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Abstract

In this study, the author demonstrates that the selection of an
appropriate money-demand function is crucial to ascertain the rela-
tionship between fiscal deficits and inflation. To do so, the author
incorporates a Selden-Latané money-demand function into a micro-
founded extension of the model introduced by Sargent, Williams, and
Zha (2009). The use of this particular function results in a model that
more accurately replicates Mexican money supply’s past history, and
furthermore, establishes a stronger historical association between fiscal
and monetary policy, namely, between fiscal deficits and seigniorage.
As a result, the author is able to provide more compelling evidence
for the dominance of fiscal policy as the major cause of high inflation
in Mexico during the last three decades of the twentieth century.

1 Introduction

∗I thank Marco Bassetto for his insightful comments and useful sug-
gestions. I acknowledge the support and hospitality of CEMLA, where
this work was partially written. Please address all correspondence to
gmoloche@uchicago.edu. The replication data and code can be downloaded from
https://s3.amazonaws.com/public.fermat.ai/SeigniorageInflation.zip
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Theories of inflation have been primarily built upon Cagan’s money-
demand function (1956). Nevertheless, recent empirical research conducted
by Benati, Lucas, Nicolini, and Weber (2021) suggests that, in numerous
countries, alternative specifications of the money-demand function provide
a more accurate characterization of the long-run relation between money
demand and inflation expectations embedded in nominal interest rates.

The principal objective of this study is to investigate whether the se-
lection of a suitable money-demand function matters to study the interac-
tion between fiscal and monetary policies. In light of this, an alternative
to Cagan’s money-demand function is proposed, and it is embedded into a
micro-founded extension of the model proposed in Sargent, Williams, and
Zha (2009). Throughout the remainder of this paper, the latter model shall
be referred to as SWZ. Consequently, the proposed model is estimated and
its projections are contrasted with respect to Mexican inflation, inflation ex-
pectations, money supply, and seigniorage-financed deficits, as well as those
implied by the SWZ model.

Before proceeding, it is important to clarify that the model presented in
this study does not directly address fiscal deficits. Instead, the focus is on
the seigniorage generated by the monetary authority. When a country is in
a fiscal dominance regime, seigniorage’s magnitude is anticipated to have a
strong connection with fiscal deficits. If the connection between fiscal deficits
and seigniorage is robust, then the case for fiscal dominance as the underlying
cause of inflation becomes more compelling. This study’s findings reveal that
this was indeed the case for the Mexican economy.

To demonstrate the suitability of the alternative money-demand func-
tional proposed in this study, a monetary equilibrium inflation model is uti-
lized. The model enables the computation of historical model-implied money
supply and seigniorage time series, which align with the patterns observed
in the historical Mexican monetary base and fiscal deficits, respectively.

It is worth noting that the selection of the alternative money-demand
specification not only leads to a stronger correlation between fiscal deficits
and seigniorage but also has a significant impact on the equilibrium behavior
and dynamics of inflationary expectations.

Indeed, the interaction between inflation dynamics and seigniorage regimes
has noteworthy implications for the stability of inflation expectations. In our
model, if inflation beliefs surpass a certain threshold, expectations may rise
significantly without necessarily becoming unstable or explosive. Instead, we
observe stable equilibria at extremely high levels of inflation, and conver-
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gence towards these equilibrium levels is how the model represents hyper-
inflationary processes. This stands in contrast to other models, where hyper-
inflation is the outcome of unstable, explosive dynamics. Thus, this study’s
model offers an alternative framework for comprehending economic behav-
ior in high-inflation environments. The presence of stable hyper-inflationary
equilibria enhances the availability of quantitative tools to analyze the model’s
projections, which is a significant advantage compared to models that exhibit
explosive behavior. However, the use of an alternative money-demand spec-
ification to depart from Cagan’s approach has its drawbacks, notably an in-
creased complexity in terms of estimation and the computation of equilibria.
This study outlines how to navigate these challenges.

To understand why the choice of money-demand function specification
matters in examining the relationship between fiscal deficits, inflation, and
seigniorage, we must consider the relationship between money supply and
seigniorage. For example, Cagan (1956) examined dual inflation equilibria
in a model that featured a semi-logarithmic money-demand function and an
explicit inflation expectations mechanism. There was no budget constraint
or money-supply function. Cagan focused on the problem of maximizing
seigniorage. For any feasible seigniorage level, there existed a low infla-
tion equilibrium and a high inflation equilibrium. At the maximum feasible
seigniorage level, there was only one inflation equilibrium, which represented
the optimal seigniorage level. If a monetary authority increased the money
supply beyond this level, high inflation would result, and the government
would no longer be able to increase its seigniorage.

This suggests that there isn’t a simple relationship between money supply
and seigniorage, because we can theoretically find a situation when expand-
ing the money supply could cause a decrease, rather than an increase, in
seigniorage. This situation is called Cagan’s paradox and occurs because Ca-
gan’s money-demand function predicts that money demand decreases rapidly
as expected inflation increases. But Benati (2018) finds that there is little
empirical evidence to support the latter prediction.

It is clear that Cagan’s paradox significantly affects the relationship be-
tween seigniorage and money supply and thus, it may obfuscate the real
relationship between fiscal deficits and inflation. Under Cagan’s hypothe-
sis, if fiscal deficits cannot be financed by the monetary authority beyond
some maximum seigniorage level, then it is hard to explain the persistence
of fiscal dominance regimes or the insistence of monetary authorities on ex-
panding the money supply beyond Cagan’s optimal seigniorage level during
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historically high inflation periods. The lack of empirical evidence support-
ing Cagan’s money-demand functional predictions can be explained by these
issues.

In conclusion, the choice of the money-demand function specification is
important because it implicitly places a theoretical limit on the amount of
seigniorage a government can raise. A money-demand function that does
not display Cagan’s paradox, such as the alternative specification used in
this work, theoretically allows the government to raise more seigniorage, and
it makes possible a better fit between historical deficits and model-implied
seigniorage-financed deficits.

The micro-economic model presented below, underlying the proposed
money-demand function, provides a clear economic rationale for its specific
form. The model shows that households face increasing costs when trying
to substitute their consumption payments away from the official medium of
exchange, even during high inflation episodes. This, in turn, makes it very
difficult for households to set their demand for real balances to zero. The
reason for this is that arranging alternative payment arrangements for an
increasing number of household expenses takes additional time away from
work, which represents an opportunity cost to households. Since real bal-
ances cannot be set to zero, the government can always keep collecting some
seigniorage.

The model also has other important empirical features. For instance, it
captures better the trend and volatility of Mexican’s monetary base growth.
Additionally, the model’s findings are consistent with the work of Sargent,
Williams, and Zha (2009) regarding the occurrence of fundamental reforms
in South America in response to hyper-inflationary periods. In particular,
the model suggests that similar reforms were introduced in Mexico when
the economy found itself in the domain of attraction of a hyper-inflationary
”high” inflation equilibrium. This is a significant confirmation of SWZ’s
findings, even though the model presented in this work uses different data, a
different model, and different dynamics.

The model also has important implications for the interpretation of past
economic events in Mexico. It suggests that gradual fiscal adjustments were
not enough to stabilize and decrease inflation, and that other measures such
as external debt renegotiation were crucial because of their implications for
government interest expenditures and its access to international capital mar-
kets. Solving the debt crisis was essential for bringing down the deficit suffi-
ciently to stabilize the economy. In fact, the magnitude of the fiscal retrench-
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ment is critical in the model, and in some cases, seigniorage-financed deficits
may need to be reduced to levels lower than those observed at the beginning
of the inflationary episode just to restore inflation to its previous levels.

The paper proceeds by first presenting the proposed money-demand func-
tion. The monetary market is then described, and several definitions of equi-
librium are provided. Next, the model is estimated using Mexican monthly
inflation data, and the dynamics of the estimated model are analyzed us-
ing Monte Carlo simulations and the ordinary differential equation (ODE)
method of Kushner and Yin (2003). Finally, the model predictions are com-
pared with Mexico’s fiscal deficit and money supply data, as well as with its
history of stabilization programs.

2 A Transactional Model Of Money Demand

In inflationary economies, money loses its function as a store of value, and it
becomes a costly transactional instrument. To reduce the costs of employ-
ing the default medium of exchange in an inflationary economy, households
spend time securing alternative arrangements to preserve the value of their
purchasing power. This is because, inflation depreciates any nominal money
balances Mt the household is holding to pay for its desired consumption later
Ct+1.

If inflation is a concern, these balances can be reduced by spending the
money just after income is received, which takes more time away from work,
or equivalently, by increasing the number of trips to the shop nt. These
trips take time that could be spent working so their opportunity cost is
zH(Ct+1, nt) where z is the real wage per unit of labor and H gives shop-
ping time as a function of the number of trips to the shop nt and desired
consumption.

The solution to this problem, detailed in the online appendix A, yields
the key result

zHn,t =
1

nt

Mt

Pt

P e
t+1

Pt

, (1)

which says that the marginal opportunity cost of increasing trading trips in
consumption units, must equal the marginal benefit of saving on inflationary
costs by reducing the demand for real balances. Here nominal money demand
is denoted as Mt which is a percentage of the output at period t; Pt is the
price level; and P e

t+1 is next period’s expected price level.
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Figure 1: Money-Demand Functions. M/P is money demand and P e/P
denotes expected inflation. Note: The linear money-demand function in
SWZ is shown here with λ = 0.91, which is close to Cagan’s semi log money-
demand function, displayed here with the same parameter value. Meltzer’s
log-log money-demand function is shown with an elasticity of 0.5, and re-
scaled to show that, for high levels of inflationary expectations, it can be
very close to our version of Selden-Latané’s money-demand function, here
shown with λ0 = 0.15 and λ1 = 30.
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With the functional specification forH given in the online appendix A, the
last equation gives the money-demand of Selden (1956) and Latané (1960):

Mt

Pt
= 1

γ
λ
(

P e
t+1

Pt

)
, λ

(
P e
t+1

Pt

)
= λ0

1+λ1(P e
t+1/Pt−1)

, (2)

where λ0 and λ1 depend on deep model parameters. The function λ(·) cap-
tures the sensitivity of real money demand to changes in expected inflation.
We are adding here a scale parameter γ, with γ > 0.

In Sargent, Williams, and Zha (2009), the money-demand function is a
linear approximation of Cagan’s semi logarithmic money-demand function,
which is (up to scale) Mt/Pt = exp(−λP e

t+1/Pt). SWZ employ an approxima-
tion to this demand based on the Taylor expansion of the exponential func-
tion: Mt/Pt ≈ 1 − λP e

t+1/Pt. In this money-demand function, λ is a scalar
interpreted as the semi-elasticity of the money-demand with respect to the
expected inflation. Due to the linearity of this functional form, the demand
for real balances can take negative values for very high levels of expected
inflation. We summarize the behavior of these money-demand specifications
in figure 1.

We now describe the formation mechanism of inflation expectations. We
assume here a mechanism with constant-gain learning. Defining

βt ≡
P e
t+1

Pt

, πt+1 ≡
Pt+1

Pt

(3)

we then have the following adaptive expectations mechanism:

βt = βt−1 + ν (πt−1 − βt−1) , (4)

where 0 < ν < 1. Constant-gain learning means that ν is constant. πt

denotes gross inflation. In what follows we use interchangeably the terms
“inflation expectations” and “inflation beliefs”.

3 The Monetary Market

The model is completed by specifying the money supply which is given by:

Mt = θMt−1 + dt(mt, ςt, dt−1)Pt. (5)

The parameter θ < 1, adjusts the money supply for growth in real output
and cash taxes. A lower bound on θ is given by 1 − 1/λ1 < θ, and it is
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sometimes a condition for the existence of an equilibrium, as explained in
online appendix C.

The government raises seigniorage in the amount of dt. It is assumed
that it will be used to finance fiscal deficits. Seigniorage has the following
dynamics:

dt(mt, ςt, dt−1) = d̄(mt) + εd(ςt, dt−1),

in which we assume that seigniorage has an average level d̄ which depends
on a regime mt. The regime mt follows a Markov chain that captures the
monetary authority expansionary stance. Regimesmt with a very low d̄ imply
that the central bank is raising little revenues through monetary expansion,
and on the other hand, regimes with a high d̄ imply that the central bank is
being very proactive at raising revenue through seigniorage.

Shocks to seigniorage are captured by εd(ςt, dt−1), similarly depending on
a volatility regime and on the deficit during period t−1. This shock induces a
log-normal conditional distribution for the seigniorage-financed deficit with
a mean equal to log d̄(mt) and variance σ2

d(ςt, dt−1) = σ2
d(ςt)d

ϑ
t−1 whenever

dt is positive. The seigniorage volatility also depends on the parameter σ2
d,

which, in turn, is a function of a state that changes according to the regime
ςt.

In our results, the volatility state spends most of the time in the lower
regime and only briefly increases to the high level. The high-volatility regime
may be capturing external shocks to the economy, by temporarily allow-
ing seigniorage shocks to take higher values than usual. Defining the joint
seigniorage state as st ≡ (mt, ςt), we can write the seigniorage as depending
on just two arguments: dt(st, dt−1) = dt(mt, ςt, dt−1).

Seigniorage’s distribution has a density function pd(εd|st, dt−1):

pd(εd|st, dt−1) =

exp

(
−[log(d̄(mt)+εd)−log(d̄(mt))]

2

2σ2
d(ςt,dt−1)

)
√
2πσd(ςt, dt−1)(log(d̄(mt)) + εd)

. (6)

The elements of the joint seigniorage state (mt, ςt) follow independent Markov
chains, respectively with transition probabilities Qm = {pi,j}i,j=1,...,mh

and
Qς = {qi,j}i,j=1,...,ςh , with a total of mh × ςh possible states. The transition
probability matrix of the joint state st ≡ (mt, ςt) is Qs, with Qs = Qm ⊗Qς ,
where ⊗ denotes the Kronecker product.

