· dR̄ − 1 − δ

1 − λ
· B̄ · dR̄

)

which is equivalent to equation (46) because for k > τ :

F (k − 2|τ − 1, 1 − M) = 1, f (k − 1|τ − 1, 1 − M) = 0.

This completes the proof for τ = 1.
For convenience, let us denote the formula for dY S (1, k|δ) as:

X ≡ −cS · σ
R̄

· dR̄ + (1 − M) · dY (0, k − 1|δ)
1 − λ+ λ · ω

+β · R̄ · (1 − s)
ω

1
σ

+1
·
(

(1 − h) · B̄
1 − λ

· dR̄ − δ

λ
· B̄ · dR̄

)

+
(
β · R̄ · s− M

)
·
(
s · B̄
1 − λ

· dR̄ − 1 − δ

1 − λ
· B̄ · dR̄

)
.

Let us show now that equation (46) holds for τ > 1. I first use Lemma 3 which,
together with “Remarks” and Lemma 5 (equation (28): dY S (τ, k|δ) = dcS0 ) yields:

dY S (τ, k|δ) =
1

β · R̄ · s
·
{

M ·
[
β · R̄ · (1 − s)

ω
1
σ

+1
· dY H (τ − 1, k − 1|δ) +

β · R̄ · s− M
M

· dY S (τ, k|δ)
]

+M2 ·
[
β · R̄ · (1 − s)

ω
1
σ

+1
· dY H (τ − 2, k − 1|δ) +

β · R̄ · s− M
M

· dY S (τ − 1, k − 1|δ)
]

+...

+Mτ−1 ·
[
β · R̄ · (1 − s)

ω
1
σ

+1
· dY H (1, k − 1|δ) +

β · R̄ · s− M
M

· dY S (2, k − 1|δ)
]

+Mτ ·
[

−
cS · σ
R̄

· dR̄+
β · R̄ · (1 − s)

ω
1
σ

+1
·
(

(1 − h) · B̄
1 − λ

· dR̄+ dY H (0, k − 1|δ) −
δ

λ
· B̄ · dR̄

)
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+
β · R̄ · s− M

M
· dY S (1, k − 1|δ)

]

+Mτ+1 ·
[
β · R̄ · s− M

M
·
(
s · B̄
1 − λ

· dR̄+ dY S (0, k − 1|δ) −
1 − δ

1 − λ
· B̄ · dR̄

)]}
.

Now, I use the assumption about the relationship between the income of the con-
strained and the unconstrained agent (see equation (8)) I reformulate the equation
above further to get:

dY S (τ, k|δ) =
β · R̄ · (1 − s)

ω
1
σ

· dY S (τ − 1, k − 1|δ)

+M ·
[
β · R̄ · (1 − s)

ω
1
σ

· dY S (τ − 2, k − 1|δ) +
β · R̄ · s− M

M
· dY S (τ − 1, k − 1|δ)

]
+...

+Mτ−2 ·
[
β · R̄ · (1 − s)

ω
1
σ

· dY S (1, k − 1|δ) +
β · R̄ · s− M

M
· dY S (2, k − 1|δ)

]

+Mτ−1 ·
[

−
cS · σ
R̄

· dR̄+
β · R̄ · (1 − s)

ω
1
σ

+1
·
(

(1 − h) · B̄
1 − λ

· dR̄+ dY H (0, k − 1|δ) −
δ

λ
· B̄ · dR̄

)

+
(
β · R̄ · s− M

)
·
(
s · B̄
1 − λ

· dR̄+ dY S (0, k − 1|δ) −
1 − δ

1 − λ
· B̄ · dR̄

)

+
β · R̄ · s− M

M
· dY S (1, k − 1|δ)

]
Now, I use the induction assumption (i.e., that formula (46) holds for 1, 2, ..., τ − 1,
which is true because for all those terms the horizon index is lower than k − 1 as
k > τ) and thus terms dY S (τ − 1, k − 1|δ), dY S (τ − 2, k − 1|δ), ..., dY S (1, k − 1|δ)
can be replaced with formula 46, which for k > τ is equal to X . Moreover, observe
that the penultimate line and the line before are equal to Mτ−1 · X and therefore:

dY S (τ, k|δ) = β · R̄ · (1 − s)
ω

1
σ

· X

+M ·
[
β · R̄ · (1 − s)

ω
1
σ

· X + β · R̄ · s− M
M

· X
]

+...

