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Abstract

The Common Correlated Effects (CCE) approach by Pesaran (2006) is a popu-
lar method for estimating panel data models with interactive effects. Due to its
simplicity, i.e. unobserved common factors are approximated with cross-section
averages of the observables, the estimator is highly flexible and lends itself to
a wide range of applications. Despite such flexibility, however, properties of
CCE estimators are typically only examined under the restrictive assumption
that all the observed variables load on the same set of factors, which ensures
joint identification of the factor space. In this paper, we take a different per-
spective, and explore the empirically relevant case where the dependent and
explanatory variables are driven by distinct but correlated factors. Hence, we
consider the case of Distinct Correlated Effects. Such settings can be argued to be
relevant for practice, for instance in studies linking economic growth to climatic
variables. In so doing, we consider panel dimensions such that TN−1 → τ < ∞
as (N, T) → ∞, which is known to induce an asymptotic bias for the pooled
CCE estimator even under the usual common factor assumption. We subse-
quently develop a robust boostrap-based toolbox that enables asymptotically
valid inference in both homogeneous and heterogeneous panels, without re-
quiring knowledge about whether factors are distinct or common.

JEL classification: C33, C38, C15
Keywords: panel data, bootstrap, interactive effects, CCE, factors, information cri-
terion
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1 Introduction

Consider the interactive effects model for unit i = 1, . . . , N and period t = 1, . . . , T,
where yi,t ∈ R, xi,t ∈ Rk and εi,t is a mean zero, weakly dependent idiosyncratic
innovation:

yi,t = β′xi,t + ei,t, ei,t = γ′
ift + εi,t, (1.1)

Equation (1.1) defines a multi-factor error structure, where the panel units exhibit
“strong” cross-section dependence (see e.g. Chudik et al., 2011) due to common un-
observed factors ft ∈ Rm to which they respond with heterogeneous intensities
(loadings) γi ∈ Rm. Interactive effects come natural in macroeconomic applications
with panel data where both N and T are large. For instance, ft may represent the
unobserved global technological progress, where γi is the local absorption intensity
(see e.g. Eberhardt and Teal, 2011). For micro applications, see for instance Wester-
lund et al. (2019).

In practice, ft is typically correlated with xi,t. Pesaran (2006), and many subsequent
studies, allow for this possibilty by explicitly letting the regressors be driven by the
same factors, ft:

xi,t = Γ′
ift + vi,t (1.2)

where Γi ∈ Rm×k is the loading matrix and vi,t ∈ Rk is the vector of idiosyncratic
innovations. Model (1.1) - (1.2) then exhibits not only strong cross-section depen-
dence, but also endogeneity, thus making it essential to control for ft in the estima-
tion of β. Under the assumption that factors are common and the matrix of average
loadings C = 1

N ∑N
i=1 Ci, with Ci = [γi + Γiβ], has at least rank m, this is easy

to achieve with the Common Correlated Effects (CCE) approach of Pesaran (2006),
which estimates the factor space with the cross-section averages (CAs) of the observ-
ables f̂t = zt =

1
N ∑N

i=1 zi,t, where zi,t = [yi,t, x′i,t]
′ ∈ Rk+1. The latter is then added as

a regressor to (1.1), which is in turn estimated by Least Squares (LS). The resulting
estimator is consistent as N → ∞ and exhibits excellent small sample performance
(see e.g. Westerlund and Urbain, 2015). It has accordingly been applied and ex-
tended to various more general settings, such as structural break modelling or unit
root testing (see e.g. Karavias et al., 2023, and Norkutė and Westerlund, 2021).

In the standard CCE model, the set of CAs zt are sufficiently informative for the m
unobserved factors when rk(C) = m, and f̂t is then consistent for (the space spanned
by) ft, which is sufficient for consistency. This assumption can be verified with the
procedure in De Vos et al. (2024). Adding f̂t as observed regressors and estimating
the resulting model with LS then yields consistent estimates of β as N → ∞, for T
fixed or growing (see Westerlund et al., 2019). Asymptotic normal inference ensues
provided TN−1 → 0, whereas if TN−1 → τ < ∞, a bias-correction is unavoidably
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needed due to the accumulation of factor estimation error (see e.g. Westerlund and
Urbain, 2015). This is, however, not straightforward, as the specific structure (func-
tional form) of the bias depends on whether the number of employed averages (g)
exceeds or matches the number of factors (m), because in the former case g − m CAs
are redundant and produce nuisance parameters (see Karabiyik et al., 2017). This
makes the resulting asymptotic bias exceedingly difficult to remedy with analytical
corrections, as not all bias-components (or the functional form) are known or con-
sistently estimable, unless in specific and restrictive settings. De Vos and Stauskas
(2024) therefore provide a consistent bootstrap correction to sidestep the issue and
remedy the bias problem without knowledge of g and m.

Notwithstanding, the common assumption in most theoretical work so far, is that
all the observed variables in (1.1)-(1.2) are driven by the same factors, thus enabling
a straightforward joint estimation of the factor space. In this paper, we challenge
this assumption, and investigate properties of the CCE approach when yi,t and xi,t
may be driven by distinct but correlated factors. We refer to this setting as Dis-
tinct Correlated Effects (DCE), as opposed to the standard Common Correlated Effects
(CCE) assumption. The setting is easily seen to be empirically relevant, as it is not
always reasonable to expect factors to be common over all observables. Consider
for example a regression of economic growth on climatic variables in the spirit of
Dell et al. (2012). Unobserved factors underlying the climatic regressors (e.g. global
climate patterns and trends) are likely to be distinct from those directly affecting
economic growth (e.g. technological progress, productivity, business cycles, crises,
according to economic theory). The two sets of factors are, however, likely to be
correlated (climatic hardship drives technological innovation), thus consistency still
requires the unobserved factor space in either yi,t or the regressors to be controlled
for. The asymptotic behavior of the CCE estimators in this case is, however, largely
unknown, so we relax in this paper the common factor assumption, and establish
properties and solutions for CCE estimation in practice.

To make the above discussion a little more precise, we depart from (1.1)-(1.2) by
following Cui et al. (2022) or De Vos and Stauskas (2024), and let

yi,t = β′xi,t + γ′
ify,t + εi,t, (1.3)

xi,t = Γ′
ifx,t + vi,t (1.4)

such that fy,t ∈ Rmy and fx,t ∈ Rmx denote respectively the my factors affecting
the regressand, and the mx factors affecting the regressors. The total number of
factors is then m = my + mx and gathered in ft = [f′y,t, f′x,t]

′. We also explicitly allow
that Cov(fy,t, fx,t) ̸= 0my×mx , such that factors can be correlated. We will focus in
particular on the case where fy,t ∩ fx,t = Ø, as it is the most extreme/challenging
case for CCE, thereby making the conclusions most relevant for practice. That is,
solutions for the former will also allow consistent inference when fx,t ⊆ fy,t. It is
now easy to see that in the Distinct Correlated Effects setting, the full factor space ft
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is not generally estimable by the CAs. That is, if rk(Γ) = mx, then xt is consistent for
the space spanned by fx,t. However, since fy,t loads on yi,t only, taking cross-section
averages of (1.3) and rearranging implies that the estimating equation for fy,t would
in principle be:

γ′fy,t = yt − β′xt − εt,

fy,t = (γγ′)−1γ(yt − β′xt) + Op(N−1/2)

since εt = Op(N−1/2) under our assumptions. Yet, since γ ∈ Rmy×1, we have that
rk(γ) ≤ 1, so that the inverse (γγ′)−1 does not exist when my > 1. In effect, the
rank condition is not generally satisfied for fy,t in this distinct factor setting, and
the latter factors cannot be estimated. fy,t is thus only estimable with CCE in the
unlikely case that my = 1, or fy,t = fx,t = ft (common factors). Since neither of these
special cases is also easy to verify in practice, the properties of CCE need to be veri-
fied and a generally robust approach is needed for inference. This is the objective of
the current paper.

Several versions of the distinct factor case have been considered in the literature
with clear advantages and drawbacks. For example, Bai (2009) or Moon and Wei-
dner (2015) assume no particular model (or factor space) for xi,t, and focus on es-
timating the factors in ei,t from (1.1) only, with Principal Components (PC). While
flexible, this approach relies on a non-linear optimization problem, therefore con-
vergence issues may arise (see e.g. Jiang et al., 2021). For CCE estimators, Juodis
(2022) considers ft = [f′1,t, f′2,t]

′ that drives xi,t, while yi,t loads on f1,t only, which can
be nested in (1.1) - (1.2). Here, f2,t is not estimable from the CAs since its average
loading has zero rank, therefore the problem differs from ours. The setup closest to
ours is discussed in Cui et al. (2022), who aim to produce an unbiased estimator of
β with the Two Stage Instrumental Variable (2SIV) approach. Specifically, fx,t is es-
timated with PC, and xi,t is purged of their effect thus “de-correlating” it with ei,t in
(1.1) and ensuring consistency (see their Proposition 3.1). Next, PC is applied to the
first stage residuals yi,t − β̂

′
xi,t to extract fy,t. This leads to the second stage, where

fy,t is asymptotically purged ensuring an asymptotically standard normal inference.

The CCE estimators are very commonly applied in practice, and it turns out the lat-
ter strategy is partially feasible for CCE estimators too for solving the problem of an
uninformative yt. As the rank of Γ is mx by assumption, it validates estimating fx,t
with xt and performing the (first stage) de-correlation step to make CCE consistent.
We will also follow this approach. The second stage purge, however, is not gen-
erally feasible with CCE, but also not necessary for consistency. The consequences
are that fy,t will remain in the residuals of the model, which in turn necessitates the
bootstrap for valid inference. To a limited degree, this route was already taken in
Proposition 1 of De Vos and Stauskas (2024) to illustrate the possibilities of the panel
cross-section (CS) bootstrap scheme by Kapetanios (2008). The key finding is that
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fy,t renders the asymptotic distribution of CCE non-standard if mx < g, because the
excess CAs have a non-trivial effect (see a similar finding in Juodis, 2022). They also
demonstrate that the variance and the bias of the asymptotic distribution depend on
the unknown Cov(fx,t, fy,t), which renders both the bias and variance analytically in-
estimable. In turn, they establish conditions under which the CS bootstrap is able to
replicate this distribution. As a result, this re-enables estimation of the asymptotic
variance and remedies bias under the usual TN−1 → τ < ∞ asymptotics, in the
spirit of Gonçalves and Perron (2014) or Djogbenou et al. (2015). However, the anal-
ysis of distinct factors in De Vos and Stauskas (2024) is restricted to homogeneous β
estimated with the pooled CCE (CCEP) estimator and with covariance stationary ft,
which somewhat limits the generality.

The contribution of the current study is thus the development of the CCE method-
ology in the Distinct Correlated Effects setting. This involves extending the CCE
methodology to handle distinct factors in heterogeneous panels for CCEP and Mean
Group (CCEMG) estimators, while establishing an inferential bootstrap toolbox that
is possibly also robust to deviations from stationarity. The key result is that while
the standard asymptotic tools and variance estimators may fail depending on slope
heterogeneity, the asymptotic distributions and biases, if present, can in each case
be captured by the proposed CS bootstrap tools. This leads to a powerful outcome:
asymptotically valid (bootstrap-aided) inference can ensue under uninformative yt,
under homogeneity or heterogeneity, so long as the rank of Γ is mx. The latter, we
note, can be verified with De Vos et al. (2024). This significantly boosts applicability
of the CCE methods.

