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Abstract: Previous literature analyzing the effects of incentive compatibility of experi-

mental payment mechanisms is dominated by theory. With overwhelming evidence of theory

violations in a multiplicity of domains, we fill this gap by empirically exploring the effects of

different payment mechanisms in induced preference elicitation using a large sample of over 3800

participants across three experiments. In Experiment 1, we collected responses for offer prices

to sell a card like in Cason and Plott (2014), systematically varying on a between-subjects basis

the way subjects received payments over repeated rounds, by either paying for all decisions

(and various modifications) or just one, as well as making the payments certain, probabilistic or

purely hypothetical. While we find that the magnitude of the induced value and the range of the

prices used to draw a random price significantly affect misbidding behavior, neither the payment

mechanism nor the certainty of payment affected misbidding. In Experiment 2, we replaced the

BDM mechanism with a second price auction and found similar results, albeit less misbidding

rates. In Experiment 3, we examine the effect of payment mechanisms on choice under risk and

find portfolio effects (i.e., paying all rounds) when the lottery pairs do not involve options with

certainty. Overall, our empirical exercise shows that payment mechanism design considerations

should place more weight on the choice architecture rather than on incentive compatibility.

Keywords: Becker-DeGroot-Marschak mechanism, second price auction, risk choices, pref-

erence elicitation, choice architecture
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1 Introduction

Incentives should matter. This imperative is a core tenet of economics. Insufficient or

inadequate incentives can lead to deviations in behavior from what is predicted by economic and

behavioral models. Economic experiments often involve multiple decisions of the same task or

they incorporate multiple tasks within the same study. Correspondingly, researchers must weigh

the potential tradeoffs between different payment mechanisms, the size of incentives, potential

payoff externalities, and budget constraints. Paying for every decision increases costs and may

induce portfolio and wealth effects; however, these effects can be mitigated by only paying

for one random choice. Notwithstanding, paying for one random choice can dilute incentives

as the number of choices increases (Beattie and Loomes, 1997; Charness et al., 2016). To

complicate matters, random incentive schemes may fail to be incentive-compatible, exhibit menu

dependence, and induce risk preferences even in purely deterministic settings. This shortcoming

of random incentives has led some researchers to argue for only collecting preferences over a

single choice(e.g., Cox et al., 2015; Harrison and Swarthout, 2014) despite how restrictive this

approach might be. Overall, the optimal incentive scheme is rarely transparent, making it

difficult to develop general guidelines.

Most research on adequate incentives is theoretical and focuses on incentive compatibility

(see Charness et al., 2016, for a review). The lack of empirical interest, even from experimental

economists (Azrieli et al., 2018), suggests that incentive compatibility concerns may be over-

stated. More troubling, perhaps, is the clever sleight of hand concerning the unobservability

of preferences over binary alternatives under non-expected utility models. Under non-expected

utility, the path dependence of choice behavior cannot be assumed away; hence, any binary

choice encodes both preference information and the history of all previous choices (Machina,

1989). Further yet, incentive compatibility has little explanatory power for plausible mistakes

or heuristics. How, then, can one elicit true preferences and discriminate between different

preference incentive mechanisms?

Our study employs the simplest application of induced values (Smith, 1976), providing a

straightforward empirical testing approach: the true value of money is fixed. Consequently, for

all of our extensive experimental treatments, the objective preferences over monetary amounts

are clearly defined in terms of their monetary equivalents.1 Thus, we can focus primarily on the

question from the empirical side of the proper incentive scheme. That is, on the effectiveness

of different incentive schemes to recover truthful individual preferences from the (induced)

preferences. In a nutshell, the true monetary value of $2 is $2, as used by Cason and Plott

1This result requires the preposterous assumption that our subjects prefer more money to less.
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(2014).

In a sample of these valuation tasks and choices under risk, we consider, broadly, the following

three dimensions of incentive mechanisms: 1) the size of the prize, 2) the chance with which

payment is determined, and 3) the chance each choice counts towards experimental earnings.

In the valuation tasks, we also vary the range of values people can assign to a sure monetary

amount and whether the uncertainty determining earnings is strategic. To further understand

the mechanisms underlying our results and to validate our online subject pool, we repeat several

of our treatments with binary lotteries by replicating a canonical paper in the literature on the

effect of incentive schemes over choice under risk (Cox et al., 2015).

In a collective sample of over 3,800 subjects, we find that the magnitude of the incentives

and the framing of the problem matter, while chances and reward correlation structure do

not. Higher stated monetary rewards result in better-calibrated valuations, while larger value

ranges (greater opportunity for deviations) lead to higher deviations from the true value of a

dollar. Strikingly, the lack of variation according to the chance of the rewards extends to cases

where the rewards are purely hypothetical adding to the literature that finds minimal or no

differences between real and hypothetical stakes (e.g., Brañas Garza et al., 2023; Enke et al.,

2023; Gneezy et al., 2015; Hackethal et al., 2023; Irwin et al., 1992; Li et al., 2017).2 One

reason why higher incentives may not yield any meaningful effects is that the evaluated tasks

(preferences elicitations) are not cognitively demanding or that higher cognitive effort may not

lead to a meaningful difference in behavior. Holt and Laury (2002) may be the example that

proves the rule. Their risk task exhibits a hypothetical bias and is also cognitively demanding;

moreover, cognitively simplifying the task leads to better measures (Charness et al., 2018). We

also find strategic uncertainty produces better-calibrated valuations; however, different rewards’

chances again play no meaningful role in overall bidding behavior. Although misunderstanding

may be a factor explaining misbehavior (Serizawa et al., 2024), we doubt this is driving the

results in our case because of all the strict measures to ensure that subjects were attentive, paid

attention to the instructions, and understood the procedures.

Our results align with previous findings on risk preferences and incentive schemes. Although

they are qualitatively similar to Cox et al. (2015), we do find that subjects are less responsive

to different incentive schemes. Specifically, we find no differences when a sure amount of money

is available. However, our subjects select safer alternatives if all choices are incentivized and

all available choices are uncertain. We conjecture that this certainty effect is driven by choices

between non-degenerate lotteries being more complex and thus more likely to be affected by

increases in cognitive effort. Consistent with our hypothesis of avoidance of complex lottery

2In contrast, Blavatskyy et al. (2022) find that the Allais Paradox is likely to be observed in experiments
with, among others, high hypothetical payoffs. Perhaps because most experimentalists could not afford Allais’
level of incentives, even if not adjusting for inflation and only recruiting one subject.

3



choices, a majority of our participants opt for the riskless alternative when one is available.

The paper proceeds as follows. The next section reviews the relevant literature to set the

context and motivate our study. We then present the three experiments sequentially by de-

scribing the methods and summarizing results from each experiment. We conclude in the final

section.

2 Related Literature

This section explores the intricacies of incentives in experimental economics, particularly

focusing on value elicitation experiments and choices under risk. It examines the impact of

various incentive schemes on participant behavior, exploring how these factors influence bidding

in auctions and choices over lotteries. The subsections highlight key studies and findings in the

field, revealing the complexities and debates surrounding effective incentive design, the role

of cash balances, and the effectiveness of different incentivization strategies. This overview

offers insights into how experimental setups and incentive mechanisms can significantly affect

economic behavior and decision-making processes.

2.1 Incentives in value elicitation experiments

In an early investigation of the winner’s curse in common value auctions, Kagel and Levin

(1986) generated attention and subsequent discussions regarding payment mechanisms that pay

for all decisions in a series of auction periods. Participants in Kagel and Levin (1986) suffered

from a winner’s curse: bids often exceeded the conditional expected value of the item sold.

Hansen and Lott (1991) proposed that deviations from the theoretical bidding equilibrium

reported in Kagel and Levin (1986) may have been a perfectly rational response to limited

liability and low cash balances (i.e., accumulated earnings as a result of paying multiple rounds).

That is, bids that would result in greater losses than available cash balances could lead to higher

bidding due to a lack of responsibility. These two studies revealed the importance of cash

balances when paying for all decisions in the context of these experiments and their potential to

affect bidding behavior in common value auctions and sparked a heated debate around payment

mechanisms.

In response, Kagel and Levin (1991) conducted a follow-up experiment that ensured subjects

had sufficient cash balances so that deviations from the predicted (risk-neutral) Nash equilib-

rium could not be explained by the limited liability arguments and still obtained significant

overbidding. Ham et al. (2005) argued that cash balances may also affect bidding behavior in

private value auctions, and to address this concern, they introduced exogenous variation in cash

balances by randomly assigning additional payments while subjects bid in a first price auction.

4



They found that cash balances also play a statistically significant role in bidding behavior in

private value auctions.

While cash balance incentives can be avoided by paying for only one randomly selected trial,

Ham et al. (2005) further noted its impact on subjects’ incentives, potentially diluting payoffs

in two ways. First, expected payoffs can be a function of the compounded probability of a

trial being selected multiplied by the payoffs for that trial, which may dilute incentives with

an increased number of trials and/or smaller payoffs per trial. Second, since there is only one

bidder with earnings in many auction formats, as in a first or a second price auction, effective

recruitment of subjects can only be achieved with large fixed show-up fees, which may render

the incentives associated with the auctions trivial.

Another strand of the literature has focused on Between-Subject Random Incentive Schemes

(BRIS), where only a subset of subjects are randomly selected to realize their decisions and

receive a payment (Baltussen, Post, van den Assem, and Wakker, Baltussen et al.). BRIS has

been investigated in several domains including fairness (Bolle, Bolle), risk choice (Baltussen,

Post, van den Assem, and Wakker, Baltussen et al.) and donations in dictator games (Clot,

Grolleau, and Ibanez, Clot et al.). More recently, Ahles et al. (2024) found that a 10% and 1%

payment probabilities are effective in eliciting valuations that are statistically indistinguishable

from a fully incentivized scheme and that all incentivized conditions can mitigate hypothetical

bias, resulting in lower elicited valuations than a purely hypothetical condition.

Harrison (1989) showed that the opportunity costs of deviating in experimental first price

auctions were minuscule (see also Harrison, 1992, for a specific example for the BDM mecha-

nism). The key insight was that despite bids appearing far from the theoretical predictions, the

loss of expected value was actually quite small. The critical issue highlighted by these findings

is that the lack of salient or sufficiently meaningful incentives can dilute or eliminate inferences

based on induced values. The main criticism this work was addressing was that risk preferences

were being challenged on the grounds that they could not explain bidding behavior. The con-

verse was true: bids could not be used to infer risky behavior due to the potential issues with

their induced values.

2.2 Incentives in choice under uncertainty

While the handful of value elicitation studies offer valuable insights, they pale compared to

the number of studies in the literature surrounding choice under uncertainty. The initial impe-

tus behind examining incentive compatibility more closely was likely driven by the surprising

preference reversal phenomenon (Lichtenstein and Slovic, 1971) and its robustness to experi-

mentalists’ best efforts to eliminate this discrepancy (Grether and Plott, 1979). The discrepancy

between valuation and binary comparisons implying the opposite preferences. That is, a higher
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valuation is assigned to the least preferred lottery in the binary comparison. This inconsistency

challenged the principle of transitivity or weak axiom of revealed preferences underpinning most

economic theory (Samuelson, 1938).

Several researchers working on risk preferences found an alternate explanation: either a fail-

ure of the reduction of compound lotteries axiom (Segal, 1988) or a failure of the independence

axiom (Holt, 1986; Karni and Safra, 1987) could explain these perplexing empirical findings.