+Mτ−2 ·
[
β · R̄ · (1 − s)

ω
1
σ

· X + β · R̄ · s− M
M

· X
]

+Mτ−1 ·
[
X + β · R̄ · s− M

M
· X

]
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We now use the steady-state version of the Euler equation: β·R̄·(1−s)
ω

1
σ

+ β · R̄ · s = 1,
which gives (less technically speaking, terms preceeded by β·R̄·s−M

M in the equation
above are “shifted up by one line” and then the Euler equation in the steady state
is used):

dY S (τ, k|δ) = (1 − M) · X

+M · (1 − M) · X

+...

+Mτ−2 · (1 − M) · X

+Mτ−1 · X .

Canceling terms yields:
dY S (τ, k|δ) = X

and using the definition of X :

dY S (τ, k|δ) = −cS · σ
R̄

· dR̄ + (1 − M) · dY (0, k − 1|δ)
1 − λ+ λ · ω

+β · R̄ · (1 − s)
ω

1
σ

+1
·
(

(1 − h) · B̄
1 − λ

· dR̄ − δ

λ
· B̄ · dR̄

)

+
(
β · R̄ · s− M

)
·
(
s · B̄
1 − λ

· dR̄ − 1 − δ

1 − λ
· B̄ · dR̄

)

which is equivalent to equation (46) because for k > τ :

F (k − 2|τ − 1, 1 − M) = 1, f (k − 1|τ − 1, 1 − M) = 0.

This completes the proof of formula (46) for k > τ .
dY S (τ, k|δ) in the case when k ≤ τ . By contrast to k > τ , the induction

method is now applied to the index k (instead of τ). In what follows, I first prove
formula (46) for k = 1 (and for all τ > 0). Next, I prove it for any k assuming that
formula (46) holds for k − 1.

Let us consider k = 1. Observe that, using Lemma 3 and “Remarks”, for all
τ > 0:

dcS
0 =

1
β · R̄ · s

·
{

M ·
[
β · R̄ · (1 − s)

ω
1
σ

+1
· dY H (τ − 1, k − 1|δ) +

β · R̄ · s− M
M

· dY S (τ, k|δ)
]
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+M2 ·
[
β · R̄ · (1 − s)

ω
1
σ

+1
· dY H (τ − 2, k − 1|δ) +

β · R̄ · s− M
M

· dY S (τ − 1, k − 1|δ)
]

+...

+Mτ−1 ·
[
β · R̄ · (1 − s)

ω
1
σ

+1
· dY H (1, k − 1|δ) +

β · R̄ · s− M
M

· dY S (2, k − 1|δ)
]

+Mτ ·
[

−
cS · σ
R̄

· dR̄+
β · R̄ · (1 − s)

ω
1
σ

+1
·
(

(1 − h) · B̄
1 − λ

· dR̄+ dY H (0, k − 1|δ) −
δ

λ
· B̄ · dR̄

)

+
β · R̄ · s− M

M
· dY S (1, k − 1|δ)

]

+Mτ+1 ·
[
β · R̄ · s− M

M
·
(
s · B̄
1 − λ

· dR̄+ dY S (0, k − 1|δ) −
1 − δ

1 − λ
· B̄ · dR̄

)]}
.

Note that for k = 1 agents expect that their future income levels does not deviate
from their steady-state levels and therefore:

dY H (τ − 1, k − 1|δ) = dY H (τ − 2, k − 1|δ) = ... = dY H (0, k − 1|δ) = 0.

dY S (τ − 1, k − 1|δ) = dY S (τ − 2, k − 1|δ) = ... = dY S (0, k − 1|δ) = 0.

