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Abstract 
 

This paper employs graph theory to assess the extent of integration of artificial intelligence 
(AI) technologies within defense activities and investigates how the performance of the 
national innovation system (NIS) influences this integration. The analysis utilizes data from 33 
countries with defense industries, observed from 1990 to 2020. Empirical findings indicate that 
the United States (U.S.) leads globally, with a significant gap between the U.S. and other 
countries. NIS performance increases the level of integration of AI technologies in defense 
activities, suggesting that policies aimed at strengthening NIS performance should have 
positive externalities on defense activities in terms of integrating AI technologies. 
Technological diversification, knowledge localization, and originality are key dimensions of 
NIS performance that significantly enhance the integration of AI technologies within defense 
activities. They exhibit similar average marginal effects, suggesting comparable impacts. The 
cycle time of technologies has an inverted-U shaped relationship with the level of integration. 
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1. Introduction 

 

The concept of artificial intelligence, AI hereafter, first appeared in the mid-20th century, 

through the work of various mathematicians. These mathematicians wondered whether a 

machine could become "conscious," or it could carry out tasks requiring human intelligence. 

Since those first mentions, AI has become a common term and a widely exploited technology, 

fueling scientific discussions, and motivating numerous research programs. According to the 

European Commission, AI refers to "systems that display intelligent behaviour by analysing 

their environment and taking actions, with some degree of autonomy, to achieve specific 

goals."4 Nevertheless, the boundaries of AI remain unclear, evolving in line with scientific 

progress. Indeed, the development of AI has brought about a profound change in the sphere of 

research, in some cases altering the development of entire sectors. The disruptive power of AI 

makes it one of the pillars of the fourth industrial revolution. As stressed by the European 

Patent Office (EPO), this fourth industrial revolution differs from previous ones in the nature 

of the change it brings about. Where the first three industrial revolutions replaced physical 

effort with machines, the fourth revolution fully automates increasingly complex processes. 

 Despite blurred boundaries, the World Intellectual Property Organization (WIPO, 

2019) gives us an overview of the development of AI-related innovations. Scientific 

publications in this field began to expand rapidly in the early 1990s, ten years before the 

explosion in patenting. The 2010s witnessed the acceleration of AI innovations, with the 

number of annual patent applications filed in this field multiplying by around 6.5 between 2011 

and 2017. The evolution of AI has influenced all sectors of the economy, with a notable impact 

on the defense sector in both developed and emerging countries, where the integration of AI 

technologies is steadily growing. Indeed, in recent years, the integration of AI technologies has 

emerged as a central element in the defense policies of many countries, as the disruptive nature 

of these technologies allows nations to gain a strategic edge in terms of defense capacity over 

competing countries. 

 This paper aims to analyze the integration of AI technologies in defense activities of 

countries with defense industries. This integration refers to the incorporation of AI 

technologies into various defense-related processes, such as surveillance, decision-making, or 

weapon systems. Specifically, the paper pursues a twofold objective. First, it aims to measure 

 
4 Communication from the Commission to the European Parliament, the European Council, the Council, the 
European Economic and Social Committee, and the Committee of the Regions on Artificial Intelligence for 
Europe, Brussels, 25.4.2018 COM(2018) 237 final.  
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the level or extent of integration of AI technologies in defense activities of countries worldwide 

that have a defense industry. Second, the paper analyzes the effect of the national innovation 

system (NIS) performance on the level of integration of these technologies in defense 

activities.5 Overall, there are at least two reasons why the present research is worthwhile. 

 First, the conception of groundbreaking armaments necessitates a technological 

advantage over the adversary (Dupuy, 2013). The disruptive innovations associated with AI 

can assist countries both in achieving and maintaining such an advantage. In this context, it is 

crucial for countries to conduct a thorough evaluation of the level of integration of AI 

technologies in their defense activities and to understand the factors influencing this 

integration. Second, as it enables countries to acquire the necessary technological and 

absorptive capacities for effective engagement in high-level AI technology development 

processes, the NIS performance could play a role in explaining differences in the level of AI 

technology integration in defense activities among countries worldwide that have a defense 

industry. This highlights the relevance of studying its potential impact on AI technology 

integration. Such an analysis would enable us to explore potential innovation policies that could 

be implemented to enhance the level of integration by improving NIS performance. 

 Using data from unbalanced panel data from 33 countries observed during the 1990-

2020 period, we employ graph theory to measure the level of integration of AI technologies in 

defense activities. Results show that the United States is the top-performing country, followed 

by Germany and the United Kingdom. Very interestingly, the gap between the United States 

and the other countries is huge, underscoring the global leadership of the United States. 

Applying the fractional Probit regression with endogenous explanatory variable to our 

database, we find that the NIS performance significantly increases the level of integration of 

AI technologies in defense activities. This result is robust to additional controls, restricted 

samples, and an alternative estimation technique, suggesting that policies aiming to strengthen 

the NIS performance in countries with a defense industry should have positive externalities on 

their defense activities by inducing more integration of AI technologies in these activities. By 

disaggregating the NIS performance, we find that technological diversification, knowledge 

localization, and originality are the dimensions that most increase the level of AI integration. 

These dimensions are found to exhibit similar average marginal effects. The cycle time of 

 
5 The NIS is defined as "the elements and relationships which interact in the production, diffusion and use of new, 
and economically useful, knowledge [...] and are either located within or rooted inside the borders of a nation 
state" (Lundvall, 1992). 
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technologies (CTT) has an inverted-U shaped relationship with the level of integration of AI 

technologies in defense activities. 

 Ultimately, this paper contributes to the literature at three main levels. First, to the best 

of our knowledge, this is the first paper to measure the level of integration of AI technologies 

in defense activities of countries with a defense industry by relying on graph theory. Second, 

it demonstrates that NIS performance significantly increases the level of integration of AI 

technologies in defense activities. Third, the paper shows that technological diversification, 

knowledge localization, and originality are the dimensions of NIS performance that most 

increase the level of AI integration, and that the CTT has an inverted-U shaped relationship 

with the level of AI technology integration in defense activities. These contributions are crucial 

for advancing our understanding of how AI is integrated into defense activities, offering 

insights that can inform policy decisions and strategic investments in national defense 

capabilities. By identifying factors such as NIS performance, especially technological 

diversification, knowledge localization, and originality, that influence AI integration, this 

research offers actionable insights for governments and defense industries seeking to enhance 

their technological capabilities and competitive advantages.  

 The remainder of the paper is organized as follows. Section 2 reviews the related 

literature. Section 3 presents the methodology applied to measure the level of AI technology 

integration in defense activities, and section 4 details the econometric methodology adopted to 

analyze the effect of NIS performance on this integration. Section 5 describes the data and 

variables, and discusses descriptive statistics. Section 6 presents and discusses the main 

estimation results. Results from estimations where NIS performance is disaggregated are 

presented in section 7. Section 8 discusses the results from some robustness check exercises. 

Section 9 concludes by discussing policy implications and highlighting avenues for future 

research. 

 

2. Related literature 

 

Technology adoption in defense activities has been an important workstream in defense 

economics. Mérindol (2015) studies the impact of information and communication 

technologies (ICTs) on innovation models in this field. Bellais (1998) analyzes the challenges 

and consequences of ICTs adoption in the defense sector. Haley (2014) works on determining 

the factors enabling a successful implementation of ICT. Over recent years, mastering AI 

technologies has become a key focus of armed forces around the globe. Indeed, AI technologies 
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seem essential to keep a strategic superiority. Gautier (2019) highlights the importance of AI 

skills in keeping up in the technological race. Khan et al. (2021) analyze similarly the 

importance of investing in AI for states to maintain their strategic edge. Beyond national 

security, states need to anticipate technological advances for any competitive edge on the 

export market (Lemaire, 2018). In 2018, The United States Department of Defense has 

launched a multi-year investment program worth over 2 billion USD in more than 20 AI 

programs.6 China nurtures a similar level of investment (Villani, 2019), while France plans to 

earmark 10 billion euros for AI research and development (R&D).7  

Unsurprisingly, research on AI technology adoption in defense operations has 

flourished given the potential of these technologies to improve countries' defense capabilities. 

Two issues have received the most attention, namely the application of AI in defense and the 

ethical issues around it. In addressing ethical issues, The United States Defense Innovation 

Board has produced an analytical report (DIB, 2019), which establishes a list of ethical 

principles and recommendations. Taddeo et al. (2021) produce an ethical framework to help 

states supervise their use of AI in defense.  

Regarding AI application or adoption in defense, Svenmarck et al. (2018) and Réal 

(2019) review the military fields in which AI could be integrated. Their results highlight that 

AI can improve the effectiveness of all areas of defense and at all levels of the army. In a more 

normative approach, Horowitz et al. (2018) work on the determinants of AI national power, 

providing recommendations on the data regulations and AI norms. More specifically, recent 

papers have studied the determinants of the process of AI adoption in various industries. 

Among others, Anh et al. (2024) find technology readiness to positively affect AI adoption of 

accountants and auditors. Lazo and Ebardo (2023) conduct a systematic review of the 

determinant of AI adoption in the banking industry. Chen et al. (2024) examine the use and 

implementation of chatbots in public organizations within the United States. These studies 

converge on the finding that factors such as ease of use, individual past technological 

experience, and institutional factors play a positive role in AI adoption. 

Moreover, concerning NIS performance, the existing literature has often focused on its 

relationship with economic progress.8 For instance, according to Schumpeterian theories and 

studies on the impact of NIS on economic growth, a high-performance NIS positively impacts 

 
6 See Sayler (2020). 
7 This policy is incorporated in the famous "LOI n° 2023-703 du 1er août 2023 relative à la programmation 
militaire pour les années 2024 à 2030 et portant diverses dispositions intéressant la défense (1)." 
8 See Balzat and Pyka (2006), Castellacci (2011), Flippetti and Peyrache (2011), Lee and Lee (2020), and Lee et 
al. (2021), among others.    