The intuition for these explanations is straightforward: under non-expected utility preferences,

the preferences over a menu of lotteries can be different from the pairwise preferences. To see

this intuition, consider the pay-one randomly mechanism. If we elicit binary preference over a

single choice, then failures to reduce the menu of choices to their constituent parts—the sin-

gle choices—can generate this behavior. Alternatively, a failure of independence implies that

making the effective choice random can generate different preferences as preferences are no

longer independent from the probability with which they occur. Hence, non-expected utility

preferences are menu-dependent. Perhaps to avoid the complexities that arise from thinking

of preferences in this complicating manner, several researchers have argued for single binary

choices as the ‘gold standard.’ Unfortunately, if true preferences are indeed menu-dependent,

then binary preferences may be unobservable (see Machina, 1989), and even if they are ob-

servable, they may be uninformative about their menu-dependent counterparts. Despite these

caveats, we discuss two canonical papers that implicitly assume the researcher is only interested

in eliciting binary preferences.

First, Cox et al. (2015) explored how different incentive schemes may affect preference elicita-

tion in choice under risk. They compare eight different incentive schemes: i) pay-all-sequentially

as subjects make choices (PAS), ii) pay-all at the end with independent draws for each decision

(PAI), iii) pay-one randomly with prior information; that is, see all options in advance before

choosing one (PORpi), iv) pay-one randomly with no prior information (PORnp), v) combining

POR with PAS; options are played out sequentially as in PAS before the option that is relevant

for payoff is randomly selected (PORpas), vi) pay-all correlated; pay all with one realization of

the world at the end (PAC), vii) pay-all correlated but divide the payment by the number of

choices in order to scale down payoffs similar to POR (PACn), viii) only one task is performed

and paid (OT).3 Their findings indicate that individual behavior is significantly affected by the

3POR mechanisms are strongly incentive (consistent for binary preferences) compatible for theories that
assume the reduction of compound lotteries and independence axioms. The reduction and dual independence
axioms imply that PAC and PACn are weakly incentive (consistent for a specific menu) compatible for comono-
tonic lotteries. In theory, PAS should not be incentive-compatible under the expected utility over terminal
wealth (EUTW) model. PAI should only be incentive-compatible under risk neutrality. Therefore, some pay-
ment mechanisms for binary choice are theoretically incentive-compatible under more restrictive assumptions.
Because with the OT mechanism each subject has to respond to only one choice task which is played out for
real, it is considered the gold standard by which to compare all other mechanisms albeit there is no consensus
over it (see Johnson et al., 2021, and references therein). Moreover, Brown and Healy (2018) argue that an OT
treatment confounds incentive compatibility failures with framing effects.
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payoff mechanism, and this phenomenon is not unique to the pay-one-randomly mechanism

(POR).

Second, Azrieli et al. (2018) study general conditions for assumptions on preferences to

result in an incentive-compatible mechanism for binary preferences. For example, they show

that if there are no negative complementarities at the top–making a bundle with every pre-

ferred element from a set of choices suboptimal–then pay-all mechanisms are the only incentive-

compatible schemes. They also show that if preferences are event/state-wise monotonic and con-

sistent with the reduction of compound lotteries, then the only incentive-compatible mechanism

is POR.4 However, they note that if preferences satisfy both ‘reduction’ and ‘monotonicity’, then

preferences are consistent with the independence axiom and, therefore, rule out non-expected

utility preferences (Azrieli et al., 2020). As an alternative, Starmer and Sugden (1991) and Cu-

bitt et al. (1998) show theoretically and empirically that if each decision is treated in isolation,

i.e., not reduced, then POR is incentive compatible for non-expected utility preferences.

However, it is not always clear at which level isolation holds. For instance, Brown and Healy

(2018) find that showing all decisions together in a list may compromise incentive compatibility

(or produce framing effects), but randomizing rows and presenting them on separate screens

may restore it. Freeman and Mayraz (2019) consistently find more risk-taking when a choice is

embedded in a choice list than when it is presented on its own, and this difference persists when

they inform subjects of the paid choice in advance. This implies that isolation can fail not be-

cause of random incentives but simply because the choice appears in a list together with others.

Following Azrieli et al. (2018), this may or may not be a challenge for incentive compatibility,

which is entirely dependent on the assumptions placed on preferences. For example, Feldman

and Ferraro (2023) model preferences as being reference-dependent expected utility within every

choice list, while the reference point changes across every choice list. Hence, POR is incentive

compatible for these preferences as long as each choice list is treated in isolation. Treating each

choice in the choice list in isolation would be inconsequential from an incentive compatibility

perspective, while integrating multiple choice lists would be incentive incompatible.

There are other papers that examine incentive compatibility.5 For example, Li (2021) find

that the Accumulative Best Choice (‘ABC’) mechanism is incentive compatible for all rational

(complete and transitive) risk preferences. Subjects face N choices; the selected best alternative

is carried over to the next menu; and subjects only get paid for the last round. It is important

however, to emphasize Azrieli et al. (2020) cautionary words (and footnote):

4Formally, event-wise independence implies that if we replace an outcome in a lottery with a preferred
outcome, then this new lottery is preferred. That is, contrasting with the independence axiom, this monotonicity
is the same as independence over outcomes (degenerate lotteries).

5Charness et al. (2016) reviews several studies that randomize who is paid and how many decisions are made.
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Behaviorally, we speculate that mechanisms that pay based on surely-identified sets

[like in Li (2021)] or that use negative weights are excessively complicated and may

lead to more confusion and mistakes by subjects.10

10Our theory assumes a deterministic preference relation and does not allow for mistakes or
stochastic choice. Though this would be an important direction to study, even the definition of
incentive compatibility becomes unclear when random behavior is permitted.

Increasingly, for the reasons stated above, researchers have focused on behavioral incentive

compatibility. Cason and Plott (2014) showed how misunderstanding the incentive scheme can

lead to overvaluations. Further, Danz et al. (2022) argues that failures to improve the elicitation

when more information about the mechanism is given to participants or when the incentives

of the mechanism are represented as incentives only (replacing choices by their (lottery) pay-

ments), can show that the mechanism is not incentive compatible. Hence, behavioral incentive

compatibility is primarily an empirical question, albeit one informed by theory.

We now focus on the footnote; currently, there is ample evidence that individuals can exhibit

(deliberate) stochastic behavior (Agranov and Ortoleva, 2017; Dwenger et al., 2018; Feldman

and Rehbeck, 2022) and that they also make mistakes (Benjamin et al., 2020; Breig and Feld-

man, 2023; Mart́ınez-Marquina et al., 2019). As an interesting example, consider McGranaghan

et al. (2024), where valuation tasks (which are not incentive compatible under non-expected

utility preferences) are utilized to estimate choice errors in paired binary tasks. They argue

that even with a biased preference elicitation, valuation tasks can be used to control for ran-

domness in binary choice behavior. Relatedly, Buschena and Zilberman (2000) showed that

if preferences exhibit stochasticity, then assumptions on preferences and assumptions on their

stochastic component are not independent and cannot be separately identified using binary

choices. Again, these imprecisions in (single) binary choices challenge their status as the ‘gold

standard.’

To recapitulate, our survey of the incentivization literature reveals that incentives are an

empirical and theoretical question. Failure to incorporate insights from either camp is unlikely

to be fruitful in determining optimal incentive schemes.

3 Experiment 1: Preference elicitation with the BDM

mechanism

3.1 Methods and Experimental Design

We designed and executed the experiment online via Qualtrics. Subjects were panelists from

Forthright Access, an online research company that handles their own recruitment through a

variety of direct advertising channels. All potential panelists are processed through a multi-step,
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double opt-in procedure to both ensure informed consent, and collect basic profile information.

Once participants are in the panel, the company continues to capture new profiling metrics

and monitor their data for quality control. All Forthright panelists participate in surveys where

they are shown the rewards in dollar amounts, and over half have validated their personal phone

numbers with the company that allows them to receive instant rewards for their participation.6

This study and the studies described in the next sections were preregistered with the AEA’s

RCT registry (AEARCTR-0009687).

Participants were offered a $2.5 reward for a 20 min study. Subjects were informed they could

also gain additional rewards after entering the study. We employed several quality controls to

ensure subjects’ attention and comprehension based on a pilot study with 78 subjects (Haaland

et al., 2023). First, all the instruction screens included minimum timers and subjects were

excluded if at any point they rushed out to the next screen (less than 7 secs).7 Second, we

included two attention check questions. In the first question, subjects were explicitly asked to

skip the question without providing an answer. At a later point in the study, a second question

asked subjects to indicate if they agreed with a nonsensical proposition. Failure to disagree

indicates low attention to the study. Subjects who failed both attention checks were excluded

from the study and received no payment.

The instructions included several examples explaining how the BDM mechanism works,

followed by a series of true/false and open-ended comprehension questions. If a subject indicated

or typed the wrong answer, they received an explanation about the correct answer and were

asked to explicitly click or state the correct answer to proceed. All experimental instructions,

test questions, and attention checks have been deposited with the Open Science Framework:

https://osf.io/2qpnw/?view_only=8152fec1eb48401283995375e6e5840d.

After screening out inattentive subjects for one of the reasons explained above, the sample

included 2,575 subjects.8 In addition to the participation fee, subjects earned an average of

$2.67 (min=$0, max=$29.4) from this part of the study.9

Experiment 1 involved preference elicitation over an induced value (IV) via the BDM mech-

anism. As in Cason and Plott (2014), subjects were endowed with a card worth a known IV and

were asked to state their offer price to sell the card back to the experimenter.10 Subjects were

6A stream of studies has opted to examine the performance of panels from various survey providers (Chandler
et al., 2019; Litman and Robinson, 2021; Peer et al., 2017, 2022) particularly after concerns about diminishing
data quality on MTurk (Ahler et al., 2021; Chmielewski and Kucker, 2020). The Forthright panel has been found
to have good representativeness and quality of data when screening for attentiveness (Stagnaro et al., 2024).

7At the beginning of the study, subjects received a warning that they would be excluded if they failed quality
control checks or if they did not pay attention to the instructions.

8The second part of the study (not analyzed in this paper) explored preferences for sustainable meat con-
sumption, so we filtered out about 3.9% of the sample (223 subjects) that were vegan or vegetarian.

9This part of the study was combined with a second part on incentivized preference elicitation for steaks so
that in total, subjects received on average $6.08 from both parts of the experiment (min=$2.5, max=$33.9).

10We interchangeably refer to offer prices as bids and vice versa.
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informed that their offer price would be compared to a fixed offer that would be randomly drawn

from the interval of [0, X] where X was varied from task to task depending on the payment

scheme.11 We varied the IV at a low and a high level of $1 and $3 and varied the maximum bid

range, X, at $4, $5, and $6. Consequently, each subject participated in six tasks; all possible

combinations of the IV and the upper level X of the support of the distribution. The order of

the six preference elicitation tasks was randomized across subjects.

Our experimental design also varied on two between-subjects dimensions. To test for poten-

tial diluted incentives, we had three probabilities of decisions being paid: subjects either had a

100% chance of getting monetary rewards associated with their decisions, a 50% chance, or a

1% chance. After collecting data for these treatments, we found a null effect of differences be-

tween the treatments, so we decided to run two additional boundary conditions: a 0.2% chance

treatment of getting monetary rewards and a purely hypothetical treatment. Thus, the first

dimension of payments had five distinct probabilities of decisions being paid. Every subject was

given information about the probability of their decisions being paid in two different screens;

one at the beginning of the study and one right before eliciting their preferences with the BDM

mechanism. For the hypothetical treatment subjects were informed multiple times at different

points of the study that although monetary rewards would be shown in various screens, they

would only receive fixed compensation and that none of the stated monetary amounts would

count toward their earnings. Text was modified appropriately for the rest of the treatments

varying the probability of payments. Complete scripts are shown in the Online Appendix.

