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Abstract

A monopolistic seller jointly designs trading trules and (new) information about

a pay-off relevant state to a buyer with private types. When the new information

flips the ranking of willingness to pay across types, a screening menu of prices and

threshold disclosures is optimal. Conversely, when its impact is marginal, bunching
via a single posted price and threshold disclosure is (approximately) optimal, as in

standard mechanism design. While information design expands the scope for random

mechanisms to outperform their deterministic counterparts, its presence leads to an

equivalence result regarding sequential versus. static screening.

1 Introduction

The evolution of informational technology has significantly broadened sellers’ ways of
selling their products. They can design not only trading trules which specify how to allo-
cate products and charge payments to buyers, but also information policies which control
how much buyers learn about the products, thereby refining their willingness to pay. For
instance, they may offer a posted price, associated with full information, to everyone.
Alternatively, they could propose a rich menu of trading trules and information policies.
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comments and suggestions. I acknowledge funding from the European Research Council under the Euro-
pean Union’s Horizon 2020 research and innovation program (ERC, DMPDE, grant 101088307).
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As an example, many software such as McAfee and various (mobile) apps like Spotify
provide users with a single free trial version, followed by a single subscription fee sched-
ule. The trial version is, therefore, merely a learning opportunity for potential buyers to
make well-informed purchasing decisions. An opposite example is travel agency plat-
forms such as Priceline and Hotwire practice so-called "opaque pricing" by which, buyers
either book hotels with detailed information at standard prices or opt for limited details
at discounted prices. Thus, these travel agencies screen their buyers via a menu of prices
and information policies.

Price and information discrimination is also in the form of pre-order offers for buyers of
not-yet-released products, as exemplified by Google’s recent pre-order bonus for the Pixel
8. By contrast, well-known products are typically sold via a single posted price, coupled
with a single timeframe for free return to all buyers.

What leads to these diverse selling strategies? In particular, when is a single posted price
and disclosure policy optimal and conversely, when is it necessary to provide a screening
menu of prices and information? In addition, is there any benefit from offering random
mechanisms? Given that classical mechanism design results (Myerson (1981)) predict that
a posted price is optimal when the informational environment is fixed, answering these
questions explains how information design shapes optimal selling mechanisms. Regard-
ing the timing, can the seller’s revenue be improved by contracting with the buyer at
the “interim” stage where he knows his type but before the seller’s information disclo-
sure? Or equivalently, should she allow the buyer to walk away at the “posterior” stage
where he observes both his type and the information provided? Answering this question
helps understand the impact of consumer protection regulations that grant the consumer
a withdrawal right such as the European directive 2011/83/EU.1 Finally, if the buyer
privately observes the information disclosed by the seller, can the buyer enjoy any rent
induced from such an endogenously private information?

This paper aims to answer these questions. The model, as formally described in Section
2, features a seller (she) who sells an object to a buyer (he) with a privately known initial
valuation (initial type). The seller controls how much the buyer learns about an additional
component in his valuation. For example, this additional component represents what the
buyer learns via product trials. The seller designs a menu of information policies for dif-
ferent types of the buyer, and trading trules for different types and signals. Therefore, she
solves a joint mechanism and information design problem in which information plays

1For a detailed discussion on such policies, see Krähmer and Strausz (2015b).
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a dual role. First, it allows the seller to screen the buyer’s type through discriminatory
disclosure policies. Second, disclosed information serves as input for designing trading
trules. We focus on the case where the buyer privately observes the new information
(private signals) and investigate the case with public signals as a benchmark.

1.1 Summary of results

First, we establish a revenue-equivalence result regarding sequential vs. static screen-
ing. Specifically, we show that for any feasible and deterministic mechanism, there exists
a mechanism that generates the same revenue for the seller and non-negative payoff for
the buyer at any type and signal realization. As a consequence, there is no revenue loss if
contracting at the posterior stage when the buyer knows both his type and signal. This re-
sult counters the well-established idea in sequential screening suggesting that the seller’s
revenue is strictly higher if contracting with the buyer before, rather than after, he learns
additional information.2 The basic intuition is that the seller’s ability to flexibly design
information can crowd out the advantages of sequential over static screening. A practi-
cal implication is that afore-mentioned consumer protections do not necessarily harm the
seller, rationalizing the prevalence of free information in many markets.

Second, we investigate the (ir)relevance of signal privacy. In the benchmark problem
with public signals, only expected allocations and payments (over signals) matter. Hence,
this benchmark admits multiple solutions, including M⋆, a screening menu of threshold
disclosures π⋆ and prices paid conditional on trade.3 We provide a simple way to verify
the (ir)relevance of signal privacy, which is to check if, under M⋆, the highest type pays
the lowest price. If this is true, privacy of signals is irrelevant and M⋆ solves the seller’s
original problem. We find that this is not always the case and consequently, not observing
signals generally hurts the seller. Moreover, per-signal allocations and payments matter,
which significantly complicates the characterization of optimal mechanisms In particular,
it is not a priori clear how many signals are needed and which incentive compatibility (IC)
constraints are relevant. The seller must also handle double deviations when the buyer
lies about both his type and observed signal. Leveraging techniques for mechanisms
with non-convex type spaces, we make it always possible for the buyer to "correct his
lie," facilitating the characterization of optimal double deviations and thereby, optimal
mechanisms.

2See Courty and Li (2000) and Krähmer and Strausz (2015b).
3See Definition 4 for a formal description of M⋆.
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Our main result characterizes optimal mechanisms, starting with binary types. The seller
faces a trade-off between maximizing virtual surplus and minimizing the posterior rent.
A threshold disclosure rule, under which signal realization is either "good news" if the
state is above some cutoff or "bad news" otherwise, is optimal in both targets.4 Under the
optimal mechanism, the seller either screens the buyer’s types (via a menu of threshold
disclosures and posted prices) or bunches them (via a single posted price and threshold
disclosure), depending on whether the threshold disclosure π⋆ induces a threshold flip of
type order: the high type’s value after "bad news" is lower than the low type’s after "good
news." Specifically, screening is optimal when this flip of type order occurs, and bunching
otherwise.

To grasp the intuition, note that such a flip of type order occurs when the variation of val-
uations is mainly driven by the unknown component, leaving some room for the thresh-
old disclosure π⋆ to reverse the ranking of valuation. Information (about the unknown
component) matters, serving as a screening tool. Conversely, if the buyer’s type is the
main driver, which prevents π⋆ from flipping the type order, information is not crucial
and screening disappears. The optimal mechanism echoes its counterpart in standard
mechanism design where the buyer’s valuation is his type: a posted price (but associated
with threshold disclosure) is optimal.

The significance of this bunching vs. screening result is two-fold. First, it implies that in
the above-mentioned scenarios, eliciting signals and random mechanisms are worthless.
Second, it rationalizes observed mechanisms in practice. For coming-soon items, the un-
known component’s impact on the variation of valuations is large and a screening menu
is employed. By contrast, its impact is marginal for well-known products where bunching
comes into play. The significance of the unknown component also varies across different
industries. In the realm of hotels, it matters much more than in software or mobile apps,
leading to screening for the former and bunching for the latter.

Having characterized the optimal mechanism for the binary-type setting, we consider
larger type spaces. With more than two types, there are also cases where an information
policy reverses the ranking of valuations within a group of types but fails to do so for
another. Consequently, not only information but also trading probabilities are needed
to screen the buyer, leading to a random solution. However, the two scenarios of bunch-
ing/screening extend to the case with finitely many types, under stronger notions of flip
(no flip) of type order. Specifically, a screening menu is optimal under a partition flip by

4See Definition 1 for our formal definition of a threshold disclosure.
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π⋆ of type order - which generalizes the threshold flip of type order by π⋆, taking into
account medium types and their associated cut-off states. Instead, bunching via a fixed
price and threshold disclosure maximizes the seller’s revenue when there is uniformly
threshold preservation of type order under which, the type order is to be preserved be-
tween any pair of types and after any threshold disclosure. This strong requirement of
type order preservation helps deal with the challenge of determining the lowest type be-
ing served in a rich type space.

As binding (IC) constraints can involve local, global, and upward ones, characterizing
optimal random mechanisms becomes difficult. We thus focus on shedding light on how
random mechanisms outperform their deterministic counterparts.5 We first establish the
"no randomization at the top" result, extending the well-known "no distortion at the top"
to a setting with information design: the highest type receives an efficient (and hence,
deterministic) allocation. In turn, this implies an optimal contract for this type, featuring
a posted price and no disclosure. While randomization is not needed for the highest
type, it can be helpful for the lower types, leading to a better balance of the efficiency vs.
rent trade-off.6 We analyze, by examples, how random mechanisms facilitate screening
distant types as well as screening signals.

Finally, we consider a setting with a continuum of types. In this case, the optimality
of a screening menu of posted prices and threshold disclosures under a partition flip of
type order extends readily. Particularly, in a "continuous" model when valuation shifts
smoothly across types and states, this notion corresponds to the ranking of valuations
at the zero-virtual-value states by types being reversed. On the other hand, the fact that
there are always types whose valuations are close to others’ makes it impossible to flip
the ranking of willingness to pay across all types. We show that when the type order is
almost preserved, bunching via a fixed price-threshold disclosure bundle is approximately
optimal. If there is only two states, we establish the "exact" optimality of bunching within
the class of deterministic mechanisms..

5In the Online Appendix, we solve for the optimal random mechanism in several examples.
6While it is natural to expect the two-dimensionality feature of the buyer’s valuation to lead to random

mechanisms, the seller has another tool for randomization: the distribution of signals, which potentially
makes random mechanisms redundant. However, signal misreporting off-path shuts off this additional
instrument. Thus, random mechanisms arise to deter double deviations, minimizing the posterior rent.
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1.2 Related literature

We contribute to the literature on joint mechanism and information design, comprising
two main strands. The first, more related, strand endows the buyer with a private type,
initiated by Eső and Szentes (2007) who focus on full disclosure. Most other papers focus
on posted-price mechanisms,7 which in turn, makes it without loss of generality to focus on
binary-signal information structures (Li and Shi (2017), Guo et al. (2022), Wei and Green
(2023), Smolin (2023)).8 Our findings imply that these restrictions are not innocuous in
general.

Our model builds on Eső and Szentes (2007) who focus on full disclosure and an environ-
ment with (i) the above-mentioned "continuous" model and (ii) certain assumptions on
the valuation function. Under such an environment, they show that the upper bound of
revenue with public signals can be achieved via full disclosure, associated with a screen-
ing menu of prices (for the good) and information fees. However, their optimal mech-
anism is not incentive compatible and moreover, privacy of signals generally matters
outside their environment.9 Not only do we allow for general information structures,
we also characterize a joint design of information and trading trules in a more general
environment of type space and valuation functions. This allows us to uncover how infor-
mation design reshapes the optimal selling mechanism which features not just screening,
but also bunching and a random mechanism. At the same time, we strengthen Eső and
Szentes (2007)’s finding by showing that the irrelevance of signals extends to other (but
not all) environments, with appropriate information design.

Bergemann and Wambach (2015) and Wei and Green (2023) revisit Eső and Szentes (2007)’s
continuous model, showing that the latter’s optimal allocation can be implemented under
stronger participation constraints. We show that with deterministic allocations (including
Eső and Szentes (2007)’s), this is true for any feasible allocations, not just optimal. In turn,
this provides an alternative proof for Wei and Green (2023).10

In the second, less related, strand of this literature, the buyer’s valuation is the unknown

7In posted-price mechanisms, each type receives a posted price for the good and in some cases, a posted
fee for information.

8Exceptions include Zhu (2023) and Krähmer (2020) who establish full surplus extraction results when
the seller can correlate information disclosed to multiple buyers, and when randomizing over information
structures is allowed and the buyer’s type correlates with the unknown component, respectively.

9See Krähmer and Strausz (2015a) for a detailed discussion
10Wei and Green (2023) also shows that information disclosure triggers reverse price discrimination. We

show that this can also be derived from the properties of Eső and Szentes (2007)’s optimal mechanism.
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component itself. See, for example, Lewis and Sappington (1994), Bergemann and Pe-
sendorfer (2007), Bergemann et al. (2022). Without the buyer’s private types, information
cannot serve as a screening tool. Moreover, the buyer’s private information (about his
valuation) arrives only once, making the seller’s problem static.11

We also contribute to the literature on dynamic mechanism design in which handling
off-path misreporting is a notable issue. Eső and Szentes (2007) explicitly characterize an
agent’s optimal double deviation, which is to "correct the lie". However, such a lie correc-
tion is feasible only if the agent’s payoff shares a common support across types, which
is rather restrictive. We show that by leveraging mechanism design techniques for a
non-convex type space, lie correction is feasible even with non-common supports. More-
over, the existing literature (for instance, Battaglini (2005), Eső and Szentes (2007), Pavan
et al. (2014)) extensively relies on the first-order approach considering only local incentive
compatibility constraints.12 Instead, we characterize different scenarios of binding con-
straints, showing that global deviations (associated with double deviation off-path) lead
to bunching and random solutions.13

Finally, we contribute to the recent literature on Bayesian persuasion following Kamenica
and Gentzkow (2011), where a sender designs only information disclosure to affect a re-
ceiver’s action. When the latter has a private type, Kolotilin et al. (2017) show that with
binary actions and linear valuation functions, non-discriminatory disclosure is optimal.
In our joint design problem, the buyer’s action space (which is the menu of allocations
and payments) is endogenous and can consist of more than two options. We show that
the optimality of non-discriminatory disclosure, while not being true in general, holds in
some environments even if the seller also designs trading trules and the valuation func-
tion is non-linear.

11If the buyer in our model has no private type, the seller fully extracts the surplus by offering no disclo-
sure and a posted price for the good, which is equal to the expected valuation.

12The validity of this approach usually requires certain regularity conditions, which are not easy to satisfy,
see Battaglini and Lamba (2019).

13Even with full disclosure, which makes our problem become a standard dynamic screening problem,
random mechanisms can outperform their deterministic counterparts. See Example 3(b).
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2 Model

2.1 Environment

The principal, a seller (she) sells an object to an agent, the buyer (he). The buyer’s val-
uation for the object, v(θ, x) ∈ R+, depends on two components: (i) the buyer’s type
θ ∈ Θ ⊂ R and (ii) an unknown state x ∈ X ⊂ R. There are a N possible types and M
possible states: |Θ| = {θ1, θ2, · · · , θN} and |X| = {x1, x2, · · · , xM}.14 Random variables θ

and x are independent.15 Let f (θ) be the probability of each type θ and µ(x) of each state
x. Without loss of generality, assume f (θ) > 0 and µ(x) > 0 for all θ and x.

The realization of θ ∈ Θ is privately known by the buyer. Neither the seller nor the buyer
knows the state x ∈ X. The seller commits to a policy of information disclosure about the
state, formally defined in Section 2.2.

To define payoffs, let q ∈ [0, 1] be the trading probability and p ∈ R the expected trans-
fer from the buyer to the seller. The seller’s ex-post payoff is then p and the buyer’s is
v(θ, x)q − p.

Let

ϕ(θn, x) ≡ v(θ, x)− [v(θn+1, x)− v(θn, x)]
∑θ′>θn f (θn)

f (θn)

denote the buyer’s virtual value. Throughout, assume that both the valuation and virtual
valuation increase in the buyer’s type and the state.

Assumption 1 (Monotone value). v(θ, x) increases in θ and x.

Assumption 2 (Monotone virtual value). ϕ(θ, x) increases in θ and x.

Discussion of modeling assumptions: We study the infinite type and state spaces in
Section 4.4.

2.2 Selling mechanism

The seller designs, and ex ante commits to a grand mechanism or a menu of (i) informa-
tion policies for different types of the buyer and (ii) trading trules for different types and
information received by the buyer.

