
MPRA
Munich Personal RePEc Archive

Causal inference using factor models

Bai, Jushan and Wang, Peng

Columbia University, Hong Kong University of Science and
Technology

31 March 2024

Online at https://mpra.ub.uni-muenchen.de/120585/
MPRA Paper No. 120585, posted 07 Apr 2024 07:54 UTC

http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/120585/


Causal Inference Using Factor Models

Jushan Bai*, Peng Wang† ‡
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Abstract

We propose a framework for causal inference using factor models. We base our

identification strategy on the assumption that policy interventions cause struc-

tural breaks in the factor loadings for the treated units. The method allows het-

erogeneous trends and is easy to implement. We compare our method with the

synthetic control methods of Abadie, et al (2010, 2015), and obtain similar results.

Additionally, we provide confidence intervals for the causal effects. Our approach

expands the toolset for causal inference.

Key words: synthetic control, difference-in-differences, structural breaks, la-

tent factors.

1 Introduction

Causal inference using synthetic control (SC) or difference-in-differences (DID) meth-
ods has become increasingly popular in the literature. The synthetic control method
(Abadie and Gardeazabal (2003), Abadie, et al. (2010, 2015)) involves constructing a
synthetic control unit that closely matches the treated unit in terms of pre-treatment
characteristics and outcomes, and then comparing the outcomes of the treated unit
with the synthetic control unit after the intervention. The difference-in-differences
method (e.g., Card and Krueger (1994)) compares the change in outcomes for a treated
group before and after the intervention with the change in outcomes for a control
group over the same time period. Both methods rely on the assumption of a parallel
trend, which means that the treated and control groups would have followed the same
trend in the absence of the policy intervention. This assumption is used to construct
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a counterfactual scenario where the policy intervention did not occur, and the differ-
ence between the observed outcomes and the counterfactual outcomes is defined as
the causal effect of interest. However, in practice, individual heterogeneities in trends
are common, which can violate the parallel trend assumption. For example, Gobillon
and Magnac (2016) and Xu (2017) modeled such heterogeneous trends in panel data
models with interactive fixed effects. The factor model acknowledges commonalities
in comovement using common factors and uses unit-specific factor loadings to reflect
individual heterogeneities. Using a factor model, we decompose the potential out-
comes into a systematic component and an idiosyncratic component. The policy inter-
vention affects the systematic component but not the idiosyncratic one. This allows us
to represent the causal effect using the difference in the systematic components only.
The advantage of using a factor model is that it allows us to clearly define and iden-
tify the causal effect. In addition, the role played by the policy intervention naturally
translates into a structural-break problem, which can be tested using existing theory
on structural breaks.

Next, we describe the model and demonstrate how this framework relates to exist-
ing approaches and how it facilitates the identification of causal effects.

2 Modeling the Potential Outcomes

We consider a panel data set that includes an outcome variable and some covariates.
The observed outcome variable Y is indexed by unit and time, i.e., Yit, i = 1, 2, . . . , n,
t = 1, 2, . . . , T. The potential outcome for unit i in period t is denoted by Yit (d), d =

0, 1, with d = 1 referring to the case of treatment and d = 0 for the case of no treatment.
Assume that a policy intervention occurs in period T0 with 1 < T0 < T. Let Dit denote
the observed treatment dummy. The policy intervention only applies to units i ≤ n0

without directly affecting units i > n0. To focus on the main idea, we assume that
the policy intervention occurs in the same period for all treated units. The treatment
status can be summarized by

Dit =

0, i > n0 & 1 ≤ t ≤ T, or i ≤ n0 & t < T0,

1, i ≤ n0 & t ≥ T0.
(1)

The potential outcomes are assumed to follow a factor model:

Yit (d) = λi (d)
′ ft + X′

itβ (d) + εit, d = 0, 1, (2)

where Xit is the vector of observed covariates and εit denotes the idiosyncratic error
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that is not indexed by d. For the treated units we have,

Yit =

λi (0)
′ ft + X′

itβ (0) + εit = Yit (0) , t < T0,

λi (1)
′ ft + X′

itβ (1) + εit = Yit (1) , t ≥ T0,
, i = 1, . . . , n0.

For the untreated units

Yit = λi (0)
′ ft + X′

itβ (0) + εit = Yit (0) , i = n0 + 1, . . . , n, t = 1, ..., T.

The causal effect for the treated unit is

τit = Yit (1)− Yit (0) = Yit − Yit (0) , t ≥ T0, i = 1, . . . , n0.

Using the factor model, we can rewrite τit as (i ≤ n0, t > T0)

τit =
{

λi (1)
′ ft + X′

itβ (1) + εit
}
−
{

λi (0)
′ ft + X′

itβ (0) + εit
}

= [λi (1)− λi (0)]
′ ft + X′

it [β (1)− β (0)] . (3)

This representation allows us to evaluate the source of the causal effects due to struc-
tural breaks in factor loadings, or covariates’ coefficients, or both.

Table 1 provides a timeline of the potential and observed outcomes. For the control
group (j > n0), the observed outcome Yjt equals the potential outcome Yjt(0) for all
t. For the treatment group (i ≤ n0), the observed outcome Yit equals the potential
outcome Yit(0) before the intervention (t < T0) and equals the potential outcome
Yit(1) post intervention (t ≥ T0). The last two rows of Table 1 give, respectively, the
counterfactual and treatment effects for the treated group.