Imposing monetary equilibrium, the demand for money (2), the dynam-
ics of inflationary expectations (4), and money supply (5) together imply
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equilibrium inflation:

πt =
θλ (βt−1)

λ (βt)− γdt (st, dt−1)
, (7)

for all t, provided that the numerator and denominator are positive.
We need to set some additional restrictions, first a lower bound on in-

flation expectations βt, and an upper bound on inflation πt < δ−1 given by
δ:

βt > 1− 1

λ1

(8)

λ(βt)− γdt(st, dt−1) > δθλ(βt−1), (9)

almost surely for all t > 0. Restriction (8) sets a lower bound for inflation
expectations and, together with equation (2), implies that the real money
stocks are positive and finite for all t > 0. Restriction (9) sets δ−1 as an
upper bound for gross inflation. The first bound is a necessary condition
for the existence of a self-confirming equilibrium (SCE), which we will define
later. The second bound is enforced through a cosmetic reform, to be defined
below as an inflation shock with variance σπ, to be applied instantaneously
whenever inflation surpasses the bound, and it ensures that inequality (9)
holds, preventing that πt → ∞.

Restriction (8) ensures that gross inflation is always positive, but in-
flation can still be negative. In equation (7), if dt is small enough and
λ(βt−1)/(λ(βt) − γdt) is close or equal to one then the equilibrium inflation
will be around θ, which is less than one. As equation (9) ensures that the
denominator of equation (7) is always positive, expectations may not satisfy
equations (8) and (9) at the same time unless 1 − 1/λ1 < θ. The model
allows net equilibrium inflation and expectations to be slightly negative, as
long as equation (8) continues to hold.

4 Deterministic Stationary-State Equilibrium

We now turn to solution methods for the model just described. In this
section, a simple deterministic version of the model is obtained by fixing the
seigniorage-mean state m, and setting shocks εd equal to zero for all t. These
assumptions imply that the volatility and the state ςt are inconsequential in
computing the deterministic steady-state and, thus, we have dt = d̄(m) for
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all t. Likewise, inflation expectations are already settled at this steady-state,
so even for adaptive expectations βt = πt+1 for all t. Next, consider the
money-demand function, equation (2), and the money supply, equation (5),
which yield, under these conditions:

Mt

Pt

=
1

γ
λ(πt+1), (10)

Mt

Pt

= θ
Mt−1

Pt−1

1

πt

+ d̄(m). (11)

The above imply the following equation:

πt =
θλ(πt)

λ(πt+1)− γd̄(m)
. (12)

If πt+1 = πt = π(m), then we obtain the following nonlinear equation
with inflation as the unknown variable:

π =
θλ(π)

λ(π)− γd̄(m)
. (13)

This equation might have zero, one, or two solutions. We define a station-
ary state equilibrium (SSE), denoted as π∗, as a zero of equation (13) This
equation does not have a closed-form solution, but its zeros can be readily
calculated numerically. By equation (8), first, we know that a solution must
satisfy π∗ > 1 − 1/λ1, and by equation (9), we can also determine that a
solution exists if

γd̄(m) < λ(π). (14)

These are necessary but not sufficient conditions. A tighter upper bound
for seigniorage can be found numerically: there is a maximum seigniorage
level dmax, such that a deterministic steady-state exists. This will imply
a maximum level of (low) steady-state inflation, denoted by π∗

max. For
seigniorage levels lower than dmax, two solutions will exist, which we denote
π∗
1(m) < π∗

2(m). The first solution is the low-inflation SSE, and the second is
the high-inflation SSE. On the other hand, when d̄(m) = dmax, there will be
only one SSE, denoted as π∗

1(m) = π∗
2(m) = π∗

max. When the mean seignior-
age approaches zero, the solution of equation (13) becomes unique again. In
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Figure 2: Seigniorage means and Deterministic Stationary State
Equilibria. Note: For regimes with a low seigniorage-mean such as d3,
the model has two SSEs, defined as the zeros of the function in equation
(13). When the mean seigniorage increases to d2, the number of SSEs is re-
duced to one, while for values of the mean seigniorage greater than d2, such
as d1, the model will have no SSEs.
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particular, when the mean seigniorage is zero, then the unique solution is
π∗ = θ, which can only be an equilibrium if equation (8) is satisfied–that is,
if 1− 1/λ1 < θ.

When the seigniorage-mean is close to zero but not zero, the second (high)
solution π∗

2(m) to equation (13) can be greater than 1/δ, exceeding inflation’s
upper bound given by equation (9); thus, this solution is not an admissible
SSE, leaving π∗

1(m) as the unique equilibrium. In figure 2, we show that
for a low seigniorage-mean level such as d3, the model has two SSEs. As
the seigniorage-mean increases to d2 = dmax, the two SSEs become close to
each other and eventually become the same. For any seigniorage-mean level
greater than d2, such as d1, the model does not have an SSE.

5 Self-Confirming Equilibrium and Its Related

Dynamics

More realistic equilibria are obtained holding the state m as fixed and allow-
ing the shocks εd to impact seigniorage.

Definition 1. Fixed-m self-confirming equilibrium (SCE). For each m-state,
a fixed-m SCE is a probability distribution over inflation histories πT ≡
{π1, π2, ..., πT}, and β(m), possibly non-unique, such that

E [πt|mt = m ∀t]− β(m) = 0. (15)

A SCE represents a good approximation to steady-state expectations
when the seigniorage regime process is highly persistent and stays in a fixed
mean seigniorage state for a long time. This definition of equilibrium has the
advantage that the dynamical behavior of inflation expectations around the
SCEs can be summarized by means of a Kushner-Yin ordinary differential
equation (ODE): when agents are confident about their last-period’s beliefs,
i.e., when ν is close to zero (ν → 0), and when the seigniorage regime becomes
persistent, the sequence of inflation beliefs {βt} converge in distribution to a
random variable which is the solution to the following ODE:

β̇ = Ĝ(β,m), (16)
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for a broad class of probability distributions of εd(st, d̄(m)), including the
one we considered here. Kushner and Yin (2003) contains further technical
details. A fixed-m SCE is a fixed point of β, that is β̇ = 0, or Ĝ(β(m),m) = 0,
where

Ĝ(β,m) ≡E[g̃(π∗
t , β, dt(mt, ςt, dt−1)))|mt = m ∀t]

=

ςh∑
k=1

[
θλ(β)Ψ[m,k](β, ω̃(β))

]
q̄ς,k

+

ςh∑
k=1

π̄∗
1(k)

[
1− Φ[m,k](β, ω̃(β))

]
q̄ς,k − β. (17)

This particular ODE implies that for each m based on equation (16),
there exists at least one conditional SCE.

Proposition 1. If 1−1/λ1 < θ, there exists at least one conditional fixed-m
SCE for every m.

The proof of this proposition is in online appendix C. In general, the
model can have up to three SCEs. We denote these equilibria as follows:
first, a low-inflation stable SCE denoted by β∗

1(m), which is typically very
close to the low-inflation deterministic SSE π∗

1(m); a high-inflation unstable
SCE denoted by β∗

2(m); and a very high-inflation stable SCE denoted by
β∗
3(m).
We depict the typical situations that can arise depending on the state m

(i.e., the level of the seigniorage-mean) in figures 3a and 3b. These figures
have been constructed with λ0 = 0.30, λ1 = 30, ϑ = 2, δ = 0.01, θ = 0.99,
and γ = 1. The seigniorage levels d1 to d5 are respectively 0.0080, 0.0075,
0.0070, 0.0055, and 0.0053. We see that for the highest seigniorage-mean,
there is only one equilibrium β∗

3(m1), and it is stable, i.e. β̇ > 0 for β <
β∗
3(m1), and β̇ < 0 for β > β∗

3(m1). The level d2 has two equilibria: The first
one, called β∗

2(m2), is unstable if β > β∗
2(m2), and the second one is β∗

3(m2)
and it is stable. For the level d3, the model has three equilibria, β∗

1(m3) and
β∗
3(m3) are stable, but β∗

2(m3) is unstable, i.e. β̇ < 0 for β < β∗
2(m3) and

β̇ > 0 for β > β∗
2(m3). The fourth level d4 has two equilibria: A stable

low equilibrium β∗
1(m4), and a very high equilibrium β∗

3(m4) which becomes
unstable as soon as β < β∗

3(m4).
The fifth state m5 has only a stable low equilibrium β∗

1(m5). It is also
noteworthy that, when the economy is in the three-equilibria situation, (i.e.
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Figure 3a: Seigniorage Means and Conditional Self-Confirming
Equilibria. Note: For intermediate levels of the mean seigniorage, such
as d3, the model has three conditional SCEs: Two of them are visible in this
figure and the third one is visible in figure 3b. d2 and d4 have two equilibria,
whereas d1 and d5 have one equilibrium each. Levels d1 to d4 have an equi-
librium with very high inflationary expectations; they are visible in figure
3b. The lowest mean seigniorage level, d5, only has one SCE, shown here at
a very low level of inflationary expectations.
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Figure 3b: Seigniorage Means and Conditional Self-Confirming
Equilibria. Note: This figure shows that, for mean seigniorage levels on
or above a threshold, here d4, the model has a stable conditional SCE at a
very high inflation level. Counterintuitively, for all mean seigniorage levels
above d4, this high equilibrium increases, not decreases, as the seigniorage-
mean decreases. See the main text for the parameter values employed to
elaborate figures 3a and 3b.
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d4 < d < d2), and if the model switches to a higher mean-seigniorage regime
inside this interval, β∗

1(m) increases, but β∗
2(m) decreases. Accordingly, the

domain of attraction of β∗
1(m) shrinks, whereas the one belonging to β∗

3(m)
expands, increasing the probability of jumping to the domain of attraction
of the latter. Such a jump is defined below as an escape event. Analytically,
we have β∗

2(m
′) > β∗

2(m
′′
), whenever d4 < d(m′) < d(m′′) < d2. A higher

seigniorage-mean regime may not only lead to a greater level of inflation
but to a smaller (bigger) interval in which inflation expectations are in the
domain of attraction of the low- (very high-) level SCE, and thus, a higher
probability of an escape event.

When there is a single equilibrium–that is, when β∗
2(m) does not exist–

inflation expectations are always stable. This is obvious when the unique
equilibrium is β∗

1(m). But even For high seigniorage-mean levels, the stable
level of expected inflation may be β∗

3(m), and it still implies stable hyper-
inflationary equilibrium inflationary expectations.

It is a curious feature of the model that, whenever the economy is in the
domain of attraction of the high inflation equilibrium, a higher mean seignior-
age regime may lead to a decrease, not an increase in equilibrium inflation.
In other words, we will get β∗

3(m
′) > β∗

3(m
′′
), whenever d4 < d(m′) < d(m′′).

This is a result of the interaction of the slow increase in equilibrium inflation
as mean seigniorage increases, and the bound on inflation given by δ. To see
why, let us examine equation (17). The first two terms give the “physical”
expected value of inflation –not the households’ inflation beliefs–, roughly, as
a weighted average of inflation when there isn’t a reset shock, and inflation
when there is a reset shock, with the weights given by the probability mass
of each of these two cases. Now, when the mean seigniorage is higher, the
weight for the first term, the probability mass of inflation below the bound,
will decrease given each value of β, whenever inflation is close enough to the
bound. Further, the weight for the second term, the probability mass of reset
shocks, will increase, as inflation approaches the bound, given each value of
β. As inflation approaches the bound more often when the mean seignior-
age is higher, cosmetic reforms are triggered more often, driving down the
expected value of inflation.

A necessary condition to maximize the chance of the success of a sta-
bilization program is to ensure that the economy finds itself in the domain
of attraction of a low-inflation equilibrium, after the program, and this is
achieved by reducing the seigniorage level from d1 to a level d < d4.

Inflation cannot be lowered by gradually reducing the seigniorage from
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d1 to levels higher than d4, unless the economy experiments a shock that
accidentally takes inflation expectations to the domain of attraction of the
low-level SCE. At the beginning of such a program, inflation will not fall, and
it may even become higher. The necessary reduction in the seigniorage-mean
level has to be done at once, not progressively.

Thus, this model proposes that a fiscal reform drastically cutting seignior-
age finance is a necessary condition to reduce inflation. Further, we find that
a reform must be strong enough if the economy starts its stabilization pro-
gram when it is inside the domain of attraction of a high-inflation equilibrium,
as it often has happened in Latin American monetary history.

As mentioned, SCEs are defined for each m-state and they determine the
stability regions of inflation expectations. While economic agents form their
inflation beliefs following the rule in equation (3), the SCEs represent the
average dynamics of such expectations as ν → 0. They will be close to the
actual dynamics when the seigniorage state m is highly persistent. Following
SWZ, we also define an unconditional SCE.

Definition 2. An unconditional self-confirming equilibrium (SCE) is a prob-
ability distribution over inflation histories βT ≡ {π1, π2, ..., πT} and a β such
that

E[πt]− β = 0. (18)

This equilibrium is found by finding the zero(s) of the following function:

Ĝ(β) ≡E[g̃(π∗
t , β, dt(mt, ςt, dt−1))]

=
h∑

k=1

[
θλ(β)Ψ[k](β, ω̃(β))

]
q̄k

+
h∑

k=1

π̄∗
1(k)

[
1− Φ

(
log(ω̃(β)− log(d̄(k))

σd(k, d̄(k))

)]
q̄k − β,

where q̄k is the ergodic distribution of the joint state k. Note that Ĝ(β) is
an expectation over m of Ĝ(β,m). Thus, using arguments similar to those
in Proposition 1, it can be shown that there exist up to three unconditional
SCEs and at least one unconditional SCE.
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6 Escapes and Reforms

In this section we introduce some additional definitions that will be helpful
to tie model dynamics with monetary and fiscal policy discussions. They
will be helpful first, to describe when an economy switches into a hyper-
inflationary regime, and second, to classify monetary and fiscal reforms in
such a way that we can diagnose why they were successful or unsuccessful.
We will proceed using the definition of SCE that fixes m, i.e., with a fixed
seigniorage-mean level. This will usually be the most useful case for practical
purposes because we want to evaluate the most likely path of the economy
given a policy stance.

Definition 3. A fundamental reform takes place when there is a switch from
a high mean-seigniorage state m to a lower one.

While a regime change towards a lower mean-seigniorage state is a neces-
sary condition to stabilize high inflation, it is not a sufficient condition, since
it might be required additionally to switch to a regime with a low enough d̄
such that inflation expectations find themselves into the domain of attraction
of a low inflation equilibrium, as explained in the previous section.