 6 

economic growth. Studies also have explored the impact of the technological regime on 

countries' growth of patenting green technologies, with some aspects of this regime being 

related to NIS. Among others, Corrocher et al. (2021) recently found a positive correlation 

between a country's growth in patenting within green technologies and factors such as 

technological opportunity, complexity, originality, and maturity of the technology. 

 Upon closer examination of the literature, it is notable that analyses of the impact of 

NIS performance on the integration of AI technologies in defense activities are lacking. This 

is the gap that the present study modestly seeks to fill. Furthermore, by aiming to elucidate the 

macroeconomic dimension of AI adoption in defense activities, our research contributes to two 

distinct areas of study: the field of AI, through an investigation into the macro-factors 

influencing the adoption of AI technologies, and the domain of defense innovation integration. 

 

3. Measuring the level of integration of AI technologies in defense activities 

 

To measure the level of integration of AI technologies in defense activities, we use a theoretical 

framework derived from knowledge economics. We analyze the evolution of the knowledge 

base of countries, that is, the collective knowledge that can be used by a country to achieve its 

production objectives (Henderson and Clark, 1990). The knowledge base has two components: 

knowledge bricks and knowledge architecture. Knowledge bricks represent the knowledge 

specifically associated with the technological bricks contained in a system, while the 

knowledge architecture corresponds to the functions enabling a wide variety of technologies to 

be combined and integrated when designing a complex system. 

 We represent technological knowledge bases in the form of a graph, a tool derived from 

network analysis (Krafft et al., 2011, 2014; Saviotti, 2009). Knowledge bricks are represented 

by the "nodes" of the network and the knowledge architecture is represented by the "links" 

between the nodes. The graphs produced from patent data are labeled by the technology codes 

contained in the patents (the Cooperative Patent Classification9 codes), weighted by the 

intensities of the links between these technologies, undirected (relations between technologies 

are not oriented), and non-reflexive (a technology cannot, by construction, be related to itself) 

(Bollobás, 1998). From these graphs, we construct co-occurrence matrices. An occurrence 

occurs when technological classes are cited in the same patent (Fauconnet, 2021). To measure 

 
9 The Cooperative Patent Classification (CPC) is a bilateral system developed jointly by the EPO and the United 
States Patent and Trademark Office (USPTO). 
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the integration of AI technologies, we calculate from the co-occurrence matrices the strength 

of nodes. The strength of nodes corresponds to the number of times two technologies are cited 

in the same patent and reflects the importance of a node in a network. Figure 1 provides a 

simplified representation of the difference between degree and strength. 

 

[Insert Figure 1 here] 

 

 Box (a) represents a sample of three patents (B1, B2 and B3) and the technologies 

included in these patents (T1, T2, T3 and T4). Box (b) is the representation of the knowledge 

base and relies on the previous sample of patents. Links are occurrences between technologies: 

there is a link when technologies are cited in the same patent. Box (c) is a table with the value 

of degree and strength for each technology. If we take the example of T1, its degree is equal to 

two. Indeed, the degree only considers the presence of a link between T1 and T3, without taking 

into account the quantity of such links. We decide to use the strength instead of the degree of 

nodes to measure the level of integration of AI technologies in defense activities because the 

strength better reflects the importance of a technology in a network and the frequency with 

which two technologies are associated in a country's knowledge base (Barrat et al., 2004).  

 The level of integration of a given AI technology in defense activities is measured as 

follows:   

 

𝐴𝐼𝑡𝑒𝑐ℎ = (𝑏!"

#

"$%

																																																														(1) 

 

where 𝐵 is the co-occurrence matrix in which the coefficient 𝑏!" has a value greater than zero 

if the node 𝑢 is connected to node 𝑞, equivalent to the number of co-occurrences between 𝑢 

and 𝑞.  𝑏!" is the number of times technologies 𝑢 and 𝑞 are cited in the same patent. 

 The use of graph theory enables us to assess two aspects of the innovation process of 

defense activities. First, the appearance of new nodes, corresponding to genuine innovation. 

Second, the recombination of already existing knowledge via new links between different 

nodes already present in previous periods (Fleming and Sorenson, 2001; 2004). In this study, 

we take into account the cumulative nature of knowledge. Following the approach of Lebert 

and Meunier (2019), we consider that formal knowledge belonging to the defense sector's 

knowledge base, and which can be assembled at time 𝑡-𝑛, remains controlled at time 𝑡. 



 8 

 This paper utilizes data on 36 major AI technologies integrated over time in defense 

activities.10 We measure the level of integration for each of these technologies within defense 

activities using the formula described in (1). Subsequently, we apply Cámara and Tuesta's 

(2018) methodology, which utilizes a principal component analysis (PCA) procedure to 

construct a comprehensive composite index that combines the levels of integration of different 

AI technologies. PCA facilitates computing weights for the variables included in the 

calculation of the composite index, that is, variables that measure the levels of integration of 

the different AI technologies. Cámara and Tuesta's (2018) methodology was used recently by 

Gasmi et al. (2024) to compute composite indices of participation, provision, and protection in 

the MENA region. 

 Before performing the PCA to determine the weight of variables and then construct the 

composite index, it is important to standardize the data for two reasons (Jolliffe, 1990). First, 

standardizing variables ensures that each variable carries the same weight, even when the 

original variables have difference in their variances. In case of disparate variances, the principal 

components might be heavily influenced by those variables with high variance, leading them 

to dominate the initial components. Second, data standardization helps to correct for disparity 

in the units used to measure the variables. In such case, the magnitudes of variances and 

covariances are significantly influenced, often arbitrarily, by the choice of units used to 

measure variables. 

 To standardize the AI technology variables, we employ the "min-max scaling" method, 

following the approach of Gasmi et al. (2024). The rescaled version of 𝐴𝐼𝑡𝑒𝑐ℎ&', a variable that 

measures the level of integration of a given AI technology in defense activities, observed for 

country 𝑖 at year 𝑡, is defined as follows: 

 

𝑟𝑠_𝐴𝐼𝑡𝑒𝑐ℎ&' =
𝐴𝐼𝑡𝑒𝑐ℎ&' −min(𝐴𝐼𝑡𝑒𝑐ℎ)

max(𝐴𝐼𝑡𝑒𝑐ℎ) − min(𝐴𝐼𝑡𝑒𝑐ℎ)																																				(2) 

 

where 𝑟𝑠_𝐴𝐼𝑡𝑒𝑐ℎ&' ∈ [0,1], min(𝐴𝐼𝑡𝑒𝑐ℎ) and max(𝐴𝐼𝑡𝑒𝑐ℎ) are respectively the minimum and 

maximum realizations of the variable 𝐴𝐼𝑡𝑒𝑐ℎ for all countries 𝑖 and all year 𝑡 in our dataset.  

 Once the AI technology variables are standardized, we can proceed to employ the 

methodology outlined by Cámara and Tuesta (2018) for calculating a composite index. This 

 
10 The list of these technologies is presented in Appendix A. 
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index quantifies the level of integration of AI technologies within defense activities and is 

defined as follows: 

 

𝐴𝐼_𝑙𝑒𝑣𝑒𝑙&' =(𝜔(E𝑟𝑠_𝐴𝐼𝑡𝑒𝑐ℎ&'
( F

)

($%

																																												(3) 

 

where ∀𝑗, 𝑟𝑠_𝐴𝐼𝑡𝑒𝑐ℎ&'
( ∈ [0,1] and is the rescaled version of 𝐴𝐼𝑡𝑒𝑐ℎ&'

( , representing the 

integration of the 𝑗-th AI technology in the defense activities for country 𝑖 in year 𝑡, with 𝑗 =

1, . . . , 𝑚. 𝜔( is the weight assigned to this specific variable and is defined as follows:  

 

𝜔( =
∑ 𝜆*𝜙*()
*$%

∑ 𝜆*)
*$%

																																																															(4) 

 

where 𝜆* represents the eigenvalue associated with the 𝑘-th principal component, and 𝜙* 

stands for its respective eigenvector. Consequently, 𝜙*( denotes the specific element of this 

eigenvector corresponding to 𝑟𝑠_𝐴𝐼𝑡𝑒𝑐ℎ&'
( , 𝑗 = 1, . . . , 𝑚. This methodology accords greater 

weights to variables contributing more significantly to the variability of the data, and indeed, 

this should be the case. ∀𝑗, 𝜔( ∈ [0,1] and ∑ 𝜔( = 1)
($% . Hence, 𝐴𝐼_𝑙𝑒𝑣𝑒𝑙&' emerges as a 

convex combination of the 𝑟𝑠_𝐴𝐼𝑡𝑒𝑐ℎ&'
( , 𝑗 = 1, . . . , 𝑚. It falls within the unit interval, that is, 

its values range between 0 and 1.  

 

4. Econometric methodology 

 

We conduct an econometric analysis to determine the effect of NIS performance on the level 

of integration of AI technologies in defense activities. Our outcome variable, denoted as 

𝐴𝐼_𝑙𝑒𝑣𝑒𝑙, represents the level of integration of AI technologies in defense activities and is 

"fractional," indicating that it can assume any value within the unit interval. Therefore, using 

linear regression is unsuitable for examining the effect of NIS performance on it, as it fails to 

guarantee that predicted values of 𝐴𝐼_𝑙𝑒𝑣𝑒𝑙 remain within the unit interval (Papke and 

Wooldridge, 1996). Instead, it is appropriate to employ a fractional outcome model for 

estimation (Papke and Wooldridge, 1996, 2008; Wooldridge, 2019). 
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 Considering the panel structure of our dataset, we implement the panel fractional Probit 

model proposed by Papke and Wooldridge (2008).11 This model ensures that the predicted 

values of 𝐴𝐼_𝑙𝑒𝑣𝑒𝑙 stay within the unit interval by integrating a link function, specifically a 

standard normal cumulative distribution function (CDF).12 The model is outlined as follows:  

 

    𝐸E𝐴𝐼_𝑙𝑒𝑣𝑒𝑙&,'R𝒙&,' , 𝑐&F = 𝛷(𝒙&'𝜷 + 𝑐&)																																							(5)                                 

 

where 𝐴𝐼_𝑙𝑒𝑣𝑒𝑙&,' ∈ [0,1] and denotes the level of integration of AI technologies in defense 

activities of country 𝑖 at year 𝑡.  𝒙 represents a 1 × 𝐾 vector of explanatory variables including 

the NIS performance and a set of control variables. 𝑐& represents the unobserved country 

effects, 𝜷 is a 𝐾 × 1 vector of parameters to estimate, and 𝛷(. ) is the standard normal CDF. 

