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Abstract

We address the issue of panel cointegration testing in dependent panels,
showing by simulations that tests based on the stationary bootstrap deliver
good size and power performances even with small time and cross-section
sample sizes and allowing for a break at a known date. They can thus
be an empirically important alternative to asymptotic methods based on
the estimation of common factors. Potential extensions include test for
cointegration allowing for a break in the cointegrating coe¢cients at an
unknown date.
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1 Introduction1

The rate of expansion of the literature on the analysis of non-stationary pan-
els, as revealed e.g., by a comparison of the list of references in the surveys
by Banerjee (1999) and Breitung and Pesaran (2006) is impressive. This
growing interest is due to good reasons: �rst of all, many important eco-
nomic questions are naturally framed in a panel perspective (for instance,
the Purchasing Power Parity issue, Pedroni, 2004, and migrations, Fachin,
2007). Further, when only small time samples are available, adding the
cross-section dimension grants considerable improvements of the small sam-
ples properties of testing procedures, provided the possible linkages across
units are properly accounted for. This issue is currently actively investigated
in the literature, with two2 main solutions being suggested: (i) modelling the
linkages as due to unobserved common factors; these can be estimated by
principal components methods (Bai and Ng, 2004) and then removed from
the data so to apply simple procedures for independent panels (Banerjee
and Carrion-i-Silvestre 2006, Gegenbach, Urbain and Palm, 2006, Wester-
lund 2008); (ii) apply bootstrap algorithms designed to deliver estimates of
the distribution of the statistics of interest conditional on the cross-section
linkages as present in the dataset at hand. Concentrating on (no-) cointegra-
tion tests, to the best of our knowledge two bootstrap approaches have been
put forth so far. Fachin (2007) applies the Continuous-Path Block bootstrap
(Paparoditis and Politis, 2001, 2003) separately to the right- and the left-
hand side variables, hence generating unrelated pseudoseries obeying the
null hypothesis of no cointegration, while Westerlund and Edgerton (2007)
develop a sieve bootstrap procedure for testing the null of cointegration.

Unfortunately, neither the common factor nor the existing bootstrap ap-
proaches are fully satisfactory. Let us discuss them in turn. A �rst problem
with the common factor approach is that, as Gegenbach, Urbain and Palm
(2006) explicitly admit, it requires large samples. Thus, although investigat-
ing the possible common factor structure of the data could be very important
for its own sake, in many empirical applications the available information
set may simply be not rich enough. A second problem is that it hinges
upon a series of assumptions which may be very restrictive: Banerjee and
Carrion-i-Silvestre (2006) and Westerlund (2008) allow for common factors

1Financial support from the Department of Statistics of the University of Naples Fed-
erico II, University of Rome �La Sapienza� and MIUR is gratefully acknowledged. Com-
ments and suggestions from participants to the conferences on �Bootstrap and Time Se-
ries� (Kaiserlautern, June 2008) and " Factor Structures for Panel and Multivariate Time
Series Data" (Maastricht, September 2008) are gratefully acknowledged. Special thanks
to Joakim Westerlund for help with his dataset. Correspondence to: s.fachin@caspur.it,
fdiiorio@unina.it.

2We are excluding the full information maximum likelihood approach (Groen and
Kleibergen, 2003) which, requiring the time dimension to be much larger than the cross-
section dimension, is of very limited empirical interest.
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in the cointegrating residuals but not in the variables themselves; this more
general model is adopted by Gegenbach, Urbain and Palm (2006), who how-
ever assume a full rank, block-diagonal matrix of loadings, hence ruling out
the empirically relevant case of a single source of non-stationarity common
across units and variables. For instance, in the case of regional consumption
and income this may be a stochastic trend in national GDP.

Block bootstrap, model-free methods were showed by Fachin (2007) to
be empirically useful tools in tackling the problems at hand. However his
algorithm destroys any relationship between the modelled variables, not
only long-run ones. On the other hand, the sieve bootstrap (shown to be
valid for inference on cointegrating regressions by Chang, Park and Song,
2006) hinges upon the assumption of a linear structure of the cointegrating
residuals3.