Definition 4. A cosmetic reform occurs when there is a large negative shock
in inflation, but the current state m remains the same. Such a shock is
constructed by setting inflation to the inflation’s low deterministic SSE value
π∗
1(mt) plus some noise:

π∗
t = π∗

1(mt) + επ, (19)

where επ has the probability density:

pπ(επ|m̃t) =
exp{− log[π∗

1(mt) + επ]− log π∗
1(mt)]

2/2σ2
π}√

2πσπ[π∗
1(mt) + επ]Φ[(− log δ − log[π∗

1(mt)])/σπ

, (20)

if −π∗
1(mt) < επ < 1/δ − π∗

1(mt), and pπ(επ|m̃t) = 0 otherwise1.

This definition captures those unsuccessful reforms that lowered infla-
tion temporarily, but without affecting inflationary expectations, and conse-
quently, high inflation resumed shortly thereafter.

Since the model has up to two stable equilibria, it is an important event
when the economy switches from the domain of attraction of the low to that
of the high SCE. Based on this observation, we define an escape as follows:

1Note that π∗
t = π∗

1(mt) + επ > 0 if and only if επ > −π∗
1(mt). Moreover, if επ <

1/δ − π∗
1(mt), then π∗

t = επ + π∗
1(mt) < δ−1.

18



Definition 5. An escape takes place when inflation beliefs fall outside the
domain of attraction of the low and stable SCE, β∗

1(m), and inside the domain
of attraction of β∗

3(m), the high SCE. This is highly likely if βt > β∗
2(m)

whenever β∗
2(m) exists.

If there is just one SCE, being either β∗
1(m) or β∗

3(m), there are no es-
capes, but we can still compute escape probabilities depending on the relevant
domain of attraction, according to Definition 5; thus, we can define escape
probabilities by taking these situations as special cases, as we will do below.
For the general case, with more than one SCE, online appendix D obtains
the following escape probabilities:

Pr{ωt(m0,ς0) < εd(s0, π
t−1, ϕ) < ωt(mt, ς)|s0, πt−1, ϕ}

=
h∑

s0=1

Pr(st = s0|πt−1, ϕ)
[
Fd(ωt(m0, ς0)|s0, d0)

− Fd(ωt(m0, ς0)|s0, d0)
]
. (21)

7 Data Sources

Inflation data was obtained by calculating the percentage changes in the
seasonally adjusted monthly consumer price index series from the National
Statistics Institute (Instituto Nacional de Estad́ıstica y Geograf́ıa, INEGI).
Our dataset comprises the period starting in February 1969 and ending in
July 2019 (figures 7 and 8). This was the only series used for model estima-
tion.

For contrasting purposes we also obtained monthly and quarterly data
for the money supply, figures 9 and 10, fiscal deficits, external and internal
debt, figure 11, and gross domestic product. The sources are the Interna-
tional Financial Statistics from the International Monetary Fund (IFS-IMF),
the Bank of Mexico and INEGI, again. All are seasonally unadjusted and
monthly data series, with exception of the GDP data which is quarterly. To
obtain monthly GDP data we interpolated the series. We used the GDP
data to re-scale the fiscal deficit and the public sector debt monthly data.
Since neither debt nor the deficit are corrected for seasonality, sometimes it
is convenient to calculate a trailing 12-month sum, resulting in a monthly
series for fiscal deficit as a percent of GDP starting in March 1980 (figure
11).
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Money supply data is available from the IFS-IMF starting in 1957, and
also from the Bank of Mexico, but only the most basic aggregates e.g. the
monetary base, are reliable. The other aggregates M1, M2, M3 and M4,
have been computed using inconsistent methodologies over time, and do not
seem reliable, overall, with exception of the data from the last two decades.
Therefore we use mainly M0 data, but also review M1 and M2 data from the
Bank of Mexico in figure 10. These are series that have not been corrected for
seasonality and we either smooth them out with a 12-month moving average
or directly adjust the monthly changes using the seasonally adjusted annual
rate method. The Bank of Mexico makes available data using two methodolo-
gies to calculate monetary aggregates: the 1999 and the 2018 methodology,
respectively. Their data series spanning December 1985 to December 2017
uses the first methodology and another one starting in December 2000 uses
to second methodology.

To help bring some context to our discussion of Mexican stabilization
programs we also obtained monthly data for interest rates, figure 12, and ex-
change rates, figure 13, from the Bank of Mexico and the IFS-IMF. Exchange
rates are available for our whole period of the study. Mexican T-bill rates are
the average annualized rate in the primary market of the 28-day Certificados
de Tesoreŕıa de la Federación (CETES), available starting in January 1978.
Finally, the Bank of Mexico policy rate series starts in December 2001.

8 Model Estimation

The model has three key variables: inflation, inflation expectations, and
seigniorage. Inflation is the only input variable used to estimate the model.
The mean and variance regime states are unobservable to the econometrician,
but we can estimate the probability of being in a certain regime state in a
given period t. We interpret the state with the highest probability in a given
period as indicative of the regime state prevalent in the economy in that
period.

In comparison with SWZ’s model, whose likelihood is given in closed
form, estimating our model involves evaluating a likelihood in implicit form.
Since the likelihood evaluation is now more susceptible to numerical errors,
the optimization is much more difficult, and the likelihood evaluation code
must be written carefully. Furthermore, our Kushner-Yin ODE must be
evaluated with a Monte Carlo simulation method, while SWZ’s Kushner-
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Yin ODE is available in closed form. We also compare our model-predicted
seigniorage and money supply with those implied by SWZ’s model. The
model in Sargent, Williams and Zha (2009) has been estimated preliminar-
ily in Ramos-Francia, Garćıa-Verdú and Sánchez-Mart́ınez (2018)2, but the
results in this paper use different estimates, resulting from a more accurate
likelihood optimization algorithm and using an explicit model selection step.

We estimate the parameters ν, λ0, λ1, σπ and ϑ from the data, along with
the regime transition probabilities and the seigniorage mean and volatility in
each state. The parameters γ, δ, and θ are set by calibration. The parameter
γ is invariant to a re-normalization of d̄(mt) and σ2

d(ςt) by some constant.It
determines a standardization of the price level and the nominal money stocks.
Without loss of generality, we set γ = 1 and δ = 0.01. We assume that
θ = 0.99. Finally, we set β0 = π1. These values are in line with those used
in SWZ.

One key aspect of the model is the number of seigniorage and volatility
regime states which are quantities that are fixed before the estimation. To
determine them, we use the Schwarz Criterion, a.k.a. Bayesian Information
Criterion (BIC), defined as BIC= L(ϕ̂)− log(T )k/2, where L(ϕ̂) is the max-
imized log-likelihood, T is the number of observations, and k is the number
of estimated parameters. The results are reported in table 1. We found that
the best model, according to the BIC, has six regimes for m and two for ς.

In the case of the 6×2 model, we impose the following restrictions on the
transition matrices, following Sims, Waggoner, and Zha (2008) and SWZ:

Qm =



p11 1− p11 0 0 0 0
1−p22

2
p22

1−p22
2

0 0 0
0 1−p33

2
p33

1−p33
2

0 0
0 0 1−p44

2
p44

1−p44
2

0
0 0 0 1−p33

2
p55

1−p55
2

0 0 0 0 1− p66 p66

 ,

Qς =

(
q11 1− q11

1− q22 q22

)
.

We estimate the model by maximizing the likelihood

max
ϕ

p(πT |ϕ),

2I thank CEMLA for providing access to this paper’s code.
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BIC= L(ϕ̂)− log(T )k/2
nm = 6 nς = 2 2498.42
nm = 6 nς = 1 2439.85
nm = 6 nς = 3 2449.32
nm = 5 nς = 2 2494.97
nm = 7 nς = 2 2497.80

Table 1: Model Selection. We used the BIC to choose the optimal number
of states. L(ϕ̂) is the maximized log-likelihood, T is the number of observa-
tions, k is the number of estimated parameters, nm is the number of states
for the mean seigniorage, and nς is the number of states for the seigniorage
volatility. On the top row, we display the optimal number of states. Then,
we show the BIC calculated for small changes in the number of states. We
calculated the BIC for several other combinations of the number of states,
always obtaining lower values.

where p(πT |ϕ) is the inflation’s likelihood function implied by the model.
Online appendix F contains its derivation. Specifically, the parameter vector
is ϕ = (ν, λ, ϑ, d̄{i}), σ{j}, p{i,i}, q{j,j}, σπ), where i = 1, ..., 6 and j = 1, 2.

To estimate the model’s parameters, we used the maximum likelihood
method and verified that the likelihood function is concave in the vicinity of
the estimated parameters. Furthermore, the estimation algorithm is repeated
many times with different initial parameter values and it never finds any
sign of existence of a different set of parameters that could improve the
likelihood value. We conclude that there is enough evidence to assert that
the estimation exercise was successful and that the reported set of estimated
parameters is indeed the solution of the maximum likelihood problem.

However, online appendix E sets necessary conditions for existence of a
solution for this estimation exercise: instead of attempting to find an estima-
tor with the best statistical properties, we examine there what information
and what features of the model are important to identify the parameters.
The usefulness of this exercise lies in terms of illustrating the limitations of
the model to match the data and the feasibility of potential model extensions
and new estimation methods.

Estimated parameter standard errors are obtained with the Hessian ma-
trix of the likelihood function and the delta method. Table 2 presents our
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Parameter Estimate Standard Errors
ν 0.014 0.001
λ0 0.178 0.105
λ1 29.27 2.071
ϑ 0.702 0.288
d̄1 0.0062 0.003
d̄2 0.0044 0.004
d̄3 0.0035 0.002
d̄4 0.0028 0.002
d̄5 0.0023 0.001
d̄6 0.0021 0.001
σ1 1.904 1.680
σ2 0.666 0.580
p1,1 0.87 0.065
p2,2 0.90 0.062
p3,3 0.84 0.056
p4,4 0.87 0.044
p5,5 0.88 0.045
p6,6 0.97 0.019
q1,1 0.71 0.070
q2,2 0.90 0.029
σπ 0.03 3.812

Table 2: Parameter Estimates. Note: The maximized log-likelihood is
2565.688. The estimation sample comprises February 1969 to July 2019.
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estimates ϕ̂ and their corresponding standard errors. We obtain a small ν
implying that agents assign more weight to their previous inflation beliefs
than to their past errors to form their inflation expectations.

The transition probability estimates (pi,i) show that seigniorage-mean
regimes are quite persistent, and for volatility regimes both states are persis-
tent as well (i.e., estimates of pi,i and qj,j are close to one). Nonetheless, the
high variance regime state (σ1) is not as persistent as the low variance one,
as q2,2 > q1,1. A small ν and persistent mean seigniorage regimes confirm
that SCEs are a good approximation to the true stochastic equilibrium.

Deficit-Mean Regime (Unconditional Probabilities)
m = 1 0.15
m = 2 0.10
m = 3 0.13
m = 4 0.15
m = 5 0.17
m = 6 0.29

Deficit-Variance Regime (Unconditional Probabilities)
High (ς = 1) 0.25
Low (ς = 2) 0.75

Table 3: Stationary Markov Regimes Probability Estimates. Note:
By independence between the mean and variance regime states, the joint
states’ stationary probabilities are just the product of the seigniorage-mean
and variance marginal probabilities. Probabilities may not sum to 1 due to
rounding.

Table 3 presents the stationary probabilities for all regime states. Roughly,
they capture the fraction of time the economy spends in each regime dur-
ing the sample period. The unconditional probability of the low-variance
regime is relatively high. This is because the economy seems to switch to
the high-variance regime only occasionally, when there is a shock too high
to be explained either by the seigniorage-mean state alone or by the low
regime seigniorage volatility. As the seigniorage and the volatility states are
assumed to be independent, the joint states’ unconditional probabilities are
just the product of the probabilities of the mean and volatility states.

We estimate the probabilities of the seigniorage-mean states conditioning

24



0

0.5

1

P
(m

=
1

)

0

0.5

1

P
(m

=
2)

0

0.5

1

P
(m

=
3)

0

0.5

1

P
(m

=
4)

0

0.5

1

P
(m

=
5)

1970 1980 1990 2000 2010 2020

0

0.5

1

P
(m

=
6)

Figure 4: Probabilities of being in each seigniorage-mean regime,
conditional on the information in period t-1 . Note: mt = 1 denotes
the highest seigniorage-mean state, and mt = 6 the lowest seigniorage-mean
state, respectively. As the seigniorage-mean state is not observable, this
figure depicts the estimated probabilities of being in each state at each period.
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Deterministic Equilibria (SSE)
π∗
1(1), π

∗
2(1) π∗

max, n.a.
π∗
1(2), π

∗
2(2) 1.0803, 1.2550

π∗
1(3), π

∗
2(3) 1.0258, 1.6558

π∗
1(4), π

∗
2(4) 1.0108, 2.1405

π∗
1(5), π

∗
2(5) 1.0049, 2.5914

π∗
1(6), π

∗
2(6) 1.0029, 2.8380

π∗
max 1.1447

Unconditional SCE K-Y ODE
π∗
1, π

∗
2, π

∗
3 1.0214, n.a., n.a.

Conditional fixed-m, SCE K-Y ODE Monte Carlo
π∗
1(1), π

∗
2(1), π

∗
3(1) n.a., n.a., 1.4236 n.a., n.a., 2.3248

π∗
1(2), π

∗
2(2), π

∗
3(2) 1.0962, 1.2055, 1.5899 1.0921, 1.2190, 2.7824

π∗
1(3), π

∗
2(3), π

∗
3(3) 1.0271, n.a., n.a. 1.0266, n.a., n.a.

π∗
1(4), π

∗
2(4), π

∗
3(4) 1.0112, n.a., n.a. 1.0112, n.a., n.a.

π∗
1(5), π

∗
2(5), π

∗
3(5) 1.0052, n.a., n.a. 1.0050, n.a., n.a.

π∗
1(6), π

∗
2(6), π

∗
3(6) 1.0031, n.a., n.a. 1.0030, n.a., n.a.