Thus:
dcS0 = 1

β · R̄ · s
·
{

M ·
[
β · R̄ · s− M

M
· dY S (τ, k|δ)

]

+Mτ ·
[
−cS · σ

R̄
· dR̄ + β · R̄ · (1 − s)

ω
1
σ

+1
·
(

(1 − h) · B̄
1 − λ

· dR̄ − δ

λ
· B̄ · dR̄

)]

+Mτ+1 ·
[
β · R̄ · s− M

M
·
(
s · B̄
1 − λ

· dR̄ − 1 − δ

1 − λ
· B̄ · dR̄

)]}
.

Note that from Lemma 5 (equation (28)) we have dcS0 = dY S (τ, k|δ) and therefore:

dY S (τ, k|δ) =

Mτ−1 ·
[
−cS · σ

R̄
· dR̄ + β · R̄ · (1 − s)

ω
1
σ

+1
·
(

(1 − h) · B̄
1 − λ

· dR̄ − δ

λ
· B̄ · dR̄

)

+
(
β · R̄ · s− M

)
·
(
s · B̄
1 − λ

· dR̄ − 1 − δ

1 − λ
· B̄ · dR̄

)]
.
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Given that for k = 1:

Mτ−1 =
 τ − 1
k − 1

 · Mτ−k · (1 − M)k−1 = f (k − 1|τ − 1, 1 − M)

and that for k = 1:

F (k − 2|τ − 1, 1 − M) =
k−2∑
l=0

 τ − 1
l

 · Mτ−l−1 · (1 − M)l = 0

as the sum contains zero elements by the definition of the aggregation operator.
This completes the proof for k = 1.

For convenience let us define:
Z ≡ (48)[

−cS · σ
R̄

· dR̄ + β · R̄ · (1 − s)
ω

1
σ

+1
·
(

(1 − h) · B̄
1 − λ

· dR̄ − δ

λ
· B̄ · dR̄

)

+
(
β · R̄ · s− M

)
·
(
s · B̄
1 − λ

· dR̄ − 1 − δ

1 − λ
· B̄ · dR̄

)]
.

Let us now show that formula (46) holds for 1 < k ≤ τ . Again, using Lemma
3, formula for dY S (τ, k|δ) for k > τ , condition dcS0 = dY S (τ, k|δ) (see Lemma 5),
assumption described by condition (8), and “Remarks”:

dY S (τ, k|δ) =
β · R̄ · (1 − s)

ω
1
σ

· dY S (τ − 1, k − 1|δ)

+M ·
[
β · R̄ · (1 − s)

ω
1
σ

· dY S (τ − 2, k − 1|δ) +
β · R̄ · s− M

M
· dY S (τ − 1, k − 1|δ)

]
+...

+Mτ−k ·
[
β · R̄ · (1 − s)

ω
1
σ

· dY S (k − 1, k − 1|δ) +
β · R̄ · s− M

M
· dY S (k, k − 1|δ)

]

+Mτ−k+1 ·
[
β · R̄ · (1 − s)

ω
1
σ

· X +
β · R̄ · s− M

M
· dY S (k − 1, k − 1|δ)

]

+Mτ−k+2 ·
[
β · R̄ · (1 − s)

ω
1
σ

· X +
β · R̄ · s− M

M
· X
]

+...

+Mτ−2 ·
[
β · R̄ · (1 − s)

ω
1
σ

· X +
β · R̄ · s− M

M
· X
]
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+Mτ−1 ·
[

−
cS · σ
R̄

· dR̄+
β · R̄ · (1 − s)

ω
1
σ

+1
·
(

(1 − h) · B̄
1 − λ

· dR̄+
ω · dY (0, k − 1|δ)

1 − λ+ λ · ω
−
δ

λ
· B̄ · dR̄

)

+
β · R̄ · s− M

M
· X
]

+Mτ ·
β · R̄ · s− M

M
·
(
s · B̄
1 − λ

· dR̄+
dY (0, k − 1|δ)
1 − λ+ λ · ω

−
1 − δ

1 − λ
· B̄ · dR̄

)
where I also used:

dY H (0, k − 1|δ) = ω · dY (0, k − 1|δ)
1 − λ+ λ · ω

dY S (0, k − 1|δ) = dY (0, k − 1|δ)
1 − λ+ λ · ω

implied by the proof of Lemma 2. I now use: i) the induction assumption (i.e.,
that formula (46) holds for k − 1), ii) aggregation of terms in the bracketts mul-
tiplied by Mτ−1 and Mτ (all but β·R̄·s−M

