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                                         Abstract  

A model with special attention on the (subjective) survival probability is proposed to 

understand salient aspects of retirement age decision. Optimal retirement age results 

are derived with a death hazard rate function having non-negative duration 

dependence. At the optimum age, the retiree wants to have a compensation in the 

form of early retirement for his/her evident non-zero death risk. A retiree with large 

welfare inputs supporting mortality risk decreasing effects delays his/her retirement 

time. From policy perspective we need to lower the elderly health costs to reduce the 

death hazard rates leading to higher optimal retirement ages. Some empirical findings 

with the birth year 1947 cohort in Finland do not conflict the model results. Death 

hazard rate function estimates show that gender, health, civil status, incomes, and 

pension affect the death hazard rates. The retirement age has a longevity increasing 

effect across the different model specification.  
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1. Introduction 

Retirement is a special period in person’s life. Typically, it is the last life period before the 

death. In economics, timing of retirement is usually modelled with the life-cycle approach as a 

form of labour supply decision. At the time of retirement, leisure and consumption, and 

disutility of work compensated with incomes are closely interrelated. Higher incomes should 

induce more leisure and consumption (if leisure is a normal good) implying that higher labour 

earnings and pension should lead to an earlier retirement. However, if more earnings are gained 

when retirement is postponed, this can elicit more years of work because of the intertemporal 

substitution effect. In sum, income effect (early retirement) and substitution effect (post-

ponement of retirement) make the retirement date decisions ambiguous (see, e.g. Crawford & 

Lilien 1981, Fields & Mitchell 1984).   

In general, the net total effect on retirement date can be either positive or negative depending 

on retiree’s preferences for work and leisure. However, as a standard result, a larger share in 

favour of pension income with a given lifetime budged lowers the retirement age.  Note that 

this is a sure thing only when work incomes are not directly related to pension income level.  

When pension level depends on the retiree’s work career earnings (i.e. salary and self-

employment incomes), the ambiguous net retirement age result can emerge again. In addition, 

lifetime consumption and wealth, taxes on wealth and incomes, health, and spouse’s incomes 

and pensions also have roles in this context.  Different results are derived in the literature on 

retirement timing in various theoretical and empirical models (see, e.g. Kalemli-Ozcan & Weil 

2010, Mao et al. 2014, d’Albis et al. 2012, Kuhn et al. 2015, Bound et al. 2010, Fonseca et al. 

2009, Chen et al. 2021, Peijnenburg et al. 2010, Cremer et al. 2004, Dalgaard & Strulik 2014, 

Fitzpatrick & Moore 2018, French & Jones 2017, Bozio et al. 2021). Any systematic and 

uniform results from this ongoing research agenda is hard to summarize.  

Surprisingly the papers that focus explicitly on how retirement timing depends on death hazard 

rate or survival probability are almost non-existing.  Note that many countries have an eligible 

age window that permits the retiree delay his/her “optimal” retirement age with rising pension, 

like between the ages of 63 to 68 years in Finland. This means that (subjective) survival time 

estimates must have some, but often neglected, role in the formation of retirement decisions. 

Almost all papers mentioned above base on the result that retiree has a fixed planned death age 

– typically one very high. Alternatively, he/she takes some estimate of expected lifetime as a 

given parameter in his/her “optimal” retirement date decision. Literature on subjective survival 

probabilities has shown that persons derive seriously estimates concerning their survival 
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probabilities and let these also affect their retirement decisions (see, e.g. O’Donnell et al. 2008, 

Palloni & Novak 2016, Wu et al. 2015).  

Next, in Section 2, we propose quite elementary model where death hazard rate has a major 

role in the optimal retirement age decision. Optimal retirement age results are derived with 

death hazard rate function having a non-negative duration dependence. The model results give 

us also possibility to propose some policy alternatives concerning elderly health costs and 

poverty.  Section 3 provides some empirical results on the death hazard function rates among 

the Finnish retirees born in year 1947.  Section 4 concludes the paper with a sum-up and 

discussion on the paper results.  

 

2. Model  

2.1. Set-up and the basic model 

In the following we assume that person’s welfare level (e.g. incomes, pension, consumption) 

is proportional to his/her retirement age TR, i.e. vTR, where v > 0. This corresponds to the fact 

that a person with a long work-career with postponed retirement can earn also higher pension 

allowing for increases in wealth and health investments. Although the pre-retirement labour 

supply decisions and full life-cycle optimization approach are not considered here, we pay 

attention to pre-retirement factors on retirement age, i.e. they are related to the person’s value 

of the parameter v.1) 

Aging means also increasing relative costs to a person as he/she gets older, i.e. '( ) 0
R

C T   and 

''( ) 0RC T  . Here we mean by costs all the dis-utilities, functional and health problems, which 

getting older will cause to a person. We stress the importance of probability of death in this 

context, i.e. retirement age decision most include some estimate of death uncertainty as one of 

its main forcing variables. We model the probability of survival beyond period TR as  

                                          ( ) ( )
R

S t Prob T t=  1 ( ) 1 ( )
R

Prob T t F t= −  = −   

where F(t) is the person’s estimate for probability of his/her life length less than t. 

Next, we assume that person faces the following optimization problem with respect to TR  

                I)                       max{[ ( )] [1 ( )]}
R

R R R
T

v T C T F T −  − . 