In this paper we shall try to improve on the existing bootstrap meth-
ods. Our main conjecture is that Parker, Paparoditis and Politis� (2006)
Residual-based Stationary Bootstrap test for unit roots may be applied to
the estimated cointegrating residuals. In fact, the potential of block boot-
strap methods in this �eld is stressed by Chang et al. (2006). A further
viable route which we will explore is to extend Herwartza and Neumann�s
(2005) Wild Boostrap (WB) procedures for inference on cointegrating coef-
�cients to panel cointegration testing. In this paper we will thus �rst outline
both approaches (section 2), evaluate their small sample performances by
simulation (section 3) and �nally draw some conclusions (section 4).

2 Single-equation panel cointegration testing via

residual-based bootstrap: set-up

Parker, Paparoditis and Politis (2006), henceforth PPP4, developed a boot-
strap unit root test based on the stationary bootstrap (Politis and Romano,
1994), a resampling method suitable for weakly dependent series. In this
method the resampling is carried out chaining blocks of observations of the
originary series of random length starting at random locations, and thus
reproduce the weak dependence properties of the latter. The extension of
PPP Residual-based Stationary Bootstrap (RSB) unit root tests to single-
equation cointegration testing is straightforward.

Consider for simplicity two I(1) variables, X and Y , linked by a linear

3Further, the sieve bootstrap cointegration test proposed by Westerlung and Edgerton
(2007) may deliver poor power in small samples. Their procedure involves estimating
the sieve through the Yule-Walker equations, so to obtain stationary bootstrap residuals
obeying the null of cointegration. However, under no cointegration the bootstrap residuals,
though stationary, will have a root arbitrarily close to 1, very di¢cult to distinguish from
a unit root in small samples.

4Not to be confused with the acronym for Purchasing Power Parity.

3



relationship
yt = �+ �xt + �t; t = 1; : : : ; T (1)

Consider then the equation

�t = ��t�1 + �t (2)

It is immediately seen that when H0 : no cointegration holds � = 1;while
when it does not j�j < 1: The hypothesis of no cointegration is then equiv-
alent to H0: � = 1: Two important remarks are in order here. First, (2)
is not a model of the cointegrating residuals; its purpose is only to de�ne
a parameter expressing the null hypothesis of interest. Second, the � 0ts are
always stationary, either H0 holds or not: they can thus be resampled via
the stationary bootstrap.

An algorithm along the lines put forth in PPP, mean zero case, may then
proceed as follows:

1. Compute b�t = b�t � b�b�t�1; where fb�tg are the estimated residuals and
b� is the OLS estimate of �;

2. Resample the series fb�tg via the stationary bootstrap, obtaining f��t g ;

3. Cumulate f��t g obtaining pseudoresiduals f�
�

t g obeying the null hy-
pothesis of no cointegration;

4. Compute y�t = b�+ b�xt + ��t ;

5. Estimate the cointegrating regression on the dataset fy�t ; xtg: y
�

t =

b�� + b��xt +b��t ;

6. Estimate �� applying (2) to the residuals b��t ;

7. Repeat 2-6 B times;

8. Test the hypothesis H0 : � = 1 on the basis of the distribution of the
��0s, which obey it. Note that the consistency results reported in PPP
are in fact general enough to allow the use of more general statistics
function of �, such as the ADF.

The model-based sieve bootstrap, applied by Westerlund and Edgerton
(2007), replaces (2) with a linear autoregressive model (in fact, the Aug-
mented Dickey-Fuller equation):

�t = ��t�1 +

pX

j=1

�j��t�j + e�t (3)
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so to obtain empirically white noise e� 0ts on which simple resampling may
be applied. Note that the autoregressive polynomial plays here the same
role of the block length in the RSB algorithm, i.e. capturing the memory of
the process. The bootstrap residuals f��t g are then constructed recursively
on the basis of (3).