The second dimension of payments we varied, was the number of decisions paid, the corre-

lation between those payments, and whether we adjusted for the magnitude of the number of

decisions paid. Our base payment is the Pay-One-Randomly (POR) mechanism, where only one

of the six tasks is randomly selected for payment. We compare the POR mechanism with four

additional payment mechanisms previously used by Cox et al. (2015): (a) the Pay-All-Correlated

(PAC) mechanism, (b) the PAC mechanism adjusted for the number of tasks (PACn), (c) the

Pay-All-Independently (PAI) mechanism and (d) the PAI mechanism adjusted for the number

of tasks (PAIn). For the PAC mechanism, subjects were paid for all six preference elicitation

tasks, but the fixed offer was determined with a single draw for all tasks as follows: a random

number would be drawn between 0% and 100%, and the randomly drawn percentage would be

multiplied by the upper support of the distribution of allowed offers which would determine the

fixed offer per task, albeit with just one draw. An arithmetic example illustrated this mecha-

nism to subjects. The PACn mechanism was explained in a similar fashion, albeit subjects were

11Because of several behavioral biases associated with the BDM mechanism regarding the minimum and
maximum values of the support distribution (they determine expectations, i.e., the probability of getting the
induced value conditional on one’s offer price, as well as they serve as price and loss anchors), we varied the
support distribution between subjects instead of keeping it constant to a predetermined level (see Vassilopoulos
et al. (2018) and references therein for a discussion as well as Mamadehussene and Sguera (2022)).
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aware they would receive one-sixth of the total payoffs (therefore, payoffs were divided by the

number of tasks).

In the PAI mechanism, subjects received an independent draw per task as follows: subjects

were informed that the computer would choose a percentage number for each task that would

be multiplied by the upper support of the distribution of allowed offers, which would determine

a different fixed offer per task. An arithmetic example illustrated this mechanism to subjects.

The PAIn mechanism was explained in a similar way, albeit subjects were aware they would

receive one-sixth of the total payoffs.

Table 1 summarizes the experimental design and number of subjects assigned to each treat-

ment arm. Our target of 100 subjects/treatment is large enough to detect minimum differences

in absolute bid deviations (|bid−IV |/IV ) of 0.05 or larger with 80% power. Sample size calcula-

tions, instructions, examples, and final payoff screens have been deposited with the Open Science

Framework: https://osf.io/2qpnw/?view_only=8152fec1eb48401283995375e6e5840d.

Table 1: Experimental design and number of subjects per treatment

Payment mechanism
PAC PACn PAI PAIn POR Total

Incentives

Hypothetical 100 101 101 100 102 504
0.20% 101 100 100 101 101 503
1% 113 100 105 100 101 519
50% 101 115 100 99 103 518
100% 100 99 104 120 108 531
Total 515 515 510 520 515 2,575

Notes: PAC, PAI and POR stand for pay-all-correlated, pay-all-independently and pay-one-
randomly, respectively. n indicates sum of payoffs are divided by the number of tasks.

3.2 Experiment 1 Results

Before discussing the results of Experiment 1, it is customary to check the balance of subjects’

observable characteristics across treatments. While many researchers use statistical tests to

check for balance of observable characteristics between treatments, the literature points to

some pitfalls of this practice (e.g., Briz et al., 2017; Deaton and Cartwright, 2018; Ho et al.,

2007; Moher et al., 2010; Mutz and Pemantle, 2015). Following this literature, we report in

Table A2 standardized differences across treatments (Imbens and Rubin, 2016; Imbens and

Wooldridge, 2009). Since the differences are pairwise comparisons of all treatment cells, for

brevity we only present comparisons between the payment-probabilities treatments. Cochran

and Rubin’s (1973) rule of thumb is that the standardized difference should be less than 0.25.

The last column in Table A2 also compares the demographics between the pooled sample with
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the sample of inattentive subjects filtered out of the study. None of the variables show an

imbalance.

Figure 1 shows bid deviations from the IV (Panel a) and relative absolute deviations from

IV (Panel b). It is clear that more misbidding occurs for the lower IV.12 The upper panel

also shows that overbidding is more common than underbidding. Only 15.50% of all bids are

exactly equal to the IV and 24.71% (30.89%) of all bids are within 5% (10%) of the IV. Cason

and Plott (2014) report that without training 16.7% of subjects have bids within 5 cents (2.5%)

of their induced value of $2, which is similar to our findings. Moreover, Brown et al. (2023) find

similar patterns of misbidding that are fairly constant across various elicitation formats that

are strategically-equivalent but cognitively simpler than the BDM mechanism.

Table 2 shows descriptive statistics (mean, standard deviation, median) for the relative

absolute deviations by incentives and payment mechanism. The values of the deviations in this

table are remarkably stable across treatments at around 0.5, supporting a null effect of both

incentives and payment mechanism.

Table 2: Descriptive statistics of |Bid− IV |/IV by payment mechanism and incentive scheme

PAC PACn PAI PAIn POR Total

Hypothetical
0.603 0.512 0.580 0.548 0.502 0.549
(0.912) (0.741) (0.853) (0.855) (0.790) (0.832)
[0.315] [0.250] [0.250] [0.250] [0.177] [0.250]

0.2%
0.443 0.477 0.477 0.530 0.569 0.499
(0.687) (0.731) (0.720) (0.741) (0.833) (0.745)
[0.200] [0.250] [0.238] [0.260] [0.305] [0.250]

1%
0.582 0.439 0.470 0.554 0.496 0.510
(0.881) (0.637) (0.656) (0.833) (0.693) (0.751)
[0.247] [0.183] [0.240] [0.260] [0.218] [0.240]

50%
0.500 0.549 0.483 0.553 0.539 0.525
(0.726) (0.822) (0.695) (0.785) (0.811) (0.771)
[0.247] [0.245] [0.250] [0.275] [0.257] [0.250]

100%
0.516 0.537 0.439 0.555 0.508 0.512
(0.799) (0.763) (0.636) (0.832) (0.740) (0.759)
[0.200] [0.283] [0.200] [0.250] [0.252] [0.250]

Total
0.530 0.504 0.489 0.548 0.522 0.519
(0.809) (0.744) (0.716) (0.810) (0.775) (0.772)
[0.240] [0.250] [0.250] [0.250] [0.250] [0.250]

Notes: Table shows means, standard deviations in parenthesis and medians in brackets. PAC, PAI
and POR stand for pay-all-correlated, pay-all-independently and pay-one-randomly, respectively;
n indicates sum of payoffs are divided by the number of tasks.

12Table A1 shows descriptive statistics (mean, standard deviation, median) for the relative absolute deviations
by IV and upper limit of the support distribution. A larger support limit and a smaller IV, increase relative
absolute bid deviations.
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Figure 1: Histograms of bid deviations from IV (BDM)

(a) Bid deviations from IV

(b) Relative absolute bid deviations from IV
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Table 3 shows estimates from regression models with clustered standard errors at the individ-

ual level, using either bid deviations (Bid−IV ) or relative absolute deviations (|Bid−IV |/IV )

as the dependent variable and the treatments dummies as independent variables.13

As shown in Table 3, compared to the baseline of the 100% incentives with a POR payment

mechanism, none of the incentives schemes nor the payment mechanism significantly affect

misbidding behavior. None of the coefficients are statistically different to the baseline. On

the other hand, both the IV and the support level of the distribution affect deviations from

the induced value. More specifically, the upper panel of Table 3 shows that a larger induced

value reduces deviations from the IV and that this reduction is moderated by the level of the

support of the distribution. For the lower IV of $1, a larger support increases relative absolute

misbidding by 0.17 to 0.39. The larger IV of $3 reduces misbidding behavior but with a larger

support this reduction shrinks. For example, model (1) shows that misbidding declines by 0.76

for a $4 support, but it is only reduced by 0.31 for the larger level of support of $6.14

We can also classify subjects depending on whether they submitted a bid lower, equal or

larger than their induced value and estimate ordered logit regressions on the treatment vari-

ables. Table A6 in the Online Appendix shows raw coefficient estimates for four different models

that increase the tolerance of grouping subjects as bidding under/over or around their assigned

IV. The heading of Table A6 indicates the corresponding definition for the three ordinal cat-

egories. For example, model (4) in Table A6 classifies a subject as bidding close to the IV if

the respondent submitted a bid within ±10% of their IV and as an underbidder (overbidder)

if they submitted a bid smaller (larger) than 90% (110%) of their IV. Table A7 in the Online

Appendix shows that estimates are roughly similar when adding demographic control variables

in the specifications. In general, relaxing the thresholds of classifying subjects as under- or

over-bidders does not change any of the conclusions.

The pattern of results in Tables A6 and A7 is similar to the regressions reported in Table 3.

None of the incentive schemes or payment mechanism treatments have an effect on bidding

behavior in the BDM mechanism. On the other hand, both the magnitude of the IV and the

upper level of the support have a statistically significant effect on bidding. A larger IV reduces

13Table A5 in the Online Appendix Supplementary Material show estimates where we add demographic
controls to the specifications albeit we lose some observations due to missing values.

14To explore whether sliders induced a different bidding behavior than letting subjects freely submit a bid
into a box, we included an additional test at the end of the study for a subset of 503 subjects randomly assigned
on a between-subjects basis to a treatment where they had to submit a bid using a slider or to another treatment
where they would submit a bid using an input box. In this part of the study, subjects faced an induced value
of $2 and the support was varied within-subjects at two levels: $3 or $4, so that subjects participated in two
bidding rounds. Subjects were paid for one randomly selected round on top to any other earnings. We regressed
bid deviations from IV or absolute bid deviations from IV on the treatment variables and a set of demographic
controls. We find that the slider does not have a statistically significant effect on bid deviations as compared
to the box (b̂ = −0.049, se = 0.057 for the $2 support; b̂ = −0.116, se = 0.074 for the $3 support) and that a

higher support level induces higher misbidding (b̂ = 0.328, se = 0.043 for the box; b̂ = 0.261, se = 0.041 for the
slider). Similar results are in place if one uses absolute bid deviations as the dependent variable.
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Table 3: Regressions of bid deviations on treatment variables

Bid− IV |Bid− IV |/IV
(1) (2)