 
1 )  We use this simple welfare function instead of  e.g. concave function W(TR) in order to keep the analysis  

     tractable.  
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The 1st order condition is  

                                     [ '( )][1 ( )] [ ( )] ( ) 0  
R R R R R

v C T F T v T C T f T− − −  − = :   

 

            II)          
( )

[ '( )]  [ ( )]   [ ( )] ( ).
[1 ( )]

R
R R R R R R

R

f T
v C T v T C T v T C T h T

F T
− =  − =  −

−
         

 

Note when the last term in Eq. II) is positive, [ ( )] ( ) 0
R R R

v T C T h T −  , we have [ '( )] 0,
R

v C T−   

meaning that the net marginal welfare at the optimal retirement age is positive. This 

corresponds to retirement age of 
*

R
T  in the Figure 1 where the slope v is larger than the slope 

of cost function. Note that 
*

R
T  is less than TR1 where 1

[ '( )] 0
R

v C T− = .  

                                   

                   Figure 1. Optimal retirement age as a function of welfare and age costs. 

 

In details, the condition [ ( )] 0
R R

v T C T −   is valid up to time point TR2. However, at the 

optimum retirement age 
*

RT  we have [ '( )]
R

v C T− − [ ( )] ( ) 0
R R R

v T C T h T − =  meaning that 

[ '( )]
R

v C T−  [ ( )] ( )
R R R

v T C T h T −  if ( ) 0Rh T  .  The 2nd order conditions for maximum at 
*

RT   are 

giving in Appendix 1.   

The maximization solution includes also the death hazard rate function, h(TR), that is always 

positive, and specifies the death risk rate estimate for the retirement age before the age of death, 
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given the age TR.2)  Note, that hazard rate is a risk measure that is closely related to the 

probability of dying at age t, ( )F t , and to the survivor function S(t) = 1 – F(t) as 

                            ( ) [ ( ) / ] / [1 ( )] ( ) / [1 ( )] ( ) /h t dF t dt F t f t F t dlnS t dt= − = − = − .  

These remarks mean that we can give the following interpretation to our optimal positive net 

marginal welfare result [ '( )] 0 :
R

v C T−   a person wants to have a compensation for his/her 

evident non-zero death risk at the retirement age 
*

RT . Note that, if the hazard rate function shifts 

upward (i.e. higher death risk),  [ '( )] 0
R

v C T−   needs to be larger than earlier, i.e. retirement 

time is less than 
*

RT . If the welfare factor v is high, this gives room for higher optimal retirement 

age as '( )RC T can also be higher. Alternative, if welfare is very low (i.e. low value of v), or age 

costs are high at the retirement time, then the sign of [ '( )]
R

v C T−  is negative.  Now the optimum 

retirement time does not exist if [ ( )] 0
R R

v T C T −  . Person reacts to this by trying to retire as 

early as possible to keep his/her marginal elderly costs '( )RC T as low as possible. Clearly this 

is not socially desirable outcome and policy is needed here to correct negative value of 

[ '( )]
R

v C T− .3) 

We argue that death hazard rate function gives us a useful interpretation of retirement age 

decision problem in a conditional form. Risk to a stay alive until (and after) time TR is a 

different thing than the probability to die at time TR. Most importantly death hazard gives us 

insight how aging determines the rate at which retirement age is under the death risk. This 

means that hazard rate function is a time dependent measure, and we can analyse its duration 

dependence, i.e. how the risk rate of life termination increases, stays constant, or decreases as 

the retirement age TR increases.  Positive duration dependence PDD (or increasing hazard) 

exists at time point t*  if *
( ) / | 0.

t t
dh t dt

=
  Negative duration dependence NDD (or decreasing 

hazard), and constant hazard occur when *
( ) / | 0

t t
dh t dt

=
  and *

( ) / | 0.
t t

dh t dt
=

=   

 
2) A precise definition for hazard function is

0

( ) lim ( | ) /t Prob t T t T t


  
→

=   +  . 

3) Note that negative value of  [ '( )]
R

v C T−  can also mean that [ ( )]
R R

v T C T − is negative if we derive the optimum 

retirement age. The person can survive with condition [ '( )] 0
R

v C T−   for some time but condition 

[ ( )] 0
R R

v T C T −  refers to cases like the incidence of catastrophic health costs that has some relevance also in  

Finland (see Tervola et al. 2021).  
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Comparative statistic results show (see Appendix 2) that 
* / 0RdT dv   happens when aging 

costs are increasing ( '' 0C  ). This means that if welfare factors at optimal retirement age are 

increased person will delay his/her retirement age because the slope v increases to w (vTR → 

wTR  in Figure 1), i.e. the marginal gain of postponing retirement time increases and the optimal 

retirement age will rise (TR**  in Figure 1). The opposite result is obtained when the aging cost 

function C(TR) switches upward. Note that these results hold only when hazard duration 

dependence is close to zero, i.e. ' 0h . To obtain more general results we have to analyse 

separately the NDD and PDD cases where 'h  is relative large in absolute value supporting 

either 
*

/ 0
R

dT dv   or  
*

/ 0
R

dT dv   results.   

 

2.2. Negative duration dependence (NDD) and 
* / 0RdT dv   

Allowing for increased welfare factors to decrease the optimal retirement age (
*

/ 0
R

dT dv  ) 

happens when we have large NDD effects, i.e. 
*

| ' |  '' [ '] / [ ]
R

h C h v C vT C + − −  and 
*

1 /
R

h T  (see 

Appendix 2). However, the typical human death process (“the law of mortality”) hardly 

supports large NDD-effects meaning that death occurs (relatively) less often when the person 

gets older. We could proceed here with mild NDD effects, e.g.  caused by improved medical 

technology and care, with h’ close, but below to zero, and 
*

1 /
R

h T , supporting 
*

/ 0
R

dT dv 

result. Instead, we pursuit in the next sections to model alternatives that concern explicitly 

inputs or actions that reduce death probability at the individual level under the more natural 

PDD case.   

