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Tax progressivity and R&D employment

Diego d’Andria

Abstract

We study the relationship between tax progressivity and the size of the R&D
workforce, using a panel of European countries in 2000-2019. We review the theo-
retical literature which provides opposing predictions about such a relationship. We
then demonstrate that such relationship exists as a “within” effect, it is negative,
meaning that a larger tax progressivity is associated with smaller shares of em-
ployment in R&D activities, and it remains statistically significant after performing
a number of robustness tests. Differently to previous studies based on patenting
inventors, we find no effect due to top tax rates on the size of R&D employment.

JEL Classifications: O3, H24, J21, J24.
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1 Introduction

Innovation is an important driver of economic growth. Innovation is mostly, albeit not
exclusively, the outcome of investments in research and development (R&D) activities and
according to the available data, most of R&D spending is for personnel such as scientists
and technicians (OECD 2015 figures suggest that on average, 60% of R&D expenditures
are for personnel). Thus, any change that policy causes in the supply of R&D work may
significantly affect total investment costs for R&D and, therefore, aggregate innovation.
Taxes, in particular, are able to affect the innovative output of a country by changing
relative prices along multiple behavioural margins, e.g. the choices of how much to work,
where to work, in which occupations and on which specific job tasks. In order to make the
following discussion more systematic, we identify here three main channels through which
income taxes may affect R&D employment: an intensive margin, a location margin, and
an extensive margin.

The intensive margin, in the context of R&D work, means not only how much effort a
worker puts into the job, but also the risk-taking behaviour that in turn affects the degree
of novelty of the potentially successful innovation stemming from the R&D endeavour.
Previous studies have shown that payment schemes and complex interactions between
taxes and payment schemes are able to affect such behavioural margins, see Manso (2011)
for a formal model showing how different payment scheme designs may affect innovative
activity. More specifically on the interaction between taxation and payment schemes for
innovative employees, d’Andria (2016a) and d’Andria and Savin (2018) propose theoretical
models where different tax mixes may affect incentives to commit to more innovative versus
safer job tasks. While potentially an important channel per se, the present paper does
not study this kind of behavioral effects.

The geographical location choices of inventors and technical workers can be affected by
taxation, too, if different jurisdictions enjoy some degree of autonomy over setting tax
rates and tax base definitions. An established strand of the literature tries to estimate
such effects, see e.g. Moretti and Wilson (2017) and Akcigit, Baslandze, and Stantcheva
(2016). High tax rates, both at the personal and corporate level, are found to deter the
residence of innovators in favour of lower-tax jurisdictions. The latter seems particularly
true for “star” scientists. In this paper we indirectly look at the possibility that top tax
rates may provide further incentive to top scientists to leave the country and move to
jurisdictions offering lower taxes.

Finally the extensive margin, which is the main focus of this paper, means that workers
can decide to enter or to leave the R&D workforce, at a given point in time. The decision,
in most cases, is evaluated against an opportunity cost given by alternative uses of one’s
own time and effort, most notably as employees in jobs that are not related to R&D. The
majority of the research in this area concentrates on demand-side effects, e.g. those due
to tax credits and subsidies for R&D and how they affect R&D employees’ wages (e.g.
Goolsbee 1998, Goolsbee 2003, Lokshin and Mohnen 2013), or employment (e.g. Guceri
2018) or the amount of R&D spending (see e.g. Hall and Van Reenen 2000, Dimos and
Pugh 2016, d’Andria, Pontikakis, and Skonieczna 2018 and the literature reviews therein).
A strand of the literature looks at innovative entrepreneurs and how taxes shape their
entry decisions (Keuschnigg and Nielsen 2004, Gentry and Hubbard 2005, Cullen and
Gordon 2006). Similarly to R&D employees, entrepreneurs who are potentially innovative
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also evaluate their entry choice against alternative options: to work as employees, or as
non-innovative entrepreneurs. The tax schedule for personal as well as capital income
may alter relative prices, which in the context of entrepreneurial entry decisions are net
wages and net returns to investment, consequently changing the monetary incentives and
risk-reward profiles faced by potential entrepreneurs.

This paper specifically studies how personal income tax policy affects employees entry
into, and exit from, the R&D workforce. A notable paper which is to some extent close
to ours is Akcigit et al. (2018). In Akcigit et al. (2018) the authors provide estimates,
among others, of the effect of top personal marginal tax rates on the number of inventors
located in U.S. states, also looking at a long time horizon (thanks to long time series
data starting from 1940). One of the main findings is that a larger marginal tax rate is
associated with fewer resident inventors. Our contribution differs in at least two ways.
First, we look not only at inventors, but at the entire population of R&D personnel. This
choice in our view eliminates a confounding factor of the analysis, namely the fact that
innovators, defined as those people who successfully managed to apply for at least one
patent, are already a selected crowd which excludes not only unsuccessful inventors, but
also the potentially very large group of technicians and scientists who are involved in R&D
activities but never patent, for a variety of reasons.1 Also, firms might deem other ways
to protect their innovations as more effective than intellectual property rights (IPRs),
such as secrecy, lead time and complementary actions as discussed in Cohen, Nelson, and
Walsh (2000). The effectiveness of IPRs as a means to protect profit stemming from
invention is heterogeneous across industrial sectors and types of R&D (i.e., basic research
versus commercial development), thus by looking only at patenting inventors one would
likely focus on a sample that provides a biased representation of the general population
of inventors.

The second point of departure from Akcigit et al. (2018) is that we are interested here
in the effects of tax progressivity rather than solely in the level of tax rates. Intuition
would lead to predict that stronger personal tax progressivity is associated with less
participation to R&D activities, as the corresponding net return would be reduced for
high-income earners (which equates to say, for the most successful innovators). However,
one needs to consider that at any point in time agents choose whether to work or not in
R&D, by comparing the expected payoff from R&D work against the expected payoff from
working in an alternative job, whose wage can also be simultaneously affected by the tax
progressivity. The fact alone that tax progressivity may affect both the payoff from R&D
work and the opportunity cost from an alternative job already makes the relationship
between tax progressivity and aggregate R&D employment non-trivial. For instance, if a
worker expects potential upswings in income from the R&D work in case of a successful
innovation, then more progressive taxes might imply a reduced expected payoff from R&D
work compared to the alternative work option. However, the alternative work option might
instead offer higher wages if workers“pay to be scientists” (as hypothesized in Stern 2004),
which would imply that stronger progressivity makes R&D work relative more appealing.
Thus, even under perfect information the relationship between tax progressivity and R&D
employment is function of a number of variables and its sign cannot be easily generalized
ex ante.

1As an example of reasons not to patent, refer to the arguments presented in Calderini, Franzoni, and
Vezzulli (2007).