This paper is organized as follows: Section 2 presents our assumptions, the details
on CCEP and CCEMG and explains the CS bootstrap scheme. In Section 3, we derive
the asymptotic distribution of both estimators in the original and bootstrap samples
and discuss inference. Monte Carlo evidence and a comparison to 2SIV approach
by Cui et al. (2022) are provided in Section 4. We use the following notation: rk(A),
det(A) and tr(A) denote respectively the rank, determinant, and trace of an arbi-
trary matrix A, while vec(A) vectorizes A by stacking its columns on top of each
other. ∥A∥ =

√
tr(A′A) is the Frobenius (Euclidean) norm, while ’→d’ stands for

convergence in distribution. By diag(A, B), we represent a matrix with A and B as
diagonal blocks. The symbols →p∗ (→p) and →d∗ (→d) represent convergence in
probability and convergence in distribution with respect to the induced (generic)
probability measure.
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2 Econometric Setup

2.1 Assumptions and Estimation

Consider model (1.3) - (1.4) in time-stacked notation for i = 1, . . . , N:

yi = Xiβ + Fyγi + εi, (2.1)

Xi = FxΓi + Vi, (2.2)

such that the set of observables is Zi = [yi, Xi], where yi = [yi,1, . . . , yi,T]
′ ∈ RT×1,

Xi = [xi,1, . . . , xi,T]
′ ∈ RT×k, Vi = [vi,1, . . . , vi,T]

′ ∈ RT×k and εi = [εi,1, . . . , εi,T]
′ ∈

RT×1. Let also F = [Fy, Fx] ∈ RT×m, with Fy = [fy,1, . . . , fy,T]
′ ∈ RT×my and Fx =

[fx,1, . . . , fx,T]
′ ∈ RT×mx . Since we focus on the likely case with my > 1, y is not

generally sufficiently informative to estimate the full Fy. Therefore, we propose to
instead de-correlate the regressors with Fy,t by projecting out the estimated Fx. The
latter factor space can in the Distinct Correlated Effects setting be estimated with X,
since averaging (2.2) over units gives:

F̂x = X = FxΓ + V, (2.3)

which implies, assuming rk(Γ) = mx, that

Fx = (F̂x − V)Γ
+, (2.4)

where Γ
+ is the MP inverse of Γ. While the above estimator is consistent for Fx, we

note that this does not necessarily require all the CAs in X. As such, we accomodate
the use of subsets of the CA (or IC selection of averages) by defining F̂ẋ ∈ RT×g as a
selection of g averages from X by the k × g selector qẋ:

F̂ẋ = Xqẋ = FxΓqẋ + Vqẋ

For a given subset, the corresponding rank condition needed for consistency is then
rk(Γqẋ) = mx, as in Assumption 4 below. This implies that the chosen subset is
sufficiently informative on Fx.

For the analysis, we work under the following assumptions:

Assumption 1 (Idiosyncratic errors) εi,t and vi,t are stationary variables, independent
across i with E(εi,t) = 0, E(vi,t) = 0k×1, σ2

i = E(ε2
i,t), Σi = E(vi,tv′

i,t), Ωi = E(εiε
′
i),

with Ωi, Σi positive definite and E(ε6
i,t) < ∞, E(∥vi,t∥6) < ∞ for all i and t. Additionally,

let ũi,t = (εi,t, v′
i,t)

′. Then

1
T3

T

∑
t=1

T

∑
q=1

T

∑
r=1

T

∑
s=1

∥E(ũi,tũ′
i,qũi,rũ′

i,s)∥ = O(1),
1
T

T

∑
t=1

T

∑
s=1

∥E(ũi,tũ′
i,s)∥ = O(1)

as T → ∞, whereas 1
N ∑N

i=1 σ2
i → σ2 < ∞ and 1

N ∑N
i=1 Σi → Σ < ∞ as N → ∞.
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Assumption 2 (Distinct factors) Let ft = (f′y, f′x)′ be covariance stationary with E(∥ft∥4) <

∞, absolute summable autocovariances and T−1F′F →p ΣF as T → ∞, such that

ΣF =

[
ΣFy Σ′

Fx,y

ΣFx,y ΣFx

]

with ΣFx,y = plimT→∞ T−1F′
xFy denoting the covariance between Fx and Fy. Also ΣFx and

and ΣFy are positive definite.

Assumption 3 (Factor loadings) The factor loadings are given by

γi = γ + ηγ,i ηγ,i ∼ I ID(0my×1, Ωγ)

Γi = Γ + ηΓ,i vec(ηΓ,i) ∼ I ID(0kmx×1, ΩΓ)

where γ, Γ are constant matrices, ΣγΓ = E(ηγ,i ⊗ ηΓ,i) is a covariance matrix, ηγ,i, ηΓ,i are
independent across i and of the other model components, and ∥γ∥ , ∥Γ∥ , ∥ΣγΓ∥, ∥Ωγ∥ , ∥ΩΓ∥
are finite.

Assumption 4 (Rank condition) rk(Γqẋ) = mx, with qẋ a k × g selector matrix.

Assumption 5 (Independence) ft, εi,s, vj,l, η̃n are mutually independent for all i, j, n, t, s, l.

Assumption 6 (Slope heterogeneity) The slopes βi follow

βi = β + υi, υi ∼ I ID(0k×1, Ωυ)

with Ωυ a finite nonnegative definite k× k matrix and the υi are independent of ft, εi,s, vj,l, η̃n
for all i, j, n, t, s, l.

Assumption 7 (Identification) Q̂ẋ,i = T−1X′
iMF̂ẋ

Xi, with F̂ẋ = Xqẍ, is non-singular for
all N, T, and

E

(∥∥∥(T−1V′
iMF̂ẋ

Vi)
−1
∥∥∥2
)
< ∞

also when F̂ẋ = Fx, where MF̂ẋ
= IT − F̂ẋ(F̂′

ẋF̂ẋ)+F̂′
ẋ.

The above assumptions are similar to those in Pesaran (2006); Karabiyik et al. (2017)
or Westerlund (2018). Assumption 1, however, generalizes the aforementioned stud-
ies by allowing the idiosyncratic innovations vi,t and εi,t to be both serially corre-
lated and heteroskedastic, unlike in e.g. Karabiyik et al. (2017). The combination
of time series dependence and our TN−1 → τ < ∞ asymptotics also necessitates
some stronger requirements, as reflected in the additional summability conditions
for higher moments given in Assumption 1. Assumption 2 imposes covariance sta-
tionarity on the factors specific to the dependent and explanatory variables and is
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similar to the one in Cui et al. (2022). Later we relax this requirement. Assumption 3
also generalizes Pesaran (2006) by allowing the loadings to be correlated within, but
not between, individuals. Next, Assumption 4 enables a flexible specification of the
(CAs included in the) factor estimator through the selector matrix qẋ ∈ Rk×g, and
thus avoids the restriction in our theory that CAs of all the explanatory variables are
necessarily required in the CCE specifications. This corresponds to practice where
some observables (e.g. dummy variables, or regressors with low (cross-section) vari-
ation) are excluded from the set of CA to enable computation and identification (see
e.g. Westerlund and Petrova, 2018; De Vos and Westerlund, 2019, for examples). As-
sumption 6 formalizes the slope heterogeneity, while Assumption 7 is sufficient for
identification of the mean β when the slopes are heterogeneous.

We next define the CCEP and CCEMG estimators as a function of a given dataset
and specification. Letting B = {Zi}N

i=1 denote the observed dataset, and defining
Qẋ = 1

N ∑N
i=1 Q̂ẋ,i, we have respectively

β̂CCEP,ẋ = β̂CCEP(ẋ,B) = Q−1
ẋ

1
NT

N

∑
i=1

X′
iMF̂ẋ

yi,

= β + Q−1
ẋ

1
NT

N

∑
i=1

(
Iν ̸=0 × X′

iMF̂ẋ
Xiνi + X′

iMF̂ẋ
Fyγi + X′

iMF̂ẋ
εi

)
(2.5)

and

β̂CCEMG,ẋ = β̂CCEMG(ẋ,B) = 1
NT

N

∑
i=1

Q̂−1
ẋ,i X′

iMF̂ẋ
yi

= β + Iν ̸=0 × ν +
1

NT

N

∑
i=1

Q̂−1
ẋ,i (X

′
iMF̂ẋ

Fyγi + X′
iMF̂ẋ

εi), (2.6)

where ν = 1
N ∑N

i=1 νi, and the ẋ subscript refers to the specification of the CAs (F̂ẋ).
Iν ̸=0 is an indicator function which equals Ik or 0k×k depending on whether the
slopes are heterogeneous or not.1 The estimators of the asymptotic variance sug-
gested by Pesaran (2006) depend similarly on the chosen averages, and are defined

1Note that if qẋ = Ik, such that the whole X is employed, then (2.5) simplifies by noticing that

1
NT

N

∑
i=1

X′
iMF̂ẋ

Fy(γ + ηγ,i) =
1
T

X′MF̂ẋ
Fyγ +

1
NT

N

∑
i=1

X′
iMF̂ẋ

Fyηγ,i =
1

NT

N

∑
i=1

X′
iMF̂ẋ

Fyηγ,i,

since then X′MF̂ẋ
= 0k×T . We conduct our analysis for the upcoming theorems with an arbitrary qẋ

as long as the rank condition is satisfied to accommodate general choices.
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as:

Θ̂CCEP,ẋ = Q−1
ẋ

(
1

N(N − 1)

N

∑
i=1

Q̂ẋ,iν̂iν̂
′
iQ̂ẋ,i

)
Q−1

ẋ , (2.7)

Θ̂CCEMG,ẋ =
1

N(N − 1)

N

∑
i=1

ν̂iν̂
′
i (2.8)

with ν̂i = β̂ẋ,i − β̂CCEMG,ẋ, for the CCEP and CCEMG estimator, respectively.

Clearly, the expansions in (2.5) and (2.6) reveal that Fy non-trivially enters the asymp-
totic analysis of both estimators. Intuitively, since Fy is not projected out (as it is
non-estimable), it will affect the asymptotic distribution by altering the variance and
possibly the mean (since Fy is typically not mean-zero). Moreover, because my is un-
known and likely to be bigger than 1, we also run the risk of having more factors
than available CAs. In order to handle the consequences of this deviation from the
standard CCE assumption, we propose the cross-section (CS) bootstrap approach
established by De Vos and Stauskas (2024) for CCE estimators in (N, T) → ∞ pan-
els. We begin with a general description and outline the practical implementation
of the resampling scheme.