 

2.3. Positive duration dependence (PDD) and 
* / 0RdT dv   

Note that when PDD or DD happens ( ' 0h  ), we need that 
*

1 /
R

h T  to support result 

*
/ 0

R
dT dv   (see Appendix 2). When 

*
1 /

R
h T ,  we obtain 

*
/ 0

R
dT dv  . We want to avoid this 

case as it means that increases in welfare rate lowers the optimal retirement age when the death 

hazard rate is PDD. Although this is a plausible result at the individual level, it is socially 

unbearable because the target of welfare inputs and medical care (also included in v) is to 

preserve life and reduce death risk which also give the possibility to rise the retirement age. 4)  

 
4) The relation between h and 

*
1 /

R
T  has some addition interest here as 

*
1 /

R
T  gives some estimate for the 

(subjective) hazard rate in terms of optimal retirement age. As the objective (population) hazard rate increases 

with age (PDD) we can refer to results 
*

1 /
R

h T  and 
*

/ 0
R

dT dv  without leaning to subjective hazard rates.  
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2.4.  Extended model with PDD hazard function 

In response to this we introduce a welfare improving function ( )v z  where input z, like higher 

pension, health promoting life activities, healthy food, and medical care, acts also as quality 

effect on TR so that per retirement age the welfare level is higher when z increases. These 

additional inputs are not costless but mostly important they reduce the death risk, i.e. lower the 

hazard rate. Thus, we assume that for any z the function ( )v z  is concave ( 0  and  0
z zz

v v  ), 

and the cost function is convex in z.  For hazard function with fixed z we keep with PDD 

effects, i.e.  ( , )
R

h T z  with 0,
RT

h   but now the risk reducing variable z needs special attention. 

Our extended value function has the following form  

 

               III)             
,

( , ) max{[ ( ) ( , )] [1 ( , )]}
R

R R R R
T z

V T z v z T C T z F T z=  −  − . 

 

Optimum conditions are following (Appendix 3 gives the 2nd order conditions)  

  

 

       IV-1)        

( , )
    [ ( ) ][1 ( , )] [ ( ) ( , )] ( , ) 0

                    [ ( ) ( , )] [ ( ) ( , )] ( , ).

R

R

R
T R R R R

R

T R R R R

V T z
v z C F T z v z T C T z f T z

T

v z C T z v z T C T z h T z


= − − −  − =



 − =  −

 

 
 

       IV-2)        

( , )
    [ ' ][1 ( , )] [ ( ) ( , )] / 0

                    [ ' ] [ ( ) ( , )] ( , ).

R
R z R R R

R

R z R R R

V T z
v T C F T z v z T C T z F z

z

v T C v z T C T z g T z


=  − − −  −   =



  − =  −

 

 
 

Last result is non-standard because we allow here for a case where variable z changes the shape 

of distribution function ( , )
R

F T z  by altering its parameters.  For example with the Weibull 

distribution, the survival function is ( , ) 1 ( , ) exp( ( ) )  with  0.S t z F t z z t


 = − = −    Now, the 

partial derivatives of ( , )lnS t z−  are ( , )h t z =
1

( )z t


 
−

 and ( , ) '( ) .g t z z t


=   Note that Weibull 

hazard function is PDD when 1  . Next, we specify that '( ) 0z  , i.e. the larger value of 

welfare input z decreases the value of   and less is the hazard rate with the given value of 

time variable t.  

 

In the  present setting this corresponds to “care adjusted mortality incidence rate” ( , ) 0
R

g T z   

with 0
RT

g   and 0.
z

g   These assumptions mean that for optimal z* with ( , ) 0
R

g T z   we have 
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   IV-2’)      *

( , )
| :   [ ' ] [ ( ) ( , )] ( , )    [ ' ] 0.R
z z R z R R R R z

R

V T z
v T C v z T C T z g T z v T C

z
=


 − =  −   − 


 

 

 

2.5. Interpretation for the optimal TR and z results 

The optimal 
*

RT  needs that  [ ( ) )] 0
RT

v z C−   as [ ( ) ] 0  and  ( , ) 0
R R

v z T C h T z −    (see result IV-

1) above). Thus, at the optimal retirement age 
*

RT  welfare effects v(z) must outweigh the 

marginal costs of postponing retirement if the death hazard function is PDD. This is quite 

natural outcome in this context, i.e. when the estimate of risk of dying is high (high value of 

( , )Rh T z ), the retiree wants to have compensation for it in terms of improved (marginal) net 

welfare with a lower optimal retirement age.  Alternatively, a given high value of z means high 

value for v(z) and low ( , ),Rh T z  and the optimal 
*

RT  can increase.  

 

For the optimal welfare input z* the marginal welfare effect is less than the marginal cost, 

[ ' ] 0
R z

v T C −  , because large z input means a lower hazard rate as the adjusted mortality 

incidence rate is negative ( ( , ) 0
R

g T z  ), and [ ( ) ( , )] 0
R R

v z T C T z −   (see results IV-2 and IV-2’ 

above). The result means that a person wants to invest in his/her welfare (e.g. in health and 

care) with high marginal costs to reduce his/her death hazard rate ( , )Rh T z . Clearly the result 

depends on person’s income and wealth. This is a sensitive equity question.  

 

From policy perspective above results indicate that policy targeted to increase values of 

[ ( ) )]
RT

v z C−  or [ ( ) ( , )] ( , )
R R R

v z T C T z h T z −  by lowering the retirement age TR is neither desirable 

nor effective policy as is the subsidising the cost of welfare inputs in order to increase their use. 