Constant 0.479∗∗∗ (0.070) 0.624∗∗∗ (0.043)
IV = 1 & Support = 5 0.190∗∗∗ (0.017) 0.174∗∗∗ (0.015)
IV = 1 & Support = 6 0.416∗∗∗ (0.022) 0.392∗∗∗ (0.020)
IV = 3 & Support = 4 -0.765∗∗∗ (0.019) -0.438∗∗∗ (0.014)
IV = 3 & Support = 5 -0.562∗∗∗ (0.018) -0.428∗∗∗ (0.013)
IV = 3 & Support = 6 -0.309∗∗∗ (0.018) -0.398∗∗∗ (0.012)
Hypothetical & PAC 0.018 (0.116) 0.095 (0.069)
Hypothetical & PACn -0.103 (0.104) 0.004 (0.062)
Hypothetical & PAI 0.083 (0.107) 0.072 (0.065)
Hypothetical & PAIn 0.003 (0.104) 0.040 (0.063)
Hypothetical & POR -0.024 (0.099) -0.007 (0.063)
0.2% & PAC -0.089 (0.094) -0.065 (0.058)
0.2% & PACn -0.172∗ (0.103) -0.031 (0.059)
0.2% & PAI -0.048 (0.097) -0.031 (0.060)
0.2% & PAIn -0.001 (0.099) 0.022 (0.059)
0.2% & POR 0.022 (0.104) 0.061 (0.063)
1% & PAC 0.073 (0.101) 0.074 (0.064)
1% & PACn -0.022 (0.093) -0.069 (0.058)
1% & PAI -0.069 (0.091) -0.038 (0.055)
1% & PAIn 0.044 (0.109) 0.046 (0.065)
1% & POR -0.036 (0.094) -0.013 (0.058)
50% & PAC -0.113 (0.101) -0.008 (0.060)
50% & PACn 0.073 (0.097) 0.040 (0.059)
50% & PAI -0.052 (0.100) -0.025 (0.060)
50% & PAIn 0.066 (0.101) 0.044 (0.060)
50% & POR -0.031 (0.099) 0.030 (0.061)
100% & PAC 0.034 (0.096) 0.008 (0.060)
100% & PACn 0.075 (0.099) 0.029 (0.059)
100% & PAI -0.134 (0.087) -0.069 (0.054)
100% & PAIn 0.076 (0.097) 0.047 (0.061)

Observations 15450 15450
R2 0.154 0.181
Adj. R2 0.153 0.180
F-stat. (p-value) 86.223 (< 0.001) 59.250 (< 0.001)

Notes: Clustered standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base categories for the
treatment variables are: IV = 1 & Support = 4, 100% & POR. PAC, PAI and POR stand for pay-all-
correlated, pay-all-independently and pay-one-randomly, respectively. n indicates sum of payoffs are divided
by the number of tasks.
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the likelihood of overbidding by as much as 27.3% for model (1) of Table A6 for the lowest

support level of $4 and the effect is still negative but slightly smaller for a larger support level

of $6 (13.4%). In general, a larger IV and lower support level elicit bids that are closer to the

IV i.e., less misbidding behavior.

4 Experiment 2: Preference elicitation with the Second

Price Auction

To test whether the preference elicitation mechanism has an effect on elicited preferences,

in Experiment 2 we replaced the BDM mechanism with the Second Price Auction (SPA). Both

BDM and SPA are theoretically incentive compatible, but the SPA has a different strategic

uncertainty about the bidding strategy coming from other bidders rather than a randomly

drawn price. Although this should not influence behavior, by replacing the BDM with and an

SPA allows us to empirically test the source of strategic uncertainty as a potential explanation

of the insensitivity we observe in Experiment 1 regarding payment mechanisms and incentive

schemes. We reduced the treatment arms of the experimental design of Experiment 1 to fit

budget constraints and selected to test a subset of treatments that are most widely used and

provide boundary conditions since they may be more likely to affect bidding behavior. With

respect to payment incentives we administered a purely hypothetical treatment and a treatment

that pays with 100% certainty. With respect to the payment mechanism, we selected the POR

and the Pay-All divided by the number of rounds (PAn) in order to keep incentives comparable.15

In summary, we implement a 2×2 between-subjects design in Experiment 2.

4.1 Methods and Experimental Design

We designed and executed our experiment online via Qualtrics using SMARTRIQS (Molnar,

2019) which allows interactive online experiments. Subjects were panelists from Forthright

Access, none of which had participated in Experiment 1. We offered a $2 reward for a 15 min

study. Subjects that were not assigned to a hypothetical treatment, were informed they could

also gain additional rewards after entering the study.

We implemented the same quality controls as in Experiment 1, and the Experimental In-

structions have been deposited with the Open Science Framework: https://osf.io/2qpnw/

?view_only=8152fec1eb48401283995375e6e5840d. One particular feature to this experiment

is that recruitment was done on a limited time window within a day so that we have a large

15Note that a pay-all correlated or pay-all independent mechanism do not make sense in the context of the
SPA since the second price is determined endogenously in the auction group, unlike the exogenous random draw
of the BDM mechanism.
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number of participants entering simultaneously and achieve good matching of people to the

auction groups. Four subjects would form an auction group but if more than 3.5 minutes had

elapsed without fulfilling a group, then we used bots to complement a group. If bots were

used in a particular group, the participants were informed about it. The main results present

responses from subjects who were matched in groups of humans only. The results including the

subjects matched with bots are presented in the Online Appendix and are similar to what we

present here. Subjects were informed about the number of bots they were matched with, if any,

and while we control for the number of bots in the regressions shown in the Online Appendix,

we find that this information does not significantly affect our results. All subjects in a group

were assigned to the same treatment for the entire experiment.16

The final sample with complete responses includes 637 subjects, albeit 209 of them were

matched with one or more bots. On top to their participation fee, subjects received an average

of $1.06 (min=$0, max=$3). Table 4 shows the number of subjects per treatment. In the

main regressions we only use observations from subjects that were not matched to bots but we

controlled for the number of bots in additional specifications shown in the Online Appendix and

all of our results hold.

Table 4: Experimental design, number of subjects and number of bots per treatment

N of bots
Incentives Payment mechanism 0 ≥1 Total
Hypothetical PAn 96 39 135
Hypothetical POR 116 75 191
100% PAn 96 43 139
100% POR 120 52 172
Total 428 209 637

Notes: PA and POR stand for pay-all and pay-one-randomly, respectively; n indicates sum of
payoffs are divided by the number of tasks.

Similar to Experiment 1, subjects were endowed with a card worth a known IV and were

asked to state their offer price to sell the card back to the experimenter with the understanding

that they were assigned to a group of four subjects and their offer is compared to all other

offers and the lowest offer is accepted, but the second lowest offer is the binding price. Subjects

experienced four different IVs that were selected to be in the same range as in Experiment 1:

$1, $1.7, $2.4 and $3. Subjects experienced all the IVs in a random order and at any given

round only one subject was assigned to each IV so that all four IVs were assigned at any round.

Before participating in the SPA, all subjects went through similar instructions, compre-

16We first launched only one of the treatments to assess the sign-up rates and timing and realized that we had
to massively sent out invitations during a short time window in order to avoid subjects always being matched
with bots. As a result more observations were collected in one of the treatments.
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hension questions and quality checks as in Experiment 1. All experimental instructions, test

question and attention check questions have been deposited with the Open Science Framework:

https://osf.io/2qpnw/?view_only=8152fec1eb48401283995375e6e5840d.

4.2 Experiment 2 Results

Table A3 in the Online Appendix shows standardized differences of observable characteristics

between the treatments and comparisons with subjects that did not finish the study. Because

we observe a few small differences in some of the treatments, we control for these characteristics

in subsequent analysis.

Figure 2 shows bid deviations from IV (Panel a) and relative absolute deviations from IV

(Panel b) for two of the IVs. We purposefully keep the scale of the x-axis similar to Figure 1

so that the reader can easily visualize the differences to the BDM mechanism in Experiment

1. The results show evidence that the SPA leads to less misbidding than the BDM and that a

larger IV reduces misbidding. In the SPA, 19.98% of all bids are exactly equal to the IV and

27.45% (42.93%) of all bids are within 5% (10%) of the IV. This is a substantial improvement

compared to the BDM mechanism in Experiment 1.

Table 5 shows estimates from regression models with clustered standard errors at the indi-

vidual level where we regressed either bid deviations (Bid− IV ) or relative absolute deviations

(|Bid − IV |/IV ) on the treatments dummies. The sample is restricted to subjects that were

not matched with a bot for the SPA.17

With respect to the payment mechanism and incentive schemes, the results are similar

to the general pattern we observe with the BDM mechanism. Higher IVs reduce the level

of misbidding while misbidding is unresponsive to the payment mechanism and whether the

treatment is hypothetical or real.

17Table A8 in the Online Appendix extends estimations by including demographic controls while Table A9
includes in the estimations subjects that were matched with bots and adds the number of bots as an additional
control. Results are robust to these additional specifications. Serizawa et al. (2024) find minimal effects in
bidding behavior when subjects play against bots versus humans.
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Figure 2: Histograms of bid deviations from IV (BDM)

(a) Bid deviations from IV

(b) Relative absolute bid deviations from IV
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Table 5: Regressions of bid deviations on treatment variables for the SPA

Bid− IV |Bid− IV |/IV
(1) (2)

Constant 0.053 (0.033) 0.258∗∗∗ (0.018)
IV = 1.7 -0.149∗∗∗ (0.021) -0.123∗∗∗ (0.017)
IV = 2.4 -0.265∗∗∗ (0.022) -0.137∗∗∗ (0.018)
IV = 3 -0.331∗∗∗ (0.030) -0.124∗∗∗ (0.017)
Hypothetical & PAn -0.034 (0.047) 0.016 (0.018)
100% & PAn -0.034 (0.046) 0.027 (0.017)
100% & POR -0.040 (0.044) 0.009 (0.017)
Observations 1712 1712
R2 0.081 0.056
Adj. R2 0.077 0.052
F-stat. (p-value) 32.691 (< 0.001) 12.341 (< 0.001)

Notes: Clustered standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base categories for
the treatment variables are: IV = 1, Hypothetical and POR. PA and POR stand for pay-all and pay-one-
randomly, respectively; n indicates sum of payoffs are divided by the number of tasks.

4.3 The BDM mechanism vs. the SPA

In this section we further explore differences in bidding behavior between the two elicitation

mechanisms explored in Experiment 1 and Experiment 2. Average difference of Bid − IV is

0.29 in the BDM and -0.16 in the SPA indicating that subjects on average overbid in the BDM

mechanism and underbid in the SPA. The difference is statistically significant using a t-test or a

Wilcoxon-Mann-Whitney test (both p-values < 0.001). In terms of absolute relative deviations

(|Bid− IV |/IV ), subjects deviate on average 51.9% in the BDM mechanism and around 17.4%

in the SPA indicating a substantially lower level of misbidding in the SPA (p-value < 0.0001

according to a t-test or a Wilcoxon-Mann-Whitney test). The magnitude of the improvement

with the SPA is large.

We also regress bid deviations on the SPA dummy and demographic controls, and confirm

that the SPA elicits smaller deviations from IVs (b̂ = −0.446, se = 0.023). Similarly for absolute

bid deviations, the SPA elicits 33.9% smaller bids than the BDM (se = 0.012).

4.4 Decision-making noise and subjects’ misconceptions

Misbidding in the BDM could arise if agents experience decision-making noise. We use

maximum likelihood methods to fit our data in a model where subjects choose to maximize

their expected payoff but make logit errors (as in Cason and Plott, 2014). Subjects’ probability

of submitting an offer bj can be defined as:
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Prob(offer = bj) =
eλE[π|bj ]∑
kϵK eλE[π|bk]

(1)

where K is the set of possible offers and λ bounds the cases where subjects are insensitive to

differences in expected payoffs (λ = 0) or where subjects choose the offer that maximizes their

expected payoff with the highest probability (λ → ∞). A higher level of λ indicates a better

fit, requiring less noise to characterize subject’s choices according to that particular model. The

λ parameter comes from the Quantal Response Equilbrium approach where the probability of

taking an action is modeled as a multinomial logit.