14See Section 4.4 for our results in a continuous type space.
15See Section 5.1 for our results when types and states are correlated.
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Information policies: We model information policies as information structures (experi-
ments) Π ≡ (S, π), which consists of a countable set of signals S ⊂ R,16 and a mapping π,
which associates to each state θ a distribution over signals π(· | x) ∈ ∆(S). Given a map-
ping π and a signal realization s ∈ S, the corresponding posterior belief Ψ(·|s) ∈ ∆(X) is
obtained by Bayes’ rule whenever possible, and is given by

µs,π(x) =
µ(x)π(s | x)

∑x′∈x g (x′)π (s | x′)

An example of information structures is the threshold rule, defined as follows.

Definition 1 (Threshold diclosure). If the information policy follows a threshold rule, each
signal realization is classified as either "good news" or "bad news". Moreover,

π(“good news”|x) =


1 if x > x̂,

λ if x < x̂,

λ if x = x̂,

for some x̂ ∈ X and λ ∈ [0, 1].

Thus, a threshold disclosure is represented by a pair (x̂, λ) where x̂ is the cut-off state and
λ the probability with which "good news" is sent at the cut-off state. It informs the buyer
whether the state is (weakly) higher or lower than x̂. To simplify notations, throughout
the paper, we use "sg" to represent "good news" and "sb" for "bad news".

A menu of experiments is a set {πθ}θ∈Θ. The paper focuses on the case in which the
buyer privately observes the signal. The benchmark case with public signals is examined
in Section 3.3.

Without loss of generality, assume that signals are ordered such that upon observing a
higher signal, the buyer’s posterior valuation is higher, as follows.

Assumption 3 (Ranking of signals).

s > s′ ⇔ ∑
x

v(θ, x)µs,πθ
(x) ≥ ∑

x
v(θ, x)µs′,πθ

(x)

Trading trules: An trading trule specifies the trading probability, q, and the expected
transfer from the buyer to the seller, p. Given the information structure, by the rev-
elation principle (see, for example, Myerson (1986)), we focus on direct trading trules
{q(θ, s), p(θ, s)}θ,s.

16Assuming S is a countable set of R is without loss.
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Thus, a selling mechanism is a tuple M ≡
{

πθ,
(
q(θ, s), p(θ, s)

)}
θ,s. The formal definitions

of a deterministic mechanism and its random counterpart are as follows.

Definition 2. An mechanism M is deterministic if under M, q(θ, s) ∈ {0, 1} for all θ ∈ Θ and
s ∈ S. M is random otherwise.

Timing: The timing of interactions is as follows:

1. The seller offers a selling mechanism M.

2. The buyer learns his type θ and decides to accept or reject the offer. In case of
acceptance, he reports a type θ̂ to receive information generated from πθ̂.

3. The buyer privately observes a signal s and reports a signal ŝ.

4. The allocation (q(θ̂, ŝ), p(θ̂, ŝ)) is implemented.

According to this timing, the buyer’s participation is decided at the interim state, as com-
monly assumed in the mechanism design literature. See our discussion on the timing
structure in Section 3.2.

2.3 Seller’s problem

An optimal mechanism refers to a revenue-maximizing mechanism. By the revelation
principle, it is without loss of generality to focus on direct mechanisms such that the
buyer finds it optimal to (i) participate in the mechanism, (ii) truthfully report his type,
and (iii) truthfully report his signal conditional on being truthful about his type. Let

u(θ, θ′, s, s′) ≡ ∑
x
[v(θ, x)q(θ′, s′)− p(θ′, s′)]Ψθ(x|s)

denote the ex-post payoff for type-θ buyer, who reports θ′, observes s, and reports s′. Note
that if the buyer lies about his type, he may want to lie again about the signal. In other
words, double deviations from truth-telling may be attractive. Let

s⋆(θ, θ′, s) ∈ argmax
s′

u(θ, θ′, s, s′)

be the optimal signal reporting of type-θ buyer who reports θ′ and observes signal s.17

The ex ante payoff for type-θ buyer, who reports θ′ and then s⋆(θ, θ′, s), is then given by

U(θ, θ′) ≡ ∑
x

∑
s

u(θ, θ′, s, s⋆(θ, θ′, s))π(s|x).

17In case the buyer is indifferent between signals off the equilibrium path, fix arbitrarily one of the seller-
preferred signals.
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With abuse of notation, let u(θ, s) ≡ u(θ, θ, s, s), u(θ, s, s′) ≡ u(θ, θ, s, s′), and U(θ) ≡
U(θ, θ). For the buyer to truthfully report his signal on the equilibrium path (conditional
on reporting his type truthfully), it must be that for all θ and s,

u(θ, s) ≥ u(θ, s, s′). (IC-signal)

For the buyer to truthfully report his type, it must be that for all θ and θ′,

U(θ) ≥ U(θ, θ′). (IC-type)

Finally, the buyer participates in the mechanism if and only if

U(θ) ≥ 0. (IR)

Formally, the seller’s maximization problem is given by

sup{
πθ ,q(θ,s),p(θ,s)

}
s,θ

∑
θ

∑
x

∑
s

p(θ, s)π(s|x)µ(x) f (θ)

s.t. (IR), (IC-type), (IC-signal).

3 Preliminary results

This section presents several preliminary results, which are helpful to characterize the
optimal mechanisms. For this purpose, we first provide formal definitions of an imple-
mentable (ex-post) allocation with private and public signals.

Definition 3. An ex-post allocation {Q(θ, x)}θ,x is implementable with public signals if there
exists a mechanism M̃ ≡

{
π̃θ,

(
q̃(θ, s), p̃(θ, s)

)}
θ,s under which, constraints (IR) and (IC-type)

are satisfied, and

Q(θ, x) ≡ ∑
s

q̃(θ, s)π̃θ(s|x)µ(x).

It is implementable with private signals if M̃ also satisfies (IC-signal).

Given that the main model concerns private signals, throughout the paper we say that
an ex-post allocation is implementable without specifying whether signals are private or
public when it is implementable with private signals.
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3.1 No distortion at the top and no rent at the bottom

We first show that the solution to the seller’s joint design problem bears commonly known
features: the highest type receives an efficient allocation while the lowest is fully ex-
tracted.

Lemma 1. Under any optimal mechanism,

(a) the lowest type gets a zero payoff: U(θ1) = 0, and

(b) the highest type receives an efficient allocation: q(θN, x) =

1 if v(θN, x) > 0,

∈ [0, 1] if v(θN, x) = 0.
.

Here, we prove Lemma 1(a) or the "no rent at the bottom" feature. we first show that the
buyer’s rent U(θ) increases in θ under any incentive-compatible mechanism. Consider
the buyer of type θ > θ1. By (IR), type θ prefers to reveal his type than mimicking some
type θ′ < θ and reporting signals truthfully. Hence,

U(θ) ≥ ∑
x

[
v(θ, x)q(θ′, s)− p(θ′, s)

]
πθ′(s|x)µ(x)

≥ ∑
x
[v(θ′, x)q(θ′, s)− p(θ′, s)]πθ′(s|x)µ(x)

= U(θ′)

Therefore, U(·) is an increasing function. Toward a contradiction, suppose U(θ1) = ε > 0
under an optimal mechanism M = {πθ, q(θ, s), p(θ, s)}. Then, by increasing p(θ, s) by
ε for all θ and s, the seller’s revenue strictly increases while no constraints are violated.
This contradicts with M being optimal. Thus, U(θ1) = 0.

We leave the proof of Part (b) or the "no distortion at the bottom" result in Appendix A.1.
The idea is that whenever this type does not trade with probability 1 (at some state), it
is possible to improve the seller’s revenue by letting him always trade under no disclo-
sure and a posted price which is equal to his original expected payment adding the new
surplus. An implicaition of this result is that random allocations are not needed for the
highest type. This is, however, not necessarily true for the lower types to which, offering
efficient allocations is generally sub-optimal. See Section 4.3.1 for a detailed discussion.

3.2 Sequential vs. static screening

We now establish an irrelevance result regarding the timing structure of interactions.
Specifically, within the class of deterministic mechanisms, there is no revenue loss from
allowing the buyer to walk away after information disclosure.
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Proposition 1.

(a) If an ex-post allocation {q(θ, x)}θ,x is implementable by a deterministic mechanism Md, then
it is implementable by a mechanism M̃ which generates the same revenue for the seller and a
positive pay-off for the buyer at any signal realization.

(b) Moreover, if Md is optimal, then M̃ is a menu of posted prices and binary-signal experiments
under which

1. each signal realization is either "good news" or "bad news", and

2. the buyer finds it optimal to buy the good if and only if he observes "good news."

We call such a menu of experiments and posted prices that satisfies the two conditions in
Proposition 1(b) a persuasive posted-price mechanism (PPM).

The proof of Part (a) is as follows. Consider an ex-post allocation {q(θ, x)}θ,x, which is
implemented by a deterministic mechanism Md ≡ {q(θ, s), p(θ, s), πθ}. Hence, under
Md, q(θ, s) ∈ {0, 1} for any θ and s. Fix θ ∈ Θ. Let sg

θ ≡ {s | q(θ, s) = 1} and sb
θ ≡ {s |

q(θ, s) = 0}. To induce signal truth-telling by θ, p(θ, s) = p(θ, s′) = p(θ) if s ∈ sg
θ ; and

p(θ, s) = p(θ, s′) ≡ p(θ) and if s ∈ sb
θ. Let

Q(θ) ≡ ∑
x

q(θ, x)µ(x)

represent type θ’s trade probability. Consider the following two cases:

Case 1: p(θ) < 0. Then for all s ∈ sb
θ, u(θ, s) = −p(θ) < 0. Suppose there exists s′ ∈ sg

θ ,
π(θ, s′) < 0.Then type θ who observes s′ (strictly) misreports a signal s ∈ sb

θ to receive a
negative transfer without buying the good. This contradicts with the incentive compati-
bility of Md. Hence, u(θ, s) ≥ 0 for all s and we can choose M̃ = Md.

Case 2: p(θ) ≥ 0. Revise Md to M̃ ≡ {π̃θ, q̃(θ, s), p̃(θ, s)} as follows. To get π̃θ from πθ,
replace any s ∈ sg

θ with "sg" ; and replace any s′ ∈ sb
θ, with "sb". The trading trule is given

by:

q̃(θ, s) =

1 if s = sg

0 if s = sb
, p̃(θ, s) =


p(θ) + p(θ)

1 − Q(θ)

Q(θ)
if s = sg

0 if s = sb

. (1)

In Appendix A.2, we show that under M̃, the buyer’s payoff is positive and moreover,
the seller’s revenue is the same as that under Md.
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To prove Proposition 1(b), note that by the "no rent at the bottom", type θ1 earns a zero
payoff at optimum. Therefore, if p(θ) < 0 for some type θ, type θ1 mimics θ and al-
ways report some signal s ∈ sb

θ to enjoy a strictly positive payoff. Consequently, if Md is
optimal, p(θ) ≥ 0 ∀θ. Then, as argued in Case 2 above, M̃ is a (PPM).

An implication of Proposition 1 is that if only deterministic mechanisms are allowed,
there is no loss for the seller to contract after the buyer observes both type and signal re-
alizations. Therefore, despite the sequential arrival of his private information, sequential
screening the buyer is not beneficial, unless random mechanisms are necessary.

3.3 (Ir)relevance of signal privacy

As the buyer privately observes signals only after the contract is signed, one might expect
that privacy of signals does not hurt the seller. To investigate this conjecture, we consider
a benchmark problem with public signals. In such a setting, per-signal design of trading
rule does not matter because the buyer’s incentive only depends on expected terms:

Q(θ, x) = ∑
s

q(θ, s)π(s|x), P(θ) = ∑
x

∑
s

q(θ, s)π(s|x)µ(x)

Using Q(θ, x) and p(θ), truth-telling (about types) condition write

∑
x

v(θ, x)Q(θ, x)µ(x)− P(θ) ≥ ∑
x

v(θ, x)Q(θ′, x)µ(x)− P(θ′), (IC-type)

and IR condition writes

∑
x

v(θ, x)Q(θ, x)µ(x)− P(θ) ≥ 0. (IR)

As a result, the seller’s problem reduces to

(P) sup
Q,P

∑
θ

P(θ) f (θ) s.t. (IC-type), (IR).

Under Assumption 1 and 2, only local IC constraints bind in (P). By standard arguments
(omitted), this problem reduces to point-wise maximization w.r.t q only:

sup
Q

∑
θ

∑
x

ϕ(θ, x)Q(θ, x)µ(x) f (θ). (⋆)

Let

x̂(θ) ≡

min{x | ϕ(θ, x) ≥ 0} if ϕ(θ, xM) ≥ 0,

+∞ if ϕ(θ, xM) < 0
(2)
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denote the lowest state at which type θ’s virtual value is non-negative. Note that x̂(θ)
decreases in θ by Assumption 2. If ϕ(θ, x) ̸= 0 for all θ and x, a solution to (⋆) exists and
is uniquely given by:18

Q(θ, x) = 1x≥x̂(θ). (3)

Expected payment is pinned down by local IC constraints and IR constraint for θ1.

P(θ1) = ∑
x≥x⋆(θ1)

v(θn, x)µ(x), (4)

P(θn) = P(θn−1) + ∑
x̂(θn)≤x<x̂(θn−1)

v(θn, x)µ(x). (5)

Lemma 2 (Benchmark problem). Suppose ϕ(θ, x) ̸= 0 for all θ and x. With public signals, the
optimal expected allocation is given by (3), and expected payment is given by (4) and (5).

The seller retains a certain level of freedom in designing information and per-signal terms
as long as (i) upon observing any signal, one knows whether the state is above or below
the cut-off x̂(θ) and (ii) expected terms are specified in Lemma 2. This leads to a mul-
tiplicity of solutions to (P), including the following menu of threshold disclosures and
prices (paid conditional on trade).

Definition 4. M⋆ ≡ {p⋆(θ, s), q⋆(θ, s), π⋆
θ}θ∈Θ,s∈{sg,sb} is a menu of threshold disclosures and

prices, in which

1. π⋆
θ (s

g|x) = 1x≥x̂(θ), where x̂(θ) is given by (2).

2. (q⋆, (θ, s), p⋆(θ)) =


(1,

P(θ)

∑x≥x̂(θ) µ(x)
) if s = sg,

(0, 0) if s = sb,

where P(θ) is given by (4) and (5).

As (P) is a relaxed problem of the seller’s original problem, its value provides an upper
bound on the seller’s revenue with private signals. Under a mild condition, Proposi-
tion 2(a) below shows that if this upper bound is tight, it can be attained via M⋆. The in-
tuition is that relative to other solutions to (P), M⋆ provides less information (just enough
to know the sign of virtual values) and a higher price to buy the good. Hence, if there ex-
ists a solution that induces truth-telling with private signals, so does M⋆. This is the case,
by Proposition 2(b), if and only if the highest type pays the lowest price under M⋆.

Proposition 2.
18When ϕ(θ, x) = 0, any q⋆(θ, x) ∈ [0, 1] is optimal.
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a) Suppose ϕ(θ, x) > 0 ∀θ, x. If q⋆(θ, x) is implementable with private signals, then it is via M⋆.

b) M⋆ implements q⋆(θ, x) with private signals if and only if p⋆(θN, sg) = min
θ

{p⋆(θ, sg)} .

It seems counter-intuitive that the highest type pays the lowest price (conditional on buy-
ing the good). However, it is worth noting that information disclosure can flip the ranking
of (posterior) willingness to pay across types, leading to non-monotone price discrimina-
tion.19 As to be clear in later sections, this occurs in some, but not all environments.

4 Main result

4.1 A restatement of the seller’s problem

Without loss of generality, assume that each signal induces a single (on-path) posterior
valuation. Therefore, each signal s observed by type-θ buyer corresponds to his on-path
posterior value after observing such a signal, given by

ωπθ(θ, s) ≡ ∑
x

v(θ, x)µs,πθ
(x)

Moreover, that the buyer reveals the realized signal is equivalent to him reporting his
posterior valuation. For any type θ, let

Ωθ ≡ {ω | ω = ωπθ(θ, s) for some s ∈ S}

be the set of all possible on-path posterior values for type θ. Then, requiring signal truth-
telling on-path is equivalent to ensuring truth-telling about on-path posterior values, or

ωq(θ, ω)− p(θ, ω) ≥ ωq(θ, ω′)− p(θ, ω′) ∀θ, ∀ω, ω′ ∈ Ωθ

As mentioned, the buyer may want to coordinate lies about the realized type and signal.
Given that the signal space is endogenous, this significantly complicates the character-
ization of truth-telling conditions. To deal with this, we extend the trading trule to be
defined on the set of all possible on-path and off-path posterior valuations, denoted by

Ω ≡ [v(θ1, x1), v(θN, xM)].