2.2 Bootstrap Algorithm

The CS bootstrap scheme is straightforward to implement, and has the advantage
that all factors in the data are automatically replicated in the bootstrap realm, with-
out requiring a decision or knowledge about distinct vs. common factors by the re-
searcher. Given the need to approximate the asymptotic distribution in both cases,
this is an important advantage for practice. The core assumption behind the CS
resampling algorithm is that N → ∞ and that Zi, Zj are independent for each i
and j ̸= i, conditional on σ{F}. That is, the cross-section correlation in the data
is due to the unobserved factors. To present the resampling scheme, recall that
B = {Zi}N

i=1 denotes the original dataset, and let B∗
b = {Z∗

i }N
i=1 denote bootstrap

sample b = 1, . . . , B, obtained as described in Algorithm 1 below. Accordingly, for
s ∈ {CCEP, CCEMG}, we use β̂

∗
s,b = β̂s(ẋ,B∗

b ) to denote the estimates in bootstrap
sample b following the specification ẋ.
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Algorithm 1: Cross-section resampling scheme.
1) Initialization: Estimate given the chosen specification qẋ and estimator s the

β̂s = β̂s(ẋ,B) based on the original sample.

2) for b = 1 : B do:

i) Generate B∗
b = {Z∗

i }N
i=1 according to

Z∗
i = Zi∗ f or i = 1, . . . , N

where i∗ is for each i an independent random draw from I = {1, . . . , N}.

ii) Obtain F̂∗
ẋ = X∗qẋ and estimate β̂

∗
s,b = β̂s(ẋ,B∗

b )

3) Save the results B∗
s = [β̂

∗
s,1, . . . , β̂

∗
s,B] and form the following confidence

interval widely used in the bootstrap literature (see Davison and Hinkley,
1997, p. 194) to test the null β0:

CI(α, β̂
∗
s,ẋ) =

[
2β̂s,ẋ − θ∗(1−α/2)(B

∗
s ) , 2β̂s,ẋ − θ∗α/2(B

∗
s )
]

, (2.9)

where θ∗α(·) is the empirical (row-wise) α-quantile of the obtained bootstrap
distribution inside the brackets.

We refer to the Supplement for the formal representation of the resampling scheme
and expressions of the estimators for asymptotic analysis. It also straightforwardly
follows that a bootstrap sample B∗

b generated according to Algorithm 1 adheres to:

y∗
i = yi∗ = Xi∗β + Fyγi∗ + εi∗ (2.10)

X∗
i = Xi∗ = FxΓi∗ + Vi∗ (2.11)

such that the unobserved factors Fx and Fy are indeed copied in the bootstrap realm,
regardless of their number or the data generating process. The factor loadings and
innovation matrices are similarly copied in their entirety, but implicitly permuted
across units under the assumption that these matrices are cross-sectionally inde-
pendent. This retains the within-unit correlations and variances of loadings and
innovations, as well as their time series properties, which is crucial to capture the
asymptotic distribution. It is easy to show that the estimator of the factor space in
the bootstrap realm corresponds to:

F̂∗
ẋ =

1
N

N

∑
i=1

X∗
i qẋ = X∗qẋ = (FxΓw + Vw)qẋ, (2.12)

where Γw = 1
N ∑N

i=1 siΓi and Vw = 1
N ∑N

i=1 siVi are unobserved bootstrap quantities,
reweighted by the sampling frequencies si, where si denotes the sampling frequency
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of unit i in the bootstrap dataset B∗
b , and si follows a multinomial distribution. The

properties of si imply that Vw →p∗ 0T×k and Γwqẋ →p∗ Γqẋ as N → ∞, and in turn
(Γwqẋ)+ →p∗ (Γqẋ)+. This confirms that the asymptotic information content in the
cross-section averages, as determined by (Γqẋ)+, is also replicated in the bootstrap
sample.

3 Asymptotic Results

In this section we will discuss the asymptotic distribution of both CCEP and CCEMG
estimators in the original and bootstrap samples, based on Algorithm 1. We consider
both heterogeneous and homogeneous slopes and demonstrate that as long as the
condition mx = g can be met, asymptotically standard normal inference can ensue,
though in some cases aid by the bootstrap is necessary. To begin with, we assume
that Iν ̸=0 = 0k×k. This case, among other results, was discussed in De Vos and
Stauskas (2024). We re-state the key results in order to identify the challenges of the
distinct CE case, and subsequently extend it to heterogeneous panels and discuss
the possibility of non-stationary factors.

3.1 Homogeneous Slopes

Consider first the asymptotic distribution of the CCEP estimator when slopes are
homogeneous:

Theorem 1. Under Assumptions 1 - 5, we have as (N, T) → ∞ such that TN−1 → τ < ∞
the following asymptotic representations:

(a) If mx < g:
√

NT(β̂CCEP,ẋ − β) →d N
(

0k×1, Σ−1(Ψ + Ψ f )Σ
−1
)
+ Σ−1(

√
τh1 + h2)

with Γẍ = Γqẍ, Ψ = limN,T→∞
1
N ∑N

i=1 E
(
T−1V′

iεiε
′
iVi
)
, h1 = h1,1 + h1,2 − h1,3, where

h1,1 = Σ′
γΓvec

(
(Γ+

ẍ )
′q′

ẍΣqẍTẋHẋ,mx ΣFx ΣFx,y

)
,

h1,2 = ĨẍΓ′(Γ+
ẍ )

′q′
ẍΣqẍTẋHẋ,mx Σ+

Fx
ΣFx,y γ,

h1,3 = ĨẍΣqẍTẋHẋ,mx Σ+
Fx

ΣFx,y γ,

and Tẋ is a g × g partitioning matrix such that ΓẍTẋ = [Γẍ,mx , Γẍ,−mx ], where Γẍ,mx is an
mx × mx full rank matrix, Γẍ,−mx is mx × (g − mx), and Hẋ,mx = [Γ−1

ẍ,mx
, 0mx×(g−mx)]

′.

Moreover, Ĩẍ = diag
(
[1(X1 /∈F̂ẍ)

, 1(X2 /∈F̂ẍ)
, . . . , 1(Xk /∈F̂ẍ)

]
)

. The definition of Ψ f and h2 are
provided in the Supplement.
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(b) If mx = g:
√

NT(β̂CCEP,ẋ − β) →d N
(

0k×1, Σ−1(Ψ + Ψ̃ f )Σ
−1
)
+
√

τΣ−1h̃1,

where h̃1 = h̃1,1 + h̃1,2 − h̃1,3, where

h̃1,1 = Σ′
γΓvec

(
(Γ+

ẍ )
′q′

ẍΣqẍ(Γ
′
ẍΣFx Γẍ)

+ΓẍΣFx,y

)
,

h̃1,2 = ĨẍΓ′(Γ+
ẍ )

′q′
ẍΣqẍ(Γ

′
ẍΣFx Γẍ)

+Γ′
ẍΣFx,y γ,

h̃1,3 = ĨẍΣqẍ(Γ
′
ẍΣFx Γẍ)

+Γ′
ẍΣFx,y γ.

The definition of Ψ̃ f is provided in the Supplement.

Theorem 1 (a) and (b) confirm our prediction that the presence of the unaccounted
Fy affects both the mean and the variance of the asymptotic distribution of the CCEP
estimator as TN−1 → τ < ∞. In particular, the asymptotic variance is affected by
Fy irrespective of the relative expansion rate of N and T. Asymptotic bias similarly
is a function of the remaining factors due to the presence of ΣFx,y , the covariance
between the y- and x-specific factors. We similarly find that the asymptotic dis-
tribution also depends on the difference between g (the number of CA used) and
mx (the number of x-specific factors). Importantly, in part (a), we have g > mx, in
which case the distribution features h2, a stochastic term which does not converge
to the normal distribution, thereby making the overall distribution non-standard
and invalidating standard normal inference. The guilty term is mainly driven by
the interaction of two components: the error part of the g − mx redundant CAs, and
the covariance between Fx and Fy. Unlike the other deterministic bias components,
h2 cannot be eliminated even if TN−1 → 0. In addition, the asymptotic variance
estimator in (2.7) is also inconsistent due to the presence of Fy in the model resid-
uals. As shown by De Vos and Stauskas (2024) (see Proposition 3), the analytical
variance estimators are only consistent in the common factor case Fx = Fy = F,
otherwise Ψ f is not captured. Part (b), on the other hand, shows that if we have ex-
actly mx = g, then the distribution does not contain terms that impede asymptotic
normality as such. Nevertheless, the bias h̃1 still depends on ΣFx,y . This means that
the bias cannot be estimated and corrected as in Westerlund and Urbain (2013), even
under mx = g, because Fy is neither observed nor estimable. In addition, we have
similarly to Part (a) that the variance estimator in (2.7) is inconsistent.

The key conclusion from the above theory is thus that standard asymptotic inference
with CCEP cannot be trusted when factors are distinct, even if TN−1 → 0. Analyt-
ical variance estimators are inconsistent (regardless of g and m), asymptotic bias is
not estimable with standard approaches, and the asymptotic distribution features a
non-normal component when g > mx. The cross-section bootstrap, however, does
enable valid inference in this setting, as we show next in Theorem 2.
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Theorem 2. Under Assumptions 1 - 5 we have as (N, T) → ∞ such that TN−1 → τ < ∞
the following asymptotic representations:

(a) If mx < g:
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) →d∗ N (0k×1, Σ−1(Ψ + Ψ f )Σ

−1) + Σ−1(
√

τh1 + h2 + h+)

where h+ = 2(h∗
2 − h2) with the definition of h∗

2 provided in the Supplement. The remain-
ing quantities are as defined in Theorem 1.

(b) If mx = g:

√
NT(β̂

∗
CCEP,ẋ − β̂CCEP,ẋ) →d∗ N

(
0k×1, Σ−1(Ψ + Ψ̃ f )Σ

−1
)
+
√

τΣ−1h̃1,

with definitions as in Theorem 1 (b), and we have under the same conditions:

sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) ≤ x]− P[

√
NT(β̂CCEP,ẋ − β) ≤ x]

∣∣∣→p 0,

where the inequalities should be interpreted coordinate-wise.

It is evident for the mx < g case in part (a) that while the asymptotic variance is
replicated in the bootstrap realm, the bias is not due to the presence of an extra
noise term h+

2 . The latter represents a distortion of the stochastic term h2 in the
bootstrap realm caused by the moments of resampling weights si. The bootstrap is
thus not consistent when g exceeds mx. However, if mx = g, the original sample
and bootstrap distributions coincide due to the fact that there are no excess CAs.
The bootstrap is thus consistent in this case. In practice, this implies that bootstrap-
aided inference in the distinct factor case requires verification of g = mx. In order
to asymptotically guarantee this condition, we follow De Vos and Stauskas (2024)
and employ the following Information Criterion (IC) adapted from Margaritella and
Westerlund (2023):

IC(Mẋ) = log
(
det(Qẋ)

)
+ g · k · pN,T, (3.1)

where Mẋ is a combination of column indices of X, and qẋ picks the corresponding
g = cols(qẋ) averages in practice as before. Let accordingly Mẋ,0 denote the set
of averages from X such that rk(Γqẋ) = mx, cols(qẋ) = mx, and pN,T is a penalty
term in function of the panel dimensions N, T, such that pN,T → 0. This leads to the
following selector for the CAs such that mx = g, which should be implemented in
Step 1 of Algorithm 1:

M̂ẋ = arg min
Mẋ⊆Mẋ

IC(Mẋ), (3.2)
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where Mẋ denotes the index set of all possible combinations of CAs. Provided that
(N, T) → ∞ such that pN,TC2

N,T → ∞ where CN,T = min{
√

N,
√

T}, we have that

P(M̂ẋ = Mẋ,0) → 1 and P(g = mx) → 1.