A test following a closely related approach can be constructed building
upon Herwartza and Neumann�s (2005) WB procedures for inference on
cointegrating coe¢cients. More precisely, the algorithm would replace steps
1-3 above with the following:

1. Compute be�t = b�t � b�b�t�1 �
Pp
j=1

b�j�b�t�j ;

2. Resample the series
n
be�t
o
via WB, obtaining f��t g ;

3. Construct recursively f��t g from the AR equation in [1] under H0 : � = 1;
obtaining pseudoresiduals f��t g obeying the null hypothesis of no coin-
tegration.

Let us now introduce the panel dimension, ignored so far. The basic idea
of unit root and panel cointegration tests is that of achieving power gains
by pooling or averaging (the latter approach being more general, as no ho-
mogeneity constrains are imposed) the information from N individual units,
indexed by i in the following discussion. However, the null and alternative
hypothesis of these tests are a delicate issue worth a careful discussion (see
also Pedroni, 2004). Given the null hypothesis of no cointegration in all
units, i.e.H0 : �i = 1 for i = 1; : : : ; N , we can de�ne four di¤erent alterna-
tive hypothesis:

(i) H1 : �i < 1 in all units;

(ii) H1 : �i < 1 in at least one unit;

(iii) H1 : �i < 1 in most of the units;

(iv) H1 : �i < 1 in most of units or �i << 1 in a smaller number of units;

The choice of the alternative hypothesis dictates the statistic which
should be used to summarise the �0is: More precisely, the are easily seen
to be the following:

(i) G =Max(�i);

(ii) G =Min(�i);

(iii) G =Median(�i);

(iv) G =Mean(�i);
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Clearly, the same holds for transformations of � such as the ADF.
The alternative hypothesis (i) and (ii) are obviously of little interest,

while the main merit of (iv) can be argued to be that of justifying the
use of the mean of the individual statistics as panel cointegration statistic.
In fact, the alternative hypothesis best re�ecting the idea that the test-
ing procedure should �nd which hypothesis best describes the panel as a
whole is clearly (iii). The median of the individual statistics should then
be considered the basic panel statistic. However, this statistic is of no-
toriously di¢cult treatment by asymptotic methods. As a consequence,
with the only exception of Fachin (2007) who examine the performance of
a median-based test, case (iv) is the only one considered in the literature
(for instance as "Group Mean test" in Pedroni, 1999). This stresses again
the strong potential of bootstrap methods in panel cointegration testing,
and leads us to the next question: how to extend the algorithms outlined
above to panel data sets? In fact, the task turns out to be easily accom-
plished. As we have seen in the Introduction an essential feature to be
taken into account is dependency across units. In order to reproduce it in
the pseudoseries, in both cases we simply need to apply the resampling al-
gorithm to the entire cross-sections. In this way the (short- and long-run)
cross-correlation structure of the data is exactly reproduced in the bootstrap
data. More precisely, letting b�it = b�it � b�ib�it�1; in step 2 of the RSB algo-
rithm we apply the stationary boostrap to the entire T � N matrix of the
residuals V = [b�1 : : : b�N ] , where b�j = [b�1j : : : b�Tj ]0 ; while in the same step
of the WB algorithm the pseudoresiduals are generated as ��t = �te�t; where
�t~IID(0; 1) ; e�t= [e�t1e�t2 : : : e�tN ] : In the �nal step the statistic of interest
becames either the median or the mean of the cointegration ADF statistics
computed for each of the N units, so that the bootstrap estimate of the
signi�cance level of the test is p� = prop(S� < bS); S =Median(ADF) or
Mean(ADF) where ADF = [ADF1 : : : ADFN ] :

3 Monte Carlo

3.1 Design

We will base our simulations on a DGP which is essentially a generalisation
of the classical Engle and Granger (1987) DGP to the case of dependent
panels, with the design of the panel structure related to those used by Kao
(1999), Fachin (2007), and Gegenbach et al. (2006)5. Before discussing
the details of the design a remark in order is that since panel DGPs are
inevitably very complex, simulation experiments are computationally very
demanding. Hence, rather than aiming at the unfeasible task of a complete
design our aim will be that of de�ning an empirically relevant set-up.