2



As we will clarify in the next section dedicated to previous findings in the literature,
the sign of the relationship between tax progressivity and R&D employment depends on
a number of assumptions regarding the informational regime and preferences about sci-
entific work. To provide insight on the matter and guidance as to which of the many
possible theoretical frameworks are compatible with empirical evidence, our analysis ex-
ploits macro data for 24 European countries in the period 2000 to 2019 and the main
findings can be summarized as follows. First, tax progressivity is found to be mostly a
“within” effect (in the context of the following analysis, “within” effects are longitudinal
effects at the level of countries), while “between” effects (the time-invariant differences
between countries) are never found to be statistically significant. Second, the “within”
effect is negative, meaning that countries increasing their tax progressivity experience on
average a reduction in their shares of R&D employees, after controlling for a number of
country-specific characteristics. The sign of this relationship is robust to a number of tests,
including using different definitions of tax progressivity. Third, when trying to replicate
results from U.S.-based studies reporting a negative correlation between top marginal tax
rates and resident innovators, we never find statistically robust coefficients in our sample.

2 Previous literature and hypotheses formulation

This section presents empirical results on scientists’ wages and summarizes results from
several distinct strands of literature, which are relevant to predict what relationship to
expect between tax progressivity and the extensive margin in R&D jobs. These results
are organized into four theoretical frameworks for an easier exposition and to provide a
link to the corresponding theoretical literature. As we are going to demonstrate, different
assumptions with respect to preferences and the information regime in the R&D job
market may produce radically different predictions.

The first three theoretical frameworks presented in the following subsections predict either
a positive or negative correlation between higher tax progressivity and the participation
to the R&D workforce. All these theories are based on the idea that agents are presented
with a choice of either working in an R&D job, or in an alternative job outside of R&D.
For example, one might think of engineers in an R&D position who may opt instead for
a managerial position or for another technical job that entails minimal scientific tasks.
The last theoretical framework presented hereafter instead points to the possibility that
potential R&D workers move out of a country. In the latter case, higher tax liabilities
may provide stronger incentives to do so.

All the following theoretical frameworks only look at monetary incentives. It is known
(e.g. Sauermann and Cohen 2010) that monetary incentives play a role in the decision-
making of employees involved in innovative processes, although other motives can be as
important, or even more important. All the theories that follow implicitly assume that
such non-pecuniary motives are not affected by pecuniary incentives, thus one can safely
assume a ceteris paribus condition w.r.t. to such non-pecuniary motives and focus in
isolation on the effects of net wages on labour choices.
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2.1 Scientists’ wages

It is quite challenging to get a clear idea of how much R&D workers are paid, due to
data limitations in several countries. Even more challenging is to estimate the wage these
workers would get, if employed in non-R&D functions. Generally speaking, R&D workers
possess on average high educational attainments, often a Ph.D. Data from OECD’s Edu-
cation at a Glance 2021 report that 68% of tertiary-educated adults in OECD countries
earn more than the median income for the country, against only 27% for adults with
below upper secondary attainment. Full-time workers with tertiary attainments have an
earnings advantage of about 57% across OECD countries, compared to those with upper
secondary education, and this advantage raises to 95% for those with a master or doctoral
degree.

To obtain a more precise estimate one may look at the earnings by scientists. These can
somewhat proxy for the wages earned by personnel involved in R&D jobs, though the latter
entail also more applied technical tasks, thus strictly speaking, they are not necessarily
classifiable as science. Data for the U.S.2 report the mean annual wage for Life, Physical,
and Social Science occupations equal to 79,360 USD, and the median income equal to
69,760 USD. Therefore, with an annual mean wage of 56,310 USD for all occupations in
the U.S., these earnings tend to be in the higher half of the income distribution, above
the median but not necessarily in the highest tax brackets. However, these figures mask a
large degree of heterogeneity. For example the occupational category for Physicists earns
a median annual salary of 129,850 USD, thus significantly larger than the median salary
for other scientific occupations and much larger than the median for all occupations.

These figures suggest that the relevant tax brackets for R&D employees should be in the
upper-half of the income distribution, though one cannot exclude that young scientists pay
a significant discount (the latter will be discussed more in depth in the next subsections
dealing with informational constraints). This, in turn, implies that higher tax rates for
high income earners (and as such, a stronger tax progressivity) should deter some workers
to pursue a career in R&D and opt for other career options. We derive the following two
hypotheses:

H0: tax progressivity is negatively correlated with the share of R&D workers over the
total workforce.

H0a: the relevant tax progressivity for hypothesis H0 is computed starting from the
average income for the country.

Hypothesis H0 provides a testable statement which we will test against alternative hy-
potheses described in the following subsections. Hypothesis H0a suggests which tax pro-
gressivity indicator should be the relevant one to detect such correlations, which will also
be useful in the empirical part of the paper when dealing with different definitions of tax
progressivity.

2These data were collected from the Bureau of Labour Statistics (accessed on 18/9/2021):
https://www.bls.gov/oes/current/oes190000.htm
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2.2 A preference for science

The idea that some intellectual professions may involve acceptance of a lower wage because
of preferences (e.g. due to some social return associated to the prestige of a given job) is
old and already defended in Adam Smith’s The Wealth of Nations. More recently, Stern
(2004) applied a similar concept to workers in R&D functions: if these people have a“taste
for science” and are willing to forego larger earnings for the possibility to engage in more
intellectually enticing tasks, then one would expect that wages in R&D are on average
lower than wages obtained in non-R&D functions, for an equal level of human capital. It
is important to stress that these workers may usually obtain wages from non-R&D jobs
that are above the mean for the country, as the returns to education discussed im previous
subsection imply. Thus, when talking about a possible discount for wages in R&D, that
discount is calculated relative to above-average wages.

If such theory is correct, then a more pronounced tax progressivity in the appropriate
range of incomes would reduce the (higher) wage from non-R&D jobs more than the
(lower) wage from R&D jobs, thus making R&D jobs at the margin more appealing.
Consequently, the prediction in this case would be that a more progressive tax schedule
should, ceteris paribus, drive more workers into R&D jobs. The kind of progressivity
that would drive the effect is one which does not consider the very extremes of the wage
distribution, rather according to the results presented in Stern (2004) the reduction in
wages should be relatively small (around 27% reduced wages on average) compared to the
full extension of incomes across the tax schedule. This produces the following hypotheses:

H1: tax progressivity is positively correlated with the share of R&D workers over the
total workforce.

H1a: the relevant tax progressivity for hypothesis H1 is computed starting from the
average income for the country.

These two new hypotheses may be directly contrasted, respectively, with previous hy-
potheses H0 and H0a.

2.3 Symmetric uncertainty

By symmetric uncertainty we mean a condition where agents themselves are unable to
estimate ex ante their ability as R&D employees and, hence, their productivity. Models
of symmetric uncertainty have been developed at least since Jovanovic (1979) and are
closely related to the literature on “bandit” problems, where a trade off occurs between
a payoff now and information that may increase payoffs in the future. These models
are often used to study markets for talent, that is, job markets for artists, performers,
sportsmen, entrepreneurs, and possibly scientists and other workers potentially involved
in R&D activities.