This condition on the penalty is satisfied by several suggestions made by Bai and Ng
(2002), among others. For instance, pN,T = N+T

NT log(C2
N,T) showcases the best small

sample performance provided that T is sufficiently large, which is a suitable option
as we consider TN−1 → τ < ∞. Importantly, Mẋ,0 does not have to be unique as the
selected set of CAs will be the one with the most informative loadings Γqẋ (see the
characterisation of such a set in Proposition 3 of De Vos and Stauskas, 2024).2 Note
that the rank condition in Assumption 4, which ensures that the selection exercise
is feasible in the first place, can be checked with the methodology of De Vos et al.
(2024). In summary, the consistency of (3.1) asymptotically guarantees that the con-
ditions in part (b) of Theorem 2 are met, so that the asymptotic bias and the variance
can be estimated consistently by the means of the CS bootstrap, and asymptotically
unbiased inference can ensue with (2.9).

3.2 Heterogeneous Slopes

We now consider the case of heterogeneous slopes by letting Iν ̸=0 = Ik and explore
both the CCEP and CCEMG estimator.

Theorem 3. Under Assumptions 1 - 7, as (N, T) → ∞

√
N(β̂CCEP,ẋ − β) →d N

(
0k×1, Σ−1ΨνΣ−1

)
,

where Σ = plimN→∞
1

NT ∑N
i=1 V′

iVi and Ψν = limN→∞
1
N ∑N

i=1 ΣiΩνΣi.

Theorem 3 reveals that the CCEP estimator remains
√

N-consistent, unbiased, and
asymptotically normal in the distinct factor case under heterogeneity, irrespective of
the relative expansion rate of N and T. The theorem also puts forward two striking
and somewhat counter-intuitive results, which are major deviations from the ho-
mogeneous setup. The first is that the CCEP estimator is asymptotically normal and
unbiased irrespective of whether mx < g or mx = g. Moreover, Fy no longer affects
the asymptotic variance. This result coincides with the findings for Fx = Fy = F of
Stauskas (2022) (with non-stationary factors) and the heterogeneous slopes analysis
(with stationary factors) of De Vos and Stauskas (2024). To the best of our knowl-
edge, Theorem 3 is the first to highlight robustness of the CCEP estimator to distinct
factors in heterogeneous panels. The intuition behind this result is as follows. First,

2In the original paper of Margaritella and Westerlund (2023), that set minimizes the mean
squared error σ̂2

ẋ = 1
NT ∑N

i=1 υ̂′
iMF̂ẋ

υ̂i, with υ̂i = yi − Xi β̂z.
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the slope heterogeneity νi dominates the asymptotic distribution through

1√
NT

N

∑
i=1

X′
iMF̂ẋ

Xiνi =
1√
N

N

∑
i=1

Σiνi + op(1), (3.3)

which obeys the standard Central Limit Theorem (CLT), while the terms driven by
Fy and the idiosyncratic error εi in (2.5) are of a lower order. The Fy term in par-
ticular is also of lower order because MF̂ẋ

Xi is asymptotically uncorrelated with Fy,
since Fx is projected out. Therefore,∥∥∥∥∥ 1√

NT

N

∑
i=1

X′
iMF̂ẋ

Fyγi

∥∥∥∥∥ = op(1). (3.4)

In effect, the influence of Fy is asymptotically negligible so long as Fx can be consis-
tently estimated, as implied by Assumption 4. We next turn to the CCEMG estima-
tor.

Theorem 4. Under Assumptions 1 - 7, as (N, T) → ∞ such that TN−1 → τ > 0
√

N(β̂CCEMG,ẋ − β) →d N (0k×1, Ων) ,

where Ων = E(νiν
′
i) .

Similarly to Theorem 3, the main takeaway is that the CCEMG estimator is asymp-
totically normal and unbiased, with its variance unaffected by the presence of Fy.
This result also holds irrespective of mx < g or mx = g.3 The rationale behind this
outcome is the same as behind Theorem 3, meaning that the slope heterogeneity is
the slowest decaying term:

√
N(β̂CCEMG,ẋ − β) =

1√
N

N

∑
i=1

νi + op(1). (3.5)

This result is new in the CCE literature, and it also extends Theorem 4.1 in Cui
et al. (2022) in the PC context, because in the latter study (3.5) holds only when mx
is known. Particularly, their two-stage procedure can now be reduced to the first
stage estimation of Fx only, where the dominance of νi relegates the effect Fy to the
idiosyncratic components.4 This is also the main message of our Theorem 4 for CCE

3Note that the requirement of TN−1 → τ < ∞ is only a sufficient condition to asymptotically
eliminate the accumulated errors. While it is suitable under our N, T configurations, it may not be
necessary as in Theorem 3.

4Note that according to (2.6) and Theorem 4, under homogeneous β, we have
√

N(β̂CCEMG,ẋ −
β) = op(1). This means that we can always consistently estimate the homogeneous β by CCEMG ,
but inference should be based on

√
NT(β̂CCEMG,ẋ − β), as suggested by Theorem 1 and 2. We skip

such analysis in the interest of space.
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estimation.

Theorems 3 and 4 suggest that the variance estimators in (2.7) - (2.8) should be con-
sistent, unlike in the homogeneous case. This is confirmed by Theorem 5.

Theorem 5. Under Assumptions 1 - 7, as (N, T) → ∞

(a) NΘ̂CCEP,ẋ →p Σ−1ΨνΣ−1,

(b) NΘ̂CCEMG,ẋ →p Ων.

Clearly, bootstrap inference is not required with the CCE approach if it is known
a priori that slopes are heterogeneous. Additionally, we do not need to take into
consideration whether mx = g or mx < g, which is a major convenience. However,
as it is often unknown whether factors are distinct or slopes are heterogeneous, the
most suitable approach would be one robust to each setting, and which does not
require discrimination between the two cases. Indeed, as we can rely on the CS
bootstrap so long as mx = g is guaranteed in the homogeneous slopes case, it is nat-
ural to attempt the same in heterogeneous panels. It is especially innocuous, since
the asymptotic properties of CCEP and CCEMG are invariant to whether mx = g
or mx < g, according to Theorems 3 and 4. In Theorem 6 below, we thus establish
bootstrap consistency for both estimators when slopes are heterogeneous.

Theorem 6. Under Assumptions 1 - 7, as (N, T) → ∞ such that TN−1 → τ > 0,

(a) sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) ≤ x]− P[

√
NT(β̂CCEP,ẋ − β) ≤ x]

∣∣∣→p 0,

(b) sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEMG,ẋ − β̂CCEMG,ẋ) ≤ x]− P[

√
NT(β̂CCEMG,ẋ − β) ≤ x]

∣∣∣→p 0,

where inequalities are to be interpreted coordinate wise.

The main practical implication of Theorems 2 and 6 is that with bootstrap inference,
researchers do not need to differentiate between homogeneous and heterogeneous
panels, nor whether yi and Xi are driven by common or distinct factors. That is, the
same confidence intervals and bias-adjustments apply in either setting under As-
sumption 4. Even if the bootstrap is not strictly necessary in heterogeneous panels,
Theorem 6 shows that its application is innocuous. Theorem 7 in the supplemen-
tary material also provides the bootstrap world equivalent of Theorem 5, for com-
pleteness, and thereby establishes also the validity of the bootstrap-t interval in this
setting.

Remark 1. Note that the cross-section independence of Vi and εi is not required if it
is known that slopes are heterogeneous. This is because the asymptotic distribution does
not feature these variance components, so their dependence structure does not need to be
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replicated in the bootstrap realm. We can therefore relax this assumption along the lines
of Pesaran and Tosetti (2011) by requiring instead Ut = (MN ⊗ Ik+1)ξt, where Ut ∈
RN(k+1)×1 is a cross-section stack of ui,t and ξt obeys the time-dependence requirements of
Assumption 1. Here, MN is an N × N ”network matrix” with bounded row and column
norms.

3.3 Distinct Correlated Effects with General Unknown Processes

It is known that CCE estimators are able to accommodate a wide variety of data
generating processes of the factors without sacrificing asymptotic normal inference
or the rate of consistency. This includes factors that are (mixtures of) integrated
processes or deterministic trends, as demonstrated by Westerlund (2018) for the
homogeneous case, or Stauskas (2022) in the heterogeneous setting. Both studies,
however, examined properties under the common factor assumption. It is there-
fore natural to wonder whether this generality of CCE translates to the distinct
factor setting. Let accordingly F be such that D−1

T F′FD−1
T ⇒ ΣF is asymptotically

full-rank, and D−1
T,F,k+1vec(U′

iF) converges weakly as T → ∞, where DT,F,k+1 =

(DT,F ⊗ Ik+1) for some normalization matrix DT = diag(DT,y, DT,x), such that
DT,a = diag(Tpa,1 , . . . , Tpa,ma ), a ∈ {x, y} and pa,j ≥ 1/2. Here, ”⊗” and ”⇒” rep-
resent Kronecker product and weak convergence, respectively. Proposition 1 below
formulates conditions under which asymptotically normal inference ensues for the
CCEP and CCEMG estimators with general unknown factors.

Proposition 1. Under Assumptions 1 - 7 for mx < g as (N, T) → ∞ with TN−1 →
τ > 0, plus a covariance stationary Fy with absolute summable autocovariances, we have
the following asymptotic representations:

(a) (heterogeneous β)
√

N(β̂CCEP,ẋ − β) = Σ−1 1√
N

N

∑
i=1

Σiνi + op(1),

√
N(β̂CCEMG,ẋ − β) =

1√
N

N

∑
i=1

νi + op(1).

If, in addition, ΣFx,y is deterministic, then

(b) (homogeneous β)
√

NT(β̂CCEP,ẋ − β)

= Σ−1

(
1√
N

N

∑
i=1

[
V′

iεi√
T

+ ΘiD−1
T,F,kvec(V′

iF)
]
+
√

τh1(ΣFxy) + h2

)
+ op(1),

where Θi is a random matrix in function of the factor loadings. Also, h1 and h2 are equiva-
lents of the respective terms in Theorem 1.
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Part (a) reveals that the findings in Westerlund (2018) or Stauskas (2022) carry over
to the DCE setting so long as the general x-factors are asymptotically projected out.
Therefore, the conclusions of Theorems 3 and 4 apply. The restriction of covari-
ance stationary Fy, which remains in the residuals, is then sufficient to preserve the
same rate of consistency and the asymptotic normal distribution. Indeed, the terms
akin to (3.4) remain asymptotically negligible (see the Supplement for details). Since
pooling causes bias under homogeneous β, part (b) requires another restriction to
keep the bias terms h1 non-random and avoid a non-standard asymptotic distribu-
tion. This is because the expansions depend on the covariance matrix ΣFx,y , similarly
to Theorem 1. The latter is deterministic if Fx contains at most deterministic trends
or moderately integrated processes (see e.g. Magdalinos and Phillips, 2009). For in-
stance, if fx,t = (1, t, t2, . . . , tmx−1)′ with DT,x = diag(T1/2, T3/2, . . . , Tmx−1/2) and
DT,y =

√
TImy , it can be shown that

ΣFx,y = plim
T→∞

D−1
T,xF′

xFyD−1
T,y =

∫ 1

s=0
(s × µ′

fy
)ds

as T → ∞, where s = (1, s, s2, . . . , smx−1)′ and µfy
= E(fy,t) (see the supplementary

material). Clearly, this restriction is not needed if TN−1 → 0. Under these con-
ditions, the first component in the brackets is asymptotically normal. Similarly to
Theorem 1, we have that h2 is not a normal variate, but that it is absent when mx = g.

