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Abstract

This paper analyzes the relationship between demographic change and automation

while taking the role of education into account. This is illustrated by incorporating

skilled and unskilled labor into a theoretical model. If labor supply by households

decreases, for example, due to demographic change, the model states that the optimal

level of automation capital increases. However, this relationship depends crucially on

the level of education in the workforce. Motivated by this novel prediction derived from

the model, a new data set allowing for testing of the prediction is constructed. Patent

data are combined with an automation classification to arrive at a novel measure of

automation. In a series of analyses, evidence for the theoretical prediction is found.

While there is a negative relationship between automation capital and population growth,

the results corroborate the theoretical prediction that it is crucial to account for the

role of education in that relationship. Doing so yields highly significant results which

suggest that population growth is negatively correlated with automation, but that this is

only true if the workforce consists of predominantly unskilled workers.
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1 Introduction

Demographic change and in particular population aging have put labor markets under

pressure in the past decades. Japan is a cautionary example for the rest of the Western world,

which is on the same trajectory as Japan was four decades ago.1 According to data from the

World Bank, the share of countries experiencing negative working-age population growth

was 7% in 1990 but has increased to 34% in 2015.2 Balakrishnan et al. (2015) calculate for the

US economy that aging is responsible for 50% of the decline in the labor force participation

rate from 2007-2013, a trend likely to continue. The concern with an aging population is

that it reduces the labor force, thus impeding growth (for an overview of the literature on

aging and economic growth see Bloom et al. (2010)). Kotschy and Sunde (2018) explore

how the interplay of population aging and human capital accumulation affect economic

growth, concluding that there is potential to offset the negative effects of population aging by

increasing education levels. Another potential remedy to counteract the effects of population

aging may be close at hand: Japan, the prime example of the adverse effects of a declining

population on labor markets, is reported to have successfully invested in automation

technology, thereby mitigating the negative impact of the population shrinking on economic

growth.3 This suggests increased automation as a potential solution for problems caused by

labor shortages, especially in capital-rich countries facing a decreasing labor force (see also

Acemoglu and Restrepo (2017)).

Automation of course is one of the most prevalent topics in the 21st century. However,

there are clear limits to how well human labor can be substituted for by machines. It is

generally agreed upon in previous reporting and research, that mainly low-skilled jobs

are threatened by automation (e.g. Brynjolfsson and McAfee (2011) Frey and Osborne

(2017), Nedelkoska and Quintini (2018), De Vries et al. (2020), Acemoglu and Loebbing

(2022)). This literature emphasizes the role education and skills play in the discussion

of automation potential. It also highlights a shortcoming in the literature analyzing the

1The Economist (05.12.2019): “Japan’s economic troubles offer a glimpse of a sobering future"
2For an illustration of the trend using World Bank data, see Figure 2 in the Appendix.
3The Economist (27.02.2013): “Doing more with less?"
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relationship between demographic change and automation. This shortcoming is a failure to

account for the role of education.

This paper extends the existing theory relating population changes and automation by

including education in a general equilibrium model. Subsequently, the comparative statics

derived from the model are tested empirically. For the empirical part of the paper, a new,

freely available measure for automation is constructed. It can facilitate further research

contributing to the literature studying the effect of demographics on automation specifically,

and automation more generally. There is of course a large literature on structural change

and how it depends on human capital and thus education (see for example Teixeira and

Queirós (2016), Cruz (2019), and Porzio et al. (2022)). However, papers in that literature

do not analyze the interplay of demographic change, technology, and human capital. One

exception is the working paper by Peralta and Gil (2022), who propose a theoretical model

in which individuals choose education and fertility in the presence of automation. The

paper analyzes how demographic change affects automation, human capital, and the skill

premium, but not how education impacts the effect demographic change has on automation.

In independent papers, Abeliansky and Prettner (2021) and Acemoglu and Restrepo

(2022) study the effect of demographic change on automation. This paper differs from

those papers in two aspects. First, this paper shows both theoretically and empirically

that education has an important impact on the relationship between demographic change

and automation. The theoretical prediction regarding the relationship between demo-

graphic change and automation changes drastically when extending the model proposed by

Abeliansky and Prettner (2021) to include education.4 While Acemoglu and Restrepo (2022)

acknowledge that education may influence the relationship between demographic change

and automation, they do not explore the impact theoretically or empirically.

In previous papers, the relationship between automation and population growth has

been found to be negative. The intuition behind that finding is that automation capital can

4In an extension of their model, Abeliansky and Prettner (2021) differentiate between two skill groups as
input factors, but do not analyze the impact changes in education levels have on the relationship between
automation and demographic change.
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substitute for unskilled labor as a production input. Intuitively, the labor of an unskilled

worker at a production line can easily be replaced by an industrial robot. In the case of

negative population growth, a shortage in the labor market can be compensated for by

increased use of automation capital. In contrast, it is much harder to replace skilled labor

with machines. Quite to the contrary, machines such as personal computers are likely to

increase the output of skilled labor. In summary, automation capital generally acts as a

substitute for unskilled labor and as a complement to skilled labor.

This intuitive understanding of the changing nature of automation capital, depending

on the skill level of the labor force, is formalized in an analytically tractable model. The

model is used to show the mechanism through which population growth affects automation

capital and how that mechanism depends on the education level of the population.

In the case of negative population growth causing a shortage in unskilled labor, au-

tomation capital can help to ameliorate the negative effect of unskilled labor shortage on

output. If instead negative population growth causes a shortage in skilled labor, the need

for automation capital decreases. The mathematical characterization of the mechanism

highlights how the relationship between population growth and automation depends on

the education level of the population. These results are derived under the assumption of an

exogenously given level of education in the population and a fixed stock of capital for a

given period, which can be allocated between automation uses and traditional uses within a

period.

The second contribution of this paper is the combination of patent data with a classifi-

cation of patents into automation and non-automation categories, thereby constructing a

novel cross-country panel of an automation measure. This data set is subsequently used to

test the new theoretical predictions. Acemoglu and Restrepo (2022) also use patent data

to measure innovation in automation technology but focus on a very narrow definition

of automation patents.5 Additionally, by relying solely on USPTO data, they only use a

subsample of patents filed worldwide, diminishing the patent measure’s reliability and

5They only use patents classified as 901 under the USPTO as a measure for automation innovation.
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representativity. As a more general caveat, their reported evidence comes from estimating

long-time differences. As a consequence, they do not use fixed effects and rely on quite

small sample sizes of 60 and 31 for their regressions. The first aspect raises questions about

omitted variable bias and the second leads to statistically insignificant results.

In comparison, the novel cross-country panel used in this paper has two advantages.

One, a much larger database of patents is used. Two, the definition of what constitutes

an automation patent is broader and thus well suited to explore the relationship between

demographic change and automation in general, instead of being limited to exploring the

narrow relationship between demographic change and industrial robot utilization. This

aspect seems especially relevant given the rapid advances and utilization of software in

production processes. The validity and suitability of appropriately classified patent data as

an automation measure are demonstrated by testing similar hypotheses on the relationship

between demographic change and automation and arriving at the same results as when

using data on industrial robot shipments provided by the International Federation of

Robotics.

This paper is related to the growing literature on automation and its economic effects

(see e.g. Dechezleprêtre et al. (2019), Prettner and Bloom (2020), Krenz et al. (2021), and

Mann and Püttmann (2023)). While the effect of automation on wages and employment of

different skill levels has been studied before (e.g. Acemoglu and Restrepo (2018), Graetz

and Michaels (2018)), to the best of my knowledge the effect of education on automation

has not.

The existing literature relies heavily on data gathered by the International Federation

of Robotics (IFR).6 It reports the yearly delivery of "multipurpose manipulating industrial

robots" for several countries, starting in 1993. This data set has two main drawbacks. First,

the data only starts in 1993, and second, it can only be obtained for a high fee, possibly

deterring some researchers from engaging with the automation topic. Another feature of

the IFR data set is its uniqueness, which guarantees consistency in the automation measure

6For an exception see Dechezleprêtre et al. (2019) and Mann and Püttmann (2023), who use patent data.
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used in the economic literature. On the one hand, this means that different studies and the

findings therein can easily be compared, on the other hand, it inhibits testing for out-of-

sample consistency of any findings. This paper contributes to the automation literature by

making use of a novel and more comprehensive automation measurement.

The paper is structured as follows. In Section 2, the model proposed by Abeliansky

and Prettner (2021) is extended to include education. The theoretical analysis suggests

that a higher education level reduces the possibility to automate labor as a response to a

decreasing labor force. Section 3 derives an estimation equation and details the construction

of the new data set. Section 4 consists of three parts. In Section 4.1, results emphasizing the

relevance of including education in any reduced form estimation analyzing the relationship

between demographic change and automation are presented. The robustness of the results

is tested along several lines in Section 4.2. Section 4.3 shows a replication of the analysis

done by Abeliansky and Prettner (2021) using patent data to measure automation. It once

again emphasizes the importance to account for education, and, by reproducing the original

results, shows that patent data provides an apt measure of automation. Section 5 concludes.

2 Theory

This section outlines a neo-classical, general equilibrium model that illustrates a channel

through which education affects the relationship between demographic change and automa-

tion. To do so, the standard neo-classical model is extended in two ways. One, there are two

types of labor used to produce output, skilled labor and unskilled labor.7 Importantly, the

share of skilled labor in the labor force is assumed to be exogenously given and not deter-

mined by an endogenous choice of households. And two, there are two types of capital used

for production, traditional capital and automation capital. Capital is assumed to be fully

mobile between traditional uses and automation uses within a period. The model consists of

two parts, an intertemporal utility maximization by a representative household, which pins

7This is the crucial aspect in which the model proposed here differs from the one put forward by Abeliansky
and Prettner (2021). The model by Abeliansky and Prettner (2021) is a limit case of the model proposed here
and discussed in more detail in Section 2.3.
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down the capital stock available for production in each period, and an intratemporal output

maximization by a representative firm, which takes the available capital stock as given. The

intertemporal utility maximization problem is not specific to the novel channel proposed

here, such that its discussion is relegated to the Appendix A.1. Its main contribution is to

show that the equilibrium capital stock per capita available for production in each period is

independent of population growth and, absent technological growth, constant over time.

The rest of this section will focus on discussing the intratemporal maximization of output,

given demographic change and the possibility to use capital for automation purposes,

highlighting the role of education.

2.1 Basic Assumptions

Time is discrete and indexed by t = 0, 1, 2, .... In each period, labor services, capital services,

and final output are traded. There is a continuum of infinitely lived households with

mass Nt, who are endowed with one unit of labor each. Population grows at rate nt

between time t and time t + 1. Households differ in their skill level S ∈ {L, H}, where

Lt = (1 − e) · Nt and Ht = e · Nt, with e ∈ [0; 1], refer to the unskilled labor force and the

skilled labor force, respectively. Importantly, the share of educated population e is modeled

to be exogenously given and constant across time, which is why it has no subscript t.

Besides being endowed with labor, households also own all capital. Other than in their skill

level, households are assumed to be identical. Households maximize their lifetime utility by

choosing consumption and investment optimally, taking prices as given. The intertemporal

utility maximization results in a constant equilibrium level of capital per capita k̃t, which is

owned by the households and available for production in each period.

2.2 Production

Firms operate under perfect competition, take prices as given and make zero profits in

equilibrium. In the following, the actions of one representative firm are considered. Output

is produced by combining traditional capital K, automation capital P, and skilled and
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unskilled labor H = e · N and L = (1 − e) · N, where e refers to the share of the skilled

labor force and is constrained by e ∈ [0; 1]. Capital is assumed to be mobile between

traditional uses and automation uses. Due to capital mobility, the overall capital stock K̃t is

divided between automation uses Pt and traditional uses Kt such that output is maximized

and K̃t = Kt + Pt. The production function is assumed to be Cobb-Douglas, ensuring

analytical tractability. Specifically, consider a constant returns to scale, nested Cobb-Douglas

production function of the form:

F(Kt, Pt, Nt) = Kα
t

(
((1 − e) Nt + Pt)

β (eNt)
1−β

)1−α
. (1)

In the way automation capital P is introduced to the production function, it is a perfect

substitute for unskilled labor (1 − e)N but acts as a complement to skilled labor eN. This

modeling choice is justified for example by the findings presented in Griliches (1969), and,

more recently, Krusell et al. (2000), Acemoglu and Restrepo (2020), and Prettner and Strulik

(2020).