Table 4: Deterministic and Self-Confirming Equilibria. Note: SSE’s
are computed by solving numerically an implicit nonlinear equation. The
value π∗

max is imputed when a low SSE does not exist. K-Y ODE SCEs are
the zeros of the respective Kushner-Yin (K-Y) ordinary differential equations.
Monte Carlo SCE’s are obtained by simulating the monetary market with
the estimated parameters. Non-existent equilibria are denoted as “n.a.”.
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Figure 5: Conditional fixed-m SCEs. Note: Each conditional SCE
is determined when the function G(β,m) crosses the value of 0 for each
seigniorage-mean state m. Because the equation is in continuous time, SCEs
are determined when expectations do not change–i.e. β̇ = 0, or dβ/dt = 0.
The highest and lowest seigniorage-mean regimes are m = 1, and m = 6,
respectively. For the estimated model, each state has only one conditional
SCE, except state m = 2, which has three conditional SCEs.
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on inflation history up to period t− 1 and report the results in figure 4.
We now present the equilibrium dynamics implied by the estimated pa-

rameter values. First, we implement the Kushner and Yin ODE method, by
computing the function Ĝ(β,m) with Monte Carlo integration and then ob-
tained the SCEs by locating the zeros of that function. In our model, we have
up to three SCEs, and the first two have similar properties to those in SWZ.
In addition, we sometimes obtain a stable SCE with very high inflation. As
explained above, we define an escape event as the probability of falling into
the domain of attraction of the SCE with very high inflation. We present
our estimations of deterministic and self-confirming equilibria in table 4 and
figure 5 for the six m-states.

All m-states have at least one fixed-m SCE, as predicted by Proposition
1, and in the case of the second-largest mean seigniorage level, there are
three equilibria. Note that, for the high seigniorage state, the stable equi-
librium is the very high-inflation SCE and implies annualized rates of more
than 6, 000% (Table 4 and figure 5). Thus, unless a reform takes place, in-
flation expectations will significantly and unceasingly amplify until the SCE
is reached. It is also surprising that a conditional SCE exists even when its
corresponding deterministic steady-state equilibrium does not. The reason is
that the definition of SSE effectively caps steady-state equilibria at the level
π∗
max, thereby ruling out “high inflation” steady-states.
We also report fixed-m SCE’s obtained with Monte Carlo simulation in

table 4. Since their algorithm is designed for dynamical systems with small
step sizes, the Kushner-Yin ODE approach may give estimates of SCEs that
depart significantly from their true values as inflation and inflationary ex-
pectations become sizable and more volatile. Under these circumstances, the
Monte Carlo method becomes useful. According to Santos and Peralta-Alva
(2005) the law of large numbers implies that the unconditional moments of
stable dynamical systems can be computed via Monte Carlo simulation with
an error that can be made arbitrarily small by increasing the simulation sam-
ple size, even in a situation when there are multiple equilibria, like ours. We
used a sample size of 10, 000 plus 1, 000 initial burn-in simulations to allow
for convergence to the stable equilibrium regardless of βt’s initial value. The
unstable equilibrium was computed by replicating the simulations 500 times
and finding the initial value β0 where the system became more likely to con-
verge to a different stable equilibrium. We can see that the Kushner-Yin
approximations work quite well for equilibria with small inflation levels, but
the numerical error is quite large for high inflation equilibria.
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We conclude that the Kushner-Yin approach is very useful to characterize
the dynamical properties of the model, but long-run high inflation equilib-
rium estimates should be verified using another approach. In what follows,
we use the Monte Carlo results as the “true” SCE estimates, while we resort
to the Kushner-Yin ODE to explain the model dynamics around those SCEs,
particularly when there is a regime change.

9 Fitting The Fiscal Deficit And The Money

Supply

Here we examine closely the ex-post fit between model-implied seigniorage
and Mexican fiscal deficit and between model-implied money supply growth
and Mexican monetary base growth. To assess quantitatively the first rela-
tionship we attempt to reconstruct the financing of past deficits, allowing for
a scaling correction, unobserved variables and observational errors, estimat-
ing the linear regression equations

fiscal deficitt = α0 + α1∆external debtt + α2∆internal debtt

+ γSWZ−1
dSWZ
t + errort (22)

fiscal deficitt = α′
0 + α′

1∆external debtt + α′
2∆internal debtt

+ γ−1dt + error′t (23)

where ∆external debtt is external debt in t minus external debt in t − 1 as
a portion of GDP, ∆internal debtt is the same for internal debt, dSWZ

t and
dt are, respectively, model-implied seigniorage from SWZ’s model3 and ours,
between March 1980 and July 2019. The terms α0 and errort capture omit-
ted variables and measurement errors. The 12-month cumulative actual fiscal
deficits and debt changes as well as model-implied seigniorage are depicted
in figure 15. To perform the statistical tests we use non-smoothed monthly
increments for the deficit, debt and seigniorage; since both smoothing and ag-
gregation discard possibly relevant variation along with the seasonal effects,
their use can cause a loss of statistical power.

The second relationship is assessed by simply measuring how well model-
implied money supply reconstructs the actual monetary base, estimating the

3Our estimation of SWZ’s model with Mexican inflation yielded an optimal number of
seigniorage-mean and volatility states of 5 and 3, respectively.
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linear regression equations

∆M0t = α′′
0 + γ′SWZ∆MSWZ

t + error′′t (24)

∆M0t = α′′′
0 + γ′∆Mt + error′′′t (25)

where ∆M0t is M0t/M0t−1, ∆MSWZ
t and ∆Mt are, respectively, model-

implied money supply changes from SWZ’s model and ours, between Febru-
ary 1969 and July 2019, obtained from equation (5)

Mt

Mt−1

= θ + dtπt
1

Mt−1/Pt−1

. (26)

and substituting model-implied money demand from equation (2) into the
last term. Actual and model-implied money supply growth are shown in
figures 9 and 14. To compute the tests we use the non-smoothed, seasonally
adjusted base money of figure 9.

Monetary base vs. model-implied money supply
Model Contribution J-test d.f. p-value
S-L model 2.0330 603 0.02
SWZ model 1.1381 603 0.13
Public sector deficit vs. model-implied seigniorage
Model Contribution J-test d.f. p-value
S-L model 4.2811 468 1.13× 10−5

SWZ model 1.3241 468 0.09

Table 5: Selden-Latané and SWZ Model Comparison. Note: The J-
tests imply that the S-L model significantly improves upon SWZ’s model
predictions, but when the S-L model is adopted, SWZ’s model fail to
improve significantly the existing results. Parameter standard errors are
heteroskedasticy-consistent as in MacKinnon and White (1985).

Choosing between (22) and (23) and between (24) and (25) involves test-
ing (twice) two non-nested hypothesis, which we accomplish by means of the
J-test of Davidson and MacKinnon (1981). The results are in table 5: the
J-tests for the null that our model equations (23) and (25) are not signifi-
cantly better than SWZ’s (22) and (24) give very small p-values implying a
rejection of both null hypotheses. On the other hand, the J-tests for the null
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hypothesis that SWZ’s equations (22) and (24) are not significantly better
than ours (23) and (25) fail to reject the null at the 95 percent confidence
level. In conclusion, the J-tests detect a significantly statistical improvement
of our model with respect to the SWZ model.

10 Regime Switching, Fiscal and Monetary

Policy in Mexico: 1969-2019

In this section, we analyze the case of Mexico with a model that uses a Selden-
Latané money-demand function. There are three key themes that underlie
our examination of the historical events in Mexican monetary and fiscal policy
during the last five decades. First, the confirmation of escape probabilities
as a predictor of fundamental reforms. Second, that our choice of money-
demand specification yields a model with different equilibrium dynamics,
in the sense that our model always has an equilibrium, even under hyper-
inflation, regardless of the prevailing seigniorage-mean regime. Third, that a
model’s predicted relationship between fiscal deficits and seigniorage depend
on the money-demand functional form. We introduce the reader to these
themes before a more detailed analysis.

Regarding the first theme, SWZ show in their study of five South Amer-
ican countries: Argentina, Bolivia, Brazil, Chile, and Perú, that monetary
and fiscal authorities usually implemented fundamental reforms only when
their economies have either fallen, or confront a high probability of falling,
into the domain of attraction of unstable inflation expectations.

Our model cannot display “explosive” behavior and our analysis cannot
be directly compared with SWZ’s. However, in the case of Mexico, the mean
seigniorage states with stable “high” inflation equilibria imply, respectively,
equilibrium monthly inflation of 132.48 and 178.24 percent, implying in both
cases equilibrium inflation at hyper-inflationary levels.

Our findings are consistent with SWZ in the sense that serious reforms
were only introduced in Mexico when our model escape probabilities ap-
proached one, in other words, when the economy found itself in the domain
of attraction of a nearly hyper-inflationary “high” inflation equilibrium. In
particular, Mexico in the eighties reached a mean-seigniorage regime m = 1
which has only one equilibrium at 132.48 percent monthly inflation. Thus,
during this time, Mexican inflationary expectations rose continuously at-
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tempting to achieve this equilibrium level. On the other hand, the regime
m = 2 could not have brought about the needed reforms, because it has three
equilibria, with the domain of attraction of “high” inflation located above the
21.90 percent monthly inflation level. Inflationary expectations at such high
levels were not reached during the study period. Thus, even in this regime,
Mexico was still in the domain of attraction of a “low” inflation equilibrium.
All other seigniorage-mean regimes observed in Mexico have only one stable,
“low” inflation equilibrium.

Our escape probability, defined as the probability of falling into the do-
main of attraction of the “high” inflation equilibrium, reached levels close to
one first during 1982 and 1983 and then, more intensely, between 1986 and
1988, see figure 8. In both cases, fundamental reforms were implemented but
only the second one was successful. That serious reforms came only after
the economy fell into the domain of attraction of nearly hyper-inflationary
equilibrium inflation levels, is a remarkable confirmation of SWZ’s findings,
notwithstanding employing here different data and a different model with
different dynamics.

The third theme is that our model generates a closer relationship between
fiscal deficits, money supply, seigniorage, and inflation, than alternative mod-
els, as established in the previous section. To obtain this result, it has been
useful to use a money-demand function free of Cagan’s paradox. This close
association is important because, when a country finds itself in a fiscal dom-
inance regime, seigniorage should closely follow fiscal deficits, because there
could not be any association between inflation and fiscal deficits, unless it
occurs through seigniorage. The stronger the relation between fiscal deficits
and seigniorage, the stronger is the case for fiscal dominance as the explana-
tion of a country’s inflation.

It is important to note at this point that Mexico has been in a fiscal dom-
inance regime only up to 1995. In figure 15, the model shows a clear associa-
tion between the government fiscal deficit and the model-implied seigniorage-
financed deficit during the first stage, thus, during this stage unconstrained
fiscal largesse inevitably resulted in more inflation. After that year, as ex-
pected by an independent central bank, mean seigniorage has stayed at its
minimum levels: the central bank no longer needed to raise seigniorage to
finance government expenses. Because the predominant mean seigniorage
states have been the lowest after 1995 in our model, it is capturing well the
independence of the central bank with respect to the fiscal authority.

As explained in the last section, the simulated seigniorage-financed deficit
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produced by the SWZ model does not have such a clear association with
Mexican fiscal deficit as our model-implied seigniorage (figure 15). This
result is driven by our choice of Selden-Latané’s money-demand function, and
not by the number of states or by our volatility function. Since the choice
of money-demand function is instrumental to obtain a better fit between
seigniorage and fiscal deficits, it is also essential to establish an even stronger
case for fiscal dominance as the main determinant of Mexican inflation during
the seventies and eighties..

In what follows, we relate in detail past historical episodes in Mexican
fiscal policy with the model’s regime changes in seigniorage and equilibrium
behavior. We use the behavior of the highest probability regimes (figure
6) to organize our exposition into seven periods: a first period with low
inflation, then three periods depicting the rise to the highest seigniorage-
mean regime, then two periods containing the two successful stabilization
reforms, the latter characterized by the presence of reforms preventing fiscal
dominance, and a stable last period.

1970–1976 Luis Echeverŕıa Álvarez
1976–1982 José López Portillo
1982–1988 Miguel de la Madrid Hurtado
1988–1994 Carlos Salinas de Gortari
1994–2000 Ernesto Zedillo Ponce de León
2000–2006 Vicente Fox Quezada
2006–2012 Felipe Calderón Hinojosa
2012-2018 Enrique Peña Nieto
2018-2024 Andrés Manuel López Obrador

Table 6: Presidents of Mexico.

We simplify some of our statements by assigning certainty to probabilistic
situations. For example, sometimes we assert that the economy switches to a
low seigniorage-mean state, meaning that the probability of being in such a
state is higher now than of being in any other states. Second, model-implied
seigniorage refers to the seigniorage-financed portion of the deficit and it
should not be confused with actual fiscal deficits.
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Figure 6: Highest-Probability Deficit-Mean Regimes, Conditional
on the Information up to the Previous Period, and Inflation. Note:
We show the most likely seigniorage-mean state, conditional on the informa-
tion in period t − 1. Monthly inflation is depicted on the right-hand scale.
Some significant events: (1) Jan. 1972: Echeverŕıa decides to increase public
spending in 1972. (2) Sep. 1976: Echeverŕıa’s Peso devaluation. (3) Aug.
1982: López-Portillo’s debt moratorium and IMF-BIS bailout, followed by
De la Madrid’s first stabilization program in Dec. 1982. (4) Dec. 1987: De
la Madrid’s second stabilization program. (5) Dec. 1988: Salinas’s Stability
and Economic Growth Pact. (6) Jan. 1995: The Tequila crisis started in
Dec. 1994 and peaked in Jan. 1995; it ended with a U.S. bailout in Apr.
1995.

34



10.1 Price Stability: March 1969 to December 1972

Before 1970, inflation stayed low. The government maintained a mostly
balanced budget while the monetary base growth was kept under check.
Increases in government expenses depended on the expansion of public rev-
enues, while recurring sometimes to commercial banks’ reserves as a source of
financing. Accordingly, the model-predicted most probable mean-seigniorage
regime was a low one, and inflation expectations remained close to the pre-
dicted SCE level.