5Several parameters are in fact �xed at the values used by the latter.
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In our base case in the spirit of conditional modelling we assume a vari-
able of interest, Y; known to be linked by a linear, possibly cointegrating,
relationship to a right-hand side variable6 X:

�
yit = �0i + �ixit + �

y
it

�yit = �i�
y
it�1 + e

y
it; eyit � N(0; �

2

iy)
(4)

where i = 1; : : : ; N , t = 1; : : : ; T . When Xi and Yi are not cointegrated
�i = 1; while j�ij < 1 when instead they are; in the power simulations �i will
be generated as Uniform(0:6; 0:8) across units to mimick a generally rather
slow adjustment to equilibrium. To ensure some heterogeneity across units
�2iy � Uniform(0:5; 1:5); , while with no loss of generality �0i = �i = 1 8i.
Long-run growth of X is assumed to be driven by a non-stationary factor

common across units (F1), with short-run deviations caused by a second
stationary common factor (F2) and by an idiosyncratic stationary noise (�

x
it):

xit = 1F1t + 2F2t + �
x
it (5)

Following Pesaran (2006) the factor loadings are chosen so to ensure sub-
stantial cross-correlation in the X 0s: i � Uniform(�1; 3) 8i: The common
factors are generated as follows:

�
F1t
F2t

�
=

�
F1t�1
0:4F2t�1

�
+

�
f1t
f2t

�
(6)

where, as in Gegenbach et al. (2006), both the common and idiosyncratic
shocks are assumed to have a MA(1) structure:

�
f1t
f2t

�
=

�
�1t
�2t

�
+

�
#1 0
0 #2

� �
�1t�1
�2t�1

�
(7)

�xit = exit + 'e
x
it�1; (8)

where �it � N(0; 1); i = 1; 2; and e
x
it � N(0; �

2

ix); with �
2

ix � Uniform(1; 1:4) :
Both ' and the #0s are generated as Uniform deviates in the range [0.5,0.7].

Testing for cointegration with regime shifts is an important issue which,
as we will see, arises in the empirical illustration on the Fisher e¤ect also.
To shed some light on the potential of our procedure for this purpose, along
the base case we will thus also consider that of a relationship with a break
in both constant and slope:

yit =

�
�0i + �0xit + �

y
it; t � tb

�1i + �1xit + �
y
it; t > tb

(9)

6Exploratory simulations showed the performances of the test to be independent on
the number of independent variables.
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where �0 = 1 and �1 = 1:5 Since the delicate problem of the estimation of
the break point is outside the scope of this paper in the tests we will assume
it known, and �x it with no loss of generality at T=2 in all units.

Some remarks are in order. First of all, this DGP violates the assump-
tions of Gegenbach et al. (2006), who exclude the possibility of a single
source of non stationarity common to both the left- and the right-hand
side variables, and Westerlund (2008), who assumes common factors to be
present in the residuals of the cointegrating equation only. However, it is
likely to be representative of many empirical applications: an obvious ex-
ample is the case of regional consumption and income, with the common
factors given by the trend and cycle in national GDP. To shed some light
on the performances that can be expected from common factors methods
in this type of set-up we shall examine the performance of Westerlund�s
Durbin-Hausmann group mean DHg test.

Second, cointegration across units in the X�s always hold, while in the
Y �s it does only in case of cointegration within units between Xi and Yi
(j�ij < 1). For simplicity we are ruling out the possibility of cointegration
holding in some units only, but the design could be easily generalised further
to include this case also.