The firm’s maximization problem is given by

max
Kt,Pt

πt = ρt(Yt − rtrad
t Kt − rauto

t Pt − wH,t(eNt)− wL,t(1 − e)Nt)

s.t. Yt = F(Kt, Pt, Nt, e)

K̃t = Kt + Pt,

(2)

where ρt refers to the market price of output Yt, which is normalized to one in the following,

such that ρ ≡ 1. wH,t refers to the wage rate of skilled labor, and wL,t refers to the wage rate

of unskilled labor in period t. The firm takes ρt, wH,t, wL,t, K̃t and Nt as given and faces

a static optimization problem. Therefore, time subscripts are dropped for the following

analysis whenever possible.

The equilibrium wage rates wH and wL are given by the marginal product of the
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respective labor input, using the definition of H = e · N and L = (1 − e) · N.

wH =
∂Y
∂H

= (1 − α)(1 − β)
Y
H

wL =
∂Y
∂L

= (1 − α)β
Y

L + P

wH

wL
=

1 − β

β
· L + P

H
∂(wH/wL)

∂P
=

1 − β

β
· L

H
> 0

(3)

The ratio of wH
wL

measures the skill premium paid to skilled labor. If automation capital P

increases, the skill premium increases as well. So increased utilization of automation capital

affects the skill premium in a similar way as skill-biased technological change does.8

To determine how changes in the size of the labor force affect the optimal distribution

of K̃t between Kt and Pt from the firm’s point of view, the assumption of full mobility of

capital is used. The return on automation capital P is given by its marginal product:

rauto =
∂Y
∂P

= (1 − α)β
Y

(1 − e)N + P
. (4)

Likewise, the return on traditional capital K is given by its marginal product:

rtrad =
∂Y
∂K

= α
Y
K

. (5)

As capital is fully mobile between traditional and automation uses, the optimal allocation

of K̃, which maximizes output, can be obtained by setting the marginal products of Kt and

Pt equal and rearranging. let K∗ denote the optimal amount of traditional capital, which

can be derived by using the equality of marginal products and plugging in P = K̃ − K.

8For an overview of the pertinent literature, see Violante (2008).
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K∗ =
(
(1 − e)N + K̃

) α

α + (1 − α)β

Analogously, this can be done for P∗, which denotes the optimal amount of automation

capital, in which case K = K̃ − P is plugged into the equalized marginal products.

P∗ = K̃
(1 − α)β

α + (1 − α)β
− (1 − e)N

α

α + (1 − α)β

The maximum output obtainable given K̃ and N can be derived by plugging K∗ and P∗ into

the production function given by (1):

Y∗ =

(
α

α + (1 − α)β

)α ( (1 − α)β

α + (1 − α)β

)β(1−α) (
(1 − e)N + K̃

)α+(1−α)β
(eN)(1−α)(1−β).

And finally, the equilibrium interest rate r∗ can be derived by plugging either K∗ or P∗ into

the respective marginal product and rearranging.

r∗ = rtrad = rauto

r∗ = (α + (1 − α)β)
Y∗

(1 − e)N + K̃

To see how an increase in population size N affects the two kinds of capital, consider

the respective derivatives with respect to N:

∂K∗

∂N
= (1 − e)

α

α + (1 − α)β
≥ 0

∂P∗

∂N
= −(1 − e)

α

α + (1 − α)β
≤ 0.

The derivative of K∗ with respect to N shows, that as the labor force N grows, more of total
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capital K̃ is used in traditional ways and not for automation purposes. The derivative of

P∗ with respect to N shows, that as the labor force N grows, less of total capital K̃ is used

for automation purposes. This demonstrates clearly that as N increases, more capital is

allocated towards traditional uses K and away from automation uses P. Furthermore, for

e = 0 the size of the effect N has on the capital allocation is at its maximum, with the effect

size decreasing as e increases.9 For e = 1, the intra-period allocation of K̃ is independent

of the population size N. This can also be demonstrated by looking at the ratio of K∗ and

P∗ and its derivative with respect to N directly. Again, it is obvious that N affects the ratio

most if e = 0 and the labor force is unskilled, whereas N does not affect the ratio if e = 1.

K∗

P∗ =
α((1 − e)N + K̃)

K̃(1 − α)β − α(1 − e)N

∂(K∗/P∗)

∂N
=

(1 − e)αK̃(α + (1 − α)β)(
K̃(1 − α)β − α(1 − e)N

)2 ≥ 0

A change in the population size N affects the marginal products of the two types of

capital, K and P, and the marginal product of the overall capital stock K̃. Specifically, N

affects the marginal product of K and P in such a way, that it entails a reallocation of capital

from automation uses towards traditional uses, as the positive sign of the derivative above

demonstrates. The effect of N on the marginal product of the overall capital stock K̃ is

universally positive. The respective derivatives are shown in Appendix A.2.

Note, that the marginal effect of N on K∗

P∗ is derived under the implicit assumption of

∂K̃
∂N = 0. The optimal allocation of K̃ between traditional uses K and automation uses P

considered here corresponds to a short-run output maximization problem, as specified in (2).

9Mathematically, this can be demonstrated by looking at the limit cases of the partial derivatives of K and P
with respect to N.

∂K
∂N

∣∣∣∣
e=0

>
∂K
∂N

∣∣∣∣
e=1

∂P
∂N

∣∣∣∣
e=0

<
∂P
∂N

∣∣∣∣
e=1
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Output is maximized in each period, taking population size N and the overall capital stock K̃

as given. From the intertemporal utility maximization of households discussed in Appendix

A.1, a constant optimal per capita capital stock k̃∗ can be derived, which is independent

of population growth. In general, this is not equivalent to a capital stock K̃t which is

independent of population growth. However, if the variation in nt (and hence also Nt) is

unpredictable, which seems like a reasonable assumption, the capital stock in each period is

independent of the unforeseen variation in the contemporaneous population growth and

population size. Therefore, it is quite likely that K̃t does not react to unpredictable changes

in nt and treating K̃t as independent of unsystematic variation in nt and hence also Nt is,

after all, appropriate. In addition, empirical studies have found the capital stock to be quite

slow in responding to shocks (see for example Ashraf et al. (2008), discussing the effect of

demographic changes on capital accumulation). In light of that evidence, disregarding the

marginal effect Nt has on K̃t is a mild assumption, given that in this model only the short

run is considered. In any case, the results derived above carry through when taking into

account that ∂K̃t
∂Nt

̸= 0 under the assumption that K̃t > Nt. From this, longer-run implications

from the model can be derived. For a derivation and discussion of the results, see Appendix

A.3.

Education is the new feature of the model and its effect on the return to automation

capital is of special interest. The cross derivative of rauto with respect to e and N is universally

positive. This implies that education has the potential to mute any negative effects an

increase in the population size has on the return on automation capital. The equivalent

derivative for the return on traditional capital is always negative. Thus the difference in the

effect population size has on the return on traditional- and automation capital diminishes

as the share of the educated workforce e increases. The respective derivatives are shown

in Appendix A.2. The effect of e on the return on the overall capital stock K̃ is universally

12



positive:10

∂r∗

∂e
= (α + (1 − α)β)

1(
(1 − e)N + K̃

)2

((
(1 − e)N + K̃

)
· ∂Y∗

∂e
+ Y∗ · N

)
=

= (α + (1 − α)β)
1(

(1 − e)N + K̃
)2

(
1
e

Y∗(N + K̃)
)
> 0.

2.3 Limit Cases of the Production Function

The elasticity of substitution between labor and automation capital depends on the skilled

share of the labor force. This difference in complementarity results in a different sign of

∂rauto/∂N, as discussed in Appendix A.2, depending on whether the population is skilled

or unskilled. In this setup, education plays a crucial role in determining the effect of

population growth, and hence demographic change, on automation. To better understand

how education influences the effect population size has on the incentive to automate,

consider the two limit cases of e = 0, a fully unskilled labor force, and e = 1, a fully skilled

labor force.

2.3.1 Fully Unskilled Labor Force

With e = 0, the production function reduces to the one proposed by Abeliansky and Prettner

(2021).

Y = Kα (N + P)1−α (6)

The marginal product of automation capital P and the marginal product of traditional

capital K are given by

rauto =
∂Y
∂P

= (1 − α)
Y

N + P

10The derivation makes use of ∂Y
∂e = Y ·

(
(1−α)(1−β)(N+K̃)−eN

e((1−e)N+K̃)

)
.
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rtrad =
∂Y
∂K

= α
Y
K

Analogously to before, we can equate the marginal products due to full capital mobility

and set P = K̃ − K and K = K̃ − P to derive the optimal levels of traditional capital K∗, and

automation capital P∗. Plugging K∗ and P∗ into the production function specified in (6)

gives the maximum output level obtainable for a given N and K̃.

K∗ = α(N + K̃)

P∗ = (1 − α)K̃ − αN

Y∗ = αα(1 − α)1−α(N + K̃)

Finally, the equilibrium interest rate r∗ can be derived by plugging either K∗ or P∗ into the

respective marginal product and rearranging.

r∗ = rtrad = rauto

r∗ =
Y∗

N + K̃

To analyze how a change in N affects the optimal allocation of K̃ between K and P,

consider the respective derivative of the optimal level with respect to N:

∂K∗

∂N
= α > 0

∂P∗

∂N
= −α < 0.
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The same can be done for the ratio of optimal K∗ to optimal P∗:11

K∗

P∗ =
α(N + K̃)

(1 − α)K̃ − αN
∂(K∗/P∗)

∂N
=

K̃(
(1 − α)K̃ − αN

)2 > 0.

2.3.2 Fully Skilled Labor Force

In the second case of e = 1, the whole population is educated and the elasticity of substitution

between automation capital and skilled labor is equal to one.

Y = Kα
(

PβN1−β
)1−α

(7)

The marginal product of automation capital P and the marginal product of traditional

capital K are given by

rauto =
∂Y
∂P

= (1 − α)β
Y
P

rtrad =
∂Y
∂K

= α
Y
K

Analogously to before, the optimal levels of K∗ and P∗ pinning down the optimal allocation

of K̃ can be derived by using the full mobility of capital assumption and equating the

marginal products. Plugging in K = K̃ − P and P = K̃ − K yields:

K∗ =
α

α + (1 − α)β
K̃

P∗ =
(1 − α)β

α + (1 − α)β
K̃.

11As in Section 2.2, the derivative shown here disregards the effect of N on K̃. The reasoning for the approach
is the same as above. Also, the result of ∂(K∗/P∗)/∂N > 0 carries through when taking into account that
∂K̃/∂N ̸= 0 if K̃ > N, as demonstrated in Appendix A.3.
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The maximum obtainable level of output for given N and K̃ is derived by plugging K∗ and

P∗ into (7)

Y∗ =

(
α

α + (1 − α)β

)α ( (1 − α)β

α + (1 − α)β

)β(1−α)

K̃α+(1−α)βN(1−α)(1−β).

The equilibrium interest rate r∗ is derived by plugging K∗ or P∗ into the respective marginal

product.

r∗ = rtrad = rauto

r∗ = (α + (1 − α)β)
Y∗

K̃

If the population is fully educated, skilled labor is a complementary input to both

traditional capital and automation capital. An increase in the labor force due to population

growth thus increases the return on automation- and traditional capital equally. The optimal

ratio of traditional- and automation capital is in this case determined solely by exogenous

parameters and thus independent of population size N.

∂K∗

∂N
= 0

∂P∗

∂N
= 0

∂(K∗/P∗)

∂N
= 0

2.4 Population Growth

So far, it has been shown that the effect of population size on the return on automation

capital depends on the education level of the labor force. The effect of population size on

traditional capital and its return is always positive. The effect of population size on the

return on automation capital however is positive if the labor force is skilled and negative if

the labor force is unskilled. This is driven by automation capital acting as a complement

to skilled labor and as a substitute for unskilled labor input. In the case of an unskilled
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labor force, capital is thus shifted from automation to traditional uses if the population level

increases. In the case of a skilled labor force, no capital is shifted, since the marginal effects

are equal in the optimum.

Next, consider how population growth affects automation capital per capita. Focusing

on automation capital per capita has two advantages over considering automation capital

levels. One, it is the more natural measure for cross-country analysis. And two, it is more

closely linked to population growth, which is the main variable of interest when analyzing

demographic change. Turning next to the effect of population growth, it can be shown that

it potentially exerts two forces on automation capital per capita.

Define yt =
Yt
Nt

, kt =
Kt
Nt

and pt =
Pt
Nt

. If the labor force is partially educated, output per

capita is given by

yt = kα
t

(
(1 − e + pt)

β e1−β
)1−α

.