Thus, increasing the absolute values of [ ( ) )]
RT

v z C− , [ ' ]
R z

v T C −  and ( , ) 
R

g T z with larger z 

inputs for all citizens means also lower individual death hazard rates and higher optimal 

retirement ages. In general terms this means that healthy retirement years are socially more 

preferred alternative than the longer retirement periods.  

 

The above analysis started with assumption that subjective survival expectations are good 

approximates to the actual survival values or they average to the “representative” agent’s 

estimate of survival that equals the actual survival probability. The current literature of 

subjective survival expectations supports this approach. Alternatively, we can use here the 
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“social planner” perspective where the planner takes the life table survival time estimates for 

representative agents as the starting point and works out the above optimization.  

 

3.  Death age hazard rates among the Finnish retirees born in year 1947  

3.1. Model implications  

Model results above have interesting empirical implications. The optimal retirement age 

depends on retiree’s net (marginal) welfare level, i.e. on the welfare inputs (e.g.  incomes, 

pensions, and health care), and on the age-related health costs. However, the death hazard rate 

function has an important role in the model. For the given level of inputs and costs a high 

hazard rate ( , )Rh T z  means early retirement age as the net marginal gain of retirement must be 

large for high ( , )Rh T z supporting large [ ( ) ]
RTv z C−  and low .RT  Similarly, if aging health costs 

are large, optimal net marginal gain can be sustained only with a lower value of retirement age. 

However, both these outcomes can be overruled if the hazard rate function can be shifted 

downwards with large welfare inputs. Thus, we have a trade-off situation for the optimal 

retirement age between welfare inputs and age costs that are mediated through the death hazard 

function depending on these factors. The shape of hazard rate function is also important here. 

We sustained our result with a hazard function having a non-negative duration dependence 

with respect to retirement age, and with hazard function shape sensitivity with respect to 

welfare inputs.  

 

Although the theory results are quite many-sided and inter-related, the model is based on the 

following two elementary assumptions: A) death hazard rate is high with health problems, and 

B) death hazard rate is low with high welfare inputs. These support the following main optimal 

retirement age results: I) larger welfare inputs mean higher optimal retirement age, and II) large 

health costs lower the optimal retirement age. Next, we analyse in detail first the assumptions 

A) and B), and then proceed to empirical death hazard rate modelling with health indicators, 

income, pensions, and retirement age.   

 

3.2. Data and death hazard rate estimates 

We use person level register data on the year 1947 birth cohort in Finland. The sample retirees 

started their elderly pension period as their first and only form of retirement during the follow-

up time of 1.1.2007 –  31.12.2019. The sample size is between 35984 and 40662 observations 

depending on the variables (Appendix 4 gives the related summary statistics). For the year 
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1947 birth cohort the eligible old-age pension age window was between ages of 63 and 68 

years but quite many persons retired before the age of 63 years for different reasons. However, 

close to 55 percent of sample persons retired between ages of 63 – 64 years, and over 90 percent 

of persons retired before age of 66 years (see Figure A1 in Appendix 4). Next, we concentrate 

on the death hazard rate estimates with persons retiring before and after the age of 63 years.  

 

The following Figure 2 (left side) shows the smoothed death hazard rate estimates with 95% 

CI’s for the persons retired before and after age of 63 years. Surprisingly, after 63 age retirees 

have lower hazard rates compared to the pre-63 age retirees.5) Figure 2 (right side) shows that 

persons that had some health problems before retiring have higher death hazard rates compared 

to those with-out the health problems. In this context health problems were measured with 

having zero or non-zero sick on leave (#SOL) days before retirement. 

  

   Figure 2.  Death hazard rates with retirement age before and after age of 63 years (left), and  

                   with zero and non-zero sick on leave days (#SOL) (right). 

 

Next question concerns how the welfare inputs  – here income and pension –   affect the death 

hazard rates. Note that the policy of accelerated accrual rate (AAR) to rise the retirement age 

was valid in Finland during our sample follow-up. AAR schema provided a 4.5% increase on 

old-age pension based on the full work time incomes per year between the ages of 63 to 68 

years. Thus, the income and pension variables here include an additional AAR effect to delay 

retirement age, but our focus is on their effects on the death hazard rate.  Figure 3 (left side) 

shows that persons having incomes above 100.000 euros per year have the lowest death hazard 

 
5) Note that you cannot retire after you have died, i.e. the condition AGE – TR  ≥  0 is always valid in our sample. 

However, this “older you retire, older you die” -condition does not mean that death hazard rates are always less 

with higher retirement ages. Appendix 5 shows that when retirement happen at the age of 66 years or later the 

death hazard rates are higher than for pre-66 age retirees.    
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rates at the given age of death compared to rates with less income takers. Figure 3 (right side) 

replicates these results in the metric of yearly average old-age pensions. Note that between 

death ages of 66 and 68 years the death hazard rates do not increase among persons having 

incomes above 100.000 euros. In addition, the hazard rate functions start only after the age of 

death of 63 years because the sample contains only a few observations with the age of death 

less than 63 years in the highest income and pension categories.  

 
               Figure 3. Death hazard rates with incomes (left), and with pension (right) 

 

To sum-up, above graphical analysis shows that persons retiring after age of 63 years have a 

lower death hazard rates than pre-63 age retirees have showing that death hazard is related to 

the retirement age.  Secondly, death hazard rates are sensitive to welfare inputs and health 

problems in the expected way:  Higher incomes (and pension) sustain lower hazard rates, but 

health problems mean increased death risk. 