If Fy is not restricted to be covariance stationary, however, further restrictions are
needed. Since it remains unobserved, Fy will generally dominate the asymptotic
distribution and alter the rate of consistency, implying that we need to analyze√

NDT,y(β̂CCEP,ẋ − β). While it is appealing to keep my unrestricted, we must now
impose that my ≤ k. Otherwise, some y-specific factors will not be stabilized and
the distribution may diverge. For these reasons, we leave exploration of an unre-
stricted Fy for future research.

Remark 2. Even under covariance stationary Fx, we can allow the whole common com-
ponent to be non-stationary by means of breaking loadings. Suppose that at time t∗ the
loadings change from Γ1,i to Γ2,i. Let Γi,t = I(t < t∗)Γ1,i + I(t ≥ t∗)Γ2,i be the resulting
time-varying version of Γi with I(A) being the indicator function for the event A taking the
value one when A is true and zero otherwise. This means that the common component of xi,t
can be written as

Γ′
i,tfx,t = I(t < t∗)Γ′

1,ifx,t + I(t ≥ t∗)Γ′
2,ifx,t = Ξ′

igt, (3.6)

where Ξi = [Γ′
1,i, Γ′

2,i]
′ ∈ R2mx×k and gt = [I(t < t∗)f′x,t, I(t ≥ t∗)f′x,t]

′ ∈ R2mx ,
similarly to Breitung and Eickmeier (2011). Hence, the model with breaking loadings can be
written equivalently as a model without break but with 2mx factors. Following Assumption
4, if g > 2mx, Ξqẍ = [Ξẍ,2mx , Ξẍ,−2mx ], where Ξẍ,2mx and Ξẍ,−2mx are 2mx × 2mx and
2mx × (g − 2mx), respectively, whereas if 2mx = g, then Ξqẍ = Ξẍ,2mx and in any case
rk(Ξqẍ) = 2mx.
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4 Monte Carlo Simulations

In this section, we verify our theoretical predictions with a simulation study. To that
end, we utilize a data generating process similar to De Vos and Stauskas (2024). In
particular, we let the time varying unobservables follow:

fa,t = ρfa,t−1 +
√

1 − ρ2ν
f
t , ν

f
t ∼ N (0ma×1, Ima /ma), a ∈ {x, y}

εi,t = ρεi,t−1 +
√

1 − ρ2νε
i,t, νε

i,t ∼ N (0, σ2
i )

vi,t = ρvi,t−1 +
√

1 − ρ2νx
i,t, νx

i,t ∼ N (0k×1, σ2
x,iIk)

where each variable is initiated at 0 and the first 50 periods are discarded as a burn-
in to neutralize initial conditions. We set the autocorrelation parameter to ρ = 0.8
for all experiments in accordance with the high serial correlation that is typically en-
countered in practice. We set k = 3 and my = mx = 2 to let distinct Fy and Fx drive
yi and Xi, respectively. With mx < k and my > 1, the design reflects the setting of
interest in this paper, where the rank condition on C fails and Fy is inestimable with
the CA. Hence, only rk(Γ) = mx applies, so that only Fx is estimable. Moreover,
we induce a correlation of ρ f = corr(Fy, Fx) ∈ (0.3, 0.7) between the two factor sets.
We thus consider both low and high dependence in the factors. To illustrate also
robustness to heteroskedasticity, variances are drawn from σ2

i ∼ σ2 + (χ2
1 − 1) and

σ2
x,i ∼ σ2

x + (χ2
1 − 1) respectively, with σ2

x = 2 and σ2 = 1 for all experiments.

To generate loadings, we let C̃ = [γi, Γi] = C̃ + η̃iι
′
1+k, with η̃i ∼ N (0m×1, σ2

ηIm).
This implies that loadings are perfectly correlated within individuals. Because we
only estimate Fx from the CAs, we also regulate their informativeness through the
population mean Γ, as controlled through the parameter d = det(ΓΓ′). For the
latter, we generate given an upper bound du the entries in Γ independently from
U [0, 2] such that du − 0.1 ≤ d ≤ du. The obtained Γ is then fixed over Monte Carlo
replications and sample sizes. We take du = 10 as our baseline scenario with a
standard information content, and study the impact of a less informative setting by
lowering du to 5.5 Slopes are generated as

βi = βιk×1 + υi, with υi,ℓ ∼ (χ2
1 − 1)

√
σ2

υ/2 for ℓ = 1, . . . , k

where υi,ℓ denotes the ℓ-th row of υi, so that σ2
υ ∈ {0, 1} considers respectively the

common and variable slopes setting. We set the slope population mean to β = 1.

In the simulations below, we denote CCE estimators as CCEPA and CCEMGA, re-
spectively, with the A subscript referring to the used specification of the CAs. We

5These numbers are based on the (simulated) distribution of the determinant of 2 × 3 matrices
with elements drawn from U [0, 2], which ranges roughly from 0 to 40 (with a long right tail) with
E(d) ≈ 9.2.
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include 3 specifications: 1) A = x: all CAs except for y, 2) A = xin f : infeasible spec-
ifications with the optimal6 sub-selection from X such that g = mx, 3) A = x̂: CAs
selected with the IC from (3.1). Note, as such, that mx < g for A = x, mx = g for
A = xin f and A = x̂ versions are estimated versions of the A = xin f specification.
In the interest of space, we report the most relevant specifications for each experi-
ment, but note that others are available upon request. All tests are performed at the
norminal 5% significance level. Further, ”bootA” denote bootstrap equivalents for
the corresponding CCE specification, obtained from B = 2000 bootstrap samples
generated with CS-resampling. Reported size for the bootstrap methods is from ap-
plication of (2.9). As the main alternative to the CCE and bootstrap approaches, we
include the 2SIV estimator recently proposed by Cui et al. (2022), where a two-stage
PC method is used to arrive at an asymptotically unbiased estimator as TN−1 → τ,
with 0 < τ < ∞. The approach also accommodates in its design potential distinct
factors, and as such serves as a good benchmark for the CCE method. Clearly, as the
2SIV achieves the same goal as the CS-bootstrap, comparisons will be informative.
We include the second stage IV estimator with the number of factors in both stages
estimated using the eigenvalue ratio approach of Ahn and Horenstein (2013), as per
the authors’ suggestion.

4.1 Results: Homogeneous Slopes

We start with the results for homogeneous slopes. First, it is clear that standard
asymptotic t-tests with CCEP cannot be trusted in case of distinct factors. In par-
ticular, Table 1 reveals the near-zero size for all asymptotic t-tests with CCEP. This
occurs because the standard errors in (2.7) are inconsistent in this setting, and in-
ference needs to be aided by means of the bootstrap. However, bootstrap inference
performs well. We find that bias and size are adequate for bootx when mx < g.
On the other hand, bootxin f (mx = g) is slightly more accurate with an empirical
size closer to the nominal one. As demonstrated in Theorem 2 (a), size distortions
for bootx are due to mx < g, whereas the bootstrap was shown to be consistent if
mx = g, as is the case for bootxin f . Results suggest, however, that the distortions for
mx < g are not too large, and have a fairly minor effect on testing. The IC crite-
rion in (3.1) can also clearly estimate the optimal set of averages for which mx = g
well, at least given sufficiently large T.7 Indeed, the bootx̂ estimator achieves prac-
tically the same bias and empirical size as its target, bootxin f , when T > 100. This
confirms the effectiveness of the combination of the IC selector and CS-bootstrap in
the distinct factor case. Ultimately, we note that also the 2SIV estimator achieves
a close-to-nominal size for sufficiently large T, but find that our bootstrap tests are

6The specified g = mx averages are optimal in the sense that ∥(Γqẋ)
+∥ is minimized. For com-

pleteness, this optimal selection is [x1, x2].
7Selection frequencies in Table B-6 of Supplement B of De Vos and Stauskas (2024) confirm that

mx = g is achieved with probability approaching 1, and shows that the same averages are selected
as for the a priori unknown xin f specification ([x1, x2]).
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generally more accurate, especially for smaller T. Comparison of the bias in Table 1
with that for the low-dependence factors (available upon request) also confirms the
conclusion of Theorem 1 that asymptotic bias for CCEP is larger when correlation
between Fx and Fy is stronger. As before, performance of the bootstrap is practically
unaffected, whereas the 2SIV suffers some size distortions for T < 100.

Table 1: High dependence non-common factors
√

NT × bias size

N
T 25 50 100 500 25 50 100 500

CCEPx 25 0.32 0.24 0.10 0.43 0.01 0.01 0.00 0.00
50 0.29 0.26 0.16 0.19 0.02 0.01 0.01 0.00

100 0.18 0.21 0.15 0.10 0.01 0.01 0.01 0.00
500 0.09 0.02 0.03 0.15 0.01 0.01 0.00 0.01

CCEPxin f 25 0.36 0.31 -0.07 0.54 0.02 0.02 0.00 0.00
50 0.27 0.32 0.02 0.31 0.03 0.02 0.01 0.00

100 0.16 0.22 -0.05 0.18 0.03 0.02 0.00 0.01
500 0.02 0.05 0.05 0.20 0.02 0.03 0.00 0.01

CCEPx̂ 25 0.41 0.32 -0.07 0.54 0.03 0.02 0.00 0.00
50 0.26 0.32 0.02 0.31 0.03 0.02 0.01 0.00

100 0.13 0.21 -0.05 0.18 0.04 0.02 0.00 0.01
500 -0.10 0.03 0.05 0.20 0.05 0.03 0.00 0.01

bootx 25 0.13 0.02 -0.06 0.03 0.08 0.07 0.07 0.06
50 0.13 0.08 0.03 -0.09 0.07 0.06 0.08 0.05

100 0.05 0.07 0.08 -0.10 0.07 0.06 0.07 0.07
500 0.04 -0.07 0.00 0.07 0.06 0.06 0.04 0.06

bootxin f 25 0.18 0.04 -0.12 0.13 0.06 0.06 0.08 0.05
50 0.11 0.09 0.03 -0.02 0.05 0.06 0.06 0.05