19That information disclosure can lead to non-monotone price discrimination has been observed in Bang
and Kim (2013) and Wei and Green (2023) where prices decrease in types. Throughout our paper, several
examples are presented where under M⋆, prices can be decreasing, increasing and even concave in types
(see Example 6).
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and leverage the fact that it is without loss of generality to require truthful signal report-
ing on this set Ω, rather than in only {Ωθ}θ,20 i.e.,

ωq(θ, ω)− p(θ, ω) ≥ ωq(θ, ω′)− p(θ, ω′) ∀θ, ∀ω, ω′ ∈ Ω (IC-value)

The following lema states a standard result regarding the characterization of (IC-value).

Lemma 3 (Myerson, 1981). An trading trule (q, p) : Θ × Ω → [0, 1]× R satisfies (IC-value)
if and only if

1. ωq(θ, ω)− p(θ, ω) = ω̂q(θ, ω̂)− p(θ, ω̂) +
∫ ω

ω̂
q(θ, z)dz,

2. q(θ, ω) increases in ω.

It then follows from Lemma 3 that the buyer, having lied about his type, reveals his true
(off-path) posterior valuation.

Lemma 4 (Optimal double deviations). Under any trading trule (q, p) : Θ × Ω → [0, 1]×R

that satisfies (IC-value), it is optimal for type θ who mimics θ′ and observe signal s to report his
off-path posterior valuation, given by

ωπθ(θ′, s) ≡ ∑
x

v(θ, x)µs,πθ′ (x)

The proof (omitted) is similar to what is called "correcting the lie" in the dynamic mech-
anism design literature. Often, this lie correction is made feasible by assuming that the
agent’s (new) private information shares a common support across types.21 This is not
applicable in our model as the buyer’s new private information, which is his posterior
valuation, is endogenous. By extending the trading trule to be defined in the extended
signal space Ω, we make it possible for the buyer to "correct his lie."22

Consider θ, θ′ ∈ Θ with θ > θ′. Then,

U(θ, θ′) ≡∑
x

∑
s
[ωπθ′ (θ, s)q(θ′, ωπθ′ (θ, s))− p(θ′, ωπθ′ (θ, s))]πθ′(s|x)µ(x)

=∑
x

∑
s

[
[ωπθ′ (θ′, s)q(θ′, ωπθ′ (θ′, s))− p(θ′, ωπθ′ (θ′, s))] + ∑

s

∫ ω
π

θ′ (θ,s)

ω
π

θ′ (θ′,s)
q(θ′, z)dz

]
πθ′(s|x)µ(x)

=U(θ′) + ∑
x

∑
s

∫ ω
π

θ′ (θ,s)

ω
π

θ′ (θ′,s)
q(θ′, z)dzπθ′(s|x)µ(x).

20See, for example, Skreta (2006), for mechanism design with non-convex type spaces.
21See Eső and Szentes (2007) and Krähmer and Strausz (2015b) for example.
22This trick can also be helpful in other dynamic mechanism design problems where the agent(s)’ private

information does not share common support across types.
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Thus, θ does not benefit from misreporting θ′ if and only if

U(θ)− U(θ′) ≥ ∑
x

∑
s

∫ ω
π

θ′ (θ,s)

ω
π

θ′ (θ′,s)
q(θ′, z)dzπθ′(s|x)µ(x).

By similar arguments, θ′ does not benefit from misreporting θ if and only if

U(θ)− U(θ′) ≤ ∑
x

∑
s

∫ ωπθ (θ,s)

ωπθ (θ′,s)
q(θ, z)dzπθ(s|x)µ(x).

To sum up, the seller’s problem can be expressed as follows.

(P) max
(π,q,U)

∑
θ

f (θ)
[
∑
x

∑
s

v(θ, x)q(θ, ωπθ(θ, s))πθ(s|x)µ(x)− U(θ)
]

s.t : ∀θ, U(θ)− U(θ′) ≥ ∑
x

∑
s

∫ ω
π

θ′ (θ,s)

ω
π

θ′ (θ′,s)
q(θ′, z)dzπθ′(s|x)µ(x) ∀θ′ < θ

U(θ)− U(θ′) ≤ ∑
x

∑
s

∫ ωπθ (θ′,s)

ωπθ (θ,s)
q(θ, z)dzπθ(s|x)µ(x) ∀θ′ > θ

U(θ) ≥ 0

q(θ, ω) increases in ω.

4.2 Binary types

In this section, we characterize the optimal mechanism for binary types. We derive two
findings. First, screening is optimal if and only if the ranking of willingness to pay is
flipped under a certain threshold disclosure and bunching is optimal otherwise. Second,
eliciting signals and random mechanisms are worthless. Formally, Θ = {θ2, θ1} and the
seller’s problem reduces to (Pb), given by

(Pb) max
(π,q,U)

∑
θ

f (θ)
[
∑
x

∑
s

v(θ, x)q(θ, ωπθ(θ, s))πθ(s|x)µ(x)− U(θ)
]

s.t : U(θ2)− U(θ1) ≥ ∑
x

∑
s

∫ ω
πθ1 (θ2,s)

ω
πθ1 (θ1,s)

q(θ1, z)dzπθ1(s|x)µ(x) (IC21)

U(θ2)− U(θ1) ≤ ∑
x

∑
s

∫ ω
πθ2 (θ2,s)

ω
πθ2 (θ1,s)

q(θ2, z)dzπh(s|x)µ(x) (IC12)

U(θ2) ≥ 0 (IR2)

U(θ1) ≥ 0 (IR1)

q(θ, ω) increases in ω.

To state the main result of this section, we introduce the following notion of type order
flip/preservation, which shapes the optimal mechanism. Recall that π⋆ is the threshold
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disclosure, as part of the menu M⋆ formally defined in Definition 4, associated with cut-
off states x⋆(θ1) and x̂(θ2) = x1.

Definition 5 (Threshold flip/preservation of type order by π⋆).

1. Under the threshold flip of type order by π⋆,

E[v(θ2, x) | x < x⋆(θ1)] ≤ E[v(θ1, x) | x ≥ x⋆(θ1)].

2. Under the threshold preservation of type order by π⋆,

E[v(θ2, x) | x < x⋆(θ1)] > E[v(θ1, x) | x ≥ x⋆(θ1)].

By Definition 5, π⋆ induces the threshold flip of type order when it overturns the ranking
of willingness to pay such that type θ2’s value after "bad news" being lower than type θ1’s
after "good news". This is the case when the unknown component x significantly matters,
creating room for π⋆ to distort the type order. By contrast, it does not happen in, for
example, an extreme case in which the ranking of valuation is entirely depends on the
buyer’s initial type, as in standard mechanism design problems.

We are now ready to state the main result of this section, assuming that type θ1’s vir-
tual value is either strictly positive or negative. Accordingly, the benchmark allocation is
unique, given by Q⋆(θ, x) = 1x≥x̂(θ).

Theorem 1 (Binary types). Fix Θ = {θ2, θ1}. There exists some λ ∈ [0, 1] and x̂ ∈ X, such
that in the unique optimal mechanism, the allocation is given by

q(θ2, x) = 1 ∀x, q(θ1, x) =


1 if x > x̂,

0 if x < x̂,

λ if x = x̂.

Moreover,

(a) Under the threshold flip of type order by π⋆, q(θ, x) = Q⋆(θ, x). A menu of posted prices and
threshold disclosures is optimal.

(b) Under the threshold preservation of type order by π⋆, q(θ, x) ̸= Q⋆(θ, x). A posted price,
associated with a uniform threshold disclosure, is optimal.

In short, Theorem 1 states that the optimal mechanism features screening whenever π⋆

leads to the threshold flip of type order and bunching otherwise. Intuitively, when the
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new information about the unknown component is important, it helps screen the buyer.
Conversely, when the ranking of willingness to pay mainly driven by the buyer’s type,
screening disappears. Then, the optimal mechanism closely resembles its counterpart
in standard mechanism design where the buyer’s valuation for the good is his type: a
posted price (but associated with threshold disclosure) is optimal. See Lemmas 5 and 6
for detailed discription of the optimal memechanism in the two scenarios.

To illustrate Theorem 1, consider the following examples.

Example 1 (Binary types and states). Θ = {θ2, θ1} and X = {x1, x2}. Types and states are
equally likely. Assume that ϕ(θ1, x1) < 0 < ϕ(θ1, x2) to make the problem non-trivial.

In this simple binary-type, binary-state setting, there are two scenarios of optimal mech-
anisms. If v(θ2, x1) ≥ v(θ1, x2), then π⋆ does not induce the threshold flip of type order.
By Theorem 1(a), a fixed price and threshold disclosure is optimal. On the other hand, if
v(θ2, x1) < v(θ1, x2), then π⋆ leads to the threshold flip of type order. By Theorem 1(b), a
menu of prices and threshold disclosures is optimal.

Example 2. Θ = {θ1, θ2} and X is a finite subset of N. Types and states are equally likely.
Valuations are given by: v(θ, x) = θ + x.

Let

∆θ ≡ v(θ2, x)− v(θ1, x) = θ2 − θ1 ∀x,

∆x ≡ v(θ, xM)− v(θ, x1) = xM − x1 ∀θ.

Then, ∆θ represents the variation of valuation due to the buyer’s type, whereas ∆x due to
the state x. For any state x̂ ∈ Ω,

E[v(θ2, x) | x < x̂]− E[v(θ1, x) | x ≥ x̂] =
(

θ2 +
x̂ − 1 + x1

2

)
−

(
θ1 +

x̂ + xM

2

)
= ∆θ −

∆x + 1
2

,

Thus, the threshold flip of type order happens if and only if

∆θ ≤
∆x + 1

2
, (6)

which is the case when the impact of the buyer’s type is relatively small, relative to that of
the unknown component. By Theorem 1, when (6) holds, it is optimal to offer a menu of
threshold disclosures and posted prices. Otherwise, a posted price, coupled with uniform
threshold disclosure, maximizes the seller’s revenue.23

23In particular, when ∆θ is too high, the seller does not benefit from information disclosure. In this case,
the optimal threshold for type l is the highest state (x⋆(θ1) = xM), which means no disclosure is provided.
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Remark 1 (Continuous states). Theorem 1 and its proof extends readily to the case with a contin-
uum of states. As an example, fix Θ = {θ1, θ2} and X = [0, 10], and both θ and x are uniformly
distributed. Then, for any state x̂ ∈ Ω, E[v(θ2, x) | x < x̂]− E[v(θ1, x) | x ≥ x̂] = ∆θ − 5.
Thus, a menu of prices and information is optimal if ∆ ≥ 5 and a fixed price coupling with a
threshold disclosure (for all types) is optimal if ∆ < 5.

Finally, Theorem 1 has two important implications:

Corollary 1. With N = 2, privacy of signals does not matter when the threshold flip of type order
happens under π⋆. It matters otherwise.

Corollary 2. With N = 2, the seller does not strictly benefit from using random mechanisms, nor
from eliciting signals.

What leads to the (ir)relevance of signal privacy and the optimality of deterministic mech-
anisms, signal-independent allocations will be explained when we present the key steps
of the proof of Theorem 1, to which we turn next.

4.2.1 Proof of Theorem 1

The proof of Theorem 1, relies on considering the following relaxed problem, denoted by
(RP b), which ignores (IC12) and (IR2).

(RP b) max
(π,q,U)

∑
θ

f (θ)
[
∑
x

∑
s

v(θ1, x)q(θ, ωπθ(θ, s))πθ(s|x)µ(x)− U(θ)
]

s.t : U(θ2)− U(θ1) ≥ ∑
x

∑
s

∫ ω
πθ1 (θ2,s)

ω
πθ1 (θ1,s)

q(θ1, z)dzπθ1(s|x)µ(x) (IC21)

U(θ1) ≥ 0 (IR1)

q(θ, ω) increases in ω. (MON)

In what follows, we prove Theorem 1 in four steps. First, we show that deterministic
mechanisms are optimal. This step, while standard, is helpful in decomposing the buyer’s
rent into two components: the ex ante rent (due to privacy of types) and the posterior
rent (due to privacy of signals). Second, using this rent decomposition, we establish the
optimality of binary-signal experiments. Third, we show that within the class of binary-
signal experiments, threshold disclosures are optimal. Finally, we characterize the two
scenarios of the optimal menu of threshold disclosures and prices, depending on whether
π⋆

θ1
leads to the threshold flip of type order.

Step 1: We establish the optimality of deterministic mechanisms. It is clear that (IC21) and
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(IR1) must bind. Then,

U(θ1) = 0, U(θ2) = ∑
x

∑
s

∫ ω
πθ1 (θ2,s)

ω
πθ1 (θ1,s)

q(θ1, z)dzπθ1(s|x)µ(x),

Using these expressions for U(θ1) and U(θ2), the seller’s revenue can be writeen as

(OBJ) ≡ f (θ2)∑
x

∑
s

v(θ2, x)q(θ2, ωπθ(θ, s))πθ2(s|x)µ(x)

+ f (θ1)∑
x

∑
s

[
v(θ1, x)q(θ1, ωπθ(θ, s))−

∫ ω
πθ1 (θ2,s)

ω
πθ1 (θ1,s)

q(θ1, z)dz

]
πθ1(s|x)µ(x)

Fix π. Then, this objective function (OBJ) is linear in q and the only remaining constraint
is (MON) which requires q(θ, ω) to be increasing. Consequently, it must be that

q(θ2, ωπθ(θ, s)) = 1 ∀s, (7)

given that v(θ2, x) ≥ 0 for all x; and there exists a cut-off signal ŝ(θ) such that for all θ,

q(θ, ωπθ(θ, s)) = 1s≥ŝ(θ) (8)

Step 2: We derive the sufficiency of binary-signal experiments. By (32) and (33),

(OBJ) = f (θ2)E[v(θ2, x)]

+ f (θ1)∑
x

s

∑
ŝ(θ1)

v(θ1, x)πθ1(s|x)µ(x)− ∑
x

s

∑
ŝ(θ1)

[ωπθ1 (θ2, s)− ωπθ1 (θ1, s)]
f (θ2)

f (θ1)
πθ1(s|x)µ(x)

−∑
x

ŝ(θ1)

∑
s
[ωπθ1 (θ2, s)− ωπθ1 (θ1, ŝ(θ1))]

f (θ2)

f (θ1)
πθ1(s|x)µ(x),

which is independent of πθ2 . Therefore, any πθ2 is optimal. To find optimal πθ1 , note
that it affects (OBJ) on via (i) the posterior value of type θ1 (who reveals his type) after
observing a signal s ≥ ŝ(θ1)) , (ii) the posterior value of type θ2 (who mimics θ1) after
observing either s < ŝ(θ1) or s ≥ ŝ(θ1)), and (iii) type θ1’s posterior value after the cut-off
signal, ŝ(θ1). Now replace all signals s ≥ ŝ(θ1) with single signal sg ("good news") and all
s < ŝ(θ1) with sb ("bad news"). Under this change, (i) and (ii) are not affected. Moreover,
the cut-off signal is sg and

ωπθ1 (θ1, sg) ≡ E[v(θ1, x) | s = sg] = E[v(θ1, x) | s ≥ ŝ(θ1)] ≥ E[v(θ1, x) | s = ŝ(θ1)] ≡ ωπθ1 (θ1, ŝ(θ1)).