In Equation 1, using Eopt[π|bj] = IV × Prob(bj > p) + E(p|bj < p) × Prob(bj < p), then λ

characterizes the optimal offers model without any misconceptions about the payoff function of

the BDM. We then define the log-likelihood function as:

lnL(λ; yi) =
∑
i

ln
yie

λE[π|bj ]∑
kϵK eλE[π|bk]

(2)

where yi is an indicator that the offer is bj.
18

We also estimate a mixture specification that allows some choices to be consistent with a

First Price Auction-Game Form Misconception (FPA-GFM) model with probability M (that is,

we allow the expected payoff to be Egfm[π|bj] = IV ×Prob(bj > p) + bj ×Prob(bj < p) instead

of Eopt[π|bj], i.e., subjects believe they are getting paid their bid amount, and not the posted

price) and consistent with the optimal offer model of BDM with probability 1−M .

Table 6 shows estimates from the optimal BDM model and the mixture model (Models 1

and 2). As a general remark, none of the estimated parameters is affected by the probability of

realization of the payment or the payment mechanism treatments. Estimates from model (1)

and model (2) are very similar, which is reasonable given that the estimated probability M is

just 3.8%, not giving much support for the FPA-BDM model. The estimated parameters for

λ show that with a larger IV subjects become more sensitive to differences in expected payoffs

(the effect on λ is positive). A larger support has a negative effect on λ for the low IV, which

can be interpreted as subjects becoming less sensitive to differences in expected payoffs. For the

large IV, λ increases for the $5 support, and it remains relatively stable for a further increase

of the support to $6 based on model (2).

Model (3) estimates an optimal model with the SPA data assuming subjects think that win-

18Because the expression in the denominator of Equation 1 becomes extremely large when one uses the lowest
possible division of 1 cent (i.e., the expression involves the summation of (p̄×100+1) summands, where p̄ is the
upper limit of the support distribution), the maximum likelihood estimations are performed with yi indicating
offers are in a bin within X cents of bj , where X is the lowest division that our estimation software would
accommodate given the length of the expression involved. Cason and Plott (2014); Drichoutis and Nayga Jr
(2022) use a similar strategy.
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Table 6: Maximum likelihood estimates of Decision-making noise and misperception models

(1) (2) (3) (4)
Noise-only model CP mixture model SPA Pooled model

Constant 3.218∗∗∗ (0.418) 3.634∗∗∗ (0.578) 24.728 (16.650) 2.098∗∗∗ (0.087)
IV = 1, Support = 5 -0.808∗∗∗ (0.125) -0.901∗∗∗ (0.176)
IV = 1, Support = 6 -1.368∗∗∗ (0.130) -1.529∗∗∗ (0.196)
IV = 3, Support = 4 1.014∗∗∗ (0.229) 0.496 (0.304)
IV = 3, Support = 5 3.161∗∗∗ (0.264) 2.820∗∗∗ (0.320)
IV = 3, Support = 6 2.653∗∗∗ (0.209) 2.961∗∗∗ (0.282)
IV = 1.7 28.954∗∗ (13.372)
IV = 2.4 13.486 (12.271)
IV = 3 -7.498 (11.920)
Hypothetical, PAC -1.069∗∗ (0.510) -1.291∗∗ (0.628)
Hypothetical, PACn -0.102 (0.607) -0.184 (0.757)
Hypothetical, PAI -0.619 (0.537) -0.768 (0.661)
Hypothetical, PAIn -0.526 (0.548) -0.685 (0.676)
Hypothetical, POR -0.199 (0.603) -0.280 (0.758) 6.893 (9.366)
Hypothetical, PAn -0.816 (8.536)
0.2%, PAC 0.774 (0.647) 1.200 (1.124)
0.2%, PACn 0.025 (0.601) -0.034 (0.766)
0.2%, PAI 0.250 (0.672) 0.287 (0.884)
0.2%, PAIn -0.171 (0.522) -0.241 (0.658)
0.2%, POR -0.598 (0.528) -0.777 (0.648)
1%, PAC -0.664 (0.506) -0.800 (0.632)
1%, PACn 1.182 (0.867) 1.835 (1.482)
1%, PAI 0.452 (0.577) 0.521 (0.762)
1%, PAIn -0.649 (0.550) -0.814 (0.674)
1%, POR 0.029 (0.573) -0.018 (0.729)
50%, PAC -0.104 (0.581) -0.220 (0.721)
50%, PACn -0.437 (0.523) -0.553 (0.653)
50%, PAI 0.298 (0.607) 0.449 (0.840)
50%, PAIn -0.345 (0.528) -0.430 (0.663)
50%, POR -0.348 (0.552) -0.479 (0.688)
100%, PAC -0.267 (0.534) -0.345 (0.677)
100%, PACn -0.173 (0.550) -0.214 (0.702)
100%, PAI 0.940 (0.646) 1.258 (0.984)
100%, PAIn -0.497 (0.519) -0.605 (0.653)
100%, PAn 2.616 (8.507)
SPA 26.823∗∗∗ (3.519)
IV high 3.192∗∗∗ (0.167)

M 0.038∗∗∗ (0.012)

Observations 15450 15450 1712 17162
Log-Likelihood -55904.837 -49625.709 -5017.004 -49443.067
AIC 111869.675 99313.419 10048.008 98892.135
BIC 112099.036 99550.425 10086.125 98915.386

Notes: Clustered standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base categories for the
treatment variables are: IV = 1 & Support = 4, 100% & POR. PA, PAC, PAI and POR stand for pay-all,
pay-all-correlated, pay-all-independently and pay-one-randomly, respectively; n indicates sum of payoffs are
divided by the number of tasks.
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ning prices are coming from a uniform distribution. The intercept is not statistically significant

at the conventional significance levels indicating that at the base levels of the dummy vari-

ables, we fail to reject the null hypothesis that subjects are insensitive to differences in payoffs.

Note that the magnitude of the estimated coefficients for the SPA are much larger than those

estimated with the BDM data, indicating a better fit.

Model (4) pools observations from models (1) and (3). The effect of the SPA dummy is

positive and statistically significant indicating that subjects become more sensitive to differences

in expected payoffs in the SPA compared to the BDM.

While we find no differences in the payment mechanisms and incentives schemes (i.e., proba-

bility of realization), design features such as the IV and the support of the distribution have an

impact on the bidding behavior. Furthermore, the results clearly indicate that the SPA induces

behavior that is much closer to the IV and reduces the likelihood of misbidding compared to

the BDM mechanism.

5 Experiment 3: Preference elicitation in choice under

risk

Since Experiment 1 and Experiment 2 indicate the absence of any effect of payment mech-

anisms on bidding behavior, in Experiment 3 we revisit the effect of payment mechanisms on

choice under risk following Cox et al. (2015). With respect to payment incentives we adminis-

tered a purely hypothetical treatment and a treatment that always pays with 100% certainty.

With respect to the payment mechanism, we selected the pay one randomly, the pay-all corre-

lated and the pay-all independently treatments divided by the number of choice tasks, in order to

keep incentives comparable across treatments. Experiment 3 consists of a 3×2 between-subjects

design.

5.1 Methods and Experimental Design

We designed and executed our experiment online via Qualtrics. Subjects were panelists from

Forthright Access, none of which had participated in Experiment 1 or Experiment 2. We offered

a $1 reward for a 5 min study. Subjects that were not assigned to a hypothetical treatment

were informed they could also gain additional rewards after entering the study.

Similar quality controls to Experiment 1 and 2 were enforced and all Experimental In-

structions have been deposited with the Open Science Framework: https://osf.io/2qpnw/

?view_only=8152fec1eb48401283995375e6e5840d. The final sample with complete responses

includes 610 subjects. On top of their participation fee, subjects in the fully incentivized treat-

ment received an average of $1.88 (min=$0, max=$5.5). Table 7 shows the number of subjects

23

https://osf.io/2qpnw/?view_only=8152fec1eb48401283995375e6e5840d
https://osf.io/2qpnw/?view_only=8152fec1eb48401283995375e6e5840d


Table 7: Experimental design and number of subjects

Hypothetical Real Total
POR 99 100 199
PACn 109 101 210
PAIn 101 100 201
Total 309 301 610

Notes: POR, PACn, PAIn stand for pay-one-randomly, pay-all-correlated and pay-all-
independently, respectively; n indicates sum of payoffs are divided by the number of tasks.

per treatment.

Subjects were asked to choose between the lottery pairs shown in Table 8 in the form of

(p, x1; x2) i.e., probability p of receiving x1 and 1− p of receiving x2. Lotteries are scaled down

versions (by a factor of four) in terms of monetary amounts of the lotteries in Cox et al. (2015)

to manage budgetary constraints. In Table 8 we keep the same numbering of pairs as in Cox

et al. (2015) to facilitate comparisons but group them together not in sequence to highlight their

relationship to Allais’ Paradox (Allais, 1953). Figure 3 depicts the lottery pairs in a Marschak-

Machina probability triangle. Lottery pair 4 cannot be depicted since one of the lotteries is a

three-outcome lottery. However, lotteries in pair 4 are constructed from either lottery pair 2 or

lottery pair 3. To construct this lottery from pair 2, one needs to take a 25%/75% probability

mixture, where the original pair 2 lotteries are received with a 25% chance and $3.00 are received
with a 75% chance. Alternatively, one can replace the common outcome of a 75% chance of

$0.00 in pair 3 with the common consequence of 75% chance of $3.00.
Allais’ so-called certainty effect pertains to the disposition towards certainty. Through his

original thought experiment, he showed most people preferred a riskier alternative when two

alternatives were very likely to yield nothing. Contrary to the predictions of independence, when

replacing the common outcome of nothing in both lotteries such that one alternative yields a

certain reward, then most people seem to prefer the safer, and certain, alternative.19

Consistent with Allais’ certainty effect, pairs 2 and 5 include an option with certainty. Hence,

pairs 1 and 3 represent uncertain gambles, and pairs 2 and 5 represent gambles where certainty

is an alternative. Unlike Allais’ classical paradox, monetary amounts are clearly lower. Like Al-

lais, the independence axiom (parallel indifference curves in Figure 3) is broadly a choice of the

same alternative (either A, the safer, or B, the riskier alternative). More explicitly, the indepen-

dence axiom would imply the same choices across 2, 3, and 4 (either A or B). Note, that pair 1

is identical to pair 3, except the outcomes in pair 3 are half of what they are in pair 1. Similarly,

all outcomes in pair 5 are the same as pair 2, but $3 are added to each outcome. So differences

19Formally, the certain pair was (1, 100 million francs) or (0.1, 500 million francs; 0.89, 100 million francs;
0 francs) and for the uncertain pair he replaced the common consequence of (0.89, 100 million francs) in both
options with (0.89, 0 francs).
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Figure 3: Probability triangle for lottery choice tasks

Medium Low

High

A1 A3

B1
B3

A2 A5

B2
B5

Lottery pairs 1, 3

Lottery pairs 2, 5

in pairs 2 and 5 could be explained via wealth effects or extreme forms of reference depen-

dence—ignoring standard calibration critiques (Rabin, 2013). For our main analysis, we group

pairs 1 and 3 and pairs 2 and 5 to avoid the mental gymnastics of rationalizing choices using lu-

dicrously ‘calibrated’ utility functions. We note a strict reading of neoclassical theory, assuming

independence and preferences over final wealth level, would imply consistent choices across the

board (either A or B). All experimental instructions have been deposited with the Open Science

Framework: https://osf.io/2qpnw/?view_only=8152fec1eb48401283995375e6e5840d.