 

3.3. Modelling death hazard rate 

Next, we propose some survival time models to test our theory model implications.  We model 

death hazard rate function depending on retirement age, health risks, incomes, pensions, and 

on some additional time independent covariates.  Our focus here is not to model how retirement 

age is related to incomes and pensions but on how retirement age conditions death hazard rate 

function.  

 

Models presented below are so-called “slope change” models where persons retiring before the 

age of 63 years are expected to have different coefficient estimates on income and pension 

variables than retirement taking place after the age of 63 years. As the target of AAR schema 

was to postpone retirement age with full-time work after age of 63 years, we can argue that 
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incomes before retirement, and especially AAR pensions when retiring, have different impacts 

on death hazard rates before and after of retirement age of 63 years (see above, Figures 2 and 

3). The framework allows us to test for possible pre-retirement income and post-retirement 

pension effects on the death hazard rates. To identify the health aspects of our theory model 

we include into empirical models a category variable (D_sick) that measures the number of 

sick-on leave days before retirement. Next, we estimate parametric accelerated failure time 

(AFT) models with ML-method for the death age variable AGE .  

 

The covariate parts of AFT models are 6) 

 
' '

0 1 , 2 , 3
Model A1:  

R i SICK i i
 d d T D+ + +d d X  

' ' '

0 1 , 2 , 3 63 4Model A2:   R i SICK i i iT D D INCOME + + +  + X    

' ' '

0 1 , 2 , 3 63 4Model A3:   R i SICK i i iT D D PENSION + + +  + X     

' ' ' '

0 1 , 2 , 3 63 4 63 5Model A4:   R i SICK i i i ic c T D D INCOME D PENSION+ + +  +  + c c c c X  

  where  

                      
:  age of death during the sample follow-up or age at the end of 

             sample follow-up (i.e. the censored observations) 
i

AGE
 

                          , :  retirement ageR iT after age of 59 years  

      
1,    if  number of sick-on leave days is 0  60                              
2,   if  number of sick-on leave days is 60  240    
3,   if  number of sick-on leave days is  > 240                  

SICK
D

−
= −

             





 

         63

1,   if retirement age is 63 (AAR policy is valid)     
0,   if retirement age is 63 (AAR policy is not valid)

D


=


 

 mean of yearly salary incomes before retirement (1000 euros)iINCOME =  

 mean of yearly pension after retirement (1000 euros)iPENSION =  

             some additional covariates (e.g. gender and civil status)=
i

X  

 

Note that in our theory setting retirement age was an endogenous variable derived as an 

optimum solution to the model. In this sense our empirical models can be interpretated as 

“structural”. However, our interest here is on the empirical effect of (optimum) retirement age 

on the death hazard rates specified with the death as the event variable and the age of death is 

the survival time variable. In our theory model death hazard function was specified on the 

 
6 'lnAGE  = + +X)  AFT  models have form of  where μ and σ are distribution location and scale  

( | ) ( ) ( ( ' ))S t X exp AGE exp =   − − = X    parameters. This leads to the following survival function  

0
( ( ' ))S AGE exp  − −  X    (e.g. see Legrand 2021, Chapter 2).  
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retirement age. We expect that death hazard rates with the age of death are somewhat larger 

than with the retirement age because the age of death cannot be less than the retirement age is 

( †AGE 0RT−  ). Note that the retirement age as first order Taylor approximation of the death 

hazard function is positive.7) However, this reservation does not solve our potential endo-

geneity problem in the empirical models.  

 

In survival analysis some interest has focused on the problem of endogenous covariates. The 

basic result is that knowing the value of the time-dependent covariate up to time s (e.g. 

retirement age, incomes, or pensions), the future values of covariate up to time t > s are not 

impacted by the occurrence of event (e.g. death) at time s (Legrand 2021 p. 274, Lancaster 

1990, p. 28).  In other words, the time-dependent variables for which the evolution over time 

is known or fixed in advance, independently of possible values of event (death/alive), are 

exogenous.  Here the death interrupts retirement spell, income, and pension plans. Thus, these 

variables are not necessarily exogenous in our survival models although the variables have 

known values before and after the random death. We can say that the death has an impact on 

these variables but in a fixed knowable way.  

 

Another potential problem in estimating hazard rate function is related to frailty or unobserved 

heterogeneity. Frailty is present when some persons will experience the event earlier than 

others because of some unobserved factors, and this heterogeneity will bias downwards the 

model parameter estimates. This problem can be handled by introducing a non-negative 

random variable (i.e. frailty distribution) for everyone in sample that multiplies the hazard 

function. Next, we estimate the AFT models with Gamma frailty distribution and test if the 

frailty is present in the models.  

 

3.4. Model estimation results  

The BIC/AICC specification values for model A4 with additional covariates showed that 

Generalized Gamma (GG) error distribution is the most preferred alternative (see Table 1).8) 

The results were similar with models A1-A3. However, when we correct estimates for the 

 
7) By taking the 1st order Taylor -approximation for the death hazard function around the optimal retirement age 

with ΔT ≥ 0 we get 
0 1

† * * *
( ( ) ( ) '( )( )) R R Rh AGE h T T h T h T T h h T+   +  = = +  where 

*

1'( ) 0,Rh T h=   if h is 

non-NDD.  Note also that the pairwise correlation between death and retirement ages is 0.222 in the sample.  