The sample sizes considered in the experiment are also chosen trying to
reproduce empirically relevant conditions. Hence, we assume the data set
to cover up to N = 40 cross-section units and T = 160 time observations,
but with the full time sample available only at aggregate level (average over
all units), and the fully disaggregated sample only for T = 20; 40: We shall
thus �rst compute the test on the aggregate data for T = 20; 40; 160 and
then evaluate the gains possibly delivered by adding the panel dimension.
An intermediate case is represented by the �rst �ve units on which T = 80
time observations are assumed to be available.

In principle an important, and still largely unsettled, aspect of block
bootstrap methods is the choice of block size (mean size in the case of the
stationary bootstrap, when the length is random). In practice according to
the simulation results reported by PPP the RSB unit root tests appear to
be quite robust to this parameter. We will thus �x it at either 0:10T (as
in Paparoditis and Politis, 2001) or 0:15T with a minimum of 4, leaving
implementation of data-based methods for future research. In the WB we
use �t � NID(0; 1) and �x the length of the autoregressive polynomial at the
true value (one); hence, these results are of interest mostly as a benchmark
for those of the RSB tests.

Finally; to strike a balance between experimental precision and com-
puting costs the number of both Monte Carlo simulations and bootstrap
redrawings has been set to 1000.
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3.2 Results

The results are reported in tables 1-8 below. First of all, from the aggregate
tests we can see that the cointegration RSB tests with the two di¤erent
block sizes deliver essentially the same results. This is consistent with the
performance of the unit root RSB tests in PPP and good news from the
practitioner�s point of view. Hence, to save space, for the panel tests we
will report results only for block size 0:10T , with those for block size 0:15T
available on request. Second, the results for the RSB tests are rather close
to those of the WB tests. Since the latter are based on the true order of
the autoregressive polynomial of the errors this is a rather remarkable per-
formance. With a few exceptions the following comments are thus generally
valid for both type of tests. The results of the tests on the aggregate data
(Tables 1-2), show that all bootstrap tests deliver performances essentially
comparable to those of traditional tests which compare the ADF statistics
with MacKinnon (1991) critical values. Unfortunately, while Type I errors
are always close to nominal values, power is rather disappointing in empir-
ically relevant sample sizes: for instance, with T = 40 only slightly higher
than 50% for a 5% test.

Can adding the panel dimension help? The results in Tables 3-4 suggest
it can indeed. First of all, Type I errors are generally close to nominal,
except for some overrejection of the RSB test with T = 20 (recall that
with 1000 Monte Carlo simulations approximate 95% con�dence intervals
around 5% and 10% are respectively 4%-6% and 8%-12%). Second, the
power performance is very good: more than the high values of the rejection
rates (which are conditional on the speci�c DGP and signal/noise ratio at
hand), the important evidence here is their rapid growth with the cross-
section dimension.

The good behaviour of the panel tests is con�rmed by the results with
T = 80 and the �rst �ve units (Table 5): Type I errors are essentially equal
to nominal size and power reaches 100%.

Allowing for a break �xed at the DGP break date (Table 6-7) the tests
show a tendency to underreject. Overall both the size bias and the power
loss are however limited, suggesting that extending the procedure to the
empirically more relevant case of unknown break points along the lines of
Gregory and Hansen (1996) may be a worthwhile research topic.

Finally, in Table 8 we report the Type I errors of the Durbin-Hausman
group mean test DHg by Westerlund (2008). We stress again that the
application of the test is obviously wrong here; a careful common factor
analysis of the data would conclude that the residuals have no common
factor, while the right-hand side variable does. Though largely expected,
the results are nevertheless instructive of the possible consequences of a
automatic application of the method: since the common factor procedure
fails to remove the dependence across units, the test heavily overrejects. In
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fact, when the X is generated according to the full speci�cation (5)-(8) with
two common factors the true null of no cointegration is always rejected by
DHg test. Letting 2 = 0 so that there is only one, non stationary common
factor, the size bias falls but it is still very large, and, though shrinking with
the time dimension, it worsens with the cross-section one for a �xed time
sample. The problem is that, since the bias is exactly in the direction most
welcome by practitioners (against H0: no cointegration, hence in favour
of the existence of a cointegrating relationship), they will probably be too
happy of the results delivered by a routine application of the test to check
carefully the validity of its assumptions.