M · X ) to get X , iii) aggregation of terms
dY S (τ̂ , k − 1|δ) featuring the same horizon τ̂ , iv) using the steady-state version of
the Euler equation: β·R̄·(1−s)

ω
1
σ

+ β · R̄ · s = 1, v) definition of Z (see equation (48)),
to get:

dY S (τ, k|δ) = (49)

(1 − M) ·

[(
τ − 2
k − 2

)
· Mτ−k · (1 − M)k−2 · Z +

k−3∑
l=0

(
τ − 2
l

)
· Mτ−2−l · (1 − M)l · X

]

+M · (1 − M) ·

[(
τ − 3
k − 2

)
· Mτ−k−1 · (1 − M)k−2 · Z +

k−3∑
l=0

(
τ − 3
l

)
· Mτ−3−l · (1 − M)l · X

]
+...

+Mτ−k · (1 − M) ·

[(
k − 2
k − 2

)
· M0 · (1 − M)k−2 · Z +

k−3∑
l=0

(
k − 2
l

)
· Mk−2−l · (1 − M)l · X

]
+Mτ−k+1 · (1 − M) · X

+Mτ−k+2 · (1 − M) · X

+...

+Mτ−2 · (1 − M) · X

+Mτ−1 · X .

Using Lemma 4 for the aggregation of terms containing Z: τ − 2
k − 2

+
 τ − 3
k − 2

+ ...+
 k − 2
k − 2

 · Mτ−k · (1 − M)k−1
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=
 τ − 1
k − 1

 · Mτ−1−(k−1) · (1 − M)k−1 = f (k − 1|τ − 1, 1 − M)

which corresponds to the coefficient of the term containing Z in formula (46) because
it can be re-expressed as:

dY S (τ, k|δ) = f (k − 1|τ − 1, 1 − M) · Z

+F (k − 2|τ − 1, 1 − M) · X . (50)

Thus, to complete the proof that (46) holds, it suffices to show that terms containing
X in equation (49) aggregate to F (k − 2|τ − 1, 1 − M)·X . Let us first rewrite them
from (49):

(1 − M) ·

k−3∑
l=0

 τ − 2
l

 · Mτ−2−l · (1 − M)l · X



+M · (1 − M) ·

k−3∑
l=0

 τ − 3
l

 · Mτ−3−l · (1 − M)l · X


+...

+Mτ−k · (1 − M) ·

k−3∑
l=0

 k − 2
l

 · Mk−2−l · (1 − M)l · X


+Mτ−k+1 · (1 − M) · X

+Mτ−k+2 · (1 − M) · X

+...

+Mτ−2 · (1 − M) · X

+Mτ−1 · X .

I now follow the ananlogous steps as in the proof of Theorem 1. I rewrite the sum
above as (I cancel terms):

(1 − M) ·

k−3∑
l=0

 τ − 2
l

 · Mτ−2−l · (1 − M)l · X
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+M · (1 − M) ·

k−3∑
l=0

 τ − 3
l

 · Mτ−3−l · (1 − M)l · X


+...

+Mτ−k · (1 − M) ·

k−3∑
l=0

 k − 2
l

 · Mk−2−l · (1 − M)l · X


+Mτ−k+1 · X

which is equivalent to:

X ·


 τ − 2

0

 · Mτ−2 · (1 − M) + ...+
 τ − 2
k − 3

 · Mτ−k+1 · (1 − M)k−2



+
 τ − 3

0

 · Mτ−2 · (1 − M) + ...+
 τ − 3
k − 3

 · Mτ−k+1 · (1 − M)k−2


+...

+
 k − 2

0

 · Mτ−2 · (1 − M) + ...+
 k − 2
k − 3

 · Mτ−k+1 · (1 − M)k−2


+Mτ−k+1

}
which, by Lemma 4, is equivalent to:

X ·


 τ − 1

1

−

 k − 2
1

 · Mτ−2 · (1 − M)1

+
 τ − 1

2

−

 k − 2
2

 · Mτ−3 · (1 − M)2

+...