10.2 The beginning of inflationary financing: January
1973 to December 1973

This state of affairs changed during Echeverŕıa’s administration. Money-
supply expansion due to seigniorage-financed expenses became more common
since 1972. In figure 6, we can see that during this administration, the
seigniorage-mean level progressively increased starting from year 1973 from
the lowest state m = 6, to state m = 3, albeit with occasional and temporary
intermediate switches to state m = 4. There was also a brief spike to the
highest seigniorage-mean regime (figure 6).

During this time, inflation expectations were clearly lower than their equi-
librium SCE levels and started a continuous increase (figure 7). Additionally,
bank reserves progressively declined and for this reason, their use as a source
of public financing also decreased.

10.3 Sustained fiscal expansion: January 1974 to March
1982

Consistent with developments in fiscal policy, starting in 1974, the Mexican
economy settled in the area of seigniorage-mean regimes m = 3 and m = 4.
In 1976, the government devalued the peso, ending the fixed exchange-rate
regime in place for more than 20 years, as a consequence of the balance-of-
payments crisis of that year.

Early on, López-Portillo’s administration implemented a stabilization
program backed by the IMF. It was considered a success initially, but it
didn’t last long because public expenditures started to expand again, this
time financed through external debt. The wealth effect produced by the dis-
covery of a super-giant oil field, along with the improved credit-worthiness
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arising from the recent stabilization reform, enabled the government to ob-
tain financing from commercial banks, neglecting the available credit line
from the IMF (IMF, 2001).

Mexican external debt grew substantially, together with fiscal and cur-
rent account deficits. Indebtedness moderated temporarily the demands for
seigniorage financing. Nevertheless, inflation expectations increased contin-
uously.

10.4 The road to out-of-control inflation: April 1982
to March 1988

In April 1982, the Mexican economy reached the highest seigniorage-mean
regime m = 1 (figure 6). The spike to the highest seigniorage-mean level
was accompanied by a spike in the escape probability. In 1982, higher global
interest rates and falling oil prices, along with a deteriorating balance of
payments accompanied by capital outflows, resulted in increasing inflation
and the depreciation of the peso. External debt due payments increased.
while losing access to new financing. In this scenario, the government entered
a debt moratorium in August. All these problems were compounded by the
nationalization of commercial banks by López-Portillo.

De la Madrid’s presidential term began with a stabilization plan that
included a substantial fiscal retrenchment. This program induced a switch
to a lower seigniorage-mean regime (m = 2) in 1983 that lasted until 1986
(figure 6), when inflation began escalating again. The temporary switch to
a lower seigniorage-mean state did not prevent inflation expectations from
continuing to increase, precisely because the SCE of the mean seigniorage
regime m = 2 was still above current expectations.

According to our model predictions, equilibrium inflation expectations as
estimated by the SCE were close to 10% monthly even after switching to a
lower mean-seigniorage regime, and this is why expectations kept increasing,
although there was a temporary decline in inflation following the stabilization
program. A stronger fiscal retrenchment than implemented was required to
stabilize inflation. In the end, fiscal accounts could not be balanced, in
part, due to two unexpected shocks: the catastrophic 1985 Mexico City
earthquake, and the 1986 oil price collapse affecting the terms of trade and
the fiscal accounts. Toward the end of the De la Madrid administration,
the economy returned to the highest mean seigniorage state due to fiscal
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Figure 7: Monthly Inflation, Inflation Expectations, and Conditional
SCEs. Note: Monthly inflation is the percentage change of the seasonally
adjusted monthly CPI. Expectations are defined in equation (4) and shown
here using the parameters in table 2. Conditional SCEs are as in definition
1. Their computed values are in table 4 and depicted here by horizontal
colored lines. The lowest and highest mean-seigniorage regimes are m = 6
andm = 1, respectively. There are some conditional SCEs outside this figure.
The relevant SCE for most of the 1970s was the corresponding to m = 4 (see
figure 6) and expectations increased toward this level. After the first De la
Madrid’s reform in 1982, inflation expectations kept increasing because they
were below the equilibrium SCE: the one corresponding to m = 2. However,
after his second reform in 1987, expectations started to fall toward the SCE
corresponding to m = 4 almost immediately after switching to this regime.
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Figure 8: Escape Probabilities and Inflation Expectations. Note:
This figure overlays monthly inflation and inflation expectations on escape
probabilities–i.e., the probability of falling within the domain of attraction
of the equilibrium with very high inflation during the next month. The two
biggest spikes in escape probabilities occurred during De la Madrid’s admin-
istration, in August 1982 and in December 1987. Both were followed by
fundamental reforms. In the first case we can see a switching, in figure 6,
from m = 1 to m = 2, while the second reformed involved a switching from
m = 1 to m = 4 and then to m = 5.
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Figure 9: Monetary Base (M0). Note: We show here the month-to-
month growth of the 12-month moving average of the monetary base, along
with a seasonally-adjusted month-to-month growth series. The adjustment
was calculated with the seasonally adjusted annual rate method modified to
keep yearly growth unchanged. Nonetheless, after this procedure, the last
five years in our data still show some seasonality.
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Figure 10: Monetary Aggregates: M0, M1 and M2. Note: Shown here
are M0, M1 and M2’s month-to month growth of their 12-month moving
average. M0 is the more reliable aggregate and it is available for our entire
period of study. Data for M1 and M2 are available starting from 1986 but
do not seem to be reliable before 1995. Here we show the aggregates M1 and
M2 calculated with the Bank of Mexico’s 1999 methodology until the year
2004; afterwards, we use the data computed with the 1998 methodology. The
initial observations seem to not change too much initially, resulting in very
low growth rates which is at odds with the monetary base growth and with
inflation rates. Moreover, M1 shows a noticeable peak in the early nineties
which does not correspond to any event or to changes in the other monetary
aggregates.
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Figure 11: Monetary Base Growth, Fiscal Deficits, And Public Sec-
tor Debt Changes. Note: This figure shows monthly data for the 12-month
cumulative public sector deficit as a fraction of GDP along with year-to-date
changes in the monetary base and year-to date changes in the stock of the
public sector debt, internal and external. The monetary base growth follows
closely the two spikes in the deficit during the eighties and roughly tracks the
deficit’s inverted-u trend during the nineties and two-thousands. During the
two-thousand tens the monetary base growth and the deficit show some co-
movement again although neither the monetary base growth nor the deficit
levels show an increasing trend.
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Figure 12: Policy Rate and 28-day CETES rate. Note: The policy rate
follows closely the 28-day CETES rate.
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Figure 13: USD-MXN Exchange Rate. Note: Mexico has changed ex-
change rate regimes several times since 1976. Until August 31, 1976 the
exchange rate was fixed at 0.0125 pesos per one dollar, or 12.50 old pesos
per dollar. The new peso, introduced on January 1, 1993 is equivalent to
1000 old pesos. From September 1, 1976 until August 5, 1982 the exchange
rate regime was managed floating. Starting on August 6, 1982 and until
November 10, 1991, there were multiple official exchange rates; initially, un-
til December 19, 1982, all of them were fixed. This time series includes the
”general” and later the ”ordinary” exchange rate. Afterwards, a ”free” mar-
ket exchange rate was available and reported here, although apparently it
was not always updated every day. Since November 11, 1991 there is only
one exchange rate. Until December 21, 1994, the exchange rate regime was
floating within sliding bands and free floating after that.

43



1970 1980 1990 2000 2010 2020

0

2

4

6

8

10

12

14

M
0 

M
o

n
th

ly
 G

ro
w

th
 (

p
er

ce
n

t)

M0 MA(12) Growth

S-L Model

SWZ

Figure 14: Actual and Model-Implied Monetary Base Growth. Note:
Model-implied money supply growth is compared with M0’s. Both the
Selden-Latané and SWZ’s model-implied money supply monthly changes
follow the general trend shown by M0, although the S-L model results in
a slightly more volatile series which is closer to the real series, see also Fig-
ure 9. It is noteworthy that the highest peak in S-L model’s money supply
matches better the highest peak in M0’s growth shown in Figure 9 and it
implies a tighter monetary policy after the 1989 policy reform, a behavior
also confirmed by the actual M0.
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Figure 15: Public Sector Deficit and Model-Implied Seigniorage.
Note: Monthly data is depicted here for the 12-month cumulative Mexi-
can deficit and for model-implied seigniorage. During the Mexican fiscal
dominance period, there is a closer association between the Selden-Latané
money-demand model-implied seigniorage (S-L Model) and the Mexican pub-
lic sector deficit since the former implies that the government can raise more
seigniorage from households for similar money supply increases. After the
enactment of fiscal dominance prevention reforms in 1995, seigniorage is no
longer a source of deficit financing and indeed the series do not show co-
movements between seigniorage and the deficit.
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pressures caused by external debt payments that were amplified by two large
devaluations, first in 1986 and then in 1987 (figure 6).

Thus, the key problem was the ever-increasing external debt liabilities
which lent minimal credibility to any fiscal or monetary policy commitment
because the government budget was unsustainable. In 1986 and 1987 the
country reached its highest external debt level ever as a fraction of GDP,
and figure 11 shows increases in the debt stock around this time. Mexico
attempted to renegotiate its external debt in 1986 and 1987, as a participant
in the Baker plan, proposed at the IMF/WB 1985 meetings in South Korea,
see Sachs (1989). The plan offered access to medium-term loans and the
possibility of rolling over old loans, in exchange for economic reforms. The
idea was that with this plan, economies would be able to grow their way out
of debt. This approach was not generally successful (van Wijnbergen, King,
and Portes, 1991).

The maximum inflation in our sample was reached in December 1987,
and high inflation continued into January 1988, when 28-day CETES rates
averaged 157.07 percent annualized (figure 12). It is worth emphasizing that
inflation and the regime state probability dynamics are consistent with the
economy exploding toward a very high inflation equilibrium (SCE), in other
words, with an escape event. Thus, a fundamental reform became unavoid-
able (figure 8).

Indeed, it was around this time, in December 1987, that De la Madrid’s
administration enacted the Economic Solidarity Pact. This stabilization pro-
gram’s key element was a significant effort to balance the budget deficit by
raising taxes, restricting government spending and generally reducing the
size of the public sector. It also attempted to manage inflation expectations
through income policies (i.e., wage and price controls) and used the exchange-
rate as a nominal anchor. It included also other elements, such as trade
liberalization, deregulation, and privatization of government companies. As
shown in figure 6, the probability of being in a high mean seigniorage state
remained the highest for a few months after the reform.

10.5 Successful stabilization: April 1988 to February
1995

During Salinas’ term, the government implemented the Stability and Eco-
nomic Growth Pact, which essentially continued De la Madrid’s Economic
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Solidarity Pact. It included a fiscal retrenchment once again. Some structural
reforms, including the NAFTA, were also implemented. The most important
element, however, was a successful external public debt renegotiation through
the Brady plan. We can see that these measures resulted in a switch to an
even lower mean seigniorage state m = 5 (figure 6).

Under the Brady plan, Mexican sovereign bonds could be exchanged for
Brady bonds, at a discount and with longer maturities. Banks were then able
to sell their Brady bonds to third parties, obtaining long-needed liquidity.
The IMF, the World Bank, and the Bank of Japan acted as guarantors of
the principal and the initial coupon payments, improving the bonds’ credit
rating and leading to lower interest rates. It was a deal that improved the
status quo for all parties involved (Sanginés, 1987). Further reforms improved
confidence and the return of foreign capital, such as trade liberalization, the
privatization of commercial banks in 1991–1992, and the removal of most
capital controls. Nevertheless, the exchange-rate was not allowed to float
and in November 1991 the authorities established a target zone regime.

Overall, these measures implied a drastic decrease in monetary base
growth captured well by the model (figure 14), and a much lower seigniorage-
mean regime, which quickly returned to late-1960s levels (figure 6).

10.6 Another crisis and a successful new reform: March
1995 to July 1999

The 1994–1995 Mexican crisis had an underlying cause and a trigger. The
underlying cause was an excessive credit expansion and an exchange rate
misalignment. The financial liberalization, and its accompanying increase
in confidence, along with low U.S. interest rates, attracted foreign capital
inflows to Mexico. The newly privatized banks allocated a large portion
of this capital to illiquid investments. Moreover, during the last years of
Salinas’s administration there was a considerable fiscal expansion while the
real exchange-rate remained significantly misaligned.

The trigger of the crisis was the political turmoil of 1994: the Chiapas
social revolt, the assassinations of a leading presidential candidate and a
political leader. Furthermore, since the Federal Reserve began raising interest
rates in early 1994, many did not find a reason to keep their funds in Mexico
and capital outflows ensued, leading to the loss of international reserves.
To prevent a devaluation the government issued dollar-indexed short-term
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bonds (the Tesobonos) (Buiter, 1987). Soon after, by November, doubts
arose regarding whether the bonds had enough foreign reserves backing.

Thus, this was a balance of payments and financial crisis. Zedillo’s term
began in December 1994. As capital outflows continued, the Bank of Mexico
announced a shift in the upper bound of the exchange-rate’s target zone by
15%. But foreign capital kept fleeing. On December 22, the exchange-rate
was allowed to float and it depreciated considerably (figure 13).

Meanwhile, yearly inflation increased to 52% in 1995. There was also an
increase in interest rates to 74.75% (28-day CETES, figure 12), and a fall in
GDP by 6.3%.

The sudden devaluation and GDP contraction was accompanied neither
by an expansion in the monetary base (figure 9) nor by a larger fiscal deficit
(figure 11). Nevertheless, the model displays a switch to a higher mean-
seigniorage regime that lasted for most of 1995. Concomitantly, the escape-
provoking probability spiked (figure 8), but by 1997 it had returned to levels
close to zero.

After the initial spike in the seigniorage-mean level in 1995, it quickly
switched to level m = 3 and then to progressively lower levels (figure 6).
As can be seen in figure 5, levels m = 3 to 6 have a unique low-inflation
SCE; thus, after reaching m = 3, it is feasible to gradually return to a lower
seigniorage-mean without risk of staying in the domain of attraction of an
SCE with very high inflation.

Rather than seigniorage-financed deficits, it seems more plausible that
the 1994-1995 sudden devaluation was the trigger for the temporary bout
of inflation that lasted until the end of the decade. While the data does
not show fiscal deficits nor seigniorage finance during this period, it could be
argued that economic agents anticipated future deficits, given the pressure to
increase fiscal expenditures to fight the economic contraction and to fix the
financial system, or that they still mistrusted the government and conjectured
that the peso depreciation was being caused by the government financing
itself with seigniorage, as in the past.