 In this econometric framework, addressing the endogeneity of our independent variable 

of interest, namely the NIS performance, denoted as 𝑁𝐼𝑆_𝑝𝑒𝑟𝑓, is crucial to identify its effect 

on the level of integration of AI technologies in defense activities. The endogeneity arises from 

reverse causality and possibly omitted variable bias. To tackle this issue, we simultaneously 

undertake two key actions. 

 First, to handle the issue of reverse causality, we incorporate lagged values of 

𝑁𝐼𝑆_𝑝𝑒𝑟𝑓	into the regression instead of using the values observed at time 𝑡. This adjustment 

is grounded in the theoretical premise that 𝐴𝐼_𝑙𝑒𝑣𝑒𝑙&,' should not causally explain 

𝑁𝐼𝑆_𝑝𝑒𝑟𝑓&,',% due to the temporal separation introduced. Lagging 𝑁𝐼𝑆_𝑝𝑒𝑟𝑓 also helps 

mitigate potential omitted variable bias by eliminating confounding factors observed at time 𝑡. 

 Second, we adopt the Instrumental Variable (IV) technique, following the approach 

suggested by Papke and Wooldridge (2008). More precisely, we estimate the fractional Probit 

model using the pooled quasi-maximum likelihood estimator (QMLE) and address the 

endogeneity of NIS performance through a control function (CF) approach (Papke and 

Wooldridge, 2008).13 Subsequently, we acquire robust standard errors for parameter estimates 

through bootstrapping, conducting 500 bootstrap replications in line with Papke and 

Wooldridge (2008). 

 The coefficient of �̂�&,', the first stage reduced form residuals, helps perform a Hausman 

(1978) test to examine the endogeneity of 𝑁𝐼𝑆_𝑝𝑒𝑟𝑓. A rejection of the null hypothesis of 

 
11 For cross-sectional data, see Papke and Wooldridge (1996).   
12 For a discussion on the advantages of using a Probit link function instead of a Logit one, refer to Papke and 
Wooldridge (2008). 
13 For theoretical details on the CF methodology, see Wooldridge (2015). 
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exogeneity is expected, indicating that the NIS performance is endogenous. As will be seen 

later, this is indeed the case. 

 We instrument the NIS performance with two IVs. The first IV consists of lagged 

values of "general" R&D intensity. R&D intensity reflects the gross domestic spending on 

R&D, measured as a proportion of GDP. This measurement accounts for capital and current 

spending within the key sectors of business enterprise, government, higher education, and 

private non-profit. It encompasses expenditures on applied and basic research, and 

experimental development. Theoretical connections link R&D intensity to innovation capacity 

and performance. Over time, countries with heightened R&D intensity tend to demonstrate 

superior NIS performance, a factor pertinent to the integration of AI technologies in defense 

activities. Indeed, in general, countries that have substantially incorporated AI technologies 

into their defense activities, such as the United States, Germany, and the United Kingdom, 

achieved significant NIS performance earlier. This suggests that the influence of R&D intensity 

on the integration of AI technologies in the defense activities is likely indirect through NIS 

performance.  

 In the same light, it is crucial to emphasize that the IV in question is "general" R&D 

intensity, meaning the R&D under consideration is not specific to defense activities or AI 

technologies. For example, this may include R&D efforts aimed at developing new 

technologies in the agricultural sector to enhance farm productivity, or investments in research 

to discover new vaccines. While it may seem challenging to directly link these R&D 

investments with the integration of AI technologies in defense activities, such R&D is 

anticipated to bolster NIS performance. This, in turn, is expected to yield positive externalities 

for defense activities, notably through the enhanced integration of AI technologies, as 

discussed previously. 

 Moreover, general R&D intensity is less likely to be directly affected by the current 

state of NIS performance, as firms and governments typically allocate resources to R&D based 

on long-term strategies. Additionally, the introduction of temporal separation through lagged 

values of R&D intensity suggests that the integration of AI technologies in defense activities 

should not causally explain R&D intensity. All these points indicate that lagged general R&D 

intensity is an exogenous factor in the specific relationship under examination. 

 The second IV is tax revenue measured as a proportion of GDP. This is a major source 

of government financing to enhance the NIS. In fact, achieving higher NIS performance 

requires significant financing from both public and private sectors. The higher the tax revenue, 

the greater the financial support provided by the government for enhancing NIS performance, 
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ceteris paribus. Countries with higher NIS performance should be more likely to engage in 

higher integration of AI technologies in defense activities. Those countries exhibiting lower 

NIS performance can reasonably be expected to focus more on standard defense technology 

development processes, either excluding AI technologies or incorporating them to a 

significantly lesser extent. As with general R&D intensity, all this suggests that tax revenue 

has an indirect effect on the level of integration of AI technologies in defense activities through 

NIS performance. 

 Furthermore, tax revenue is less likely to be directly influenced by the current state of 

NIS performance. Indeed, tax collection is driven by broader economic factors and government 

policies, making it independent of NIS performance. Additionally, as with general R&D 

intensity, due to temporal separation, lagged tax revenue should not be causally explained by 

the level of integration of AI technologies in defense activities observed at time 𝑡. All this 

suggests that tax revenue is exogenous to the relationship between the level of integration of 

AI technologies in defense activities and NIS performance. 

 As will be shown later, for all the estimations, statistical tests support the validity of 

general R&D intensity and tax revenue as IVs. Additionally, the null hypothesis that these IVs 

are weak is rejected. 

 

5. Data, variables, and descriptive statistics 

 

5.1 Patents data 
 

This paper utilizes unbalanced panel data from 33 countries observed during the 1990-2020 

period to measure the level of integration of AI technologies in defense activities and analyze 

the effect of NIS performance on this integration.14 To identify patent that combine AI 

technologies and defense technologies over time, we make use of the Orbit Intelligence 

software to conduct patent queries. We perform three types of requests: entry by technology 

codes, entry by key words, and entry by associations between codes and expressions. The 

technology classification is based on work carried out in 2005 jointly by the Fraunhofer 

Institute for Systems and Innovation Research (ISI), the French Observatoire des Sciences et 

Techniques (OST) and Institut National de la Propriété Industrielle (INPI), which divides 

technological codes into thirty scientific fields. Queries are based on the WIPO's report titled 

 
14 The list of these countries is presented in Appendix A. 
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"Technology trends 2019: Artificial intelligence" (WIPO, 2019), which lists technological and 

key words linked to AI. Selected patents must have been filed for the first time between January 

01, 1990 and December 31, 2020.15 However, there are no restrictions on the legal status of 

patents and on the patent offices at the date of extraction from the Orbit Intelligence corpus.  

 We complete the patent data obtained on Orbit Intelligence with the PATSTAT16 

database (spring 2022 version), developed by the EPO, to retrieve the International Patent 

Documentation (INPADOC) family number,17 the year of filing, and all CPC codes cited in a 

patent family. In order to have a specific selection of patents, the technological codes in queries 

are carried out with a high level of precision.  

After creating the patent database, we aggregate the technological codes in a 4-digit 

format and we measure the strength of nodes based on these 4-digit technological codes. We 

decide to aggregate the technological codes to reduce the number of AI technologies studied 

and improve the readability of our study. 

 

5.2 Data on NIS performance 

 

Data on NIS performance are extracted from Lee et al. (2021). This article measures, classifies, 

and analyzes the NIS of 35 countries for the period 1975-2015 and their evolution. This 

measure of NIS performance is based on Lee and Lee's (2020) NIS index construction method. 

The authors use patent data to measure five different components of NIS performance, namely 

knowledge localization, technological diversification, cycle time of technologies (CTT), 

decentralization, and originality. We briefly present these components below. Technical details 

can be found in Appendix B. 

Knowledge localization (𝐾𝐿) measures the proportion of knowledge created from 

domestic knowledge. Lee et al. (2021) follow the approach of Jaffe et al. (1993), who measure 

this variable by analyzing the patents created domestically by citing patents owned by inventors 

of the same nationality. A high level of knowledge localization means that the domestic 

diffusion of knowledge is high and the share of foreign patents in the citation is low.  

 
15 We select patents filed after 1990 because the number of patents filed before this date is extremely low (WIPO, 
2019). We stopped at 2020 because of the time required by PATSTAT to obtain complete data on new patents.  
16 PATSTAT is a database developed by the EPO. It collects bibliographic and legal event data on patents filed 
in over 100 patent offices worldwide (the database covers 90% of the world's patents).  
17 INPADOC is a database offering insights into international patent documents and associated data. Managed by 
the WIPO, it encompasses bibliographic details and legal status information concerning patents originating from 
diverse countries. An "INPADOC family" includes all patents granted in different countries that are considered 
equivalent to the same original patent. 
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Technological diversification (𝑇𝐷) is the extent to which a country generates patents 

across a broad spectrum of technological domains. This variable measures the number of 

technological classes in which country 𝑖 has registered patents. A large score of technological 

diversification signifies that a country has filed patents in a large number of classes.  