In particular here we focus on a model presented in Terviö (2009) and extended in d’Andria
(2018) to include personal taxes. In Terviö (2009) novice workers would like to pay an
entry price to a talent-driven job market (such price can be in the form of a reduced wage
compared to the wage they could obtain from an alternative job option), but they are
credit constrained and thus, they are able to accept only so much of a reduction in wage.
In the model, novices bear the cost of discovering their own talent, the assumption being
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that once discovered they can switch job at no cost and earn a higher wage, if found to
have high productivity. Thus, this entry price can be thought of as a lottery ticket, where
the lottery prize is to be discovered as a highly talented worker. In each period the number
of novices is limited compared to a first-best scenario without credit constraints, which
causes a shortage of yet-to-be-tested young workers compared to the first-best socially
optimal scenario.

The model predicts the following phenomena (as compared to the first-best scenario with-
out credit constraints): first, a reduced number of workers occurs in the talent-driven
sector; second, more low-ability workers stay in the talent-driven market (they would oth-
erwise exit the market); third, wages for those workers who are found to be highly talented
are larger. In d’Andria (2018) the model is extended to include personal income taxes,
and the main finding is that a more progressive tax schedule where the tax rate on novices’
wages is smaller than the tax rate on veteran workers in the talent-driven sector, moves
the market closer to a first-best scenario. The intuition behind this result is that a larger
tax on veterans’ wages increases exit of lower-ability mediocrities and raises the entry of
novices, while a lower tax rate on entry wages allows the market, at the equilibrium, to
accommodate more novices into the talent-driven sector. Overall the model predicts that
a more progressive tax schedule entails more workers in the talent-driven sector and that
the tax burden on low wages is also relevant as it affects the entry wages of novices.

Taken together these predictions can be summarized in the following hypotheses, where
the first is just equal to the one obtained assuming a “taste for science”.

H1: tax progressivity is positively correlated with the share of R&D workers over the
total workforce.

H1b: keeping the rest of the tax schedule constant, higher tax rates on low incomes deter
entry into R&D jobs, while higher tax rates on high incomes favor entry into R&D jobs.

2.4 Asymmetric information

Asymmetric information in the present context means that workers possess better knowl-
edge of their own ability, compared to prospect employers. Workers cannot reliably signal
their ability type to employers, thus the latter are only able to offer the same set of con-
tracts to all employees. The classical paper by Weiss (1980) is based on the assumption
that reservation wages positively correlate with ability. It shows that workers will be
exceedingly drawn from the bottom of the ability distribution and too few will be hired.
Firms will keep wages high even if this will cause job queues, as cutting wages would first
make the highest-ability workers to exit. In such setting, personal income taxes reduce
wages and thus act similarly to a wage cut, reducing the average ability of workers in the
sector but allowing for more (low-ability) entrants.

In Weiss (1980) the model is further extended to include the possibility that workers are
partitioned into “types”. Workers of the same type have the same observable characteris-
tics but different reservation wages and ability. These workers’ “types” may thus receive
different wages. In the case of R&D workers, observable characteristics might be for ex-
ample having patented at least once, or having worked for highly regarded companies or
institutions. If one further assumes that the ranking of the wages for each type are weakly
increasing in the average ability of each group, increasing tax progressivity in this setting
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would reduce entry more for the highest-ability individuals within each type group and
more so for the higher-ability types (similarly to models such as, e.g., Boadway and Sato
2011). Average productivity of the entire sector would fall down, consequently driving
down net wages up to a new equilibrium with lower entry, lower gross wages and lower av-
erage ability compared to before increasing tax progressivity. Overall these effects would
predict the following hypothesis, which is the same as H0 detailed previously:

H0: tax progressivity is negatively correlated with the share of R&D workers over the
total workforce.

It is the case to highlight that, even accepting by assumption that the job market for scien-
tists is mostly a market with asymmetric information, where scientists can better evaluate
their own ability compared to prospect employers, a number of additional assumptions
need to be met in order to claim the theoretical prediction of a negative relationship be-
tween top tax rates, or tax progressivity, and market entry (e.g. see on topic Boadway
and Keen 2006 and d’Andria 2018: although these papers are focused on the link between
taxes and entrepreneurial entry rather than on the job market for R&D workers, many of
the considerations discussed therein apply to R&D employment as well). Thus, hypoth-
esis H0 needs to be interpreted not as the predicted outcome of any and all models of
R&D job markets with asymmetric information, rather as the outcome of a subset of such
models featuring specific assumptions.

2.5 International mobility of workers

There is an ample empirical literature showing that elite scientists, particularly the very
top or superstar scientists, are highly mobile across countries. Scientists with more publi-
cations and who obtained larger funding are found to be more mobile (Azoulay, Ganguli,
and Zivin 2017). Taxes are also found to be a factor that co-determines, together with
other factors, the location choices of star scientists (Moretti and Wilson 2017).

The intuition behind these empirical results is quite straightforward: elite scientists earn
above-average wages, thus a rise in tax rates on the higher tax brackets provides them
with an incentive to move to low-tax jurisdictions. Other things staying the same, an
increase in top tax rates should then drive more top scientists abroad, thus reducing both
the number of scientists in the country and the average productivity of scientists there,
which could further drive down wages for scientists and thus their number. Overall these
observations lead to the following hypothesis:

H2: Higher top tax rates are negatively correlated with the share of R&D workers over
the total workforce.

3 Methodology and data

The dataset is obtained by combining data from Eurostat and the OECD. It comprises 24
European countries in the years between 2000 and 2019. In the following, the dependent
variable is always the share of R&D personnel and researchers in total active population
(labelled R&D workforce), as published by Eurostat and expressed as percentage points.
This statistics measures R&D personnel in full-time equivalent units. The variable is
defined by Eurostat as follows: it “consists of all individuals employed directly in the field
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of research and development (R & D), including persons providing direct services, such
as managers, administrators, and clerical staff. A R & D researcher can be employed in
the public or the private sector - including academia - to create new knowledge, products,
processes and methods, as well as to manage the projects concerned.” In the regression
models presented hereafter, the R&D workforce variable is expressed in basis points,
meaning that a value of 100 represents that 1% of the workforce is employed in R&D
jobs.

We employ several country-level controls, taken from Eurostat data. These are: GDP per
capita at PPS values, expressed as percentage of the median value across EU28 (gdp pc);
resident population expressed in thousands (population); tax revenues collected from per-
sonal taxation, as a percentage of GDP (revgdp); Gross Expenditure for R&D, in million
Euros (GERD); finally, the number of patent applications to the European Patent Of-
fice by priority year (patents). Taken together, these variables are meant to control for
demand-side characteristics of the labour market for R&D personnel, the degree of inno-
vative productivity (proxied by the number of patents per year) and the general level of
taxation levied on labour income. We also include controls for time trends, the method-
ology and selection of which is detailed in the next section. Note that the inclusion of the
GERD control variable also indirectly captures the effects of specific policies for R&D,
which could provide incentives to hire workers in such functions. It stands to reason that
any (tax or subsidy) incentive to R&D spending which indeed produces some addition-
ality (in the meaning used, e.g., in Dimos and Pugh 2016 and d’Andria, Pontikakis, and
Skonieczna 2018), will increase GERD as well as it includes all spending for R&D by
private and public entities.