Again, the marginal products of the two kinds of capital have to be equal in the optimum.

Equalizing the marginal products, plugging in p = k̃ − k or k = k̃ − p, and rearranging, the

optimal ratio of the two kinds of capital per capita can be derived as

k∗

p∗
=

α(1 − e + k̃)
k̃(1 − α)β − α(1 − e)

, (8)

where k̃ = K̃
N denotes the overall capital stock per capita available for production. In this

intensive form formulation of the model, deviations in the population growth rate n from

its balanced growth path value result in variation in k̃, which is constant on the balanced

growth path. A negative deviation of n from its balanced growth path value leads to a

positive deviation of k̃ from its balanced growth path value. This results in a decrease in the

optimal ratio of k∗
p∗ , as the negative sign of the following derivative demonstrates:

∂(k∗/p∗)
∂k̃

= − α(1 − α)(1 − e)(
k̃(1 − α)β − α(1 − e)

)2 ≤ 0.
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A negative deviation of n from its balanced growth path value thus leads to an increased

share of overall available per capita capital stock k̃ to be allocated towards automation uses.

It is obvious that an increase in the education level e ameliorates this effect. For a fully

educated labor force and e = 1, a variation in n and k̃ does not affect the optimal ratio of k
p .

Intuitively, as population growth decreases, the labor force decreases which, if it is

unskilled (e = 0), is a perfect substitute for automation capital, thereby increasing the

marginal product of automation capital. As capital is allocated endogenously to traditional

and automation uses, this results in a capital allocation towards automation uses.12 If

e ∈ (0; 1), population growth not only increases the substitute input for automation capital

unskilled labor but also the complement input skilled labor. A higher e can therefore

attenuate the positive effect lower population growth has on p. If e = 1, the ratio of k
p is

unaffected by an increase in n, as both kinds of capital are complements to skilled labor. For

a derivation of the results and a separate discussion of the two limit cases of the production

function in per capita terms, see Appendix A.4. Neither of the limit cases is relevant

anywhere in the world. Therefore, it is important to take education levels into account when

analyzing the relationship between population growth and automation capital.

3 Empirical Relevance

The empirical question revolves around the relationship between the incentive to automate

and demographic change with a focus on how education influences that relationship. This

section first describes the data used for empirical estimation in detail, with an emphasis on

the newly created automation measure. In the second step, an estimation equation based on

the theoretical analysis in the previous section is derived.

12The great advantage automation provides, is that growth can be generated simply by accumulating capital.
The size of this additional growth opportunity is determined by how important automation capital is relative to
traditional capital. By increasing automation capital, capital per capita can be deepened in a growth-enhancing
manner. The size of p effectively measures how much use the economy makes of growth by accumulation. An
increase in p thus increases the economic growth potential.
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3.1 General Data Description

This section describes the data used to test the theoretical relationship described above

empirically. If not indicated otherwise, five-year averages of all data are taken. Doing

so reduces noise in the data and partially addresses timeliness concerns regarding patent

filings. Given the time span of available data, this results in 9 periods of observation which

can be used for estimation.

All data discussed in this paragraph is taken from the World Bank.13 Information on

both total population and population by age group is utilized. The latter is used to construct

the working-age population, defined to be aged 20-64. For the regressions, the log of

population growth is used as an explanatory variable. One inherent property of growth

rates is, that they naturally and frequently take on negative values. To avoid the loss of many

observations, the growth rates are transformed linearly by adding the absolute value of the

smallest growth rate observed in the data to all observations before taking the log. This is

equivalent to a linear rescaling of the variable and does not affect its correlation with any

other variable, such that regression results are unaffected by the linear transformation. As a

measure of savings, gross fixed capital formation as a share of GDP is used. For robustness

checks, some additional variables are considered. GDP per capita is measured in 2015 US

Dollars, the openness of the economy is calculated as the external balance on goods and

services measured in percent of GDP, and the importance of the service sector is measured

as the value added by the service sector in percent of GDP.

Education plays an important role in the theoretical predictions. Specifically, the effect

of population growth on automation depends on the share of skilled labor in the economy.

The education measure used comes from Barro and Lee.14 It reports the population share

with at least completed secondary education in 5-year intervals.

The core data used is patent data published by the OECD for 59 countries, starting in

1977 and ending in 2020. For a list of all countries with available patent data see Appendix

13The data is freely available at https://databank.worldbank.org/.
14It can be downloaded at http://barrolee.com/.
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B.4. It is combined with the classification of patent categories into automation and non-

automation categories developed by Dechezleprêtre et al. (2019) to arrive at a count of

automation patents for each country-year observation with available data.

3.2 Patent Data

The vast majority of the literature analyzing the economic effects of automation uses data

on industrial robots supplied by the IFR. In this paper, freely available patent data is used to

measure automation instead. As this is fairly new, it is discussed in detail in the following.

3.2.1 Classifying Patent Data

Dechezleprêtre et al. (2019) use data from patents filed with the EPO to develop a classifica-

tion of patent categories into automation and non-automation. Two different classifications

are proposed. In each patent category, the share of patents described using automation

keywords is calculated. The patent categories are then ordered by their share of automation

patents. Two cutoff thresholds are considered to classify a patent category as an automation

patent category. The stricter one defines all patent categories at or above the 95th percentile

of the distribution of the automation patent shares as automation categories. The less

strict one defines all patent categories at or above the 90th percentile of the automation

patent shares as automation categories. This results in 5% or 10% of all patent categories

being defined as automation patent categories. In a final step, all patents belonging to a

thus-defined automation patent category are summed at the country-year level to arrive at a

raw number of automation patents for each country-year observation. This results in the

patent measures auto95 and auto90.

In addition to those two measures introduced by Dechezleprêtre et al. (2019), a third

automation measure using patents is proposed here. By counting all patents belonging to a

patent category with the highest share of automation patents, considerable noise may be

introduced to the automation measures auto90 and auto95. The newly proposed measure

addresses that concern. In the first step, the number of patents within each patent category
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is multiplied by the share of automation patents in that patent category. In the second step,

the resulting number of automation patents belonging to different patent categories is then

summed at the country-year level, resulting in one number of automation patents for each

country-year observation. This measure is henceforth called auto1 and it is the preferred

measure for automation patents.

3.2.2 Empirical Considerations

So far, empirical analyses have mainly used data on robots to measure a country’s automa-

tion level. The IRF data provides information on the yearly installation of multipurpose

industrial robots at the country level. Theoretically, using robot data has the advantage of

directly measuring how much automation technology is employed. However, it is unclear,

how long robots can operate, and at which point in time they are outdated or defunct.

Thus, to estimate the stock of robots used in a country, assumptions about the service life of

robots have to be made, which is complicated by a likely variation of the service life across

time, due to differences in the pace of innovation, and variation in the service life across

application areas of the robots. The alternative to using an inevitably noisy estimate of the

robot stock is to focus on newly acquired robots. Such a measure will however vary strongly

with business cycles, making averaging over several periods necessary and reducing the

number of available data points.

This paper proposes an alternative measure of automation, namely automation patents.

Conceptually, automation patents measure innovation in the realm of automation and

provide an imperfect measure of a country’s automation level, just like robots. Berkes et al.

(2022) evoke the idea of patents as a means "to ensure that investments in new ideas can

be recovered with future profits". With that concept in mind, a patent’s economic value is

equivalent to the present value of the innovation it is protecting. While the market value of

patents is in general not known, the number of patents is a helpful, if not perfect, measure

of the present value of the ideas protected by them. Automation patents, therefore, provide

a measure of investment into research directed toward automation, the level of which is
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directly linked to the expected present value of such research. One determinant of the

present value of automation patents is the demand for automation. In summary, automation

patent data provides an alternative and potentially even better measure of the present value

of automation in a country than the flow of industrial robots does.

One concern regarding the suitability of patent data as a measure of automation is that

they measure ideas, which, contrary to robots, are mobile across countries. In extreme cases,

countries may adopt and use automation technology prolifically without registering any

automation patents themselves. For such countries, the use of automation capital in the

production process is underestimated when relying on automation patents as a measure

of automation capital. That, however, is unlikely to occur for two reasons. One, there

is a large literature finding that the investment required to adopt foreign technology is

similar to the investment required to generate new technology (see, for example, Cohen

and Levinthal (1989), Griffith et al. (2004) and Aghion et al. (2009), p. 151 ff). Therefore, it is

unlikely that a country is adopting automation technology without it also generating some

automation patents at the same time. This may also be related to a second aspect found

in empirical studies, namely that there is a considerable time lag between a technology’s

invention in one country and its adoption in other countries (see Comin and Hobijn (2010)

and Comin and Mestieri (2018), who find a minimum lag of adoption of 5-8 and 7-12 years,

respectively). Together, these aspects make it unlikely that the mobility of ideas causes a

systematic measurement error or bias in the automation measure constructed using patent

data.

Patent data has the great advantage of being widely available, very granular, and detailed.

Because so many details are given, most disadvantages that are inherent to patent data can

be addressed and possibly dispelled completely.15 Patent data only provides an indirect

measure of automation technology, which certainly is its main disadvantage. Many patents

are filed, but only a few are applicable in the industry and thus of real economic value.

15The OECD provides an in-depth discussion of the patent data provided by it, see the OECD
Patent Statistic Manual (2009) at https://www.oecd-ilibrary.org/science-and-technology/
oecd-patent-statistics-manual_9789264056442-en.
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This concern can be addressed by using only patents filed under the Patent Co-operation

Treaty (PCT), using only patents filed at the EPO, the Japan Patent Office (JPO), and at the

USPTO at the same time (referred to as the Triadic family by OECD) or using only patents

protected in at least two international patent offices worldwide, one of which within the

Five IP offices (IP5), namely the EPO, JPO, USPTO, the Korean Intellectual Property Office

(KIPO) and the People’s Republic of China National Intellectual Property Administration

(CNIPA). Filing a patent is time intensive and costly. Those patents that meet one of the

three filing requirements are all but certain to be a subset of the most important and thus

economically valuable patents in terms of expected present value. Focusing on this subset

of patents also ensures that the patents considered are not affected by different propensities

to patent across countries or industries, as only international patents are used in the first

place. Another potential drawback of using patents is that changes in patent laws may affect

the propensity to patent. As all patents considered here have to be filed under international

laws, changes in national patent laws are likely irrelevant. Additionally, as the empirical

analysis will be across time, including time-fixed effects will take care of potential problems

caused by changes in international patenting laws.

In principle, PCT patents, Triadic family patents, and IP5 patents are equally suited for

analysis. However, the count of IP5 patents is suited best for the analysis at hand. While

today a patent filed under the PCT is automatically protected in all PCT countries, this is

only the case since 2004. Before that, there were fewer member states of the PCT, and the

fees for PCT patents increased in the number of countries where the patent was filed. Thus

PCT patent data are very well suited for analysis starting in 2004 but less reliable before that

and therefore not well suited for the research question at hand. Regarding Triadic family

patents, the main drawback is its acknowledged lack of timeliness. Since the goal of this

paper is to relate changes in patents and population growth over time, timeliness is relevant.

This makes IP5 patents the preferred measure of patenting activity for this paper and the

one used if not stated otherwise.

Patents are of course a broad measure of technological progress. Making use of the
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classification put forward by Dechezleprêtre et al. (2019), only those patents that are related

to automation technologies are used in the analysis. Thus the lack of specificity can be

addressed by using the vast additional data provided with each patent. This makes the

invention of automation technology and therefore a competitive edge of economies directly

measurable.

And lastly, from a researcher’s perspective, it will always be interesting to use different

measures for the same underlying object of interest. It not only justifies revisiting old ideas

but makes it possible to check their robustness and therefore relevance. In this case, the new

data comes with an additional advantage in the time it spans. The patent data is available

as far back as 1977 and thus starts much earlier than the robot data provided by the IFR.

Using patent data, research over longer time periods is possible. In summary, the classified

patent data provide an interesting alternative data set for empirical analysis, which has been

underutilized so far.

3.3 Estimation Equation

The model developed in Section 2 demonstrates how the relationship between automation

capital density and population growth depends on the level of skills present in the labor

force. It illustrates how the interaction between population growth and education affects the

allocation of resources toward automation uses. Therefore, education should be included in

any specification trying to estimate the relationship between automation and population

growth.