+
 τ − 1

k − 2

−

 k − 2
k − 2

 · Mτ−(k−1) · (1 − M)k−2

+Mτ−k+1
}
.

By the same token as in the proof of Theorem 1, negative terms in the expres-
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sion above aggregate to −Mτ−k+1 ·

1 −

 k − 2
0

 · Mk−2

 which allows for the

following reformulation of the sum above:

X ·


 τ − 1

1

 · Mτ−2 · (1 − M)1

+
 τ − 1

2

 · Mτ−3 · (1 − M)2

+...

+
 τ − 1
k − 2

 · Mτ−(k−1) · (1 − M)k−2 +
 k − 2

0

 · Mτ−1


which, given that

 k − 2
0

 =
 τ − 1

0

, is equivalent to:

X ·
k−2∑
l=0

 τ − 1
l

 · Mτ−1−l · (1 − M)l

= X · F (k − 2|τ − 1, 1 − M)

as the term containing X in formula (50). Given that we have already proved the
term containing Z in formula (50), and given that formula (50) is equivalent to
formula (46), completes the proof of expression (46). Let us now standardize it to
get the formulation from Theorem 2. To this end, let us multiply both sides of (46)
by − R̄

Y
· 1
dR

and use the fact that dY S
t = dYt

1−λ+λ·ω (see Lemma 5):

− R̄

Y
· 1
dR

· dY (τ, k|δ) = (51)

− R̄

Y
· 1 − λ+ λ · ω

dR
· f (k − 1|τ − 1, 1 − M) ·

{
−σ · cS

R̄
· dR̄

+β · R̄ · (1 − s)
ω

1
σ

+1
·
(

(1 − h) · B̄ · dR̄
1 − λ

− δ

λ
· B̄ · dR̄

)

+
(
β · R̄ · s− M

)
·
(
s · B̄ · dR̄

1 − λ
− 1 − δ

1 − λ
· B̄ · dR̄

)}
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− R̄

Y
· 1 − λ+ λ · ω

dR
· F (k − 2|τ − 1, 1 − M) ·

{
−σ · cS

R̄
· dR̄

+ (1 − M) · dY (0, k − 1|δ)
1 − λ+ λ · ω

+β · R̄ · (1 − s)
ω

1
σ

+1
·
(

(1 − h) · B̄ · dR̄
1 − λ

− δ

λ
· B̄ · dR̄

)

+
(
β · R̄ · s− M

)
·
(
s · B̄ · dR̄

1 − λ
− 1 − δ

1 − λ
· B̄ · dR̄

)}

which after reformulation and after using the definition of interest rate elasticity of
output (see equation (17)) gives:

ϵ (τ, k|δ) =

− R̄

Y
· 1 − λ+ λ · ω

dR
· F (k − 1|τ − 1, 1 − M) ·

{
−σ · cS

R̄
· θ · dR

+
(
β · R̄ · (1 − s)

ω
1
σ

+1
· 1 − s

λ
+
(
β · R̄ · s− M

)
· s

1 − λ

)
· B̄ · θ · dR

−
(
β · R̄ · (1 − s)

ω
1
σ

+1
· δ
λ

+
(
β · R̄ · s− M

)
· 1 − δ

1 − λ

)
· B̄ · θ · dR

}

− R̄

Y
· 1 − λ+ λ · ω

dR
· F (k − 2|τ − 1, 1 − M) · (1 − M) · dY (0, k − 1|δ)

1 − λ+ λ · ω

because dR̄ = θ · dR, 1−h
1−λ = 1−s

λ
, and because:

F (k − 1|τ − 1, 1 − M) = f (k − 1|τ − 1, 1 − M)

+F (k − 2|τ − 1, 1 − M) .