In turn, this improves (OBJ), which increases in the cut-off signal. Therefore, it is optimal
to offer type θ1 a binary-signal experiment.
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Step 3: We now show that threshold disclosure is optimal. By replacing all signals s ≥
ŝ(θ1) (resp., s < ŝ(θ1)) with "good news" (resp., "bad news"),

(OBJ) = f (θ1)∑
x

v(θ1, x)πθ1(s
g|x)µ(x)− f (θ2)∑

x
[v(θ2, x)− v(θ1, x)]πθ1(s

g|x)µ(x)

− f (θ2)∑
x
[ωπθ1 (θ2, sb)− ωπθ1 (θ1, sg)]πθ1(s

b|x)µ(x)

= f (θ1)∑
x

[
ϕ(θ1, x)πθ1(s

g|x)︸ ︷︷ ︸
θ1’s virtual value

−max
{[

ωπθ1 (θ2, sb)− ωπθ1 (θ1, sg)
] f (θ2)

f (θ1)
, 0
}

πθ1(s
b|x)︸ ︷︷ ︸

θ2’s posterior rent

]
µ(x).

Fix the probability that signal "good news" is realized under πθ1 , ∑x πθ1(s
b|x)µ(x). Then, a

threshold disclosure minimizes θ2’s posterior rent by simultanenously maximizing ωπθ1 (θ2, sb)

and minimizing ωπθ1 (θ2, sb). Moreover, as ϕ(θ1, x) increases in x, a threshold disclosure
maximizes θ1’s expected virtual value.

Step 4: We now characterize two cases of the optimal mechanism. Let x̂ ∈ X be the
cut-off state associated with the optimal threshold disclosure for θ1 and λ ∈ [0, 1] be the
probability with which "good news" is sent at x̂. Then,

q(θ2, x) = 1 ∀x, q(θ1, x) =


1 if x > x̂,

0 if x < x̂,

λ if x = x̂.

Case 1: π⋆
θ1

induces the threshold flip of type order, or ω
π⋆

θ1 (θ2, sb) ≤ ω
π⋆

θ1 (θ1, sg). Then,
offering π⋆

θ1
with

(
x̂, λ

)
=

(
x⋆(θ1), 1

)
induces zero posterior rent for θ2, and creates

the highest expected virtual value for θ1’s, given by f (θ1)∑x≥x⋆(θ1)
ϕ(θ1, x)πθ1(s

g|x)µ(x).
Therefore, π⋆

θ1
is optimal. Moreover, with

(
x̂, λ

)
=

(
x⋆(θ1), 1

)
, type θ1’s allocation co-

incides with the benchmark Q⋆(θ1, x) = 1x≥x⋆(θ1)
. To implement this allocation, set

p(θ2, sb) = p(θ1, sb) = 0, and p(θ1, sg) = ω
π⋆

θ1 (θ1, sg) so that (IR1) binds, and p(θ2, sg)

is such that (IC21) binds, or

U(θ2) = U(θ2, θ1) ⇔ p(θ2, sg) = E[v(θ2, x)]−
[
ω

π⋆
θ1 (θ2, sg)− p(θ1, sg)

]
π⋆

θ1
(sg).

IR2 holds because

U(θ2) =
[
ω

π⋆
θ1 (θ2, sg)− ω

π⋆
θ1 (θ1, sg)

]
π⋆

θ1
(sg) ≥ 0
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IC12 is also satisfied given that

U(θ1, θ2) = E[v(θ1, x)]− p(θ2, sg)

= E[v(θ1, x)]− E[v(θ2, x)] +
[
ω

π⋆
θ1 (θ2, sg)− p(θ1, sg)

]
π⋆

θ1
(sg)

= E[v(θ1, x)]− E[v(θ2, x)] +
[
ω

π⋆
θ1 (θ2, sg)− ω

π⋆
θ1 (θ1, sg)

]
π⋆

θ1
(sg)

=
[
ω

π⋆
θ1 (θ1, sb)− ω

π⋆
θ1 (θ2, sb)

]
π⋆

θ1
(sb) < 0 = U(θ1)

We thus obtain Theorem 1(a):

Lemma 5. If π⋆ induces the threshold flip of type order, q(θ1, x) = Q⋆(θ1, x) = 1x≥x⋆(θ1)
, and

M⋆ ≡ {p⋆(θ), π⋆
θ}θ is optimal.

Case 2: π⋆
θ preserves the type order, or ω

π⋆
θ1 (θ2, sb) > ω

π⋆
θ1 (θ1, sg). Then, offering π⋆

θ1
to θ1

induces a strictly positive posterior rent for θ2. The seller trades off between θ1’s expected
virtual value and θ2’s posterior rent: on the one hand, she wants the threshold to be close
to the cut-off x⋆(θ1), maximizing θ1 ’s expected value; on the other hand, she desires to
induce a small posterior rent for θ2. Let π⋆⋆

θ1
be an optimal experiment for θ1, associated

with
(
x⋆⋆(θ1), λ⋆⋆

)
. We show that π⋆⋆

θ1
must preserves the type order. Formally:

Claim 1. ω
π⋆⋆

θ1 (θ2, sb) ≥ ω
π⋆⋆

θ1 (θ1, sg).

The detailed proof is in Appendix A.4. The logic is that given that ω
π⋆

θ1 (θ2, sb) ≤ ω
π⋆

θ1 (θ1, sg),
if π⋆⋆

θ1
flips the type order, i.e., ω

π⋆⋆
θ1 (θ2, sb) < ω

π⋆⋆
θ1 (θ1, sg), it is possible to construct π̃θ1 as-

sociated with
(
ω̃, λ̃

)
such that (i)

(
x⋆⋆(θ1), λ⋆⋆

)
is closer to

(
x⋆(θ1), 1

)
and (ii) ωπ̃θ1 (θ2, sb) ≤

ωπ̃θ1 (θ1, sg).. By (i), θ1 ’s expected virtual value under π̃θ1 is higher than that under π⋆
θ1

,
whereas by (ii), θ2’s poterior rent is zero under π̃θ1 . By Claim 1,

(OBJ) = f (θ1)∑
x

ϕ(θ1, x)πθ1(s
g|x)µ(x)− f (θ2)

[
ωπθ1 (θ2, sb)− ωπθ1 (θ1, sg)

]
πθ1(s

b)

=ωπθ1 (θ1, sg)
[

f (θ1)πθ1(s
g|x)µ(x) + f (θ2)

]
− E[v(θ2, x)].

Therefore,

π⋆⋆
θ1

∈ argmax
πθ1

ωπθ1 (θ1, sg)
[

f (θ1)πθ1(s
g, x) + f (θ2)

]
. (9)

and the optimal allocation is given by

q(θ2, x) = 1 ∀x, q(θ1, x) =


1 if x > x⋆⋆(θ1),

0 if x < x⋆⋆(θ1),

λ⋆⋆
θ1

if x = x⋆⋆(θ1).
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This allocation can be implemented by a fixed disclosure rule π⋆⋆
θ1

and a posted price

p⋆⋆(θ2) = p⋆⋆(θ1) = ω
π⋆⋆

θ1 (θ1, sg). (10)

to both types. To see this, note that by Claim 1, ω
π⋆⋆

θ1 (θ2, sb) ≥ ω
π⋆⋆

θ1 (θ1, sg) = p⋆⋆(θ2)

Hence, type θ2 always buys the good regardless of signal realization. Regarding type θ1,
ω

π⋆⋆
θ1 (θ1, sb) ≤ ω

π⋆⋆
θ1 (θ1, sg) = p⋆⋆(θ1). Hence, type θ1 buys the good only if "good news"

is realized.

Lemma 6. If π⋆ does not induce the threshold flip of type order,
(
x̂, λ

)
̸=

(
x⋆(θ1), 1

)
. A single-

option menu, {π⋆⋆
θ1

, p⋆⋆(θ1)} given by (9) and (10), is optimal.

We thus obtain Theorem 1(b).

4.3 Discrete types

With binary types, there are two scenarios of the optimal mechanism (screening/bunching),
depending on whether after information disclosure, the threshold flip of type order oc-
curs or not. With richer type sets, it can be the case that information disclosure flips the
order of a group of types but fails to do so for another group. Consequently, the charac-
terization of optimal mechanisms cannot be obtained as a simple extension of that in the
binary-type case. Moreover, as we will show, random mechanisms could be used to ef-
fectively screen signals and distant types. Despite these complications, we show that the
optimality of a rich (respectively, single-option) menu of prices and threshold disclosure
extends beyond the binary-type setting to a general model under stronger notions of type
order flip (respectively, preservation). This result is presented in Sections 4.3.2 and 4.3.3,
followed by an analysis on the role of random mechanisms in Section 4.3.1.

4.3.1 Revenue improvement via random mechanisms

Using Example 3 below, we illustrate how random mechanisms outperform their deter-
ministic counterparts in two aspects (i) screening distant types and (ii) screening signals
to improve the seller’s revenue and efficiency.24

Example 3. Θ = {θ1, θ2, θ3} and X = {x1, x2}. Types and states are equally likely. Valuations
are as follows.

Example 3(a) - Screening distant types: In this example, type θ3 ’s value is always higher
than type θ1’s. Therefore, if type θ1 trades with probability 1 for some signal (as in deter-

24In the Online Appendix, we fully characterize the optimal random mechanism in several examples.
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v(θ, x) x1 x2

θ3 6.5 10
θ2 0 7
θ1 0 4

Table 1: Example 3(a)

v(θ, x) x1 x2

θ3 5 5
θ2 2 5
θ1 0 4

Table 2: Example 3(b)

ministic mechanisms), it is optimal for type θ3 who mimics θ1 to (mis)report the realized
signal such that he always trades. Then, type θ1’s allocation is the same as type θ3’s from
the latter’s perspective, leading to bunching these types.25 In turn, this gives too much
rent for type θ3 , making it optimal to exclude type θ1 under deterministic mechanisms.

Claim 2. In Example 3(a), if only deterministic mechanisms are allowed, it is optimal to offer type
θ3 with no disclosure and a posted price p(θ3) = 6.75, type θ2 with full disclosure and a posted
price p(θ2) = 7, and to exclude type θ1.

The story, however, is different with random allocations. The key is that if θ1 trades with a
small probability (for any signal), this type’s allocation becomes unattractive to θ3. To see
this, modify the optimal deterministic mechanism by letting θ1 trade with a probability
ε ∈ [0, 3

4 ] and adjusting transfers such that truth-telling remains satisfied, as follows:

q(θ3, x) = 1∀x, q(θ2, x) = 1x=θ1 , q(θ1, x) =

ε if x = θ2,

0 if x = θ1,

p(θ3) = 6.5 − ε, p(θ2) = 7 − 2ε, p(θ1) = 5 paid conditional on trade occurs.

Then, expected payment by θ3 and θ2 reduces by ε; however, that by θ2 increases by 5ε
2 .

Overall, the seller’s revenue increases by f (θ1)
5ε
2 − [ f (θ2) + f (h)] ε = 3ε

2 > 0. There-
fore, random allocation helps the seller screen effectively distant types (types θ3 and θ1),
thereby, improving trade surplus extensively as well as the seller’s revenue.

Example 3(b) - Screening signals: In this example, type θ2’s value varies significantly
across states. This makes it optimal to exclude type θ2 at state x1, rather than "pooling"
the two states under deterministic mechanisms which allow either trade or no trade at
any signal realization. Formally, the optimal deterministic mechanism, stated in Claim 3

25In Example 3(a), if the seller employs deterministic mechanisms and serves type θ1, a fixed price p = 4,
associated with full disclosure is optimal.
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below, specifies:

q(θ3, x) = 1∀x, q(θ2, x) = q(θ1, x) = 1x=θ2 ,

which are implemented via full disclosure and a fixed price.

Claim 3. In Example 3(b), if only deterministic mechanisms are allowed, it is optimal to offer full
disclosure and a posted price p = 4.

Random mechanisms, on the other hand, arm the seller with the flexibility in designing
trade probabilities. This helps screen realized states by allowing trade to happen at a
small probability at low states. To see this, revise the optimal deterministic mechanism
by letting θ2 trade with probability δ ≤ 1

3 , such that now:

q(θ3, x) = 1∀x, q(θ1, x) = 1x=θ2 , p(θ3) = p(θ1) = 4,

(
q(θ2, x), p(θ2, x)

)
=

(1, 4) if x = x2

(δ, 2δ) if x = x1

, with δ ≤ 1
3

.

This revised mechanism differs from the optimal deterministic mechanism only in the
new trade created with type θ2 at state x1. Therefore, as long as this new trade creation
preserves incentive compatibility, the seller’s revenue increases by 2 f (θ2)µ(x1)δ > 0. We
show that this is the case in the Online Appendix.

This section generalizes the finding of optimal mechanisms with binary types (Theorem 1)
to a general model with finitely many types.

4.3.2 Optimality of screening

Recall that information disclosure can be used to screen the buyer of binary types when
it induces a threshold flip of type order. Similarly, information serves as a screening tool
in a richer type space under the following notion of type order flip:

Definition 6 (Partition flip of type order).

The partition flip of type order happens if E[v(θn+1, x) | x⋆(θn+1) ≤ x < x⋆(θn)] decreases in θ.

Under the partition flip of type order, the expected valuations over relevant partitions
of states decrease in types. As the relevant partition for a higher type consists of lower
states, such a type order flip requires the new information (about the state) to sufficiently
dominate the buyer’s initial type in driving valuation fluctuations. Indeed, it coincides
with the threshold flip notation when there are only two types. In a richer type set, more
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than one interior threshold is involved under the menu of threshold disclosure {π⋆
θ}θ,

leading to relevant partitions of states.

Theorem 2 below states the optimal mechanism under the partition flip of type order,
which features discriminatory information and prices.

Theorem 2 (Screening theorem). Under the partition flip of type order, the optimal allocation
is given by q(θ, x) = 1x≥x̂(θ). A menu of posted prices and threshold disclosures is optimal.

This result extends Theorem 1(a) to a model with more than two types, following the
same logic: when information disclosure matters sufficiently, it helps screen the buyer.
The only difference is that the partition flip of type order is required here, taking into
account interior types.

The proof proceeds by showing that under the partition flip of type order, M⋆ induces
truth-telling even if the seller does not observe signals. Therefore, offering M⋆ with the
buyer privately observing signals is equivalent to offering a menu of posted prices and
threshold disclosures {p⋆(θ), π⋆

θ}θ, where the posted price is equal to the payment paid
after "good news" in M⋆: p⋆(θ) = p⋆(θ, sg). This menu helps the seller achieve the upper
bound of revenue attained when signals are public signals; hence, it is optimal.

We close this section with an illustrative example.

Example 4. Θ = {θ3, θ2, θ1}. X is a finite subset of N. Types and states are equally likely.
Valuations are given by v(θ3, x) = x + ∆θ, v(θ2, x) = x, v(θ1, x) = x − ∆θ. Accordingly,
virtual values are given by ϕ(θ3, x) = x + ∆θ, ϕ(θ2, x) = x − ∆θ, ϕ(θ2, x) = x − 3∆θ.

In this example, v(θn+1, x)− v(θn, x) = ∆θ ∀x and n; ∆x ≡ v(θ, xM)− v(θ, x1) = xM − x1

∀θ. In addition, x⋆(θ3) = x1, x⋆(θ2) = ∆θ, and x⋆(θ1) = 3∆θ, which implies

E[v(θ3, x) | x⋆(θ3) ≤ x < x⋆(θ2)] =
3∆θ − 1 + x1

2
,

E[v(θ2, x) | x⋆(θ2) ≤ x < x⋆(θ1)] =
4∆θ − 1

2
,

E[v(θ1, x) | x⋆(θ1) ≤ x ≤ xM)] =
∆θ + xM − 1

2

Thus, the partition flip of type order happens if

3∆θ − 1 + x1 ≤ 4∆θ − 1 ≤ ∆θ + xM − 1 ⇔ x1 ≤ ∆θ ≤ ∆x,

which requires the impact of the unknown component to be higher than that of the
buyer’s type (and is of at least x1). If this is the case, by Theorem 2, it is optimal to
screen the buyer’s type using a screening menu of prices and threshold disclosure.
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4.3.3 Optimality of bunching

In the binary-type case, the benefit of screening disappears if the threshold disclosure rule
π⋆ fails to flip the ranking of willingness to pay by types. A similar story holds with more
than two types under a stronger notion of (no) threshold flip of type order:

Definition 7 (Uniformly no threshold flip of type order). Under uniformly no threshold flip
of type order,

E[v(θn+1, x | x < x̂] ≥ E[v(θn, x) | x ≥ x̂] ∀θ ∈ Θ, ∀x̂ ∈ X.