The goal is to identify the effect working-age population growth has on automation

density, accounting for the effect education has on this relationship. The data set used

for estimation has a panel structure, such that it is possible to include country-fixed and

time-fixed effects in the regression. Country-fixed effects prevent omitted variables that

are constant over time at the country level to bias the coefficients of interest. Additionally,

time-fixed effects, which pick up variation over time affecting all countries equally, such

as macroeconomic shocks, are included in the regression. This addresses concerns that
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results are driven by systemic economic shocks. While the inclusion of neither fixed effect

guarantees the estimates to be unbiased, it is an important step toward the identification of

the true parameter values.

To test the theoretical predictions, a measure for automation in per capita terms is

needed as the dependent variable. For that, the variable auto1, the construction of which is

explained in the previous section, is divided by the working-age population to construct a

per capita measure of automation. The main explanatory variables are population growth

and education. The economic concern with demographic change is that it affects the size of

the working-age population. For that reason, the growth rate of the working-age population

is calculated and used in the regressions. The share of the working-age population with at

least completed secondary education is used as a measure for education. Reflecting the new

theoretical results, it is important to include an interaction term of working-age population

growth and education in the regression. As a control variable, gross fixed capital formation

measured in percent of GDP is included in the regression to proxy for the savings rate.

To address reverse causality concerns, all regressions use a lag of one period (which is

equivalent to five years) for all explanatory variables. For interpretation purposes, the log of

the dependent variable and the log of the working-age population growth rate is used in

the regression. Based on these considerations, the following baseline estimation equation is

derived

log(pc,t) = η0 + η1 · log(nc,t−1) + η2 · ec,t−1 + η3 · (log(nc,t−1)× ec,t−1) + η4 · sc,t−1

+FEc + FEt + εc,t, (9)

where pc,t measures automation patents per capita, nc,t−1 refers to working-age population

growth, ec,t−1 is the share of working-age population with at least completed secondary

education, and sc,t−1 is the savings rate. The subscript c indicates that variables are measured

at the country level and subscript t refers to the period of observation. εc,t is the error term.
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4 Empirical Results

This section analyzes the empirical relevance of the theoretical results derived in Section 2.

First, results from estimating the baseline regression are reported and discussed in Section

4.1. Subsequently, these results are shown to be robust to using different measures for the

outcome and explanatory variables and including additional control variables in Section 4.2.

And lastly, Section 4.3 demonstrates the adequacy of the new automation measure proposed

by replicating previous findings with this new data.

4.1 Main Results

The theory presented in Section 2 makes clear predictions about the relationship between

population growth and automation capital per capita, and the crucial way in which this

relationship is influenced by the overall education level. Using Equation (9) as an estimation

equation, a fixed effects regression is run to test the model predictions. The theory makes

clear predictions about the signs of the estimated coefficients. If the assumed production

function is a good representation of the real world, η̂1 < 0 and η̂2 > 0 are expected. The

coefficient of the interaction term is predicted to be positive η̂3 > 0 if e ∈ (0; 1). Finally,

η̂4 > 0 is predicted.

Results are reported in Table 1. Throughout, the investment variable is included as

a control variable. Its coefficient is consistently estimated to be positive and it is highly

significant, as expected. To emphasize the contribution made by including an interaction

term between education and population growth, the explanatory variables of interest are

added one by one. In column (1) the only explanatory variable is working-age population

growth. Its coefficient has the expected negative sign but remains statistically insignificant.

The specification corresponds to the limit case of the production function if the whole

workforce is uneducated. The coefficient of working-age population growth stays statistically

insignificant when education is included as an explanatory variable in column (2), the

coefficient of which is also insignificant. This specification has no clear correspondence to

the theoretical hypotheses. However, a cautious interpretation of the insignificant coefficient
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Table 1: Working-age Population Growth and Automation Density

(1) (2) (3)
log(W. Pop growth) -0.1646 -0.1636 -1.0837∗∗∗

(-1.14) (-1.13) (-3.97)
Education 0.0004 0.0588∗∗∗

(0.07) (3.65)
log(W. Pop growth) × Education 0.0322∗∗∗

(3.94)
Investment Share 0.0362∗∗∗ 0.0361∗∗∗ 0.0345∗∗∗

(3.47) (3.43) (3.36)
Time FE Yes Yes Yes
Country FE Yes Yes Yes
R2 0.60 0.60 0.62
Observations 328 325 325

Note: Dependent variable is the log of the automation measure auto1, constructed
from patent data reported by the OECD and divided by working-age population to
arrive at a per-capita measure. All explanatory variables are lagged by one period.
log(W. Pop growth) is the log of working-age population growth. Education measures
the share of the working-age population with at least completed secondary education
as reported by Barro and Lee. Investment Share refers to gross fixed capital formation
as a share of GDP. Significance stars are defined as follows: * p < 0.1, ** p < 0.05, *** p
< 0.01. t-statistics are reported in parentheses.
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of education is that the density of automation patents does not vary with education when

analyzed in isolation from population growth. In column (3), an additional interaction term

between working-age population growth and education is included. This is the specification

that is closest to the one derived from the theory. The theoretical hypothesis states that an

increase in working-age population growth has a negative effect on automation capital per

capita but that the effect is smaller the higher the education level of the workforce. This

last aspect is picked up by the interaction term, which the significance of the coefficient

indicates to be highly relevant.

Focusing on the estimation results reported in column (3), the results in Table 1 indicate

that including the interaction effect is crucial. Given that the whole population is unskilled

(implying e = 0 in the model), the coefficient of the interaction term can be neglected and

working-age population growth is estimated to have a negative effect on the incentive to

automate. The effect is quantitatively substantial. A 1% decrease in working-age population

growth is associated with an increase of 1.1% in the automation measure. If in turn working-

age population growth is zero, the effect of a 1% increase in the skilled population share

is associated with an increase of the automation measure by 0.6%. The coefficient of the

interaction term is positive as expected and highly significant. It attenuates the negative

effect of working-age population growth on the automation measure, such that its effect is

smaller in countries with a higher educated population share.

To interpret the effect of working-age population growth on automation, it may be

helpful to look at how the effect changes depending on the level of education. Over the

whole period 1977-2019, the education share takes on the values 16.7%, 28.2%, and 39.3% at

the 25th, 50th, and 75th percentile of the distribution across countries. Over time, the average

value of the education measure increased from 18% in 1977-1979 to 35% in 2016-2019. This is

visualized in Figure 4a in the Appendix. The total effect of working-age population growth

at different levels of education can be calculated as ∂automate
∂popgrowth = η1 + η3 · educ. The result

is plotted in Figure 1a (for the sake of clarity predicted values are plotted). The effect of

working-age population growth on automation density is estimated to be negative if the
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Figure 1: Visualization of Regression Results in Table 1

Note: The Figure illustrates the regression results reported in Table 1. Panel (a) shows the predicted
total effect log population growth has on automation density for different values of the education
variable. Panel (b) shows the predicted total effect an increase in education has on automation
density for different values of working-age population growth. In both cases, solid lines mark the
1st and 99th percentile of the distribution of the variable plotted at the x-axis and dashed lines mark
the 25th and 75th percentile of the distribution.

share of the educated population is low. As the share of the educated population increases,

which is equivalent to a movement along the x-axis of Figure 1a, the size of the negative

effect decreases. If the share of the educated population is at 35%, the effect of working-age

population growth on automation density flips sign and becomes positive. The ambiguity of

the effect working-age population growth has on automation density is relevant in the real

world, as the sign of the estimated coefficient flips between the 25th and 75th percentile of

the distribution of the education variable. This means that there are many countries where

the effect is negative, but also many where the effect is positive. It also helps to explain

why the estimated coefficient of working-age population growth in column (1) of Table 1 is

insignificant. If education and especially the interaction between education and working-age

population growth are omitted from the regression, the resulting coefficient estimates the

average effect working-age population growth has on automation density, which across

countries is not statistically different from zero.

Figure 1b visualizes the total effect of education on automation density for different

values of working-age population growth. Again, the sign of the relationship changes from
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negative to positive between the 25th and 75th percentile of the working-age population

growth distribution. The effect of education on automation density thus depends on the

level of working-age population growth. Averaging it across countries experiencing different

levels of working-age population growth results in an estimated average effect that is

insignificant, as shown in column (2) of Table 1. In addition to looking at the total effect,

marginal effects of population growth at certain levels of education, and vice versa, can be

plotted as well. The resulting figures are relegated to the Appendix, see Figure 3.

In summary, the empirical findings are in line with the theoretical hypotheses derived

from the model. The predicted negative effect of working-age population growth on

automation can be demonstrated in the data. This is especially true when the role of

education is taken into account. Specifically, the model predicts a negative relationship

between automation and population growth, which is mitigated by education. The empirical

analysis suggests that this effect is even reversed to the positive if the education level of the

workforce is sufficiently high.

4.2 Robustness

In this section, the robustness of the results presented above is tested. They are robust to

using different measures of the education variable. Specifically, the share of the population

with some tertiary education and the share of the population with completed tertiary

education is considered instead of the share of the population with completed secondary

education. Both are strict subsets of the originally used education measure. The results

are reported in Table 8 and Table 9 in the Appendix. The magnitude of the coefficients

of interest changes slightly but the pattern and statistical significance stay the same. The

results are also robust to using total population growth instead of working-age population

growth (reported in Table 10). The coefficients are all significant at the 1% level and even

higher in magnitude than in the original specification.
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4.2.1 Alternative Patent Measures

For reasons laid out in Section 3.2.2, of the three available measures for patent data, those

patents reported under the IP5 were used for analysis so far. A good robustness check is

thus to analyze the theoretical relationship using those patents counted towards the Triadic

Family and the PCT as well, to see if similar results can be obtained.

Reassuringly, the analysis results in very similar estimates using both alternative patent

measures, which are reported in Table 11 in the Appendix. The coefficients are estimated at

the same significance level and even slightly higher in magnitude for both Triadic patent data

and PCT patent data. In both cases, the coefficient of the investment share is insignificant

but the point estimate remains positive.

As explained in Section 3.2.2, three different measures for automation arise from the

Dechezleprêtre et al. (2019) classification, auto1, auto90, and auto95. So far, auto1 has been

used to derive a density measure of automation. As a robustness check, the estimations

reported in Section 4.1 are repeated using automation density measures constructed from

auto90 and auto95 as the dependent variable. The results are reported in Table 12. The main

results can be replicated with the significance and magnitude of the coefficients very similar

to those in the baseline regression.

4.2.2 Additional Control Variables

The estimations discussed so far have only included variables suggested by the theory to be

of importance. Despite using time- and country-fixed effects in all specifications, there might

be concerns regarding omitted variable bias. This section reports results from including

several additional control variables in the regression to test the robustness of the results

discussed so far.

Three additional control variables are included. One is the service share of the economy.

It measures changes in the focus on manufacturing or services of individual economies

which are not picked up by time-fixed effects. Two, the log of GDP is included to control

for booms or recessions in individual economies not picked up by time-fixed effects. And
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three, the external balance as a measure of openness is included. Openness likely affects the

pressure to keep up with technological advances and to stay competitive in general. Trade

liberalization was ongoing in the period considered, which potentially makes openness a

confounding factor if it is not included in the regression.

Results are reported in Table 2. The coefficients of all control variables are positive and

highly significant when incorporated into the regressions. The coefficients of the main

explanatory variables appear robust to the inclusion of further control variables, as displayed

in column (3). The significance of the coefficients remains at the 1% level and the magnitude

of the coefficients of working-age population growth, education, and the interaction effect

even increase slightly.

4.2.3 The Relationship of Education and Population Growth

In the Unified Growth Theory, the interplay of population growth and education plays an

important role. According to the literature, sustained economic growth was only made

possible once fertility rates declined. With the onset of industrialization, human capital

became more important and valuable. In a Unified Growth framework, the fertility choice is

often described to feature a quantity-quality trade-off, referring to the number and education

of children. A key assumption and often confirmed finding in this literature is a negative

correlation between education levels and population growth rates.16

A strong negative correlation between education and population growth, as proposed

in the Unified Growth Theory, potentially leads to imprecise estimates of the coefficients

reported in Table 1. Indeed, the correlation between education and working-age population

growth is quite strong at ρ = −0.59 across the whole sample. If some of the countries used

for the estimation of the main specification are still undergoing the demographic transition,

this can confound the estimates.