 CTT (𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐶𝑇𝑇) measures the "extent to which a patent relies on recent or old 

technologies for the invention of new knowledge" (Lee et al., 2021). A long CTT signifies the 

substantial importance of historical knowledge (Lee and Lee, 2020).18   

 The fourth indicator is the decentralization (versus concentration) variable (1 − 𝐻𝐻𝐼), 

which measures whether or not the producers of knowledge are led by a few big businesses or 

evenly distributed among a large number of innovators. Decentralization is measured based on 

the Herfindahl-Hirschman index (𝐻𝐻𝐼) of concentration, and is calculated as 1 − 𝐻𝐻𝐼. If the 

decentralization is large, then patents are filed by a large number of inventors.  

The last component is originality (𝑂) and assesses the extent to which a patent refers 

(backward) to patents across a broader spectrum of technological classes rather than being 

limited to a specific field of technologies. The more a patent cites technologies not belonging 

to its technology class, the higher the originality score. 

 For each country and each year of the study period, each component variable of the NIS 

(referred to as 𝑁𝐼𝑆(, 𝑗 = 1, . . . ,5) is calculated and then standardized using the "min-max 

scaling" method (Lee and Lee, 2019). The NIS index is calculated from these standardized 

components and equals the sum of the five components, as follows: 

 

𝑁𝐼𝑆_𝑝𝑒𝑟𝑓&' = 𝑟𝑠_𝑂&' + 𝑟𝑠_𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐶𝑇𝑇&' + 𝑟𝑠_(1 − 𝐻𝐻𝐼)&' + 𝑟𝑠_𝑇𝐷&' + 𝑟𝑠_𝐾𝐿&'				(6) 

 

where "𝑟𝑠_" indicates the standardized variables. Note that Lee and Lee (2020) employed three 

different statistical techniques (PCA, data envelopment analysis, and the benefit of the doubt) 

to determine whether the components should have the same or different weights. The results 

of these three statistical methods of building a composite index validate the possibility of 

assigning equal weight to each variable. Whatever the weighting method chosen, an increase 

in the values of one of the NIS components increases the values of the NIS performance. The 

values of the NIS index range from 0 (lowest performance) to 5 (highest performance). 

 

5.3 Control variables 

 
18 CTT is expressed in relative terms. For further details, refer to Appendix B. 
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The main control variables include financial development (proxied by domestic credit to the 

private sector), military spending, domestic investment (measured by gross capital formation), 

foreign direct investment (FDI) net inflows, imports, and population size. Financial 

development is crucial for boosting investment in areas such as innovation, infrastructure, and 

education, creating an environment conducive to AI adoption in defense. It also increases the 

probability of successful innovation (King and Levine, 1993), which is positive for the NIS 

performance. Military spending should foster AI integration through increased resources for 

specialized R&D. Additionally, military spending, through defense-related R&D, may promote 

innovation, and in turn improve the NIS, by crowding-in privately-funded R&D investments 

(Pallante et al., 2023). 

 Domestic investment is expected to enhance AI adoption in defense, while imports 

should provide access to cutting-edge AI technologies developed abroad, thus increasing their 

integration into defense mechanisms and strengthening military capabilities. Such investment 

through capital accumulation, could also increase the innovation capacity (Howitt and Aghion, 

1998). FDI should contribute significantly to advancing AI capabilities in defense by bringing 

in funds, technology, and expertise, and fostering collaboration with global tech firms. Both 

imports and FDI could also enhance the NIS performance by improving the innovative capacity 

of domestic firms (Bertschek, 1995). A larger population could ensure a diverse talent pool for 

AI-related R&D, which is essential for innovation and practical AI application in defense. 

 For the purpose of robustness checks, we consider five additional controls, namely, 

inflation, unemployment, government spending, government debt, and private debt. Both 

inflation and unemployment capture economic conditions. Countries experiencing 

deteriorating economic conditions may focus their investment efforts on improving these 

conditions rather than supporting AI technology adoption in defense operations, leading to a 

lower propensity for integrating AI technologies in defense. Higher government spending 

could enhance the level of integration of AI technologies by increasing financing for AI-related 

research. Similarly, higher government and private debt could reduce AI integration by 

weakening countries' capacity to support AI-related research activities. 

 Table A3 in Appendix A summarizes the definitions of all the variables included in this 

research and their respective data sources. The key descriptive statistics are discussed in the 

next subsection. 

 

5.4 Descriptive statistics 
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Descriptive statistics are presented in Tables A4 and A5 in Appendix A. We see from Table 

A4 that over the study period, the average level of AI integration in defense activities is 0.03. 

The minimum value of AI integration is 0, while the maximum is 0.96. The minimum value of 

NIS performance is 1.05, corresponding to the NIS performance in Russia in 1993. The highest 

value of is 3.77, which is the performance in the United States in 2009. The average level of 

NIS performance is 2.60. The index of decentralization is on average equal to 0.95, which is 

higher than the means of the other components of the NIS performance and close to the 

maximum level of decentralization (0.99). The average level of the knowledge localization 

index is lower than the average levels of the other components of NIS performance. 

 General R&D intensity ranges between 0.53% of GDP (South Africa in 1997) and 4.5% 

of GDP (Israel in 2016). On average, countries spend 2.14% of their GDP on general R&D. 

Furthermore, tax revenue averages 18.6% of GDP, with the highest and lowest levels being 

30.3% of GDP (Sweden in 1999) and 3.33% of GDP (Saudi Arabia in 2015), respectively. The 

average levels of general government and private debts are very high, which is concerning for 

countries' self-financing capacity. Additionally, the average level of domestic credit to the 

private sector is high, suggesting a significant level of financial development in our sample, on 

average. 

 

[Insert Table A4 here] 

[Insert Table A5 here] 

 

 From Table A5, we observe a high correlation of 43% between the level of AI 

integration and NIS performance. The correlations between the level of AI integration and the 

dimensions or components of NIS performance are also relatively high. Similarly, the IVs and 

NIS performance exhibit important correlations, as expected. Most of the main controls have 

high correlations with the level of integration of AI technologies.  

 

6. Estimation results 

 

Table 1 presents the results of measuring the level of integration of AI technologies in defense 

activities. 

 

[Insert Table 1 here] 
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 The United States emerges as the top-performing country, followed by Germany and 

the United Kingdom. Notably, there is a significant gap between the United States and 

Germany, the second-highest performing country, underscoring the global leadership of the 

United States. Ceteris paribus, this difference may, in part, be attributed to the more recent 

commitments of many other countries to integrating AI technologies into defense activities, 

compared to the United States. The three countries with the lowest levels of integration of AI 

technologies are Malaysia, Saudi Arabia, and Greece, respectively. 

 China ranks among the top ten countries with the highest levels of integration of AI 

technologies in defense activities. The first Chinese patents containing defense and AI 

technologies were filed in 2013. Since then, China has strongly committed to integrating AI 

technologies into its defense operations, enabling it to leapfrog the other emerging countries 

and many developed nations. 

 Russia is ranked thirtieth in terms of the level of integration of AI technologies in 

defense activities. In fact, although Russian innovation activities combining AI and defense 

technologies have been ongoing for several decades (with the first patent filed in 1993), they 

include only a limited number of AI technologies, and these technologies are not diversified 

enough. 

 Table 2 presents the results of the QMLE parameter estimates of the fractional Probit 

with IV using the CF approach (Papke and Wooldridge, 2008).  

 

[Insert Table 2 here] 

 

 As discussed previously, the coefficient of �̂� helps perform a Hausman (1978) test to 

examine the endogeneity of 𝑁𝐼𝑆_𝑝𝑒𝑟𝑓. This coefficient is significant at the 1% level, 

indicating that the null hypothesis of exogeneity of NIS performance is rejected. This supports 

the choice of considering NIS performance as an endogenous variable and instrumenting it. 

 We see from Table 2 that NIS performance has a significant and positive effect on the 

level of integration of AI technologies in defense activities. A unit increase in the index of NIS 

performance increases the level of integration of AI technologies in defense activities by about 

7%. Hence, policies aiming to strengthen the NIS performance in countries with a defense 

industry should contribute to enhancing these countries' level of integration of AI technologies 

in their defense activities. As previously explained, the NIS performance enables countries to 

acquire the necessary technological and absorptive capacities for effective engagement in high-
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level AI technology development processes. This increases their capacity for integrating AI 

technologies into various sectors of the economy, including the defense sector. 

 As to control variables, financial development, military expenditure, domestic 

investment, imports, and population size appear to exert significant and positive effects on the 

level of integration of AI technologies in defense activities. Indeed, as previously outlined, 

financial development is critical for increasing investment in areas such as innovation and 

infrastructure development, and for encouraging partnerships between governmental and 

private entities, as well as improving education and vocational training. These factors together 

create an optimal environment for the adoption and advancement of AI technologies in defense 

activities. Additionally, an upsurge in military spending plays a significant role in incorporating 

AI into military practices, primarily by providing additional resources for specialized R&D. 

Such investments are crucial for procuring advanced AI technologies and systems for military 

use. Moreover, enlarged military budgets support the enhancement of necessary infrastructure 

to facilitate AI deployment in defense strategies. 

 Higher domestic investment translates into greater resources allocated to the adoption 

and implementation of AI technologies within defense operations. The heightened integration 

of AI technologies is likely driven by increased funding for AI-related R&D, procurement of 

AI-enabled systems, and the establishment of infrastructure necessary for leveraging AI's 

capabilities in defense activities. Imports enable the armed forces to obtain the most current AI 

technologies and tools unavailable locally, which helps speed up the integration of AI in 

defense mechanisms and enhances military strength. Having a larger population offers a wider 

talent reservoir for AI-related R&D, providing the specialized workforce needed for both 

innovation and the practical application of AI in defense activities. Additionally, ceteris 

paribus, countries with larger populations may experience a higher demand for effective 

defense systems from their citizens, which could further encourage the use of sophisticated 

technologies, including AI, in defense operations. 

