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Abstract

We examine whether the way individuals randomize between options captures their

decision confidence. In two experiments in which subjects faced pairs of options (a

lottery and a varying sure payment), we allowed subjects to choose randomization

probabilities according to which they would receive each option. Separately, we ob-

tained two measures of self-reported confidence - confidence statements and probabilis-

tic confidence - for choosing between the two options. Consistent with the predictions

of two theoretical frameworks incorporating preference uncertainty, the randomization

probabilities correlated strongly with both self-reported measures (median Spearman

correlations between 0.86 to 0.89) and corresponded in absolute levels to probabilistic

confidence. This relationship is robust to two exogenous manipulations of decision

confidence, where we varied the complexity of the lottery and subjects’ experience

with the lottery.
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1 Introduction

There are many decisions in life that people may not be able to make with full confidence.

These decisions often involve difficult trade-offs among conflicting objectives, such as price

vs. quality when buying goods, risk vs. return when investing, and efficiency vs. equality

when making policy decisions. As more studies suggest that decision confidence has the

potential to explain a wide range of behavioral anomalies, there is growing interest in

eliciting and accounting for decision confidence when studying people’s choices.1

Past studies so far have mostly relied on non-incentivized self-reports to elicit decision

confidence. For example, some studies (Cohen et al., 1987; Dubourg et al., 1994, 1997;

Cubitt et al., 2015) allowed subjects to indicate whether they were unsure of their choices.

Butler and Loomes (2007, 2011) had subjects indicate their decision confidence using the

ordinal terms “definitely” and “probably.” More quantitatively, Enke and Graeber (2021,

2023) had subjects rate how certain (from 0% to 100% in increments of 5%) they were that

their actual valuation of an option was within the interval obtained from the choices they

made earlier in a price list.

While asking people explicitly about how confident they are about their decisions directly

elicits decision confidence, incentivized behavioral measures that elicit decision confidence

without referring to confidence may encourage people to contemplate their decisions care-

fully and thereby reduce behavioral biases such as priming effects and experimenter de-

mand effects (Camerer and Hogarth, 1999). Yet, finding behavioral measures of decision

confidence “in a form simple and transparent enough to work without creating additional

uncertainty” is not trivial (Butler and Loomes, 2011, p. 516).

Building on earlier studies, we propose to use the randomization probability assigned to

an option in a choice pair as a behavioral measure of decision confidence, and test its

1These anomalies include the willingness to accept (WTA) - willingness to pay (WTP) gap (Dubourg
et al., 1994), preference reversals (Butler and Loomes, 2007), stochastic choices (Agranov and Ortoleva,
2017), insensitivity to variation in probabilities (Enke and Graeber, 2023), anomalies in intertemporal
choices (Enke and Graeber, 2021), small-stakes risk aversion (Khaw et al., 2021), and many other violations
of standard decision theory (Butler and Loomes, 2011).
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validity in two experiments. For each pair of options (a lottery x and a sure payment y),

we obtained subjects’ binary choice, self-reported decision confidence, and randomization

probabilities. Self-reported decision confidence was elicited by having subjects select a

confidence statement from “Surely x,” “Probably x,” “Unsure,” “Probably y,” “Surely y,”

after they chose an option and by having them report how confident they were in choosing

either options as a probabilistic confidence of p% x and 100-p% y, where p ranged from

0 to 40 and 60 to 100 in increments of 10. Separately, subjects chose a randomization

probability 0 ≤ λ ≤ 1 with which they would receive x (and with probability 1− λ receive

y) for each pair of options (Miao and Zhong, 2018; Agranov and Ortoleva, 2023; Feldman

and Rehbeck, 2022; Ong and Qiu, 2023). Unlike the two self-reported confidence measures,

the elicitation of randomization probabilities made no reference to decision confidence.

We exogenously manipulated decision confidence by a) having a simple lottery with two

outcomes and a complex lottery with the same expected value but with more payoff out-

comes over a wider range of possible values (Fudenberg and Puri, 2021), and by b) increas-

ing subjects’ experience with the lottery by allowing them to either observe the outcome

draws of the lottery or to make hypothetical choices and observe the payoffs of their choices

and the counterfactual (Myagkov and Plott, 1997; Plott and Zeiler, 2005; van de Kuilen

and Wakker, 2006; van de Kuilen, 2009).

To ensure that experimenter demand effects and order effects were not driving our results,

in one of our experiments, we elicited the three measures separately over three sessions

(at least seven days apart). Subjects were randomly assigned to one of the three decision

orders, which differed by whether the confidence statements, the probabilistic confidence,

or the randomization probabilities were elicited in the first session.

We structure the analyses of our experiments through two theoretical frameworks, one

based on Klibanoff et al. (2005) and Cerreia-Vioglio et al. (2015) and the other based

on Fudenberg et al. (2015). We illustrate how randomization emerges from the optimiza-

tion behavior of an individual who faces uncertainty regarding her preference between the

two options. Based on our expectations that randomization probabilities serve as a good

proxy for decision confidence, and that complexity increases preference uncertainty while
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experience decreases it, we have four hypotheses. First, randomization probabilities cor-

relate positively with both self-reported measures; second, subjects choose randomization

probabilities around 0.5 for choice pairs in which the sure payment has a similar decision

utility as the lottery (and one does not dominate the other); third, subjects randomize over

a wider range of sure payments and choose randomization probabilities closer to 0.5 for

the complex lottery than for the simple lottery; finally, subjects randomize over a smaller

range of sure payments and choose randomization probabilities further away from 0.5 in

the experience treatments.

Our experimental results support all four hypotheses. Subjects’ randomization probabil-

ities were strongly and positively correlated with both confidence statements and proba-

bilistic confidence (median Spearman correlation between 0.86 to 0.89). In line with our

expectations, the two exogenous manipulations affected self-reported decision confidence.

Increasing the complexity of the lottery led to a decrease in self-reported decision confi-

dence, while increasing experience with lotteries led to an increase in self-reported decision

confidence. These exogenous changes in self-reported decision confidence were met with

corresponding changes in randomization probabilities: subjects randomized over a larger

range of sure payments and the randomization probabilities were closer to 0.5 for the com-

plex lottery than for the simple lottery, while the opposite occurred when subjects had

more experience. As a result, the correlations between randomization probabilities and

self-reported decision confidence measures were robust to the exogenous manipulations of

decision confidence.

Our study builds on the growing literature on preferences for randomization, implying pref-

erence functionals that are convex with respect to probabilistic mixing, which is a violation

of the betweenness axiom (Chew, 1983; Dekel, 1986; Chew, 1989). Preferences for random-

ization have been documented over wide ranges, across different domains, in experimental

settings as well as in real life decisions. In a multiple-decision setting, Rubinstein (2002)

suggested that randomization (diversification in his term) by choosing differently across

five independent and identical decisions is “an expression of a more general phenomenon in

which people tend to diversify their choices when they face a sequence of similar decision

problems and are uncertain about the right action” (Rubinstein, 2002, p.1370). Dwenger
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et al. (2018) found that their experimental subjects preferred to randomize via an external

randomization device rather than making choices themselves, and the authors reported

similar behavior among German university applicants. Miao and Zhong (2018) showed

that randomization could be used to balance ex-ante and ex-post social preferences. Feld-

man and Rehbeck (2022) elicited individuals’ attitudes toward reduced mixtures over two

lotteries in the space of three-outcome lotteries (the Marschak-Machina triangle) and found

pervasive evidence of a preference for non-degenerate mixing over lotteries. The studies

closest to ours are Agranov and Ortoleva (2023) and Ong and Qiu (2023), who also allowed

subjects to choose randomization probabilities when deciding between two options. Both

studies found that subjects often randomized and did so over large ranges. Ong and Qiu

(2023) further found that subjects were willing to pay to randomize, suggesting that ran-

domization was deliberate and not merely a result of indifference. Popular explanations for

convex preferences include hedging in the face of preference uncertainty (Cerreia-Vioglio

et al., 2015; Fudenberg et al., 2015; Cerreia-Vioglio et al., 2019), non-linear probability

weighting (Kahneman and Tversky, 1979; Quiggin, 1982; Tversky and Kahneman, 1992),

and responsibility aversion (Dwenger et al., 2014). Our study is the first to provide exper-

imental evidence linking preference uncertainty and randomization behavior.2

We also contribute to the literature on stochastic choice, which examines why individuals

change their decisions when they face the same decision situation repeatedly. The relation-

ship we found between randomization probabilities and sure payments bears a remarkable

resemblance to results reported in studies on stochastic choice, for example, Mosteller

and Nogee (1951, Figure 2) and Loomes and Pogrebna (2017, Table 1).3 The similarity

between the choice proportion in repeated choices and the randomization probability in

a one-shot decision suggests that decision confidence may have the potential to explain

stochastic choices. Consistent with this interpretation, we find that, across subjects and

2Agranov and Ortoleva (2023) also explicitly discuss this link. Based on reports from the end-of-
experiment questionnaire, they found that many of their subjects randomized because they were unsure
of their preferences (Agranov and Ortoleva, 2023, Appendix A.8).

3Note that these results come from entirely different designs. In Mosteller and Nogee (1951) and Loomes
and Pogrebna (2017) individuals repeatedly faced a lottery and a sure payment, with the sure payment
varying from one question to another, and the results are about the proportion of accepting the lottery
across decisions, whereas in our experiment subjects faced the lottery and a sure payment once and chose
the randomization probability of receiving the lottery.

4



decisions, higher decision confidence in an option corresponded to choosing that option

more frequently (but not always) in binary choices. Meanwhile, random (expected) utility

models (see, e.g., Eliashberg and Hauser, 1985; Loomes and Sugden, 1995; Gul and Pe-

sendorfer, 2006; Apesteguia and Ballester, 2018), which are the standard explanations for

stochastic choices, do not predict randomization in a one-shot decision as observed in our

experiment. This is because, while individuals may be considered to have a set of utility

functions in this literature, at the moment of decision-making, they rely on one utility

function randomly realized from the set.

Overall, our study provides direct evidence to the connections between some important

concepts in the literature, such as decision confidence, cognitive uncertainty, preference un-

certainty/imprecision, incomplete preference, preference for randomization, and stochastic

choice. While there have been notable theoretical advancements and accumulating empiri-

cal evidence in this field, the precise interplay and relationships between these concepts as

well as how they are connected to choices remain ambiguous. Our finding of a systematic

relationship between the randomization, alternative measures of decision confidence, and

stochastic choice suggests that there may exist a common psychological underpinning for

these various concepts.

The rest of the paper proceeds as follows. Section 2 describes the experimental procedure.

Section 3 provides the theoretical basis for how randomization probabilities may be linked

to decision confidence. The results are reported in Section 4. Finally, Section 5 concludes

the paper.

2 Experimental design

We had two experiments. We first describe the general structure of the experiments before

detailing the differences.
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2.1 General structure of the experiments

In each decision, subjects faced a pair of options: a lottery x and a sure payment y. The

lottery was paired with 13 values of sure payments (0, 2, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7,

8, and 10 euros). For each type of decisions that we will describe below, subjects faced

these pairs in a random sequence. Each decision was made on a separate screen, and

subjects were not allowed to review or change their decisions once they were made. Each

subject made three types of decisions: binary choices, self-reported decision confidence,

and randomized choices.

Binary choices

The binary choices required subjects to choose either x or y. If x was chosen, the computer

would draw a random number to determine x’s outcome. For example, for x that has a

50% chance of paying 9 euro and a 50% chance of paying 1 euro, if the randomly drawn

number falls between 1 and 50, the subject would receive 1 euro, and if the randomly

drawn number falls between 51 and 100, the subject would receive 9 euros.

Two measures of self-reported decision confidence

After making the binary choices, we asked subjects how confident they felt about their

choices. The confidence statements they could choose were “Surely x,” “Probably x,”

“Unsure,” “Probably y,” or “Surely y.” Similar statements were used in Dubourg et al.

(1994), Butler and Loomes (2007), and Butler and Loomes (2011). Confidence statements

were not incentivized and could not affect payoffs.

In addition to the confidence statements, subjects in Experiment 2 also had to report their

probabilistic confidence in a separate experimental decision. Instead of making a direct

binary choice, subjects had to choose how confident they felt about choosing x versus y.

They had to choose between ten levels of probabilistic confidence: “100% x, 0% y,” “90% x,

10% y,” ... “60% x, 40% y,” “40% x, 60% y,” ..., “0% x, 100% y.” Subjects were considered

to have chosen the option for which they indicated more than 50% probabilistic confidence.

For example, if a subject chose “60% x, 40% y,” she was considered to have chosen x over

y in that decision. To use the probabilistic confidence as a measure of decision confidence
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Figure 1: An example of the randomized choice decision screen, where option x is a lottery
with a 50% chance of gaining 9 euro and a 50% chance of gaining 1 euro. Option y is a
sure payment and varies across choices.

as well as an indicator of a subject’s choice between x and y, we omitted the option “50%

x, 50% y”.