The main regressors of interest are tax rates and measures of tax progressivity derived
from them. To this end we employ the OECD Taxing Wages database, in particular we
use: the average effective tax rate paid by a household earning the mean income and
composed of a single person without children (AVGTR); the same tax rate for a two-
earner married couple, one at 100% of average earnings and the other at 67%, with two
children (AVGTRcouple); the same rate computed for a single-person without children,
earning 67% (AVGTRlow) of the average income; the marginal tax rate for a single-
person without children, earning 167% of the average income (MTR167 ); finally, the top
statutory personal income tax rate (TOPTR).

Our preferred indicator of tax progressivity is the following one:

progtax =
MTR167 − AVGTRlow

MTR167
(1)

The variable progtax described by eq. (2) is used (unless stated otherwise) to produce the
results in the following tables. This index captures progressivity globally by computing
the difference between the marginal tax rate for high-income earners and the average
effective tax rate for low income earners. The difference is then divided by MTR167 to
express it in a more comparable form across countries which is not affected by the size of
top rates. Note that the values for AVGTRlow (similarly for AVGTRcouple and, though
less likely, for AVGTR) can also be negative, which simply increases the difference at the
numerator of eq. (2) and may produce values for progtax larger than 1. This indicator
captures at the same time the tax rate on low income which is the one that applies to the
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wages of young scientist, and a tax rate on high (but not necessarily top) income which
are, as discussed in previous section, those more likely earned by R&D workers.

Figure 1: Distribution of R&D employment and tax progressivity across countries

(a) Share of R&D personnel over total workforce (100 = 1%)

(b) Tax progressivity index progtax (zero = no progressivity)

Figures 1a and 1b show the distribution of our dependent variable and of the progressivity
index progtax as boxplots, computed across the years (from 2000 to 2019) available in the
sample. R&D workforce ranges from values as low as 0.43% (for Poland in 2009) up to
2.26% (for Finland in 2004). The progressivity index progtax ranges from very low values
(e.g. for Iceland and Denmark) up to the highest values observed for Germany. Note
again that progtax may also be larger than 1, which is the case if the average tax rate
on low income AVGTRlow is negative (e.g. see Spain and Poland). These graphs are
also useful to appreciate the variation observed in both variables during this interval of
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time, with some countries having basically no change (e.g. Switzerland), while others
experienced large swing in either R&D employment (e.g. Ireland, Slovenia, Denmark) or
tax progressivity (e.g. Estonia, Lithuania).

For added robustness, we also rerun the same regression models using different specifi-
cations of the progressivity index, either using the top statutory rate (TOPTR) instead
of MTR167, or substituting AVGTRlow with either AVGTR or AVGTRcouple. Different
definitions of the progressivity index offer a different point of view w.r.t. the kind of
entry mechanism to be tested. For instance, our main indicator, progtax, compares the
(marginal and average) tax rates on high and low incomes, which is the proper indicator if
one assumes that R&D jobs are high-income jobs (at least in expectation) while the out-
side option entails low-income jobs (a likely scenario for young workers at the beginning
of their professional careers). Similarly, the choice of using average or marginal tax rates
also implies different perspectives on the same job market. We follow the prevalent liter-
ature which defines tax progressivity using the difference between a marginal tax rate on
higher incomes and a (lower) average tax rate. We believe this is the right approach to the
kind of research questions posed here, as R&D activities are able to produce exceptional
upswings in value which are somewhat reflected in improved wages of the employees who
were more directly involved in the innovative process (see on topic the evidence presented
in Toivanen and Väänänen 2012 and Depalo and Di Addario 2015; also refer to the theo-
retical motivations discussed in d’Andria 2016b). It is reasonable to believe that workers
incorporate the expected value of such upswings in their evaluations and thus, marginal
tax rates on high incomes are those which would affect the corresponding monetary in-
centives to enter the R&D job market. This said, it is however the case to note that the
distribution of scientists’ ability is very skewed, see for example Sinatra et al. (2016). It
stands to reason that the very top marginal tax rates would only apply to very few sci-
entist and, thus, in expectation, play only a minor role in affecting entry decisions. This
is one reason why we believe that progressivity indicators built using MTR167 instead of
the top tax rates better capture the income range that is relevant for R&D employees.

The four alternative specifications for the progressivity index are the following:

progtax1 =
MTR167 − AVGTRlow

MTR167
(2)

progtax2 =
TOPTR − AVGTRlow

TOPTR
(3)

progtax3 =
MTR167 − AVGTR

MTR167
(4)

progtax4 =
MTR167 − AVGTRcouple

MTR167
(5)

The definition of progtax2 uses the top statutory tax rate instead of the marginal tax rate
on the income at 167% of average income. progtax3 and progtax4 use the average tax rate,
or the average tax rate for married couples, respectively, instead of the average tax rate on
low income (as explained, the latter is computed for a single without children, earning 67%
of average income). Note that the indexes progtax3 and progtax4 measure progressivity
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in a narrower interval of tax rates that is positioned between mean and high incomes.
The latter range should better capture the range of incomes where R&D workers should
evaluate their expected wages from R&D and non-R&D jobs, also if the “taste for science”
hypothesis holds. The indexes progtax1 and progtax2 instead capture progressivity on
an ample range of incomes ranging from low to high or very high incomes, and are thus
better fit to estimate the kind of relationship predicted by theoretical frameworks based
on either symmetric uncertainty or asymmetric information.

All results reported hereafter were obtained in R version 4.1.0 and using RStudio 1.4.1106.
All panel models were estimated using the plm package (see Croissant and Millo 2008)
while “between-within” models were estimated using the panelr package (Long 2021).
Robust errors are obtained using function coeftest from the package lmtest (Hothorn et
al. 2015). The tables reporting results were obtained using the package stargazer, see
Hlavac (2018).

4 Results

We first run a number of preliminary regression tests in order to better identify the model
which best fits our data. Section 4.1 summarizes the procedure we followed to select our
main model specification, which produced then the results presented in section 4.2

4.1 Preliminary regression tests

Table 1 compares results from a pooled OLS, a fixed-effects model with robust standard
errors, and a between-effects model. A Breusch-Pagan test rejects the hypothesis of
no significant fixed effects with p-value= 0.010. We also ran a “between-within” model3

which obtained similar results. These preliminary tests point to significant“within”effects
while “between” effects are never statistically significant. Therefore in the following we
concentrate on fixed-effects models only.

The size of the R&D workforce might be following common trajectories that are beyond
just a single year horizon. To test if time trends play a role we experimented with adding
either year dummies or a polynomial of an index of the years (where for our initial year,
2000, the index is set to 1) up to the seventeenth degree polynomial. We thus found that
a squared time trend provides the best fit. Table 2 shows a comparison of a fixed-effects
model without time trend, with a linear and then with a quadratic time trend. In the
following we will keep using a quadratic time trend to proceed in the analysis.

