Moniz, António (2023): «Indústria 5.0» como conceito de um novo tipo de interação humano-máquina?
Preview |
PDF
MPRA_paper_120889.pdf Download (367kB) | Preview |
Abstract
The concept of Industry 5.0 aims to place worker well-being at the center of the production process. This concept is centered on the idea of anthropocentric technology, which implies that technology, organizations and workplaces must be adapted to human and social needs. There are, however, still unclear problems regarding this concept. Knowing that the Industry 4.0 concept has significant limitations regarding the need to develop automation technology in an anthropocentric orientation, Industry 5.0 can have two orientations: either the experiences that adopt this concept seek solutions to adapt the human factor to the characteristics of the technology or , knowing the social and organizational requirements, look for solutions to develop this technology in accordance with these requirements. This is a problem that is unlikely to be resolved.
Item Type: | MPRA Paper |
---|---|
Original Title: | «Indústria 5.0» como conceito de um novo tipo de interação humano-máquina? |
English Title: | [“Industry 5.0” as a concept of a new human-machine interaction? |
Language: | Portuguese |
Keywords: | Industry 4.0, Industry 5.0, automation, human-machine interaction, human resource management |
Subjects: | D - Microeconomics > D2 - Production and Organizations > D24 - Production ; Cost ; Capital ; Capital, Total Factor, and Multifactor Productivity ; Capacity L - Industrial Organization > L6 - Industry Studies: Manufacturing O - Economic Development, Innovation, Technological Change, and Growth > O3 - Innovation ; Research and Development ; Technological Change ; Intellectual Property Rights > O33 - Technological Change: Choices and Consequences ; Diffusion Processes |
Item ID: | 120889 |
Depositing User: | António Moniz |
Date Deposited: | 15 Aug 2024 13:25 |
Last Modified: | 15 Aug 2024 13:25 |
References: | BARD, J. F. (1986). An assessment of industrial robots: capabilities, economics, and impacts. Journal of Operations Management 2(6), 99–124. BERRAH, L., CLIVILLE, V., TRENTESAUX, D., & CHAPEL, C. (2021). Industrial performance: an evolution incorporating ethics in the context of industry 4.0. Sustainability 13(16). doi: 10.3390/su13169209. BREQUE, M., DE NUL, L., & PETRIDIS, A. (2021). Industry 5.0: towards a sustainable, human-centric and resilient European industry. European Commission, Directorate-General for Research and Innovation. BRÖDNER, P. (ed.). (1987). Strategic Options for "New Production Systems" — CHIM: Computer and Human Integrated Manufacturing (FOP 150). BRUNO, G., & ANTONELLI, D. (2018). Dynamic task classification and assignment for the management of human-robot collaborative teams in work cells. International Journal of Advanced Manufacturing Technology, 98(9–12), 2415–2427. doi: 10.1007/s00170-018-2400-4. BUTOLLO, F., JÜRGENS, U., & KRZYWDZINSKI, M. (2018). From Lean Production to Industry 4.0: More Autonomy for Employees? Discussion Paper SP III 2018–303. WZB Berlin Social Science Center. CIMINI, C., PIROLA, F., PINTO, R., & CAVALIERI, S. (2020). A human-in-the-loop manufacturing control architecture for the next generation of production systems. J. Manuf. Syst., 54, 258–271. COOLEY, M. (1989). European Competitiveness in the 21st Century: Integration of Work, Culture and Technology, CEC-FAST. CUNHA, L., SILVA, D., & MAGGIOLI, S. (2022). Exploring the status of the human operator in Industry 4.0: A systematic review. Frontiers in Psychology, 13(88912). doi: 10.3389/fpsyg.2022.889129. EFFRA — EUROPEAN FACTORIES OF THE FUTURE RESEARCH ASSOCIATION. (2016). Factories 4.0 and Beyond. Recommendations for the Work Programme 18–19–20 of the FoFPPP Under Horizon 2020. EFFRA. EL-HAOUZI, H. B., VALETTE, E., KRINGS, B. J., & MONIZ, A. B. (2021). Social dimensions in CPS & IoT based automated production systems. Societies 11(3). doi: 10.3390/soc11030098. EUROPEAN COMMISSION. (2013). Factories of the future - Multi annual roadmap for the contractual PPP under Horizon 2020. Publications Office of the European Union. doi: 10.2777/29815. GAJŠEK, B., STRADOVNIK, S., & HACE, A. (2020). Sustainable move towards flexible, robotic, human-involving workplace. Sustainability 12(16). doi: 10.3390/su12166590. GOMBOLAY, M., BAIR, A., HUANG, C., & SHAH, J. (2017). Computational design of mixed-initiative human–robot teaming that considers human factors: Situational awareness, workload, and workflow preferences. International Journal of Robotics Research, 36(5–7), 597–617. doi: 10.1177/0278364916688255. Kim, S. (2022). Working with Robots: Human Resource Development Considerations in Human-Robot Interaction, Human Resource Development Review, 21(1), 48–74. doi: 