100 0.04 0.03 -0.03 -0.08 0.06 0.04 0.06 0.06
500 -0.04 -0.05 0.08 0.08 0.04 0.05 0.06 0.05

bootx̂ 25 0.15 0.03 -0.12 0.13 0.07 0.06 0.08 0.05
50 0.01 0.09 0.02 -0.02 0.06 0.06 0.06 0.05

100 -0.11 0.02 -0.03 -0.08 0.07 0.05 0.06 0.06
500 -0.35 -0.10 0.07 0.08 0.06 0.05 0.06 0.05

2SIV 25 0.28 0.16 0.06 0.03 0.15 0.11 0.08 0.08
50 0.46 0.17 0.12 -0.12 0.09 0.07 0.07 0.06

100 0.68 0.18 0.18 0.05 0.08 0.05 0.07 0.07
500 1.67 0.36 0.06 0.03 0.21 0.06 0.05 0.05

Experiment parameters: (du, β, σ2, σ2
η , σ2

υ , ρ f ) = (10, 1, 1, 1, 0, 0.7). This experiment
features my = 2 y-specific factors Fy that are correlated (ρ f = 0.7) with mx = 2
x-specific factors Fx. An x̂ subscript denotes CCE specifications with CA selected
with the IC criterion in (3.1), and xin f is the infeasible CCEP specification with the
optimal g = 2 averages from X (optimal in terms of their information content on
Fx). These are [x1, x2]. Size reported for bootA estimators are for the bootstrap
interval in (2.9) based on 2000 replications.
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4.2 Results: Heterogeneous Slopes

For the heterogeneous case, we similarly begin with the CCEP estimator. Our imme-
diate focus is on the plain CCEPx estimator because the key message of Theorem 3 is
its robustness to the distinct factors case. Table 2 corroborates this. We find that the
estimator is virtually unbiased for all combinations of larger N and T, and that it dis-
plays minimal bias only if N = 25. However, any small sample bias is substantially
smaller than in the homogeneous setting of Table 1. This observation carries over
when we employ the infeasible selection of CAs (CCEPxin f ), where g = mx. For both
A ∈ {x, xin f }, the empirical size is similar and revolves closely around the nominal
0.05 level for all combinations of (N, T), with the exception of N = 25. This can
be partially explained by the large N that CCE estimators require to approximate
the factor space. Also, the slight distortions, especially those that occur in medium-
sized samples, can be attributed to the fact that the heterogeneity νi is simulated
from a chi-squared distribution with σ2 = 1, unlike in Pesaran and Tosetti (2011) or
Stauskas (2022), where νi is normal and σ2 = 0.02. We also see that the bootstrap
CCEP estimators behave similarly to the original sample ones both in terms of bias
and size. Particularly, the infeasible bootxin f is almost identical to bootx̂, where the
IC selector is employed in the first stage. The latter even performs slightly better
for a small N and T ≥ 50. Eventually, we see that both CCEPA and bootA for all
versions of A perform very similarly to the 2SIV of Cui et al. (2022), which is specif-
ically constructed to accommodate distinct factors. In fact, we note that plain CCEP
showcases a better performance in terms of empirical size, especially in small and
medium samples. Because 2SIV is a PC-based estimator, this can be explained by
the fact that it needs not only a large N but also a large T to consistently estimate
the factor space. Overall, the discussion implies that our theoretical predictions in
Theorems 3, 5 and 6 are borne out well.
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Table 2: High dependence non-common factors (CCEP)
√

NT × bias size

N
T 25 50 100 500 25 50 100 500

CCEPx 25 -0.02 0.01 -0.01 -0.02 0.04 0.11 0.08 0.09
50 0.01 0.01 0.00 0.00 0.06 0.05 0.06 0.06

100 0.00 0.01 0.02 0.00 0.05 0.05 0.08 0.06
500 0.01 0.00 0.00 0.00 0.06 0.06 0.05 0.06

CCEPxin f 25 -0.01 0.01 -0.01 -0.02 0.08 0.11 0.07 0.09
50 0.01 0.01 0.00 0.01 0.07 0.06 0.06 0.06

100 0.00 0.00 0.02 0.00 0.06 0.06 0.08 0.06
500 0.01 0.00 0.00 0.00 0.06 0.06 0.05 0.07

bootxin f 25 -0.01 0.01 -0.02 -0.03 0.11 0.13 0.09 0.11
50 0.01 0.01 0.00 0.00 0.10 0.06 0.08 0.08

100 0.00 0.00 0.02 0.00 0.07 0.06 0.08 0.09
500 0.01 0.00 0.00 0.00 0.06 0.06 0.05 0.06

bootx̂ 25 -0.03 0.00 -0.02 -0.02 0.12 0.12 0.09 0.09
50 0.00 0.01 0.00 0.00 0.10 0.07 0.07 0.08

100 0.00 0.00 0.02 0.00 0.06 0.07 0.09 0.08
500 0.01 0.00 0.00 0.00 0.07 0.06 0.05 0.06

2SIV 25 -0.03 0.00 -0.02 -0.03 0.11 0.12 0.11 0.10
50 0.01 0.00 -0.01 0.00 0.10 0.07 0.06 0.07

100 -0.01 0.00 0.02 0.00 0.06 0.05 0.08 0.07
500 0.01 0.00 0.00 0.00 0.07 0.08 0.03 0.07

Experiment parameters: (du, β, σ2, σ2
η , σ2

υ , ρ f ) = (5, 1, 1, 1, 1, 0.7). This experiment
features my = 2 y-specific factors Fy that are correlated (ρ f = 0.7) with mx = 2 x-
specific factors Fx. An A ∈ {x̂, xin f } subscript denotes CCE specifications with CA
selected from (3.1), and the infeasible CCEP specification with the optimal g = 2
averages from X (optimal in terms of their information content on Fx), respec-
tively. These are [x1, x2]. Size reported for bootA estimators are for the bootstrap
interval in (2.9).

We further move on to Table 3, which contains results for the CCEMG estimator un-
der heterogeneous slopes. The overall findings are fairly similar to the CCEP case,
especially when it comes to bias. In line with our theory, we find that the plain
CCEMG estimator is virtually unbiased even when N ≈ T, and the empirical size
hovers very closely to the nominal one. Again, some distortions can be attributed
to the fact that a large N is needed to approximate the factor space, and νi comes
from a chi-squared distribution, which weakens normal approximations in finite
samples. Plus, in comparison to the CCEP case, we can see smaller size distortions
for N = 25 and T ≥ 100 across the board for both the original and bootstrap es-
timator. Moreover, bootA for both A ∈ {xin f , x̂} performs slightly better than its
CCEP counterpart for (N, T) ≤ 100. Similarly to the CCEP case displayed in Table
2, all the considered estimators behave similarly to the 2SIV estimator. However, the
plain CCEMG estimator no longer exhibits a clear size advantage, at least in small
samples.
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Table 3: High dependence non-common factors (CCEMG)
√

NT × bias size

N
T 25 50 100 500 25 50 100 500

CCEMGx 25 -0.03 0.01 0.00 -0.01 0.05 0.08 0.04 0.06
50 0.02 0.00 -0.01 0.00 0.08 0.05 0.07 0.05

100 0.00 0.00 0.01 0.00 0.05 0.04 0.08 0.07
500 0.00 0.00 0.00 0.00 0.04 0.06 0.04 0.05

CCEMGxin f 25 -0.03 0.01 0.00 -0.01 0.04 0.08 0.05 0.06
50 0.02 0.00 -0.01 0.00 0.06 0.05 0.07 0.05

100 -0.01 0.00 0.01 0.00 0.06 0.04 0.08 0.07
500 0.00 0.00 0.00 0.00 0.06 0.06 0.04 0.05

bootxin f 25 -0.03 0.00 0.00 -0.01 0.05 0.08 0.06 0.06
50 0.01 0.00 -0.01 -0.01 0.06 0.06 0.07 0.05

100 -0.01 0.00 0.01 0.00 0.06 0.04 0.09 0.07
500 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.05

bootx̂ 25 -0.03 0.00 0.00 -0.01 0.05 0.09 0.05 0.06
50 0.02 0.00 -0.01 -0.01 0.06 0.05 0.07 0.06

100 -0.01 0.00 0.01 0.00 0.05 0.04 0.08 0.07
500 0.00 0.00 0.00 0.00 0.04 0.05 0.04 0.05

2SIV 25 -0.03 0.00 0.00 -0.02 0.06 0.07 0.04 0.06
50 0.02 0.00 -0.01 -0.01 0.07 0.06 0.06 0.05

100 -0.01 0.00 0.01 0.00 0.05 0.03 0.08 0.07
500 0.00 0.00 0.00 0.00 0.07 0.07 0.05 0.06

Experiment parameters: (du, β, σ2, σ2
η , σ2

υ , ρ f ) = (5, 1, 1, 1, 1, 0.7). This experiment fea-
tures my = 2 y-specific factors Fy that are correlated (ρ f = 0.7) with mx = 2 x-specific
factors Fx. An A ∈ {x̂, xin f } subscript denotes CCE specifications with CA selected
from (3.1), and the infeasible CCEMG specification with the optimal g = 2 averages
from X (optimal in terms of their information content on Fx), respectively. These are
[x1, x2]. Size reported for bootA estimators are for the bootstrap interval in (2.9).

5 Application: climate shocks and economic growth

In this section, we illustrate our procedures to study the effect of climate shocks on
economic growth as in Dell et al. (2012). Data are taken from the aforementioned
paper, which constitutes an unbalanced panel dataset with N = 127 countries and
an average timespan of observations of T = 1

N ∑N
i=1 Ti = 39 years, from 1961 to 2003.

The authors regress the annual per capita economic growth rate yi,t on temperature
and precipitation for both developed and developing nations, and find significant
effects. The main model is

yi,t = θi + αri,t + β1Tmpi,t + β2Preci,t + εi,t

where Tmpi,t denotes the temperature (in ◦C) for country i at time t, and Preci,t
is the precipitation level in 100mm units. θi are country fixed effects, and αri,t
represent time-and-region dummies to account for e.g. region-specific and time-
varying labour productivity (technological progress). The latter can be seen as a
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restricted unobserved factor, with the assumption that regions have a common re-
sponse/absorption speed. Following e.g. Cui et al. (2022), we generalize this as-
sumption by replacing the set of dummies αri,t with interactive effects:

yi,t = θi + γ′
ify,t + β1Tmpi,t + β2Preci,t + εi,t (5.1)

where fy,t now encompasses also time and region effects, but enables more flexi-
ble responses and captures potentially more growth-specific unobservables besides
technological progress. These can entail e.g. business cycles, shifting trends and
preferences, crises,... etc, with potentially heterogeneous responses. Naturally, the
climate regressors can similarly be thought of as being affected by common factors,
for instance the global temperature and precipitation climate, to which countries
contribute or react depending on the characteristics of the land. Factors underlying
the climate regressors, fx,t, are thus intuitively distinct from the factors directly af-
fecting economic growth, but the two sets are nevertheless likely to be correlated.
Indeed, historical changes in the global climate fx,t (climate trends, deforestation,
disasters, floods) have affected technological developments over the years. Techno-
logical progress to optimize agrucultural yield and production processes in difficult
climates, for instance. Accordingly, investigating the impact of weather shocks on
growth would seem to require controlling for this unobserved effect space for con-
sistent estimates.