 Table 3 reports the results of the tests of validity and strength of the IVs used to 

instrument NIS performance. We fail to reject the null hypothesis of validity of the IVs. Cragg 

and Donald's (1993) minimum eigenvalue statistic is higher than all the crucial values 

suggested by Stock and Yogo (2005). Therefore, the null hypothesis of weakness of these IVs 

is rejected. Consequently, the IVs used are valid and strong, supporting their appropriateness 

for our analysis. 

 

[Insert Table 3 here] 
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7. Disaggregating the NIS performance 

 

Are all dimensions of NIS performance positively correlated with the level of integration of AI 

technologies in defense activities? Which specific dimension(s) of NIS performance most 

significantly affect(s) the level of integration? This subsection aims to provide answers to these 

questions. We ran separate econometric models for each of the dimensions/components of NIS 

performance, namely, knowledge localization, technological diversification, CTT, 

decentralization (versus concentration), and originality. Each variable was entered into the 

model individually to avoid multicollinearity issues. Additionally, to mitigate possible reverse 

causality, all variables are lagged by one year, consistent with our methodological approach in 

previous analyses. 

 The results of the estimations are presented in Table 4. For better interpretation, the 

average marginal effects are reported. 

 

[Insert Table 4 here] 

 

 From Table 4, we note that knowledge localization, technological diversification, and 

originality significantly and positively affect the level of integration of AI technologies in 

defense activities. Specifically, a unit increase in the indices of knowledge localization, 

technological diversification, and originality leads to an increase in the AI technology 

integration level by approximately 23%, 22.4%, and 22.3%, respectively. These average 

marginal effects are closely aligned, indicating comparable impacts of knowledge localization, 

technological diversification, and originality on the integration of AI technologies in defense 

activities. Therefore, implementing policies that enhance knowledge localization, 

technological diversification, or the originality of patents should similarly benefit the extent of 

AI technology integration in defense activities. Conversely, we observe no significant impact 

from the decentralization versus concentration in knowledge creation across innovators on this 

integration level, although the average marginal effect is positive as expected. 

 The CTT exhibits an inverted-U shaped relationship with the level of integration of AI 

technologies in defense activities, aligning with our expectations. This variable indicates how 

quickly new innovations incorporate older ones. An inverted-U shaped effect suggests that 

initially, as the gap between old and new patents increases, there is a higher level of integration 

of AI technologies. This is because foundational knowledge and prior innovations provide a 

rich substrate for new advancements, encouraging deep integration of AI technologies and 



 20 

cross-fertilization of ideas. However, beyond a certain threshold, approximately 0.21 on a scale 

of 0 to 1, the CTT becomes too long, and this indicates that the field is relying excessively on 

old knowledge, which might not be as relevant to contemporary technological challenges. As 

a result, the level of AI technology integration in defense activities begins to decline because 

the newer developments are less connected to the foundational, yet now possibly obsolete, old 

knowledge, leading to a misalignment with current technological needs and standards. 

 Furthermore, across all estimations, the coefficient of �̂�&,' is significant, validating our 

approach to treating NIS performance as endogenous. Regardless of the specification, the null 

hypothesis asserting the validity of the IVs is not rejected, meaning the IVs are considered 

valid. Similarly, the null hypothesis suggesting that these IVs are weak is consistently rejected, 

indicating they are strong and appropriate for our analysis. For the sake of brevity, the results 

of the validity and strength tests of the IVs are not reported in this paper. However, they are 

available from us upon request. 

 

8. Robustness checks 

 

In this paper, we find that NIS performance increases the level of integration of AI technologies 

in defense activities. This section aims to check the robustness of this result. The robustness 

check exercise we undertake comprises three levels. First, we consider additional controls. This 

allows us to assess the influence of potential omitted variable bias on our findings. Second, we 

analyze the sensitivity of our results to a restricted sample. Third, we consider an alternative 

estimation technique, namely the entropy balancing impact evaluation method. As will be seen 

later, all these analyses show that NIS performance consistently increases the level of 

integration of AI technologies in defense activities, supporting the robustness of our findings. 

 

8.1 Additional controls 

 

We incorporate five additional controls to evaluate the sensitivity of our findings to potential 

omitted variable bias, as previously mentioned. These controls include inflation, 

unemployment, government spending, government debt, and private debt. To mitigate 

potential reverse causality, we lag these variables by one year. Additionally, to prevent 

multicollinearity issues, we introduce the additional controls into the model one at a time. 
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 The results of the estimations are reported in Table 5. The average marginal effects are 

reported to allow for a finer interpretation. The results of the tests of validity and strength of 

the IVs indicate that the IVs are valid and not weak in all estimations. To maintain brevity, 

these results are not reported in this paper but are available from us upon request.  

 

[Insert Table 5 here] 

 

 We see from Table 5 that, regardless of the specification, NIS performance significantly 

and positively affects AI technology integration in defense activities. The average marginal 

effects are significant at the 1% significance level, underscoring the strong impact of NIS. This 

also indicates that including additional controls does not change the significance of NIS's 

impact, supporting the robustness of our findings against potential omitted variable bias. 

  

8.2 Restricted samples 

 

We repeat the econometric analysis on restricted samples. This allows us to analyze the 

sensitivity of our findings to subgroups of countries. To be precise, we consider five cases. 

First, we exclude the United States from the sample. Indeed, as we found a significant gap 

between the United States and other countries in terms of the extent of integration of AI 

technologies in defense activities (see Table 1), it is important to know whether the results are 

influenced by the presence of the United States in the sample. Second, we exclude the BRICS. 

This exclusion is rationalized by the varied stages of economic development and innovation 

systems across the full sample, which mainly includes emerging and developed economies. 

The BRICS countries, being emerging economies, might have differing priorities and 

capacities for AI technology integration in defense. Excluding them can provide a clearer view 

of how NIS performance affects AI integration in more economically and technologically 

homogeneous groups. 

 Third, we exclude countries with nuclear weapons. This group's exclusion controls for 

the unique security dynamics and strategic priorities that nuclear capabilities introduce. 

Countries with nuclear weapons might have different approaches to defense technology 

integration, including AI, influenced more by their nuclear status than their national innovation 

systems. Removing them could lead to more accurate assessments of how NIS performance 

influences AI adoption in defense among non-nuclear states. Fourth, we focus on NATO 

countries. This subset allows for a focused analysis on a group of countries with shared defense 
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policies and collaborative military initiatives, which can impact AI integration strategies. By 

examining NATO members, the study can reveal how NIS performance impacts AI technology 

adoption within a context of alliance-based defense strategies, offering insights into collective 

security dynamics and technological advancements. 

 Fifth, we focus on G7 countries. Limiting the sample to G7 countries, which are among 

the world's leading advanced economies, can shed light on how strong and established national 

innovation systems influence AI integration in defense activities within a context of economic 

similarity. This focus ensures the analysis is grounded in a context of similar economic scales, 

technological capabilities, and innovation policies, providing a clearer picture of the 

relationship between NIS performance and AI integration in defense activities among 

developed economies. 

 The results of the estimations are presented in Table 6, with the average marginal 

effects reported. The outcomes of the validity and strength tests for the IVs indicate that the 

IVs are valid and not weak. These results are not reported in the paper to maintain brevity. 

However, they are available upon request. 

 

[Insert Table 6 here] 

 

 We observe from Table 6 that, irrespective of the sample considered, NIS performance 

exerts a significant and positive effect on the integration level of AI technologies in defense 

activities. This reinforces the robustness of our findings. The average marginal effect is higher 

when the sample is limited to G7 countries and smaller when countries with nuclear weapons 

are excluded. The higher average marginal effect observed when the sample is confined to G7 

countries may indicate that these advanced economies, with their well-established NIS, are 

more adept at integrating AI technologies into their defense activities effectively. The G7, 

being technologically advanced and economically robust, likely invests more in R&D. This 

can lead to more efficient and impactful AI adoption in defense industries by enhancing NIS 

performance. 

 Conversely, the smaller average marginal effect when excluding countries with nuclear 

weapons could suggest that such countries, often possessing substantial military budgets and 

advanced technological infrastructure, play a crucial role in propelling the integration of AI in 

defense. These countries might be leveraging their AI capabilities for strategic defense 

purposes, including nuclear security, thereby demonstrating stronger marginal effect when 

included in the sample. 
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8.3 Alternative estimation technique 

 

The last robustness check exercise we conduct consist of considering an alternative estimation 

technique. Specifically, we employ the entropy balancing method, which is a novel impact 

evaluation method introduced recently by Hainmueller (2012) for binary treatments and 

extended by Tübbicke (2022) and Vegetabile et al. (2021) to continuous treatments. In this 

paper, the treatment is NIS performance, which is continuous. The outcome variable is the level 

of integration of AI technologies in defense activities. The effect of NIS performance on AI 

integration is measured through the average treatment effect on the treated (ATT). 

 Estimating the ATT using the entropy balancing method involves two steps. In the first 

step, we compute weights to ensure that the balancing property is maintained in the re-weighted 

sample. These balancing weights are derived by addressing a globally convex optimization 

problem, specifically by minimizing the deviation from (uniform) base weights while adhering 

to normalization constraints and ensuring zero correlation between the treatment variable and 

the covariates. In the second step, these balancing weights are incorporated into a regression 

analysis to derive the ATT. 

 Entropy balancing has been widely used in the literature and offers several advantages 

over many traditional impact evaluation methods.19 Among these advantages, entropy 

balancing allows for achieving a higher level of covariate balancing even with a small sample 

size. Tübbicke (2022) demonstrates through Monte Carlo simulations that the entropy 

balancing method for continuous treatment can outperform other re-weighting approaches, 

such as Generalized Boosted Modeling, Covariate Balancing Generalized Propensity Score, 

and Inverse Probability Weighting, in terms of bias and root mean squared error. Additionally, 

the entropy balancing method reduces model dependency, which is beneficial for the 

subsequent estimation of treatment effects.20 

 Figure 2 presents the Dose-Response Function (DRF), illustrating the response of the 

level of integration of AI technologies in defense activities to varying intensities or levels of 

NIS performance. The DRF is derived using a nonparametric approach employing local linear 

regression with an Epanechnikov kernel. Additionally, the 95% confidence interval is reported, 

with standard errors obtained through 500 bootstrap replications, following the approach of 

Tübbicke (2022) and Vegetabile et al. (2021). 