Figure 1 provides an example of the relationship among factors, realized individual
trend before the intervention (λi (0)

′ · fs, s < T0) and after the intervention (λi (1)
′ · ft,

t ≥ T0), as well as the potential individual trend (λi (0)
′ · ft, t ≥ T0). In the figure, ft

is illustrated as a smooth function of t, but it does not have to be smooth. Also, only
a single factor is illustrated. The symbols L(0) and L(1) represents λi(0) and λi(1),
respectively. To focus on the main idea, we abstract from the covariates in Table 1 and
Figure 1.

In Section 3, we show that the individual causal effect τit in (3) is identifiable be-
cause {λi (d) , ft, β (d)}, d = 0, 1, are all identifiable. Then a natural estimator for τit is
given by

τ̂it =
[
λ̂i (1)− λ̂i (0)

]′
f̂t + X′

it
[
β̂ (1)− β̂ (0)

]
, (4)

where the hatted variables are the corresponding estimates.
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s < T0 t ≥ T0

Treated
(i≤n0)

Yis = λi (0)
′ fs + εis︸ ︷︷ ︸

Yis(0)

Yit = λi (1)
′ ft + εit︸ ︷︷ ︸

Yit(1)

Control
(j>n0)

Yjs = λj (0)
′ fs + ε js︸ ︷︷ ︸

Yjs(0)

Yjt = λj (0)
′ ft + ε jt︸ ︷︷ ︸

Yjt(0)

Counterfactual
(i≤n0)

Yit (0) = λi (0)
′ ft + εit

Causal effect
(i≤n0)

τit = λi (1)
′ ft − λi (0)

′ ft︸ ︷︷ ︸
Yit(1)−Yit(0)

Table 1: Outcomes before and after the intervention.

Figure 1: Individual trend before and after the intervention.
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We will show that
τ̂it − τit = op (1) ,

under standard conditions such as the ones in Bai (2009). Such a model-based causal
model allows us to identify the causal effect using the systematic component regard-
less of the idiosyncratic errors. Existing causal inference methods, such as difference-
in-differences, synthetic control, and matrix completion (e.g., Bai and Ng (2021)), focus
on constructing the counterfactual Yit (0) from the control group. Our model-based
method does not directly construct Yit (0), noting that the idiosyncratic errors will
cancel out in the difference Yit (1)− Yit (0).

2.1 Compare with the Causal Model using Interactive Fixed Effects

The causal model that we propose is closely related to Gobillon and Magnac (2016)
and Xu (2017). Both of their models can be summarized by the following model for
potential outcomes

Yit (0) = λ′
i ft + X′

itβ + εit,

Yit (1) = δit + λ′
i ft + X′

itβ + εit,

where δit = Yit (1)−Yit (0) is defined as the individual causal effect. The estimator for
this causal effect is given by

δ̂it = Yit (1)− Ŷit (0)

= Yit −
(

λ̂′
i f̂t + X′

it β̂
)

, t ≥ T0, i = 1, . . . , n0. (5)

Plug-in the model for Yit (1) to obtain

δ̂it =
(
δit + λ′

i ft + X′
itβ + εit

)
−
(

λ̂′
i f̂t + X′

it β̂
)

= δit +
(

λ′
i ft − λ̂′

i f̂t

)
+ X′

it
(

β − β̂
)
+ εit.

Under appropriate assumptions such as the ones in Bai (2009), λ′
i ft − λ̂′

i f̂t = op (1) and
β − β̂ = op (1). So

δ̂it − δit = op (1) + εit = Op (1) . (6)

As a result, under Gobillon and Magnac (2016) and Xu (2017)’s modeling strategy, the
idiosyncratic error εit strongly affects the bias in the individual causal estimates. The
bias could be averaged out when the number of treated units, n0, is large. However,
the framework could be problematic when n0 is small, as in most applications in the
synthetic control literature. Our modeling strategy directly acknowledges the possi-
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ble variations of factor loadings and covariate coefficients across different treatment
status. Our estimator of the individual causal effect is given by (4)

τ̂it =
[
λ̂i (1)− λ̂i (0)

]′
f̂t + X′

it
[
β̂ (1)− β̂ (0)

]
,

which direct corresponds to the model-implied causal effect τit in (3) . The idiosyn-
cratic error εit itself does not lead to a bias in τ̂it − τit. In addition, our modeling
strategy allows n0 to be either large or small, and thus is more suitable for studying
the cases when one or only a few units are subject to the policy intervention.

Similarly, Callaway and Karami (2023) propose to model the untreated potential
outcomes as

Yit (0) = θt + ξi + λ′
i ft + εit.

which focuses on the average treatment effect. Their framework is helpful for the
applications in the difference-in-differences literature but is not designed for the small
n0 case as in the synthetic control literature.