Randomized choices

The randomized choices required subjects to choose a randomization probability λ, based

on which they would receive x (and hence with a probability 1 − λ of receiving y). For

example, choosing λ = 0.40 means the subject would receive x with a chance of 40% and y

with a chance of 60%. The subjects used a slider from 0% to 100% with increments of 1%

to choose the randomization probability in each choice. In experiment 1, the slider was set

in the middle at the start. To reduce anchoring bias, in experiment 2, the slider had no

initial position, and subjects needed to click on the slider and move the bar to determine the

randomization probability. If the randomized choice was chosen for payment, the computer

would draw a random number between 1 and 100. If the drawn number was between 1

and 100λ, x would be chosen over y in that decision. If x was chosen for payment, a

second random draw determined the outcome of the lottery. Figure 1 shows the decision

screen for the randomized choice. To ensure that subjects understand the payoff structure

of randomized choices, we provided two examples as well as reminders in the lower part of

the decision screens on how randomized choices affect payment (see Figure C.4 and C.5 in

Appendix C.3).
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2.2 Manipulating decision confidence

In the baseline treatment, the subjects faced a simple lottery with two outcomes (a 50%

chance of 9 euro and a 50% chance of 1 euro). They received a complete description of the

lottery before making their decisions.

Varying the complexity of the lottery: We manipulated, within subject, the complex-

ity of the lottery by asking all subjects to make decisions involving a complex lottery with

four outcomes in addition to decisions involving the simple lottery. The complex lottery

has the same expected value as the simple lottery. It offers 9.75 euros with a chance of

20%, 7.50 euros with a chance of 30%, 2.50 euros with a chance of 30%, and 0.25 euros

with a chance of 20%. The order of the lotteries was randomized at individual subject

level: some subjects proceeded from the simple lottery to the complex lottery, while others

completed the decisions in the reverse order.4

Varying subjects’ experience with the lottery: For this manipulation, we adopted

a between-subject design, where subjects were randomly assigned to either the baseline

treatment or the experience treatment. In Experiment 1, after learning the probability

distribution of the lottery and prior to making actual decisions, subjects in the partial-

experience treatment had to click and view 20 draws of the lottery. As the subjects viewed

each lottery draw, an accompanying bar chart which recorded each lottery outcome was

updated. By the 20th draw, the bar chart reflected the probability distribution of the

lottery. Figure 2(a) shows an example of the partial-experience treatment.

In Experiment 2, subjects in the full-experience treatment had to make five hypothetical

decisions per lottery, with each decision involving a different sure payment (3, 4, 5, 6 or 7

euros in a random sequence). For each decision, they observed four potential realizations

of the payoff of their choice as well as the counterfactual in a payoff table. Figure 2(b)

4The subjects in Experiment 1 also made decisions involving a loss lottery and a mixed lottery. We
included these lotteries because they might lead to larger preference uncertainty due to the additional
uncertainty in attitudes toward losses. We omitted these two lotteries in Experiment 2 because, as pointed
out by one reviewer, the theoretical analysis of these two lotteries requires a more general approach than
what we had relied on. The main results involving these lotteries are provided in online Appendix C.2.
Further details can be found in the working paper version (Arts et al., 2020).
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(a) The partial-experience treatment (b) The full-experience treatment

Figure 2: Panel (a) illustrates what subjects in the partial-experience treatment saw when
they generated the outcomes of the lottery. Panel (b) illustrates what subjects saw in the
full-experience treatment. The numbers highlighted in blue in the table show a subject’s
hypothetical decision and her four potential payoffs, and the not highlighted numbers show
the counterfactuals.

shows the decision screen and the payoff table viewed by a subject who chose the lottery

over the sure payment of 4 euros in the hypothetical decision.

2.3 Design considerations

A few design features deserve some discussion. First, our within-subject design of eliciting

self-reported confidence measures and randomization probabilities for each subject raises

the concern that experimenter demand effects or order effects may unintentionally influence

subjects to give similar responses, resulting in a systematic relationship between them. We

took several measures in Experiment 2 to make it more obscure and costly for subjects to

connect self-reported confidence measures and randomization probabilities (Zizzo, 2010),

such as spreading the decisions over three sessions (at least seven days apart), including a

cost for randomizing, and randomly assigning subjects to one of the three different orders.
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Figure 3: Summary of the treatments and experimental procedure in Experiment 1 and
2. The dotted rectangle highlights the types of decisions that subjects in each experiment
made for both lotteries. The sequence of the simple lottery and the complex lottery in
each type of decision was randomized at individual subject level.

The key features of the two experiments are summarized in Figure 3.

Second, varying the complexity of the lottery could induce changes in behavior through

channels other than decision confidence. For example, subjects may valuate the two lotter-

ies differently, as found in studies documenting complexity seeking and complexity averse

behaviors (see e.g. Abdellaoui et al., 2020, and the references therein). This difference is

less relevant for our purpose because our focus is on decision confidence (e.g., the range of

sure payments that subjects do not have full confidence) rather than the average valuation

of the lotteries. Another concern is that varying the complexity of the lottery induces dif-

ferent randomization behavior. While this may occur in some non-EUT models (Machina,

1985; Kahneman and Tversky, 1979; Tversky and Kahneman, 1992; Quiggin, 1982), they

do not predict a close relationship between randomization probability and self-reported

decision confidence, or how this relationship changes with the complexity of the lottery.

We will return to this point in subsection 4.4 to discuss other interpretations of random-

ization probabilities that could predict different randomization behavior between the two

lotteries.
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A final concern is the choice of the experience treatments. The description-experience gap

literature suggests that description and experience may induce different risk preferences

(see e.g., Hertwig et al., 2004; Wulff et al., 2018), which could reduce decision confidence.

Our partial experience design is unlikely to have this issue because subjects’ experience

of the lottery realizations were equivalent to its description. Recent studies by Aydogan

and Gao (2020) and Cubitt et al. (2022) show that the description-experience gap should

be small in this case. Examining more closely, our experience treatments differ from the

standard design in the Description-Experience gap literature as we provided subjects with

the full description of the lottery’s probability distribution in addition to the opportunity

to experience the realizations of the lottery. In this sense, our experience treatments are

closer to studies showing that experience in addition to a full description of the lottery

could help subjects develop a better understanding about their preference (e.g., van de

Kuilen and Wakker, 2006; van de Kuilen, 2009).

2.4 Sample and procedure

The data were collected from a sample of 498 subjects of the ID lab at Radboud Uni-

versity. A total of 205 subjects participated in Experiment 1 and 293 in Experiment 2.

Invitations were sent in batches via ORSEE (Greiner, 2015). The experiment was con-

ducted using Qualtrics and lasted approximately 20 minutes for Experiment 1 and about

30 minutes in total for Experiment 2. In Experiment 2, subjects were also asked to answer

a post-experiment questionnaire at the end of each of the three sessions based on the type

of decision confidence they reported in that session. Online Appendix C.3 contains the

experimental instructions and decision screens. Each subject received a participation fee

of 1 euro and an additional payment based on one of the decisions they made in the exper-

iment. In Experiment 1, the additional monetary compensation was based on a decision

randomly selected from their binary choices or randomized choices. In Experiment 2, it

was based on a decision randomly selected from their binary choices, randomized choices,

or probabilistic confidence decisions. The average additional payment was 6.28 euros. We

made the payment via bank transfers.
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3 Theoretical analysis

Under expected utility theory (EUT) which ignores decision confidence and assumes that a

unique utility function (subject to positive affine transformation) captures an individual’s

preference, it is straightforward to show that the individual chooses λ∗ ∈ (0, 1) for at

most one value of the sure payment in the 13 choice pairs. Thus, under EUT, strict

randomization (λ∗ ∈ (0, 1)) rarely occurs, and randomization probabilities do not contain

additional information beyond indifference.

We present two theoretical analyses of our experiments that provide an explicit link be-

tween randomization probabilities and decision confidence. Both analyses assume that the

individual is uncertain about her preference. Appendix A.1 presents a theoretical frame-

work based on Klibanoff et al. (2005) and Cerreia-Vioglio et al. (2015). In this framework,

the individual has multiple utility functions that we call multiple selves. She is not fully

confident about her choice when some selves prefer one option while others prefer the other.

In such instances, the individual prefers randomization over selecting a particular option

because it offers a ”fair” way to resolve internal conflicts among her different selves. This

approach of capturing the lack of decision confidence from unsureness about preferences

is closely related but is different from models of ambiguity (e.g., Gilboa and Schmeidler,

1989; Klibanoff et al., 2005), which focus on unsureness about beliefs (e.g., Halevy, 2007;

Chew et al., 2017; Cubitt et al., 2020, and the references therein).

Appendix A.2 presents the extension of Fudenberg et al.’s (2015) model. Fudenberg et al.

(2015) axiomatized a choice rule of deliberate randomization called additive perturbed

utility (APU). Their representation corresponds to a form of ambiguity-averse preferences

for an individual who is uncertain about her true utility function. The individual random-

izes to balance the probability of errors due to preference uncertainty against the cost of

avoiding them (Fudenberg et al., 2015, p. 2373).

Both analyses suggest that the preference for randomization is motivated by the hedging

of preference uncertainty. In particular, randomization probabilities are affected by the

perceived preference uncertainty of the options, attitudes towards preference uncertainty,
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as well as the utility difference between the options. The two theoretical analyses suggest

that our proposed link between randomization probabilities and decision confidence could

hold under a broad class of decision models that incorporate preference uncertainty.

We expect that subjects perceive more preference uncertainty with the complex lottery

than with the simple lottery, and experience with the lottery reduces preference uncer-

tainty regarding the lottery. With these expectations, our theoretical analyses show that

randomization probabilities share three important properties of decision confidence: a)

subjects choose randomization probabilities close to 0.5 when the sure payment has a sim-

ilar decision utility to the lottery; b) they randomize over a wider range of sure payments,

with randomization probabilities closer to 0.5, when they face the complex lottery com-

pared to the simple lottery; and c) with experience and less preference uncertainty about

the lottery, subjects’ randomization probabilities may be stretched away from 0.5 as they

randomize over a smaller range of sure payments. If randomization probabilities and the

two self-report measures both capture decision confidence, we expect the following:

Hypotheses.

1. Randomization probabilities are positively correlated with the self-reported confidence

measures.

2. When two choice options are more similar, for example, around the switching choices

where subjects switch between the lottery and the sure payment, the subjects have lower

decision confidence, a higher likelihood of randomizing, and randomization probabili-

ties closer to 0.5.

3. Compared to the decisions about the simple lottery, the decisions about the complex

lottery exhibit lower decision confidence, as measured by the self-reported confidence

measures, and randomization probabilities are affected in the same direction, main-

taining a strong association between them.

4. Compared to the decisions in the no-experience treatment, the decisions in the expe-

rience treatments exhibit higher decision confidence, as measured by the self-reported

confidence measures, and randomization probabilities are affected in the same direc-

tion, maintaining a strong association between them.
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4 Experimental results

We report the results in two steps. We begin by showing the systematic link between ran-

domization probabilities and the two measures of self-reported confidence in the baseline

no-experience treatment for decisions about the simple lottery (Hypotheses 1 and 2). We

then show that decision confidence responded to our treatment manipulations in the ex-

pected direction by comparing the two measures of self-reported decision confidence across

treatments. We demonstrate that exogenous shifts in self-reported decision confidence are

paired with corresponding shifts in randomization probabilities, maintaining their system-

atic link (hypotheses 3 and 4). We pool subjects in different orders in our main analyses

and discuss order effects in subsection 4.3.

4.1 Randomization probabilities and self-reported confidence

Below, we report two empirical observations that are consistent with Hypothesis 1 and 2.

Result 1. In the baseline no-experience-simple-lottery treatment, randomization probabili-

ties were significantly and positively correlated with confidence statements and probabilistic

confidence among the large majority of subjects. Further, on average, randomization prob-

abilities corresponded to probabilistic confidence in absolute levels.

To obtain the correlation between randomization probabilities and confidence statements,

we transformed the confidence statements to a scale of 1 to 5, with “Surely y” taking

the value of 1 and “Surely x” taking the value of 5 to represent one’s decision confidence

in choosing x. We computed for each subject the nonparametric Spearman correlation

between confidence statements and randomization probabilities in Experiment 1 and 2,

and between probabilistic confidence and randomization probabilities in Experiment 2.

The results for the baseline treatment are illustrated in Figure 4, Panel (a). Table B.1

in Appendix B summarizes the cross-measure correlations across treatments. Consistent

with Hypothesis 1, confidence statements and randomization probabilities have a high

and positive correlation. Moderate to strong correlations of 0.60 in Experiment 1 and
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Figure 4: (a) Cumulative distributions of subjects’ Spearman correlations between random-
ization probabilities and confidence statements or probabilistic confidence in the baseline
no-experience treatment for decisions about the simple lottery. E1 and E2 refer to data
from Experiment 1 and 2 respectively. (b) Scatter plot of randomization probabilities, with
the mean randomization probability (in solid line) at each probabilistic confidence level in
Experiment 2 in the baseline no-experience treatment for decisions about the simple lottery.
The dashed line is a 45-degree line.

