Chatterjee, Sidharta (2024): The What and How of Data Analysis.
Preview |
PDF
MPRA_paper_120831.pdf Download (553kB) | Preview |
Abstract
This may be considered a formative and inspiring study on data analysis in data science research that delves into the conceptual aspects of epistemological theories and the role of expert analysts in analysing data, whether large or small. We discuss the tools and techniques generally used to uncover insights from data, demonstrating the complexity of the data analysis process. Philosophical aspects have been touched upon, with several insights drawn from epistemology. Finally, we address the value of data analysis as a knowledge resource and organisational asset, which is highlighted as well
Item Type: | MPRA Paper |
---|---|
Original Title: | The What and How of Data Analysis |
English Title: | The What and How of Data Analysis |
Language: | English |
Keywords: | Creativity, data analysis, big data, data types, heuristics, statistical tools, data science |
Subjects: | C - Mathematical and Quantitative Methods > C8 - Data Collection and Data Estimation Methodology ; Computer Programs |
Item ID: | 120831 |
Depositing User: | Chatterjee Sidharta |
Date Deposited: | 15 May 2024 09:27 |
Last Modified: | 15 May 2024 09:27 |
References: | 1.Agresti, A. (2012). Categorical data analysis (Vol. 792). John Wiley & Sons. 2.Albright, S. C., & Winston, W. L. (2020). Business analytics: Data analysis and decision making. Cengage Learning, Inc. . 3.Albright, S. C., Winston, W. L., Zappe, C. J., & Broadie, M. N. (2011). Data analysis and decision making (Vol. 577). South-Western/Cengage Learning. 4.Ali, Syed Mohd, Noopur Gupta, Gopal Krishna Nayak, and Rakesh Kumar Lenka. "Big data visualization: Tools and challenges." In 2016 2nd International conference on contemporary computing and informatics (IC3I), pp. 656-660. IEEE, 2016. 5.Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959-975. 6.Bornmann, L., & Mutz, R. (2015). Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references. Journal of the association for information science and technology, 66(11), 2215-2222. 7.Brandt, S. (1976). Statistical and computational methods in data analysis (No. 04). Amsterdam, The Netherlands:: North-Holland Publishing Company. 8.Carlyle, T. (1910). Lectures on heroes: Hero-worship and the heroic in history. Clarendon Press. 9.Carpineto, C., & Romano, G. (2004). Concept data analysis: Theory and applications. John Wiley & Sons. 10.Dahlstedt, P. (2019). Big data and creativity. European Review, 27(3), 411-439. 11.Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of business research, 133, 285-296. 12.Dzemyda, G., & Sakalauskas, L. (2011). Large-scale data analysis using heuristic methods. Informatica, 22(1), 1-10. 13.Feyerabend, P. K. (1991). Three dialogues on knowledge. John Wiley & Sons. 14.Foster, J. G., Rzhetsky, A., & Evans, J. A. (2015). Tradition and innovation in scientists’ research strategies. American sociological review, 80(5), 87 5-908. 15.Garfield, E. (1980). Citation indexing. Journal of Information Science, 2(1), 47-47. 16.Halevy, A., Norvig, P., & Pereira, F. (2009). The unreasonable effectiveness of data. IEEE intelligent systems, 24(2), 8-12. 17.Healy, K. (2018). Data visualization: a practical introduction. Princeton University Press. 18.Heeringa, S. G., West, B. T., & Berglund, P. A. (2017). Applied survey data analysis. chapman and hall/CRC. 19.Hsiao, C. (2022). Analysis of panel data (No. 64). Cambridge university press. 20.Iacopini, I., Milojević, S., & Latora, V. (2018). Network dynamics of innovation processes. Physical review letters, 120(4), 048301. 21.Johnston, M. P. (2014). Secondary data analysis: A method of which the time has come. Qualitative and quantitative methods in libraries, 3(3), 619-626. 22.Khatri, N., & Ng, H. A. (2000). The role of intuition in strategic decision making. Human relations, 53(1), 57-86. 23.Kuhn, T. S. (1997). The structure of scientific revolutions (Vol. 962). Chicago: University of Chicago press. 24. Martinez, I., Viles, E., & Olaizola, I. G. (2021). Data science methodologies: Current challenges and future approaches. Big Data Research, 24, 100183. 25.Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. sage. 26.Murtagh, F., & Heck, A. (2012). Multivariate data analysis (Vol. 131). Springer Science & Business Media. 27.Myatt, G. J., & Johnson, W. P. (2009). Making sense of data II: A practical guide to data visualization, advanced data mining methods, and applications (Vol. 2). John Wiley & Sons. 28.Peng, R. D., & Matsui, E. (2015). The Art of Data Science: A guide for anyone who works with Data. Skybrude Consulting, LLC. 29.Price, D. J. D. (1965). Networks of scientific papers. Science, 149(3683), 510-515. 30.Quine, W. V. O. (1981). Theories and things. Harvard University Press. 31.Sadiku, M., Shadare, A. E., Musa, S. M., Akujuobi, C. M., & Perry, R. (2016). Data visualization. International Journal of Engineering Research And Advanced Technology (IJERAT), 2(12), 11-16. 32.Saha, P. (2003). Principles of data analysis. Cappella Archive. 33.Sanger, J. (1994). Seven types of creativity: looking for insights in data analysis. British Educational Research Journal, 20(2), 175-185. 34.Sheard, J. (2018). Quantitative data analysis. In Research Methods: Information, Systems, and Contexts, Second Edition (pp. 429-452). Elsevier. 35.Sinclair, M., Sadler-Smith, E., & Hodgkinson, G. P. (2009). The role of intuition in strategic decision making. In Handbook of research on strategy and foresight. Edward Elgar Publishing. 36.Smith, A. K., Ayanian, J. Z., Covinsky, K. E., Landon, B. E., McCarthy, E. P., Wee, C. C., & Steinman, M. A. (2011). Conducting high-value secondary dataset analysis: An introductory guide and resources. Journal of general internal medicine, 26, 920-929. 37.SMITH, C. M. (2000). Bioinformatics, genomics, and proteomics. The scientist, 14(23), 26-26. 38.Spicer, J. (2005). Making sense of multivariate data analysis: An intuitive approach. Sage. 39.Tabah, A. N. (1999). Literature dynamics: studies on growth, diffusion, and epidemics. Annual Review of Information Science and Technology, 34, 249-286. 40.Tukey, J. W. (1977). Exploratory data analysis (Vol. 2, pp. 131-160). Reading, MA: Addison-wesley. 41.Wang, R. Y., Reddy, M. P., & Kon, H. B. (1995). Toward quality data: An attribute-based approach. Decision support systems, 13(3-4), 349-372. 42.Wasserman, L. (2018). Topological data analysis. Annual Review of Statistics and Its Application, 5, 501-532. |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/120831 |