 
8) We added to models following variables:   GENDER = 1 (male), 2 (female), and CIVIL STATUS = 1 (unmarried),  

   2 (married etc.), 3 (divorced), 4 (widow). The former interacts with the DSICK  variable.  
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possible frailty, we use LogNormal (LN) approach because GG estimations under different 

frailty distribution were not converging. Finally, the interpretation of coefficient estimates 

follows the AFT -model structure, i.e. when α > 0 (α < 0) log time to event increases (decreases) 

(see footnote 6).  

 

   Table 1. Model information criterions for alternative distributions of age of death (Model A4) 

----------------------------------------------------------------------------- 

       Model |        N     LL(null)  LL(model)      df    AIC        BIC 

-------------+--------------------------------------------------------------- 

 exponential |     35,886 -10756.850 -10360.661      14  20749.331  20868.162 

     weibull |     35,886  -4941.865  -4492.011      15   9014.021   9141.342 

    gompertz |     35,886  -4995.093  -4544.908      15   9119.817   9247.139 

   lognormal |     35,886  -4814.241  -4353.512      15   8737.024   8864.346 

   llogistic |     35,886  -4927.556  -4469.389      15   8968.779   9096.101 

      ggamma |     35,886  -4583.041  -4247.279      16   8526.559   8662.368 

----------------------------------------------------------------------------- 

 

In the estimation result Table 2, the first model (A1) uses TR  as the only continuous predictor. 

The sign of its coefficient estimate is positive with value of  0.0079  (p-value < 0.001). This 

means that postponing retirement time has an increasing impact on the log time to death, i.e. 

death hazard function is lower for persons delaying their retirement.  Having sick-on leave days 

over two months (60 days) increases the death hazard risk for both sexes but interestingly 

having short or zero period of sick-on leave days lowers the death risk.  Being married or 

widow lowers the risk compared to unmarried.  

 

When incomes and pension are added into the model (models A2 – A4), the effect of retirement 

age on the death hazard rates is smaller and less precise than earlier. We observe that it is the 

level of pension that predicts the death risk, less the incomes. The AAR pension schema (D63 

= 1) lowers the death hazard rates with larger pension coefficient estimate compared to non-

AAR period (D63 = 0), i.e. retiring before age of 63 years. In the model specification A3 the 

t-test for equality of D63 pension coefficient estimates (0.0011 and 0.0016) is – 3.22 (p-value 

= 0.001), and in the model A4 the equality is also rejected (p – value = 0.005). Note that D63 

income coefficient estimates change their signs between models A2 and A4. In the final model 

alternative A4 income coefficient estimates are negative both in AAR and non-AAR periods. 

This means that incomes before retirement increase the death risk contrasting the pension 

effects. The LR test (
2
(1)  test) for non-frailty is rejected in all model alternatives. Appendix 

6 gives goodness-of-fit plot between the Cox-Snell (CS) residuals and cumulative hazard. 
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Model fit is good up-till the large values of CS residuals corresponding to large values of AGE 

variable. Table 3 reports the model information criterions for models A1-A4. 

 

Table 2. AFT model estimation results with LogNormal distribution (LN) and Gamma (G)  

              frailty distribution (dependent variable: lnAGE) 
------------------------------------------------------------------------- 

       Variable        |   MODEL A1    MODEL A2    MODEL A3     MODEL A4       

------------------------------------------------------------------------- 

GENDER and NUMBER OF   | 

SICK-ON-LEAVE DAYS     | 

  MALE & DAYS 60-240   |  -0.0328***  -0.0408***  -0.0299***   -0.0351***   

  MALE & DAYS > 240    |  -0.0368***  -0.0476***  -0.0340***   -0.0404***   

  FEMALE & DAYS 0-60   |   0.0437***   0.0394***   0.0486***    0.0406***   

  FEMALE & DAYS 60-240 |  -0.0062     -0.0196***   0.0009      -0.0148**    

  FEMALE & DAYS > 240  |  -0.0253***  -0.0316***  -0.0120      -0.0193*     

                       | 

SOCIAL STATUS          | 

  MARRIED              |   0.0392***   0.0281***   0.0325***    0.0232***   

  DIVORCED             |   0.0101**    0.0081      0.0071*      0.0047      

  WIDOW                |   0.0327***   0.0292***   0.0242***    0.0223***   

                       | 

RETIREMENT AGE (TR)    |   0.0079***   0.0026*     0.0050***    0.0027*     

                       | 

INCOME                 | 

 D63=0: TR ≤ 63        |               0.0000                  -0.0002*     

 D63=1: TR > 63 (AAR)  |               0.0004***               -0.0004*     

                       | 

PENSION                | 

 D63=0: TR ≤ 63        |                           0.0011***    0.0010***   

 D63=1: TR > 63 (AAR)  |                           0.0016***    0.0019***   

                       | 

CONSTANT               |   3.8304***   4.1840***   4.0001***    4.1585***   

-------------------------------------------------------------------------- 

    LN: lnsigma        |  -2.4517***  -2.4202***  -2.4339***   -2.4847***   

     G: lntheta        |   2.2063***   2.2914***   2.0167***    2.4117***       

-------------------------------------------------------------------------- 

    LR test of frailty: 

    theta = 0, 
2

(1)       181.67***    120.96***   149.87***   137.40*** 

-------------------------------------------------------------------------- 

                                Legend: * p<0.05; ** p<0.01; *** p<0.001 

 

 

 

        Table 3. Model information criterions for alternative LN -distribution models 
----------------------------------------------------------------------------- 

       Model |       N      LL(null)   LL(model)     df     AIC        BIC 

-------------+--------------------------------------------------------------- 

         A1  |     40,653  -5691.533  -5242.794      12  10509.590  10612.941 

         A2  |     35,976  -4766.497  -4464.512      14   8957.024   9075.892 

         A3  |     40,542  -5528.782  -4985.086      14   9998.173  10118.710 

         A4  |     35,886  -4617.424  -4284.811      16   8601.623   8737.432 

----------------------------------------------------------------------------- 

 

Table 4 gives the average marginal effects (AME’s) of variable coefficient estimates on the 

median age of death, i.e. dAGEMED /dx  –effects.  Thus, AME’s give the direct effect of one 

unit increase in the value of predictors on the median age of death. For example, being a female 

person increases median death age with 3.77 years. Having large number of sick-on leave days 

before retirement decreases 4.5 – 5.5 years the median death age. 10.000€ increase in yearly 
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income and retiring after age of 63 years means –0.3 decrease in the median death age. 