In words, this condition satisfies if under any threshold disclosure and for any type θ: θn’s
value after "bad news" must be higher than θ’s after "good news". This is more likely to
hold when valuation heterogeneity is mainly driven by the buyer’s type. For instance,
when θn’s values are always higher regardless of states, i.e., v(θn+1, x1) ≥ v(θn, xM), it is
impossible to flip their ranking of valuation after any rule of information disclosure, not
just the threshold ones.

We are now ready to state the main result of this section.

Theorem 3 (Bunching theorem). Under uniformly threshold preservation of type order, a
posted price, associated with a threshold disclosure, is optimal.

This result extends Theorem 1(b), carrying the same intuition: when valuation hetero-
geneity is mainly due to the buyer’s types, information about the state becomes inessen-
tial for (most types of) the buyer; as a result, its screening function shuts off. The only
difference is that no type order flip by any threshold disclosure is required here, of which
the role is to be explained.

The proof proceeds by solving a relaxed problem considering only deviating behaviors
under which all types mimic the lowest type being served. This problem mirrors that
for the binary-type case Θ = {θ2, θ1}, with the lowest type being served representing
type l and all the other types echoing type h. The optimality of bunching under uniformly
threshold preservation of type order follows similar arguments for that in the binary-type
setting under threshold preservation by π⋆. The lowest type being served, and thereby,
the optimal posted price and threshold disclosure can be explicitly characterized, lever-
aging the fact that threshold preservation holds uniformly regardless of pairs of types and
threshold rule.
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To end this section, revisit Example 4 for an illustration. In this example, for any x̂ ∈ X,

E[v(θ3, x) | x < x̂]− E[v(θ2, x) | x ≥ x̂] =
(
∆θ +

x̂ − 1 + x1

2
)
−

(
θ2 +

xM + x̂
2

)
= ∆θ −

∆x − 1
2

,

E[v(θ2, x) | x < x̂]− E[v(θ1, x) | x ≥ x̂] =
(
θ2 +

x̂ − 1 + x1

2
)
−

(
l − ∆θ +

xM + x̂
2

)
= ∆θ −

∆x − 1
2

,

where, just to recall, ∆θ and ∆x measure the impact of the buyer’s private type and the un-
known component in valuation variations, respectively. Therefore, uniformly threshold
preservation of type order occurs if

∆θ ≥
∆x − 1

2
,

which requires the buyer’s type to be significantly impactful, relative to the unknown
component. If this is the case, by (Theorem 3), information is not leveraged to screen the
buyer. A single price-threshold disclosure bundle is optimal.

4.4 Continuous types

All the proofs of our results extend readily if there is a continuum of states. The extension
to the infinite-type case, however, is not trivial. Nevertheless, we find that the previous
insights remain valid: Section 4.4.1 shows that a menu of prices and threshold disclosure
is optimal under the partition flip of valuation ranking across cut-off types; and Section
4.4.2 shows that a fixed price- threshold disclosure bundle is approximately optimal when
the type order is almost preserved.

Throughout this section, consider a continuum of types Θ = [θ1, θN] ⊂ R, endowed with
the distribution F(θ). We assume that F(θ) is differentiable in θ with density f (θ), and
moreover, v(θ, x) is differentiable in θ. Then, the virtual value in this environment is given
by

ϕc(θ, x) = v(θ, x)− vθ(θ, x)
1 − F(θ)

f (θ)
.

Similar to the finite-type case, we assume that ϕc(θ, x) increases in θ and x.

4.4.1 Optimality of a screening menu

By the monotonicity of the virtual values, each state x is associated with a cut-off type θx

above (respectively, below) which the buyer’s virtual value is non-negative (respectively,
negative). Formally,

θ⋆(x) ≡ inf{θ | ϕc(θ, x) ≥ 0}.
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Moreover, as ϕc(θ, x) increases in x, this cut-off type θx decreases in x. We use

Θx ≡ {θ⋆(x)}x∈X

to denote the type space consisting of only cut-off types. Even with a continuum of types,
there are finitely many cut-off types {θx}x∈X due to the finiteness of the state space. Ac-
cordingly, M⋆ comprises |Θx| options of prices and disclosure rules as if the type space
was Θx because each interval of types [θx+ , θx) is assigned the same option. Then, lever-
aging the screening theorem for discrete types Θx, we obtain the optimality of a menu of
price-information bundles with infinitely many types. Note that with a type space Θx,
the relevant partition of states reduces to a singleton x for type θ⋆(x).

Proposition 3. Fix Θ = [θ1, θN] and |X| < ∞. If v(θ⋆(x), x) increases in x, then a menu of
threshold disclosures and posted prices is optimal.

This result holds even if there is a continuum of states X = [x1, xM] and the valuation
function is continuous over states, by approximating an associated finite-state model as
the distance between states approaches zero.26

4.4.2 (Approximate) optimality of bunching

When valuations shift smoothly across (a continuum of) types, there are always types
whose valuations are sufficiently close to others’. This makes it impossible to preserve the
ranking of willingness to pay uniformly across the types. Consequently, the optimality
of bunching cannot be derived as an extension of Theorem 3 which shows that under
the uniformly threshold preservation of valuation ranking across finitely many types,
a fixed price-information bundle is optimal. Nevertheless, we establish the approximate
optimality of bunching under ε-uniformly threshold preservation of type order, formally
defined below.

Definition 8 (ε-uniformly threshold preservation of type order). ε-uniformly threshold preser-
vation of type order occurs if for some ε > 0,

E[v(θ + ε, x) | x ≤ x̂] ≥ E[v(θ, x) | x ≥ x̂] ∀θ, x̂.

The following proposition shows that as ε vanishes, the seller’s maximized revenue can
be approximated by offering a fixed price-threshold disclosure bundle. Formally, let Rε

26This is the case in, for example, the environments studied in Eső and Szentes (2007) and Wei and Green
(2023) under which the valuation function is concave in types and states, and the cross derivative is positive.
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represent the revenue guarantee if the seller offers a single posted price and threshold
disclosure rule under the ε-uniformly threshold preservation of type order, we find that:

Proposition 4. Rε → V(P) as ε → 0

Moreover, if there are only two states Ω = {x2, x1}, we establish the exact optimality of a
fixed price and disclosure rule within the class of deterministic mechanisms.

Proposition 5. Fix Θ = [θ1, θN] and X = {x2, x1}. If v(θ⋆(x1), x1) > v(θ⋆(x2), x2) and only
deterministic allocations are allowed, a posted price, associated with full disclosure, is optimal.

The idea of the proof is as follows. With binary states X = {x2, x1}, there are only
two cut-off types θ⋆(x2) and θ⋆(x1). Hence, the partition flip of type order reduces to
v(θ⋆(x1), x1) ≤ v(θ⋆(x2), x2). If this is the case, a menu of prices and threshold disclo-
sures is optimal by Proposition 3. If by contrast, v(θ⋆(x1), x1) ≤ v(θ⋆(x2), x2), the seller
adjusts the cut-off types to θ̃(x1), θ̃(x2) just enough to restore the partition flip of type or-
der: v(θ̃(x1), x1) = v(θ̃(x2), x2). In turn, at this boundary of the partition flip, the seller is
indifferent between offering a screening menu and a single option of price and informa-
tion. Put differently, bunching is optimal.

We end this section with a numerical example to illustrate Proposition 5.

Example 5. v(θ, x) = 3θ2 + 6θ + x, Θ = [0, 2], X = {8, 12}. Types and states are likely
equally.

In this example, ϕ(θ, x) = 3θ2 + 6θ + x − (6θ + 6)(2 − θ) = 9θ2 + x − 12. Thus, θ12 = 0
and θ8 = 2

3 . Hence, v(θ8, 8) = 43
3 and v(θ12, 12) = 12. As v(θ8, 8) > v(θ12, 12), no flip of

type order occurs. By Proposition 5, within the class of deterministic mechanism, offering
a fixed bundle of price and threshold disclosure to all types is optimal.

5 Discussion

5.1 Type and state are correlated

Our main model assumes that type and state are independently distributed. We now
consider the case underwhich, type and state are correlated. Formally, the state is now
distributed according to the distribution µθ(x). We partially extend the key insights of
our main model to this scenario. First, we establish that bunching remains optimal under
the global threshold preservation of type order, adjusted by the correlation of types and
states.
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Definition 9 (Correlation-adjusted global threshold preservation of type order).

Ex∼µθ+
[v(θ+, x)|x ≥ x̂] ≥ Ex∼µθ

[v(θ, x)|x < x̂] ∀x, ∀θ.

Proposition 6. Under the correlation-adjusted global threshold preservation of type order, a
posted price, associated with a fixed threshold disclosure rule is optimal.

That the distribution of states now is type-dependent has no technical impact. The proof
of Proposition 6 follows closely that of the bunching theorem in case of independence.

By contrast, a screening menu of threshold disclosures and prices is not necessarily opti-
mal when type and states are correlated.27 Technically, the correlation between type and
states distorts the virtual value, preventing us from directly applying the arguments used
in the main model of independence. While it is no longer tractable to characterize the
optimal mechanism when the new information flips the type order, we conjecture that it
continues to feature a screening menu. The exact shape of this menu is an open question.

To end this discussion, we show that with binary types and states, a menu of threshold
disclosures is optimal (and a single bundle of threshold disclosure and posted price is
optimal otherwise) under a certain condition of the following correlation-adjusted virtual
value.

ϕcorr(θ1, x) ≡ v(θ1, x)−
[
v(θ2, x)− v(θ1, x)

µθ1(x2)

µθ1(x2)

] f (θ2)

f (θ1)

Proposition 7. Fix Θ = {θ1, θ2} and X = {x1, x2}.

(a) If v(θ2, x1) ≥ v(θ1, x2), then a threshold disclosure and a posted price is optimal.

(b) If v(θ2, x1) ≤ v(θ1, x2) and ϕcorr(θ1, x1) ≤ 0 ≤ ϕcorr(θ2, x2), then a menu of threshold
disclosures and prices is optimal.

Note that part (a) of Propotion 7 is a special case of Proposition 6. The proof Part (b) is on
Appendix A.11.

5.2 Posterior rent and privacy of signals

As explained in the binary-type model, not observing signals generally hurts the seller
due to the presence of the buyer’s posterior rent. Specifically, implementing the bench-
mark allocation requires the seller to pay the buyer’s posterior rent (apart from his ex ante

27Indeed, when the buyer’s type is payoff-irrelevant and correlated with the state, Guo et al. (2022) shows
that interval disclosures can strictly outpeform threshold rules.
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rent), making V(P) < V(P). When valuation shifts smoothly across (infinite) types, the
relevance of signal privacy comes from a different reason. Indeed, any allocations imple-
mentable with private signals can be implemented without generating posterior rent to the
buyer.28 Therefore, if the seller fails to achieve the upper bound of revenue V(P), it is
due to an implementability issue. In such a scenario, information design can expand the
set of implementable allocations. To illustrate, consider the following example where the
benchmark allocation is implementable with private signals only if uninformative exper-
iments are possible.

Example 6. v(θ, x) = θ2 + θ + x− 2. Types and states are uniformly distributed over Θ = [0, 1]
and Ω = [0, 3].

In this example, p⋆(θ, sg) = −θ2 + 2
3 θ + 1. Moreover, p⋆(θ, sg) is a concave function in

[0, 1] with p(0, sg) = 1, p(1, sg) = 2
3 . Thus, p⋆(θN, sg) = minθ p⋆(θ, sg). Then by Propo-

sition 2, the seller implements the benchmark allocation via M⋆. Suppose the seller pro-
vides full disclosure to all types. To implement the benchmark allocation, it must be that
for any θ and x, q(θ, x) = 1x≥x̂(θ). For the buyer to report truthfully their states, it is
necessary that

p(θ, x) =

p(θ) if x ≥ x̂(θ),

p(θ) otherwise.

To prevent the lowest type θ1 from mimicking some type θ and always report x < x̂(θ), it
must be that p(θ) ≥ 0. Therefore,∫

x≥x̂(θ)
µ(x)dxp⋆(θ, sg) =

∫
x≥x̂(θ)

µ(x)dxp(θ) + p(θ)
∫

x≤x̂(θ)
µ(x)dx ≥

∫
x≥x̂(θ)

µ(x)dxp(θ)

where the equality uses the fact that all mechanisms implementing the benchmark allo-
cation share the same expected payment. Thus, p⋆(θ) ≥ p(θ) for all type θ.

Consider θ = 1
3 , we have p⋆(1

3 , sg) = 10
9 , and v(1

3 , x 1
3
) = 13

9 . Thus, v(1
3 , x(1

3)) > p⋆(1
3 , sg) ≥

p(1
3). Then, if the buyer observes any state x ∈ (p

(1
3), v(1

3 , x(1
3))

)
, it is optimal for him to

misreport state xM, receiving the good at a price lower than his valuation. Thus, the
benchmark allocation is not implementable under full disclosure.

5.3 Alternative proof for Wei and Green (2023)

Wei and Green (2023) revisit Eső and Szentes (2007)’s “continuous" model, adding a twist
28We omit the formal proof, which extends the arguments in Krähmer and Strausz (2015a) to a setting

with information design and possibly finitely many states.
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that the buyer can walk away after information disclosure. In this section, we solve the
former’s problem by directly modifying the latter’s optimal mechanism.29

Under Eső and Szentes (2007)’s optimal mechanism, the seller offers full disclosure and
a menu of "information fees" ĉ(·) and "strike prices" p̂(·) for the good to implement the
benchmark optimal allocation. Thus,

(
q(θ), p(θ)

)
∈

{(
0, ĉ(θ)

)
,
(
1, ĉ(θ) + p̂(θ)

)}
. This

menu is a deterministic mechanism. Therefore, following the arguments in the proof of
Proposition 1, it is revenue-equivalent to a persuasive-posted price mechanism which
offers type θ (i) a binary-signal experiment which sends "good news" if x ≥ xθ and "bad
news" otherwise, and (ii) a posted price.

p̃(θ) = ĉ(θ) + p̂(θ) +
ĉ(θ) [1 −Q(θ)]

Q(θ)
= p̂(θ) +

ĉ(θ)
Q(θ)

.

In addition, Wei and Green (2023) show that information design leads to reverse price
discrimination in the continuous model. This feature can also be obtained by leveraging
the properties of Eső and Szentes (2007)’s optimal mechanism. Let X(θ) ≡ 1

Q(θ)
represent

the inverted trade probability for θ. Then, p̃(θ) = p̂(θ) + ĉ(θ)X(θ), and

p̃′(θ) = p̂′(θ) + ĉ′(θ)X(θ) + ĉ(θ)X′(θ) = ĉ(θ)X′(θ) < 0,

where the second equality uses the fact that under Eső and Szentes (2007)’s optimal mech-
anism, ĉ(θ) and ĉ(θ) solves ĉ′(θ) = p̂′(θ)Q(θ) = p̂′(θ) 1

X(θ) , and the last uses X′(θ) < 0.
Thus, p̃(·) is a decreasing function.

5.4 On the number of signals

As we have seen, it is without loss of generality to offer binary-signal experiments with
deterministic allocation. This is no longer true when random mechanisms are necessary.
When the variations vary significantly across states, a rich menu is needed to screen the
states effectively. As a result, binary-signal experiments are not sufficient. In this section,
we illustrate this with a simple example where an optimal experiment sends at least three
signals to some type.

Example 7. Θ = {t3, θm, θl}, X = {xb, xg, x3, x4}. Types and states are equally likely.