Given the above, we thus re-evaluate the model of Dell et al. (2012) with the CCE
method to allow for interactive effects. As it can be argued that the setting is one
with distinct correlated effects, we follow the theory above and focus on estimat-
ing the factor space in the regressors with xt = [Tmpt, Prect]′. Indeed, as economic
growth (from theory) tends to feature more than 1 factor, fy,t is in that case not es-
timable with a single cross-section average, and will be left in the error term of the
model. As mentioned above, this requires the bootstrap for estimating standard
errors and bias-correction of the pooled slope coefficients. In addition to pooled
slopes, we also estimate an explicitly heterogeneous version of (5.1) with the CCEMG
estimator. For both estimators, we employ the Information Criterion in (3.1) to select
averages from xt such that g = mx. In all of the regressions below, this resulted in
the selection of a single average Tmpt, such that we use f̂x,t = [1, Tmpt]

′ to estimate
the factor space in all the reported regressions. Note that the one is added as an
observed factor to directly capture the fixed effect θi.

Finally, to generalize further the approach with region-time dummies, we also more
explicitly account for potential country-group specific factors by splitting the sample
between developed and developing countries. The advantage in the CCE context is
that the approximated factors are then also allowed to differ among the developed
and developing nations, thus potentially better controlling for factors specific to
each nation group. The initial downside for the pooled CCE estimator is that the N
dimension is split in half, such that the relevant TN−1 ratio is increased from 0.31
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in the full sample to roughly 0.6 in each sample, thus increasing the likelihood of
distortive bias effects (cfr. Theorem 1). The proposed bootstrap toolbox, however,
has been shown to remedy the implied increase in asymptotic bias. We accordingly
report bootstrap-corrected slopes and confidence intervals as in (2.9) based on B =
1999 bootstrap samples obtained with CS resampling.

5.1 Results

Consider the results in Tables 4 and 5, which report respectively a linear and non-
linear version of (5.1). An interesting general finding is that, after controlling for
unobserved factors, we find no significant effects of temperature and precipitation
shocks on economic growth in the developed countries in the dataset. This is the
case for both the pooled and mean group estimates, and applies to both the lin-
ear and non-linear specification of the model. We thus find insufficient evidence
to conclude that growth in developed economies is affected by temperature and
precipitation shocks. This suggests economies that are less agriculture based. While
bootstrap-corrected estimators show sizeable differences in the estimated slopes and
associated confidence intervals, which are somewhat more narrow than the asymp-
totic ones, the conclusions align with that of the standard estimators. Conclusions
are decidedly different, however, for the developing countries in the dataset, where
the regressions demonstrate significant and non-linear effects on growth. In the lin-
ear model, the pooled CCE estimator finds that a 1◦C rise in temperature is expected
to decrease economic growth with 1.534 percentage points (p.p.), ceteris paribus,
which is significant at the 1% level. The bootstrap results in a slight downward
adjustment of this effect to a 1.53p.p. decrease, and similarly concludes a highly sig-
nificant effect. Mean group estimates, however, are not significant. Regarding the
effect of precipitation shocks, bootstrap inference with CCEP leads to different con-
clusions than the standard asymptotic test. Indeed, normal inference is potentially
distorted by the distinct factor setting as per our theory, and CCEP finds no signifi-
cant effect of precipitation on growth. The bootstrap confidence interval, however,
appears more narrow than the asymptotic one, and leads to the conclusion that an
additional 100mm of annual rainfall is expected to increase economic growth with
0.12p.p., ceteris paribus, which is significant at the 5% level. The mean group ap-
proach estimates this effect to be roughly 3 times larger, and both methods concur
with significance at the 1% level. As expected from theory, the mean group esti-
mator is unbiased and standard inference continues to apply under distinct factors.
Accordingly, asymptotic and bootstrap results are very similar.

To explore potential non-linear effects, squares of both Temperature and Precipita-
tion were added to the model. The effect of temperature was found to be linear,
such that its square was removed in the estimation reported in Table 5. The re-
sulting effect estimates are also similar in size to those in the linear specification.
Regarding the effect of precipitation, the asymptotic and bootstrap method arrive
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at very different conclusions. Indeed, asymptotic inference with CCEP suggests
no significant effect of precipitation, while bootstrap-corrected slopes and inference
indicate that the effect of precipitation on growth may be non-linear. This also cor-
responds to common logic, as the effect of an additional 100mm of rainfall is likely
to depend on how much rain has already fallen. Indeed, the bootstrap-corrected
slope received a sizeable downward adjustment compared to the CCEP estimate,
and the bootstrap confidence interval is also vastly different from the normal ones,
indicating the potential distortive effects of the distinct factors. By consequence, we
conclude that the bootstrap-corrected effect of precipitation is non-linear, and fol-
lows 0.414 − 2 × 0.009 × PRECIP. Indeed, the marginal effect of additional rainfall
turns negative when the precipitation level is already sufficiently high, while it is
positive in relatively dry areas.

Table 4: Climate shocks and economic growth: linear model

Developing Developed

variable estimator slope LB UB slope LB UB

TEMP CCEP -1.534***−2.292−0.776 0.159 −0.413 0.731
CCEPbt -1.530***−2.304−0.708 0.138 −0.396 0.690
CCEMG -0.911 −2.527 0.705 0.211 −0.504 0.927
CCEMGbt -0.917 −2.641 0.582 0.194 −0.475 0.906

PRECIP CCEP 0.121 −0.044 0.287 -0.057 −0.164 0.050
CCEPbt 0.120** 0.018 0.214 -0.060 −0.152 0.016
CCEMG 0.400*** 0.123 0.676 0.036 −0.159 0.231
CCEMGbt 0.399*** 0.108 0.656 0.035 −0.166 0.222
(N, T, τ) 65 39 0.60 62 39 0.63

Notes: *,** and *** denote respectively significance at the 10%, 5%, and 1% level. CCE es-
timators feature IC-selected averages (Tmp for all specifications). Bootstrap procedures
(with a ”bt” ending) employ 1999 replications.
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Table 5: Climate shocks and economic growth: non-linear model

Developing Developed

variable estimator slope LB UB slope LB UB

TEMP CCEP -1.585***−2.460−0.711 0.091 −1.209 1.390
CCEPbt -1.634***−2.485−0.693 0.071 −0.502 0.638
CCEMG -0.734 −2.408 0.941 0.153 −0.615 0.921
CCEMGbt -0.789 −2.558 0.880 0.142 −0.582 0.929

PRECIP CCEP 0.442 −0.829 1.714 -0.045 −4.458 4.367
CCEPbt 0.414** 0.009 0.784 -0.049 −0.252 0.132
CCEMG 3.118*** 0.834 5.403 0.887 −0.467 2.241
CCEMGbt 3.190** 0.825 5.722 0.846 −0.686 2.251

PRECIP2 CCEP -0.010 −0.055 0.036 0.000 −0.152 0.151
CCEPbt -0.009* −0.017 0.001 0.000 −0.005 0.004
CCEMG -0.097 −0.398 0.204 -0.114 −0.326 0.098
CCEMGbt -0.096 −0.446 0.184 -0.106 −0.320 0.150
(N, T, τ) 65 39 0.60 62 39 0.63

Notes: *,** and *** denote respectively significance at the 10%, 5%, and 1% level. CCE es-
timators feature IC-selected averages (Tmp for all specifications). Bootstrap procedures
employ 1999 replications.

6 Conclusions

In this study we consider the practically relevant issue of CCE-based estimation
when the dependent and explanatory variables are driven by distinct sets of factors,
and their cross-section averages are not necessarily consistent for the space spanned
by all of them. This generally distorts inference, unless in the specific case where the
number of distinct factors underlying the dependent variable is equal to 1. To cir-
cumvent this problem, we develop a toolbox that can be seen as a CCE-counterpart
of the Two-Stage Instrumental Variable (2SIV) approach of Cui et al. (2022). We em-
ploy a user-friendly cross-section bootstrap algorithm to approximate the asymp-
totic distribution that is affected by the unattended factors in the dependent vari-
able. We derive conditions for bootstrap consistency and show that the algorithm
and asymptoptic distributions remain the same in both homogeneous and heteroge-
neous panels, which means that asymptotically normal inference can ensue without
a need to discriminate between the different cases. Our Monte Carlo simulations
show that the theoretical predictions are born out well, and that our methodology
performs well in comparison to alternative estimators.
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Gonçalves, S. and Perron, B. (2014). Bootstrapping factor-augmented regression
models. Journal of Econometrics, 182(1):156 – 173. Causality, Prediction, and Speci-
fication Analysis: Recent Advances and Future Directions.

29



Jiang, B., Yang, Y., Gao, J., and Hsiao, C. (2021). Recursive estimation in large panel
data models: Theory and practice. Journal of Econometrics, 224(2):439–465.

Juodis, A. (2022). A regularization approach to common correlated effects estima-
tion. Journal of Applied Econometrics, 37(4):788–810.

Kapetanios, G. (2008). A bootstrap procedure for panel data sets with many cross-
sectional units. Econometrics Journal, 11(2):377–395.

Karabiyik, H., Reese, S., and Westerlund, J. (2017). On the role of the rank condition
in CCE estimation of factor-augmented panel regressions. Journal of Econometrics,
197(1):60 – 64.

Karavias, Y., Narayan, P. K., and Westerlund, J. (2023). Structural breaks in interac-
tive effects panels and the stock market reaction to covid-19. Journal of Business &
Economic Statistics, 41(3):653–666.

Magdalinos, T. and Phillips, P. C. (2009). Limit theory for cointegrated systems with
moderately integrated and moderately explosive regressors. Econometric Theory,
25(2):482–526.

Margaritella, L. and Westerlund, J. (2023). Using information criteria to select aver-
ages in cce. The Econometrics Journal, page utad009.

Moon, H. R. and Weidner, M. (2015). Linear regression for panel with unknown
number of factors as interactive fixed effects. Econometrica, 83(4):1543–1579.
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Abstract

In this supplementary material we provide the proofs of Theorems 3 - 6 in the main text. Section 1
sets up assumptions, preliminary details and introduces to cross-section bootstrap. Section 2 states and
explains the original and bootstrap sample results for homogeneous slopes derived in a separate study.
In Section 3, Theorems 3 and 4 establish the asymptotic distribution of the CCEP and CCEMG estima-
tors, respectively. Theorem 6 establishes bootstrap consistency for both CCEP and CCEMG bootstrap
estimators. In Section 4, Theorem 5 demonstrates consistency of the asymptotic variance estimators,
while Theorem 7 demonstrates the same for their bootstrap equivalents for completeness. The supple-
mentary material is completed with the discussion on potentially non-stationary factors.

Contents

1 Preliminaries 2
1.1 Notation and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Rotation Matrix: mx < g vs. mx = g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Cross-Section Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Homogeneous Slopes 6
2.1 Pooled Estimator: Original Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Pooled Estimator: Bootstrap Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Heterogeneous Slopes 8
3.1 Pooled Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Mean Group Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Bootstrap Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Variance Estimators 34

5 Discussion on General Unknown Factors 36

1



1 Preliminaries

1.1 Notation and Assumptions

In this supplement we use A+ to denote the Moore-Penrose pseudo-inverse of the matrix A, rk(A) for
its rank, det(A) for the determinant and let ∥A∥ =

√
tr (A′A) be the Euclidean (Frobenius) matrix norm.