Thus, it makes sense to consider the end of fiscal dominance as crucial
to regain price stability, as the reforms included the central bank’s (Bank of
Mexico’s) independence from fiscal authorities, improving its credibility.

There were other contributing elements such as the financial support
package, announced in January 1995, involving the U.S. Treasury, the IMF,
the BIS, and private commercial banks, along with measures to stabilize the
financial sector, provisioning dollar liquidity to banks and assuming some
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loans to ensure that commercial banks satisfy capital requirements, see Whitt
(1996).

In 1998 the oil price dropped, an event that affected the Mexican peso, as
well as fiscal revenues, but the latter still exceeded government expenditures.
The model captures a shock and corresponding adjustment by a small spike
in the probability of being in a higher mean-seigniorage regime. Nonetheless,
the model does not show in 1998 a clear regime change regarding seigniorage
finance, and indeed there was none.

That the measures taken after the Tequila Crisis avoided a return to a
fiscal dominance situation, explains why there was no need for escape prob-
abilities to rise substantially during the nineties before seeing fundamental
reforms to bring inflation back to low and stable levels. The absence of fiscal
dominance after 1995 is captured quite well by the dynamics of the esti-
mated model, due to the persistence of the lowest mean seigniorage regimes
(figure 6) and the disappearance of the correlation between fiscal deficits and
deficit-financed seigniorage (figure 15).

10.7 Price Stability again: August 1999 to July 2019

Since 1999, the escape-provoking probability has stayed close to zero, and
inflation expectations have remained between the two lowest SCEs (figure
7). The mean-seigniorage regime has been mostly in its lowest state (figure
6). While the central bank adopted an inflation-targeting regime, prudent
fiscal management continued.

In 1999, there was a sudden increase in the monetary base (figures 9, 10).
Curiously, it did not seem to affect inflation at all. According to the Bank of
Mexico (2000) the increase in M0 obeyed to their passive provision of cash
due to its increasing demand.

The probability of being in the lowest-mean seigniorage state has re-
mained the highest among all states (figure 4). It is worth noting that there
was a temporary switch to the second lowest mean regime during and af-
ter the global financial crisis (GFC), and there were as well more frequent
switchings to the high volatility state. Consistently with central bank inde-
pendence, fiscal deficits incurred after the GFC (figure 11) have been mostly
financed with internal and external debt, not with seigniorage.

There is also an apparent co-movement between fiscal deficits and mon-
etary base growth during the two-thousand tens (figure 11) that fails to be
reflected by fluctuations in inflation or seigniorage. Depending on the deficit’s
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specific causes, it is entirely possible that government expenditures increased
the demand for cash, which was then provided by the central bank.

It is also noteworthy that since 2014 the Bank of Mexico has managed its
policy rate targeting inflation, but more importantly attempting to address a
persistent Mexican Peso depreciation, figures (12) and (13), and thus, since
2014 the policy rate was continuously increased even when inflation was
stable. The exchange rate on the other hand, kept depreciating. The Peso’s
fall is commonly attributed to external factors such as the fall in oil prices,
capital flight and the Federal Reserve’s monetary policy. In January 2015
the 28-day CETES rate averaged 2.67 percent, and then it started to rise,
anticipating an increase in the Bank of Mexico’s policy rate, which came a few
months later, as a response to the peso depreciation. The latter continued
into the beginning of 2017.

11 Final Remarks

Latin American governments have frequently resorted to seigniorage to fi-
nance their fiscal deficits in the past, often starting a sequence of events that
only gets reverted once “escape probabilities” reach levels close to one: once
fiscal dominance becomes prevalent in an economy, inflation needs to get out
of hand to convince policy makers to enact the necessary stabilizing reforms.
In this regard, Mexico has not been an exception.

Our data depicts the self-fulfilling cycle of inflation, fiscal imbalances,
and increasing external debt that comes along with fiscal dominance, and
that results in economic crises almost certainly. The Mexican government
implemented several adjustment programs during its fiscal dominance cycle,
and many turned out to be ineffective and insufficient. One important fac-
tor to ensure a programs’ success was to ensure that fiscal accounts were
sustainable. This is why the renegotiation of the external debt through the
Brady plan proved crucial for the success of the 1987 and 1988 stabilization
programs. Another key factor was the introduction of central bank inde-
pendence, which effectively put an end to the age of seigniorage finance in
Mexico.

Throughout Mexican fiscal dominance cycle, the model has been able
to capture the dynamics of inflation, money supplyy, seigniorage-financed
fiscal deficits, and inflation expectations: its model-implied regime switching
captures roughly historical developments in Mexican fiscal and monetary
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policy.
We show actual deficits and model-implied seigniorage in figure 15, The

close correlation between these series is striking up to 1995, which depicts a
typical fiscal dominance situation. We emphasize that Mexican deficit data
was not used in the estimation step. This correlation disappeared in 1995
when central bank independence was implemented, bringing about continu-
ous price stability to the economy. We also show actual and model-implied
money supply growth in figure 14 which are also very close. Again, the re-
sults are surprising because historical money supply data was not used for
parameter estimation.

Model-implied seigniorage fits historical fiscal deficits better than the al-
ternative specification in two dimensions: first, its absolute levels are higher
because with our proposed money-demand function, the government is al-
lowed to raise higher levels of seigniorage, and second, seigniorage volatility
depends on a volatility state as well as on the level of seigniorage. The latter
allows the model to predict better short-term fluctuations in money supply.
A more realistic volatility specification not only allows to identify the model
parameters, it also implies that volatile money supply and inflation are key
stylized facts of high-inflation episodes.

By estimating seigniorage, the model, as others in its class, contributes
to understand the fiscal-monetary policy interaction since the latter occurs
through seigniorage, which is usually a hidden variable. Direct comparison
of monetary base growth to fiscal deficits as in figure 11 can be misleading.

It is worth reemphasizing that our main conclusion hinges on the partic-
ular money-demand function we employ. Thus, we consider that the choice
of functional form for the money-demand equation is crucial to study the
relationship between fiscal dominance and inflation. Cagan’s paradox ob-
fuscates the true relationship between seigniorage and inflation. We expect
that this model can bring additional insight in the analysis of highly- or
hyper-inflationary episodes.
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“Inflation and Seigniorage-Financed Fiscal

Deficits: The Case of Mexico”

Appendices

Appendix A A Transactional Model for Money

Demand

In inflationary economies, money loses its function as a store of value, and it
becomes a costly transactional instrument. To reduce the costs of employ-
ing the default medium of exchange in an inflationary economy, households
spend time securing alternative arrangements to preserve the value of their
purchasing power. We propose a model that captures the costs and bene-
fits of holding money as a transactional instrument, and derive its implied
money-demand function. To simplify the model, we focus on the spending
side of the household’s problem, and suppose that households receive a stable
real income. In reality, nominal labor contracts are the norm, but inflationary
experiences have shown that in this case, households demand labor contracts
fixed in hard currency or with automatic salary increases depending on infla-
tion. Additionally, households purchase hard currency and real assets upon
payment of their salaries when inflation becomes significantly costly. All
these alternative arrangements are also costly, and focusing on the spending
part of the problem still captures the cost of looking for mechanisms and
contracts that minimize the use of the official medium of exchange.

We envision a simple economy with an infinite-lived representative house-
hold solving the following problem at each period: in the current period, the
household works and earns labor income, while at the same time, it spends
time trading, which draws time away from work, thus reducing its earning
potential. Trading and payment may take place in the first or the second
period, but delivery and consumption occur in the second period. The house-
hold could just arrange for all of its consumption purchases in exchange for
payment in cash in the second period, spending minimal trading time. In
the meantime, inflation depreciates any money balances Mt the household is
holding for payment. If inflation is a concern, these balances can be reduced
by spending more time doing transactions in the first period, or equivalently,
by increasing the number of trips to the shops nt. Consumption requires
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either to keep nominal money balances on hand, or trips to the shop nt:

Ct+1 ≤
Mt

Pt

nt, (A.1)

where Mt/Pt is the amount of real balances held until the next period and
Ct+1 is next period’s consumption. Note that when nt = 1 this is a standard
cash-in-advance constraint. Two trips to the shop nt = 2 means that half
of next period’s consumption is paid upon receipt of wages, nt = 3 means
that payment of two-thirds of consumption is arranged in advance, and so
on. Essentially, more trading time allows to secure more shopping contracts
denominated in real or hard currency terms to purchase the desired level
of consumption. With more time doing trading deals, the household can
commit a greater portion of its wage earnings, a real asset, to guarantee
future delivery of real assets, reducing the need for cash.

The household supplies labor lt ≤ 1 in exchange for a real wage of z per
unit of labor. To turn this wage into consumption, the household can pro-
cure non-cash shopping contracts, which take time to arrange, or currency-
denominated shopping contracts that can be arranged without cost. In the
next period, settlement of shopping contracts takes place and the household
consumes the delivered goods Ct+1, but in the meantime, cash has lost value
due to inflation, and if the household does not plan adequately for inflation,
it may have to consume less than planned. The expected utility of household
is then

Etu(Ct+1). (A.2)

To procure non-cash shopping contracts, the household must take time away
from work. The relationship between shopping trips and labor time is given
by the technology

st = H (Ct+1, nt) (A.3)

where st is the time spent trading instead of working and earning a salary;
H is continuous and twice differentiable, increasing in both Ct+1 and nt. The
household’s budget constraint is

zlt +
Mt−1

Pt

≥ Ct+1 +
Mt

Pt

P e
t+1

Pt

, (A.4)

where the right hand side is next-period’s consumption plus the next period’s
value of real money balances. The left hand side is labor income plus any

2



remaining money balances from last period. The time constraint is given by:

1 ≥ lt +H (Ct+1, nt) . (A.5)

The Lagrangian for the household’s problem is

Etu(Ct+1) + λt

(
zlt +

Mt−1

Pt

− Ct+1 −
Mt

Pt

P e
t+1

Pt

)
+ µt (1− lt −H (Ct+1, nt))

+ ρt

(
Mt

Pt

nt − Ct+1

)
with first order conditions

Ct+1 : EtuC,t+1 − λt − µtHC,t − ρt = 0

lt : λtz − µt = 0

nt : −µtHn,t + ρt
Mt

Pt

= 0

Mt : −λt
1

Pt

P e
t+1

Pt

+ ρt
1

Pt

nt = 0

The Lagrange multipliers are:

λt =
Etuc,t+1

1 + 1
nt

P e
t+1

Pt
+ zHC,t

µt = zλt

ρt = λt
1

nt

P e
t+1

Pt

The first order condition with respect to consumption shows that consump-
tion is maximized by trading off holding money balances and spending time
trading, while the first order condition with respect to nt shows that house-
holds will equate the marginal cost of visiting shops with the marginal benefit
of avoiding the inflation tax. Replacing the value of the Lagrange multipliers
and the cash-in-advance constraint into the fist order condition with respect
to nt yields

zHn,t =
Ct+1

n2
t

P e
t+1

Pt

, (A.6)

3



which implies (1); it says that the marginal cost of increasing trading trips, in
consumption units, must equal the marginal benefit of reducing the demand
of real balances and saving on inflationary costs.

We now find explicit functional forms for the money-demand by specifying
the function H. Let us assume an exponential form for H

H (Ct+1, nt) = ϵnυ
t (A.7)

with υ > 0, implying that H is convex or concave in its arguments depending
on υ.

Then
Hn,t = ϵυnυ−1

t ,

and replacing the latter expression jointly with the cash-in-advance con-
straint, (A.1) into (A.6) yields

zn2
t

Ct+1

Hn,t =
P e
t+1

Pt

zn2
t

Ct+1

ϵυnυ−1
t =

P e
t+1

Pt

zϵυ

Ct+1

nυ+1
t =

P e
t+1

Pt

zϵυCυ+1
t+1

Ct+1

Pt
υ+1

Mυ+1
t

=
P e
t+1

Pt

and finally
Mυ+1

t

P υ+1
t

= zϵυCυ
t+1

(
P e
t+1

Pt

)−1

.

Taking logs we obtain the familiar form

log
Mt

Pt

=
log(zϵυ)

υ + 1
+

υ

υ + 1
log(Ct+1)−

1

υ + 1
log

P e
t+1

Pt

, (A.8)

which is the log-log money-demand of Meltzer (1963). The case υ = 1 is
the money-demand of Baumol (1952) and Tobin (1956), which features an
elasticity of 1/2.

If we use the approximation logP e
t+1/Pt ≈ P e

t+1/Pt − 1 we obtain the
semi-log money-demand of Cagan (1956):

log
Mt

Pt

=
log(zϵυ)

υ + 1
+

υ

υ + 1
log(Ct+1) +

1

υ + 1
− 1

υ + 1

P e
t+1

Pt

, (A.9)
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inserting into the last equation the Taylor series approximation exp(x) ≈
1 + x:

Mt

Pt

= exp

(
log(zϵυ)

υ + 1
+

υ

υ + 1
log(Ct+1)

)(
1− 1

υ + 1

(
P e
t+1

Pt

− 1

))
,

(A.10)
which is the linear money-demand used in many studies, and particularly in
SWZ.

Alternatively, there exists a cost function H of the form

H(Ct+1, nt) =Ct+1

[
H0 + ϵ0 log nt − ϵ1

1

nt

]
. (A.11)

This cost function is linear with respect to consumption and concave with
respect to nt. Note that H > 0 only if nt is above some level n̄ that depends
on parameters H0, ϵ0 and ϵ1, implying an upper bound on money balances
and a lower bound on the number of trips to shops. Thus, this functional form
captures borrowing constraints, in the sense that money balances cannot go
to infinity as in the case with an exponential cost function, because it imposes
a lower bound on trading time. Likewise, this cost function is more concave
than the exponential case which implies that the marginal cost of trips to the
shops doesn’t fall as quickly, and it is more difficult to reduce the demand
for real balances. Both ϵ0 and ϵ1 are positive, but the parameter ϵ1 is small
and it has the restriction ϵ1 < 1/z.