29Indeed, this modified mechanism coincides with Wei and Green (2023)’s solution.
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v(θ, x) x1 x2 x3 x4

θ3 7 7 7 7
θ2 0 3 7 7
θ1 0 0 0 6

In this example, θ2’s valuation varies significantly across states with that at state x1 being
sufficiently low. If restricted to binary-signal experiments, the seller can only separate the
state space for type θm into two partitions which, under the optimal mechanism, include
{x1, x2} and {x3, x4}. Armed with three signals, the seller can distinguish a very unfavor-
able state x1 from a better one x2, fine-tuning the design of allocations. The formal proof
is in the Online Appendix.

A Appendices

A.1 Proof of Lemma 1

Let M ≡ {πθ, q(θ, s), p(θ, s)}θ,s be an optimal mechansim. Toward a contradiction, as-
sume that there exists x such that Q(θN, x) ≡ ∑s q(θ, s)πθN(s|x)µ(x) < 1. We now show
that the seller can improve her revenue by revising type θN contract to C̃ ≡ {π̃θN , p̃(θN)}
in which π̃θN provides no information and p̃(θN) is a posted price for the good, given by:

p̃(θN) = ∑
s

p(θN, s)πθN(s) + E[v(θN, x)]− ∑
x

v(θN, x)∑
s

q(θN, s)πθN(s|x)µ(x)

Note that

E[v(θN, x)]− ∑
x

v(θN, x)∑
s

q(θN, s)πθN(s|x)µ(x)

=∑
x

v(θN, x)µ(x)− ∑
x

v(θN, x)q(θN, x)µ(x)

=∑
x

v(θN, x)
[
1 − q(θN, x)

]
µ(x)

< 0,

where the inequality use q(θ, x) < 1 for some x by assumption. Therefore, type θN’s ex-
pected payment under C̃ is higher than that under his original contract, which is ∑s p(θN, s)πθN(s).
Thanks to this, to show that the seller’s revenue improves by revising type θN, it suffices
to show that the buyer reports his type truthfully. First, consider type θN. His payoff from
buying the good at the price p̃(θN) and no disclosure is

E[v(θN, x)]− p̃(θN) = ∑
x

∑
s

[
v(θN, x)q(θN, s)− p(θN, s)

]
πθN(s|x)µ(x),
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which is equal to that under his original contract. By the incentive compatibility of M, it
is, therefore, optimal for type θN to be truthful under C̃. Next, consider any type θ < θN.
If he mimics θN, he either does not buy the good to and gets a zero payoff or buys the
good and obtain

E[v(θ, x)]− p̃(θN)

=E[v(θ, x)]− E[v(θN, x)] + ∑
x

∑
s
[v(θN, x)q(θN, s)πθN(s|x)µ(x)− ∑

x
∑

s
p(θN, s)πθN(s|x)µ(x)

=E[v(θ, x)]− ∑
x

∑
s

v(θN, x)[1 − q(θN, s)]πθN(s|x)µ(x)− ∑
x

∑
s

p(θN, s)πθN(s|x)µ(x)

≤E[v(θ, x)]− ∑
x

∑
s

v(θ, x)[1 − q(θN, s)]πθN(s|x)µ(x)− ∑
x

∑
s

p(θN, s)πθN(s|x)µ(x)

=∑
x

∑
s

[
v(θ, x)q(θN, s)− p(θN, s)

]
πθN(s|x)µ(x),

which is type θ’s from mimicking θN and report signals truthfully under the M. Therefore,
if type θ reports truthfully under M, it is also the case when type θN receives C̃.

A.2 Proof of Proposition 1

We complete the arguments in the main text by showing that under Case 2: p(θ) > 0, M̃
induces truth-telling and hence, the seller’s revenue under M̃ is equal to that under Md.
Consider the buyer of type θ who reports θ′. There are two cases:

Case 1: θ′ ≥ θ. Suppose sg is realized. By misreporting sb, type θ gets a zero payoff,
whereas by truthfully reporting sg, he obtains:

∑x[v(θ, x)− p̃(θ′)]q(θ′, x)µ(x)

∑x q(θ′, x)µ(x)
≥

∑x[v(θ′, x)− p̃(θ′)]q(θ′, x)µ(x)

∑x q(θ′, x)µ(x)
≥ 0,

where the second inequality uses the fact that type θ’s payoff from truth-telling under Md

is non-negative, or

∑
x

[
[v(θ, x)− p(θ)]q(θ, x)− p(θ)[1 − q(θ, x)]

]
µ(x) = ∑

x
[v(θ′, x)− p̃(θ′)]q(θ′, x)µ(x) ≥ 0.

Thus, type θ truthfully reports that sg is realized. As a result, having reported type θ′ > θ,
type θ either always report sg or report signals truthfully.

Case 2: θ′ > θ. Suppose sb is realized. By reporting truthfully sb, the buyer gets a zero
payoff. By misreporting sg, he obtains

∑x[v(θ′, x)− p̃(θ′)][1 − q(θ, x)]µ(x)

∑x[1 − q(θ, x)]µ(x)
≤

∑x[v(θ′, x)− p(θ′)][1 − q(θ, x)]µ(x)

∑x[1 − q(θ, x)]µ(x)
≤ 0,
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where the first inequality uses

p̃(θ) = p(θ) + p(θ)
1 − Q(θ)

Q(θ)
≥ p(θ)

given that p(θ) ≥ 0, and the second uses the fact that truth-telling under Md requires type
θ to prefer truth-telling to always reporting a singal s ∈ sg (to always gets the good), or

∑
x

[
[v(θ, x)− p(θ)]q(θ, x)− p(θ)[1 − q(θ, x)]

]
µ(x) ≥ E[v(θ, x)]− p(θ)

⇔ ∑
x
[v(θ, x)− p(θ)][1 − q(θ, x)]µ(x) ≤ 0

Thus, it is optimal for type θ to reveal that sb is realized. As a result, having reported type
θ′ > θ, type θ either always report sb or report signals truthfully.

To sum up, in any case, type θ, who reports θ′, either (i) always report sb, (ii) always report
sg, or (iii) report signals truthfully. Then, his payoff is given by:

UM̃(θ,θ′) ≡max

{
0, E[v(θ, x)]− p̃(θ′, sg), ∑

x
[v(θ, x)− p̃(θ′, sg)]q(θ′, x)µ(x)

}

=max

{
0, E[v(θ, x)]− p̃(θ′, sg), ∑

x

[
[v(θ, x)− p(θ)]q(θ, x)− p(θ)[1 − q(θ, x)]

]
µ(x)

}

≤max

{
0, E[v(θ, x)]− p(θ′), ∑

x

[
[v(θ, x)− p(θ′)]q(θ, x)− p(θ′)[1 − q(θ, x)]

]
µ(x)

}
≤∑

x

[
[v(θ, x)− p(θ)]q(θ, x)− p(θ)[1 − q(θ, x)]

]
µ(x)}

=∑
x
[v(θ, x)− p̃(θ, sg)]q(θ′, x)µ(x), (11)

where the first inquality uses p̃(θ′, sg) ≥ p(θ′); and the second uses the fact that under
Md, type θ prefers truth-telling than reporting θ′ and then either always report s ∈ sb,
always report s ∈ sg, or report signals truthfu lly. Note that the right-hand side of (11)
is the type θ’s payoff from revealing his type and signal. Consequently, it is optimal for
type θ to be truthful. Then, the seller’s revenue under M̃ is

∑
θ

Q(θ) p̃(θ) f (θ) = ∑
θ

[
Q(θ)p(θ) + [1 − Q(θ)]p(θ)

]
f (θ),

which is equal to that under Md.
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A.3 Proof of Proposition 2

Part (a) Consider an arbitrary mechanism M ≡ {πθ, q(θ, s), p(θ, s)} that implements Q⋆.
Fix x ≥ x̂(θ), it must be that

∑
s

q(θ, s)π(s|x)µ(x) = Q⋆(θ, x) = 1.

Therefore, if π(s|x) > 0 then then q(θ, s) = 1, whereas if x < x̂(θ) and π(s|x) > 0 then
q(θ, s) = π(s|x) = 1. By similar arguments, if π(s|x) > 0 for some x < x̂(θ), then
q(θ, s) = π(s|x) = 1. Thus, for any signal s, q(θ, s) ∈ {0, 1} or M is a deterministic
mechanism. By Proposition 1 (b), there exists a persuasive posted-price mechanism that
implements Q⋆.

Part (b) -“Only If": Suppose ∃θ such that p⋆(θN, sg) > p⋆(θ, sg), we show that the buyer
misreports his type and hence, M⋆ fails to implement Q⋆. By truth-telling, type θN always
receives the good at price p⋆(θN, sg). By mimicking θ and always reporting sg, type θN

always gets the good at a lower price p(θ, sg). Therefore, type θN mimics θ when the seller
does not observe signals.

Part (b) -“If": Suppose p⋆(θN, sg) = minθ{p⋆(θ, sg)}, we show that M⋆ induces truth-
telling even if the seller does not observe signals and hence, implemements Q⋆. Consider
the buyer of type θ who reports θ′. By always reporting sb, he does not get the good and
pays nothing. By report signals truthfully, he obtains the good if and only if sg is realized.
By always reporting sg to always get the good. By always misreport signals, he gets the
good if and only if sb is realized. To sum up, his payoff is given by

UM⋆
(θ, θ′) ≡max

{
0, E[v(θ, x)]− p(θ′, sg), ∑

x≥x0

[v(θ, x)− p(θ′, sg)]µ(x), ∑
x<x0

[v(θ, x)− p(θ′, sg)]µ(x)

}

Note that if ∑x<x0
[v(θ, x)− p(θ′, sg)]µ(x) ≥ 0, then ∑x≥x0

[v(θ, x)− p(θ′, sg)]µ(x) ≥ 0. In
turn, this implies

∑
x<x0

[v(θ, x)− p(θ′, sg)]µ(x) ≤ ∑
x<x0

[v(θ, x)− p(θ′, sg)]µ(x) + ∑
x≥x0

[v(θ, x)− p(θ′, sg)]µ(x)

= E[v(θ, x)]− p(θN, sg).
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Thus, ∑x<x0
[v(θ, x)− p(θ′, sg)]µ(x) ≤ max{0, E[v(θ, x)]− p(θN, sg)} and:

UM⋆
(θ, θ′) =max

{
0, E[v(θ, x)]− p(θ′, sg), ∑

x≥x0

[v(θ, x)− p(θ′, sg)]µ(x)

}

≤max

{
0, E[v(θ, x)]− p(θN, sg), ∑

x≥x0

[v(θ, x)− p(θ′, sg)]µ(x)

}
≤ ∑

x≥x0

[v(θ, x)− p(θ, sg)]µ(x), (12)

where the first inequality uses p⋆(θN, sg) ≤ p⋆(θ′, sg) and the second uses the fact that
under M⋆ with public signals, type θ prefers truth-telling than reporting θ′ or θN and
then report signals truthfully. Note that the right-hand side of (12) is the type θ’s payoff
from revealing his type and signal. Consequently, it is optimal for type θ to be truthful
and M⋆ implements Q⋆.

A.4 Proof of Claim 1

Let

x(θ1) ≡max
{

x′ | x ≤ x⋆(θ1) : E[v(θ2, x) | x > x′] < E[v(θ1, x) | x > x′]
}

,

x(θ1) ≡min
{

x′ | x ≥ x⋆(θ1) : E[v(θ2, x) | x < x′] < E[v(θ1, x) | x > x′]
}

.

In what follows, we show that x⋆⋆(θ1) ∈ (x(θ1), x(θ1)), which implies that E[v(θ2, x) |
x < x⋆⋆(θ1)] < E[v(θ1, x) | x > x⋆⋆(θ1)], and thereby, completes the proof. Toward a
contradiction, assume not. Consider the following two cases:

Case 1: x⋆⋆(l) ∈ [x1, x(θ1)]. Then, the seller can do strictly better by offering a threshold
disclosure π̃(θ1) under which (i) the threshold is x+(θ1) and (ii) with probability λ̃, sg

is sent at x+(θ1) such that ωπ̃(θ1)(θ1, sg) = ωπ̃(θ1)(θ2, sb). Note that λ̃ exists because by
definition of x(θ1),

E[v(θ2, x) | x > x+(θ1)] > E[v(θ1, x) | x > x+(θ1)],

E[v(θ2, x) | x > x(θ1)] < E[v(θ1, x) | x > x(θ1)].

Thus, it must be that x⋆⋆(θ1) > x(θ1).

Case 2: x⋆⋆(θ1) ∈ [x(θ1), xM]. By similar arguments, the seller can do strictly better by
offering a threshold disclosure π̃(θ1) under which (i) the threshold is x−(θ1) and (ii) with
probability λ̂, sg is sent at x−(θ1), such that ωπ̂(θ1)(θ2, sg) = ωπ̂(θ1)(θ2, sb). Thus, we also
have x⋆⋆(θ1) < x(θ1).

To sum up, E[v(θ2, x) | x < x⋆⋆(θ1)] < E[v(θ1, x) | x > x⋆⋆(θ1)].
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A.5 Proof of Theorem 2

The key of the proof is to show that p⋆(θN) = minθ p⋆(θ). Then by Proposition 2, M⋆

implements Q⋆ with private signals. As M⋆ induces truth-telling even if the seller does
not observe signals, she can simply offer a menu of posted prices and threshold disclosure
{π⋆

θ , p⋆(θ)}θ, where p⋆(θ) = p⋆(θ, sg), and let the buyer decides whether to buy the good.

In the remaining of the proof, we prove p⋆(θN) = minθ p⋆(θ). Recall that

p⋆(θ1) = E[v(θ, x) | x ≥ x⋆(θ1)]

p⋆(θn+1) =
p⋆(θn)∑x≥x⋆(θn) µ(x) + ∑x⋆(θn+1)≤x<x⋆(θn) v(θn, x)µ(x)

∑x≥x⋆(θn+1)
µ(x)

Then, for all n, there are two expressions of price gaps between the two adjacent types, as
follows:

p⋆(θn+1)− p⋆(θn) =
[
E[v(θ, x) | x⋆(θn+1) ≤ x < x⋆(θn)]− p⋆(θn)

]∑⋆(θn+1)≤x<x⋆(θn) µ(x)

∑x≥x⋆(θn+1)
µ(x)

,

(13)

p⋆(θn+1)− p⋆(θn) =
[
E[v(θ, x) | x⋆(θn+1) ≤ x < x⋆(θn)]− p⋆(θn+1)

]∑x̂(θn+1)≤x<x⋆(θn) µ(x)

∑x≥x⋆(θn) µ(x)
.

(14)

Now, we prove p⋆(θN) = minθ p⋆(θ) by induction. First, p⋆(θ2) ≤ p⋆(θ1) because

p⋆(θ2)− p⋆(θ1) ∝
[
E[v(θ, x) | x⋆(θ2) ≤ x < x⋆(θ1)]− p⋆(θ1)

]
=

[
E[v(θ, x) | x⋆(θ2) ≤ x < x⋆(θ1)]− E[v(θ, x) | x ≥ x⋆(θ1)]

]
≤ 0,

where the inequality uses the partition flip of type order between θ2 and θ1. Second,
suppose p⋆(θn+1) ≤ p⋆(θn), then p⋆(θn+2) ≤ p⋆(θn+1) because

p⋆(θn+2)− p⋆(θn+1) ∝
[
E[v(θ, x) | x⋆(θn+2) ≤ x < x⋆(θn+1)]− p⋆(θn+1)

]
≤

[
E[v(θ, x) | x⋆(θn+1) ≤ x < x⋆(θn)]− p⋆(θn+1)

]
≤ 0

Then, p⋆(θn) decreases in n which implies p⋆(θN) = minθ p⋆(θ)
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A.6 Proof of Theorem 3

Let L be the lowest type being served under an optimal mechanism. Consider the follow-
ing relaxed problem (RP L), under which all types mimics L off-path:

(RP L) max
(π,q,U)

∑
θ≥L

[
∑
x

∑
s

v(θ, x)q(θ, ωπθ(θ, s))πθ(s|x)µ(x)− U(θ)
]

f (θ)

s.t. U(θ)− U(L) ≥ ∑
x

∑
s

∫ ωπL (θ,s)

ωπL (L,s)
q(L, z)dzπL(s|x)µ(x) ∀θ > L (ICθL)

U(L) ≥ 0 (IRL)

q(θ, ω) increases in ω. (MON)

We will show that the solution to this relaxed problem, which features a posted price and
a threshold disclosure, solves the original problem. Obviously, (IRL) and (ICθL) bind for
all θ > L under (RP L), reducing the seller’s relaxed problem to

max
q,π ∑

θ
∑
x

∑
s

[
v(θ, x)q(θ, ωπθ(θ, s))−

∫ ωπL (θ,s)

ωπL (L,s)
q(L, z)dz

]
πL(s|x)µ(x) f (θ)

s.t. q(θ, ωπθ(θ, s)) increases in s.