Table 8: Lottery pairs

A: Safer B: Riskier
Pair 1 A1: (0.75, $0.00; $0.75) B1: (0.8, $0.00; $1.25)
Pair 3 A3: (0.75, $0.00; $1.50) B3: (0.8, $0.00; $2.50)
Pair 4 A4: (0.25, $1.50; $3.00) B4: (0.05, $0.00; 0.2, $2.50; $3.00)
Pair 2 A2: (1, $1.50) B2: (0.2, $0.00; $2.50)
Pair 5 A5: (1, $4.50) B5: (0.2, $3.00; $5.50)

5.2 Experiment 3 Results

Table A4 in the Online Appendix shows standardized differences of observable characteristics

between treatments as well as comparisons with subjects that started but did not complete the
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study.

Table 9 shows the frequency of choosing the safer option (lottery A) by groups of lottery

pairs and treatments. Overall, our results are consistent with Allais’ certainty predictions. A

higher fraction of our subjects chose the (safe) certain alternative when available (pairs 2 and 5).

Consistent with another violation of independence, we also find that pair 4 induces more risk-

averse behavior than 1 and 3 but less than 2 and 5. One potential explanation for the proportion

of safer choices of pair 4 is that pair 4 increases complexity by adding three-outcome lotteries

(raising risk aversion compared to 1 and 3) while eliminating the certainty effect (lowering risk

aversion compared to 2 and 5). We also find that real payments for all choices increase the

frequency of the safer alternative in pairs 1 and 3. One potential explanation for this behavior

is that by paying for all uncertain lotteries, we make those payments more certain, leading our

subjects to be more risk averse. Since pairs 2 and 5 already feature certain payments, pay-all

incentives have no effect on their behavior.

Table 9: Observed frequencies (in %) of choices of safer lotteries

Pair 1 & 3 Pair 4 Pair 2 & 5 Total
Hypothetical & POR 29.15 43.43 53.03 41.53
Hypothetical & PACn 26.61 39.45 54.59 40.37
Hypothetical & PAIn 22.77 47.52 54.46 40.40
Real & POR 23.50 45.00 60.00 42.40
Real & PAC 35.64 54.46 55.45 47.33
Real & PAI 33.00 46.00 53.50 43.80
Total 28.42 45.90 55.16 42.61

Notes: POR, PACn, PAIn stand for pay-one-randomly, pay-all-correlated and pay-all-independently, respec-
tively; n indicates sum of payoffs are divided by the number of tasks; ‘Hyp’ is short for ‘Hypothetical’.

Table 10: Observed frequencies (in %) of choices of safer lottery by lottery pair

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Total
Hypothetical & POR 28.28 46.46 30.00 43.43 59.60 41.53
Hypothetical & PACn 22.94 46.79 30.28 39.45 62.39 40.37
Hypothetical & PAIn 19.80 48.51 25.74 47.52 60.40 40.40
Real & POR 20.00 59.00 27.00 45.00 61.00 42.40
Real & PAC 30.69 50.50 40.59 54.46 60.40 47.33
Real & PAI 32.00 46.00 34.00 46.00 61.00 43.80
Total 25.57 49.51 31.26 45.90 60.82 42.61

Notes: POR, PACn, PAIn stand for pay-one-randomly, pay-all-correlated and pay-all-independently, respec-
tively. n indicates sum of payoffs are divided by the number of tasks. ‘Hyp’ is short for ‘Hypothetical’.

Table 10 is similar to Table 9 but breaks down frequency of safer choice by pair. This table

more clearly shows that aggregate frequencies are qualitatively similar to Cox et al. (2015). We
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do, however, find meaningful differences for specific pairs across the treatments. Moreover, we

find less heterogeneity across our treatments. We conjecture that the discrepancy is driven by

the larger number of incentive schemes evaluated in Cox et al. (2015) and the smaller sample

size they had for each incentive scheme.

We also estimate logit regressions by grouping together similar lottery pairs according to

the probability triangle shown in Figure 3. Table 11 shows the marginal effects from these logit

regressions of choosing the safer lottery. As argued above, the pay-all mechanisms under full

incentivization positively affect the probability of choosing the safer lottery but have no effect

under lottery pairs 2 and 5 that involve certainty.

We conclude by analyzing the consistency of behavior with neoclassical theory by counting

deviations from choosing the same alternative across the five pairs. On average, subjects ex-

hibit 1.5 violations (0.066 s.e.) under POR. Only hypothetical incentives marginally increased

consistency (∼ −0.2; 0.1 s.e.) with the canonical assumptions compared to the other incen-

tive schemes. We hypothesize two reasons for this finding. First, given the smallness of the

hypothetical rewards, participants were unlikely to exhibit endowment or wealth effects. Sec-

ond, certainty effects are less likely to be present when the only certainty is that these choices

are unincentivized. It is not by chance that Allais’ original paradox required quite substantial

hypothetical rewards.

Table 11: Marginal effects from logit regressions of choosing the safer lotteries

Pairs 1, 3 Pair 4 Pair 2, 5
(1) (2) (3)

Hypothetical & POR 0.053 (0.052) -0.016 (0.070) -0.070 (0.053)
Hypothetical & PACn 0.031 (0.050) -0.056 (0.068) -0.054 (0.053)
Hypothetical & PAIn -0.007 (0.049) 0.025 (0.070) -0.055 (0.053)
100% & PACn 0.121∗∗ (0.053) 0.095 (0.070) -0.046 (0.053)
100% & PAIn 0.095∗ (0.051) 0.010 (0.070) -0.065 (0.053)
Observations 1220 610 1220
AIC 1673.825 1451.210 848.345
BIC 1709.571 1486.956 874.825

Notes: Clustered standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base category for the
treatment variables is the 100% & POR treatment. POR, PACn, PAIn stand for pay-one-randomly, pay-
all-correlated and pay-all-independently, respectively; n indicates sum of payoffs are divided by the number
of tasks.

6 Conclusions

While most previous work related to incentive payment schemes is theoretical, this paper

explored the dynamics of incentive mechanisms in economic experiments using an empirical
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approach that focuses on value elicitation and choice under risk across three experimental stud-

ies with a large sample. Given the abundant literature showcasing empirical deviations from

theoretical expectations, we argue that an empirical approach is needed in the incentive scheme

argument to voice the outcomes produced by participants in experiments. We found that while

the nature of the incentive—hypothetical or real—had minimal impact on participants’ bidding

behavior or risk preferences, the design elements, such as the magnitude of induced values and

the range of offers, significantly influenced outcomes. Specifically, larger induced values and

smaller offer ranges led to more accurate bidding, aligning closer to theoretical expectations.

Therefore, our results suggest design elements in the experiment environment may influence

decision-making more than the incentive mechanism.

Comparing the BDMmechanism with the SPA, the latter showed an improvement in aligning

bids with the induced values, indicating that SPA produce less missbidding than the BDM.

Decision-making noise and misconceptions about payoff functions were minimal across both

auction mechanisms.

An older literature tried to argue that risk preferences may be able to explain differences

in bidding behavior. Harrison’s (1989) critique was that incentives in auctions were mostly

flat, and thus, behavior deviating from theoretical predictions may be driven by insufficient

incentives. Our results suggest several considerations to this explanation. First, the source of

uncertainty matters, behavioral deviations are different in the BDM and second price auction.

So whether a randomization device or other people drive uncertainty matters. Second, certainty

effects may be created by the choice of payment mechanism and can lead to subjects behaving

in a more risk-averse manner. These certainty effects are more likely driven by the framing of

the problem, e.g., paying for two different choices, than the increase produced over the potential

rewards. Therefore, non-expected risk preferences are likely to affect elicited choices; however,

their non-expected nature makes it tricky to pin down the overall effect over the resulting (non-

expected) preferences. Because of their elusive nature, careful theoretic modeling and empirical

richness are both necessities.

Our findings suggest that the effectiveness of incentive mechanisms in eliciting true prefer-

ences in economic experiments is complex. While certain design elements like the magnitude

of rewards and range of offers play a crucial role, the choice of elicitation mechanism (BDM

vs. SPA) also significantly impacts the accuracy of outcomes. We conjecture that based on

our results of Experiment 3, where we document significant certainty effects, the discrepancy

between BDM and SPA may be driven by the source of the uncertainty (i.e., a random mecha-

nism versus the bids of other participants). This highlights the need for careful consideration of

these factors in experimental design to ensure the reliability and validity of results in economic

research.

We conclude by asserting the growing need to understand the complex interplay between
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cognitive effort and improved (or more revealing) choices. The mounting number of perplexing

null results on hypothetical bias can only be explained by securing a tighter grasp on this rela-

tionship. We call these results perplexing because even theoretically improper incentives yield

identical responses while more opportunities for mistakes and more complex decision objects

can exacerbate differences both between and within methods. It is imperative that we hear

more about this discussion from empirical studies, to balance the predominantly theoretical

nature of the existing literature.
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Online Appendix

Additional Tables

Table A1: Descriptive statistics of |Bid− IV |/IV by induced value and upper limit of the
support

Upper support limit
$4 $5 $6 Total

IV=1
0.635 0.809 1.028 0.824
(0.689) (0.930) (1.211) (0.981)
[0.500] [0.500] [0.500] [0.500]

IV=3
0.197 0.208 0.237 0.214
(0.195) (0.199) (0.239) (0.213)
[0.167] [0.167] [0.167] [0.167]

Total
0.416 0.508 0.632 0.519
(0.552) (0.737) (0.958) (0.772)
[0.223] [0.237] [0.282] [0.250]

Notes: Table shows means, standard deviations in parenthesis and medians in brackets.
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Table A5: Regressions of bid deviations on treatment variables for the BDM mechanism (with
demographics)

Bid− IV |Bid− IV |/IV
(3) (4)

Constant 0.518∗∗∗ (0.132) 0.648∗∗∗ (0.077)
IV = 1 & Support = 5 0.185∗∗∗ (0.017) 0.167∗∗∗ (0.015)
IV = 1 & Support = 6 0.410∗∗∗ (0.022) 0.387∗∗∗ (0.021)
IV = 3 & Support = 4 -0.768∗∗∗ (0.019) -0.440∗∗∗ (0.014)
IV = 3 & Support = 5 -0.558∗∗∗ (0.019) -0.432∗∗∗ (0.013)
IV = 3 & Support = 6 -0.317∗∗∗ (0.019) -0.402∗∗∗ (0.013)
Hypothetical & PAC 0.001 (0.120) 0.091 (0.073)
Hypothetical & PACn -0.119 (0.109) -0.002 (0.066)
Hypothetical & PAI 0.082 (0.110) 0.081 (0.069)
Hypothetical & PAIn -0.068 (0.105) -0.013 (0.064)
Hypothetical & POR -0.037 (0.101) 0.006 (0.065)
0.2% & PAC -0.098 (0.098) -0.058 (0.062)
0.2% & PACn -0.137 (0.107) -0.020 (0.063)
0.2% & PAI -0.063 (0.100) -0.034 (0.063)
0.2% & PAIn 0.036 (0.102) 0.044 (0.062)
0.2% & POR 0.041 (0.107) 0.059 (0.067)
1% & PAC 0.091 (0.105) 0.092 (0.067)
1% & PACn -0.010 (0.096) -0.055 (0.062)
1% & PAI -0.091 (0.094) -0.046 (0.058)
1% & PAIn 0.070 (0.113) 0.056 (0.070)
1% & POR -0.047 (0.098) -0.006 (0.061)
50% & PAC -0.137 (0.105) -0.003 (0.062)
50% & PACn 0.047 (0.098) 0.036 (0.060)
50% & PAI -0.038 (0.100) -0.007 (0.063)
50% & PAIn 0.077 (0.105) 0.063 (0.064)
50% & POR -0.059 (0.100) 0.017 (0.060)
100% & PAC 0.034 (0.097) -0.002 (0.062)
100% & PACn 0.088 (0.103) 0.034 (0.062)
100% & PAI -0.102 (0.091) -0.048 (0.057)
100% & PAIn 0.039 (0.099) 0.016 (0.063)