 
19 For an overview of recent studies employing the entropy balancing method, refer to Kouakou and Yéo (2023). 
20 For a comprehensive discussion of the advantages of the entropy balancing method for continuous treatment, 
refer to Kouakou and Yéo (2023). 
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[Insert Figure 2 here] 

 

 We observe from Figure 2 that the DRF exhibits an upward trend, indicating that the 

higher the intensity or level of NIS performance, the greater the integration of AI technologies 

in defense activities. This finding aligns with previous results demonstrating a positive 

correlation between NIS performance and AI integration in defense. 

 Table 7 presents the ATTs. Columns (1) and (2) display the results without and with 

the inclusion of pre-treatment covariates or matching variables in the second step of entropy 

balancing, respectively. The inclusion of these covariates enhances estimation efficiency. It is 

worth noting that, as NIS performance, the treatment variable, is lagged by one year, the 

matching variables are lagged by two years to ensure they precede it. 

 

[Insert Table 7 here] 

 

 Table 7 shows that, irrespective of the specification, NIS performance significantly and 

positively increases with the level of integration of AI technologies in defense activities. This 

supports the robustness of our previous findings. Summary statistics on balancing quality 

obtained from a (weighted) regression of the treatment variable on the pre-treatment covariates 

are reported in Appendix A. It appears that prior to weighting, the 𝑅-squared is equal to 0.31, 

suggesting that the covariates account for 31% of the variation in NIS performance. 

Additionally, the 𝑝-value of the 𝐹-test is equal to 0.000, indicating a rejection of the null 

hypothesis that NIS performance is not significantly impacted by the covariates overall. 

However, as expected, once the entropy balancing weighting is applied, the 𝑅-squared and the 

𝑝-value of the 𝐹-test become equal to 0 and 1 respectively, implying that NIS performance is 

no longer affected by the covariates. Therefore, the balancing property is satisfied. 

 

9. Conclusion 

 

This paper aims to measure the level of integration of AI technologies in defense activities and 

explore how this integration is influenced by NIS performance. Based on data from 33 

countries with a defense industry, empirical evidence shows that the United States leads 

globally, with a significant gap between the United States and other countries. Econometric 

evidence shows that NIS performance increases the level of integration of AI technologies in 
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defense activities. Technological diversification, knowledge localization, and originality are 

the dimensions of NIS performance that significantly enhance the integration of AI 

technologies within defense activities, with similar average marginal effects. Meanwhile, the 

CTT has an inverted-U shaped relationship with the level of integration. 

 These results suggest that policies aiming to strengthen the NIS performance in 

countries with a defense industry should have positive externalities on their defense activities 

by inducing more integration of AI technologies in these activities. In particular, policies aimed 

at improving technological diversification, originality, and localization of knowledge creation 

and diffusion should lead to a greater integration of AI technologies in defense activities. In 

terms of policies, while various directions are possible, we believe that the key policies may 

encompass the following four. 

 First, public authorities could (further) incentivize interdisciplinary research grants. 

Encouraging interdisciplinary collaboration through research grants fosters originality by 

facilitating the integration of diverse technological perspectives, leading to patents that cite a 

broader spectrum of technologies and thus score higher in originality. This approach also 

promotes technological diversification by enabling researchers to explore novel areas and 

merge knowledge from multiple domains into innovative solutions. Moreover, by fostering 

collaboration among domestic researchers, this policy enhances knowledge localization by 

increasing the domestic diffusion of knowledge and reducing reliance on foreign patents for 

innovation. 

 Second, establishing technology transfer offices (TTOs) in academic institutions may 

be relevant to improve NIS performance. Indeed, TTOs could play a pivotal role in enhancing 

the NIS performance by bridging academia and industry, thereby facilitating the diffusion of 

academic research and promoting technological diversification. By translating research 

findings into practical applications across various domains, TTOs contribute to the creation of 

patents that span a broad spectrum of technologies, thus increasing originality within the NIS. 

Additionally, TTOs facilitate partnerships between domestic researchers and companies, 

promoting knowledge localization by encouraging the domestic diffusion of knowledge and 

reducing dependence on foreign patents for innovation. 

 Third, promoting public-private partnerships (PPPs) in research and innovation could 

be an effective policy to improve NIS performance. Indeed, PPPs may enhance technological 

diversification within the NIS by leveraging the expertise and resources of both public and 

private sectors to address complex technological challenges across various domains. 

Collaborative efforts between government agencies, research institutions, and private 
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companies lead to a more diverse portfolio of patents and innovations. Additionally, PPPs 

foster originality by encouraging the integration of diverse perspectives and expertise into 

innovative solutions, resulting in patents that cite technologies from a broader spectrum of 

classes. Furthermore, PPPs support knowledge localization by fostering collaborations 

between domestic entities, promoting the domestic diffusion of knowledge, and strengthening 

the competitiveness of domestic industries. 

 Fourth, public authorities might need to accentuate tax incentives for R&D spending, 

especially in emerging and developing economies. As Kouakou and Yéo (2023) rightly noted, 

while such a policy is very often implemented in most advanced countries, such as France, the 

United Kingdom, and the United States, many other countries might need to make efforts to 

implement them. Tax incentives for R&D spending stimulate innovation across various 

technological domains, thereby fostering technological diversification within the NIS. By 

encouraging companies to invest in R&D across multiple fields, this policy leads to a broader 

range of patents and inventions. Moreover, tax incentives promote originality by incentivizing 

companies to explore unconventional approaches and technologies, resulting in patents that 

cite a wider array of technological classes. Furthermore, by incentivizing domestic R&D 

spending, this policy supports knowledge localization efforts by encouraging companies to 

conduct research domestically, thus strengthening the domestic knowledge base and reducing 

reliance on foreign patents for innovation. 

 The present research may be extended in various directions. Among others, first, future 

studies may examine cooperation in the field of defense-related AI, specifically how this 

cooperation influences the level of integration of AI technologies in defense operations. 

Second, and relatedly, future studies could identify divergences in AI applications between 

countries, explore the origins of these divergences, and investigate how they interrelate with 

the NIS. Third, investigating possible nonlinearities in the effect of NIS performance on AI 

integration in defense activities could be a fruitful avenue for future research. Such an analysis 

would allow to determine whether there is a threshold to be achieved by NIS performance 

before significantly impacting the level of integration of AI technologies. This analysis could 

be conducted within the framework of panel threshold regression modeling.  

 Fourth, future studies could consider different defense industries and categories of 

defense activities, analyzing potential heterogeneity in the effect of NIS performance on the 

level of integration of AI in defense. Fifth, in this paper, we do not conduct an econometric 

analysis of the transmission channels of the effect of NIS performance on AI integration in 
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defense activities. Such an analysis could be undertaken by future research. Both 

macroeconomic and industry-level factors should be investigated. 
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Appendix A 
 
 

Table A1. List of the countries 
Argentina India Saudi Arabia 
Australia Israel Singapore 
Austria Italy South Africa 
Brazil Japan South Korea 
Canada Malaysia Spain 
Chine Netherland Sweden 
Egypt New Zealand Switzerland 
Finland Norway Türkiye 
France Poland United Arab Emirates 
Germany Portugal United Kingdom  
Greece Russia United States 

 
 

Table A2. List of the AI defense technologies 
CPC Titles 
A61B Measuring for diagnostic purposes (radiation diagnosis A61B 6/00; diagnosis by 

ultrasonic, sonic or infrasonic waves A61B 8/00); Identification of persons. 
A63F Video games, i.e., games using an electronically generated display having two or more 

dimensions. 
B23K Processes relevant to this subclass, specially adapted for particular articles or 

purposes, but not covered by only one of the preceding main groups.  
B25J Program-controlled manipulators. 
B29C Measuring, controlling or regulating using a neural network.  
B60G Indexing codes relating to particular elements, systems or processes used on 

suspension systems or suspension control systems.   
B60W Purposes of road vehicle drive control systems not related to the control of a particular 

sub-unit, e.g., of systems using conjoint control of vehicle sub-units. 
B62D Steering position indicators i.e., means for initiating a change of direction of the 

vehicle. 
E21B Equipment or details not covered by groups E21B 15/00-E21B 40/00.  
F02D Electrical control of supply of combustible mixture or its constituents (F02D 43/00 

takes precedence). 
F03D Controlling wind motors (supplying or distributing electrical power H02J, e.g., 

arrangements for adjusting, eliminating or compensating reactive power in networks 
H02J 3/18; controlling electric generators H02P, e.g., arrangements for controlling 
electric generators for the purpose of obtaining a desired output H02P 9/00).  
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F05B Indexing scheme relating to wind, spring, weight, inertia or like motors, to machines 
or engines for liquids covered by subclasses f03b, f03d and f03g: control algorithm 
fuzzy logic; with neural networks.  

F05D Indexing scheme for aspects relating to non-positive-displacement machines or 
engines, gas-turbines or jet-propulsion plants: control with neural networks.  

F16H Control functions within change-speed- or reversing-gearings for conveying rotary 
motion.  

G01N Investigating or analyzing materials by the use of ultrasonic, sonic or infrasonic 
waves; Visualization of the interior of objects by transmitting ultrasonic or sonic 
waves through the object (G01N 3/00-G01N 27/00 take precedence); Investigating or 
analyzing materials by specific methods not covered by groups G01N 1/00-G01N 
31/00.  

G01R Arrangements for testing electric properties; Arrangements for locating electric faults; 
Arrangements for electrical testing characterized by what is being tested not provided 
for elsewhere (testing or measuring semiconductors or solid-state devices during 
manufacture H01L 21/66; testing line transmission systems H04B 3/46).  