Fix π, it is a linear problem in q with (MON) being the only constraint. Thus, the optimal
allocation is generally unique, given by

q(L, ωπL(θ, s)) = 1s≥ŝ(L), q(θ, ωπθ(θ, s)) = 1 ∀s, ∀θ > L.

Fix q(L, s) = 1s≥ŝ(L). The seller’s objective (revenue) now only depends on πL.

R(πL) ≡ ∑
θ>L

E[v(θ, x)] f (θ) + f (L)∑
x

s

∑
ŝ(L)

v(L, x)πL(s|x)µ(x)

− ∑
θ>L

∑
x

[ s

∑
ŝ(L)

[ωπL(θ, s)− ωπL(L, ŝ(L))]−
ŝ(L)

∑
s

max {ωπL(θ, s)− ωπL(L, ŝ(L)), 0}
]
πL(s|x)µ(x) f (θ).
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To find optimal πL, note that

R(πL) ≤ ∑
θ>L

E[v(θ, x)] f (θ) + f (L)∑
x

s

∑
ŝ(L)

v(L, x)πL(s|x)µ(x)

− ∑
θ>L

∑
x

[ s

∑
ŝ(L)

[ωπL(θ, s)− ωπL(L, ŝ(L))]−
ŝ(L)

∑
s
{ωπL(θ, s)− ωπL(L, ŝ(L))}

]
πL(s|x)µ(x) f (θ)

= ∑
θ>L

E[v(θ, x)] f (θ) + ∑
x

s

∑
ŝ(L)

v(L, x)πL(s|x) f (L)µ(x)− ∑
θ>L

∑
x

s

∑
s
[ωπL(θ, s)− ωπL(L, ŝ(L))]πL(s|x)µ(x) f (θ)

= f (L)∑
x

s

∑
ŝ(θ1)

v(L, x)πL(s|x)µ(x) + ∑
θ>L

f (θ)ωπL(L, ŝ(L)) ≡ R(πL)

By similar arguments as in the binary-type case, R(πL) is maximized when πL is a thresh-
old disclosure. By replacing all signals s ≥ ŝ(L) with sg and all signals s < ŝ(L) with sb

we obtain:

R(πL) =ωπL(L, sg)
[

∑
θ>L

f (θ) + f (L)∑
x

πL(sg|x)µ(x)
]
.

Let π⋆⋆
L ∈ argmax R(πL). We now show that offering a fixed bundle of threshold dis-

closure and price (p⋆⋆(L), π⋆⋆
L ) where p⋆⋆(L) = ωπ⋆⋆

L (L, sg) to all types, the seller obtains
R(π⋆⋆

L ). Given that ωπ⋆⋆
L (L, sb) < p⋆⋆(L) = ωπ⋆⋆

L (L, sg), type L buys the good if and only
if sg is realized. and thereby, pays ωπL(L, sg)∑x πL(sg|x). Now, consider type θ > L. Un-
der no uniformly threshold preservation of type order, ωπ⋆⋆

L (θ, sb) ≥ ωπ⋆⋆
L (L, sg). Hence,

type θ to always buy the good regardless of signal realization and pays ωπL(L, sg)∑θ>L.
Thus, the seller’s expected revenue is

ωπ⋆⋆
L (L, sg)

[
∑
θ>L

f (θ) + f (L)∑
x

π⋆⋆
L (sg|x)µ(x)

]
= R(π⋆⋆

L ).

Thus, the single-item menu (p⋆⋆(L), π⋆⋆
L ) is optimal. L can be found by comparing the

values of programs {RP θ}θ∈Θ, denoted by V
(
RP θ

)
. Formally,

L ∈ argmax
θ

V
(
RP2(θ)

)
.

A.7 Proof of for Proposition 3

Step 1: We first solve a relaxed problem Θ = [θ1, θN]. Truthtelling about type requires
that

∑
x

v(θ, x)q(θ, x)− p(θ) ≥ ∑
x

v(θ, x)q(θ′, x)− p(θ′)
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By the Envelope condition, this implies

U′(θ) = ∑
x

vθ(θ, x)q(θ, x)µ(x). (15)

Consider a relaxed problem which impose only the IR constraint and the local IC con-
straint (15). By integration by parts, U(θ) = U(θ1) +

∫ θ
θ1

∑x vθ(θ
′, x)q(θ′, x)µ(x)dθ′. Using

this, the seller’s revenue can be written as

sup
q

∫
θ
∑
x

[
v(θ, x)− vθ(θ, x)

1 − F(θ)
f (θ)

]
q(θ, x)µ(x)dF(θ)− U(θ1),

This expression can be maximized point-wise with respect to q. Hence,

q(θ, x) = 1ϕc(θ,x)≥0 (16)

where ϕc(θ, x) ≡ v(θ, x)− vθ(θ, x)1−F(θ)
f (θ) .

Step 2: We now implement the allocation given by (16) using the Mc ≡ {πc
θ, qc(θ, s), pc(θ, s)},

where πc
θ

pc(θ̂(xM)) = v(θ̂(xM), xM) (17)

pc(θ̂(xm−1)) =
pc(θ̂(xm))∑x≥xm µ(x) + v(θ̂(xm−1), xm−1)

∑x≥xm−1
µ(x)

, ∀2 ≤ m ≤ M (18)

Therefore,

pc(θ̂(xm−1))− pc(θ̂(xm)) =
[v(θ̂(xm−1), xm−1)− pc(θ̂(xm))]

∑x≥xm−1
µ(x)

, (19)

pc(θ̂(xm−1))− pc(θ̂(xm)) =
[v(θ̂(xm−1), xm−1)− pc(θ̂(xm−1))]

∑x≥xm µ(x)
. (20)

As v(θ̂(xM−1), xM−1) ≤ (θ̂(xM), xM), then by (17) and (19),

pc(θ̂(xM−1)) ≤ pc(θ̂(xM)). (21)

Suppose pc(θ̂(xm−1)) ≤ pc(θ̂(xm)) for some m < M, then by (19), v(θ̂(xm−1), xm−1) ≤
pc(θ̂(xm)). As v(θ̂(xm), xm) ≤ v(θ̂(xm−1), xm−1), we thus have

v(θ̂(xm), xm) ≤ pc(θ̂(xm)).

Then, by (20),

pc(θ̂(xm))− pc(θ̂(xm+1)) (22)
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Thus, pc(θ̂(x1)) = minx pc(θ̂(x)). Therefore, if the buyer of type θ mimics some type θ′

and always report sg, it is weakly better to mimic θN and report signals truthfully (type
θN always receives sg). Thus, it suffices to show that there is no type θ who mimics θ′ and
reports signals truthfully. By construction,

∑
x≥xm

[v(θ̂(xm), x)− p(θ̂(xm), sg)]µ(x) = ∑
x≥xm+1

[v(θ̂(xm), x)− p(θ̂(xm+1), sg)]µ(x), (23)

which implies that for any θ′ > θ̂(xm) and any θ” < θ̂(xm+1)

∑
x≥xm

[v(θ′, x)− p(θ̂(xm), sg)]µ(x) ≥ ∑
x≥xm+1

[v(θ′, x)− p(θ̂(xm+1), sg)]µ(x),

∑
x≥xm

[v(θ”, x)− p(θ̂(xm), sg)]µ(x) ≤ ∑
x≥xm+1

[v(θ”, x)− p(θ̂(xm+1), sg)]µ(x),

Therefore, any θ prefers reporting the closest cut-off types. That is, if θ ∈ [θ̂(xm), θ̂(xm−1)],
type θ either reports θ̂(xm) or θ̂(xm−1). Moreover, by (23),

∑
x≥xm

[v(θ, x)− p(θ̂(xm), sg)]µ(x) ≤ ∑
x≥xm+1

[v(θ, x)− p(θ̂(xm+1), sg)]µ(x), (24)

which implies that type θ weakly prefers to mimic θ̂(xm) to reporting θ̂(xm+1). Thus, type
θ reveals his type to receive type θ̂(xm)’s contract.

A.8 Proof of for Proposition 4

Suppose it is optimal to exclude all types below L, or q(θ, x) = 1 for all x and θ < L.
Then, the seller’s revenue must be weakly lower than that obtained from selling to the
buyer whose types is distributed by f̂ over Θ, where f̂ (θ) = f (θ) ∀θ /∈ [L, L + ε], f̂ (θ) = 0
∀θ ∈ [L, L + ε), and f̂ (L + ε) =

∫ θ=L+ε
θ=L f (θ)dθ. Let (P̂) represent the seller’s problem

when θ ∼ f̂ and V(P̂) the corresponding value. Consider the following relaxed problem
of (P̂) where all types mimic L + ε off the equilibrium path:

(RP L+ε) max
(π,q,U)

∑
θ≥L+ε

∑
x

∑
s

p(θ, ωπθ(θ, s))πθ(s|x)µ(x) f̂ (θ)

s.t. U(θ)− U(L + ε) ≥ ∑
s

∫ ω
πθ1 (θ,s)

ω
πθ1 (L+ε,s)

q(L + ε, z)dzπL+ε(s) ∀θ > L + ε

(ICθ→L+ε)

U(L + ε) ≥ 0 (IRL+ε)

q(θ, ω) increases in ω. (MON)
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By the same arguments as the proof of Theorem 3, a posted price p̂L+ε, associated with a
threshold disclosure π̂L+ε, solves this relaxed problem. Note that (π̂L+ε, p̂L+ε) does not
necessary solve the original problem. In case it does, the seller’s revenue is the value of
problem (RP L+ε), denoted by V((RP L+ε)). Let Rε represent the seller’s revenue if she
offers (π̂L+ε, p̂L+ε) (regardless of whether it solves the original problem or not). Then,

Rε ≥ V(RP L+ε)− E[v(L + 2ε, x)]
∫ L+2ε

L+ε
f̂ (θ)dθ

≥ V(P̂)− E[v(L + 2ε, x)]
∫ L+2ε

L+ε
f̂ (θ)dθ

Therefore,

lim
ε→0

Rε ≥ V(P̂)− lim
ε→0

E[v(L + 2ε, x)]
∫ L+2ε

L+ε
f̂ (θ)dθ = V(P̂)

On the other hand, lim
ε→0

Rε ≤ V(P̂). Therefore, lim
ε→0

Rε = V(P̂).

A.9 Proof of Proposition 5

The proof leverages the following lemma, which simplifes the search for a optimal de-
terministic mechanism by focusing on certain menus of trade probabilities and posted
prices.

Lemma A.1. For any deterministic mechanism, there exists a menu of posted prices and trade
probabilities M ≡ {α(θ, x), p(θ)}θ that generates the same revenue for the seller and moreover,

(a) if α(θ, x) = 0 for all x, then for any θ′ ≤ θ, α(θ′, x) = 0 for all x.

(b) if α(θ, x) = 1 for all x, then for any θ′ ≥ θ, α(θ′, x) = 1 for all x.

Proof of Lemma A.1. Part (a): Suppose there exist θ, θ′, x such that θ′ > θ, α(θ, x) > 0,
α(θ′, x) = 0 for all x. By IRθ′ , p(θ′) ≤ 0. By no rent at the bottom, U(θ1) = 0. To prevent
type θ1 from mimicking type θ′, it must be that p(θ′) = 0. Given that type θ′ does not
trade and pays nothing, his payoff is zero. By offering type θ′ with type θ’s contract, his
payoff is given by

∑
x
[v(θ′, x)− p(θ)]α(θ, x)µ(x) ≥ ∑

x
[v(θ, x)− p(θ)]α(θ, x)µ(x) ≥ 0, (25)

whereas he pays non-negative payment, given by ∑x p(θ)α(θ, x)µ(x). Thus, letting type
θ′ trades with probability α(θ, x) at state x does not affect the seller’s revenue and incen-
tive compatibility.
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Part (b): Suppose there exist θ such that α(θ, x) = 1 ∀x. For type θ not to mimic some type
θ̂ < θ, it must be that

E[v(θ, x)]− p(θ) ≥ max{0, ∑
x
[v(θ, x)− p(θ̂)]α(θ̂, x)µ(x)},

which implies that for any θ′ ≥ θ

E[v(θ′, x)]− p(θ) ≥ max{0, ∑
x
[v(θ′, x)− p(θ̂)]α(θ̂, x)µ(x)}.

Thus, for any types θ′ ≥ θ and θ̂ < θ, type θ′ prefers type θ’s contract than type θ̂’s.
Therefore, if the seller revises the contracts for all types θ′ ≥ θ to be type θ’s, incentive
compatibility remains satisfied. Moreover, the seller’s revenue weakly increases because-
for type θ′ not to mimic some type θ under the original mechanism, it must be that

∑
x
[v(θ′, x)− p(θ′)]α(θ, x)µ(x) ≥ E[v(θ′, x)]− p(θ)

⇔ p(θ)− ∑
x

p(θ′)α(θ, x)µ(x) ≥ ∑
x

v(θ′, x)[1 − α(θ, x)]µ(x) ≥ 0,

which mean that type θ’s payment is higher than that by any type θ′.

Armed with Lemma A.1, we now prove Proposition 5. Suppose only deterministic mech-
anisms are allowed. By Lemma A.1, it is without loss to focus on menu of posted prices
and trade probabilities {p(θ), α(x, θ)}x,θ under which there exist

θh ≡ inf{θ | α(θ, x) = 1∀x}
θl ≡ sup{θ | α(θ, x) = 0∀x}

Therefore, within the class of deterministic mechanisms, an optimal mechanism solves
the following problem:

(Pd) sup
p,α,θh,θl

∫
θ

p(θ)dF(θ)

s.t. ∀θ, θ′ : ∑
x∈{x1,x2}

[v(θ, x)− p(θ)] α(θ, x)µ(x) ≥ ∑
x∈{x1,x2}

[v(θ, x)− p(θ′)]α(θ′, x)µ(x)

∑
x∈{x1,x2}

[v(θ, x)− p(θ)] α(θ, x)µ(x) ≥ 0.

θh = inf{θ | α(θ, x) = 1∀x}
θl = sup{θ | α(θ, x) = 0∀x}

The proof of Proposition 5 completes by showing that (Pd) admits a solution which fea-
tures full disclosure and a posted price to all types. Consider the following two cases:
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Case 1: v(θh, x1) > v(θl, x2). Then, by the continuity of the valuation function with respect
to θ, there must exist θ̂ such that

v(θ′, x1) ≥ v(θl, x2), ∀θ′ ∈ [θ̂, θh]. (26)

Moreover, by the IR condition for θl who trades if and only if state x2 is realized,

v(θl, x2) ≥ p(θl). (27)

As type θh always trades at price p(h), it must be that p(θh) ≤ p(θ) for any type θ. Sup-
pose not, or there exists θ such that p(θh) > p(θ), then type θh mimics type θl and always
buy the good at a lower price. Therefore,

p(θh) ≤ min{p(θl), p(θ′)}. (28)

Using (26), (27), and (28), for any θ′ ∈ [θ̂, θh],

min{p(θ′), v(θ′, x1)} ≥ p(θh). (29)

Then, by mimic type θh, type θ′ obtains

E[v(θ′, x)]− p(θh) = [v(θ′, x2)− p(θh)]µ(x2) + [v(θ′, x1)− p(θh)]µ(x1)

≥ [v(θ′, x2)− p(θ′)]α(θ′, x)µ(x2), (30)

which is his payoff from truth-telling. Suppose, "strict inequality" occurs in (30), then
type θ′ mimics type θh, violating incentive compatibility. Now, suppose "equality" in (30)
occurs, meaning that

v(θ′, x1) = p(θh) = p(θ′), (31)

Then, by offering type θ′ an efficient allocation α(θ′, x1) = α(θ′, x1) = 1 and the old price
p(θ′) = p(θh), the seller strictly improves her revenue while not violating any constraints.
Thus, this case with v(θh, x1) > v(θl, x2) cannot happen.