Observations 14256 14256
R2 0.164 0.188
Adj. R2 0.161 0.185
F-stat. (p-value) 40.847 (< 0.001) 28.309 (< 0.001)

Notes: Clustered standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base categories for the
treatment variables are: IV = 1 & Support = 4, 100% & POR.
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Table A6: Ordered logit estimates of underbidding, bidding (close to) the IV and overbidding

(1) (2) (3) (4)
1: Bid < IV
2: Bid = IV
3: Bid > IV

1: Bid < 0.99 · IV
2: 0.99 · IV ≤ Bid ≤ 1.01 · IV

3: Bid > 1.01 · IV

1: Bid < 0.95 · IV
2: 0.95 · IV ≤ Bid ≤ 1.05 · IV

3: Bid > 1.05 · IV

1: Bid < 0.90 · IV
2: 0.90 · IV ≤ Bid ≤ 1.10 · IV

3: Bid > 1.10 · IV
IV = 1, Support = 5 0.073∗∗ (0.034) 0.073∗∗ (0.034) 0.076∗∗ (0.034) 0.086∗∗ (0.035)
IV = 1, Support = 6 0.171∗∗∗ (0.036) 0.181∗∗∗ (0.036) 0.179∗∗∗ (0.036) 0.193∗∗∗ (0.037)
IV = 3, Support = 4 -1.140∗∗∗ (0.043) -1.201∗∗∗ (0.043) -1.287∗∗∗ (0.043) -1.340∗∗∗ (0.044)
IV = 3, Support = 5 -0.878∗∗∗ (0.041) -0.946∗∗∗ (0.041) -1.028∗∗∗ (0.041) -1.053∗∗∗ (0.042)
IV = 3, Support = 6 -0.544∗∗∗ (0.039) -0.582∗∗∗ (0.038) -0.627∗∗∗ (0.038) -0.650∗∗∗ (0.039)
Hypothetical, PAC -0.127 (0.204) -0.115 (0.201) -0.096 (0.198) -0.097 (0.195)
Hypothetical, PACn -0.357∗ (0.206) -0.310 (0.207) -0.250 (0.206) -0.281 (0.201)
Hypothetical, PAI 0.041 (0.204) 0.047 (0.204) 0.027 (0.201) 0.059 (0.199)
Hypothetical, PAIn -0.156 (0.201) -0.130 (0.201) -0.079 (0.202) -0.066 (0.200)
Hypothetical, POR -0.050 (0.193) -0.062 (0.189) -0.088 (0.182) -0.087 (0.178)
0.2%, PAC -0.212 (0.200) -0.182 (0.197) -0.170 (0.195) -0.232 (0.190)
0.2%, PACn -0.397∗ (0.210) -0.373∗ (0.209) -0.335 (0.207) -0.351∗ (0.203)
0.2%, PAI -0.030 (0.206) -0.002 (0.203) 0.012 (0.202) -0.027 (0.196)
0.2%, PAIn -0.036 (0.212) -0.005 (0.209) -0.019 (0.203) -0.039 (0.200)
0.2%, POR 0.027 (0.203) 0.058 (0.198) 0.106 (0.198) 0.083 (0.196)
1%, PAC -0.134 (0.196) -0.117 (0.194) -0.113 (0.190) -0.083 (0.187)
1%, PACn 0.062 (0.198) 0.067 (0.195) 0.078 (0.191) 0.111 (0.188)
1%, PAI -0.137 (0.198) -0.097 (0.198) -0.091 (0.196) -0.100 (0.193)
1%, PAIn 0.084 (0.202) 0.078 (0.201) 0.082 (0.200) 0.064 (0.197)
1%, POR -0.038 (0.206) -0.024 (0.204) -0.013 (0.201) -0.044 (0.193)
50%, PAC -0.209 (0.199) -0.161 (0.197) -0.159 (0.197) -0.143 (0.191)
50%, PACn 0.028 (0.194) 0.034 (0.192) 0.040 (0.189) 0.070 (0.182)
50%, PAI -0.199 (0.217) -0.185 (0.214) -0.170 (0.211) -0.189 (0.203)
50%, PAIn 0.088 (0.198) 0.102 (0.198) 0.165 (0.198) 0.148 (0.195)
50%, POR -0.099 (0.200) -0.073 (0.197) -0.063 (0.196) -0.077 (0.197)
100%, PAC 0.054 (0.194) 0.047 (0.193) 0.076 (0.192) 0.057 (0.186)
100%, PACn 0.121 (0.200) 0.161 (0.199) 0.190 (0.198) 0.164 (0.191)
100%, PAI -0.244 (0.198) -0.201 (0.192) -0.207 (0.184) -0.146 (0.177)
100%, PAIn -0.017 (0.200) -0.004 (0.198) 0.003 (0.197) 0.043 (0.194)
Demographics No No No No
τ1 -1.118∗∗∗ (0.147) -1.205∗∗∗ (0.145) -1.374∗∗∗ (0.144) -1.582∗∗∗ (0.141)
τ2 -0.437∗∗∗ (0.147) -0.359∗∗ (0.144) -0.257∗ (0.143) -0.156 (0.139)
Observations 15450 15450 15450 15450
Log-Likelihood -14961.520 -15379.327 -15775.988 -15926.422
AIC 29985.041 30820.654 31613.975 31914.843
BIC 30222.047 31057.660 31850.981 32151.850

Notes: Clustered standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base categories for the
treatment variables are: IV = 1 & Support = 4, 100% & POR.
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Table A7: Ordered logit estimates of underbidding, bidding (close to) the IV and overbidding
(with demographics)

(1) (2) (3) (4)
Bid ⋚ IV Bid ⋚ 1.01 · IV Bid ⋚ 1.05 · IV Bid ⋚ 1.1 · IV

IV = 1, Support = 5 0.087∗∗ (0.036) 0.081∗∗ (0.036) 0.083∗∗ (0.036) 0.086∗∗ (0.037)
IV = 1, Support = 6 0.174∗∗∗ (0.037) 0.178∗∗∗ (0.037) 0.176∗∗∗ (0.037) 0.188∗∗∗ (0.038)
IV = 3, Support = 4 -1.146∗∗∗ (0.045) -1.218∗∗∗ (0.045) -1.303∗∗∗ (0.045) -1.361∗∗∗ (0.046)
IV = 3, Support = 5 -0.867∗∗∗ (0.043) -0.944∗∗∗ (0.043) -1.029∗∗∗ (0.043) -1.058∗∗∗ (0.044)
IV = 3, Support = 6 -0.561∗∗∗ (0.041) -0.606∗∗∗ (0.040) -0.648∗∗∗ (0.040) -0.672∗∗∗ (0.041)
Hypothetical, PAC -0.185 (0.208) -0.177 (0.205) -0.159 (0.202) -0.152 (0.200)
Hypothetical, PACn -0.386∗ (0.217) -0.337 (0.217) -0.273 (0.215) -0.310 (0.209)
Hypothetical, PAI 0.074 (0.211) 0.080 (0.210) 0.062 (0.207) 0.096 (0.205)
Hypothetical, PAIn -0.219 (0.204) -0.197 (0.205) -0.139 (0.206) -0.129 (0.205)
Hypothetical, POR -0.078 (0.202) -0.093 (0.198) -0.105 (0.191) -0.105 (0.186)
0.2%, PAC -0.236 (0.210) -0.206 (0.206) -0.187 (0.203) -0.236 (0.199)
0.2%, PACn -0.337 (0.218) -0.314 (0.216) -0.267 (0.215) -0.275 (0.209)
0.2%, PAI -0.089 (0.208) -0.055 (0.205) -0.032 (0.203) -0.070 (0.197)
0.2%, PAIn 0.058 (0.215) 0.089 (0.213) 0.064 (0.206) 0.037 (0.203)
0.2%, POR 0.055 (0.209) 0.080 (0.203) 0.136 (0.202) 0.114 (0.200)
1%, PAC -0.098 (0.201) -0.089 (0.198) -0.080 (0.195) -0.046 (0.192)
1%, PACn 0.062 (0.200) 0.061 (0.197) 0.073 (0.192) 0.110 (0.190)
1%, PAI -0.179 (0.202) -0.135 (0.201) -0.126 (0.199) -0.134 (0.196)
1%, PAIn 0.168 (0.209) 0.158 (0.207) 0.161 (0.205) 0.161 (0.202)
1%, POR -0.064 (0.216) -0.048 (0.215) -0.037 (0.211) -0.063 (0.201)
50%, PAC -0.257 (0.203) -0.204 (0.201) -0.199 (0.201) -0.193 (0.195)
50%, PACn 0.029 (0.196) 0.037 (0.195) 0.044 (0.190) 0.073 (0.184)
50%, PAI -0.183 (0.216) -0.173 (0.212) -0.152 (0.208) -0.159 (0.200)
50%, PAIn 0.130 (0.206) 0.148 (0.206) 0.212 (0.206) 0.201 (0.203)
50%, POR -0.147 (0.204) -0.115 (0.202) -0.104 (0.201) -0.107 (0.201)
100%, PAC 0.087 (0.197) 0.076 (0.195) 0.098 (0.194) 0.075 (0.187)
100%, PACn 0.167 (0.205) 0.217 (0.205) 0.258 (0.204) 0.245 (0.197)
100%, PAI -0.208 (0.205) -0.165 (0.198) -0.179 (0.190) -0.110 (0.181)
100%, PAIn -0.019 (0.205) -0.010 (0.203) -0.0005 (0.202) 0.036 (0.199)
Demographics Yes Yes Yes Yes
τ1 -1.269∗∗∗ (0.281) -1.344∗∗∗ (0.278) -1.516∗∗∗ (0.269) -1.642∗∗∗ (0.260)
τ2 -0.575∗∗ (0.281) -0.476∗ (0.277) -0.375 (0.268) -0.185 (0.259)
Observations 14256 14256 14256 14256
Log-Likelihood -13724.212 -14117.529 -14473.208 -14594.454
AIC 27568.424 28355.057 29066.416 29308.908
BIC 28022.320 28808.953 29520.312 29762.804

Notes: Clustered standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base categories for the
treatment variables are: IV = 1 & Support = 4, 100% & POR.
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Table A8: Regressions of bid deviations on treatment variables for the SPA (with
demographics)

Bid− IV |Bid− IV |/IV
(3) (4)

Constant 0.026 (0.148) 0.415∗∗∗ (0.055)
IV = 1.7 -0.150∗∗∗ (0.022) -0.123∗∗∗ (0.018)
IV = 2.4 -0.267∗∗∗ (0.023) -0.136∗∗∗ (0.018)
IV = 3 -0.331∗∗∗ (0.030) -0.125∗∗∗ (0.018)
Hypothetical & PAn -0.040 (0.050) 0.012 (0.020)
100% & PAn -0.024 (0.043) 0.031∗ (0.018)
100% & POR -0.041 (0.041) 0.006 (0.017)
Observations 1640 1640
R2 0.132 0.087
Adj. R2 0.114 0.067
F-stat. (p-value) 11.217 (< 0.001) 6.363 (< 0.001)

Notes: Clustered standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base categories for the
treatment variables are: IV = 1, Hypothetical and POR.