We then checked whether the effects happen with some lags. We lagged all independent
variables, using alternatively from one to five years lags. The model’s fit improves up to
2-year lag and then decreases. Table 3 reports the coefficients for the variable progtax
only, for the models with one, two and three year lags. Based on these results, in the
following we keep using 2-year lagged values. Interestingly the regression model employed
in Akcigit et al. (2018) employs three-year lags, so it is quite close to ours. Note that

3Also known as“within-between”and“Mundlak”models after the name of their first proponent (Mund-
lak 1978). We followed Bell and Jones (2015) and defined a model where regressors are included as
time-invariant country-specific means to capture the “between effects”, and as time-varying differences
from such means to capture “within” effects. Results are available upon request.
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Table 1: Results from pooled OLS, fixed effects and “between” effects models

Dependent variable:

R&D workforce

panel models
OLS Fixed effects “Between” effects

(1) (2) (3)

progtax −13.350 −46.759∗∗∗ 8.295
(9.800) (11.337) (56.055)

TOPTR 0.326∗∗ 0.166 0.113
(0.165) (0.173) (1.107)

revgdp 0.460 −0.012 1.074
(0.444) (0.752) (2.230)

gdp pc −0.021 −0.321∗∗∗ −0.048
(0.033) (0.063) (0.193)

log(population) −43.553∗∗∗ 53.105∗∗∗ −44.877∗∗

(2.426) (17.373) (15.396)

log(patents) 0.584 −9.476∗∗∗ 7.272
(2.300) (2.775) (11.192)

log(GERD) 33.986∗∗∗ 47.499∗∗∗ 26.733
(3.446) (2.973) (21.831)

Constant 229.704∗∗∗ 245.798∗∗∗

(13.150) (53.311)

Observations 366 366 23
R2 0.820 0.581 0.889
Adjusted R2 0.816 0.545 0.837

Note: Standard errors in parenthesis.
Note: The fixed-effects model is with HC1 robust errors.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

lagging the independent variables also has the additional advantage of mitigating potential
issues related to reverse causality bias (more on the point under section 4.3).

4.2 Main results

Armed with the insight from previous section we choose our main specification as a fixed-
effects model including a quadratic time trend and using 2-year lagged independent vari-
ables. Table 4 summarizes results obtained from our main model (column 1), and by
models obtained by substituting the tax progressivity indicator, progtax, with one of the
alternative specifications detailed previously.

Results from table 4 show that the alternative definitions for the progressivity indicator
lose statistical significance when using robust standard errors. Even then, the standard
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Table 2: Fixed-effects model: (1) without time trend, (2) with linear time trend, (3) with
quadratic time trend

Dependent variable:

R&D workforce

(1) (2) (3)

progtax −46.759∗ −51.194∗∗ −59.156∗∗

(25.621) (23.888) (23.681)

TOPTR 0.166 0.165 0.014
(0.333) (0.300) (0.286)

revgdp −0.012 −0.004 −0.113
(1.175) (1.147) (1.074)

gdp pc −0.321∗ −0.264 −0.311∗∗

(0.165) (0.165) (0.156)

log(population) 53.105 24.777 42.931
(54.248) (50.427) (54.613)

log(patents) −9.476∗∗ −8.894∗∗ −7.040∗∗

(3.838) (3.639) (3.467)

log(GERD) 47.499∗∗∗ 36.930∗∗∗ 41.563∗∗∗

(7.769) (10.186) (10.127)

Year 0.838 −1.672
(0.569) (1.132)

Year (squared) 0.111∗∗

(0.045)

Observations 366 366 366
R2 0.581 0.594 0.611
Adjusted R2 0.545 0.558 0.575

Note: HC1 robust standard errors in parenthesis.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

error is always smaller than the absolute value of the obtained coefficient, which indicates
that the sign of the relationship between tax progressivity and R&D workforce remains
clearly negative. It is interesting also to highlight that the coefficients for TOPTR are
always small and never statistically significant.

Taking results from our preferred regression model, an increase of plus one of the progtax
index would entail approximately a decrease of -0.35 percentage points in the share of
R&D workers. To better understand what this magnitude means, consider a country
starting from a tax schedule with an average effective tax rate on low incomes of 20%
and a marginal tax rate on high incomes of 40%. This would produce a progtax index
of 0.5. Let us now assume that a policy reform moderately changes these rates to 18%
and 45%, respectively. The corresponding progressivity index progtax would then increase
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Table 3: Fixed effects models with one, two and three years lagged regressors.

Dependent variable:

R&D workforce

(1) (2) (3)

progtax, 1-year lag −45.241∗∗

(19.829)

progtax, 2-year lag −34.705∗

(18.808)

progtax, 3-year lag −23.343
(19.342)

(controls omitted in table)

Observations 361 346 329
R2 0.605 0.610 0.605
Adjusted R2 0.569 0.573 0.566

Note: HC1 robust standard errors in parenthesis.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

from 0.5 to 0.6, which means that the predicted reduction in R&D employment would
be -0.035 percentage points. While that might seem a small variation, consider that the
mean value for the R&D workforce variable in our data is about 1.18%: in our example,
this mean value would decrease to 1.145%, which is not a big change in absolute terms,
but quite significant in relative terms. A much larger reform, for example one raising the
tax progressivity from 0.5 (as observed in some countries, refer again to Figure 1b) to 1.0,
would reduce R&D employment by -0.175 percentage points, thus the mean value would
drop from about 1.18% to about 1.0%.

We turn now to individual tax rates to shed light on specific mechanisms as detailed in
previous section 2. We omit the progressivity index (as it is built from the variables we
intend to employ now as regressors) and use instead the components of such index as
main regressors. Table 5 reports results, respectively for a model using the average tax
rate on low incomes and the marginal tax rate on high incomes (which are the variables
used to build progtax ), then in column (2) we use the top statutory tax rate in lieu of the
marginal tax rate (which are the variables used to build the index progtax2 ), finally in
column (3) we use the average tax rate on mean income (which are the variables used to
build the index progtax3 ). This alternative set of estimates allows to better understand
whether results obtained for the progressivity indexes are especially driven by changes in
high or low tax rates, rather than in the overall progressivity. Two results in Table 5 are
worth highlighting. First, tax rates on high income are never statistically significant per
se and always produce tiny coefficients. This result is incompatible with the idea that
the observed reduction in R&D employment due to higher tax progressivity is mostly due
to international mobility of elite scientists. Second, tax rates on mean and low incomes
produce small, but highly significant positive coefficients. The latter result is not coherent
with a theoretical framework featuring symmetric uncertainty, where one would expect
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Table 4: Results (fixed-effects model) using different definitions for the index of tax pro-
gressivity. Independent variables are lagged 2 years.