More importantly, Gobillon and Magnac (2016), Xu (2017), and Callaway and Karami
(2023) all focus on modeling the untreated potential outcomes Yit (0) and impose no
restrictions on the causal effect δit. They do not have an explicit model for Yit (1).
The cost of such a flexibility is the bias in the estimator of individual causal effects
as shown in (6). In comparison, we explicitly model both Yit (0) and Yit (1), which
constraints the causal effect δit = τit through equation (3). The implied estimator (4)
for individual causal effect is free of bias when sample sizes are large, even when the
number of treated units is small.

2.2 Compare with the Difference-in-Differences Model using Inter-

active Fixed Effects

Here we show that the difference-in-differences method with or without interactive
fixed effects is a special case of our set up. A standard difference-in-differences model
with constant treatment effects and a common treatment timing features the following
two-way-fixed-effects (TWFE) panel regression model:

Yit = αi + θt + ρDit + X′
itβ + εit, (7)

with Dit being the treatment indicator defined in (1). Adding the interactive fixed
effects, (7) can be generalized to:

Yit = αi + θt + ρDit + λ′
i ft + X′

itβ + εit. (8)
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In both (7) and (8), ρ represents the treatment effect.
The corresponding potential outcomes are given by

Yit (0) = αi + θt + λ′
i ft + X′

itβ + εit,

Yit (1) = αi + θt + ρ + λ′
i ft + X′

itβ + εit. (9)

Define gt = [1, θt, f ′t ]
′, λi (0) =

[
αi, 1, λ′

i
]′, λi (1) =

[
αi + ρ, 1, λ′

i
]′, and then we may

represent (9) as

Yit (0) = λi (0)
′ gt + X′

itβ + εit,

Yit (1) = λi (1)
′ gt + X′

itβ + εit, (10)

which is a special case of our causal model (2) in which β (d) = β, d = 0, 1. Our
representation of the causal effect (3) takes into account variations in λi and β across
different treatment status to model the heterogeneous causal effect.

If one wants to use TWFE model to learn about the heterogeneous causal effects,
the regression model can be specified as

Yit = αi + θt + ρiDit + λ′
i ft + X′

itβ + εit. (11)

where the coefficient of Dit is individual-dependent. The corresponding potential out-
comes are given by

Yit (0) = αi + θt + λ′
i ft + X′

itβ + εit,

Yit (1) = αi + θt + ρi + λ′
i ft + X′

itβ + εit. (12)

Define gt = [1, θt, f ′t ]
′, λi (0) =

[
αi, 1, λ′

i
]′, λi (1) =

[
αi + ρi, 1, λ′

i
]′, and then we may

represent (12) as (10), again a special case of our causal model (2).

2.3 Compare with the Synthetic Control Method

To deliver the main idea, assume that the potential outcomes follow a factor model
without covariates

Yit (d) = λi (d)
′ ft + εit, d = 0, 1, (13)

Assume i = 1 is treated with a policy intervention in period T0, and the unaffected
control units are i = 2, ..., n. The synthetic control method constructs the counterfac-
tual Y1t (0) as a weighted average of the observed outcomes for the control units:

Ŷ1t (0) =
n

∑
i=2

ωiYit, t ≥ T0, ωi ≥ 0,
n

∑
i=2

ωi = 1.
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Then

Ŷ1t (0) =
n

∑
i=2

ωi
(
λi (0)

′ ft + εit
)

=

(
n

∑
i=2

ωiλi (0)
′
)

ft +
n

∑
i=2

ωiεit.

The synthetic causal effect for t ≥ T0 is

τ
synth
1t ≡ Y1t − Ŷ1t (0)

= λ1 (1)
′ ft + ε1t −

{(
n

∑
i=2

ωiλi (0)
′
)

ft +
n

∑
i=2

ωiεit

}

=

[
λ1 (1)−

n

∑
i=2

ωiλi (0)

]′
ft +

[
ε1t −

n

∑
i=2

ωiεit

]
.

Our model-based causal effect is given by

τ
f actor

1t ≡ [λ1 (1)− λ1 (0)]
′ ft, t ≥ T0.

The difference between this two is

τ
synth
1t − τ

f actor
1t =

[
λ1 (0)−

n

∑
i=2

ωiλi (0)

]′
ft +

[
ε1t −

n

∑
i=2

ωiεit

]
, t ≥ T0.

The synthetic control chooses the weights such that the distance between Y1t and

∑n
i=2 ωiYit is small for t < T0. Note that for t < T0,

Y1t −
n

∑
i=2

ωiYit = Y1t (0)−
n

∑
i=2

ωiYit (0)

= λ1 (0)
′ ft + ε1t −

n

∑
i=2

ωi
[
λi (0)

′ ft + εit
]

=

[
λ1 (0)−

n

∑
i=2

ωiλi (0)

]′
ft +

[
ε1t −

n

∑
i=2

ωiεit

]
.

In the ideal case that ω′
is are chosen such that

λ1 (0) ≈
n

∑
i=2

ωiλi (0) ,

we have

τ
synth
1t − τ

f actor
1t ≈ ε1t −

n

∑
i=2

ωiεit, t ≥ T0.
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If we expect that the factors already reflect most of the cross-sectional correlations, the
correlation between ε1t and ∑n

i=2 ωiεit is weak. In the special case where {εit} is iid.
across i, ε1t − ∑n

i=2 ωiεit = ε1t + op (1) = Op (1) and thus τ
synth
1t − τ

f actor
1t = Op (1). The

difference can be small when averaged over time. The difference will also be small
when averaged over many treated units. In general, however, the difference may not
be negligible.