However, 10.000€ increase in pension means 1.4 increase in the median death age. Finally, a 

one-year increase in the retirement age supports close to a half year increase in the median 

death age.  When this happens after the age of 63 year this gives additional 1.35 years to the 

median age of death.  Note that marginal effects on the mean death ages are close to the median 

effects (see Appendix 7). 

 

                       Table 4. Average marginal effects on the median age of death  

--------------------------------------------------------------------------------- 

                    |        Delta-method 

                    |  dy/dx    std. err.       z   Prob>|z|   [95% conf. interval] 

--------------------+------------------------------------------------------------ 

FEMALE              |  3.7709     0.269       14.00  0.000       3.243     4.299 

                    |  

#SOL DAYS 60-240    | -4.5324     0.376      -12.05  0.000      -5.270    -3.794 

#SOL DAYS > 240     | -5.4795     0.553       -9.82  0.000      -6.573    -4.386 

                    | 

MARRIED             |  2.5175     0.413       6.09   0.000       1.707     3.328 

DIVORCED            |  0.6050     0.456       1.33   0.185      -0.289     1.499 

WIDOW               |  2.5465     0.526       4.84   0.000       1.514     3.578 

                    |  

D63=1: TR > 63      |  1.3512     0.313       4.32   0.000       0.738     1.964 

INCOMES             | -0.0312     0.009      -3.25   0.001      -0.050    -0.012 

PENSIONS            |  0.1441     0.019       7.47   0.000       0.106     0.182 

RETIREMENT AGE (TR) |  0.4786     0.150       3.19   0.001       0.185     0.773 

--------------------------------------------------------------------------------  

    Note: dy/dx for factor levels is the discrete change from the base level. 

 

 

3.5. Prediction with model results 

The following (counter factual or ceteris paribus) figures give summaries of our main results. 

Figure 4 shows the shapes of death hazard rate function at retirement ages of 61, 63, 65 and 68, 

years. The function estimates are based on the LN-model estimation with Gamma frailty 

distribution (Model A4) for death ages between ages of 59 – 73.7 years including the censored 

observations (i.e. the alive persons at the end of sample follow-up). For a given age of death 

(say 67 years) the higher retirement age gives a lower dead hazard rate function, and for the 

given retirement age the hazard rate function is increasing in the age of death showing the 

positive duration dependence (PDD). Note that our theory argument was that the retirement 

age optimization happens with a given PDD hazard function, not that the retirement age shifts 

the function. The slowdown in the increase rate of hazard functions at the high values of death 

age corresponds to frailty correction, high number of censored observations (still alive persons 

at the end of the sample follow-up), and on poor model fit at the high death ages (see Appendix 

6).   
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           Figure 4. Death hazard functions with retirement age at 61, 63, 65, and 68 years  

 

Figure 5. gives the hazard rate functions at the different level of pensions before and after 

retirement age of 63 years. The pension level effects on the shape and the level of death hazard 

rate function are noticeable especially during the AAR schema period (i.e. post-63 retirement 

age). Large AAR pension protects (the yellow line in the right figure) from high death hazard 

rates compared to low pension without AAR (the blue line in the left figure).  

 

Figure 5. Death hazard functions with pensions before (left) and after (right) the retirement  

               age of 63 years. 

 

Finally, we produce a graph that sum-ups our main results in a very contrasting way. We build 

on the estimation results four (potential) different hazard rate functions that correspond to the 

largest and smallest death risk at the retirement age of 63 years (see Figure 6). We notice that 

if the retiree had severe health problems before the retirement (#SOL above 240 days), his/her 

yearly incomes and pension were low (20.000 and 10.000 euros), the hazard rate function is 
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with all death ages at much higher level compared with a female with non-health problems 

(#SOL = 0) with high incomes and pensions (120.000 and 60.000 euros). A male with equal 

characteristics has the same level of death risk when the death happens at early age but as the 

age of death increases the hazard rates rise to the level that is obtained by the less fortune 

retirees with health problems. The figure shows that it is the poor health that shapes and 

determines the level of death hazard rate function, but the welfare inputs (incomes and pension) 

have also a major role in this context.   

              

     Figure 6. Death hazard rates with different combinations of covariate values at the   

                    retirement age of 63 years 

 

In summary our empirical findings do not conflict the theory model implications. Note, that 

our main target in theory modelling was to show that the (optimal) retirement age was sensitive 

to welfare inputs and health costs that also adjusted the death hazard rate function. We found 

above that the higher retirement age means higher median age of death, and the lower dead 

hazard rate function was identified with the higher retirement ages. Thus, a lower death risk 

gives room for the postponed retirement.  