Dependent variable:

R&D workforce

(1) (2) (3) (4)

progtax −34.705∗

(18.808)

progtax2 −23.434
(17.056)

progtax3 −38.293
(29.189)

progtax4 −41.686
(29.581)

TOPTR −0.120 −0.063 −0.070 −0.085
(0.292) (0.316) (0.305) (0.306)

revgdp 1.304 1.592 1.248 1.201
(1.547) (1.504) (1.594) (1.586)

gdp pc −0.498∗∗ −0.505∗∗ −0.503∗∗ −0.504∗∗

(0.196) (0.196) (0.203) (0.206)

log(population) 36.328 38.302 38.997 34.163
(37.828) (37.553) (38.768) (38.823)

log(patents) −2.484 −3.052 −3.400 −2.650
(2.945) (2.950) (3.005) (2.846)

log(GERD) 24.358∗∗∗ 24.181∗∗∗ 23.984∗∗∗ 24.194∗∗∗

(8.544) (8.649) (8.649) (8.644)

Year −0.651 −0.533 −0.221 −0.304
(1.592) (1.602) (1.606) (1.580)

Year (squared) 0.076 0.070 0.055 0.060
(0.050) (0.051) (0.051) (0.050)

Observations 346 346 346 346
R2 0.610 0.606 0.606 0.608
Adjusted R2 0.573 0.569 0.569 0.570
F Statistic (df = 9; 315) 54.757∗∗∗ 53.851∗∗∗ 53.906∗∗∗ 54.203∗∗∗

Note: HC1 robust standard errors in parenthesis.
All independent variables are 2-year lags.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

the opposite sign (as tax rates on low income affect the wage of novices). It also casts
doubts on the plausibility of the “taste for science” hypothesis: to the extent that R&D
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wages fall close enough to mean income because of the discount that scientists would pay
to be scientists, increases in AVGTR should produce negative coefficients, while MTR167
should produce positive coefficients as Mincerian returns to human capital earned from
the outside (non-R&D) alternative job would be reduced.

In summary, we find no support for hypotheses H0a, H1, H1a and H2. Hypothesis H0 is
compatible with the results from our empirical estimation. H1b is also per se compatible,
but because H1 is not, it only provides limited support to the symmetric uncertainty
framework. These results point to asymmetric information as the only theoretical frame-
work that is potentially able to explain said results. The fact that the progressivity
measures computed using the tax rates on low income are found to better explain said
relationship, suggests that the entry wage into R&D jobs also play a role.

4.3 Robustness tests

We perform here a number of additional tests to check the robustness of the main results
presented in section 4.2.

First, we omit control variables one at a time. Results summarized in Table A3 in the
Appendix show that the coefficient obtained for progtax remains always significant at
least at the 0.10 level. We also redid all of our tests by omitting progtax in order to verify
whether the top tax rate alone would produce any meaningful coefficient, but this was
never the case in all of our models. Even when TOPTR shows some statistical significance
when used as a control variable together with one of our progressivity indicators, it loses
it if such indicator is omitted.

We rule out the possibility of a bias due to omitted variables, as the residuals from
all of our model specifications are distributed with mean zero and resembling rather
closely a Gaussian distribution. As an example, Figure 2 reports the density plots of
the residuals obtained from the four regression models presented in Table 4. A Shapiro-
Wilk test confirms that the residuals are approximately distributed according to a Normal
distribution.

Another set of tests was meant to verify non-stationarity for the time series. To this
end, the Phillips-Perron and the Augmented Dickey-Fuller test were used on the variables
progtax and R&D workforce, rejecting the null hypothesis that the time-series is non-
stationary with p-value < 0.01 for type 2 and 3 non-stationarity. Type-1 non-stationarity
(i.e. pure random walk) cannot be rejected, though, for progtax (while it is rejected at
p-value < 0.05 for the variable R&D workforce). We therefore checked if switching to first
differences of the variables would make the effect disappear, but it is not the case and the
coefficients obtained for progtax remain statistically significant at the 0.05 level (refer to
Table A4 in the Appendix).

R&D workers are endowed with highly specialized human capital which takes several years
to accumulate, whether by means of education or learning-by-doing. Therefore, it stands
to reason that while exit from R&D jobs into alternative occupations can be readily done
by these workers, the opposite probably cannot. To test the hypothesis of asymmetric
effects, based on whether tax progressivity increases or decreases, we estimate our fixed-
effects specification on a subset of data where we alternatively exclude non-positive or
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Figure 2: Density plot of residuals

(a) progtax (b) progtax2

(c) progtax3 (d) progtax4
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Table 5: Results (fixed-effects model) using tax rates instead of the tax progressivity
indicator. Independent variables are lagged 2 years.

Dependent variable:

R&D workforce

(1) (2) (3)

AVGTRlow 1.105∗∗∗ 1.201∗∗∗

(0.335) (0.337)

AVGTR 1.146∗∗∗

(0.410)

MTR167 0.178 0.116
(0.220) (0.226)

TOPTR −0.212
(0.192)

revgdp 0.621 1.013 0.505
(0.770) (0.801) (0.812)

gdp pc −0.453∗∗∗ −0.483∗∗∗ −0.446∗∗∗

(0.073) (0.074) (0.074)

log(population) 23.953 32.645∗∗ 20.152
(15.995) (15.495) (16.424)

log(patents) −2.763 −2.387 −3.749∗

(2.114) (2.111) (2.092)

log(GERD) 23.923∗∗∗ 23.775∗∗∗ 23.849∗∗∗

(3.429) (3.429) (3.446)

Year −0.302 −0.634 0.147
(0.895) (0.920) (0.899)

Year (squared) 0.066∗∗ 0.079∗∗ 0.045
(0.034) (0.035) (0.034)

Observations 346 346 346
R2 0.615 0.616 0.612
Adjusted R2 0.579 0.579 0.575
F Statistic (df = 9; 315) 55.984∗∗∗ 56.150∗∗∗ 55.126∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

non-negative changes in progtax. Table 6 reports results with non-lagged independent
variable, while Table 7 employs 2-year lags for comparability with Table 4.

We see that the coefficient for the non-negative changes is indeed larger and has higher
statistical significance compared to the main model specification. Moreover, coefficients
for the non-positive changes are smaller and lose all statistical significance, and in the
model with lags (see column (3) in Table A4) it even reverts sign. We conclude that
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the effects measured in previous models mostly capture exit from the R&D workers as-
sociated with a rise in tax progressivity. We can only assume that, having a longer time
series available, we might detect that entry into R&D work also reacts with statistical
significance to decreases in tax progressivity (as sort of a long-term behavioural reaction),
but unfortunately our data is constrained to a range of time which hardly allows for such
long-term analysis.

Table 6: Results (fixed-effects model) from the main model specification (1), and from a
reduced dataset only retaining observations where the change in progtax is non-negative
(2) or non-positive (3).

Dependent variable:

R&D workforce

(1) (2) (3)

progtax −46.759∗ −90.435∗∗∗ −37.540
(25.621) (28.414) (31.329)

TOPTR 0.166 0.550 −0.022
(0.333) (0.395) (0.379)

revgdp −0.012 −1.890 1.042
(1.175) (2.175) (1.310)

gdp pc −0.321∗ −0.224 −0.487∗

(0.165) (0.193) (0.277)

log(population) 53.105 12.176 13.410
(54.248) (56.815) (65.462)

log(patents) −9.476∗∗ −6.350 −15.727∗∗

(3.838) (4.994) (7.642)

log(GERD) 47.499∗∗∗ 57.753∗∗∗ 53.820∗∗∗

(7.769) (6.134) (10.668)

Observations 366 169 196
R2 0.581 0.672 0.556
Adjusted R2 0.545 0.604 0.482

Note: HC1 robust standard errors in parenthesis.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

A potential issue is endogeneity in the form of reverse causality. It stands to reason
that larger R&D investments, which would also imply a larger R&D workforce, can over
time produce more innovations and as a consequence, increase the GDP of a country.
Increased tax progressivity could then come as a byproduct of Wagner’s Law, which
predicts that richer countries on average have higher public expenditures due to services
(like healthcare) that might be in higher demand and be more efficiently supplied by the
public sector (e.g. because of their public good nature). If the latter is true, then the
correlation we found between R&D employment and tax progressivity would have inverted
causality direction compared to our interpretation of previous models’ results and would
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Table 7: Results (fixed-effects model using 2-year lags) from the main model specification
(1), and from a reduced dataset only retaining observations where the change in progtax
is non-negative (2) or non-positive (3).