If H takes the form in (A.11), then

Hn,t = Ct+1

[
ϵ0

1

nt

+ ϵ1
1

n2
t

]
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and replacing into (A.6)

zn2
t

Ct+1

Hn,t =
P e
t+1

Pt

zn2
t

Ct+1

Ct+1

[
ϵ0

1

nt

+ ϵ1
1

n2
t

]
=

P e
t+1

Pt

z [ϵ0nt + ϵ1] =
P e
t+1

Pt

zϵ0nt = −zϵ1 +
P e
t+1

Pt

1

nt

=
zϵ0

−zϵ1 +
P e
t+1

Pt

where inserting the cash-in-advance constraint (A.1) gives

Mt

Pt

=
Ct+1

zϵ0
1−zϵ1

1 + 1
1−zϵ1

(
P e
t+1

Pt
− 1

)
which becomes the money-demand of Selden (1956) and Latané (1960), equa-
tion (2), by defining

λ0 =
zϵ0Ct+1

1− zϵ1
, and (A.12)

λ1 =
1

1− zϵ1
. (A.13)

with λ1 > 1 and λ0 > 0, because ϵ0 > 0 and 0 < ϵ1 < 1/z imply λ1 > 1 and
λ0 > 0. Since the model below focuses on inflation and monetary aggregates,
it implicitly holds real aggregates as given, and therefore, we assume that
Ct+1 = C, for all t, for some constant C.

That this is a form of Selden’s 1956 and Latané’s 1960 money-demand
function can be verified by letting a = γ/λ0 and b = γλ1/λ0 and then rewrit-
ing equation (1) as Mt/Pt = 1/(a+b(P e

t+1/Pt−1)). Under this parameteriza-
tion, λ0 determines the demand for real balances when expected inflation is
zero, while λ1 determines jointly the money-demand elasticity and the lower
bound for expected inflation.

This functional form behaves similarly to the log-log money-demand func-
tion of Meltzer (1963) when the expected inflation is high, but it does not
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explode when the latter is low and close to zero, i.e., when P e
t+1/Pt approaches

one. Instead, it increases in a non-explosive way toward λ0, as expected in-
flation reaches zero.

A log-log money-demand function counter-factually predicts overly high
levels of real money demand when inflation expectations fall very close to
zero. Intuitively, money demand cannot increase to infinity unless individ-
uals have access to unlimited credit. Our money-demand function predicts
explosive behavior for inflationary expectations below zero, that is, when
expected inflation approaches the value P e

t+1/Pt → 1 − 1/λ1. Should the
need arise, this could be fixed by introducing borrowing constraints, but for
our data and estimated parameters, both the realized inflation and expected
inflation are well above this critical level. Benati, Lucas, Nicolini, and We-
ber (2021) propose setting real money demand to a constant when expected
inflation is very low, in order to introduce borrowing constraints for log-log
specifications to rule out explosive behavior at these expected inflation levels.
Our money-demand function does not allow explosive behavior for any level
of expected inflation such that P e

t+1/Pt > 1, and thus, this specification can
be thought of as an approximation of a log-log money-demand function with
borrowing constraints.

In the SWZ model, the money-demand function is a linear approximation
of Cagan’s semi logarithmic money-demand function. Recall that Cagan’s
money-demand function is (up to scale) Mt/Pt = exp(−λP e

t+1/Pt). SWZ
employ an approximation of this demand based on the Taylor expansion
of the exponential function: Mt/Pt ≈ 1 − λP e

t+1/Pt. In this money-demand
function, λ is a scalar interpreted as the semi-elasticity of the money-demand
with respect to the expected inflation. Due to the linearity of this functional
form, the demand for real balances can take negative values for very high
levels of expected inflation.4 We summarize the behavior of these money-
demand specifications in figure 1.

In Benati, Lucas, Nicolini, and Weber (2021), long-term estimations of
money demand are performed for several countries. They find that neither
the popular Cagan semi log nor the log-log specifications are appropriate
for a large number of countries, including Mexico. In effect, many of these
countries have experienced episodes of very high inflation, or even hyper-
inflation, but also episodes of low inflation, with inflation rates close to zero.

4Negative money-demand levels are handled in SWZ by resetting inflation and possibly
expectations to a low level, as a type of cosmetic reform.
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They propose either a log-log functional form with borrowing constraints,
or an approximation based on the Selden-Latané money-demand function.
However, the choice of money-demand function is not only an empirical fit
issue, as Benati (2018) shows that replacing Cagan’s semi log for a log-log
specification in a standard inflation model yields different predictions regard-
ing equilibria and dynamics, and that such a model can display explosive
inflationary behavior even when steady-state equilibria are well defined.

Appendix B Derivation of Ĝ(β,m)

To compute the functional Ĝ(β,m) (17), first we obtain some preliminary
results. Let us start by writing down the evolution of inflation. First, since
inflation is bounded by δ−1 (see equation (9)), we need to specify what hap-
pens when inflation reaches or exceeds such a bound. Let us rewrite the
inflation bound as one on the seigniorage dt(st, dt−1) < ω(βt, βt−1), where

ω(βt, βt−1) ≡
λ(βt)− δθλ(βt−1)

γ
. (B.1)

Then, when inflation is below its bound, its equilibrium level will be deter-
mined by the equilibrium condition (7); otherwise, inflation will be reset to
the lowest equilibrium π̄∗

1(st) given the state m as follows5:

πt =ι
(
dt(st, dt−1) < ω(βt, βt−1)

) θλ(βt−1)

λ(βt)− γdt(st, dt−1)
(B.2)

+ ι
(
dt(st, dt−1) ≥ ω(βt, βt−1)

)
π̄∗
1(st).

Properly speaking, π̄∗
1(st) is here the low conditional SCEs, but, following

SWZ, we instead use the low deterministic SSE to compute equation (B.2).
Defining (B.2) with the SCEs results in an implicit ODE that would

require solving a computationally intractable double fixed-point problem to
estimate the SCEs. Ex-post, we found the low SCEs to be very close to the
low deterministic SSEs when both exist. As explained above, in those cases
where there is no deterministic equilibrium, π̄∗

1(st) is replaced by π∗
max.

We now derive the Kushner-Yin (2003) ODE. Using equation (B.2), we
define the inflation belief error as follows:

5This is a cosmetic reform to be formally defined in the main text.
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g
(
β∗
t , βt, βt−1,dt(st, dt−1)

)
= πt − βt

=ι (dt(st, dt−1) < ω(βt, βt−1))
θλ(βt−1)

λ(βt)− γdt(st, dt−1)
(B.3)

+ ι (dt(st, dt−1) ≥ ω(βt, βt−1)) π̄
∗
1(st)− βt,

where ι is an indicator function. To compute the SCE, we need to define

ω̃(β) = ω(β, β) = (1− δθ)λ(β)/γ, (B.4)

and note that as β → ∞, then ω̃(β) → 0. We will use this result later. We
can now rewrite the adaptive expectations mechanism as

βt+1 − βt = νg(π∗
t , βt, βt−1, dt(st, dt−1)), (B.5)

or, more generally,

βt+∆ − βt = νg(π∗
t , βt, βt−∆, dt(st, dt−∆)), (B.6)

which takes the form of equation (16) as ν → 0 and ∆ → 0 jointly, and
after taking expectations, conditioning on the state m. Then, to find the
equilibrium value of β, we must evaluate the expectation

Eg(π∗
t , βt, βt−1, dt(st, dt−1)) = 0, (B.7)

conditioning on mt = m, and then, solve for β. To help integrate out the
seigniorage shocks and the lagged seigniorage, we define

Ψs(β, b) =

∫ ∞

0

∫ b−d̄(m)

0

1

λ(β)− γ(d̄(m) + εd)
dFd(εd|s, d′)dF ∗

d (d
′|s), (B.8)

which will help compute the expectation of equilibrium inflation (8) given
dt(st, dt−1) < ω(βt, βt−1). The upper bound of the inner integral in Ψs is given
by the conditioning seigniorage bound, and F ∗

d denotes the distribution of
the seigniorage, conditioning solely on the joint state st = s. Similarly, we
define

Φs(β, b) =

∫ ∞

0

∫ b−d̄(m)

0

dFd (εd|s, d′) dF ∗
d (d

′|s) , (B.9)
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This helps compute the expected value of post-cosmetic reform inflation,
given dt(st, dt−1) ≥ ω(βt, βt−1). Φs is a cumulative distribution function
that will be used to assess the probability of inflation reaching its upper
bound. Recall that the seigniorage bound is rewritten as ω̃(β) when β is
constant, and we evaluate these integrals from 0 to ω̃(β) − d̄(m) to ensure
they are finite. Additionally, the inflation’s upper bound, together with the
seigniorage bound, guarantee that Ψs(β, b) is finite. As ω̃(β) → 0 if β → ∞,
Φs eventually decreases toward 0. Now, let us define

g̃(π∗
t , β, dt) = g(π∗

t , β, β, dt). (B.10)

We now collect definitions to provide an expression for g̃. We denote q̄ς,k as
the unconditional probability of the event ςt = k, which is an element of the
ergodic distribution of Qς , and then we obtain equation (17). Note that the
final expression indeed has the form of the ODE (16).

Appendix C Proof of Proposition 1

Proof. We need to show that equation (16) has at least one root at zero for
every m. First, Ĝ(β,m) has a bounded support, open on the lower bound at
1 − 1/λ1 by equation (8), and open at the upper bound at 1/δ by equation
(9). By the properties of Ψs and Φs, Ĝ is bounded and continuous inside
its support. Thus, through the intermediate value theorem, we only need
to show that Ĝ(β,m) has at least one sign change. At the upper bound,
as β → 1/δ and as δ → 0, or equivalently as β → ∞, then Ψs,Φs → 0
and Ĝ(β,m) → −∞. However, at the lower bound, as β → 1 − 1/λ1, then
ω̃(β) → ∞ and Ĝ(β,m) has a positive and finite limit: Expected gross
inflation is finite because inflation is bounded. This expectation is always
greater than β’s lower bound if 1− 1/λ1 < θ, as θ is the lowest value an SSE
can take. Note that the second term is determined by the SSE. If the bound
on θ holds, the sum of the first two terms will be greater than the bound
even if the first term is at the bound. On the other hand, the third term,
−β, approaches its upper bound, which is smaller than expected inflation
in absolute value. Intuitively, as the lowest values of β are not equilibria,
they have to increase; therefore, Ĝ(β,m) is positive at β’s lower bound. As
Ĝ(β,m) always becomes negative at the upper bound, it is positive at the
lower bound, and it is continuous, we can conclude that it crosses zero at
least once by the intermediate value theorem.
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Appendix D Derivation of Escape Probabili-

ties

We proceed to describe the computation of our escape probabilities. We
find the distribution of shocks that would cause an escape event. Define
ωt(mt, ςt), as the value of εd(ςt, dt−1), such that πt = β∗

2(m), and ωt(mt, ςt)
as the value of εd(ςt, dt−1) such that πt = δ−1. Realizations of εd between
these values would push drive inflation expectations toward the domain of
attraction of β∗

3(m). Using monetary equilibrium and setting inflation to the
bounds above we find that

ωt(mt, ςt) =
1

γ
(λ(βt)− θλ(βt−1)β

∗
2(mt)

−1)− d̄(mt)

ωt(mt, ςt) =
1

γ
(λ(βt)− δθλ(βt−1))− d̄(mt).

Then, the probability of an escape-provoking event, this is, the probability
of observing a seigniorage shock that would push inflation to a level greater
than β∗

2(m) but smaller than δ−1, when β∗
1(m), β∗

2(m), and β∗
3(m) exist, and

given period t’s state m is

Pr{ωt(mt,ς) < εd(ςt, dt−1) < ωt(mt, ς)|st = s, dt−1 = d′}
=Fd(ωt(mt, ςt)|st = s, dt−1 = d′)− Fd(ωt(mt, ςt)|st = s, dt−1 = d′).

Under unique SCEs, there are no escapes, as mentioned, but note that if
β∗
3(m) is the unique equilibrium, then the economy is permanently in the

domain of attraction of the high SCE; therefore, the probability of falling
into the domain of the very high SCE, for those states m such that β∗

3(m) is
the unique equilibrium, as

Pr (ωt(mt, ςt) < εd(ςt, dt−1) < ωt(mt, ςt)|st = s, dt−1 = d′) = 1,

likewise, if m is such that β∗
1(m) is the unique equilibrium, the probability

of falling into the domain of the very high SCE is

Pr (ωt(mt, ςt) < εd(ςt, dt−1) < ωt(mt, ςt)|st = s, dt−1 = d′) = 0,

because the economy is permanently in the domain of attraction of the low
SCE. Gathering the computations for each mean seigniorage state and since
neither past seigniorage levels nor period t’s m state are observed, the final
computation for an escape-provoking event probability is (21).
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Appendix E Identification: The Unbounded

Case

To explain our procedure, let us begin by recalling that the estimation uses
just inflation data to recover time series for money demand, money supply,
seigniorage and inflation expectations. To achieve this, the model imposes
tight restrictions on these objects and their interrelationships. These restric-
tions allow the identification of the model.

In particular, the monetary equilibrium equation (7) serves a dual pur-
pose. First, it produces a seigniorage time series, which is enough to identify
the parameters of its conditional distribution. Second, it determines the con-
ditional distribution of the seigniorage implied by money demand, inflation
expectations and monetary equilibrium. Parameter identification is achieved
by matching these two distributions.

Since the seigniorage shock is the main element driving the dynamics of
the model, the key question is if knowledge of its distribution allows the
identification of the parameters of the money-demand and inflationary ex-
pectations mechanisms. In fact, starting from the seigniorage distribution,
the likelihood function is constructed using a change of variables to derive
the implied conditional distribution of inflation.

Besides monetary supply and demand, there is a third element in the
model: an inflation reset shock capturing cosmetic reforms. It is estimated
by setting an upper bound on inflation. This is just a residual attempting
to fit drops in inflation that are not explained either by seigniorage shocks
or by seigniorage regime changes. We ignore the reset shock in this section
and assume that its distribution parameters are immediately identified after
setting the inflation bound and obtaining the parameters of the unbounded
case.

We represent here seigniorage dynamics by its conditional distribution
Pd(dt+1|dt, st), where dt is the information available at t, and st is the unob-
served state.