0.71 in Experiment 2 were found at the 10th percentile level, which increased to 0.91

in Experiment 1 and 0.89 in Experiment 2 at the median level. Since the subjects in

Experiment 2 reported confidence statements and randomization probabilities in different

sessions separated by at least seven days and in different orders, the similarities between

the correlations found in Experiments 1 and 2 suggest that confidence statements and

randomization probabilities are associated in ways beyond experimenter demand effects

and order effects. In Experiment 2, we also found high correlation between self-reported

probabilistic confidence and randomization probabilities: the correlation is 0.73 at the 10th

percentile and 0.90 at the median.

As correlations do not describe the correspondence between randomization probabilities

and self-reported decision confidence in absolute levels, we also computed the mean ran-

domization probability at each level of probabilistic confidence for each subject and took

the mean across subjects. This is shown in Panel (b) of Figure 4. Overall, the mean ran-

domization probability for x is close to the probabilistic confidence of choosing x: subjects

who chose a randomization probability of, for example, 0.7 would report probabilistic con-
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fidence of 70% on average. Examining the absolute correspondence between randomization

probabilities and confidence statements gives a similar result, as summarized in Figure B.1

and Table B.2. These results suggest randomization probabilities can be used as a direct

proxy for probabilistic confidence.

Next, we turn to Hypothesis 2 and examine the randomization probabilities around the

switching choices. Intuitively, x and y are harder to compare around the switching choices.

Reflecting this, subjects reported lower decision confidence and chose randomization prob-

abilities close to 0.5 around the switching choices, as indicated in Result 2.

Result 2. On average, the subjects reported lower decision confidence around the switching

choices based on the self-reported confidence measures and were more likely to randomize

and chose randomization probabilities close to 0.5 around the switching choices.

We study the switching choice of each subject by considering two levels of sure payments:

yb and ȳb. We let yb denote the highest sure payment at and below which the subject

always preferred x over y, and ȳb denote the lowest sure payment amount at and above

which the subject always chose y over x in the binary choices. We henceforth refer to the

values of y between yb and ȳb as the subject’s switching range. This approach allows us

to accommodate subjects who switched once as well as those who switched multiple times

between lottery x and the sure payments (for the simple and complex lotteries, respectively,

19% and 25% in Experiment 1 and 14% and 23% in Experiment 2).5

As expected, decision confidence was lower within the switching range than outside it. In

Experiment 2 (Experiment 1), 88% (85%) of the confidence statements within the switching

range were “Probably x,” “Unsure,” or “Probably y,” compared to 41% (40%) outside the

switching range. In Experiment 2, “60% x, 40% y” and “40% x, 60% y” were selected

for 53% of the values within the switching range, compared to 13% outside the switching

range. Table 1 shows the median randomization probabilities, probabilistic confidence,

5It is important to include these subjects, because when subjects are not fully confident about their
choices, they may switch between x and y multiple times. For the subjects who switched from the lottery to
the sure payments once, the switching range simply includes the two sure payments around the switching
choice (e.g., if a subject chooses the lottery at y = 4 and switches to the sure payment at y = 4.5 euros,
this means that yb = 4, ȳb = 4.5, and the switching range is [4, 4.5]).

16



Median behavior around the switching range

Experiment
Confidence Probabilistic Randomization
statements Confidence probabilities

yb ȳb yb ȳb yb ȳb
Experiment 1 (N = 105) Probably x Probably y - - 0.67 0.46
Experiment 2 (N = 145) Probably x Probably y 60% x 40% x 0.65 0.45

Table 1: Median behavior around the switching choices in the baseline no-experience treat-
ment for decisions about the simple lottery.

and confidence statements around the switching range. The median responses to the self-

reported confidence measures indicate a lack of confidence around the switching range.

The randomization probabilities within the switching range resemble the two self-reported

confidence measures. In Experiment 2 (Experiment 1), 67% (85%) of randomization proba-

bilities reported for values of y within the switching range fell between 0.1 and 0.9, whereas

this only holds for 33% (47%) outside the switching range. Further, in Experiment 2 (Ex-

periment 1), the subjects assigned a median randomization probability of 0.65 (0.67) to x

at yb, and a median randomization probability of 0.45 (0.46) to x at ȳb. The median ran-

domization probability for all the choices that fell within the switching range is 0.5. These

results are consistent with Hypothesis 2: subjects were more likely to choose randomization

probabilities close to 0.5 for choices that they found difficult to compare.

4.2 Manipulating decision confidence

In this section, we examine whether our exogenous manipulations of the decision situation

affected self-reported decision confidence in the expected direction and whether random-

ization probabilities were affected in similar ways to maintain a systematic relationship

with the self-reported confidence measures.

4.2.1 The complex lottery versus the simple lottery

Consistent with Hypothesis 3, we find that subjects had lower decision confidence when

making decisions about the complex lottery compared to the simple lottery. Result 3
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summarizes our finding.

Result 3. Compared to decisions about the simple lottery, the subjects revealed less than

full decision confidence over a wider range of sure payments for decisions about the complex

lottery, and their reported decision confidence were more compressed toward “Unsure” or

(50% x, 50% y). Likewise, the subjects randomized over a wider range of sure payments

and chose randomization probabilities closer to 0.5 for decisions about the complex lottery.

We find that the range of sure payments over which the subjects chose confidence state-

ments “Unsure” or “Probably” is larger for decisions about the complex lottery than for

decisions about the simple lottery in both Experiment 1 and 2, and it is statistically signif-

icant in Experiment 2 (Experiment 1: 3.62 vs 3.36, Wilcoxon signed-rank test p = 0.150;

Experiment 2: 3.58 vs 3.15, Wilcoxon signed-rank test p < 0.01). Comparing the range

of sure payments for which subjects did not indicate probabilistic confidence of (100% x,

0% y) or (0% x, 100% y) gives similar results: the subjects were not fully confident over a

wider range of sure payments for decisions about the complex lottery than decisions about

the simple lottery (4.63 vs. 4.37, Wilcoxon signed-rank test p<0.01).

Panel (a) and Panel (b) of Figure 5 illustrate how confidence statements and probabilistic

confidence varied with different sure payment amounts across the two lotteries in Experi-

ment 2. Compared to the simple lottery, self-reported decision confidence measures were

more compressed towards “Unsure” or (50% x, 50% y) when the subjects faced the com-

plex lottery. The difference in decision confidence across the two lotteries is statistically

significant between sure payments of 5 and 8 euros, and is less often statistically significant

for lower sure payment amounts. The results for Experiment 1 are similar, albeit weaker,

and can be found in Figure B.2 of Appendix B.

We proceed to examine the randomization probabilities chosen for each lottery. As we

can see from Table B.3 in Appendix B, in both experiments, the range of sure payments

over which subjects chose a randomization probability between 0.1 to 0.9 was significantly

larger for decisions about the complex lottery than for decisions about the simple lottery

(Experiment 1: 4.06 vs 3.63, Wilcoxon signed-rank test p < 0.01; Experiment 2: 3.19

vs 3.03, Wilcoxon signed-rank test p < 0.10). This is consistent with the findings from
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Figure 5: The mean self-reported decision confidence and randomization probabilities
for each value of y for the simple lottery (solid line) and complex lottery (dashed line).
Wilcoxon signed-rank tests were performed to test the treatment difference for each value
of y: * p < 0.10, ** p < 0.05, *** p < 0.01.

self-reported decision confidence reported above.

Further, the randomization probabilities were also more compressed towards 0.5 when the

subjects faced the complex lottery compared to the simple lottery, as shown in Panel

(c) of Figure 5. The difference in randomization probabilities across the two lotteries

is statistically significant between sure payments of 5 and 7 euros, coinciding with the

range obtained from probabilistic confidence. Panel (c) of Figure 5 also shows asymmetric

treatment effects on randomization probabilities for sure payments above 5 euros and sure

payments below 5 euros. We show in Appendix A.3 that this asymmetric treatment effect

can be consistent with the theoretical analysis when the treatment manipulation affects

both preference uncertainty and the average valuation of the lotteries.

Despite our manipulation, the correlations between the two decision confidence measures

and randomization probabilities remain similar. Comparing decisions about the simple

lottery with those about the complex lottery, the median correlations between randomiza-

tion probabilities and confidence statements are 0.86 vs 0.82 in Experiment 1 and 0.89 vs

0.88 in Experiment 2. The median correlations between randomization probabilities and

probabilistic confidence are 0.90 vs 0.89 in Experiment 2. More results can be found in

Table B.1, B.2, and B.4 in Appendix B.
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4.2.2 Experience and no experience

Hypothesis 4 states that, compared to the baseline no-experience treatment, gaining expe-

rience with the lotteries increases decision confidence. The results about Hypothesis 4 are

summarized in Result 4.

Result 4. Decisions in the partial-experience treatment and decisions about the simple lot-

tery in the full-experience treatment did not exhibit significant treatment effects. Comparing

decisions about the complex lottery in the full-experience treatment and the no-experience

treatment, the subjects (1) revealed less than full decision confidence over a narrower range

of sure payments, and their self-reported decision confidence were stretched further away

from “Unsure” or (50% x, 50% y); and (2) they randomized over a narrower range of sure

payments and chose randomization probabilities further away from 0.5.

We report the results about the partial-experience treatment and the simple lottery in Fig-

ure B.3, Figure B.4 and Table B.5 in Appendix B, and report the comparison between the

full-experience treatment and the no-experience treatment about the complex lottery here.

We find that the range of sure payments over which subjects reported confidence statements

of “Probably” or “Unsure” is significantly narrower (3.16 vs. 3.58, Wilcoxon rank-sum test

p < 0.05). The range of sure payments over which subjects chose probabilistic confidence

between 0.1 and 0.9 did not differ significantly between the full-experience treatment and

the no-experience treatment (4.58 vs. 4.63, Wilcoxon rank-sum test p = 0.590).

Panels (a) and (b) of Figure 6 show how self-reported decision confidence differs between

the full-experience and the no-experience treatment. Compared to the no-experience treat-

ment, self-reported decision confidence was stretched further away from “Unsure” or (50%

x, 50% y) for the subjects in the full-experience treatment and these differences in decision

confidence were significantly different for sure payments between 2 and 4.5 euros. This

implies that the subjects in the full-experience treatment were more confident about which

option they preferred than subjects in the no-experience treatment.

Next, we examine these treatment effects on randomization probabilities. Like decision

confidence, we find that the range of sure payments over which subjects chose random-

20



****************************************************
**************************

****************************************************
******************************************************************************

1

2

3

4

5

0 2 3 3.50 4 4.50 5 5.50 6 6.50 7 8 10
y

C
on

fid
en

ce
 s

ta
te

m
en

ts

(a) Confidence statements

******************************************************************************

****************************************************
****************************************************

******************************************************************************

0.00

0.25

0.50

0.75

1.00

0 2 3 3.50 4 4.50 5 5.50 6 6.50 7 8 10
y

P
ro

ba
bi

lis
tic

 c
on

fid
en

ce

(b) Probabilistic confidence

******************************************************************************
******************************************************************************

******************************************************************************

******************************************************************************

******************************************************************************

**************************

0.00

0.25

0.50

0.75

1.00

0 2 3 3.50 4 4.50 5 5.50 6 6.50 7 8 10
y

λ

(c) Randomization
probabilities

Figure 6: The mean self-reported decision confidence and randomization probabilities for
each value of y for the complex lottery in Experiment 2. The graphs show the baseline no-
experience treatment (solid line) compared to the full-experience treatment (dashed line).
Wilcoxon rank-sum tests were performed to test the treatment difference for each value of
y: * p < 0.10, ** p < 0.05, *** p < 0.01.

ization probabilities between 0.1 to 0.9 was significantly narrower in the full-experience

treatment than in the no-experience treatment for decisions about the complex lottery

(2.67 vs. 3.19, Wilcoxon rank-sum test p < 0.05). Panel (c) of Figure 6 shows that

the difference in mean randomization probabilities across sure payments between the full-

experience treatment and the no-experience treatment resembles that shown in Panel (a)

and Panel (b). Compared to the no-experience treatment, randomization probabilities

were also stretched further away from 0.5 among the subjects in the full-experience treat-

ment. Significant differences in the randomization probabilities between subjects in the

full-experience treatment and the no-experience treatment were also observed between 2

euros to 4.5 euros. Asymmetric treatment effects on randomization probabilities could also

be observed here for sure payments above 5 compared to those below 5, which we discuss

further in the theoretical models in Appendix A.3.