10.1177/15344843211068810 KRINGS, B. J., A. B. MONIZ, & FREY, P. (2021). Technology as enabler of the automation of work? Current societal challenges for a future perspective of work. Revista Brasileira de Sociologia, 9, 206–229. https://rbs.sbsociologia.com.br/index.php/rbs/article/view/rbs.806. KRÜGER, J., Lien, T., & VERL, A. (2009). Cooperation of human and machines in assembly lines. CIRP Ann., 58, 628–646. LU, Y., XU, X., WANG, L. (2020). Smart manufacturing process and system automation: A critical review of the standards and envisioned scenarios. Journal of Manufacturing Systems, 56, 312–325. MADAKAM, S., RAMASWAMY, R., & TRIPATHI, S. (2015). Internet of Things (IoT): A literature review. Journal of Computer and Communications, 3, 164–173. MAKRINI, I. E., MERCKAERT, K., LEFEBER, D., & VANDERBORGHT, B. (2017). Design of a collaborative architecture for human-robot assembly tasks. IEEE International Conference on Intelligent Robots and Systems, 1624–1629. 10.1109/IROS.2017.8205971. MAY, G., TAISCH, M., BETTONI, M., MAGHAZEI, A., MATARAZZO, O., & STAHL, B. (2015). A human-centric factory model. Procedia CIRP, 26, 103–108. doi: 10.1016/j.procir.2014.07.112. MONIZ, A. B. (1989). Mudanças tecnológicas e organizacionais em Portugal: Análise das duas últimas décadas. Organizações e Trabalho. 1, 7–23. MONIZ, A. B. (2014). Organisational challenges of human–robot interaction systems in industry: Human resources implications. Em C. Machado, & P. J. Davim (eds.), Human resource management and technological challenges (pp. 123–132). Springer. 10.1007/978-3-319-02618-3. MONIZ, A. B. (2015). Intuitive Interaction Between Humans and Robots in Work Functions at Industrial Environments: The Role of Social Robotics. Em J. Vincent et al. (eds.), Social Robots from a Human Perspective, Springer. doi: 10.1007/978-3-319-15672-9_6. MONIZ, A., & KRINGS, B.-J. (2016). Robots working with humans or humans working with robots? Searching for social dimensions in new human-robot interaction in industry. Societies, 6(23). doi: 10.3390/soc6030023. MONIZ, A. B., CANDEIAS, M. & BOAVIDA, N. (2022). Changes in productivity and labour relations: artificial intelligence in the automotive sector in Portugal. International Journal of Automotive Technology and Management, 22(2), 222–244. NEUMANN, W., WINKELHAUS, S., GROSSE, E., & GLOCK, C. (2021). Industry 4.0 and the human factor: A systems framework and analysis methodology for successful development. International Journal of Production Economics, 233(107922). doi: 10.1016/j.ijpe.2020.107992. ROMERO, D., BERNUS, P., NORAN, O., STAHRE, J., & Fast-Berglund, S. (2016a). The operator 4.0: human cyber-physical systems and adaptive automation towards human-automation symbiosis work systems. IFIP Advances in Information and Communication Technology. 677–686. doi: 10.1007/978-3-319-51133-7_80. ROMERO, D., NORAN, O., STAHRE, J., BERNUS, P., & FAST-BERGLUND, Å. (2016b). Towards a human-centred reference architecture for next generation balanced automation systems: human-automation symbiosis. Em S. Umeda et al. (eds.), Advances in Production Management Systems: Innovative Production Management Towards Sustainable Growth. Springer. doi: 10.1007/978-3-319-22759-7_64 SHERIDAN, T. B. (2016). Human-robot interaction. Human Factors, 58(4), 525–532. 10.1177/0018720816644364. SCHIRNER, G., ERDOGMUS, D., CHOWDHURY, K., & PADIR, T. (2013. The Future of Human-in-the-Loop Cyber-Physical Systems. Computer, 46, 36–45. SOWE, S. K., SIMMON, E., ZETTSU, K., DE VAULX, F., & BOJANOVA, I. (2016). Cyber-Physical-Human Systems: Putting People in the Loop. IT Prof., 18, 10–13. THUN, S., KAMSVÅG, P. F., KLØVE, B., SEIM, E. A., & TORVATN, H. Y. (2019). Industry 4.0: Whose revolution? The digitalization of manufacturing work processes. Nord. J. Work. Life Stud. 9(e117777). doi: 10.18291/njwls.v9i4.117777. TSAROUCHI, P., MATTHAIAKIS, A. S., MAKRIS, S., & CHRYSSOLOURIS, G. (2017). On a human-robot collaboration in an assembly cell. International Journal of Computer Integrated Manufacturing, 30(6), 580–589. 10.1080/0951192X.2016.1187297. VANDERHAEGEN, F., NELSON, J., WOLFF, M., & MOLLARD, R. (2021). From Human-Systems Integration to Human-Systems Inclusion for use centred inclusive manufacturing control systems. Proceedings of the 17th IFAC Symposium on Information Control Problems in Manufacturing, 7–9. https://ifac.papercept.net/conferences/scripts/rtf/INCOM21_ContentListWeb_1.html WALLHOFF, F. et al. (2010). A skill-based approach towards hybrid assembly. Advanced Engineering Informatics, 24(3) 329–339. WOBBE, W. (1990). Anthropocentric Production Systems in the Context of CEC’s. FAST/MONITOR. p. 14. (edição posterior em https://link.springer.com/chapter/10.1007/978-1-4471-1967-8_7) |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/120889 |