Hsiao, et al (2012) adopted a similar method as synthetic control. They start with a
factor model and propose to use a linear function of outcomes for the untreated units
to estimate the counterfactual Y1t (0), t ≥ T0. Accordingly, the estimator for the causal
effect is

Y1t − Ŷ1t (0) , t ≥ T0.

A simple regression method is used to estimate the optimal linear function. Both our
method and Hsiao, et al (2012)’s do not require numerical optimization and are easy
to implement.

3 Identification of the Causal Factor Model

3.1 The Benchmark Model without Covariates

The causal effect for the treated unit is defined as

τit = Yit (1)− Yit (0) = Yit − Yit (0) , i ≤ n0, t ≥ T0.

To focus on the main idea, we first study the case without covariates. Plug in the factor
model to obtain

τit =
{

λi (1)
′ ft + εit

}
−
{

λi (0)
′ ft + εit

}
= [λi (1)− λi (0)]

′ ft, i ≤ n0, t ≥ T0.

This individual causal effect τit is identifiable as {λi (1) , λi (0) , ft} are all identified.

• The factors ft (1 ≤ t ≤ T) can be identified using existing methods such as the
principal component analysis of the untreated units {Yit}, i > n0, t = 1, . . . , T.

• λi (0) is identified by regressing Yit on ft for t < T0, i ≤ n0.

• λi (1) is identified by regressing Yit on ft for t ≥ T0, i ≤ n0.

• The test for H0 : τit = 0, t ≥ T0, i ≤ n0 is the same as testing H0 : λi (1) =

λi (0) , i ≤ n0. This can be the structural break test for the equation Yit = λ′
i ft +

εit, i ≤ n0, 1 ≤ t ≤ T.
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Note that the identification strategy works for the cases when n0 is either small or
large. In particular, it works for the special case where n0 = 1, similar to the synthetic
control setup.

3.2 The Model with Covariates (1)

Assuming that the coefficients of covariates do not depend on treatment status, the
data generating process is

Yit (d) = λi (d)
′ ft + X′

itβ + εit.

Then we have,

Yit = Yit (0) , i > n0, 1 ≤ t ≤ T,

Yit =

Yit (0) , i ≤ n0, t < T0,

Yit (1) , i ≤ n0, t ≥ T0.

The causal effect for the treated unit is

τit = Yit (1)− Yit (0) = Yit − Yit (0) , i ≤ n0, t ≥ T0.

Plug in the factor model, we have

τit =
{

λi (1)
′ ft + X′

itβ + εit
}
−
{

λi (0)
′ ft + X′

itβ + εit
}

= [λi (1)− λi (0)]
′ ft, i ≤ n0, t ≥ T0.

This individual causal effect τit is identifiable as {λi (1) , λi (0) , ft} are all identified.

• The factors ft (1 ≤ t ≤ T) can be identified using existing methods such as
the panel regression with interactive fixed effects of the untreated units {Yit},
i > n0, t = 1, . . . , T.

– As a by-product, β is also identified.

• λi (0) is identified by regressing Yit on ft and Xit for i ≤ n0, t < T0.

• λi (1) is identified by regressing Yit on ft and Xit for i ≤ n0, t ≥ T0.

• The test for H0 : τit = 0, t ≥ T0, i ≤ n0 is the same as testing H0 : λi (1) =

λi (0) , i ≤ n0. This is the structural break test for the equation Yit = λ′
i ft +

X′
itβ + εit, i ≤ n0, 1 ≤ t ≤ T.
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3.3 The Model with Covariates (2)

When the policy intervention affects how the covariates influence potential outcomes,
the data generating process becomes

Yit (d) = λi (d)
′ ft + X′

itβ (d) + εit,

where the coefficient β depends on the treatment status. The causal effect for the
treated unit is still defined as

τit = Yit (1)− Yit (0) = Yit − Yit (0) , i ≤ n0, t ≥ T0.

Plug in the factor model, we have

τit =
{

λi (1)
′ ft + X′

itβ (1) + εit
}
−
{

λi (0)
′ ft + X′

itβ (0) + εit
}

= [λi (1)− λi (0)]
′ ft + X′

it [β (1)− β (0)] , i ≤ n0, t ≥ T0.

This individual causal effect τit is identifiable as {λi (1) , λi (0) , ft, β (1) , β (0)} are all
identified.

• The factors ft (1 ≤ t ≤ T) can be identified using existing methods such as
the panel regression with interactive fixed effects of the untreated units {Yit},
i > n0, t = 1, . . . , T.

– As a by-product, β (0) is also identified.

• λi (0) is identified by regressing Yit on ft and Xit for i ≤ n0, t < T0.

• λi (1) and β (1) is identified by regressing Yit on ft and Xit for i ≤ n0, t ≥ T0.

• The test for H0 : τit = 0, t ≥ T0, i ≤ n0 is the same as testing H0 : λi (1) =

λi (0) , i ≤ n0, and β (1) = β (0). This is the structural break test for the equation
Yit = λ′

i ft + X′
itβ + εit, i ≤ n0, 1 ≤ t ≤ T.