The data set used for estimation comprises information on 59 countries, including all

16The Unified Growth Theory was founded by Oded Galor. It has produced a large body of literature and is
an actively researched topic in economics. For a comprehensive treatment of the theory and empirical findings
see Galor (2011).
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Table 2: Adding Control Variables

(1) (2) (3)
log(W. Pop growth) -0.2135 -0.2285 -1.9831∗∗∗

(-1.10) (-1.18) (-5.23)
Education 0.0068 0.0891∗∗∗

(1.14) (5.39)
log(W. Pop growth)× Education 0.0451∗∗∗

(5.29)
Investment Share 0.0470∗∗∗ 0.0466∗∗∗ 0.0466∗∗∗

(3.85) (3.82) (4.05)
log(GDP p.c.) 1.4353∗∗∗ 1.4580∗∗∗ 1.4733∗∗∗

(5.70) (5.77) (6.19)
Openness 0.0514∗∗∗ 0.0519∗∗∗ 0.0466∗∗∗

(4.53) (4.58) (4.34)
Service Share 0.0116 0.0127 0.0194∗∗

(1.23) (1.34) (2.15)
Time FE Yes Yes Yes
Country FE Yes Yes Yes
R2 0.74 0.74 0.77
Observations 282 282 282

Note: Dependent variable is the log of the automation measure auto1, constructed
from patent data reported by the OECD and divided by working-age population to
arrive at a per-capita measure. All explanatory variables are lagged by one period.
log(W. Pop growth) is the log of working-age population growth. Education measures
the share of the working-age population with at least completed secondary education
as reported by Barro and Lee. Investment share refers to gross fixed capital formation
as a share of GDP. Significance stars are defined as follows: * p < 0.1, ** p < 0.05, *** p
< 0.01. t-statistics are reported in parentheses.

member countries of the G20. While some of the developing countries present in the

data may still be undergoing the demographic transition at the start of the observation

period in 1977, this is unlikely to be the case for the G20 member countries. Overall, the

correlation between education and working-age population growth is lower in G20 member

countries than in the rest of the sample countries, with respective values of ρ = −0.47 and

ρ = −0.62.17 When repeating the regressions reported in Table 1 in the sub-sample of G20

17There is a large variation in the correlation between education and population growth within the G20
member countries. For example, in Argentina, Australia, Russia, the UK, and the US, the two variables are
positively correlated, and in all other countries negatively correlated. There is however no discernible or
concerning pattern in the variation of the correlation.
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member countries, the results (reported in Table 13 in the Appendix) are very similar to the

ones obtained when using the whole sample for estimation. Based on these results, it is

unlikely that an ongoing demographic transition drives the overall results.

4.2.4 Time Series Analysis

In the cross-country analysis described and reported in Section 4.1, country-fixed effects

were included in all regressions to control for unobserved heterogeneity across countries.

These fixed effects take care of time-constant heterogeneity, such as cultural values or

institutions, which might be correlated with the dependent and explanatory variables.

Spanning 43 years, the time period used for estimation is quite long. Over such a long time

span, even country characteristics considered quite stable across time, such as the education

system, may change, potentially weakening the effectiveness of fixed effects in controlling

for cross-country heterogeneity.

To address such concerns, this section reports results from an empirical analysis focusing

on the US. The data on population size by age group and the education variable taken from

Barro and Lee are only available at 5-year intervals. However, when using only 8 periods for

estimation it is unlikely that reasonably reliable estimates can be obtained. Therefore, the

data used so far is augmented by data on education taken from the PSID. The PSID gathers

information of 5,000 representative households in the US, among other things on the highest

level of education attained. Starting in 1997, the education variable is only surveyed biyearly.

From the individual-level data, education measures corresponding to those provided by

Barro and Lee are constructed. Reassuringly, the respective correlations are quite high

at 0.76, 0.92, and 0.91 for completed secondary education, some tertiary education, and

completed tertiary education, respectively. Since the correlation of the two measures of

some tertiary education is the highest, this is the education variable used for analysis in the

following. Data on population size by age group, from which a measure of working-age

population is constructed, is only available at the 5-year interval. To avoid losing many time

periods for estimation due to that data limitation, the total population size and its growth
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Table 3: Time Series Analysis using US Data

Automation Density
(1) (2)

log(Pop growth) -8.445 -3.909
(-1.55) (-0.59)

Education 0.994∗∗ 0.209
(2.46) (0.28)

log(Pop growth) × Education 0.315∗∗ 0.069
(2.36) (0.28)

Investment Share -0.008 -0.012
(-0.23) (-0.25)

R2 0.80
Observations 24 13

Note: Dependent variable is the log of automation patents per
capita. All explanatory variables are lagged by one period.
log(Pop growth) is the log of population growth. Education mea-
sures the share of the population with some tertiary education.
Investment share refers to gross fixed capital formation in % of GDP.
Column (1) reports results from a regression in levels. Column (2)
reports results from a regression in first differences. Significance
stars are defined as follows: * p < 0.1, ** p < 0.05, *** p < 0.01.
t-statistics are reported in parentheses.

rate is used for the following analysis instead.

The estimation equation is the same as the one used for the panel data. Results from

running an OLS regression using the US data are reported in column (1) of Table 3. When

restricting the sample to the US data, a similar pattern of relationships is found. The

coefficient of population growth is negative, though only significant at the 14% level. The

coefficients of the education variable and the interaction term have the same sign as before

but have a lower significance level as well. Given the small sample size, low significance

levels of coefficients are not surprising.

One concern in time series analysis is a potential serial correlation of the error term. A

graphical analysis of the residuals however finds no significant autocorrelation or partial

autocorrelation of the error terms (see Figure 5 in the Appendix). Several tests are available

to assess if residuals from linear regression are serially correlated. Two of the most common
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test are Engle’s Lagrange multiplier test and the Durbin-Watson test. In both cases, the

null hypothesis is that there is no serial correlation in the errors. A rejection of the null

hypothesis, therefore, indicates that the error terms are indeed serially correlated. When

applying Engle’s Lagrange multiplier test and a Durbin-Watson test to the error terms of

the regression, the respective test statistics are given by χ2 = 0.37, which corresponds to a

p − value = 0.54, and d = 0.19. In both cases, the null hypothesis is not rejected, signifying

that there is no statistically significant evidence for serial correlation of the error terms. So

neither the graphical analysis nor the analytic tests of the error terms indicate that they are

serially correlated.

Another concern in time series analysis is that variables may be non-stationary, in which

case a regression can lead to spurious results. The standard test for non-stationarity is the

Augmented Dickey-Fuller test. Applying it to the dependent variable and all explanatory

variables, the null hypothesis of non-stationarity cannot be rejected. Likewise, the Engle-

Granger test, designed to test for cointegration of variables, indicates that the dependent

variable and the explanatory variables are indeed cointegrated. For the first differences of all

variables, the Augmented Dickey-Fuller test rejects the null hypothesis of non-stationarity.

This suggests that the variables are non-stationary in levels but stationary in first difference

form. Due to the only bi-yearly availability of the education measure starting in 1997, the

sample available for estimation if first differences of the data are used is much reduced to

only 13 observations. Results from such an estimation are reported in column (2) of Table

3. The signs of the estimated coefficients stay the same, the magnitude however is much

reduced and none of the coefficients is significantly different from zero. Given the small

sample size, this is not surprising.

The time series analysis of US data finds a similar pattern as the panel analysis in Section

4.1. The advantage of using only US data is that the results cannot be biased by time-varying

unobserved heterogeneity across countries. The disadvantage is that the sample size is

much smaller, reducing statistical power, and that time series analysis is accompanied by

its own confounding factors, such as serial correlation, non-stationarity, and cointegration.
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Given the fact that the analysis in this section is so different from the baseline regression,

it is striking that the results from it are similar to the previously reported results. In view

of the differences in the empirical approach, the tentative results reported in this section

reinforce the confidence that the analysis indeed reveals a systematic relationship between

demographic change, automation, and education.

4.3 Replication

One contribution of this paper is to show that patent data combined with a classification

system of patent categories into automation and non-automation classes constitute a new,

appropriate, and high-quality resource to measure automation. To assess and test the

usefulness of patent data, a replication study of Abeliansky and Prettner (2021) is done. This

study is replicated because it addresses a similar empirical question. By trying to replicate

the study with different data, both the patent data and the empirical results derived from it

are tested.

The estimation equation used in Abeliansky and Prettner (2021) is:

log(pi,t) = a + β1 log(ni,t−1) + β2 · log(si,t−1) + β3 · log(pi,t−1) + ε i,t

where pt and pt−1 refer to an automation measure in t and t − 1, the latter of which is only

included in some specifications. n refers to population growth, and s refers to investment.

Based on their theory (which omits education), the following signs are expected for the

coefficients: β̂1 < 0, β̂2 > 0, β̂3 > 0.

There are a few issues with this approach. First, their model predicts a negative effect

of population growth on automation capital density. Irrespective of that, they use the

growth rate of robot density (their automation measure) as a dependent variable, rather

than the level of robot density. The estimation specification is thus not suited to test the

theoretical hypothesis derived from their model (which corresponds to the limit case of

e = 0 also discussed in Section 2.3). That they use the growth rate of robot density as a

dependent variable causes a second issue, namely that the dependent variable, as well as
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the main explanatory variable, naturally and frequently takes on negative values. According

to Abeliansky and Prettner (2021), they apply a box-cox transformation to the outcome

variable and the main explanatory variable to deal with zero and negative values. However,

a box-cox transformation does not alleviate the problem of zero and negative values but only

ensures a zero-skew distribution of a variable, once negative and zero values are dropped.18

Therefore, by applying a box-cox transformation, many observations will be dropped.

Despite these issues, the patent data is transformed in the same way, first calculating growth

rates and then applying a box-cox transformation to it, to replicate their analysis as closely

as possible. Additionally and in line with the approach taken by Abeliansky and Prettner

(2021), three-year rather than five-year averages of all data are taken for the replication

exercise, to ensure maximal comparability of the findings.

When using patent data covering the same period as in the original study, the regression

results, in particular the significance of the estimated coefficients, cannot be replicated

(see Table 4 in the Appendix). However, when running the same regressions using the

whole period the patent data is available, the finding of a significantly negative relationship

between population growth and automation growth can be replicated (see Table 5 in the

Appendix). This is robust to using different measures of automation patents.

Next, the baseline regression considered here is extended by successively including

education and an interaction term between education and population growth, as done in

Section 4.1. The results reported in Table 7 in the Appendix show that including education,

and especially the interaction term with population growth, is important. The coefficients of

both education and the interaction term are statistically significant and positive. Additionally,

the point estimate for the population growth variable has a higher significance and a higher

magnitude if education and an interaction term are included. This indicates that any

specification omitting education and the interaction term most likely fails to estimate the

true relationship between population growth and automation.

18A box-cox transformation creates a new variable z in the following manner: z = (xλ − 1)/λ. λ is chosen
such that the skewness of z is zero. However, for the transformation to work, x has to be strictly positive (see
Stata Manual https://www.stata.com/manuals13/rlnskew0.pdf).
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According to the model put forward by Abeliansky and Prettner (2021), automation

today is a function of automation in the last period. Therefore, the fixed effects regressions

may be misspecified. To account for that, Abeliansky and Prettner (2021) test a dynamic

specification as well, using corrected fixed effects.19 The same is done using the patent

data, results of which are reported in Table 6 in the Appendix. As in the original paper,

the magnitude of the autocorrelation coefficient is small. In the replication it is also

statistically insignificant, indicating that neglecting to account for it is unproblematic, a

conclusion also drawn by Abeliansky and Prettner (2021). However, in the replicated

dynamic specification the estimated coefficient of population growth is smaller and no

longer statistically significant, contrary to the original paper in which the coefficient of

population growth stays significantly negative when including an autocorrelation term.

It should be noted here, that the model proposed by Abeliansky and Prettner (2021) can

be simplified considerably when assuming a steady state. If in steady state, their derived

expression for pt+1 can be simplified by setting pt+1 = pt = p∗:

pt+1 = s(1 − α)

(
α

1 − α

)α 1 + pt

1 + n

p∗ = s(1 − α)

(
α

1 − α

)α 1 + p∗

1 + n
.

Subsequently, the steady state condition can be solved for p∗:

p∗ =
s(1 − α)

(
α

1−α

)α

(1 + n)− s(1 − α)
(

α
1−α

)α .

The relationship between population growth and automation density can now be derived

by taking the derivative of p∗ with respect to (1 + n):

∂p∗

∂(1 + n)
= −

s(1 − α)
(

α
1−α

)α(
(1 + n)− s(1 − α)

(
α

1−α

)α
)2 < 0.