G01S Details of systems according to groups G01S 13/00, G01S 15/00, G01S 17/00. 
G05B Adaptive control systems, i.e., systems automatically adjusting themselves to have a 

performance which is optimum according to some preassigned criterion (G05B 19/00 
takes precedence).   

G05D Control of position, course or altitude of land, water, air, or space vehicles, e.g., 
automatic pilot. 

G06F Arrangements for program control, e.g., control units (program control for peripheral 
devices G06F 13/10).  

G06K Methods or arrangements for sensing record carriers, (e.g., for reading patterns) 
(methods or arrangements for marking the record carrier in digital fashion G06K 1/00; 
pattern recognition G06F 18/00; arrangements for image or video recognition or 
understanding G06V 10/00; character recognition, recognizing digital ink or 
document-oriented image-based pattern recognition G06V 30/00). 

G06N Computing arrangements based on biological models; Computing arrangements using 
knowledge-based models; Computing arrangements based on specific mathematical 
models, Subject matter not provided for in other groups of this subclass.   

G06Q Information and communication technology [ICT] specially adapted for commercial.  
G06T General purpose image data processing; Geometric image transformations in the plane 

of the image; Image analysis; mage coding (bandwidth or redundancy reduction for 
static pictures H04N 1/41; coding or decoding of static color picture signals H04N 
1/64; methods or arrangements for coding, decoding, compressing or decompressing 
digital video signals H04N 19/00).  

G08B Checking or monitoring of signaling or alarm systems; Prevention or correction of 
operating errors, e.g., preventing unauthorized operation.  

G10K Details of active noise control [ANC] covered by G10K 11/178 but not provided for 
in any of its subgroups.  

G10L Speech synthesis; Text to speech systems; Speech recognition (G10L 17/00 takes 
precedence); Speaker identification or verification techniques; Speech or voice 
analysis techniques not restricted to a single one of groups G10L 15/00-G10L 21/00 
(muting semiconductor-based amplifiers when some special characteristics of a signal 
are sensed by a speech detector, e.g., sensing when no signal is present, H03G 3/34); 
Subject matter not provided for in other groups of this subclass.  
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G11B Signal processing not specific to the method of recording or reproducing; Circuits 
therefor.  

H01J Discharge tubes exposing object to beam, e.g., for analysis treatment, etching, 
imaging.  

H01M Fuel cells; Manufacture thereof.  
H02P Arrangements or methods for the control of electric machines by vector control, e.g., 

by control of field orientation; Arrangements or methods for the control of AC motors 
characterized by a control method other than vector control.  

H04L Data switching networks (interconnection of, or transfer of information or other 
signals between, memories, input/output devices or central processing units G06F 
13/00); Baseband systems.  

H04N Selective content distribution, e.g., interactive television or video on demand [VOD] 
(real-time bi-directional transmission of motion video data H04N 7/14).  

H04Q Indexing scheme relating to selecting arrangements in general and for multiplex 
systems.  

H04R Deaf-aid sets. 
Y10S Data processing: artificial intelligence; Computer assisted medical diagnostics by 

comparison of patient data to other data using artificial intelligence; Neural network.  
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Table A3. Definitions of variables and data sources+  
Variable Definition Source 

AI integration level Level of integration of AI technologies in defense activities. Ranges from 0 (lowest level) 
to 1 (highest level). 

Authors based on 
Cámara and Tuesta's 
(2018) methodology. 

NIS performance NIS performance index. Ranges from 0 to 5. Lee et al. (2021) 
Knowledge localization Index of localization of knowledge creation and diffusion. Ranges from 0 to 1. Lee et al. (2021) 
Relative CTT Index of relative cycle time of technologies (CTT). Ranges from 0 to 1.  Lee et al. (2021) 
Technological diversification Index of technological diversification. Ranges from 0 to 1.  Lee et al. (2021) 
Originality Index of originality. Ranges from 0 to 1.  Lee et al. (2021) 
1-HHI Index of decentralization (versus concentration). Ranges from 0 to 1.  Lee et al. (2021) 
R&D Research and development expenditure (% of GDP). (in log) WDI 
Tax revenue Tax revenue (% of GDP). (in log)  WDI 
Financial development Domestic credit to the private sector (% of GDP). (in log)  WDI 
Military expenditure Military expenditure (% of GDP). (in log)  SIPRI 
Domestic investment Gross capital formation (% of GDP). (in log) WDI 
Foreign direct investment  Foreign direct investment, net inflows (% of GDP). Rescaled to range from 0 to 1.  WDI 
Imports Imports of goods and services (% of GDP). (in log) WDI 
Population size Total population. (in log) WDI 
Inflation Inflation, consumer prices (annual %). Rescaled to range from 0 to 1.  WDI 
Unemployment Unemployment, total (% of total labor force). (in log) WDI 
Government spending Expense (% of GDP). (in log) WDI 
Government debt General government debt, total (% of GDP). (in log)  IMF 
Private debt Private debt, loans and debt securities (% of GDP). (in log) IMF 

 + IMF: International Monetary Fund; WDI: World Development Indicators (The World Bank); SIPRI: Stockholm International Peace Research Institute. 
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Table A4. Descriptive statistics+ 
Variable Observations Mean Std. dev. Min Max 

AI integration level 619 0.03 0.11 0 0.96 

NIS performance 425 2.60 0.55 1.05 3.77 
Knowledge localization 425 0.26 0.22 0 1 
  [0.11] [0.09] [0] [0.42] 
Technological diversification 425 0.57 0.27 0 1 
  [0.54] [0.26] [0.01] [0.96] 
Decentralization 425 0.87 0.17 0 1 
  [0.95] [0.06] [0.64] [0.99] 
Relative CTT 425 0.44 0.17 0 1 
  [1.08] [0.12] [0.77] [1.46] 
Originality 425 0.46 0.21 0 1 

  [0.42] [0.06] [0.28] [0.59] 

R&D 322 0.66 0.47 - 0.64 1.50 
  [2.14] [0. 93] [0.53] [4.51] 
Tax revenue 373 2.90 0.39 1.20 3.41 

  [18.60] [6.30] [3.33] [30.30] 

Financial development 359 4.66 0.42 2.89 5.38 
  [114.78] [41.13] [17.97] [217.77] 
Military expenditure 421 0.64 0.57 - 0.47 2.75 
  [2.28] [1.81] [0.63] [15.59] 
Government spending 392 3.35 0.35 2.57 4.10 
  [30.33] [10.14] [13.05] [60.30] 
Domestic investment 417 3.12 0.19 2.48 3.84 
  [23.18] [4.71] [11.94] [46.40] 
FDI 417 0.09 0.08 0 1 
  [3.47] [6.90] [-5.0] [86.48] 
Imports 417 3.31 0.44 1.94 4.32 
  [30.01] [12.45] [6.94] [75.16] 
Inflation 409 0.025 0.0515 0 1 
  [5.87] [46.58] [-16.91] [887.84] 
Population size 421 17.47 1.17 15.35 21.05 
  [7.76e+07] [1.46e+08] [4660677] [1.39e+09] 
Unemployment 416 1.95 0.53 0.60 3.31 
  [8.09] [4.80] [1.82] [27.47] 
Government debt 514 4.13 0.59 2.10 5.56 
  [72.79] [42.12] [8.08] [258.71] 
Private debt 571 4.91 0.46 3.03 5.70 
  [147.47] [54.76] [20.75] [287.06] 

 + For variables measured in natural logarithm or rescaled, the initial values are presented in brackets. 
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Table A5. Correlation coefficients 
 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) 

(1) AI integ. level 1                    

(2) NIS performance 0.43 1                   

(3) Knowl. local. 0.38 0.63 1                  

(4) Relative CTT -0.16 0.05 -0.46 1                 

(5) Techno diversif. 0.37 0.73 0.70 -0.44 1                

(6) Originality 0.23 0.41 -0.12 0.23 -0.06 1               

(7) 1-HHI 0.16 0.69 0.26 0.18 0.38 0.09 1              

(8) R&D 0.22 0.29 0.46 -0.61 0.56 0.06 -0.05 1             

(9) Tax revenue -0.29 -0.26 -0.45 0.24 -0.36 0.02 -0.06 -0.16 1            

(10) Fin. dev. 0.30 0.40 0.48 -0.17 0.39 0.02 0.11 0.19 -0.22 1           

(11) Mil. Exp.  0.27 -0.16 -0.18 -0.14 -0.13 0.1 -0.04 0.16 0.04 0.38 1          

(12) Domes. invest. -0.09 -0.11 0.23 -0.53 0.15 -0.12 -0.20 0.39 -0.35 0.12 -0.07 1         

(13) FDI -0.04 -0.04 -0.16 0.04 -0.06 0.17 -0.08 0.01 0.10 0.02 -0.12 -0.06 1        

(14) Imports -0.27 -0.37 -0.60 0.19 -0.28 0.15 -0.28 0.05 0.09 0.20 -0.14 -0.05 0.40 1       

(15) Pop. size 0.39 0.34 0.44 -0.21 0.39 -0.09 0.18 -0.20 -0.33 0.16 0.07 -0.05 -0.22 -0.66 1      

(16) Inflation -0.03 -0.22 -0.11 0.15 -0.20 -0.09 -0.27 -0.36 0.06 0.43 0.12 0.03 -0.04 0.0 0.09 1     

(17) Unemployment. -0.09 0.19 -0.37 0.47 -0.39 -0.03 0.09 -0.48 0.36 0.24 0.14 -0.63 -0.14 -0.04 0.04 0.01 1    

(18) Gov. spending. -0.14 -0.20 -0.42 0.27 -0.21 -0.02 0.0487 -0.17 0.69 0.34 0.28 -0.47 0.14 0.27 -0.22 -0.03 0.45 1   

(19) Gov. debt 0.15 0.31 0.34 0.05 0.13 -0.05 0.3904 -0.05 -0.01 0.07 -0.06 -0.41 -0.11 -0.23 0.27 -0.30 0.33 0.11 1  

(20) Private debt 0.08 0.19 0.17 -0.31 0.26 0.16 0.06 0.39 -0.13 0.44 -0.34 0.38 0.31 0.27 -0.22 -0.44 -0.55 -0.19 -0.10 1 

 
 
 

Table A6. Entropy balancing method: Summary statistics on balancing quality+ 
 Before balancing After balancing 

𝑅-squared 0.31 0 
𝐹-statistic 22.55 0 
𝑝-value 0.000 1 

                                   + Results from a (weighted) regression of the treatment variable on the  
          pre-treatment covariates. 
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Appendix B 
 

- Knowledge localization (𝐾𝐿)  
 

𝐾𝐿&' =	
-!!
-!"
− -#!"