4 Extension to the Case with Potential Factors

Assume n0/n → c ∈ (0, 1). In this case, we can identify a more flexible model where
the factors for the treated group are affected by the intervention. Assume that the same
set of common factors affect all units before the intervention. However, the policy
intervention can affect the common factors for the treated group. For the untreated
group, the common factors are given by ft(0), t = 1, 2, ..., T, and for the treated group,
the common factors are given by ft(0) for t < T0, and by ft(1) for t ≥ T0.
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For the treated group post intervention (t ≥ T0), we may think of ft (0) as its poten-
tial factors if the intervention never occurred, while ft (1) as the realized factors given
that the intervention occurred at T0. The data generating process for the potential
outcome is

Yit (d) = λi (d)
′ ft (d) + εit, d = 0, 1.

The observed outcome is given by,

Yit = Yit (0) , i > n0, 1 ≤ t ≤ T,

Yit =

Yit (0) , t < T0,

Yit (1) , t ≥ T0,
, i ≤ n0.

The causal effect for the treated unit is

τit = Yit (1)− Yit (0) = Yit − Yit (0) , t ≥ T0, i ≤ n0.

Plug in the factor model, we have

τit =
{

λi (1)
′ ft (1) + εit

}
−
{

λi (0)
′ ft (0) + εit

}
= λi (1)

′ ft (1)− λi (0)
′ ft (0) , t ≥ T0, i ≤ n0. (14)

This representation allows us to evaluate the source of the causal effects due to struc-
tural breaks in both factor loadings and factors.

The individual causal effect τit is identifiable as {λi (1) , ft (1) , λi (0) , ft (0)}, i ≤
n0, t ≥ T0, are all identified. A simple identification strategy is given as follows.

• The factors ft (0) (1 ≤ t ≤ T) can be identified using principal component anal-
ysis of the untreated units{Yit}, i > n0, t = 1, . . . , T.

• λi (0), i ≤ n0, is identified by regressing Yit on ft (0) for t < T0.

• The counter factual λi (0)
′ ft (0), i ≤ n0, t ≥ T0, can be thus constructed as the

product of the above two.

• The product λi (1)
′ ft (1) is identified by the principal component analysis of Yit,

i ≤ n0, t ≥ T0.

Let the estimators be
{

λ̂i (1)
′ f̂t (1) , λ̂i (0) , f̂t (0)

}
, i ≤ n0, t ≥ T0. Then the estimator

of the causal effect is given by

τ̂it = λ̂i (1)
′ f̂t (1)− λ̂i (0)

′ f̂t (0) , t ≥ T0, i ≤ n0. (15)
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Under standard identification constraints for factor models, such as Bai and Ng (2013),

λ̂i (d)
p→ λi (d) , f̂t (d)

p→ ft (d) , t ≥ T0, i ≤ n0, d = 0, 1.

And thus we have
τ̂it − τit = op (1) .

The asymptotic variance of τ̂it is considered below.

5 Estimation and Inference

5.1 The Intervention does not Affect the Factors

Consider (4) as the estimator for the unit-specific causal effect (3):

τ̂it =
[
λ̂i (1)− λ̂i (0)

]′
f̂t + X′

it
[
β̂ (1)− β̂ (0)

]
, t ≥ T0, i ≤ n0.

The factor estimate f̂t is obtained using factor analysis of the control units. Then λ̂i (0)
and β̂ (0) are obtained from a regression of yit on f̂t and Xit for t < T0 and i ≤ n0.
λ̂i (1) and β̂ (1) are obtained from another regression of yit on f̂t and Xit for t ≥ T0 and
i ≤ n0. The large sample theory is a natural extension of Bai and Ng (2006), which is
summarized in Proposition 1.

Proposition 1. Under Assumptions A1-A5 in the Appendix and
√

n − n0/T → 0, τ̂it

is a consistent estimator of τit for i ≤ n0 and t ≥ T0, and

τ̂it − τit√
var (τ̂it)

d→ N (0, 1) ,

where
var (τ̂it) = ẑ′it · var

(
δ̂i
)

ẑit + α̂′i · var
(

f̂t

)
α̂i,

and ẑit =
[

f̂ ′t , X′
it

]′
, α̂i = λ̂i (1)− λ̂i (0), δ̂i =

[
α̂′i,
[
β̂ (1)− β̂ (0)

]′]′
.

Proof. See Appendix.

From Bai (2003), an estimator for the variance of the factor is given by

̂
var

(
f̂t

)
=

1
n

V̂−1Γ̂tV̂−1,

where V̂ is the r × r diagonal matrix consisting of the r largest eigenvalues of YY′

(n−n0)T

13



with Y being the observed T × (n − n0) outcome matrix for the control units, and

Γ̂t =
1

n − n0

n

∑
i=n0+1

ε̂2
itλ̂iλ̂

′
i.

We may define δi (d) =
[
λi (d)

′ , β (d)′
]′

, d = 0, 1. Then δ̂i = δ̂i (1) − δ̂i (0). In the
Appendix, we show that

var
(
δ̂i
)
= var

(
δ̂i (1)

)
+ var

(
δ̂i (0)

)
+ op (1) ,

and an estimator for var
(
δ̂i (d)

)
, d = 0, 1, is given by

1
T (d)

(
1

T (d)
ẑi (d)

′ ẑi (d)
)−1

(
1

T (d)

T(d)

∑
t=1

ε̂it (d)
2 ẑit (d) ẑit (d)

′
)(

1
T (d)

ẑi (d)
′ ẑi (d)

)−1

.