Using formulas for MPCS and iMPCS (δ) (see equations (15) and (16), respec-
tively) and relationship cS = Y

1−λ+λ·ω (see Lemma 5):

ϵ (τ, k|δ) =

F (k − 1|τ − 1, 1 − M) · {σ · θ
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+
(

− R̄

cS

)
· iMPCS (1 − s)

1 −MPCS
· B̄ · θ

−
(

− R̄

cS

)
· iMPCS (δ)

1 −MPCS
· B̄ · θ

}

− R̄

Y
· 1
dR

· F (k − 2|τ − 1, 1 − M) · (1 − M) · dY (0, k − 1|δ)

which is equivalent to:

ϵ (τ, k|δ) = F (k − 1|τ − 1, 1 − M) · θ · σ

−F (k − 1|τ − 1, 1 − M) · iMPCS (1 − s)
1 −MPCS

· R̄ · B̄ · θ
cS

+F (k − 1|τ − 1, 1 − M) · iMPCS (δ)
1 −MPCS

· R̄ · B̄ · θ
cS

+F (k − 2|τ − 1, 1 − M) · (1 − M) · ϵ (0|δ)

which completes the proof of formula ϵ (τ, k|δ) in Theorem 2.
Finally, let us prove the formula for ∆ϵ (τ, k|δ) in Theorem 2. Note that the

additional fiscal announcement (fiscal guidance) is captured with terms β·R̄·(1−s)
ω

1
σ +1 ·(

− δ
λ

· B̄ · dR̄
)

and
(
β · R̄ · s− M

)
·
(
− 1−δ

1−λ · B̄ · dR̄
)

in formula describing Z (see
equation (48)). Thus, aggregating its isolated impact on the income of agent S (see
equation (49) and the aggregation of terms related to Z following that expression):

∆Y S (τ, k|δ) = f (k − 1|τ − 1, 1 − M) ·
[
−β · R̄ · (1 − s)

ω
1
σ

+1
·
(
δ

λ
· B̄ · dR̄

)

+
(
β · R̄ · s− M

)
·
(

1 − δ

1 − λ
· B̄ · dR̄

)]

standardizing this expression as in (51) (i.e. multiplying by − R̄
Y

· 1−λ+λ·ω
dR

·):

∆ϵ (τ, k|δ) = − R̄

Y
· 1 − λ+ λ · ω

dR

·f (k − 1|τ − 1, 1 − M) ·
[
−β · R̄ · (1 − s)

ω
1
σ

+1
·
(
δ

λ
· B̄ · dR̄

)
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+
(
β · R̄ · s− M

)
·
(

1 − δ

1 − λ
· B̄ · dR̄

)]

which is equivalent to:
∆ϵ (τ, k|δ) =

f (k − 1|τ − 1, 1 − M) ·
[
β · R̄ · (1 − s)

ω
1
σ

+1
·
(
δ

λ

)

+
(
β · R̄ · s− M

)
·
(

1 − δ

1 − λ

)]
· B̄ · θ · R̄

cS

which, by definitions of MPCS and iMPCS (see equations (15) and (16)) is equiv-
alent to:

∆ϵ (τ, k|δ) =

f (k − 1|τ − 1, 1 − M) · iMPCS (δ)
1 −MPCS

· B̄ · θ · R̄
cS

which completes the proof. QED.
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Additional figures

Figure 9: Interest rate elasticities of output in HANK (model with the NKPC and
high debt) under MFFG for neutral, uniform and targeted transfers.

Notes: Interest rate elasticities of output in period 0 computed for a one-time drop in interest rates equal to dR = −0.0025 (i.e. a
one-percentage-point decrease in nominal rates in annual terms) that occurs in period τ - see formula (17) for three types of transfers
in period τ (induced by monetary shock): neutral, uniform, and targeted. Dashed lines correspond to the rational expectations
equilibria and solid lines denote output elasticities under level-k thinking. Different thickness of solid lines represent different values
of k.
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Figure 10: Difference between interest rate elasticities of output in HANK (model
with the NKPC and high debt) between MFFG and FG for neutral, uniform and
targeted transfers.

Notes: Difference (between MFFG and FG) in interest rate elasticities of output in period 0 computed for a one-time drop in interest
rates equal to dR = −0.0025 (i.e. a one-percentage-point decrease in nominal rates in annual terms) that occurs in period τ . This
difference is specified by formula (18) for three types of transfers in period τ (induced by monetary shock): neutral, uniform, and
targeted. Solid lines denote output elasticities under level-k thinking. Different thickness of solid lines represent different values of k.
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