Case 2: v(θh, x1) ≤ v(θl, x2). Consider a relaxed problem of (Pd), which employs the
necessary envelope condition for truth-telling:

U′(θ) = ∑
x

vθ(θ, x)α(θ, x)µ(x).
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By integration by parts, we obtain U(θ) = U(θ̃g) +
∫ θN

θ̃g
∑x vθ(θ, x)α(θ, x)µ(x)dθ. Thus,

the relaxed problem becomes:

(RPd) sup
α,θh,θl

∫
θ
∑
x

ϕc(θ, x)α(θ, x)µ(x)dF(θ)− U(θh)

α(θ, x) = 1 ∀x, ∀θ ≥ θh

α(θ, x) = 0 ∀x, ∀θ < θl,

v(θh, x1) ≤ v(θl, x2),

where ϕc(θ, x) ≡ v(θ, x)− vθ(θ, x)1−F(θ)
f (θ) . At optimum, U(θh) = 0. As ϕc(θ, x2) ≥ 0 for all

θ ≥ θ⋆(x2) and ϕc(θ, x‘) ≥ 0 for all θ ≥ θ⋆(x1), we obtain:

q(θ, x) =


1 if θ ≥ min {θ⋆(x1), θh}

1x=θ2 if max {θ⋆(x2), θ0} ≤ θ ≤ min {θ⋆(x1), θh} ,

0 if θ ≤ max {θ⋆(x2), θ0} ,

Note that as v(θ⋆(x1), x1) > v(θ⋆(x2), x2), v(θh, x1) ≤ v(θl, x2), and values increase in
types, it cannot be the case that θh ≥ θ⋆(x1) and θl ≤ θ⋆(x2). Consider the remaining
three cases as follows:

1. θh ≤ θ⋆(x1) and θl ≥ θ⋆(x2). Then increase θh to θ̃h ≤ θ⋆(x1) and reduce θl to θ̃l ≥
θ⋆(x2) such that v(θ̃h, x1) = v(θ̃l, g). Such θ̃h and θ̃l exist given that v(θ⋆(x1), x1) >

v(θ⋆(x2), g). The allocation becomes

q̃(θ, x) =


1 if θ ≥ θ̃h

1x=θ2 if θ̃l ≤ θ ≤ θ̃h,

0 if θ ≤ θ̃l,

which is implementable with private signals via full disclosure and a posted price
p = v(θ̃l, g).

2. θh ≤ θ⋆(x1) and θl ≤ θ⋆(x2). Then increase θh to θ̃h ≤ θ⋆(x1) and reduces θl to
θ⋆(x2) such that v(θ̃h, x1) = v(θ̃l, x2). Such θ̃h and θ̃l exist given that v(θ⋆(x1), x1) >

v(θ⋆(x2), x2). The allocation becomes

q̃(θ, x) =


1 if θ ≥ θ̃h

1x=θ2 if θ⋆(x2) ≤ θ ≤ θ̃h,

0 if θ ≤ θ⋆(x2),

which is implementable with private signals via full disclosure and a posted price
p = v(θ⋆(x2), x2).
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3. θh ≥ θ⋆(x1) and θl ≥ θ⋆(x2). Then reduce θh to θ⋆(x1) and reduce θl to θ̃l ≥ θ⋆(x2)

such that v(θ̃h, x1) = v(θ̃l, x2). Such θ̃l exists given that v(θ⋆(x1), x1) > v(θ⋆(x2), x2).
The allocation becomes

q̃(θ, x) =


1 if θ ≥ θ⋆(x1)

1x=θ2 if θ̃l ≤ θ ≤ θ⋆(x1),

0 if θ ≤ θ̃l,

which is implementable with private signals via full disclosure and a posted price
p = v(θ̃l, x2).

In any case, it must be that v(θh, x1) = v(θl, x2) at optimum and consequently, full disclo-
sure, associated with a fixed price is optimal.

A.10 Proof of Proposition 6

Similar to the proof of Theorem 3, we consider the following relaxed problem in which
L is the lowest type being served under an optimal mechanism and all types mimics L
off-path:

(RP L) max
(π,q,U)

∑
θ≥L

[
∑
x

∑
s

v(θ, x)q(θ, ωπθ(θ, s))πθ(s|x)µθ(x)− U(θ)
]

f (θ)

s.t. U(θ)− U(L) ≥ ∑
x

∑
s

∫ ωπL (θ,s)

ωπL (L,s)
q(L, z)dzπL(s|x)µθ(x) ∀θ > L (ICθL)

U(L) ≥ 0 (IRL)

q(θ, ω) increases in ω. (MON)

and show that the solution to this relaxed problem, which features a posted price and
a threshold disclosure, solves the original problem. Then, following exactly the same
arguments used in the proof of Theorem 3, we obtain:

q(L, ωπL(θ, s)) = 1s≥ŝ(L), q(θ, ωπθ(θ, s)) = 1 ∀s, ∀θ > L.
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Fix q(L, s) = 1s≥ŝ(L). The seller’s objective (revenue) now only depends on πL, given by

∑
θ>L

E[v(θ, x)] f (θ) + f (L)∑
x

s

∑
ŝ(L)

v(L, x)πL(s|x)µL(x)

− ∑
θ>L

∑
x

[ s

∑
ŝ(L)

[ωπL(θ, s)− ωπL(L, ŝ(L))]−
ŝ(L)

∑
s

max {ωπL(θ, s)− ωπL(L, ŝ(L)), 0}
]
πL(s|x)µθ(x) f (θ)

≤ ∑
θ>L

E[v(θ, x)] f (θ) + f (L)∑
x

s

∑
ŝ(L)

v(L, x)πL(s|x)µL(x)

− ∑
θ>L

∑
x

[ s

∑
ŝ(L)

[ωπL(θ, s)− ωπL(L, ŝ(L))]−
ŝ(L)

∑
s
{ωπL(θ, s)− ωπL(L, ŝ(L))}

]
πL(s|x)µθ(x) f (θ)

= ∑
θ>L

E[v(θ, x)] f (θ) + ∑
x

s

∑
ŝ(L)

v(L, x)πL(s|x) f (L)µL(x)− ∑
θ>L

E[v(θ, x)] f (θ) + ∑
θ>L

f (θ)ωπL(L, ŝ(L))

=∑
x

s

∑
ŝ(L)

v(L, x)πL(s|x) f (L)µL(x) + ∑
θ>L

f (θ)ωπL(L, ŝ(L)),

which is achieved via a threshold disclosure that solves

sup
πL(s|x)

∑
x

s

∑
ŝ(L)

v(L, x)πL(s|x) f (L)µL(x) + ∑
θ>L

f (θ)ωπL(L, ŝ(L)),

and posted price pωπL(L, ŝ(L)). The arguments why this bunching solution solves the
original problem follows from that in the proof of Theorem 3.

A.11 Proof of Proposition 7

Following the proof of Theorem 1, we consider the following relaxed problem which
ignores (IC12) and (IR2).

(RP b) max
(π,q,U)

∑
θ

f (θ)
[
∑
x

∑
s

v(θ1, x)q(θ, ωπθ(θ, s))πθ(s|x)µθ(x)− U(θ)
]

s.t : U(θ2)− U(θ1) ≥ ∑
x

∑
s

∫ ω
πθ1 (θ2,s)

ω
πθ1 (θ1,s)

q(θ1, z)dzπθ1(s|x)µθ(x) (IC21)

U(θ1) ≥ 0 (IR1)

q(θ, ω) increases in ω. (MON)

It is clear that (IC21) and (IR1) must bind. Then,

U(θ1) = 0, U(θ2) = ∑
x

∑
s

∫ ω
πθ1 (θ2,s)

ω
πθ1 (θ1,s)

q(θ1, z)dzπθ1(s|x)µθ(x),
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Using these expressions for U(θ1) and U(θ2), the seller’s revenue can be writeen as

(OBJ) ≡ f (θ2)∑
x

∑
s

v(θ2, x)q(θ2, ωπθ(θ, s))πθ2(s|x)µ(x)

+ f (θ1)∑
x

∑
s

[
v(θ1, x)q(θ1, ωπθ(θ, s))−

∫ ω
πθ1 (θ2,s)

ω
πθ1 (θ1,s)

q(θ1, z)dz

]
πθ1(s|x)µ(x)

Fix π. Then, this objective function (OBJ) is linear in q and the only remaining constraint
is (MON) which requires q(θ, ω) to be increasing. Consequently, it must be that

q(θ2, ωπθ(θ, s)) = 1 ∀s, (32)

given that v(θ2, x) ≥ 0 for all x; and there exists a cut-off signal ŝ(θ) such that for all θ,

q(θ, ωπθ(θ, s)) = 1s≥ŝ(θ) (33)

By (32) and (33), the objective becomes

f (θ2)E[v(θ2, x)]

+ f (θ1)∑
x

s

∑
ŝ(θ1)

v(θ1, x)πθ1(s|x)µ(x)− ∑
x

s

∑
ŝ(θ1)

[ωπθ1 (θ2, s)− ωπθ1 (θ1, s)]
f (θ2)

f (θ1)
πθ1(s|x)µ(x)

−∑
x

ŝ(θ1)

∑
s
[ωπθ1 (θ2, s)− ωπθ1 (θ1, ŝ(θ1))]

f (θ2)

f (θ1)
πθ1(s|x)µ(x),

which is independent of πθ2 . Therefore, any πθ2 is optimal. To find optimal πθ1 , note
that by replacing all signals s < ŝ(θ1) with single signal sb ("bad news"), (OBJ) remains
unchanged and becomes

f (θ1)∑
x

s

∑
ŝ(θ1)

v(θ1, x)πθ1(s|x)µθ1(x)− f (θ2)∑
x

∑
s≥ŝ(θ1)

[v(θ2, x)− v(θ1, x)
∑x πθ1(s|x)µθ2(x)
∑x πθ1(s|x)µθ1(x)

]πθ1(s|x)µθ1(x)

−max
{[

ωπθ1 (θ2, sb)− ωπθ1 (θ1, ŝ(θ1))
] f (θ2)

f (θ1)
, 0
}

πθ1(s
b|x)]µ(x)

= f (θ1)∑
x

s

∑
ŝ(θ1)

[
v(θ1, x)− [v(θ2, x)− v(θ1, x)

∑x πθ1(s|x)µθ2(x)
∑x πθ1(s|x)µθ1(x)

]
f (θ2)

f (θ1)

]
πθ1(s|x)µθ1(x)

−max
{[

ωπθ1 (θ2, sb)− ωπθ1 (θ1, ŝ(θ1))
] f (θ2)

f (θ1)
, 0
}

πθ1(s
b|x)

]
µ(x).

Consider

H ≡ ∑x πθ1(s|x)µθ2(x)
∑x πθ1(s|x)µθ1(x)

=
πθ1(s|x2)µθ2(x2) + πθ1(s|x1)µθ2(x1)

πθ1(s|x2)µθ1(x2) + πθ1(s|x1)µθ1(x1)

52



Then

∂H
∂πθ1(s|x2)

=
µθ2(x2)[πθ1(s|x2)µθ1(x2) + πθ1(s|x1)µθ1(x1)]− µθ1(x2)[πθ1(s|x2)µθ2(x2) + πθ1(s|x1)µθ2(x1)]

[πθ1(s|x2)µθ1(x2) + πθ1(s|x1)µθ1(x1)]2

=
[µθ2(x2)µθ1(x1)− µθ1(x2)µθ2(x1)]πθ1(s|x1)

[πθ1(s|x2)µθ1(x2) + πθ1(s|x1)µθ1(x1)]2

=

[
µθ2(x2)[1 − µθ1(x2)]− µθ1(x2)[1 − µθ2(x2)]

]
πθ1(s|x1)

[πθ1(s|x2)µθ1(x2) + πθ1(s|x1)µθ1(x1)]2

=

[
µθ2(x2)− µθ1(x2)]

]
πθ1(s|x1)

[πθ1(s|x2)µθ1(x2) + πθ1(s|x1)µθ1(x1)]2
> 0

∂H
∂πθ1(s|x1)

=
µθ2(x1)[πθ1(s|x2)µθ1(x2) + πθ1(s|x1)µθ1(x1)]− µθ1(x1)[πθ1(s|x2)µθ2(x2) + πθ1(s|x1)µθ2(x1)]

[πθ1(s|x2)µθ1(x2) + πθ1(s|x1)µθ1(x1)]2

=
[µθ2(x1)µθ1(x2)− µθ1(x1)µθ2(x2)]πθ1(s|x2)

[πθ1(s|x2)µθ1(x2) + πθ1(s|x1)µθ1(x1)]2

=

[
µθ2(x1)[1 − µθ1(x1)]− µθ1(x1)[1 − µθ2(x1)]

]
πθ1(s|x1)

[πθ1(s|x2)µθ1(x2) + πθ1(s|x1)µθ1(x1)]2

=
[µθ2(x1)− µθ1(x1)]πθ1(s|x1)

[πθ1(s|x2)µθ1(x2) + πθ1(s|x1)µθ1(x1)]2
< 0.

Thus, H increases in πθ1(s|x2) and decreases in πθ1(s|x1). Hence,

H(πθ1(s|x2), πθ1(s|x1) ≤ H(1, 0) =
µθ2(x2)

µθ2(x2)
.

Therefore,

OBJ ≤ f (θ1)∑
x

s

∑
ŝ(θ1)

[
v(θ1, b)− [v(θ2, b)− v(θ1, b)

µθ2(x2)

µθ2(x2)
]

f (θ2)

f (θ1)

]
πθ1(s|x)µθ1(x1)

+
s

∑
ŝ(θ1)

[
v(θ1, x2)− [v(θ2, x2)− v(θ1, x2)

µθ2(x2)

µθ2(x2)
]

f (θ2)

f (θ1)

]
πθ1(s|x)µθ1(x2)

≤ v(θ1, x2)− [v(θ2, x2)− v(θ1, x2)
µθ2(x2)

µθ2(x2)
]

f (θ2)

f (θ1)

with the "equality" occurs when S+ contains a single signal sg and πθ1(s
g|x) = 1x=x2 .

To implement this allocation, offers each type a posted price p(θ1) = v(θ1, x2) so that
(IR1) binds, and p(θ2) is such that (IC21) binds, or

U(θ2) = U(θ2, θ1) ⇔ p(θ2) = E[v(θ2, x)]−
[
v(θ1, x2)− v(θ1, x2)

]
µθ2(x2).
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IR2 holds because

U(θ2) =
[
v(θ1, x2)− v(θ1, x2)

]
µθ2(x2) ≥ 0.

IC12 is also satisfied given that

U(θ1, θ2) = E[v(θ1, x)]− p(θ2)

= E[v(θ1, x)]− E[v(θ2, x)] +
[
v(θ1, x2)− v(θ1, x2)

]
µθ2(x2)

= v(θ1, x2)µθ1(x2) + v(θ1, x1)µθ1(x1)− v(θ1, x1)µθ2(x1)− v(θ1, x2)µθ2(x2)

= v(θ1, x2)[µθ1(x2)− µθ2(x2)] + v(θ1, x1)[µθ1(x1)− µθ2(x1)]

= v(θ1, x2)[µθ1(x2)− µθ2(x2)]− v(θ1, x1)[µθ2(x2)− µθ1(x2)]

= [v(θ1, x2)−−v(θ1, x1)][µθ1(x2)− µθ2(x2)] < 0 = U(θ1).

We thus obtain Proposition 7(b).
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