Table 1
Asymptotic and Bootstrap

Aggregate Cointegration Tests
Size

RSB
Block size

T � MK WB 0:10T 0:15T 1

20 0:01 0.00 0.01 � 0.01
0:05 0.02 0.06 � 0.06
0:10 0.03 0.13 � 0.14

40 0:01 0.00 0.01 0.01 0.01
0:05 0.05 0.08 0.04 0.04
0:10 0.06 0.13 0.12 0.12

160 0:01 0.03 0.02 0.02 0.02
0:05 0.05 0.06 0.06 0.07
0:10 0.09 0.11 0.12 0.12

DGP : X = N�1
PN
i=1Xi; Y = N

�1
PN
i=1 Yi

Xi : cf. (5)-(8)
Yi : cf. (4), �i = 18i
H0 : No cointegration
test : ADF on cointegrating residuals
MK: MacKinnon (1991) critical values
WB: Wild Bootstrap
RSB: Residual-Based Stationary Bootstrap
1 :block size set to 4 when T = 20:
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Table 2
Asymptotic and Bootstrap

Aggregate Cointegration Tests
Power

RSB
Block size

T � MK WB 0:10T 0:15T 1

20 0:01 0.02 0.09 � 0.26
0:05 0.16 0.30 � 0.45
0:10 0.28 0.46 � 0.66

40 0:01 0.08 0.21 0.27 0.19
0:05 0.42 0.52 0.61 0.49
0:10 0.62 0.69 0.77 0.66

160 0:01 0.93 0.99 1.00 0.99
0:05 1.00 1.00 1.00 1.00
0:10 1.00 1.00 1.00 1.00

DGP: see Table 1; �i � Uniform(0:6; 0:8)
H0 :No cointegration; H1 : cointegration;
test: ADF on cointegrating residuals.
1 :block size set to 4 when T = 20:
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Table 3
Bootstrap Panel Cointegration Tests

Size

Units
5 10 20 40

T � Median(ADF )
20 RSB 0.05 0.08 0.08 0.10 0.10

0.10 0.14 0.16 0.20 0.20
WB 0.05 0.05 0.05 0.05 0.03

0.10 0.11 0.12 0.12 0.09
40 RSB 0.05 0.06 0.07 0.07 0.06

0.10 0.10 0.14 0.14 0.12
WB 0.05 0.04 0.05 0.04 0.03

0.10 0.08 0.10 0.09 0.09
T � Mean(ADF )
20 RSB 0.05 0.08 0.09 0.12 0.10

0.10 0.14 0.17 0.22 0.20
WB 0.05 0.04 0.03 0.04 0.01

0.10 0.10 0.09 0.08 0.05
40 RSB 0.05 0.05 0.07 0.06 0.05

0.10 0.12 0.13 0.13 0.12
WB 0.05 0.05 0.05 0.04 0.02

0.10 0.09 0.11 0.08 0.06

DGP:
Xi : cf. (5)-(8)
Yi : cf. (4), �i = 18i
H0 :No cointegration
Median(ADF): H1 : cointegration in most units
Mean(ADF): H1 : cointegration in a large
number of units or strong cointegration in a
smaller number of units.
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Table 4
Bootstrap Panel Cointegration Tests

Power

Units
5 10 20 40

T � Median(ADF )
20 RSB 0.05 0.74 0.94 1.00 1.00

0.10 0.85 0.97 1.00 1.00
WB 0.05 0.97 1.00 1.00 1.00

0.10 1.00 1.00 1.00 1.00
40 RSB 0.05 0.99 1.00 1.00 1.00

0.10 1.00 1.00 1.00 1.00
WB 0.05 0.99 1.00 1.00 1.00

0.10 1.00 1.00 1.00 1.00
T � Mean(ADF )
20 RSB 0.05 0.57 0.86 0.99 1.00

0.10 0.83 0.97 1.00 1.00
WB 0.05 0.99 1.00 1.00 1.00

0.10 1.00 1.00 1.00 1.00
40 RSB 0.05 0.98 1.00 1.00 1.00

0.10 1.00 1.00 1.00 1.00
WB 0.05 0.98 1.00 1.00 1.00

0.10 1.00 1.00 1.00 1.00

DGP:
Xi : cf. (5)-(8)
Yi : cf. (4), �i � Uniform(0:6; 0:8)
H0;H1 : see Table 3.
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Table 5
Bootstrap Panel Cointegration Tests