The increase in decision confidence from subjects’ experience with the lotteries did not

affect the high correlation between self-reported decision confidence and randomization

probabilities. The median correlation between self-reported decision confidence and ran-

domization probabilities was broadly similar in the two treatments. More details can be

found in Table B.1, B.2, and B.4 in Appendix B.
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4.3 Order effects

An important concern of the within-subject design is order effects: subjects’ earlier deci-

sions may affect their subsequent decisions. We are especially concerned with the order

effects arising from priming: when randomization probabilities were elicited after self-

reported confidence measures, subjects could be primed to link randomization probabilities

to decision confidence and consequently reported randomization probabilities that cohered

with self-reported decision confidence measures. Below we highlight the key findings about

order effects and leave the details to Appendix B.1.

We find some order effects, suggesting that priming effects on randomized choices could

be present. For example, subjects randomized strictly (0 <randomization probability< 1)

in fewer choices when randomized choices were presented first (Order 2) compared to later

(Order 1 and 3) in all treatments: averaging across treatments, 34% in Order 2 compared

to 41% and 45% in Order 1 and 3 respectively (see Table B.6 and Figure B.5 in Appendix

B.1 for details). Also, the cumulative distributions of the correlations in Order 2 tend to be

lower (on the left of the other two orders), with a larger difference at the lower percentiles

and in the complex lottery treatments.

Despite these differences, we find support for our hypotheses among the subjects in Order

2 where the aforementioned priming effects were absent, although the support is sometimes

weaker than in the full sample, possibly due to the reduction of sample size. Figure B.6

in Appendix B.1 shows that across treatments, the median cross-measure correlations in

Order 2 are high, consistent with H1. Subjects reported low decision around the switching

choices and chose randomization probabilities around 0.5 in these choices, supporting H2

(see Table B.7). Table B.8 suggests that subjects in Order 2 had lower decision confidence

in decisions involving the complex lottery compared to the simple lottery, consistent with

H3. In Order 2, similar to the other two orders, decisions involving the complex lottery

showed higher confidence in the full experience treatment than in the non-experience treat-

ment, consistent with H4, although the treatment effect is not statistically significant in

any individual order. This high level of consistency between randomization probabilities

and self-reported confidence measures as well as their similar reactions to exogenous change
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of decision confidence suggest that these measures likely share common psychological foun-

dations, even if not identical.

Finally, it is worth noting that the order effects discussed above do not necessarily suggest

that randomization probabilities are a poorer proxy for decision confidence than the self-

reported confidence measures. Confidence statements and probabilistic confidence are also

noisy proxies of decision confidence, and it is not obvious what the “right” amount of strict

randomization is. When we assess the value of decision confidence based on its correspon-

dence with actual choices (when subjects report lower confidence in choosing an option,

they should be less likely to choose that option), we find both randomization probabilities

and probabilistic confidence corresponded to actual choices. Importantly, randomization

probabilities exhibited a closer correspondence to binary choices than probabilistic confi-

dence, especially in Order 2. See Appendix B.1 for more details.

4.4 Alternative interpretations of randomization probabilities

We have interpreted randomization behavior as a lack of decision confidence in the face of

preference uncertainty. This is consistent with the findings from our post-experiment ques-

tionnaire as well as findings in Agranov and Ortoleva (2023) where many subjects explicitly

mentioned unsureness, complexity, difficulty, and hedging as reasons for randomization (see

Online Appendix C.1 for details). However, subjects may have other reasons for random-

ization. While it is not possible to eliminate all alternative interpretations, we show that

indifference, random errors, or utility difference alone cannot be the driving force behind

subjects’ randomization behavior and the treatment effects.

First, indifference is not the driving reason for randomization because the majority of the

subjects randomized at least twice (see Table B.9 in Appendix B.2), while randomization

from indifference should occur for at most one value of sure payments. Second, randomiza-

tion was unlikely a result of random errors because subjects’ randomization probabilities of

choosing x decreased monotonically with the value of y, even though they faced a random

sequence of y (see e.g., Panel (c) in Figure 5). Further, the treatment effects on randomiza-

tion probabilities in the expected directions suggest that subjects’ randomization was likely
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a deliberate choice. Third, if randomization probabilities were due to utility differences

alone, randomization probabilities should increase for each value of sure payments when

the utility over the lottery increases (e.g., moving from the simple lottery to the complex

lottery or the no-experience treatment to the full-experience treatment), which increases

the lower bound and the upper bound of randomization as well. Our results clearly re-

ject these predictions. Randomization probabilities were compressed toward 0.5 rather

than increased monotonically, and the two bounds often moved in opposite directions. We

elaborate on this in Appendix B.2.

5 Conclusion

We propose that letting individuals assign randomization probabilities according to which

they receive options can be an incentivized way to elicit decision confidence. In two ex-

periments, we elicited randomization probabilities as well as two self-reported confidence

measures and further manipulated decision confidence exogenously.

We find that most subjects randomized frequently, and their randomization probabili-

ties and self-reported confidence measures were linked in ways that are consistent with

the hypotheses derived from two theoretical analyses. While there were some order ef-

fects depending on whether randomization probabilities were elicited before or after the

self-reported confidence, cross-measure correlations were high, and randomization prob-

abilities corresponded closely to probabilistic confidence in absolute levels, with a high

randomization probability assigned to an option associated with high self-reported prob-

abilistic confidence. Our further examination suggests that alternative interpretations of

randomization such as indifference, random errors, or differences in utility alone are un-

likely to be the driving factors. Overall, our results suggest that decision confidence can

be meaningfully and accurately inferred from randomization probabilities.
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Appendices

A Appendix: Theoretical analysis

A.1 The theoretical analysis based on Cerreia-Vioglio et al. (2015) and

Klibanoff et al. (2005)

To accommodate the potential that a decision-maker might not be fully confident about

her choices, we assume an individual has multiple utility functions that we call multiple

selves, with each self representing one particular way to trade off conflicting objectives in

choices. Such a modelling technique has been used in models of incomplete preferences

(see e.g., Bewley, 2002; Dubra et al., 2004; Cerreia-Vioglio et al., 2015).

Specifically, let uτ denote the utility function of the self τ , and T denote the set of selves.

Let π denote the subjective probability distribution over T , which, similar to the modelling

technique of Loomes and Sugden (1982), represents “the individual’s degree of belief or

confidence in the occurrence of the corresponding states” (Loomes and Sugden, 1982, p.

807). This belief could come from introspection or experiences with similar options. Given

a utility function uτ , we follow the standard assumption that the self behaves according

to EUT. Let Uτ (l) denote the expected utility of an option l ∈ L.6 We further assume

that the individual dislikes disagreement among selves. This is because, to arrive at a

choice when there are multiple selves with different preferences is, in essence, similar to

situations where a group of people with different opinions tries to reach a consensus. The

more strongly group members disagree with each other, the harder it is for the group to

make compromises and agree on a single opinion. Hence, aversion to disagreement among

selves can be interpreted as the cost of forcing different selves to reach a consensus. With

6The function U(·) could be made more general to allow for non-EUT preferences to incorporate un-
sureness about how strongly to weight the extra factor, such as probability weighting or loss aversion, in
a non-EU model.
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the above assumptions, we can write the individual’s preference over an option l as:

V (l) =

∫
T
φ [U τ (l)] dπ, (1)

where concave φ(·) implies an aversion to disagreement - deviations from the mean expected

utility - among different selves. Similar to the connection between the concavity of the

utility function and risk aversion, the concavity of φ(·) implies that the individual places

more weight on the selves who have lower value for l. Such a cautious attitude is consistent

with Levitt (2021) who showed that subjects who have difficulties making a decision are

often excessively cautious in the sense of preferring to maintain the status quo.

Equation 1 extends directly from Klibanoff et al. (2005) and Cerreia-Vioglio et al. (2015).

It can be seen as a smooth version of the cautious expected utility model (Cerreia-Vioglio

et al., 2015). It is also a parallel of the smooth ambiguity model of Klibanoff et al. (2005).

Indeed, in the smooth ambiguity model, an individual is unsure about the probability

distribution of the states of nature, and she has a subjective belief over these probability

distributions. Likewise, in this model, an individual is unsure about her utility function,

and she has a subjective belief over her multiple selves. Note that this does not mean

this model only applies to decision-making under risk. If there is preference uncertainty

under risk (or even under certainty, e.g., over options about experience goods) because

individuals have difficulties evaluating options, this uncertainty is also likely to be present

in more complex situations of decision-making under ambiguity. In this sense, this model

complements the smooth model of ambiguity and general models about uncertainty in

beliefs. Ultimately, the lack of decision confidence arises from the difficulties in evaluating

options, which may be due to uncertainty in both beliefs and preferences. A general model

accommodating both sources of uncertainty could be written as:

V (a) =

∫
M

∫
T
φ [U τ,µ(a)] dπdµ,

where a represents an act, and µ is a subjective probability distribution over M , the set

of probability distributions of the states of nature.

We are now ready to establish the link between decision confidence and the randomization
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probability in the randomized choices. Specifically, recall that in our mechanism, the

individual chooses a randomization probability λ ∈ [0, 1] and builds a lottery (λ, x; (1 −

λ), y): She receives x with probability λ and y with probability 1− λ. Since for any given

self τ , the individual’s preference over the lottery (λ, x; (1− λ), y) satisfies EUT, we have

Uτ [λx+ (1− λ)y] = λUτ (x) + (1−λ)Uτ (y). The individual’s decision is then to maximize

her utility by choosing the optimal randomization probability 0 ≤ λ ≤ 1:

Maxλ V [λx+ (1− λ)y] =

∫
T
φ [λUτ (x) + (1− λ)Uτ (y)] dπ.

In the experiment, y is a sure payment. Sure monetary payments are probably the easiest

options to evaluate, hence we assume the individual is always confident about her evaluation

of a sure payment: Uτ (y) = u(y), ∀τ ∈ T . Applying the Taylor expansion to the above

equation at y, we can derive the optimal λ as:7

λ∗ ≈ 1

−φ′′[u(y)]
φ′[u(y)]

× Eπ [Uτ (x)]− u(y)

σ2x
(2)

where σ2x = Eπ [Uτ (x)− Eπ(Uτ (x))]2 is the standard deviation of the valuation of the lot-

tery across multiple selves and approximates how strongly different selves disagree with

each other. Similar to decision-making under risk, −φ′′(u(y))
φ′(u(y)) can be interpreted as a metric

of attitudes towards disagreement among selves. Thus, the randomization probability ag-

gregates the three important determinants of decision confidence: preference uncertainty,

the utility difference between the two options, and her attitude toward preference uncer-

tainty. It is in this sense we argue that the randomization probability captures decision

confidence.

Deriving the hypotheses

To see how the individual may randomize for sure payments that yield similar utility as

7More precisely, since 0 ≤ λ ≤ 1, λ∗ ≈ min

{
max

{
0, 1

−φ
′′[u(y)]
φ′[u(y)]

× ∆u
σ2
x

}
, 1

}
. The detailed derivation

can be found below.
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the lottery, notice that the certainty equivalent of the lottery is

u(CEx) =

∫
φ [U τ (l)] dπ

≈ Eπ

{
Eπ [Uτ (x)] + φ′ (Eπ [Uτ (x)]) [Uτ − Eπ [Uτ (x)]] +

φ′′ (Eπ [Uτ (x)])

2
[Uτ − Eπ [Uτ (x)]]2

}
= Eπ [Uτ (x)] +

φ′′ (Eπ [Uτ (x)])

2
σ2x.

The optimal randomization probability at the sure payment which is equal to the certainty

equivalent of the lottery (u(y) = u(CEx) = Eπ [Uτ (x)] + φ′′(Eπ [Uτ (x)])
2 σ2x) is

λ∗ ≈ 1

−φ′′[u(CEx)]
φ′[u(y)]

× Eπ [Uτ (x)]− u(CEx)

σ2x
=

1

2
× φ′ [u(CEx)]φ′′ (Eπ [Uτ (x)])

φ′′ [u(CEx)]
.

When φ′ [u(CEx)] is close to one and the function φ(·) is smoothly concave, which is likely

to hold for options with moderate payoffs, the randomization probability is around 0.5.

This implies that the individual would choose randomization probabilities close to 0.5 when

two options yield similar utilities. Furthermore, the smallest sure payment that the indi-

vidual chooses λ∗ < 1 (the lower bound), and the largest sure payment that the individual

chooses λ∗ > 0 (the upper bound) are defined by u(yx) = Eπ [Uτ (x)] − −φ
′′[u(y)]

φ′[u(y)] σ
2
x, and

u(ȳx) = Eπ [Uτ (x)] . The range of sure payments that the individual randomizes strictly is

u(ȳx)− u(yx) =
−φ′′ [u(y)]

φ′ [u(y)]
σ2x,

which varies with preference uncertainty (σ2x).