Dependent variable:

R&D workforce

(1) (2) (3)

progtax −34.705∗ −139.669∗∗ 25.927
(25.682) (54.427) (37.841)

TOPTR −0.120 −1.064∗ 0.367
(0.362) (0.593) (0.423)

revgdp 1.304 −4.701 1.376
(1.608) (3.415) (2.236)

gdp pc −0.498∗∗ −0.057 −1.160∗∗∗

(0.201) (0.255) (0.336)

log(population) 36.328 189.910∗∗ 12.083
(37.597) (68.513) (36.752)

log(patents) −2.484 −1.605 −9.010
(3.505) (9.284) (6.421)

log(GERD) 24.358∗∗∗ 35.029∗∗∗ 42.523∗∗∗

(5.849) (11.695) (8.816)

Observations 346 38 76
R2 0.610 0.877 0.656
Adjusted R2 0.573 0.715 0.494

Note: HC1 robust standard errors in parenthesis.
All independent variables are 2-year lags.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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just capture a generally higher level of taxation, used to finance such increased public
spending. Another reason for reverse causality might be that larger R&D investment
causes more inequality over time via skill-biased technological change, which would then
increase demand for redistribution policies.

We rule out these possibilities on several grounds. First, our main model specification
employs two-year lags of the independent variables, thus mitigating reverse causality biases
thanks to the principle according to which the future cannot affect the past. Second, we
see that none of our indexes for tax progressivity correlate with GDP per capita, which
goes against both hypotheses of reverse causality mentioned above. By the same token,
R&D Workforce does not appear to predict larger production of patents (e.g. see the
correlation matrix in Table A2), which makes sense as productivity in innovation also
stems from capital investments, the accumulation of human capital and the nature of
the national innovation system. To put it in other words: a larger R&D workforce may
produce a larger absorptive capacity (in the meaning proposed in Cohen and Levinthal
1990) rather than more new-to-the-world innovation which is what patent counts proxy for.
Third, the kind of reverse causality based on Wagner’s Law would also feature a positive
correlation between tax rates on high incomes and the R&D workforce which, as stated
already, our results never detect. The reverse causality based on skill-biased technical
change would require that increases in tax progressivity are introduced after increases in
either investment in R&D (the GERD variable in our data) and/or in innovation output
(which we proxy with patents). Results shown in Table 8 demonstrate that this is not the
case and, if anything, patent counts positively correlate with tax progressivity, thus going
in the opposite direction compared to our main result of a negative relationship between
tax progressivity and R&D employment. We thus conclude that reverse causality is not
affecting our main results.

5 Conclusions

The main result stemming from this paper is that countries where personal tax progres-
sivity is larger, also have a smaller share of their workforce involved in R&D activities.
Because we do not detect any meaningful negative relation between higher tax rates and
the resident R&D workforce size, we conclude that most likely there is some mechanism
at play related to how workers evaluate entry into, and exit out of, the R&D job market.
Whether the main driver is some form of asymmetric information, symmetric uncertainty
coupled with credit constraints à la Terviö (2009) or some other specific theoretical set-
ting, is a matter that future research will need to clarify. Our empirical results only
support a theoretical framework based on asymmetric information.

Our results also suggest no meaningful relationship between marginal tax rates on high
incomes and the size of R&D employment in European countries. This needs to be
compared to Akcigit et al. (2018) where instead, a large and highly significant coefficient
was found for U.S. states when using a count of resident inventors as dependent variable.
We have only speculative explanations to offer here, which will require further research to
be fully clarified. The first reason for the differing results might be that European countries
impose more barriers to moving workers, in the form of heterogeneous institutions and
different languages, compared to U.S. states. To the extent that the behavioural reaction
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Table 8: Testing reverse causality: Results from a fixed-effects model using 2-year lags,
where the dependent variable is a measure of tax progressivity.

Dependent variable:

progtax progtax2 progtax3 progtax4

(1) (2) (3) (4)

gdp pc 0.0003 0.0001 0.00001 0.0001
(0.001) (0.001) (0.001) (0.001)

log(patents) 0.030∗ 0.022 0.006 0.016
(0.015) (0.015) (0.015) (0.015)

log(population) −0.248∗∗ −0.241∗∗ −0.044 −0.212∗

(0.111) (0.111) (0.111) (0.111)

revgdp −0.009∗∗ −0.004 −0.008∗∗ −0.007∗

(0.004) (0.004) (0.004) (0.004)

Year −0.004 −0.008∗ 0.001 0.001
(0.004) (0.004) (0.004) (0.004)

Year (squared) 0.0003∗ 0.001∗∗∗ −0.00003 0.00002
(0.0002) (0.0002) (0.0002) (0.0002)

Note: HC1 robust standard errors in parenthesis.
All independent variables are 2-year lags.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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to high marginal tax rates happens in the form of a relocation of the inventor, then such
propensity to move might be smaller in Europe compared to the U.S.. Indeed previous
studies identified a generally low mobility of workers across the European Union (e.g.
Barslund, Busse, and Schwarzwälder 2015), and the same might apply to the subset
of workers studied here. A second reason might be due to the choice of the dependent
variable. As already stated, innovators defined as those people who applied for at least one
patent are a selected crowd that excludes not only the unsuccessful innovators who tried
and failed to obtain a patent right, but also those whose innovations cannot be patented
at all, either because of the very nature of the innovation (e.g. some software and product
design), or because the company they work for favours secrecy over intellectual property.
It might be then that these innovators are more mobile geographically compared to the
rest of R&D workers, or they have more/better alternative options outside of R&D work
(e.g. as entrepreneurs or as academic researchers).

The findings presented herein also partly contrast the ones in Lehmann et al. (2016) where
the authors studied the relationship between tax progressivity and unemployment rates for
the general workforce, finding that lower average tax rates and higher tax progressivity are
both associated with smaller unemployment rates. Our results suggest that, specifically
for R&D workers, the relationship might have inverted sign. A likely explanation of the
difference can be found in R&D employees rarely falling in the very first income decile(s)
which are the ones producing the higher labour supply elasticities driving the results
in Lehmann et al. (2016). As we pointed out already, though, the choice of entering
R&D functions is best captured by a model where the main alternative option is non-
R&D employment, not unemployment. Thus our results are only partly comparable to
Lehmann et al. (2016).