5.2 The Intervention Affects the Factors for the Treated Group

Consider (15) as the estimator for the unit-specific causal effect (14):

τ̂it = λ̂i (1)
′ f̂t (1)− λ̂i (0)

′ f̂t (0) , t ≥ T0, i ≤ n0.

The factor estimate f̂t (0) is obtained using factor analysis of the control units. Then
λ̂i (0) is obtained from a regression of yit on f̂t for t < T0 and i ≤ n0. The product
λ̂i (1)

′ f̂t (1) is obtained as the common component estimator from principal compo-
nent analysis of yit for t ≥ T0 and i ≤ n0. We have the following proposition.

Proposition 2. Under Assumptions A1-A5 in the Appendix and n0/n → c ∈ (0, 1),
T0/T → b ∈ (0, 1),

√
n/T → 0, τ̂it is a consistent estimator of τit for i ≤ n0 and t ≥ T0

and
V−1/2

it (τ̂it − τit)
d→ N (0, 1) ,

for some Vit > 0.

Proof. See Appendix.

We will also provide an estimator for Vit in the Appendix.

6 Two Empirical Applications

6.1 An Application to Abadie, et al (2010)

Using Abadie, et al (2010)’s data on per capita cigarette sales among 39 US states, we
construct the counterfactual California using factor models and compare it with the

14
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Figure 2: Causal factor model vs. synthetic control: the counterfactual California

synthetic-California. We find that the two approaches yield very close results. Bai and
Ng (2002)’s criteria found two common factors among the 38 control states. We also
tried to estimate one or three factors and obtain similar results. Such robustness comes
from the fact that the first factor explains the majority of the variations in the data. We
proceed in the following steps.

• Step 1: use principal component analysis for 38 control states to obtain the factor
estimates f̂t.

• Step 2: regress Yit on f̂t for t < T0 to obtain λ̂i (0), i = CA. Regress Yit on f̂t for
t ≥ T0 to obtain λ̂i (1) and ε̂it, i = CA.

• Step 3: the estimator for the causal effect is

τ̂CA,t =
[
λ̂CA (1)− λ̂CA (0)

]
f̂t, t ≥ T0.

In Figure 2, we compare the actual data, the counterfactual CA using either factor
models or synthetic control method. The vertical line represents year 1988, which
was the year of the passage of Proposition 99 in California. The treatment periods are
from T0 = 1989 to T = 2000. The counterfactual CA using factor models is defined
as ŶCA,t (0) = λ̂CA (0) f̂t + ε̂CA,t, t ≥ T0, where ε̂CA,t is obtained in Step 2. Figure 3
shows the estimated causal effects using either factor models or synthetic control. To
summarize, these two approaches yield very similar results.

We further investigate whether the policy intervention indeed induced a structural
break by regressing California’s observed outcome on the two factors using the whole

15
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Figure 3: Causal factor model vs. synthetic control: the causal effects

sample. The Quandt Likelihood Ratio test for a structural break at an unknown point
with 15 percent trimming yields a p-value of 0.0000, with the maximum F-statistic at
observation 1993. In the meantime, the Chow-test for a structural break at observation
1989 yields an F-statistic of 21.26 with p-value 0.0000. All such evidence supports
our proposal of using time-varying factor loadings to model the causal effect from an
intervention.

Applying the results from Section 5, we may construct the 95% confidence interval
of our causal estimates based on the factor models. Figure 4 reproduces Figure 3 with
the shaded region being the 95% confidence interval around the causal estimates. The
confidence intervals show that our causal estimates are mostly significant at 5% level.
In addition, the confidence interval covers the causal estimates from the synthetic con-
trol method.

6.2 An Application to Abadie, et al (2015)

In this section, we compare the causal estimates from the synthetic control method
and causal factor models using Abadie, et al (2015)’s data on per capita GDP for 17
countries. The objective is to evaluate the causal impact of German re-unification on
Germany’s per capita GDP. The synthetic control method uses 16 countries to construct
the synthetic West Germany. The causal factor model uses the same 16 countries to
construct the counterfactual West Germany. We maintain the assumption that German
re-unification did not have impact on the other 16 countries.

In Figure 5, time series of per capita GDP for 17 countries (1969 - 2003) demonstrate

16



Figure 4: The 95% confidence intervals for factor causal estimates
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Figure 5: Time series plot of per capital GDP

strong comovement but not necessarily parallel trend. The vertical line represents year
1990 and the treatment periods are from from T0 = 1991 to T = 2003.

We estimate the causal factor model. The factor causal effects remain to be similar
to the synthetic control estimates as showcased by Figure 6 and 7.