Relating these results to our experiment, we expect subjects to have more preference

uncertainty about a complex lottery than a simple lottery, as the individual may find

it harder to evaluate a complex lottery. She considers relevant a larger set of utility

functions and the subjective belief π becomes flatter. This translates into larger preference

uncertainty (δx increases). Experience with a lottery, on the other hand, reduces preference

uncertainty about the lottery because the individual attains clearer preferences about the

lottery when she gains more experience (the set of utility functions becomes smaller and
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Figure A.1: The relationship between the randomization probability λ and the sure pay-
ment y. The figure is produced by assuming φ(Uτ ) = 1− e−Uτ , π(u1) = 0.6, π(u2) = 0.4,
U1(x1) = 0.8 and U2(x1) = 0.2, U1(x2) = 1.0 and U2(x2) = 0, and U1(y) = U2(y) = y.

δx decreases). These lead to the hypotheses in the main text.

As a concrete illustration, consider the following numerical example: the individual has

two selves τ = 1, 2, and π(u1) = 0.6, π(u2) = 0.4. The individual’s preference over the

lottery x1 is such that U1(x1) = 0.8 and U2(x1) = 0.2. Her preference over the lottery x2

is such that U1(x2) = 1.0 and U2(x2) = 0. Thus, the individual perceives more preference

uncertainty about the lottery x2 than the lottery x1 (σx1 = 0.05 < σx2 = 0.24). Option

y is a sure payment, and u1(y) = u2(y) = y. The function φ(Uτ ) = 1 − e−Uτ . Simple

calculation shows that λx1 = − 1
0.8−0.2 ln(0.40.6 ×

y
1−y ) and λx2 = − 1

1−0 ln(0.40.6 ×
y

1−y ), subject

to 0 ≤ λ ≤ 1. Figure A.1 shows the relationship between the optimal λ and sure payment

y. The Figure shows that the randomization probability decreases with y, and approaches

to 0.5 for y that yields similar decision utility as the lottery (y = 0.515 for x1 and y = 0.476

for x2). Furthermore, the individual randomizes over a wider range of y for x2 which she

perceives higher preference uncertainty compared to x1.

Derivation of the optimal λ∗
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Taking the first order derivative of the optimization equation gives:8

dV [λx+ (1− λ)y]

dλ
=

∫
T
φ′ [λUτ (x) + (1− λ)u(y)]× [Uτ (x)− u(y)] dπ = 0.

Note that Uτ (x) is a random variable governed by the subjective probability distribution

π. Let X = Uτ (x), and ∆τ = X − u(y). With these notations, we have

φ′ [λUτ (x) + (1− λ)u(y)] = φ′ [u(y) + λ∆τ ] .

We are most interested in scenarios where the individual finds it difficult to choose between

x and y, i.e., when the two options are close and ∆τ is small relative to X and u(y). When

this is the case, we can use the Taylor expansion at y and obtain

φ′ [u(y) + λ∆τ ] = φ′(u(y)) + φ′′(u(y))λ∆τ +O (λ∆τ ) ≈ φ′(u(y)) + φ′′(u(y))λ∆τ ,

where O (λ∆τ ) is the sum of the terms that have λ∆τ with a power of two or higher. The

above first order condition can be written as

dV [λx+(1−λ)y]
dλ =

∫
T φ
′ [u(y) + λ∆τ ] ∆τdπ,

≈
∫
T [φ′(u(y)) + φ′′(u(y))λ∆τ ] ∆τdπ

= Eπ [φ′(u(y))∆τ ] + λEπ
[
φ′′(u(y))∆2

τ

]
= 0,

where Eπ(·) is the expectation operator with respect to the distribution π. Solving for λ,

we have:

λ∗ ≈ min

max
0,

1

−φ′′[u(y)]
φ′[u(y)]

× ∆u

σ2x −∆2
u

 , 1

 ≈ min
max

0,
1

−φ′′[u(y)]
φ′[u(y)]

× ∆u

σ2x

 , 1

 ,

where ∆u = Eπ [Uτ (x)] − u(y) is the (expected) utility difference of x and y, σ2x =

Eπ [Uτ (x)− Eπ(Uτ (x))]2 is the standard deviation of Uτ (x).

8The second-order derivative is d2V [λx+(1−λy)]

dλ2 =
∫
T φ
′′ [λUτ (x) + (1− λ)u(y)] × [Uτ (x)− u(y)]2 dπ.

Since φ(·) is concave, φ′′(·) is negative. We are interested in situations where options x and y are not the
same, i.e., Uτ (x) 6= u(y) for some τ ∈ T . Together we have φ′′ [λUτ (x) + (1− λ)u(y)]×[Uτ (x)− u(y)]2 ≤ 0,
and the inequality is strict for some τ ∈ T . Consequently, d

2V [λx+(1−λy)]

dλ2 =
∫
T φ
′′ [λUτ (x) + (1− λ)u(y)]×

[Uτ (x)− u(y)]2 dπ < 0. This ensures we are indeed seeking for the maximum.
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A.2 The theoretical analysis based on Fudenberg et al. (2015)

Below, we perform a theoretical analysis of our experiment based on Fudenberg et al.

(2015) to demonstrate the links between randomization probabilities and decision con-

fidence.9 Fudenberg et al.’s (2015) original representation concerns final outcomes. To

apply their model to our experiments with lotteries, we write the individual’s preference

over randomizing between lottery x and sure payment y as:10

V (λ, x; 1− λ, y) = λU(x)− c(λ) + (1− λ)u(y)− c(1− λ),

where U(x) is the expected utility of the lottery x and c(λ) is a weak cost function with finite

steepness (the first order derivative of the cost function at the limit of 0 is not infinite).

Using the weak cost function allows the model to accommodate zero choice probability

that is present in our experiment. The cost function captures the implementation costs

of making the desired choice, such as time and cognitive resources. In the Fudenberg

et al.’s (2015) main representation, the cost function is independent of the option and the

choice set. In an earlier version of their paper (Fudenberg et al., 2014), they proposed

two extensions (item-invariant and menu-invariant APU) in which the cost function may

depend on the preference uncertainty over options or the choice problem. We consider

these two extensions to examine the effects of our treatments (increasing the complexity

of the lottery or increasing subjects’ experience with the lottery) on the cost function.

When c(λ) is strictly convex, there exists an optimal randomization probability λ∗ which

maximizes the individual’s utility, as defined by the equation c′(λ∗)− c′(1− λ∗) = U(x)−

u(y), where c′(λ∗) − c′(1 − λ∗) measures the convexity of the cost function c′′(·). While

9Cerreia-Vioglio et al. (2019) predict preference for randomization when the individual faces non-
degenerated lotteries. However, when one of the two options is a sure payment, as in our experiment,
the individual has no preference for randomization. This follows directly from the axiom of Weak Stochas-
tic Certainty Effect.

10Cerreia-Vioglio et al. (2019, Footnote 22, p.2437) proposed an alternative approach in which the
individual integrates the lottery and the sure payment into a compound lottery, applies the reduction of
the compound lottery, and implements the cost function to each outcome. We illustrate their approach and
point out the differences between the two below. In particular, that approach predicts that the optimal
randomization probability for the pair of the lottery and the sure payment that the individual is indifferent
with depends on the number of outcomes in the lottery.
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the exact value of the optimal randomization probability depends on the cost function,

some observations are in order. First, the optimal randomization probability approaches

0.5 when U(x) is close to u(y). Second, for the same utility difference between the two

options, the individual chooses a randomization closer to 0.5 when the cost function is

more convex. More generally, as Proposition 3 in Fudenberg et al. (2015) demonstrates,

the individual becomes less selective and randomizes more when c′′(·) increases. Third,

simple calculations show that the largest sure payment that the individual chooses λ∗ = 0.9

(the lower bound) is u(y) = U(x)−∆, and the smallest sure payment she chooses λ∗ = 0.1

(the upper bound) is u(ȳ) = U(x) + ∆, where ∆ = c′(0.9) − c′(0.1) > 0.11 Thus, the

individual randomizes over a larger range of sure payments when the cost function is more

convex (u(ȳ)− u(y)) = 2∆). According to Fudenberg et al. (2015), the cost function may

depend, among other things, on the individual’s perceived preference uncertainty over the

options and her attitude towards uncertainty. Using this interpretation of the cost function,

the three properties of randomization probabilities correspond to the three properties of

decision confidence we outlined in the main body of the paper. It is in this sense that we

say randomization probabilities measure decision confidence.

If we are willing to make more specific assumptions about the cost function, we can obtain

a direct solution of the optimal randomization probability. For example, when the cost

function takes the form of c(λ) = ηλlog(λ), we can derive the familiar logit/logistic choice

rule:

λ∗ =
eU(x)/η

eU(x)/η + eu(y)/η
. (3)

As shown by Holman and Marley, the parameter η can be linked to the variance of the

i.i.d. Gumbel preference shocks in a random utility representation (Luce and Suppes, 1965,

p.338). In the context of our study, η can be interpreted as the individual’s preference

uncertainty about lottery x. Figure A.2 depicts the relationship between the optimal

randomization probability λ∗ and the sure payments y. As we can see, randomization

probabilities decrease with the value of y and approach 0.5 when the two options have

11The values of 0.1 and 0.9 were chosen to accommodate experimental data.
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Figure A.2: The relationship between the optimal randomization probability λ∗ and the
sure payments y. The figure is produced according to the logit/logistic choice rule λ∗ =

eU(x)/η

eU(x)/η+eu(y)/η . The parameter η captures the preference uncertainty over lottery x, with a
larger η implying more convexity in the cost function and thus more preference uncertainty.

similar utilities. Furthermore, when η increases, the cost function becomes more convex

and the individual’s randomization probabilities become more compressed (the dashed line)

and closer to 0.5.

Individuals may perceive more preference uncertainty over the complex lottery than over

the simple lottery (∆c > ∆s, where c denotes the complex lottery and s denotes the simple

lottery), and experience with the lottery may reduce preference uncertainty about the

lottery (∆e < ∆n, where e denotes experience and n denotes no experience). In light of our

analysis above, we expect that subjects’ randomization probabilities are closer to 0.5 and

that they randomize strictly over a wider range of sure payments when they make decisions

about the complex lottery than when they make decisions about the simple lottery. In

addition, compared to the no-experience treatment, randomization probabilities of subjects

in the experience treatments are stretched away from 0.5, and subjects randomize strictly

over a smaller range of sure payments. Figure A.3 demonstrates the effects.

Cerreia-Vioglio et al. (2019)’s approach
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(a) Simple versus complex (b) No experience versus full experience

Figure A.3: The effects of complexity and experience on the lower bound, the upper bound,
and the size of randomization range.

Cerreia-Vioglio et al. (2019, Footnote 22, p.2437) proposed an alternative approach to apply

Fudenberg et al.’s (2015) model to lotteries. We illustrate their approach with the following

example. Consider an individual who faces a choice between a sure payment y and a lottery

x = 90.51 which pays 9 or 1 with equal likelihood. Cerreia-Vioglio et al. (2019) treat the

randomized choice as a compound lottery. With the reduction of the compound lottery,

the randomization of (λ, x; 1 − λ, y) becomes 90.5λ10.5λy, and the individual’ preference

over 90.5λ10.5λy is

V (λ, x; 1− λ, y) = 0.5λu(9)− c(0.5λ) + 0.5λu(1)− c(0.5λ) + (1− λ)u(y)− c(1− λ)

= λU(x)− 2c(0.5λ) + (1− λ)u(y)− c(1− λ)

This formulation predicts an optimal randomization probability of 2/3 when the expected

utility of the lottery is close to the utility of the sure payment (c′(0.5λ) − c′(1 − λ) =

U(x) − u(y) = 0 ⇒ λ = 2/3). The intuition is that the above formulation rewards the

individual for randomizing over more outcomes, and thus the individual assigns a higher

randomization probability to lotteries with more outcomes. It can be shown that, when the

lottery x has four outcomes which are equally likely, the optimal randomization probability

is λ = 4/5 when U(x) = u(y). These predictions are different from those obtained based

on Fudenberg et al. (2015)’s approach.
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A.3 The asymmetric treatment effects on the lower and upper bound

of randomization range

We illustrate the asymmetric treatment effects on the lower bound and the upper bound of

randomization range in this section. Recall that y denotes the largest sure payment that

the individual chooses λ∗ < 1 (the lower bound) and ȳ denotes the smallest sure payment

she chooses λ∗ > 0 (the upper bound).

In the model extended from Cerreia-Vioglio et al. (2015) and Klibanoff et al. (2005),

u(ȳx) = Eπ [Uτ (x)] ,

y = Eπ [Uτ (x)]− −φ
′′ [u(y)]

φ′ [u(y)]
σ2x.