T = 80; N = 5

� 0:01 0:05 0:10

RSB Median(ADF ) Size 0.01 0.07 0.14
Power 1.00 1.00 1.00

Mean(ADF ) Size 0.01 0.07 0.14
Power 1.00 1.00 1.00

WB Median(ADF ) Size 0.02 0.06 0.11
Power 0.97 1.00 1.00

Mean(ADF ) Size 0.01 0.06 0.10
Power 0.99 1.00 1.00

DGP: see Table 3;
Size: �i = 1 8i; Power: �i � Uniform(0:6; 0:8):
H0;H1 : see Table 3.

Table 6
Bootstrap Panel Cointegration Tests

with a Known Break
T = 40; break at t = 20

Size

Units
5 10 20 40

� Median(ADF )
RSB 0.05 0.04 0.03 0.03 0.02

0.10 0.09 0.08 0.07 0.04
WB 0.05 0.03 0.03 0.03 0.02

0.10 0.08 0.08 0.07 0.04
� Mean(ADF )

RSB 0.05 0.04 0.03 0.03 0.01
0.10 0.08 0.07 0.07 0.03

WB 0.05 0.03 0.03 0.03 0.01
0.10 0.07 0.08 0.06 0.03

DGP:
Xi : cf. (5)-(8)
Yi : cf. (9), �i = 18i
H0;H1 : see Table 3.
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Table 7
Bootstrap Panel Cointegration Tests

with a Known Break
T = 40; break at t = 20

Power

Units
5 10 20 40

� Median(ADF )
RSB 0.05 0.57 0.84 0.95 0.99

0.10 0.72 0.93 0.98 1.00
WB 0.05 0.03 0.03 0.03 0.02

0.10 0.08 0.08 0.07 0.04
� Mean(ADF )

RSB 0.05 0.69 0.91 0.99 1.00
0.10 0.2 0.96 1.00 1.00

WB 0.05 0.03 0.03 0.02 0.01
0.10 0.07 0.08 0.06 0.03

DGP:
Xi : cf. (5)-(8)
Yi : cf. (9),
�i � Uniform(0:6; 0:8)
H0;H1 : see Table 3.

Table 8
Durbin-Hausman Common Factors

Group Mean DHg
Panel Cointegration Test

Size

Units
T � 5 10 20 40
20 0:05 5.6 42.4 69.8 88.5

0:10 6.5 46.8 74.6 91.0
40 0:05 2.6 24.8 35.0 48.8

0:10 4.1 29.8 42.8 58.1

80 0:05 4.8 8.1 8.6 11.0
0:10 6.1 13.4 13.3 16.5

DGP:
Xi : cf. (5)-(8),2 = 0:
Yi : cf. (4), �i = 18i
H0 : No cointegration.
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4 Empirical illustration: the Fisher e¤ect

The so-called "Fisher e¤ect" dates back to Fisher (1930), who put forth the
hypothesis that the nominal interest rate (i) adjusts to the sum of expected
real interest rate (r�) and expected in�ation rate (p�):

it = r
�

t + p
�

t (10)