Taken together our results bring important policy implications. To the extent that taxa-
tion produces (as a by-product of collecting tax revenues to finance public expenditures)
a social cost in the form of reduced commitment to R&D work, the results presented
herein claim that it is not the level but rather the shape of the tax schedule which may
cause such cost. While we believe that under significant international workers’ mobility,
high tax rates may bring a reduction in highly specialized workforce available in a coun-
try because of relocation (as demonstrated many times in the empirical literature cited
in previous sections), our results warn about a different mechanism that could, as well,
reduce the R&D workforce in absence of cross-border mobility.
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APPENDIX

Table A1: Descriptive statistics

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

R&D workforce 366 117.779 49.613 43.180 76.243 152.960 226.420
progtax 366 2.665 1.241 0.909 1.848 3.342 8.400
TOPTR 366 43.407 11.326 15.000 40.000 52.000 62.300
AVGTR 366 18.433 6.518 4.930 14.105 21.807 38.580
AVGTRcouple 366 14.739 7.053 2.030 9.978 19.452 36.800
AVGTRlow 366 8.456 8.477 −4.850 2.155 14.785 35.400
MTR167 366 44.367 10.545 21.280 37.000 51.500 70.960
revgdp 366 12.566 5.474 4.300 8.400 15.075 33.200
gdp pc 366 118.562 71.473 19.400 60.025 153.150 336.100
population 366 18,520.420 23,390.640 289.521 3,422.177 16,792.060 82,657.000
GERD 366 9,818.995 16,699.950 37.030 727.468 10,494.260 99,553.620
patents 366 2,395.048 4,951.050 2.660 93.947 1,862.925 24,396.570
progtax2 366 0.794 0.200 0.225 0.674 0.951 1.109
progtax3 366 0.571 0.155 0.156 0.511 0.674 0.878
progtax4 366 0.658 0.160 0.187 0.576 0.769 0.933

Table A2: Correlation matrix

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)

(1) R&D workforce 1 -0.132 0.528 0.438 0.420 0.408 0.510 0.668 0.741 -0.122 0.188 0.148 -0.146 -0.016 -0.095
(2) progtax -0.132 1 0.350 -0.708 -0.624 -0.486 0.076 -0.244 -0.089 0.239 0.045 0.012 0.637 0.831 0.746
(3) TOPTR 0.528 0.350 1 0.291 0.280 0.228 0.792 0.610 0.456 0.211 0.297 0.251 0.213 0.405 0.271
(4)AVGTR 0.438 -0.708 0.291 1 0.955 0.810 0.435 0.735 0.309 -0.168 0.040 0.060 -0.643 -0.638 -0.690
(5) AVGTRcouple 0.420 -0.624 0.280 0.955 1 0.930 0.383 0.773 0.279 -0.271 -0.086 -0.088 -0.771 -0.635 -0.764
(6) AVGTRlow 0.408 -0.486 0.228 0.810 0.930 1 0.298 0.740 0.205 -0.381 -0.224 -0.250 -0.866 -0.570 -0.751
(7) MTR167 0.510 0.076 0.792 0.435 0.383 0.298 1 0.619 0.480 -0.051 0.111 0.113 0.096 0.372 0.248
(8) revgdp 0.668 -0.244 0.610 0.735 0.773 0.740 0.619 1 0.641 -0.107 0.073 0.036 -0.385 -0.168 -0.317
(9) gdp pc 0.741 -0.089 0.456 0.309 0.279 0.205 0.480 0.641 1 -0.098 0.111 0.098 0.029 0.105 0.043
(10) population -0.122 0.239 0.211 -0.168 -0.271 -0.381 -0.051 -0.107 -0.098 1 0.832 0.794 0.450 0.216 0.317
(11) GERD 0.188 0.045 0.297 0.040 -0.086 -0.224 0.111 0.073 0.111 0.832 1 0.945 0.309 0.088 0.184
(12) patents 0.148 0.012 0.251 0.060 -0.088 -0.250 0.113 0.036 0.098 0.794 0.945 1 0.312 0.059 0.174
(13) progtax2 -0.146 0.637 0.213 -0.643 -0.771 -0.866 0.096 -0.385 0.029 0.450 0.309 0.312 1 0.788 0.913
(14) progtax3 -0.016 0.831 0.405 -0.638 -0.635 -0.570 0.372 -0.168 0.105 0.216 0.088 0.059 0.788 1 0.950
(15) progtax4 -0.095 0.746 0.271 -0.690 -0.764 -0.751 0.248 -0.317 0.043 0.317 0.184 0.174 0.913 0.950 1
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Table A3: Results from the main fixed effects model, with stepwise omission of a control
variable.

Dependent variable:

R&D workforce

(1) (2) (3) (4) (5) (6)

progtax −34.351∗ −42.416∗∗∗ −39.941∗∗ −37.838∗∗ −51.289∗∗ −36.718∗

(19.343) (15.115) (18.873) (18.417) (20.234) (19.404)

revgdp 1.116 1.032 1.228 0.607 1.972
(1.282) (1.488) (1.647) (1.427) (1.674)

TOPTR −0.005 0.217 0.002 −0.112 −0.178
(0.228) (0.335) (0.348) (0.335) (0.321)

gdp pc −0.486∗∗ −0.462∗∗ −0.452∗∗ −0.395∗∗ −0.245
(0.193) (0.186) (0.212) (0.177) (0.167)

log(population) 33.656 30.747 9.216 29.775 9.584
(39.229) (35.571) (56.214) (39.164) (44.948)

log(patents) −2.579 −2.812 −2.924 −4.225 4.517
(3.001) (2.927) (2.992) (2.923) (2.934)

log(GERD) 24.442∗∗∗ 24.312∗∗∗ 18.069∗∗ 23.189∗∗ 25.350∗∗∗

(8.606) (8.580) (8.685) (8.953) (8.068)

Year −0.508 −0.659 0.488 0.155 −1.477 1.922
(1.659) (1.562) (1.729) (1.545) (1.560) (1.313)

Year (squared) 0.070 0.078 0.044 0.054 0.101∗∗ 0.027
(0.054) (0.049) (0.056) (0.044) (0.045) (0.053)

Observations 346 370 346 346 375 354
R2 0.610 0.606 0.555 0.603 0.603 0.515
Adjusted R2 0.574 0.570 0.514 0.567 0.569 0.470

Note: HC1 robust standard errors in parenthesis.
All independent variables are 2-year lags.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A4: First-difference model

Dependent variable:

R&D workforce

progtax −17.025∗∗

(7.646)

TOPTR −0.082
(0.138)

revgdp −0.938∗

(0.522)

gdp pc −0.219∗∗∗

(0.052)

log(population) 3.585
(50.152)

log(patents) −0.557
(0.779)

log(GERD) 30.935∗∗∗

(7.312)

Year −1.830
(1.171)

Year (squared) 0.084∗∗

(0.037)

Constant 0.834
(1.113)

Observations 343
R2 0.173
Adjusted R2 0.150

Note: HC1 robust standard errors in parenthesis.
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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