The changes in the upper and lower bounds depend on both Eπ [Uτ (x)] and σ2x. We observe

that subjects on average valued the complex lottery higher than the simple lottery (mean

CE of 4.68 for the simple lottery versus 4.98 for the complex lottery in Experiment 2,

p<0.01). Since the complex lottery has a larger σ2x and the average valuation of the lottery

is Eπ [Uτ (x)] − −φ
′′(Eπ [Uτ (x)])

2 σ2x, this implies an increase in Eπ [Uτ (x)] for the complex

lottery. The increase in Eπ [Uτ (x)] increases both the upper bound and the lower bound,

while the increase in σ2x decreases only the lower bound. Together, they imply that the

treatment effect on the upper bound could be larger than on the lower bound. Similarly,

we observe an increase, albeit small, in the valuation of the complex lottery in the full-

experience treatment (mean CE of 4.98 in the no-experience treatment versus 5.07 in the

full-experience treatment in Experiment 2, p>0.10). The increase in Eπ [Uτ (x)] increases

both the upper and lower bounds, and the decrease in σ2x increases the lower bound further.

Consequently, the treatment effect could be stronger on the lower bound than on the upper

bound.

The analysis based on Fudenberg et al. (2015) follows similarly. In Fudenberg et al. (2015),

ȳ = EU(x) + ∆, y = EU(x)−∆. The changes in the upper and lower bounds depend on

both EU(x) and ∆. Since the average valuation of the lottery is EU(x), the higher average

valuation of the complex lottery implies higher EU(x) of the complex lottery compared to

the simple lottery. Higher EU(x) and ∆ imply a stronger treatment effect on the upper
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bound than on the lower bound. Likewise, an increase in experience level is associated

with an increase in EU(x) and a decrease in ∆, which jointly imply a stronger treatment

effect on the lower bound than the upper bound.
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Figure B.1: The mean randomization probabilities at each confidence statement. The bars
show the average minimum and maximum values. The values show the aggregate values
for the baseline treatment – simple lottery, no-experience – in Experiment 1 (left) and Ex-
periment 2 (right). The mean, minimum, and maximum values for the separate treatments
in each of the experiments can be found in Table B.2. These values are broadly consis-
tent with the cutoff probabilistic confidence levels of each confidence statement reported
in Vanberg (2008, Footnote 10, p.1472: the probabilistic confidence level of 0.85 as the
cutoff between surely and probably, 0.68 as the cutoff between probably and unsure, and
0.50 as the mean value for unsure). The minimum randomization probabilities were 0.83
and 0.85 for “Surely x” and 0.61 and 0.62 for “Probably x,” and the mean randomization
probabilities were 0.51 and 0.46 for “Unsure” in Experiments 1 and 2 respectively.
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Figure B.2: The mean self-reported decision confidence and randomization probabilities for
each value of y obtained from decisions about the simple lottery (solid line) and decisions
about the complex lottery (dashed line) in Experiment 1. Wilcoxon signed-rank tests were
performed to test the difference between the simple lottery and the complex lottery for
each value of y: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure B.3: The mean self-reported decision confidence and randomization probabilities
for each value of y in the no-experience treatment (solid line) and the partial-experience
treatment (dashed line) in Experiment 1. Wilcoxon rank-sum tests were performed to test
the difference between the partial-experience treatment and no-experience treatment for
each value of y: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure B.4: The mean self-reported decision confidence and randomization probabilities
for each value of y in the no-experience treatment (solid line) and the full-experience
treatment (dashed line) in Experiment 2. Wilcoxon rank-sum tests were performed to
test the difference between full-experience treatment and no-experience treatment for each
value of y: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Lottery Treatment
Correlation between randomization probabilities and

confidence statements prob. confidence
Experiment 1 Experiment 2 Experiment 2

Simple

No experience

10th percentile 0.60 0.71 0.73
25th percentile 0.78 0.82 0.82

median 0.91 0.89 0.90
75th percentile 0.95 0.94 0.96
90th percentile 0.97 0.96 0.98

Experience

10th percentile 0.60 0.78 0.77
25th percentile 0.85 0.85 0.85

median 0.93 0.90 0.91
75th percentile 0.96 0.95 0.96
90th percentile 0.97 0.97 0.99

Complex

No experience

10th percentile 0.69 0.67 0.64
25th percentile 0.83 0.77 0.83

median 0.90 0.88 0.89
75th percentile 0.94 0.93 0.95
90th percentile 0.97 0.96 0.97

Experience

10th percentile 0.62 0.69 0.77
25th percentile 0.81 0.80 0.84

median 0.88 0.90 0.90
75th percentile 0.94 0.94 0.95
90th percentile 0.96 0.97 0.97

Table B.1: Nonparametric Spearman correlation between randomization probabilities and
the two self-reported confidence measures at the 10th percentile, 25th percentile, median,
75th percentile, and 90th percentile in the two experiments for each lottery and experience
treatment group.
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Treatment Lottery Surely x Probably x Unsure Probably y Surely y
Experiment 1

No-experience

Simple

Mean 0.93 0.73 0.51 0.33 0.10
(0.011) (0.016) (0.023) (0.018) (0.010)

Min 0.83 0.61 0.47 0.21 0.01
(0.027) (0.022) (0.027) (0.019) (0.005)

Max 1 0.83 0.56 0.47 0.25
(0.001) (0.015) (0.025) (0.026) (0.025)

Complex

Mean 0.92 0.72 0.56 0.35 0.09
(0.012) (0.015) (0.015) (0.017) (0.011)

Min 0.82 0.62 0.49 0.24 0.01
(0.024) (0.019) (0.023) (0.020) (0.005)

Max 0.99 0.82 0.63 0.46 0.22
(0.006) (0.016) (0.020) (0.018) (0.026)

Partial-experience

Simple

Mean 0.90 0.68 0.52 0.33 0.10
(0.018) (0.017) (0.021) (0.018) (0.012)

Min 0.79 0.57 0.45 0.24 0.01
(0.0129) (0.021) (0.022) (0.021) (0.008)

Max 0.98 0.79 0.59 0.42 0.24
(0.013) (0.019) (0.026) (0.021) (0.027)

Complex

Mean 0.89 0.69 0.51 0.31 0.11
(0.015) (0.016) (0.023) (0.016) (0.013)

Min 0.77 0.55 0.44 0.21 0.01
(0.029) (0.023) (0.027) (0.018) (0.008)

Max 0.98 0.82 0.58 0.42 0.22
(0.009) (0.016) (0.028) (0.022) (0.024)
Experiment 2

No-experience

Simple

Mean 0.94 0.75 0.46 0.27 0.06
(0.010) (0.018) (0.023) (0.020) (0.008)

Min 0.85 0.62 0.34 0.17 0
(0.022) (0.027) (0.026) (0.020) (0.001)

Max 0.99 0.86 0.56 0.39 0.16
(0.007) (0.017) (0.029) (0.026) (0.022)

Complex

Mean 0.95 0.73 0.46 0.22 0.05
(0.008) (0.019) (0.025) (0.017) (0.009)

Min 0.88 0.59 0.34 0.13 0
(0.018) (0.028) (0.027) (0.015) (0)

Max 1 0.86 0.58 0.34 0.13
(0) (0.017) (0.029) (0.026) (0.021)

Full-experience

Simple

Mean 0.95 0.79 0.51 0.22 0.06
(0.008) (0.017) (0.026) (0.019) (0.010)

Min 0.87 0.68 0.39 0.12 0.01
(0.022) (0.026) (0.031) (0.018) (0.007)

Max 1 0.89 0.62 0.34 0.16
(0.002) (0.015) (0.031) (0.026) (0.023)

Complex

Mean 0.95 0.78 0.50 0.24 0.51
(0.009) (0.018) (0.025) (0.019) (0.010)

Min 0.87 0.65 0.39 0.15 0.01
(0.022) (0.027) (0.030) (0.019) (0.007)

Max 1 0.89 0.62 0.36 0.13
(0.001) (0.015) (0.028) (0.026) (0.021)

Table B.2: The mean, minimum, and maximum randomization probabilities that corre-
spond to each confidence statement for all treatments in the two experiments. The values
in parentheses are the standard errors of the mean.
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Lottery Randomization Confidence Probabilistic
probabilities statements confidence
Experiment 1

Lower bound Simple 2.99 2.95
Complex 2.84∗ 2.94

Upper bound Simple 6.61 6.30
Complex 6.90∗∗∗ 6.56∗∗

Range size Simple 3.63 3.36
Complex 4.06∗∗∗ 3.62

Experiment 2

Lower bound Simple 3.16 3.03 2.63
Complex 3.19 2.99 2.59

Upper bound Simple 6.18 6.19 7.00
Complex 6.38∗∗∗ 6.5∗∗∗ 7.21∗∗∗

Range size Simple 3.03 3.15 4.37
Complex 3.19∗ 3.58∗∗∗ 4.63∗∗∗

Table B.3: Comparisons of the lower bound, the upper bound, and the range size be-
tween the simple lottery and complex lottery in the no-experience treatment in the two
experiments. The lower bound, the upper bound, and the range sizes are defined by ran-
domization probabilities (0.10 ≤ λ ≤ 0.90), confidence statements (“Probably x”, “Unsure”,
“Probably y”) and probabilistic confidence (between “90% x, 10% y” and “10% x, 90% y”).
Wilcoxon signed-rank tests were performed to test the difference between the simple lottery
and the complex lottery for each measure: * p < 0.10, ** p < 0.05, *** p < 0.01.

Self-reported probabilistic confidence
100% x 90% x 80% x 70% x 60% x 40% x 30% x 20% x 10% x 0% x
0% y 10% y 20% y 30% y 40% y 60% y 70% y 80% y 90% y 100% y

Simple lottery, no-experience treatment
Rand. 0.98 0.86 0.82 0.73 0.58 0.36 0.23 0.18 0.09 0.02
prob. (0.008) (0.021) (0.022) (0.022) (0.027) (0.024) (0.023) (0.022) (0.018) (0.004)

Complex lottery, no-experience treatment
Rand. 0.97 0.85 0.76 0.73 0.59 0.33 0.21 0.18 0.08 0.04
prob. (0.007) (0.024) (0.026) (0.024) (0.025) (0.024) (0.021) (0.024) (0.016) (0.012)

Simple lottery, full-experience treatment
Rand. 0.97 0.92 0.85 0.76 0.63 0.37 0.23 0.16 0.07 0.03
prob. (0.007) (0.016) (0.024) (0.025) (0.026) (0.025) (0.024) (0.020) (0.015) (0.009)

Complex lottery, full-experience treatment
Rand. 0.98 0.92 0.81 0.71 0.62 0.35 0.20 0.16 0.06 0.02
prob. (0.007) (0.017) (0.025) (0.028) (0.027) (0.023) (0.024) (0.027) (0.015) (0.008)

Table B.4: The mean randomization probabilities at each self-reported probabilistic confi-
dence level in Experiment 2 for each lottery and experience treatment group. The standard
errors of the mean are reported in the parentheses. We compute the mean randomization
probability at each level of probabilistic confidence for each subject before taking its mean
across subjects.
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Lottery Experience Randomization Confidence Probabilistic
probabilities statements confidence

Experiment 1

Simple

Lower bound No 2.99 2.95
Partial 2.75 2.80

Upper bound No 6.61 6.30
Partial 6.60 6.25

Range size No 3.63 3.36
Partial 3.85 3.45

Complex

Lower bound No 2.84 2.94
Partial 2.74 3.03

Upper bound No 6.90 6.56
Partial 6.90 6.52

Range size No 4.06 3.62
Partial 4.16 3.49

Experiment 2

Simple

Lower bound No 3.16 3.03 2.63
Full 3.44∗∗ 3.26∗ 2.71

Upper bound No 6.18 6.19 7.00
Full 6.18 6.30 7.10

Range size No 3.03 3.15 4.37
Full 2.74 3.04 4.38

Complex

Lower bound No 3.19 2.99 2.59
Full 3.60∗∗∗ 3.29∗∗ 2.73∗

Upper bound No 6.38 6.57 7.21
Full 6.27 6.45 7.31

Range size No 3.19 3.58 4.63
Full 2.67∗∗ 3.16∗∗ 4.58

Table B.5: Comparisons of the lower bound, the upper bound, and the range size be-
tween the no-experience treatment and experience treatments by lottery type in the two
experiments. The lower bound, the upper bound, and the range sizes are defined by ran-
domization probabilities (0.10 ≤ λ ≤ 0.90), confidence statements (“Probably x”, “Unsure”,
“Probably y”) and probabilistic confidence (between “90% x, 10% y” and “10% x, 90% y”).
Wilcoxon rank-sum tests were performed to test the difference between experience treat-
ment and no-experience treatment for each measure: * p < 0.10, ** p < 0.05, *** p <
0.01.
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B.1 Order effects in experiment 2

We selected three different orders and randomly assigned subjects to each order: Order 1)

binary choices and confidence statements→ randomized choices→ probabilistic confidence,

Order 2) randomized choices → binary choices and confidence statements → probabilistic

confidence, Order 3) probabilistic confidence → binary choices and confidence statements

→ randomized choices. Order 1 is similar to the task order in Experiment 1, allowing us

to assess the robustness of the findings in Experiment 1. Order 2 removes the potential

priming effects of the self-reported confidence measures on randomized choices. Order 3

preserves the potential of the priming effects, but allows us to look at the probabilistic

confidence measure when it is elicited first.