-#"
																																																												(B1)                                                        

 
where -!!

-!"
 is the probability of country 𝑖’s patent citing its own patents, 𝑛./' is the number of 

citations made to country 𝑖’s patents by all patents, except for that country’s patents, filed in 
year 𝑡 and 𝑛.' is the number of all citations made by all patents granted in year 𝑡, except for 
country i’s patents. 
 

- Technological diversification (𝑇𝐷) 
 

𝑇𝐷&' = l #$
012
m
&'
																																																													(B2)                                                         

 
where 𝑁( is the number of technological classes that country 𝑖 has filed patents in year 𝑡. 𝑁( is 
divided by 438, the total number of three-digit patent classes in the US patent classification 
system in 2016.  
 

- Cycle time of technologies (𝐶𝑇𝑇)  
 

𝐶𝑇𝑇/ = 𝐴𝑃𝑃_𝑌𝐸𝐴𝑅/ − 		𝐴𝑃𝑃_𝑌𝐸𝐴𝑅3																																							(B3)                                      
 
𝐶𝑇𝑇/ represents the cycle time of technologies of patent 𝑥, 𝐴𝑃𝑃_𝑌𝐸𝐴𝑅/ the application year 
of citing patent 𝑥, and 𝐴𝑃𝑃_𝑌𝐸𝐴𝑅3 that of patent 𝑦 cited by patent 𝑥. The average CTT of 
each patent is calculated and then transformed into a "relative" CTT, labeled as 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝐶𝑇𝑇, 
by dividing it by the average CTT of all patents filed in the same year and belonging to the 
same class.  
 

- Decentralization  

1 − 𝐻𝐻𝐼&' = 1 −	∑ r#%"
#!"
∗ s

4

5	∈	8% 																																					(B4)                                      
 
 
where 𝐼5 is the set of assignees, 𝑁5' is the number of patents granted by assignee 𝑝 in year 𝑡, 
and 𝑁&'∗  is the total number of patents granted by country 𝑖 in year 𝑡, excluding the unassigned 
patents.  

 
- Originality (𝑂) 

𝑂&'	 = (1 −	∑ l#.&':;'(
#.&':;'

m
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)#'

*$%	
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where 𝑘 is the technological class, 𝑁𝑐𝑖𝑡𝑒𝑑/* is the number of citations made by patent 𝑥 to 
patents that belong to patent class 𝑘, and 𝑁𝑐𝑖𝑡𝑒𝑑/ is the total number of citations made by 
patent 𝑥. From this equation, the average for each country 𝑖 at year 𝑡 for each patent is 
calculated. 
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Tables 

 

Table 1. AI integration-based country ranking 
Country Average level of 

integration of AI 
technologies in defense 

activities+ 
United States 0.4192787 
Germany 0.0423728 
United Kingdom 0.0364665 
Japan 0.0354137 
South Korea 0.0338278 
France 0.0317705 
Poland 0.0310844 
Chine 0.0305679 
Netherland 0.0174443 
Finland 0.0160481 
Israel 0.0122499 
Türkiye 0.010323 
United Arab Emirates 0.010323 
Austria 0.0098163 
India 0.0089185 
New Zealand 0.0053854 
Sweden 0.0037245 
Singapore 0.0034646 
Australia 0.0024373 
Canada 0.0019729 
Brazil 0.0018337 
Norway 0.0017961 
Egypt 0.0015449 
Switzerland 0.0012325 
Portugal 0.000767 
Spain 0.0006078 
Argentina 0.0005485 
Italia 0.0004848 
South Africa 0.0004005 
Russia 0.0000914 
Greece 0.0000727 
Saudi Arabia 0.0000383 
Malaysia 0.0000145 

                                      + From 0 (lowest level) to 1 (highest level). 
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Table 2. QMLE parameter estimates of a fractional Probit  
with IV using the CF approach (average marginal effects reported)+ 

Lagged NIS performance 0.071*** 
 (0.007) 
Lagged Financial development 0.048*** 
 (0.007) 
Lagged Military expenditure 0.063*** 
 (0.005) 
Lagged Domestic investment 0.043** 
 (0.017) 
Lagged FDI 0.026 
 (0.023) 
Lagged Imports 0.058*** 
 (0.011) 
Lagged Population size 0.021*** 
 (0.004) 
𝑣 -0.102*** 
 (0.024) 
Observations 235 

                     + Robust standard errors in parentheses, obtained by setting 500 bootstrap  
                        replications. ∗ 	𝑝 < 0.1; ∗∗ 	𝑝 < 0.05; ∗∗∗ 	𝑝 < 0.01. 
 

Table 3. Tests of validity and weakness of IVs 

𝐻< Statistic  

Instruments are valid Sargan 1.85 
𝑝-value 0.17 

Instruments are weak Cragg and Donald's (1993) minimum eigenvalue 9.60 
Maximum critical value (Stock and Yogo, 2005) 8.68 

 
 
Table 4. Disaggregating NIS performance: QMLE parameter estimates of a fractional Probit 

with IV using the CF approach (average marginal effects reported)+ 
 (1) (2) (3) (4) (5) (6) 
Lagged Knowledge localization 0.230***      
 (0.016)      
Lagged 1-HHI  0.126     
  (0.085)     
Lagged CTT   -0.588*** 0.305**   
   (0.100) (0.124)   
Lagged CTT squared    -0.718***   
    (0.170)   
Lagged Technological diversification     0.224***  
     (0.043)  
Lagged Originality      0.223*** 
      (0.039) 
Main controls Yes Yes Yes Yes Yes Yes 
𝑣" -0.316*** -0.179* 0.553*** 0.191* -0.230* -0.209*** 
 (0.073) (0.093) (0.099) (0.098) (0.120) (0.061) 
Observations 235 235 235 235 235 235 

+ Robust standard errors in parentheses, obtained by setting 500 bootstrap replications. ∗ 	𝑝 < 0.1; ∗∗
	𝑝 < 0.05; ∗∗∗ 	𝑝 < 0.01. 
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Table 5. Robustness checks: Additional controls, QMLE parameter estimates of a fractional 
Probit with IV using the CF approach (average marginal effects reported)+ 

 (1) (2) (3) (4) (5) 
Lagged NIS performance 0.071*** 0.071*** 0.059*** 0.050*** 0.044*** 
 (0.009) (0.008) (0.006) (0.008) (0.007) 
Main controls Yes Yes Yes Yes Yes 
𝑣" -0.104*** -0.106*** -0.096*** -0.123*** -0.113*** 
 (0.026) (0.026) (0.021) (0.028) (0.024) 
Lagged Inflation -0.200     
 (1.272)     
Lagged Unemployment  -0.011    
  (0.008)    
Lagged Government spending   -0.009   
   (0.009)   
Lagged Government debt    -0.004  
    (0.009)  
Lagged Private debt     0.031* 
     (0.017) 
Observations 233 235 232 205 219 

+ Robust standard errors in parentheses, obtained by setting 500 bootstrap replications. In (3), we 
remove military expenditure from the set of main controls to avoid collinearity issue with government 
spending. ∗ 	𝑝 < 0.1; ∗∗ 	𝑝 < 0.05; ∗∗∗ 	𝑝 < 0.01. 
 
 

Table 6. Robustness checks: Restricted samples, QMLE parameter estimates of a fractional 
Probit with IV using the CF approach (average marginal effects reported)+ 

 Exclusion of 
the United 

States 

Exclusion of 
BRICS 

Exclusion of 
countries with 

nuclear 
weapons 

NATO G7 

Lagged NIS performance 0.016*** 0.045*** 0.007* 0.057*** 0.295*** 
 (0.003) (0.008) (0.004) (0.018) (0.077) 
Main controls Yes Yes Yes Yes Yes 
 (0.003) (0.008) (0.007) (0.013) (0.033) 
𝑣" -0.020** -0.119*** -0.019** -0.090** -0.264** 
 (0.008) (0.024) (0.008) (0.035) (0.105) 
Observations 215 203 144 149 98 

+ Robust standard errors in parentheses, obtained by setting 500 bootstrap replications. ∗ 	𝑝 < 0.1; ∗∗
	𝑝 < 0.05; ∗∗∗ 	𝑝 < 0.01. BRICS includes Brazil, Russia, India, China, and South Africa. NATO: 
North Atlantic Treaty Organization. G7 includes Canada, France, Germany, Italy, Japan, the United 
Kingdom, and the United States.        
 

Table 7. Robustness checks: Entropy balancing method+ 
 (1) (2) 
Lagged NIS performance (ATT reported) 0.067*** 0.049*** 
 (0.007) (0.003) 

Covariates in the second step No Yes 
Observations 315 315 

                  + ATT: Average treatment effect on the treated. Robust standard errors in parentheses.   
              Unreported constant term included. ∗ 	𝑝 < 0.1; ∗∗ 	𝑝 < 0.05; ∗∗∗ 	𝑝 < 0.01. 
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Figures 

 

Figure 1. Simplified representation of the strength calculation method  

 
Source: Meunier (2021). 

 
 

Figure 2. Entropy balancing: Dose-response function 

 
 

 

 

 

 

 

 

 