Table A9: Regressions of bid deviations on treatment variables for the SPA (with subjects
matched with bots)

Bid− IV |Bid− IV |/IV Bid− IV |Bid− IV |/IV
(1) (2) (3) (4)

Constant 0.058∗ (0.032) 0.262∗∗∗ (0.017) -0.052 (0.135) 0.377∗∗∗ (0.052)
IV = 1.7 -0.155∗∗∗ (0.018) -0.119∗∗∗ (0.015) -0.154∗∗∗ (0.018) -0.114∗∗∗ (0.015)
IV = 2.4 -0.262∗∗∗ (0.019) -0.136∗∗∗ (0.015) -0.258∗∗∗ (0.019) -0.131∗∗∗ (0.015)
IV = 3 -0.337∗∗∗ (0.023) -0.124∗∗∗ (0.015) -0.332∗∗∗ (0.024) -0.120∗∗∗ (0.015)
Hypothetical & PAn -0.028 (0.042) 0.007 (0.016) -0.028 (0.044) 0.003 (0.016)
100% & PAn -0.052 (0.039) 0.016 (0.014) -0.043 (0.041) 0.016 (0.015)
100% & POR -0.019 (0.039) 0.008 (0.016) -0.007 (0.040) 0.002 (0.016)
N of bots=1 0.030 (0.050) 0.002 (0.025) 0.010 (0.051) 0.002 (0.024)
N of bots=2 0.034 (0.045) -0.025 (0.015) 0.040 (0.047) -0.030∗ (0.016)
N of bots=3 -0.048 (0.045) -0.001 (0.018) -0.061 (0.049) -0.018 (0.019)
Demographics No No Yes Yes
Observations 2548 2548 2444 2444
R2 0.082 0.054 0.108 0.076
Adj. R2 0.079 0.051 0.094 0.062
F-stat. (p-value) 32.184 (< 0.001) 12.034 (< 0.001) 10.334 (< 0.001) 5.422 (< 0.001)

Clustered standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base categories for the treatment
variables are: IV = 1, Hypothetical and POR.
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Table A10: Maximum likelihood estimates of Decision-making noise and misperception models
(with demographics)

Noise-only model CP mixture model γ mixture model
(1) (2) (3)
λ λ λ γ

Constant 2.869∗∗∗ (0.687) 3.334∗∗∗ (0.911) 3.828∗∗∗ (0.860) 0.874∗∗∗ (0.057)
IV = 1, Support = 5 -0.766∗∗∗ (0.129) -0.835∗∗∗ (0.187) -1.225∗∗∗ (0.197) 0.029∗∗∗ (0.009)
IV = 1, Support = 6 -1.320∗∗∗ (0.134) -1.460∗∗∗ (0.203) -2.060∗∗∗ (0.212) 0.064∗∗∗ (0.013)
IV = 3, Support = 4 0.966∗∗∗ (0.235) 0.345 (0.328) 0.723∗∗ (0.368) 0.205∗∗∗ (0.023)
IV = 3, Support = 5 3.134∗∗∗ (0.274) 2.684∗∗∗ (0.358) 2.631∗∗∗ (0.297) 0.165∗∗∗ (0.009)
IV = 3, Support = 6 2.709∗∗∗ (0.221) 3.018∗∗∗ (0.304) 1.625∗∗∗ (0.246) 0.075∗∗∗ (0.008)
Hypothetical, PAC -1.104∗∗ (0.528) -1.515∗∗ (0.746) -1.422∗∗ (0.629) 0.058 (0.051)
Hypothetical, PACn -0.090 (0.618) -0.321 (0.836) -0.202 (0.743) 0.080∗ (0.045)
Hypothetical, PAI -0.671 (0.562) -0.936 (0.758) -0.689 (0.723) -0.026 (0.050)
Hypothetical, PAIn -0.450 (0.605) -0.715 (0.843) -0.759 (0.730) 0.020 (0.049)
Hypothetical, POR -0.143 (0.622) -0.382 (0.864) -0.169 (0.781) 0.032 (0.043)
0.2%, PAC 0.690 (0.668) 1.124 (1.251) 0.852 (0.821) 0.028 (0.042)
0.2%, PACn -0.105 (0.613) -0.350 (0.844) -0.302 (0.717) 0.098∗∗ (0.045)
0.2%, PAI 0.196 (0.699) 0.078 (1.014) 0.274 (0.908) 0.018 (0.042)
0.2%, PAIn -0.350 (0.529) -0.558 (0.737) -0.337 (0.659) 0.002 (0.045)
0.2%, POR -0.551 (0.555) -0.869 (0.766) -0.673 (0.681) 0.038 (0.047)
1%, PAC -0.828 (0.516) -1.156 (0.727) -0.956 (0.636) 0.001 (0.044)
1%, PACn 1.056 (0.881) 1.769 (1.797) 1.563 (1.203) -0.025 (0.040)
1%, PAI 0.531 (0.592) 0.570 (0.876) 0.730 (0.764) 0.027 (0.042)
1%, PAIn -0.620 (0.571) -0.909 (0.782) -0.732 (0.715) -0.002 (0.049)
1%, POR 0.076 (0.599) -0.009 (0.850) 0.103 (0.757) 0.023 (0.044)
50%, PAC -0.143 (0.576) -0.422 (0.780) -0.280 (0.706) 0.070 (0.048)
50%, PACn -0.435 (0.545) -0.705 (0.764) -0.394 (0.700) -0.014 (0.043)
50%, PAI 0.044 (0.607) -0.024 (0.888) 0.302 (0.781) 0.022 (0.042)
50%, PAIn -0.477 (0.536) -0.695 (0.754) -0.501 (0.669) -0.028 (0.049)
50%, POR -0.120 (0.574) -0.332 (0.810) -0.270 (0.722) 0.038 (0.043)
100%, PAC -0.239 (0.554) -0.437 (0.787) -0.130 (0.701) -0.015 (0.042)
100%, PACn -0.048 (0.570) -0.092 (0.835) 0.116 (0.708) -0.051 (0.046)
100%, PAI 0.716 (0.648) 0.871 (1.049) 0.827 (0.834) 0.025 (0.039)
100%, PAIn -0.271 (0.541) -0.457 (0.744) -0.261 (0.668) -0.006 (0.043)

M
Constant 0.046∗∗∗ (0.014)
Demographics Yes Yes Yes
Observations 14766 14766 14766
Log-Likelihood -53251.953 -47245.936 -47020.369
AIC 106623.907 94613.873 94280.737
BIC 107079.912 95077.478 95192.747

Notes: Clustered standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base categories for the
treatment variables are: IV = 1 & Support = 4, 100% & POR.
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Table A11: Regressions of bid deviations (SPA vs. BDM)

(1) (2)
Bid− IV |Bid− IV |/IV

Constant 0.643∗∗∗ (0.018) 0.797∗∗∗ (0.015)
SPA -0.455∗∗∗ (0.022) -0.345∗∗∗ (0.011)
IV High -0.695∗∗∗ (0.015) -0.556∗∗∗ (0.014)
Observations 17162 17162
R2 0.131 0.159
Adj. R2 0.131 0.159
F-stat. (p-value) 1139.662 (< 0.001) 773.956 (< 0.001)

Clustered standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base categories are the BDM
mechanism and IV = 1 or IV = 1.7.

Table A12: Regressions of bid deviations (SPA vs. BDM)

(1) (2)
Bid− IV |Bid− IV |/IV

Constant 0.543∗∗∗ (0.120) 0.817∗∗∗ (0.067)
SPA -0.406∗∗∗ (0.058) -0.349∗∗∗ (0.028)
IV high -0.691∗∗∗ (0.015) -0.549∗∗∗ (0.015)
Observations 16406 16406
R2 0.140 0.164
Adj. R2 0.138 0.162
F-stat. (p-value) 68.167 (< 0.001) 45.736 (< 0.001)

Clustered standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base categories are the BDM
mechanism and IV = 1 or IV = 1.7.

Table A13: Marginal effects from logit regressions of choosing the safer lotteries (with
demographic controls)

Pairs 1, 3 Pair 4 Pair 2, 5
(1) (2) (3)

Hypothetical & POR 0.039 (0.055) 0.006 (0.071) -0.050 (0.055)
Hypothetical & PACn 0.020 (0.051) -0.085 (0.068) -0.054 (0.053)
Hypothetical & PAIn -0.006 (0.052) 0.041 (0.071) -0.042 (0.054)
100% & PACn 0.107∗ (0.056) 0.080 (0.071) -0.032 (0.054)
100% & PAIn 0.093∗ (0.055) 0.019 (0.075) -0.059 (0.054)
Observations 1174 592 1184
AIC 1647.994 1428.621 850.397
BIC 1830.754 1606.007 1003.8197

Clustered standard errors in parentheses. * p<0.1, ** p<0.05 *** p<0.01. Base category for the treatment
variables is the 100% & POR treatment.
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Sample size calculations

Our per treatment sample size was decided based on sample size calculations and served as

a stopping rule for this experiment when we achieved the minimum necessary per treatment

sample. Assuming α = 0.05 (Type I error) and β = 0.20 (Type II error), the per group

(treatment) minimum sample size required to compare two means µ0 and µ1, with common

variance of σ2 in order to achieve a power of at least 1− β is given by Diggle et al. (2002) pp.

30; Liu and Wu (2005); Kupper and Hafner (1989):

n =
2(z1−α/2 + z1−β)

2(1 + (M − 1)ρ)

M(µ0−µ1

σ
)2

(3)

To take into account the repeated measurement, the formula includes the number of repeated

measurements M (in our case it is M = 6) as well as a value for the correlation ρ between

observations for the same subject. For α = 0.05 and β = 0.20 the values of z1−α/2 and z1−β are

1.96 and 0.84, respectively. To calculate a minimum sample size, one needs to feed the above

formula with values for σ and the minimum meaningful difference d = µ0 − µ1. To specify the

necessary parameters to feed the above formula, we extracted information from the study of

Kendall and Chakraborty (2022), which is as similar as possible to our study in the sense that

they also elicit preferences using the BDM mechanism over an online sample in Prolific. We

asked the authors to calculate descriptive statistics of |bid−IV |/IV from their BDM treatment

to use in our calculations (mean = 0.20, sd = 0.16). In addition, we used values for ρ spanning

the range from 0 to 0.9. With roughly 100 subjects per treatment, the minimum effect size we

can detect is a 0.05 difference for a correlation of 0.6.

Table A14 shows the result of equation 3 for various values of ρ and d. It is evident that

the lower the minimum meaningful difference d and the higher the correlation between periods

ρ, a larger sample size is needed to detect the desired effect size with 80% power. We can also

detect smaller differences than 0.05 of relative absolute deviations from the IV but one would

need to restrict the range of assumed values for ρ.

Table A14: Per treatment sample size calculations for different values of ρ and d

ρ = 0 ρ = 0.3 ρ = 0.6 ρ = 0.9
d = 0.05 27 67 107 147
d = 0.07 14 34 55 75
d = 0.1 7 17 27 37
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