By assuming that the model economy is in a steady state or on a Balanced Growth Path,

19For the estimation, the stata command xtbcfe developed by De Vos et al. (2015) is used.
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an expression for p∗ can thus be derived. With this, it can unambiguously be shown that

the effect of population growth on automation density is always negative, making dynamic

specifications obsolete.

In summary, the patent data can replicate the findings of Abeliansky and Prettner (2021)

well. Since the empirical model is misspecified, the results in and of themselves should

not be considered reliable. Beyond and more important than replicating empirical results,

this section has shown that freely available patent data from the OECD are a well-suited

measure of automation across countries and time.

5 Conclusion

Demographic change, especially the shrinking of the working-age population, poses a threat

to economic growth in many developed economies. With the retirement of the baby boomer

generation imminent, politicians struggle to counteract the drainage of the labor market

by means of immigration, improving family and work compatibility, or encouraging the

elderly to stay in the labor market longer. Another possibility to fill the void baby boomers

are leaving in the labor market is by automating labor.

This paper studies the link between population growth, especially working-age popu-

lation growth, and automation. Importantly, the proposed model distinguishes between

skilled and unskilled labor. Assuming that automation capital is a closer substitute to

unskilled labor than skilled labor, an economy’s automation potential is predicted to depend

on the population’s education level.

The theoretical prediction is then tested empirically and verified using patent data

from the OECD. A decrease in working-age population growth by 1% is associated with

a 1.1% increase in automation, given the population is unskilled. The effect of population

growth however depends crucially on the education level, such that the relationship between

population growth and automation is even positive if a large enough share of the population

is skilled.

The empirical results are derived using a new measure of automation based on patent
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data. While data on automation patents measures something slightly different than robot

data, it still contains valuable information about automation at the country year level, which

can be used for empirical analysis. In the replication exercise, I show that findings using

robot data can be replicated with patent data. This automation measure based on patent

data has several advantages over robot data. It covers a longer time horizon, as far back as

1977 instead of 1993. It is publicly available, meaning free of charge, contrary to the quite

costly robot data. And lastly, it constitutes a broader measure of automation. Compared to

robot data, patent data is much more likely to capture technological advances based on AI.

In the face of rapid developments in automation in general and AI in particular, having a

measure other than industrial robots for automation seems more important than ever.

The theoretical results were derived under two assumptions. One, that the education

level is exogenously given and two, that capital is fully mobile between automation and

traditional uses in the intratemporal maximization. In the next step, it will be interesting to

explore how relaxing those assumptions affects the theoretical results. Intuitively, imposing

friction in the mobility of capital between uses does not alter the results, as long as mobility

of capital between uses is in general possible. The friction will lead to a sluggish response

to changes in exogenous model parameters, which affects the transition between equilibria

but not the direction or size of the effect population growth has on capital allocation.

Endogenizing the education level of the labor force in contrast is likely to affect the model

results in more complex ways. As derived in Section 2.2, the skill premium paid to skilled

labor increases as more capital is used for automation. Therefore, an increase in automation

capital, caused by changes in population growth, also affects a household’s incentive to seek

higher education. The interplay of demographic change, automation, and education will

thus be more nuanced, once the share of educated labor in the workforce is the result of an

endogenous choice by households. Extending the model by relaxing the two assumptions

as discussed here is an interesting avenue for future work.
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A Theory Appendix

A.1 Intertemporal Maximization

Consider an infinite horizon economy in discrete time indexed by t = 0, 1, 2, ... with

competitively producing firms and one representative household. Population grows at rate

nt, such that Nt+1 = Nt(1 + nt). Both the household and the firms have perfect foresight

and there is no risk in the model.

A.1.1 Firms

Firms produce output using labor Lt and capital K̃t as inputs, with the production function

given by20

Yt = F(Lt, K̃t),

which in intensive form with yt =
Yt
Lt

and k̃t =
K̃t
Lt

can be written as

yt = f (k̃t).

Firms operate under perfect competition and make zero profits in equilibrium. Therefore,

production factors are paid their marginal products, such that Rt = f ′(k̃t) and wt =

f (k̃t)− f ′(k̃t)k̃t. Firms maximize their profit, taking prices {pt, wt, rt}∞
t=0 as given. The firms’

maximization problem is given by

max
yt,k̃t,nt

πt =
∞

∑
t=0

pt(yt − rt k̃t − wt)

s.t. yt = f (k̃t)

20In Section 2, it is important to distinguish between traditional capital K and automation capital P, which
together make up the total capital stock K̃. It is this stock of total capital K̃ which is determined in the
intertemporal maximization discussed here.

45



where rt = Rt − δ is the interest rate net of depreciation and δ ∈ (0, 1). Since the input

factors labor and capital are owned by the households, firms take them as given such that

the maximization is static. How the firms solve this infinite number of static maximization

problems and the implications this has for the demand of sub-classes of capital is the focus

of Section 2.

A.1.2 Households

The representative household owns all production factors and rents them to the firms,

receiving marginal products as remuneration in return, which constitutes its income. Output

can be consumed or invested. Taking into account a constant rate of population growth

n = const, the representative household maximizes the lifetime utility of the entire dynasty

by choosing consumption and savings optimally. The lifetime utility of the dynasty is given

by

∞

∑
t=0

(1 + n)tN0

(
1

1 + ρ

)t

u(ct),

where u(ct) denotes the instantaneous per capita utility and ρ is the rate of time preference.

For simplicity, assume u(ct) = log(ct). In that case, the intertemporal elasticity of substitu-

tion is equal to one. The budget constraint faced by the household is given by the law of

motion of capital

K̃t+1 = K̃t(1 − δ) + F(K̃t, Lt)− ctLt.

Dividing both sides by Lt+1 = Lt(1 + n) gives the law of motion of the per capita capital

stock

(1 + n)k̃t+1 = k̃t(1 − δ) + f (k̃t)− ct.
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By choosing ct, the household also determines k̃t+1 through the law of motion. The

intertemporal maximization problem of the household can be solved using a Lagrangian,

which is set up and solved in the next section.

A.1.3 Solving the Household Problem

The intertemporal maximization problem of the household can be solved using a Lagrangian,

which is set up as follows:

max
ct,ct+1,kt+1

L =
∞

∑
t=0

(1 + n)tN0

(
1

1 + ρ

)t

u(ct) + λt(k̃t(1 − δ) + f (k̃t)− ct − k̃t+1(1 + n))

The first-order conditions are

∂L
∂ct

= (1 + n)tN0

(
1

1 + ρ

)t

u′(ct)− λt
!
= 0,

∂L
∂ct+1

= (1 + n)t+1N0

(
1

1 + ρ

)t+1

u′(ct+1)− λt+1
!
= 0,

∂L
∂k̃t+1

= −λt(1 + n) + λt+1((1 − δ) + f ′(k̃t+1))
!
= 0.

In addition to the first order conditions, a terminal value condition is necessary, with can

simply be stated as k̃∞ ≥ 0. It ensures that the representative household does not accumulate

negative wealth and it is also referred to as a "No-Ponzi Game" condition.

Combining the first-order conditions and rearranging, the Euler Equation can be derived:

λt = λt+1
(1 − δ) + f ′(k̃t+1)

1 + n(
1

1 + ρ

)t

u′(ct) = λt = λt+1
(1 − δ) + f ′(k̃t+1)

1 + n
u′(ct)

u′(ct+1)
=

(
1

1 + ρ

)
((1 − δ) + f ′(k̃t+1))

Intuitively, if the time discount rate ρ increases, the marginal utility of consumption in

period t + 1 decreases relative to the marginal utility of consumption in period t, which,

under the assumption of decreasing marginal utility, is equivalent to an increase in per capita
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consumption ct relative to per capita consumption ct+1. If however additional production

possibility with one more unit of capital in t + 1, given by f ′(k̃t+1), increases, per capita

consumption in period t decreases relative to per capita consumption in period t + 1.

A.1.4 Equilibrium and Steady State

Let pt denote the price of the final output and consumption good, wt the wage rate paid

for labor services and rt the rental rate for capital paid in period t. Taking the prices

{pt, wt, rt}∞
t=0 as given, firms maximize their profits and the household maximizes its

intertemporal utility. In equilibrium, the markets for input factors capital and labor, and the

final consumption good clear.

In steady state, the capital-labor ratio k̃∗ is constant, as well as consumption c∗ and

output per capita f (k̃∗). The Euler Equation together with the law of motion of capital fully

describes the dynamics of the neoclassical growth model.21

u′(c∗)
u′(c∗)

=

(
1

1 + ρ

)
((1 − δ) + f ′(k̃∗)) = 1

(1 + n)k̃∗ = k̃∗(1 − δ) + f (k̃∗)− c∗

From the law of motion of capital, the steady state level of consumption can be derived as

c∗ = f (k̃∗)− (δ + n)k̃∗.

The marginal product of the steady state per capita capital stock k̃∗ can be derived as

f ′(k̃∗) = δ + ρ

Note, that if f (k̃t) is concave, its inverse exists, which is denoted by f−1(k̃t). Making use of

21Note, that due to u(ct) = log(ct), the intertemporal elasticity of substitution is equal to one and does not
scale the Euler Equation.
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the invertibility of f ′(k̃t) and rearranging yields the equilibrium capital stock per capita

k̃∗ = f
′−1(δ + ρ).

A change in the population growth rate n reduces the equilibrium consumption level c∗.

The representative household reacts to a change in n since it maximizes the lifetime utility

of the entire dynasty. A change in n however leaves the equilibrium per capita capital level

k̃∗ unchanged, as n does not factor into its equilibrium level. To see why, note that the Euler

Equation consists of exogenous and invariant parameters δ and ρ as well as the marginal

product of the equilibrium capital stock f (k̃∗). For consumption to be constant, the marginal

product of capital has to be equal to some constant value given by (δ + ρ). Therefore, only

one value of k̃ is consistent with constant consumption levels, which is given by k̃∗.
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A.2 The effect of N and e on K, P, and K̃

To distinguish the effect N has on the marginal product of the overall capital stock K̃ which

is optimally allocated between K and P, such that the marginal products of K and P are

equalized, and the effect N has on the two types of capital K and P, respectively, K and P

have to be analyzed in isolation. This allows to derive the effect N has on K and P if the

allocation of K̃ between capital uses does not change.

To derive the effect N has on the marginal product of traditional capital K, the value of

K is held constant. This isolates the effect N has on the marginal product of K, by shutting

down the effect N has on the allocation of K̃ between K and P. The same holds for the

derivation of the effect N has on automation capital P. The respective derivatives are given

by

∂rtrad

∂N
= α(1 − α)

Y
K · N

((1 − e − eβ)N + (1 − β)P) > 0

∂rauto

∂N
= (1 − α)β

Y
((1 − e)N + P)2N

((1 − α)(1 − β)P − α(1 − e)N) .

The sign of ∂rtrad/∂N is universally positive. The sign of ∂rauto/∂N is indeterminate. On the

one hand, an increase in N increases the skilled labor force, a complement to automation

capital, and with it the return on automation capital. On the other hand, it increases

unskilled labor, a substitute for automation capital, and with it decreases the return on

automation capital. The derivative can be decomposed into the effect population size has

on output and unskilled labor supply:

∂rauto

∂N
= (1 − α)β

1
((1 − e)N + P)2

(
((1 − e)N + P)

∂Y
∂N

− Y
∂((1 − e)N + P)

∂N

)
.

Formally, the positive effect of population size on rauto is captured by the first term in the

large brackets, and the negative effect of population size on rauto by the second term in the

large brackets. Which effect dominates depends on the size of the skilled labor force.
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Full mobility of capital entails, that the marginal product of both kinds of capital is equal

at all times. Therefore, an increase in N is accompanied by a reallocation of K̃ between

traditional uses and automation uses. If the ratio of K/P adjusts to the increase in N, the

effect of an increase in N on the equilibrium interest rate r∗ is strictly positive, reflecting the

increase in the input factor labor which is available for production:

∂r∗

∂N
= ((1 − α)β + α)

(
((1 − e)N + K̃) · ∂Y/∂N − Y · (1 − e)

)
> 0

∂Y
∂N

= (1 − α)Y
(

β(1 − α)(1 − e)β

(1 − α)β + α
+

1 − β

N

)
+ αY

(1 − e)
((1 − α)β + α)((1 − e)N + K̃)

> 0

Holding constant the allocation of K̃ between traditional uses and automation uses, the

cross derivatives of rauto and rtrad with respect to N and e are given by

∂2rauto

∂N∂e
= rauto · ((1 − α)(1 − β)eN + (1 − (1 − α)β) ((1 − e)N + P)) ·(

(1 − e)N(1 − α)(1 + (1 − α)(1 − β))P
((1 − e)N + P)

)
+

+rauto · N ((1 − α)(1 − β)eN + (1 − (1 − α)β)(1 − e)) > 0

∂2rtrad

∂N∂e
= α(1 − α)

Y
K · N

(β − 1)N < 0.