Given our proposal to capture decision confidence with randomization probabilities, the

question that is most relevant to us is whether the subjects randomized differently when

they made randomization choices prior to and after they completed the self-reported con-

fidence measures.

We find that subjects were less likely to randomize strictly (0 < λ < 1) when random-

ization probabilities were elicited before self-reported decision measures (Order 2). Table

B.6(a) compares the proportion of decisions in which subjects randomized strictly when

the randomized choices were made first versus when they were made later across orders and

treatments. On average, subjects in Order 2 randomized strictly in fewer choices compared

to subjects in the other two orders. This difference is statistically significant in three out of

eight comparisons, but it is not significant when we aggregate across all treatments. Table

B.6(b) shows that the above order effects were stronger in choices with high values (y ≥ 4)

than with low values (y ≤ 3.5) of sure payments. Consistent with these findinds, Figure

B.5 shows that the proportion of subjects with strict randomization probabilities tends to

be lower at each value of y in Order 2 (the red lines) than in the other two orders, and

more so for high values of sure payments.

Apart from the lower tendency to randomize, randomization probabilities corresponded to

the probabilistic confidence less well at some probabilistic confidence values (e.g., 30% x
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Simple Complex
No experience Experience No experience Experience

Order 1 0.456 0.368 0.452 0.373
Order 2 0.345 0.331 0.369 0.328
Order 3 0.471 0.412 0.498 0.400

Wilcoxon rank-sum tests:
Order 1 vs Order 2 p < 0.10 p = 0.625 p = 0.217 p = 0.541
Order 2 vs Order 3 p < 0.05 p = 0.192 p < 0.05 p = 0.194

Table (a)

y = 0 to 3.5 y = 4 to 6 y = 6.5 to 10

Order 1 0.303 0.622 0.267
Order 2 0.272 0.514 0.197
Order 3 0.339 0.650 0.296

Wilcoxon rank-sum tests:
Orders 2 vs 1 p = 0.258 p < 0.05 p < 0.05
Orders 2 vs 3 p < 0.05 p < 0.01 p < 0.01

Table (b)

Table B.6: Panel (a) reports the proportion of strict randomization choices (0 < λ < 1)
across treatments in each order. Panel (b) the average proportions of strict randomiztion
at different ranges of sure payments aggregated across treatments and lotteries in each
order.

and 40% x) in Order 2 compared to the other two orders. Figure B.7 reports this result.

Finally, we find that the cumulative distributions of the correlation between randomization

probabilities and a self-reported decision confidence measure in Order 2 tend to be on the

left of the other two orders (see Figure B.6). This implies that there were more subjects with

lower correlation between randomization probabilities and self-reported decision confidence

in Order 2 than in the other two orders. As a whole, the results suggest that randomized

choices were affected by priming.

Despite the presence of the priming effects on randomized choices, we find support for

our hypotheses when we restrict our analyses to subjects in Order 2. First, we find high

correlations between randomization probabilities and self-reported confidence in Order 2,

consistent with H1: the median correlation between randomization probabilities and confi-

dence statement as well as the median correlation between randomization probabilities and

probabilistic confidence in Order 2 ranges from 0.87 to 0.89 across treatments respectively.

Second, subjects in Order 2 reported low decision confidence for choices around the switch-
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Figure B.5: The proportion of strict randomization choices (0 < λ < 1) at each value of y
in the three orders.

ing range and chose randomization probabilities close to 0.5 in these decisions, supporting

H2. Table B.7 shows that subjects’ median randomization probability for all choices that

falls within the switching range is between 0.48 and 0.50 across treatments, consistent with

their median confidence statement of “Unsure,” and their median probabilistic confidence

which ranges from 40% x to 60% x across treatments.12 Third, like in the full sample,

we find significant treatment effects in Order 2. Table B.8 reports the range of sure pay-

ments over which subjects expressed less than full decision confidence in their decisions.

The ranges based on self-reported decision measures and randomization choices suggest

that subjects in Order 2 had lower decision confidence for decisions involving the complex

lottery than for decisions involving the simple lottery, consistent with H3. We find similar

support for H4 in Order 2 as in the full sample. Among subjects in Order 2, those in the

full-experience treatment reported less than full decision confidence in smaller ranges of

sure payments for decisions involving the complex lottery, but not for decisions involving

12The median randomization probability at the upper bound (ȳb) of the switching range is lower in
Order 2 compared to the other two orders in most treatments. This is consistent with our earlier finding
of the order effects that there were fewer strict randomization choices in Order 2, and more so for choices
involving larger sure payments.
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the simple lottery. In terms of randomization probabilities, these ranges are 2.30 vs 2.89

in Order 2. In comparison, they are 2.81 vs 3.09 in Order 1 and 2.90 vs 3.51 in Order

3. The difference is statistically significant in aggregate (2.67 vs 3.19, p < 0.05), but not

when considering any order separately (p > 0.10).

Taken together, priming effects could have strengthened some of our aggregate findings.

However, the findings that subjects in Order 2 randomized in ways that were broadly

consistent with our hypotheses suggest that randomization probabilities and self-reported

decision confidence measures are likely to share common psychological foundations.

It is worth noting that the aforementioned order effects do not automatically imply that

randomization probabilities are a poorer proxy for decision confidence than self-reported

decision confidence. Confidence statements and probabilistic confidence are also noisy

proxies of decision confidence, and there is no objective criterion for the “right” amount

of strict randomization. For example, it is possible that subjects may have not random-

ized too little in Order 2, but that they have randomized excessively in the other two

orders due to the priming effects. Since there is no obvious benchmark to compare deci-

sion confidence measures, and decision confidence is not directly observable, we consider

the value of decision confidence on the basis of its correspondence with actual choices.

When decision confidence corresponds perfectly with choices, having decision confidence

of p% for x would imply that x is chosen p% of time. Figure B.8 shows, across subjects

and choices, the proportion of choices in which x was chosen based on subjects’ binary

choices by randomization probabilities as well as the probabilistic confidence in the three

orders.13 On average, both measures of decision confidence closely trace the proportions

of x chosen in binary choices. Importantly, randomization probabilities exhibit a closer

correspondence to binary choices than probabilistic confidence in all three orders. This

alignment is particularly evident in Order 2, with randomization probabilities exhibiting a

significantly closer match to these proportions than probabilistic confidence at nine levels

of randomization probabilities/probabilistic confidence versus five levels in Order 1 and six

levels in Order 3.

13We did not consider confidence statements here, because they were elicited on the same decision screen
as binary choices.
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Confidence statements

Order
No experience

Simple Complex
yb ȳb [yb, ȳb] yb ȳb [yb, ȳb]

Order 1 Probably x Probably y Unsure Probably x Probably y Unsure
Order 2 Probably x Probably y Unsure Probably x Probably y Unsure
Order 3 Probably x Probably y Unsure Probably x Probably y Unsure

Order
Experience

Simple Complex
yb ȳb [yb, ȳb] yb ȳb [yb, ȳb]

Order 1 Probably x Probably y Unsure Probably x Probably y Unsure
Order 2 Probably x Probably y Unsure Probably x Probably y Unsure
Order 3 Probably x Probably y Unsure Probably x Probably y Unsure

Probabilistic confidence

Order
No experience

Simple Complex
yb ȳb [yb, ȳb] yb ȳb [yb, ȳb]

Order 1 60% x 40% x 40% x 60% x 40% x 60% x
Order 2 70% x 40% x 60% x 60% x 40% x 40% x
Order 3 60% x 40% x 60% x 60% x 30% x 40% x

Order
Experience

Simple Complex
yb ȳb [yb, ȳb] yb ȳb [yb, ȳb]

Order 1 60% x 40% x 50% x 60% x 40% x 40% x
Order 2 70% x 40% x 60% x 60% x 40% x 40% x
Order 3 60% x 40% x 60% x 60% x 40% x 60% x

Randomization probabilities

Order
No experience

Simple Complex
yb ȳb [yb, ȳb] yb ȳb [yb, ȳb]

Order 1 0.65 0.46 0.50 0.68 0.40 0.50
Order 2 0.68 0.27 0.50 0.63 0.30 0.48
Order 3 0.60 0.46 0.50 0.58 0.21 0.40

Order
Experience

Simple Complex
yb ȳb [yb, ȳb] yb ȳb [yb, ȳb]

Order 1 0.68 0.30 0.55 0.60 0.33 0.50
Order 2 0.63 0.23 0.50 0.66 0.25 0.49
Order 3 0.70 0.43 0.51 0.61 0.40 0.50

Table B.7: Median behavior around the switching choices (yb and ȳb) and within the
switching range ([yb, ȳb]) aggregated across lotteries and treatments for each order.
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Lottery Treatment Combined Order 1 Order 2 Order 3

Simple No experience 3.15 2.96 2.77 3.68
Confidence Experience 3.04 2.84 2.92 3.35
Statements Complex No experience 3.58∗∗∗ 3.25∗ 3.56∗∗∗ 3.93

Experience 3.16∗∗ 3.23 3.03∗ 3.23∗

Simple No experience 4.37 4.28 4.06 4.72
Probabilistic Experience 4.38 4.24 4.40 4.50
Confidence Complex No experience 4.63∗∗∗ 4.34 4.61∗∗∗ 4.93∗

Experience 4.58 4.53 4.50 4.70

Simple No experience 3.03 3.17 2.67 3.14
Randomization Experience 2.74 3.00 2.34 2.93
Probabilities Complex No experience 3.19∗ 3.09 2.89∗ 3.51∗∗

Experience 2.67∗∗ 2.81 2.30 2.90

Table B.8: The mean size of the range of sure payments over which subjects express that
they are not fully confident about their decision based on each of the confidence measures,
by the lottery and experience treatments in aggregate and in each order separately (ran-
domization probabilities (0.10 ≤ λ ≤ 0.90), confidence statements (“Probably x”, “Unsure”,
“Probably y”) and probabilistic confidence (between “90% x, 10% y” and “10% x, 90% y”)).
Stars in the upper right corners of a cell denote statistical significance of Wilcoxon signed-
rank tests between the simple lottery and the complex lottery, while stars in the lower right
corner denote statistical significance of Wilcoxon rank-sum tests between the no experience
and experience treatment: * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure B.6: ECDF for the correlation with randomisation probabilities in each order across
treatments.
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Figure B.7: The mean randomization probabilities at each self-reported probabilistic con-
fidence level in Experiment 2 for each lottery and experience treatment in each order
separately.
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Figure B.8: Correspondence of randomization probabilities (solid line) and probabilistic
confidence (dashed line) with the proportion of binary choices in which x is chosen (y-axis)
across lotteries and treatments for each decision order. The dotted line represents a 45-
degree line. Fisher’s exact tests were performed to test the difference in choice proportions
between the randomization probabilities and probabilistic confidence: * p < 0.10, ** p <
0.05, *** p < 0.01
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B.2 Alternative interpretations of randomization probabilities

In the main text, we have shown that indifference and random errors cannot be the driving

force behind subjects’ randomization behavior. We elaborate why utility difference alone

cannot explain randomization here.

Butler et al. (2014) call utility difference the strength of preferences: “the relative degree

of difference between the two options as perceived by the decision maker” (Butler et al.,

2014, p.538). For example, we can write this explicitly as a Fechnerian utility model

p = φ [U(L)− u(y)], where φ : R ⇒ [0, 1] is a cumulative distribution function with

φ(0) = 0.5 (Luce and Suppes, 1965, p.334). The lower bound and the upper bound

of randomization are then u(y) = U(L) − φ−1(0.90) and u(ȳ) = U(L) − φ−1(0.10). If

randomization probabilities depend only on utility differences, when U(L) increases: (1)

the randomization probability should increase for each value of sure payment; and (2) the

lower bound and the upper bound of randomization should increase equally. Our results

clearly reject these two predictions. Subjects’ randomization probabilities did not shift

horizontally but were instead compressed towards 0.5 when they faced the complex lottery

compared to the simple lottery, and were stretched away from 0.5 in the full-experience

treatment compared to the no-experience treatment. In addition, Table B.3 shows that

while ȳ for the complex lottery was significantly higher than ȳ for the simple lottery

in both experiments (Experiment 1: 6.90 vs 6.61, Wilcoxon signed-rank test, p < 0.01;

Experiment 2: 6.38 vs 6.18, Wilcoxon signed-rank test p < 0.01), y for the complex lottery

was significantly lower than y for the simple lottery in Experiment 1 at 10% significance

level (2.84 vs 2.99, Wilcoxon signed-rank test p < 0.10), but was not significantly different

in Experiment 2 (3.19 vs 3.16, Wilcoxon signed-rank test p = 0.646).