Of course, (10), which involves unobserved variables, cannot be directly
tested; however, it suggests an observable direct relationship with unit coef-
�cient between the nominal interest rate and the actual in�ation rate ("full
Fisher e¤ect"). In practice, this reasonable hypothesis never found consis-
tent support from the data (recent evidence in this direction is provided,
inter alia, by Rose, 1988, MacDonald and Murphy, 1989, Bonham, 1991,
King and Watson, 1997), although more general speci�cations with coef-
�cients di¤erent from one ("partial Fisher e¤ect") or breaks were shown
to be compatible with the data (e.g., Garcia and Perron, 1996). However,
as Westerlund (2008) points out, the available empirical studies are weak
under two important aspects. First, most studies examined US data only.
Second, in the case of long-run studies the economic hypothesis is rejected
when the statistical null hypothesis of no cointegration is not. Hence, low
power of the statistical procedure used may lead to erroneously reject the
economic hypothesis of interest, exactly as it happens with the Purchasing
Power Parity theory7.

Ghazali and Ramlee (2003) and Koustas and Serletis (1999) did examine
panels of countries, but applied cointegration tests to each of them sepa-
rately. Hence, they meet the �rst objection but not the second. To tackle
both, Westerlund (2008) applied his Durbin-Hausmann panel cointegration
tests to a panel of 20 OECD countries8 for the period 1980:1-2004:4. With a
p-value equal to 0:000; the group mean DHg test provides extremely strong
evidence in favour of panel cointegration between interest rates and in�a-
tion (which appear to be non-stationary on the basis of both univariate and
panel unit root tests): Since the estimated coe¢cients are di¤erent from one
the conclusion is that the hypothesis of a partial Fisher e¤ect holding in the
examined panel as a whole cannot be rejected. Although this is a certainly
reasonable conclusion, in view of the uncertainty prevailing in the literature
its strength is somehow suspect. The simulation reported in Table 8 suggests
that in the case of common factors in the right-hand side variable, rather
than in the residuals as assumed by the test, the DHg panel cointegration
test can be severely oversized. In fact, applying our bootstrap procedure9

7 In fact, this empirical issue was an important motivation of the early developments of
panel cointegration methods: see e.g. O�Connell (1998).

8Australia, Belgium, Canada, Switzerland, Germany, Denmark, Spain, Finland,
France, United Kingdom, Ireland, Italy, Japan, Luxembourg, Netherlands, Norway, New
Zealand, Portugal, Sweden, United States.

9Mean block size T=10; 1000 redrawings. The results are robust to mean block size.
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we estimate the p-value of the mean ADF cointegration statistic as 0.03, and
that of the median ADF as 0.13. Applying the conventional 5% signi�cance
level the hypothesis of no panel cointegration is rejected in mean (hence,
in favour of the alternative hypothesis of cointegration in most of the units
or strong cointegration in a smaller number of units) but not in median
(when the alternative hypothesis is cointegration in most of the units). At
the 1% level mean and median tests agree to suggest no rejection of the
null hypothesis of no Fisher e¤ect in the panel as a whole. Our conclusion
is therefore not entirely at odds with Westerlund�s, but considerably more
cautious and thus in line with the previous literature: there is some evi-
dence in favour of a partial Fisher e¤ect, but (i) it is weaker than suggested
by the Durbin-Hausman DHg test, and, (ii) it seems to come from some
subset of the examined panel of OECD economies. Clearly, as suggested by
Garcia and Perron (1996), allowing for breaks may strengthen the evidence
in favour of a Fisher e¤ect.

5 Conclusions

The key contribution of this paper is to put forth a test for panel cointegra-
tion in dependent panels based upon a residual based unit root test recently
proposed by Parker, Paparoditis and Politis (2006). The test procedure is
shown by simulation to deliver good size and power performances in panels
with long- and short-run dependence due to common factors in the vari-
ables examined. The power gains with respect to aggregate tests appear
particularly valuable. Applying the procedure to test the Fisher hypothesis
on the Westerlund (2008) data we �nd some weak evidence in favour of a
partial Fisher e¤ect; our conclusions are therefore more cautious than West-
erlund�s. Future research will try to address the issue of data-based choice
of block size, the asymptotic properties of the test, as well as generalising
the procedure to allow for breaks at an unknown date.
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