The key identifying condition is given by (7): it implies that if seigniorage
is not observed, it can be recovered with inflation data and with the true
values of the parameters of λ(·): λ0, λ1, of those of βt: ν, and of θ:

dt =
1

γ

[
λ (βt)−

θλ (βt−1)

πt

]
, (E.1)

We can see immediately that there is an infinite set of pairs (λ0, γ) that
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satisfy this equilibrium condition. For this reason, we assume γ = 1 in the
remainder of this section.

Estimation of the model with unbounded inflation can be accomplished
by matching the distributions of the left hand side and of the right hand side
of the equation above. Denote by d̂t the right hand side. We then have the
system of equations

E(Ed(f(dt+1)|dt, st)) = E(E d̂(f(d̂t+1)|πt, βt, st)) (E.2)

where f is an array of measurable functions characterizing the distributions
of dt and d̂t, for example, containing the terms of the characteristic function,
those of the moment generating functions, or a sufficient number of moment
conditions. Note also that the evaluation of f in the left hand side depends
on Qs, d̄, σ and ϑ, while the evaluation on the right hand side depends on
ν, λ0, and λ1. Additionally, to obtain population expectations in both sides
we need Qs and its invariant distribution.

To conduct our analisis we will focus on necessary conditions and we em-
ploy the concept of global identification that says that the moment conditions
(E.2) are only fulfilled by the true ϕ = ϕ0

6.

Definition 6 (Global identification). The system of equations (E.2) is not
solved by any ϕ′ ∈ Φ such that ϕ′ ̸= ϕ0.

On the other hand, the model is not identified whenever there is no value
of ϕ that can solve (E.2). The main necessary condition for identification is
then

Assumption 1. There exists ϕ0 ∈ Φ such that system (E.2) is solved by
ϕ = ϕ0.

We now impose some additional conditions that guarantee we can recover
the parameters of Pd.

Assumption 2. The joint transition probability matrix Qs = [Qs]i,j, i, j =
1, . . . ,mh × ςh is ergodic and has full rank.

Define the distribution Pd(ε|s, d) =
∫ ε

0
pd(εd|s, d)dεd, and let the ergodic

distribution of Qs be Γ. Also:

6See e.g. Hall (2005), Chapter 3.
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Assumption 3. The seigniorage shock distributions satisfy Pd(ε|s, d) ̸=
Pd(ε|s′, d), for any pair s ̸= s′, for any shock level ε, and for any seigniorage
level d.

In other words, different states induce different conditional distributions
for seigniorage. Intuitively, states can be only distinguished if they induce a
unique behaviour of dt at each state.

Assumption 4. The process {dt} is ergodic and it has an invariant distri-
bution.

Neither inflation, money demand or supply need to have an invariant
distribution. Instead, identification hinges on the stationarity of dt. We now
present an auxiliary result:

Proposition 2 (Alexandrovich, Holzmann, and Leister; 2016). Under as-
sumptions 2, 3, and 4, with a fixed number of states K = mh × ςh and a se-
quence {dt}Tt=1; then Qs and the parameters of Pd: d̄, σ and ϑ, are identified
as T → ∞. Furthermore, the parameters are unique up to label swapping.

This is essentially Theorem 1 in Alexandrovich, Holzmann, and Leister
(2016), with the difference that, here, the conditional distributions Pd de-
pend on the state and additionally on d1, . . . , dT and that we do not need to
initialize dt at its ergodic distribution. Their proof needs to be modified just
slightly. To accommodate the dependence of the Pd’s on dt−1 notice that their
proof relies on computing the changes of Pd at different states; since we can
do these calculations keeping the data fixed, this causes no problem at all. It
is still required that the block-by-block joint distributions of dt are linearly
independent among different states, whenever the data dt+1, . . . , dt+K is fixed
within the block. Regarding the initialization at the stationary distribution,
this is not needed whenever T → ∞, as long as {dt} is ergodic. Finally, there
is more than one set of parameters characterizing the distribution of dt, with
different state labellings, but they are otherwise unique.

We now present our main identification result.

Proposition 3 (Model identification). Suppose that T → ∞, that assump-
tions 1, 2, 3, 4 hold, with f containing a number of moments sufficient to
characterize the distribution of dt. Then the model is globally identified.

Proof. if any of ν, λ0, λ1 differs from its true value, it will produce a sequence
for d̂t, with distribution parameters obtained via Proposition 2 that will not
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match the true distribution of dt, and thus (E.2) will not hold. Conversely,
starting from a matrix Qs or parameters for Pd that do not match their true
values, up to state relabeling, they will imply different conditional moments
for dt that will not fulfill (E.2), either. Furthermore, ϕ is possibly over-
identified whenever (E.2) has more than one solution ϕ0.

Then, provided that different parameters ϕ imply different distributions
for dt and d̂t, and that these distributions are characterized by a adequate
and comparable number of moment conditions, then the parameters are iden-
tified. Furthermore, while the sequence {dt} is not observed, identification
is obtained by specifying explicitly its dynamics. Note that the latter also
plays a key role determining the number of moment conditions that needs to
be fitted to obtain an identified system.

This proposition formalizes and extends Section VI (Identification) in
SWZ. Examining (E.1), we can see that inflation levels indeed determine the
values in d̄ through inflation expectations. Moreover, inflation volatility also
determines volatility states. We can also infer that more complex inflation
expectation mechanisms may require more states to adequately fit the data.
In addition, the parameters for the money-demand function and the inflation
expectations mechanism can be recovered provided that the distribution of
dt has a sufficient number of higher moments, given here by the size of vector
f . This clarifies the importance of a complex specification for the volatility
of dt: identification in this class of models relies not only on the variance and
skeweness of dt, but possibly on its kurtosis or even on higher moments, as
well.

Finally, while we allow the possibility of over-identification, empirically
we can still obtain a “best fit” set of parameters, such as in Hansen (1982),
using alternative estimation methods. Since a large enough vector f is key
to identify more complex versions of our model, this section suggests that
Hansen’s General Method of Moments (GMM) has substantial potential to
estimate those models, while expecting an improvement in efficiency by virtue
of the unrestricted number of moment conditions allowed by GMM.
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Appendix F The Inflation Likelihood Func-

tion.

Inflation shocks follow an independent and identically distributed random
variable with probability density

Prπ(επ|mt) =
exp (−[log(π∗

1(mt) + επ)− log(π∗
1(mt))]

2/(2σ2
π))√

2π[π∗
1(mt) + επ]Φ[(log(δ)− log(π∗

1(mt)))/σπ]
,

if −π∗
1(mt) < επ < 1

δ
− π∗

1(mt) and 0 in other cases, where Φ[·] denotes the
normal standard cumulative function. On the one hand, the lower bound of
the interval [−π∗

1(mt), 1/δ − π∗
1(mt)] ensures that inflation is positive after a

cosmetic reform.
On the other hand, the upper one ensures that inflation is below the upper

bound δ( − 1), which we have introduced in equation (10). Thus, we denote
st = {s1, ..., st} and dt = {d1, ..., dt} for the history of regime states up to
period t, and the history of seigniorage-financed deficits up to t, respectively,
we also define

ξd(st, dt−1) =
1

σd(st, dt−1)
=

1√
σ2
d(ςt)d

ϑ
t−1

,

ξπ =
1

σπ

.

Proposition B1. The conditional likelihood is

p
(
πt|πt−1, s

t, dt−1, ϕ
)

=C1t

|ξπ| exp
{(

− ξ2π
2

)
[log πt − log π∗

1 (st)]
2
}

√
2πΦ [|ξπ| (− log δ − log [π∗

1 (st)])]πt

+ C2t
θ|ξd (st, dt−1) |λ (βt−1)√

2π [λ (βt) πt − θλ (βt−1)]πt

× exp
(
− ξ2d (st, dt−1)

2

{
log [λ (βt) πt − θλ (βt−1)]

− log πt − log γ − log
[
d̄ (mt)

] }2
)
,
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where

C1t =
(
1− Φ

[
|ξd (st, dt−1) |(

log {max [(λ (βt)− δθλ (βt−1)) /γ, 0]} − log
[
d̄ (mt)

]) ])
,

C2t = ι

(
min

[
θλ (βt−1)

λ (βt)
,
1

δ

]
< πt <

1

δ

)
.

Proof: It follows SWZ closely. The likelihood describes what can happen
at each t : there is a reform if ε̃dt (st, dt−1) ≥ ωt (st, dt−1). And if there is
no reform, the dynamics is driven by the seigniorage shock jointly with the
inflation equilibrium equation. We need to show that∫ 1/δ

0

p
(
πt|πt−1, dt−1, st, ϕ

)
dπt = 1.

Rearranging the definition of p (πt|πt−1, dt−1, st, ϕ), combining with the
definition of pd (εd|st, dt−1) and pπ (επ|mt) , and taking into account that εd
and επ are independent, we get:

p
(
πt|πt−1, s

t, dt−1, ϕ
)

=
(
1− Φ

[
ξd (st, dt−1)(

log {max [(λ (βt)− δθλ (βt−1)) /γ, 0]} − log
[
d̄ (mt)

]) ])
×

|ξπ| exp
{(

− ξ2π
2

)
[log πt − log π∗

1 (st)]
2
}

√
2πΦ [|ξπ| (− log δ − log [π∗

1 (st)])]πt

+ ι

(
min

[
θλ (βt−1)

λ (βt)
,
1

δ

]
< πt <

1

δ

)
θ|ξd (st, dt−1) |λ (βt−1)√

2π [λ (βt) πt − θλ (βt−1)] πt

× exp
(
− ξ2d (st, dt−1)

2

{
log [λ (βt)πt − θλ (βt−1)]

− log πt − log γ − log
[
d̄ (mt)

] }2
)

=Pr [ε̃dt (st, dt−1) ≥ ω̃t (st, dt−1)] pπ (πt − π∗
1 (st) |st)

+ ι

(
min

[
θλ (βt−1)

λ (βt)
,
1

δ

]
< πt <

1

δ

)
pd (εd|st, dt−1)

dεdt (st, dt−1)

dπt

,
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where we used

pπ
(
πt − π∗

1 (st)|st
)

=
|ξπ| exp

{(
− ξ2π

2

)
[log πt − log π∗

1 (st)]
2
}

√
2πΦ [|ξπ| (− log δ − log [π∗

1 (st)])]πt

,

Pr
[
ε̃dt (st, dt−1) ≥ ωt (st, dt−1)

]
=1− Φ

[
ξd (st, dt−1) |(

log {max [(λ (βt)− δθλ (βt−1)) /γ, 0]} − log
[
d̄ (mt)

]) ]
,

since ε̃dt ≥ ωt (st, dt−1) if and only if ε̃dt ≥ 1
γ
(λ (βt)− δθλ (βt−1))− d̄ (mt) if

and only if dt−1 ≥ 1
γ
(λ (βt)− δθλ (βt−1)), and the integration by substitution

pd (εd|st, dt−1)
dεdt (st, dt−1)

dπt

=
θ|ξd (st, dt−1) |λ (βt−1)√

2π [λ (βt)πt − θλ (βt−1)]πt

× exp
(
− ξ2d (st, dt−1)

2

{
log [λ (βt)πt − θλ (βt−1)]

− log πt − log γ − log
[
d̄ (mt)

] }2
)
,

to obtain an integral with respect to inflation using the equilibrium inflation
equation

γdt (st, dt−1) =
λ (βt) πt − θλ (βt−1)

πt

.

We now recall that ∫ 1/δ

0

pπ (πt − π∗
1 (st) |st) dπt = 1
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and that∫ 1/δ

0

ι
(
min

[
θλ (βt−1)

λ (βt)
,
1

δ

]
< πt <

1

δ

)
pd (εd|st, dt−1)

dεdt (st, dt−1)

dπt

dπt

=

∫ 1/δ

Lt

pd (εd|st, dt−1)
dεdt (st, dt−1)

dπt

dπt

=

∫ ωt(st,dt−1)

−d̄(st)

pd (εd|st, dt−1) dεdt (st, dt−1)

= Pr [ε̃dt (st, dt−1) < ω̃t (st, dt−1)]

where we used the integration by substitution of seigniorage by inflation and
where

Lt = min

[
θλ (βt−1)

λ (βt)
,
1

δ

]
;

then, collecting terms:∫ 1/δ

0

p
(
πt|πt−1, dt−1, st, ϕ

)
dπt

=

∫ 1/δ

0

[
Pr [ε̃dt (st, dt−1) ≥ ω̃t (st, dt−1)] pπ (πt − π∗

1 (st) |st)

+ ι

(
min

[
θλ (βt−1)

λ (βt)
,
1

δ

]
< πt <

1

δ

)
pd (εd|st, dt−1)

dεdt (st, dt−1)

dπt

]
dπt

=
[
Pr [ε̃dt (st, dt−1) ≥ ω̃t (st, dt−1)] + Pr [ε̃dt (st, dt−1) < ω̃t (st, dt−1)]

]
=1. Q.E.D.

Integrating out sT , we have the likelihood of interest

p
(
πT |ϕ

)
=

T∏
t=1

p
(
πt|πt−1, dt−1, ϕ

)
=

T∏
t=1

p
(
πt|st, πt−1, dt−1, ϕ

)
Pr

(
st|πt−1, dt−1, ϕ

)
where
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Pr
(
st|πt−1, dt−1, ϕ

)
=

h∑
st−1=1

Pr (st|st−1, Qs) Pr
(
st−1|πt−1, dt−1, ϕ

)
.

As in Sims, Waggoner and Zha (2008) and SWZ, the probability of having
observed a state, Pr

(
st−1|πt−1, dt−1, ϕ

)
can be updated recursively starting

with the assumption that

Pr
(
s0|π0, d0, ϕ

)
= 1/h.

That is, at the beginning, the econometrician does not know in which state he
is, so he assigns the same probability to each state. Thus, using the recursion
process, we have that:

Pr
(
st|πt, dt−1, ϕ

)
=

p (πt|πt−1, dt−1, st, ϕ) Pr (st|πt−1, dt−1, ϕ)∑h
st=1 [p (πt|πt−1, dt−1, st, ϕ) Pr (st|πt−1, dt−1, ϕ)]

.
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