Having shown that education influences the effect population size has on the return on

automation capital and hence the incentive to automate, the direct effect of education on

automation incentives is also of interest. The effect can be derived by taking the derivative

of rauto with respect to education, which is always positive.

∂rauto

∂e
= rauto · N · ((1 − α)(1 − β)eN + (1 − (1 − α)β)((1 − e)N + P)) > 0
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Education increases rauto for two reasons: First, it increases the supply of skilled labor, which

is a complement to automation capital. Second, it decreases unskilled labor, which is a

substitute for automation capital.
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A.3 Taking into Account the effect of N on K̃

In Section 2.2 it has been derived that ∂K/P
∂N > 0 under the implicit assumption of ∂K̃

∂N = 0.

Here it is shown, that the results carry through when taking into account the second-order

effect of ∂K̃
∂N .

K
P

=
α(1 − e)N + K̃

K̃(1 − α)β − α(1 − e)N

∂K/P
∂N

=
(K̃(1 − α)β − α(1 − e)N)

(
α(1 − e) + ∂K̃

∂N

)
(
K̃(1 − α)β − α(1 − e)N

)2 −

−
(α(1 − e)N + K̃)

(
∂K̃
∂N (1 − α)β − α(1 − e)

)
(
K̃(1 − α)β − α(1 − e)N

)2

=
α(1 − e)(1 + (1 − α)β)

(
K̃ − ∂K̃

∂N · N
)

(
K̃(1 − α)β − α(1 − e)N

)2

Note, that k̃ = const on the balanced growth path implies that K̃ and N grow at the

same rate, which is given by n. Therefore, ∂K̃
∂N = 1. This results in ∂K/P

∂N > 0 ⇐⇒ K̃ > N.

There is no reason why the opposite should be true, such that it is an innocuous assumption

for K̃ > N to be true. In that case, ∂K/P
∂N > 0 holds even when allowing for ∂K̃

∂N ̸= 0.

By taking the derivative of ∂(K/P)
∂N with respect to e, the role the share of skilled labor in

the labor force plays can be determined.

∂2K/P
∂N∂e

=

(
K̃(1 − α)β − α(1 − e)N

)2
α(1 + (1 − α)β(−1)(

K̃(1 − α)β − α(1 − e)N
)4 −

−
α(1 − e)(1 + (1 − α)β) · 2

(
K̃(1 − α)β − α(1 − e)N

)
(αN)(

K̃(1 − α)β − α(1 − e)N
)4

=
α(1 + (1 − α)β)(−1)

(
K̃(1 − α)β + (1 − e)αN

)(
K̃(1 − α)β − α(1 − e)N

)3 < 0
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The denominator of the cross derivative is positive since it is the denominator of K
P , which is

positive, to the power of three. The numerator is negative, since α(1 + (1 − α)β)(−1) < 0.

Thus the cross derivative is negative.

Since ∂(K/P)
∂N > 0, the effect of the population size N on the ratio K

P is positive. For the

limit case of e = 1, the ratio of K
P is fully determined by the parameters α and β and thus

independent of N. Therefore, in the limit case of e = 1, ∂(K/P)
∂N = 0. The negative sign of

the cross derivative demonstrates that as e increases, the effect of N on K
P decreases. This is

equivalent to the results derived in the main part of the paper, which neglects the effect of

N on K̃.
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A.4 Limit Cases of Per Capita Production Functions

To better understand the effect of population growth on per capita output and per capita

capital, which is made up of traditional and automation capital, consider the limit cases of

the per-capita production function discussed in Section 2.4.

If the labor force is unskilled (e = 0), per capita output is given by

y = kα(1 + p)1−α.

Deriving the marginal product of traditional and automation capital per capita:

rtrad =
∂y
∂k

= α
y
k

,

rauto =
∂y
∂p

= (1 − α)
y

(1 + p)
.

Setting the two marginal products equal due to capital mobility and plugging in k = k̃ − p

and p = k̃ − k, the optimal values of traditional capital per capita k∗ and automation capital

per capita p∗ can be derived.

rtrad = rauto

k∗ = αk̃ + α

p∗ = (1 − α)k̃ − α

Note, that k̃ = K̃
N . If the growth rate of N, denoted by n, deviates from its balanced growth

path value, this affects k̃. Specifically, if n decreases, k̃ increases. This also affects the optimal

ratio of k and p, which decreases. Thus, if the population decreases, the optimal ratio of
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k∗/p∗ decreases.

k∗

p∗
=

αk̃ + α

(1 − α)k̃ − α
,

∂(k∗/p∗)
∂k̃

=
−α(

(1 − α)k̃ − α
)2 < 0.

If the labor force is completely skilled (e = 1), output per capita is given by

y = kα pβ(1−α).

Deriving the marginal effect of traditional and automation capital per capita:

rtrad =
∂y
∂k

= α
y
k

,

rauto =
∂y
∂p

= β(1 − α)
y
p

.

Setting equal due to capital mobility and reformulating yields

rtrad = rauto,

k∗ =
α

α + (1 − α)β
· k̃,

p∗ =
(1 − α)β

α + (1 − α)β
· k̃,

k∗

p∗
=

α

β(1 − α)
.

If the workforce is fully educated, the two types of capital k and p are both allocated a

constant share of total capital per capita k̃. Thus, the ratio k
p is unaffected by population

growth.
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B General Appendix

B.1 Additional Figures
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Working-age Population Growth: Mean and across Years

Note: The figure illustrates the development of the working-age population
growth rate over the years using a boxplot. In the left panel, the 25th, 50th, and
75th percentile of the distribution across years and countries is shown. The
right panel shows the respective statistics across countries in 5-year intervals.

Figure 2: Visualization of Working-age Population Growth over Time
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Figure 3: Visualization of Marginal Effects from Table 1

Note: The Figure illustrates the regression results reported in Table 1. Panel (a) shows the predicted
marginal effect an increase in log working-age population growth has on automation density for
different values of the education variable. Panel (b) shows the predicted marginal effect an increase
in education has on automation density for different values of working-age population growth. In
both cases, 95% confidence intervals of the predicted effect are reported.
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Figure 4: Visualization of Variable Distribution Across Time

Note: The figure illustrates the development of the education measure and working-age population
growth over the years using a boxplot. In the respective left panel, the 25th, 50th, and 75th percentile
of the distribution across years and countries is shown. The right panel shows the respective statistics
across countries in 5-year intervals

To interpret the effect of working-age population growth on automation, it may be helpful to

look at the marginal effect at certain levels of education. The distribution of education across

years is visualized in Panel (a) of Figure 4. Fixing the share of the educated population at
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0%, 20%, 40%, and 60%, the respective marginal effects of working-age population growth

are -1.1, -0.4, 0.2, and 0.8. These numbers are calculated as ∂automate
∂popgrowth = η1 + η3 · educ,

inserting the values 0, 20, 40, and 60 for education. The analysis can also be visualized,

which is done in Figure 3. It shows the estimated marginal effect of working-age population

growth on automation for the same fixed shares of the educated population. For low levels

of education, represented by Education = 0 and Education = 20, the marginal effect of

working-age population growth is negative and for high levels of education (Education = 40

and Education = 60) it is positive.

The same analysis of marginal effects is done for the education variable at different

levels of working-age population growth. In that case, the marginal effect is calculated

as ∂automate
∂educ = η2 + η3 · popgrowth. Again, this is calculated for some meaningful values

of working-age population growth. In the data, the working-age population growth rate

ranges from -0.10 to 0.30. The distribution of the growth rate across years and by years is

visualized in Panel (b) of Figure 4. For the visualization in Figure 3b, the values -0.08, -0.05,

0.03, 0.27 are used.22 At these values, the marginal effect of an increase in education on the

density of automation patents is given by -0.07, -0.04, -0.01, 0.03, which corresponds to the

respective slope of the lines. The negative sign for low levels of working-age population

growth is driven by the effect working-age population growth has on automation density,

whose negative effect outweighs the positive effect education has on automation density.

22Note, that these are the values before the rescaling of the population growth variable. log(−4) in the figure
corresponds to a rescaled working-age population growth rate of 0.18, which, taking into account the rescaling,
is equivalent to a growth rate of -0.08.
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B.1.1 Graphical Analysis of Error Terms
-0

.5
0

0.
00

0.
50

Au
to

co
rre

la
tio

ns
 o

f ɛ

0 2 4 6 8 10
Lag

Bartlett's formula for MA(q) 95% confidence bands

Autocorrelation of Error Terms

(a) Autocorrelation
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(b) Partial Autocorrelation

Figure 5: Graphical Analysis of Time Series Estimation Error Terms

Note: The figure shows the autocorrelation and partial autocorrelation of error terms from the time
series analysis of US data, results of which are reported in Table 3.

Figure 5 shows the autocorrelation and the partial autocorrelation of the error terms resulting

from time series analysis, the results of which are reported in Table 3. There is no distinctive

pattern in the error terms for different lag times. Furthermore, none of the correlations

across lags are statistically significant, indicating that there is no serial correlation of the

error terms.
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B.2 Replication Regression Results

Table 4: Replication of Abeliansky and Prettner (2021) using Patent data 1993-2020

(1) (2) (3)
log(Pop Growth) 0.0112 -0.1481 -0.2754

(0.06) (-0.68) (-1.35)
Investment Share -0.0014 0.0011 0.0076

(-0.20) (0.14) (1.03)
Constant -1.7019∗∗∗ -1.6279∗∗∗ 0.0000

(-3.31) (-2.82) (.)
Time FE Yes Yes Yes
Country FE Yes Yes Yes
R2 0.25 0.10 0.08
Observations 311 247 250

Note: Dependent variable in column (1), column (2) and column
(3) is the box-cox transformed growth rate of automation patents
per capita as defined by the auto1, auto90 and auto95 measure,
respectively. All explanatory variables are lagged by one period.
log(Pop growth) is the box-cox transformed population growth
rate. Investment share refers to gross fixed capital formation in %
of GDP. Significance stars are defined as follows: * p < 0.1, ** p <

0.05, *** p < 0.01. t-statistics are reported in parentheses.

Tables 4 and 5 show regression results from replicating Abeliansky and Prettner (2021)

using patent data. The outcome of similar regression results using patent data covering the

same time period cannot be obtained (Table 4). However, one of the advantages of using

patent data is that it covers a much longer time period than the robot data. While reliable

data on robots starts in 1993, the OECD patent data goes back to 1977. When running the

same regressions using the whole time period the patent data is available, the finding of a

significantly negative relationship between population growth and automation growth can

be replicated (Table 5). This is robust to using different classifications and thus measures of

automation patents.23

Table 6 reports results from running a dynamic corrected fixed effects regression using

log growth rates of automation measures as a dependent variable as in Abeliansky and

23Probably due to reasons detailed in Section 3.2.2, this finding is limited to an analysis using IP5 patents,
while analyses using Triadic family patents or PCT patents do not result in statistically significant coefficients.
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Table 5: Replication of Abeliansky and Prettner (2021) using Patent data 1977-2020

(1) (2) (3)
log(Pop Growth) -0.2419∗ -0.2987∗∗ -0.3484∗∗∗

(-1.94) (-2.20) (-2.62)
Investment Share 0.0057 0.0038 0.0097

(1.07) (0.63) (1.64)
Constant -0.5952∗ -0.4360 -0.5800∗

(-1.86) (-1.26) (-1.70)
Time FE Yes Yes Yes
Country FE Yes Yes Yes
R2 0.59 0.56 0.59
Observations 429 336 336

Note: Dependent variable in column (1), column (2) and column
(3) is the box-cox transformed growth rate of automation patents
per capita as defined by the auto1, auto90 and auto95 measure,
respectively. All explanatory variables are lagged by one period.
log(Pop growth) is the box-cox transformed population growth
rate. Investment share refers to gross fixed capital formation in %
of GDP. Significance stars are defined as follows: * p < 0.1, ** p <

0.05, *** p < 0.01. t-statistics are reported in parentheses.