Importantly, although the difference in the mean valuation of the lottery with or without

experience was similar to that of the complex lottery versus the simple lottery, Table B.5

shows that y were significantly lower for subjects in the full-experience treatment than

in the no experience treatment (Simple lottery: 3.16 vs 3.44, Wilcoxon rank-sum test

p < 0.05; Complex lottery: 3.19 vs 3.60, Wilcoxon rank-sum test p < 0.01) but not ȳ

(Simple lottery: 6.18 vs 6.18, Wilcoxon rank-sum test p = 0.789; Complex lottery: 6.27
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Randomization The number of subjects who chose randomization
Interval 0 times 1 time 2 times or more 3 times or more

Experiment 1: Simple lottery, no-experience
0 < λ < 1 2 6 97 95

0.10 ≤ λ ≤ 0.90 3 6 96 93
0.40 ≤ λ ≤ 0.60 22 26 57 35

Experiment 1: Complex lottery, no-experience
0 < λ < 1 4 1 100 98

0.10 ≤ λ ≤ 0.90 4 2 99 98
0.40 ≤ λ ≤ 0.60 21 15 69 46

Experiment 1: Simple lottery, partial-experience
0 < λ < 1 6 1 93 89

0.10 ≤ λ ≤ 0.90 6 1 93 88
0.40 ≤ λ ≤ 0.60 13 24 63 38

Experiment 1: Complex lottery, partial-experience
0 < λ < 1 3 5 92 89

0.10 ≤ λ ≤ 0.90 3 7 90 89
0.40 ≤ λ ≤ 0.60 14 19 67 46

Experiment 2: Simple lottery, no-experience
0 < λ < 1 25 8 112 106

0.10 ≤ λ ≤ 0.90 26 7 112 105
0.40 ≤ λ ≤ 0.60 42 24 79 44

Experiment 2: Complex lottery, no-experience
0 < λ < 1 26 6 113 100

0.10 ≤ λ ≤ 0.90 26 7 112 98
0.40 ≤ λ ≤ 0.60 37 38 70 42

Experiment 2: Simple lottery, full-experience
0 < λ < 1 32 11 105 98

0.10 ≤ λ ≤ 0.90 34 11 103 96
0.40 ≤ λ ≤ 0.60 55 36 57 32

Experiment 2: Complex lottery, full-experience
0 < λ < 1 35 11 102 91

0.10 ≤ λ ≤ 0.90 35 12 101 90
0.40 ≤ λ ≤ 0.60 56 25 67 38

Table B.9: The distribution of subjects who chose 0 < λ < 1, 0.10 ≤ λ ≤ 0.90, and
0.40 ≤ λ < 0.60 zero times, one time, two times or more, and three times or more across
treatments in the two experiments.
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Probabilistic confidence associated with each confidence statement
Levels Median 10th 30th 70th 90th SD
Surely (min) 85% 70% 80% 90% 100% 16.31%
Probably (max) 80% 70% 80% 90% 99% 11.10%
Probably (min) 55% 25% 50% 60% 65% 16.59%
Unsure (max) 54% 25% 50% 60% 64% 17.58%
Unsure (min) 35% 0% 0% 40% 50% 21.12%

Confidence statements associated with each probabilistic confidence level
Levels Median 10th 30th 70th 90th SD
100% Surely x Surely x Surely x Surely x Surely x 0.17
90% Surely x Probably x Surely x Surely x Surely x 0.54
80% Probably x Probably x Probably x Surely x Surely x 0.54
70% Probably x Probably x Probably x Probably x Probably x 0.34
60% Unsure Unsure Unsure Surely x Surely x 0.54

Table B.10: The median, 10th, 30th, 70th, 90th percentile, and standard deviation of
probabilistic confidence associated with each confidence statement and the median, 10th,
30th, 70th, 90th percentile, and standard deviation of confidence statements associated
with each probabilistic confidence level. Consistent with Result 1, we code confidence
statements of surely x, probably x, unsure, probably y, and surely y as 5, 4, 3, 2, and 1
respectively. Standard deviations are calculated accordingly.

vs 6.38, Wilcoxon rank-sum test p = 0.369). Further, randomization probabilities were

larger at low sure payments but smaller at high sure payments when we compare the full-

experience treatment with the no-experience treatment. These results highlight the central

role of preference uncertainty beyond utility difference in affecting decision confidence.

One may perceive that self-reported decision confidence measures are easier to interpret

than randomization probabilities because they ask about decision confidence explicitly. We

show that self-reported decision confidence measures can be just as difficult to interpret

by analyzing how subjects associate the two self-reported decision measures in the post-

experiment questionnaire of Experiment 2. We asked subjects which confidence statement

best described their probabilistic confidence p% in choosing x and 100-p% in choosing y

for values p = 60, 70, 80, 90, 100. In a separate session, we asked subjects to state the

minimum level of probabilistic confidence for “Surely”, and the minimum and maximum

levels of probabilistic confidence for “Probably” and “Unsure” on a scale from 0% to 100%.

Table B.10 summarizes the subjects’ responses to the two questions. The top panel shows

the range of probabilistic confidence levels associated with each confidence statement. Al-

though the first column shows that the median probabilistic confidence thresholds are
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Probabilistic confidence associated with each confidence statement
For subjects: Unsure (max) ≥ 50% and Unsure(min) > 0%

Levels Median 10th 30th 70th 90th S.D
Surely (min) 85% 75% 80% 90% 100% 14.80%
Probably (max) 85% 75% 80% 90% 99% 9.13%
Probably (min) 60% 41% 55% 60% 70% 13.26%
Unsure (max) 60% 50% 55% 60% 65% 9.62%
Unsure (min) 40% 30% 40% 45% 50% 10.46%

For subjects: Unsure (max) < 50%
Levels Median 10th 30th 70th 90th S.D
Surely (min) 80% 50.3% 75% 85.5% 99% 20.22%
Probably (max) 80% 60% 75% 84% 95% 14.01%
Probably (min) 40% 20% 30% 50% 60% 17.57%
Unsure (max) 30% 10% 20% 35.4% 40% 12.94%
Unsure (min) 0% 0% 0% 0% 10% 8.46%

Table B.11: The median, 10th, 30th, 70th, 90th percentile, and standard deviation of
probabilistic confidence associated with each confidence statement for subjects who fit the
criteria specified in the table.

well-ordered (the median maximum probabilistic confidence of a lower ordered statement

was always smaller than the median minimum probabilistic confidence of a higher ordered

statement), the standard deviations reported in the last column as well as minimum and

maximum probabilistic confidence assigned to each confidence statement at different per-

centile levels show the presence of substantial heterogeneity in the probabilistic confidence

associated with each confidence statement.

Further, we find two different interpretations of the confidence statement “Unsure”. A

large group of subjects (n=172) reported probabilistic confidence higher than 50% as the

maximum of “Unsure” and higher than 0% as the minimum of “Unsure,” while another

group of subjects (n=84) reported a probabilistic confidence level lower than 50% as the

maximum of “Unsure” and close 0% as the minimum of “Unsure.” Table B.11 shows how

different these two groups were in their associations of probabilistic confidence and other

confidence statements. For example, the maximum level of probabilistic confidence for the

statement “Probably” ranges from 75% to 99% among subjects who reported a probabilistic

confidence level higher than 50% as the maximum of “Unsure,” and it ranges from 60% to

95% among subjects who reported a probabilistic confidence level lower than 50% as the

maximum of “Unsure.”
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C Online appendix

C.1 Reasons to randomize

At the end of the session on randomized choices in Experiment 2, we asked the subjects

who had chosen to randomize at least once in the post-experiment questionnaire, what

their reasons for randomizing were. Of the 120 subjects who provided an answer to this

question, 22% stated that they randomized because they were unsure about their choice

or found it difficult to compare the two options. Here are a few examples:

• “Because I was not completely sure whether I wanted to choose A or B.’

• “I was not sure exactly what the consequences of my decision was going to be and I

was not 100% confident in choosing either A or B.”

• “Its difficult to make a decision for sure, so a combination feels more safe.”

Another group of subjects (22.5%) randomized for reasons related to hedging. Here are a

few examples:

• “Even though the certain option was less valued, certainty is nice and preferred over

risky options. Therefore, I chose to combine them some of the time.”

• “To hedge my bets when the expected gains of A and B were similar, gaining a small

chance for big gains or loses in option A, adding some suspense.”

• “For example when I preferred A but B felt a little safer so I thought it wouldn’t hurt

adding a bit more security since a B amount for sure isn’t bad.”

Around 18% stated that they chose to randomize when the sure payment amount was

close to the expected value of the lottery but did not explain why randomizing is better.

In contrast, most of the subjects who did not to randomize at all stated that they did not

randomize because they did not want to pay the cost of 0.10 euro for randomizing and/or
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that they made their choices solely based on the computation of the expected value of the

lottery.

C.2 Results for the loss lottery and the mixed lottery in Experiment 1

Treatment Lottery Surely x Probably x Unsure Probably y Surely y

No-experience

Loss

Mean 0.94 0.73 0.50 0.29 0.07
(0.008) (0.015) (0.021) (0.019) (0.011)

Min 0.84 0.61 0.40 0.19 0
(0.022) (0.023) (0.025) (0.019) (0.002)

Max 1 0.85 0.60 0.41 0.15
(0.003) (0.016) (0.025) (0.026) (0.024)

Mixed

Mean 0.90 0.71 0.53 0.32 0.10
(0.015) (0.015) (0.025) (0.020) (0.016)

Min 0.75 0.56 0.44 0.17 0.02
(0.035) (0.025) (0.029) (0.018) (0.011)

Max 0.99 0.85 0.61 0.46 0.23
(0.003) (0.016) (0.030) (0.031) (0.031)

Partial-experience

Loss

Mean 0.91 0.70 0.55 0.34 0.07
(0.014) (0.018) (0.019) (0.019) (0.011)

Min 0.81 0.55 0.42 0.23 0.01
(0.026) (0.026) (0.027) (0.021) (0.006)

Max 0.98 0.82 0.66 0.46 0.14
(0.012) (0.016) (0.022) (0.025) (0.022)

Mixed

Mean 0.91 0.71 0.57 0.33 0.11
(0.014) (0.019) (0.025) (0.023) (0.014)

Min 0.78 0.57 0.47 0.23 0.01
(0.031) (0.027) (0.032) (0.026) (0.006)

Max 0.99 0.83 0.67 0.46 0.28
(0.006) (0.018) (0.026) (0.030) (0.035)

Table C.1: The mean, minimum, and maximum randomization probabilities that corre-
spond to each confidence statement for the loss and mixed lottery in both treatments in
Experiment 1. The values in parentheses are the standard errors of the mean.
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Treatment
Correlation between randomization

probabilities and confidence statements
The loss lottery The mixed lottery

No experience

10th percentile 0.67 0.35
25th percentile 0.81 0.64

median 0.90 0.85
75th percentile 0.95 0.91
90th percentile 0.97 0.96

Experience

10th percentile 0.65 0.47
25th percentile 0.80 0.66

median 0.87 0.81
75th percentile 0.94 0.92
90th percentile 0.97 0.95

Table C.2: Nonparametric Spearman correlation at the 10th percentile, 25th percentile,
median, 75th percentile, and 90th percentile for the loss lottery and mixed lottery in both
treatments in Experiment 1.
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C.3 Experimental materials

Experiment 1

(a)

(b)

Figure C.1: Welcome screen (a) and informed consent (b) of the experiment.
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(a)

(b)

Figure C.2: The introduction of the binary choices and confidence statements for the
complex lottery in the no-experience treatment (a) and the simple lottery in the partial-
experience treatment (b).
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(a) (b)

Figure C.3: Examples of the decision screens for the binary choices and confidence state-
ments for the complex lottery in the no-experience treatment (a) and the simple lottery in
the partial-experience treatment (b).

Figure C.4: Explanation of the randomized choices.
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(a)

(b)

Figure C.5: Examples of the decision screens for the randomized choices for the simple
lottery in the no-experience treatment (a) and the complex lottery in the partial-experience
treatment (b).
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Figure C.6: Demographic questions asked at the end of the experiment.
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Experiment 2

(a)

(b)

Figure C.7: Welcome screen (a) and informed consent (b) of the experiment.
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(a)

(b)

Figure C.8: The introduction (a) and an example of the hypothetical decision screens (b)
of the full-experience treatment.

(a)

(b)

Figure C.9: The introduction (a) and an example of the decision screens (b) of binary
choices and confidence statements for the simple lottery.
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Figure C.10: post-experiment questionnaire after the binary choices and confidence state-
ments.
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(a)

(b)

Figure C.11: The introduction (a) and an example of the decision screens (b) of proba-
bilistic confidence choices for the complex lottery.
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Figure C.12: post-experiment questionnaire after the probabilistic confidence choices.

75



(a)

(b)

Figure C.13: The introduction (a) and an example of the decision screens (b) of randomized
choices for the complex lottery.
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Figure C.14: post-experiment questionnaire after the randomized choices. The first ques-
tion was asked if a subject chose randomization probabilities other than 0 or 1 in at least 1
choice. The second question was asked if a subject only chose randomization probabilities
of 0 or 1.

Figure C.15: Demographic questions asked at the end of the experiment.
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