We then regress West Germany’s observed outcome on the two factors using the
whole sample. The Quandt Likelihood Ratio test for a structural break at an unknown
point with 15 percent trimming yields a p-value of 0.0000, with the maximum F-
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Figure 6: Causal factor model vs. synthetic control: the counterfactual West Germany
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Figure 7: Causal factor model vs. synthetic control: the causal effects
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Figure 8: The 95% confidence intervals for factor causal estimates

statistic at observation 1993. In the meantime, the Chow-test for a structural break
at observation 1991 yields an F-statistic of 62.45 with p-value 0.0000.

In Figure 8, we also provide the confidence intervals of the causal effects based on
Section 5. The confidence intervals show that our causal estimates are mostly signifi-
cant at 5% level.

Conclusion

Our study has shown that using factor models to model potential outcomes under a
panel setting is a promising approach for causal analysis. By employing a causal factor
model, we can explore the source of the causal effect, whether it is due to structural
breaks in factor loadings, factors, or covariates’ coefficients. Through two empirical ex-
amples, we have demonstrated the similarities and differences between our approach
and the synthetic control method.
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Appendix

The large sample theory for the causal estimator (4) is based on Assumptions A1-A5
below. Let 0 < M < ∞ denote a generic constant, not depending on n and T.

Assumption A1. The factors satisfy E ∥ ft∥ ≤ M and 1
T ∑T

t=1 ft f ′t
p→ Σ f > 0.

Assumption A2. The factor loadings satisfy E ∥λi (0)∥4 ≤ M < ∞ and

1
n − n0

n

∑
i=n0+1

λi (0) λi (0)
′ p→ Σλ > 0.

Assumption A3. The error term εit is independent over i. In addition,

1. E (εit) = 0, E
(
ε8

it
)
≤ M.

2. E (εitεis) = σi,ts and |σi,ts| ≤ σ̄i for all (t, s), and |σi,ts| ≤ cts for all i such that
1

n−n0
∑n

i=n0+1 σ̄i ≤ M, 1
T ∑T

t,s=1 cts ≤ M and

1
(n − n0) T ∑

i,t,s
|σi,ts| ≤ M.

3. For all (t, s), E
∣∣∣ 1√

n−n0
∑n

i=n0+1 [εitεis − E (εitεis)]
∣∣∣4 ≤ M.

4. For all t, 1√
n−n0

∑n
i=n0

λi (0) εit
d→ N (0, Γt) , where

Γt = lim
n−n0→∞

1
n − n0

n

∑
i=n0

n

∑
j=n0

E
(

λiλ
′
jeitejt

)
.

Assumption A4. E
(
εit|λj (d) , fs; d = 0, 1, j = 1, ..., n, s = 1, ..., T

)
= 0.

Assumption A5. For each i ≤ n0, define zit =
[

f ′t , X′
it
]′, then E ∥zit∥4 ≤ M,

E (εit|zit) = 0, and {zit, εit, i ≤ n0} is independent of
{

ε js, j > n0
}

for all (t, s). In
addition,

1. 1
T ∑T

t=1 zitz′it
p→ Σi > 0;

2. 1√
T0−1 ∑T0−1

t=1 zitεit
d→ N (0, Σi0) and 1√

T−T0+1 ∑T
t=T0

zitεit
d→ N (0, Σi1), where Σi0 =

plim 1
T0−1 ∑T0

t=1

(
zitz′itε

2
it
)
> 0 and Σi1 = plim 1

T−T0+1 ∑T
t=T0

(
zitz′itε

2
it
)
> 0.

Proof of Proposition 1. Proposition 1 is implied by Theorem 3 in Bai and Ng (2006).
The main extra step under our setup is to derive var

(
δ̂i
)
. Note that

var
(
δ̂i
)
= var

(
δ̂i (1)

)
+ var

(
δ̂i (0)

)
− 2 · cov

(
δ̂i (1) , δ̂i (0)

)
.
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As δ̂i (d) , d = 0, 1, are separately estimated from two subsamples, we need to exploit
the covariance structure across the two subsamples. From (A.1) in Bai and Ng (2006),

√
T (d)

[
δ̂i (d)− δi (d)

]
=

(
1

T (d)
ẑi (d)

′ ẑi (d)
)−1 1√

T (d)
ẑi (d)

′ εi (d)+ op (1) , d = 0, 1,

where T (d) denotes the time length of the sample under treatment status d = 0 or 1:

T (0) = T0 − 1, T (1) = T − T0 + 1,

and

ẑi (0) =


[

f̂ ′1, X′
i1

]′
...[

f̂ ′T0−1, X′
i,T0−1

]′
 , ẑi (1) =


[

f̂ ′T0
, X′

iT0

]′
...[

f̂ ′T, X′
i,T

]′
 .

The error term εi (d) denotes the idiosyncratic errors for the corresponding subsam-
ples. From Assumptions A3 and A5,

√
T − T0 + 1δ̂i (1) and

√
T0 − 1δ̂i (0) are asymp-

totically uncorrelated. As a result

var
(
δ̂i
)
= var

(
δ̂i (1)

)
+ var

(
δ̂i (0)

)
+ op

(
1√

T − T0
√

T0

)
.

The corresponding var
(
δ̂i (d)

)
is readily available from Bai and Ng (2006):

var
(
δ̂i (d)

)
=

1
T (d)

(
1

T (d)
ẑi (d)

′ ẑi (d)
)−1

(
1

T (d)

T(d)

∑
t=1

ε̂it (d)
2 ẑit (d) ẑit (d)

′
)(

1
T (d)

ẑi (d)
′ ẑi (d)

)−1

.