Prettner (2021). The autocorrelation is insignificant. The estimated coefficient of log

population growth though is smaller and no longer significant. However, that may be due

to the much-reduced sample size.

Tabel 7 uses the same dependent variable as column (1) in Tables 4 and 5. In columns (2)

and (3) education and an interaction term of education with the population growth variable

are added. The results show clearly that including education is important, especially the

interaction term. The coefficient of both education and the interaction term is statistically

significant and positive. Additionally, the point estimate for the population growth variable

has a higher significance and a higher magnitude.
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Table 6: Corrected FE Estimates 1977-2020

(1) (2) (3)
log(∆auto1)t−1 0.114

(1.37)
log(∆auto90)t−1 0.002

(0.02)
log(∆auto95)t−1 0.059

(0.36)
log(Pop Growth) -0.124 0.099 -0.091

(-0.63) (0.27) (-0.32)
Investment Share 0.003 0.002 0.014

(0.39) (0.20) (1.36)
Time FE Yes Yes Yes
Country FE Yes Yes Yes
N 289 141 144

Note: Dependent variable in column (1), column (2), and column (3)
is the log growth rate of automation patents per capita as defined
by the auto1, auto90, and auto95 measure, respectively. A three-
year lag of the dependent variable is included as an explanatory
variable in each regression. All other explanatory variables are
lagged by one period. log(Pop growth) is the log of population
growth. Investment share refers to gross fixed capital formation in
% of GDP. Significance stars are defined as follows: * p < 0.1, ** p
< 0.05, *** p < 0.01. t-statistics are reported in parentheses.
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Table 7: Replication of Abeliansky and Prettner (2021) adding Education data 1977-2020

(1) (2) (3)
log(Pop Growth) -0.2419∗ -0.2381∗ -0.3663∗∗∗

(-1.94) (-1.92) (-2.61)
Education 0.0029 0.0151∗∗

(0.71) (1.99)
log(Pop growth) × Education 0.0062∗

(1.91)
Investment Share 0.0057 0.0082 0.0083

(1.07) (1.50) (1.52)
Time FE Yes Yes Yes
Country FE Yes Yes Yes
R2 0.59 0.59 0.60
Observations 429 426 426

Note: Dependent variable in all columns is the box-cox transformed growth
rate of automation patents per capita as defined by the auto1. All explanatory
variables are lagged by one period. log(Pop growth) is the box-cox transformed
population growth rate. Education measures the share of the population with
some tertiary education. Investment share refers to gross fixed capital formation
in % of GDP. Significance stars are defined as follows: * p < 0.1, ** p < 0.05, ***
p < 0.01. t-statistics are reported in parentheses.
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B.3 Additional Regression Tables

B.3.1 Using Different Education Measures

Table 8: Using Some Tertiary Education as Education Measure

(1) (2) (3)
log(W. Pop growth) -0.1646 -0.1551 -0.5227∗∗

(-1.14) (-1.07) (-2.20)
Some Tertiary Education -0.0053 0.0433

(-0.56) (1.63)
log(W. Pop growth) × Education 0.0259∗

(1.95)
Investment Share 0.0362∗∗∗ 0.0351∗∗∗ 0.0352∗∗∗

(3.47) (3.29) (3.32)
Time FE Yes Yes Yes
Country FE Yes Yes Yes
R2 0.60 0.60 0.61
Observations 328 325 325

Note: Dependent variable is the log of the automation measure auto1, constructed
from patent data reported by the OECD and divided by working-age population to
arrive at a per-capita measure. All explanatory variables are lagged by one period.
log(W. Pop growth) is the log of working-age population growth. Education measures
the share of the working-age population with at least some tertiary education as
reported by Barro and Lee. Investment share refers to gross fixed capital formation as
a share of GDP. Significance stars are defined as follows: * p < 0.1, ** p < 0.05, *** p <

0.01. t-statistics are reported in parentheses.

Tables 8 and 9 report results from estimating the main regressions but using some tertiary

education or completed tertiary education as an education measure. The coefficient on

working-age population growth decreases both in magnitude and significance. The coeffi-

cient of the interaction term also varies in significance and magnitude. The overall findings

however can be replicated quite well.
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Table 9: Using Completed Tertiary Education as Education Measure

(1) (2) (3)
log(W. Pop growth) -0.1646 -0.1660 -0.5611∗∗

(-1.14) (-1.15) (-2.41)
Completed Tertiary Education 0.0054 0.0881∗∗

(0.41) (2.18)
log(W. Pop growth) × Education 0.0441∗∗

(2.16)
Investment Share 0.0362∗∗∗ 0.0368∗∗∗ 0.0371∗∗∗

(3.47) (3.47) (3.52)
Time FE Yes Yes Yes
Country FE Yes Yes Yes
R2 0.60 0.60 0.61
Observations 328 325 325

Note: Dependent variable is the log of the automation measure auto1, constructed
from patent data reported by the OECD and divided by working-age population to
arrive at a per-capita measure. All explanatory variables are lagged by one period.
log(W. Pop growth) is the log of working-age population growth. Education measures
the share of the working-age population with at least completed tertiary education as
reported by Barro and Lee. Investment share refers to gross fixed capital formation as
a share of GDP. Significance stars are defined as follows: * p < 0.1, ** p < 0.05, *** p <

0.01. t-statistics are reported in parentheses.
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B.3.2 Using Total Population Growth

Table 10: Total Population Growth and Automation Density

(1) (2) (3)
log(Pop growth) -0.7332∗∗∗ -0.7563∗∗∗ -2.0402∗∗∗

(-3.23) (-3.40) (-5.11)
Education -0.0008 0.0661∗∗∗

(-0.13) (3.58)
log(Pop growth) × Education 0.0344∗∗∗

(3.83)
Investment Share 0.0390∗∗∗ 0.0381∗∗∗ 0.0467∗∗∗

(3.72) (3.69) (4.53)
Time FE Yes Yes Yes
Country FE Yes Yes Yes
R2 0.61 0.63 0.65
Observations 341 334 334

Note: Dependent variable is the log of the automation measure auto1, constructed
from patent data reported by the OECD and divided by population to arrive at a per-
capita measure. All explanatory variables are lagged by one period. log(Pop growth)
is the log of total population growth. Education measures the share of the total
population with at least completed secondary education as reported by Barro and
Lee. Investment share refers to gross fixed capital formation as a share of GDP.
Significance stars are defined as follows: * p < 0.1, ** p < 0.05, *** p < 0.01. t-
statistics are reported in parentheses.

Table 10 reports results from estimating the main regressions but using total population

growth instead of working-age population growth. All coefficients remain significant and

even slightly increase in magnitude.
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B.3.3 Using PTC and Triadic Patent Data

Table 11: Main Regression using Triadic and PCT Patents

Triadic PCT
(1) (2) (3) (4) (5) (6)

log(W. Pop growth) -0.2155 -0.2149 -1.5596∗∗∗ -0.4690∗∗ -0.4747∗∗ -2.3359∗∗∗

(-1.10) (-1.09) (-4.21) (-1.97) (-1.99) (-5.31)
Education 0.0007 0.0859∗∗∗ 0.0125 0.1241∗∗∗

(0.08) (3.93) (1.28) (5.08)
Interaction 0.0471∗∗∗ 0.0617∗∗∗

(4.23) (4.94)
Investment Share 0.0217 0.0217 0.0189 0.0193 0.0183 0.0164

(1.52) (1.50) (1.35) (1.21) (1.15) (1.07)
Time FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
R2 0.43 0.43 0.47 0.74 0.74 0.77
Observations 324 321 321 323 320 320

Note: Dependent variable is the log of automation patents per capita as reported by the OECD. In columns
(1), (2), and (3), only automation patents registered with the EPO, the JPO, and the USPTO are used for the
analysis. In columns (4), (5), and (6), only automation patents filed with the PCT are used for analysis. All
explanatory variables are lagged by one period. log(W. Pop growth) is the log of working-age population
growth. Education measures the share of the working-age population with at least completed secondary
education as reported by Barro and Lee. Investment share refers to gross fixed capital formation as a
share of GDP. The variable Interaction is defined as follows: Interaction = log(W. Pop growth) × Education.
Significance stars are defined as follows: * p < 0.1, ** p < 0.05, *** p < 0.01. t-statistics are reported in
parentheses.

Table 11 reports regression results from running the baseline specification but using Triadic

patent data and PCT patent data instead. The estimated coefficients are very similar in

magnitude and significance.
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B.3.4 Using auto90 and auto95 Data

Table 12: Main Regression using auto90 and auto95

auto90 auto95
(1) (2) (3) (4) (5) (6)

log(W. Pop growth) -0.2070 -0.2097 -1.0128∗∗∗ -0.5406∗ -0.5432∗ -2.0826∗∗∗

(-1.16) (-1.17) (-2.94) (-1.83) (-1.83) (-3.88)
Education 0.0045 0.0594∗∗∗ 0.0067 0.0855∗∗∗

(0.58) (2.76) (0.86) (3.52)
Interaction 0.0306∗∗∗ 0.0439∗∗∗

(2.72) (3.42)
Investment Share 0.0383∗∗∗ 0.0378∗∗∗ 0.0380∗∗∗ 0.0359∗∗∗ 0.0352∗∗ 0.0407∗∗∗

(2.94) (2.88) (2.93) (2.58) (2.52) (2.96)
Time FE Yes Yes Yes Yes Yes Yes
Country FE Yes Yes Yes Yes Yes Yes
R2 0.32 0.32 0.35 0.31 0.31 0.34
Observations 304 301 301 300 297 297

Note: Dependent variable is the log of automation patents per capita as reported by the OECD. In columns
(1), (2), and (3), the dependent variable is calculated using automation patents as measured by the variable
auto90. In columns (4), (5), and (6), the dependent variable is calculated using automation patents as measured
by the variable auto95. All explanatory variables are lagged by one period. log(W. Pop growth) is the log of
working-age population growth. Education measures the share of the working-age population with at least
completed secondary education as reported by Barro and Lee. Investment share refers to gross fixed capital
formation as a share of GDP. The variable Interaction is defined as follows: Interaction = log(W. Pop growth) ×
Education. Significance stars are defined as follows: * p < 0.1, ** p < 0.05, *** p < 0.01. t-statistics are reported
in parentheses.

Table 12 reports regression results from running the baseline specification but using auto90

and auto95 patent data as dependent variables instead. The pattern of the different esti-

mation specifications is similar to the baseline case. The estimated coefficients however

are smaller and have a lower significance level. This is likely due to higher noise in the

automation measures auto90 and auto95, compared to the preferred measure of auto1.
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B.3.5 Subsample of G20 Member Countries

Table 13: Main Regression using only G20 Countries

(1) (2) (3)
log(W. Pop growth) -0.6435 -0.6764 -2.3878∗∗∗

(-1.47) (-1.56) (-2.96)
Education -0.0140 0.0615∗

(-1.57) (1.95)
log(W. Pop growth) × Education 0.0408∗∗

(2.49)
Investment Share 0.1467∗∗∗ 0.1464∗∗∗ 0.1343∗∗∗

(7.29) (7.34) (6.72)
Time FE Yes Yes Yes
Country FE Yes Yes Yes
R2 0.71 0.72 0.74
Observations 113 113 113

Note: Dependent variable is the log of automation patents per capita as reported
by the OECD. Only the subsample of G20 member states is used for regression. All
explanatory variables are lagged by one period. log(W. Pop growth) is the log of
working age population growth. Education measures the share of the working-age
population with at least completed secondary education as reported by Barro and Lee.
Investment share refers to gross fixed capital formation as a share of GDP. Significance
stars are defined as follows: * p < 0.1, ** p < 0.05, *** p < 0.01. t-statistics are reported
in parentheses.

Table 13 reports regression results from repeating the regressions from Table 1 in the

sub-sample of G20 member states. The pattern of results is the same as in the full sample.
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B.4 List of Countries

There are 59 countries for which all variables necessary for estimating the main specification

are available. They are:

Argentina, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Chile, China, Colom-

bia, Croatia, Czech Republic, Denmark, Egypt, Estonia, Finland, France, Germany, Greece,

Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Korea, Latvia, Lithuania,

Luxembourg, Malaysia, Mexico, Morocco, Netherlands, New Zealand, Norway, Pakistan,

Peru, Philippines, Poland, Portugal, Romania, Russia, Saudi Arabia, Singapore, Slovenia,

South Africa, Spain, Sweden, Switzerland, Thailand, Tunisia, Turkiye, Ukraine, United

Kingdom, United States.
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