 

4. Conclusions   

The problem of person level “optimal” retirement age or time was analysed with models where 

the special attention was on the (subjective) survival probability that the retiree can’t ignore 

when deciding to retire. Sensible optimization results were derived supporting death hazard 

rate function with the non-negative duration dependence. The main theory model result was 

that the person wants to have a compensation for his/her evident non-zero death in form of 

early retirement. This can be avoided if retiree’s welfare inputs are large, and the death hazard 
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rate is low at the retirement age. In the augmented model the retiree can use welfare inputs also 

to reduce his/her mortality risk leading to a later retirement age. If access to inputs is limited, 

the state should subside the input costs or provide them to delay retirement age with reduced 

death hazard rate. From policy perspective this means that public health care and pension policy 

reducing elderly poverty lower the death hazard rate. This allows for the higher optimal 

retirement ages with healthy retirement years.  

 

Some empirical findings with the birth year 1947 cohort in Finland did not conflict the model 

results. Our survival model estimations showed that gender, health, civil status, incomes, and 

pension affected death risk in different ways but still the retirement age had the longevity 

increasing effect. In this context especially the AAR pension schema starting at the retirement 

age of 63 years had the death risk decreasing effect. This can be  – once again –  evidence of 

the fact that in the average wealthier and healthier people live longer. However, we showed 

also that these people postpone their retirement in response to their high income and health 

levels. Our empirical strategy was to estimate the death hazard rate function and its dependence 

on welfare inputs, health costs, and retirement age, not on the dependency of (optimal) 

retirement age on e.g. income, pensions, and health.  This will be studied in the future research 

in details, especially putting focus on the AAR pension schema.  
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Appendix 1.  2nd order maximum conditions for model max{[ ( )] [1 ( )]}
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Derivate of the 1st order optimal result   
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Appendix  3.  2nd order maximum conditions for the extended model 
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A) and C) are negative when / 0,   / 0,RF T F z       and second order terms are close to zero. This 

implies that the Hessian is negative semidefinite supporting the local maximum at 
* *( , ).RT z   

 

 

Appendix 4.  Data sources and variable summary statistics  

 

Data sources 

Person level register follow-up data. Starting 1.1.2007 and ending 31.12.2019.  

Statistics of Finland: birthday in year 1947, gender, civil status, date of death.  

ETK (Finnish Centre for Pensions):  date of retirement, pensions, earnings.   

KELA (The Social Insurance Institution of Finland):  number of days of sick on-leave (#SOL).   

 

Summary statistics of data variables  
 

(AGE and TR  in years, INCOME and PENSION in 1000€, number of sick on-leave days (#SOL) in 

100days)  
  

DEAD        Stats |      AGE       TR     INCOME    PENSION     #SOL 

------------------+-------------------------------------------------- 

NO           Mean |     73.28     63.36     29.64     20.24      0.21 

           Median |     73.28     63.08     26.15     17.75      0.00 

               CV |      0.00      0.03      0.76      0.59      2.95 

              Min |     72.77     59.00      0.00      0.18      0.00 

              Max |     73.77     72.38    568.22    310.66      9.52 

                N |     36586     36586     32838     36583     36586 

------------------+-------------------------------------------------- 

YES          Mean |     68.71     62.98     26.63     17.38      0.46 

           Median |     69.00     63.00     23.99     15.23      0.00 

               CV |      0.04      0.03      0.91      0.57      1.98 

              Min |     59.72     59.00      0.01      1.13      0.00 

              Max |     73.62     71.61    830.75    180.13      8.18 

                N |      4076      4076      3146      3968      4076 

--------------------------------------------------------------------- 

 

DEAD        Stats |      D63     GENDER  CIVIL STATUS  DSICK 

------------------+---------------------------------------- 

NO           Mean |      0.46      1.53      2.34      1.14 

              Min |      0.00      1.00      1.00      1.00 

              Max |      1.00      2.00      4.00      3.00 

                N |     36586     36586     36578     36586 

------------------+---------------------------------------- 

YES          Mean |      0.34      1.35      2.30      1.30 

              Min |      0.00      1.00      1.00      1.00 

              Max |      1.00      2.00      4.00      3.00 

                N |      4076      4076      4075      4076 

----------------------------------------------------------- 
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                                A1. HISTOGRAM OF RETIREMENT AGES (TR) 

                             
   Appendix 5. Death hazard rates with retirement ages below and above of age of 66 years  

 

                      
 

                               Appendix 6. Cox-Snell residuals with cumulative hazard  
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         Appendix 7. Average marginal effects on the mean age of death  
 

------------------------------------------------------------------------------- 

                     |         Delta-method 

                     |   dy/dx   std. err.   z   Prob>|z| [95% conf. interval] 

---------------------+--------------------------------------------------------- 

FEMALE               |   3.6574   0.218    16.71   0.000     3.2286    4.086 

                     | 

#SOL DAYS 60-240     |  -3.9942   0.310   -12.86   0.000    -4.602    -3.385 

#SOL DAYS > 240      |  -5.3403   0.423   -12.62   0.000    -6.169    -4.511 

                     | 

MARRIED              |   2.4471   0.321     7.62   0.000     1.818     3.076 

DIVORCED             |   0.5679   0.360     1.58   0.115    -0.138     1.274 

WIDOW                |   1.8647   0.419     4.44   0.000     1.041     2.687 

                     | 

D63=1: TR  > 63       |   1.3860   0.267     5.18   0.000     0.861     1.910 

INCOMES              |  -0.0201   0.009    -2.16   0.031    -0.038    -0.001 

PENSION              |   0.1213   0.018     6.63   0.000     0.085     0.156 

RETIREMENT AGE (TR)  |   0.2622   0.081     3.32   0.001    -0.134     0.186 

----------------------------------------------------------------------------- 

Note: dy/dx for factor levels is the discrete change from the base level. 
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