Q.E.D.

Proof of Proposition 2. For notational simplicity, define Cit (d) = λi (d)
′ ft (d),

d = 0, 1, n1 = n − n0, T1 = T − T0 + 1, δn0T1 = min
{√

n0,
√

T1
}

.
Bai (2003) provides the asymptotic expansion of Ĉit − Cit for i ≤ n0, t ≥ T0:

Ĉit (1)− Cit (1) = λi (1)
′
(

∑n0
k=1 λk (1) λk (1)

′

n0

)−1
1
n0

n0

∑
k=1

λk (1) εkt

+ ft (1)
′
(

∑T
s=T0

fs (1) fs (1)
′

T1

)−1
1
T1

T

∑
s=T0

fs (1) εis

+ Op

(
1

δ2
n0T1

)
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≡ MA

n0

∑
k=1

λk (1) εkt + MB

T

∑
s=T0

fs (1) εis + Op

(
1

δ2
n0T1

)

= A + B + Op

(
1

δ2
n0T1

)
.

The asymptotic expansion for f̂t (0) is based on the full sample principal component
analysis of untreated units. Note that the product λi(d)′ ft(d) does not depend on
how the factors and factor loadings are rotated in the estimation. We will maintain
the assumptions PC1 in Bai and Ng (2013) that the same identification constraints
hold for both the true and the estimated factors and factor loadings. This means that
one can simply take the rotation matrix as an identity matrix in terms of asymptotic
representations. Assume

√
n/T → 0, we have

√
n1

(
f̂t (0)− ft (0)

)
=

(
∑n

k=n0+1 λk (0) λk (0)
′

n1

)−1
1√
n1

n

∑
k=n0+1

λk (0) εkt + op (1) .

Then λ̂i (0) is the OLS estimator from regression yit on f̂t (0) for t < T0, whose asymp-
totic expansion is based on Bai and Ng (2006):

√
T0 − 1

(
λ̂i (0)− λi (0)

)
=

(
∑T0−1

s=1 fs (0) fs (0)
′

T0 − 1

)−1
1√

T0 − 1

T0−1

∑
s=1

fs (0) εis + op (1) .

Denote δnT = min
{√

n,
√

T
}

. Under the assumption n0/n → c ∈ (0, 1), T0/T → b ∈
(0, 1), we obtain (for i ≤ n0, t ≥ T0):

Ĉit (0)− Cit (0) =
[
λ̂i (0)− λi (0)

]′
f̂t (0) + λi (0)

′
[

f̂t (0)− ft (0)
]

=
1

T0 − 1
f̂t (0)

′
(

∑T0−1
s=1 fs (0) fs (0)

′

T0 − 1

)−1 T0−1

∑
s=1

fs (0) εis

+
1
n1

λi (0)
′
(

∑n
k=n0+1 λk (0) λk (0)

′

n1

)−1 n

∑
k=n0+1

λk (0) εkt

+ Op

(
1

δ2
nT

)

≡ C + D + Op

(
1

δ2
nT

)

where the second equality uses the asymptotic expansion for λ̂i(0)− λi(0) and that of
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f̂t(0)− ft(0) given earlier. In sum, for i ≤ n0, t ≥ T0

τ̂it − τit = Ĉit (1)− Ĉit (0)− [Cit (1)− Cit (0)]

= Ĉit (1)− Cit (1)−
[
Ĉit (0)− Cit (0)

]
= A + B − C − D + Op

(
1

δ2
nT

)
.

Using the asymptotic expansion, let Vit denote the variance of A + B − C − D, then

V−1/2
it (τ̂it − τit)

d→ N (0, 1) .

Q.E.D.
We now provide an estimate for Vit in Proposition 2. Assume εit are uncorrelated

over i and t, then it is clear that A, B, C, D are mutually uncorrelated. So the variance
of τ̂it is given by

var (τ̂it − τit) = var (A) + var (B) + var (C) + var (D) + O

(
1

δ4
nT

)
.

We estimate each component by

v̂ar (A) = M̂A

n0

∑
k=1

λ̂k (1) λ̂k (1)
′ ε̂2

ktM̂
′
A,

v̂ar (B) = M̂B

T

∑
s=T0

f̂s (1) f̂s (1)
′ ε̂2

isM̂B,

v̂ar (C) =
1

(T0 − 1)2 f̂t (0)
′ Ŵ−1

[
T0−1

∑
s=1

f̂s (0) f̂s (0)
′ ˆεis

2

]
Ŵ−1 f̂t (0) ,

v̂ar (D) =
1
n2

1
λ̂i (0)

′ V̂−1

[
n

∑
k=n0+1

λ̂k (0) λ̂k (0)
′ ε̂2

kt

]
V̂−1λ̂i (0) ,

where Ŵ = 1
T0−1 ∑T0−1

s=1 f̂s (0) f̂s (0)
′ and V̂ denotes the diagonal matrix consisting of

the first r eigenvalues of 1
n1T ∑n

i=n0+1 yiy′i in decreasing order, with yi being the T × 1
observed outcomes for individual i.
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