Let furthermore ιa be an a-rowed vector of ones and the vec(.), ⊗ operators denote respectively the vec-
torization operation and the Kronecker products. Barred variables A denote the cross-section average
(CA) over the cross-section specific matrices Ai as in A = 1

N ∑N
i=1 Ai. For the analysis of the bootstrap,

starred objects A∗ denote observed variables (matrix or scalar) subject to bootstrap randomness (induced
by the resampling weights). On the other hand, Aw denotes a weighted (by resampling weights) un-
observed primitive of the model. On the other hand, Aw denotes a weighted (by resampling weights)
unobserved primitive of the model. Bootstrap probability laws are formalized similarly to Galvao and
Kato (2014). In particular, for any matrix bootstrap sequence A∗

n, which depends on a generic index
n, and a deterministic sequence an ∈ R++, we denote ∥A∗

n∥ = op∗(an) if for every ϵ > 0 and δ > 0
we have P(P∗(a−1

n ∥A∗
n∥ > ϵ) > δ) → 0 as n → ∞, where P∗(·) is a bootstrap-induced measure.

Accordingly, A∗
n = A∗ + op∗(1) implies ∥A∗

n − A∗∥ = op∗(1) for a limiting bootstrap matrix A∗. Simi-
larly, we use ∥A∗

n∥ = Op∗(an) if for every δ > 0 and η > 0, there exists a constant C > 0, such that
P(P∗(a−1

n ∥A∗
n∥ > C) > δ) < η for all n ≥ 1. The symbols →p∗ (→p) and →d∗ (→d) represent conver-

gence in probability and distribution with respect to the induced (generic) probability measure.

We apply the following set of assumptions:

Assumption 1 (Idiosyncratic errors) ε i,t and vi,t are stationary variables, independent across i with E(ε i,t) = 0,
E(vi,t) = 0k×1, σ2

i = E(ε2
i,t), Σi = E(vi,tv′

i,t), Ωi = E(εiε
′
i), with Ωi, Σi positive definite and E(ε6

i,t) < ∞,
E(∥vi,t∥6) < ∞ for all i and t. Additionally, let ũi,t = (ε i,t, v′

i,t)
′. Then

1
T3

T

∑
t=1

T

∑
q=1

T

∑
r=1

T

∑
s=1

∥E(ũi,tũ′
i,qũi,rũ′

i,s)∥ = O(1),
1
T

T

∑
t=1

T

∑
s=1

∥E(ũi,tũ′
i,s)∥ = O(1)

as T → ∞, whereas 1
N ∑N

i=1 σ2
i → σ2 < ∞ and 1

N ∑N
i=1 Σi → Σ < ∞ as N → ∞.

Assumption 2 (Distinct factors) Let ft = (f′y, f′x)′ be covariance stationary with E(∥ft∥4) < ∞, absolute
summable autocovariances and T−1F′F →p ΣF as T → ∞, such that

ΣF =

[
ΣFy Σ′

Fx,y

ΣFx,y ΣFx

]

with ΣFx,y = plimT→∞ T−1F′
xFy denoting the covariance between Fx and Fy. Also ΣFx and and ΣFy are positive

definite.

Assumption 3 (Factor loadings, distinct factors) The factor loadings are given by

γi = γ + ηγ,i ηγ,i ∼ I ID(0my×1, Ωγ)

Γi = Γ + ηΓ,i vec(ηΓ,i) ∼ I ID(0kmx×1, ΩΓ)

where γ, Γ are constant matrices, ΣγΓ = E(ηγ,i ⊗ ηΓ,i) is a covariance matrix, ηγ,i, ηΓ,i are independent across i
and of the other model components, and ∥γ∥ , ∥Γ∥ , ∥ΣγΓ∥, ∥Ωγ∥ , ∥ΩΓ∥ are finite.

Assumption 4 (Rank condition) rk(Γqẍ) = m, with qẍ a k × g selector matrix.
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Assumption 5 (Independence) ft, ε i,s, vj,l , η̃n are mutually independent for all i, j, n, t, s, l.

Assumption 6 (Slope heterogeneity) The slopes βi follow

βi = β + υi, υi ∼ I ID(0k×1, Ωυ)

with Ωυ a finite nonnegative definite k × k matrix and the υi are independent of ft, ε i,s, vj,l , η̃n for all i, j, n, t, s, l.

Assumption 7 (Identification) Q̂ẋ,i = T−1X′
iMF̂ẋ

Xi, with F̂ẋ = Xqẍ, is non-singular for all N, T, and

E

(∥∥∥(T−1V′
iMF̂ẋ

Vi)
−1
∥∥∥2
)
< ∞

also when F̂ẋ = Fx.

1.2 Rotation Matrix: mx < g vs. mx = g

Let F̂ẋ = Zqẋ = Xqẍ, where Z = [y, X] is the full set of available CAs and let qẋ = [0g×1, q′
ẍ]
′ be a (1 +

k)× g selection matrix that picks g cross-section averages determined by qẍ (a k × g matrix) exclusively
from X, such that

Xqẍ = (FxΓ + V)qẍ = FxΓẍ + Vẍ. (1.1)

Firstly, we consider mx < g case. To setup the key arguments in the proofs, we follow Karabiyik et al.
(2017) and notice that because ∥Vẍ∥ = Op(N−1/2) for the fixed T, we have

P
(

rk
[

T−1F̂′
ẋF̂ẋ

]
> rk

[
T−1Γ

′
ẍF′

xFxΓẍ

])
→ 1 (1.2)

as (N, T) → ∞, which means that the condition∣∣∣rk
[

T−1F̂′
ẋF̂ẋ

]
− rk

[
T−1Γ

′
ẍF′

xFxΓẍ

]∣∣∣→ 0 almost surely, (1.3)

which ensures convergence in MP inverses (see Andrews, 1987), is violated. To take this into account, we
introduce the following rotation matrix:

Hẋ =

[
Γ
−1
ẍ,mx

−Γẍ,mx Γẍ,−mx

0(g−mx)×mx Ig−mx

]
= [Hẋ,mx , Hẋ,−mx ], (1.4)

such that the average loading matrix is partitioned as ΓẍTẋ = [Γẍ,mx , Γẍ,−mx ], where Γẍ,mx ∈ Rmx×mx and
Γẍ,−mx ∈ Rmx×(g−mx) and Tẋ is the partitioning matrix. This leads to

F̂ẋTẋHẋ = F0
ẋ + VẍTẋHẋ, (1.5)

such that F0
ẋ = [Fx, 0T×(g−mx)] and VẍTẋHẋ = [VẍTẋHẋ,mx , VẍTẋHẋ,−mx ]. Because the upper-left block of

T−1H′
ẋT′

ẋF̂′
ẋF̂ẋTẋHẋ converges to ΣFx , but the lower-right block is Op(N−1), we still encounter a violation

of (1.3). Eventually, we introduce

DN =

[
Imx 0mx×(g−mx)

0(g−mx)×mx

√
NIg−mx

]
. (1.6)

Let Rẋ = TẋHẋDN . This matrix ensures that

F̂0
ẋ = F̂ẋRẋ = F̂ẋTẋHẋDN = F0

ẋ + [VẍTẋHẋ,mx ,
√

NVẍTẋHẋ,−mx ] = F0
ẋ + [V0

ẍ,mx
, V0

ẍ,−mx
] (1.7)
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does not have g − mx asymptotically degenerating columns since
∥∥∥V0

ẍ,−mx

∥∥∥ = Op(1). This ensures that

T−1F̂0′
ẋ F̂0

ẋ = T−1F0′
ẋ F0

ẋ + T−1F0′
ẋ V0

ẍ + T−1V0′
ẍ F0

ẋ + T−1V0′
ẍ V0

ẍ

= ΣF0
ẋ,v
+ Op(N−1/2) + Op(T−1/2), (1.8)

where the limiting matrix is

ΣF0
ẋ,v

= diag
[
ΣFx , (T−1V0′

ẍ,−mx
V0

ẍ,−mx
)
]

. (1.9)

This approximation holds because∥∥∥T−1F0′
ẋ V0

ẍ

∥∥∥ = Op(T−1/2), (1.10)∥∥∥T−1V0′
ẍ,mx

V0
mx

∥∥∥ = Op(N−1), (1.11)∥∥∥T−1V0′
ẍ,−mx

V0
ẍ,mx

∥∥∥ = Op(N−1/2), (1.12)

and so because
∣∣∣rk
[

T−1F̂0′
ẋ F̂0

ẋ

]
− rk

[
ΣF0

ẋ,v

]∣∣∣→ 0 almost surely, we obtain∥∥∥∥(T−1F̂0′
ẋ F̂0

ẋ

)+
− Σ+

F0
ẋ,v

∥∥∥∥ = Op(N−1/2) + Op(T−1/2). (1.13)

Because MF̂ẋ
= MF̂0

ẋ
due to Rẋ = TẋHẋDN being a full rank matrix, by using the same steps as in S25 -

S29 in Karabiyik et al. (2017), we then arrive at the following important expansion of projection matrices,
which will play a key role in our proofs:

MF0
ẋ
− MF̂ẋ

= MF0
ẋ
− MF̂0

ẋ
= T−1V0

ẍ,−mx
(T−1V0′

ẍ,−mx
V0

ẍ,−mx
)+V0′

ẍ,−mx
+ T−1V0

ẍ,mx
(T−1F′

xFx)
+V0′

ẍ,mx

+ T−1V0
ẍ,mx

(T−1F′
xFx)

+F′
x + T−1Fx(T−1F′

xFx)
+V0′

ẍ,mx

+ T−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ . (1.14)

However, if mx = g, then (1.3) is not violated by constrution and by definition the rotation matrix becomes
Rẋ = Γ

−1
ẍ so that MF0

ẋ
= MFx . Also, by the properties of the generalized inverse we have MF0

ẋ
= MFx =

MFxΓẍ
and also MF̂0

ẋ
= MF̂ẋ

. Here, all the components are well behaved. Next, we simplify and analyze
the decomposition in (1.14), given that now mx = g as

MF0
ẋ
− MF̂0

ẋ
= MFxΓẍ

− MF̂ẋ
= T−1Vẍ(T−1F̂′

ẋF̂ẋ)
+V′

ẍ + T−1Vẍ(T−1F̂′
ẋF̂ẋ)

+Γ
′
ẍF′

x

+ T−1FxΓẍ(T−1F̂′
ẋF̂ẋ)

+V′
ẍ + T−1FxΓẍ[(T−1F̂′

ẋF̂ẋ)
+ − (Γ

′
ẍT−1F′

xFxΓẍ)
+]Γ

′
ẍF′

x, (1.15)

where now because
∥∥T−1F′

xVẍ
∥∥ = Op((NT)−1/2) and

∥∥∥T−1V′
ẍVẍ

∥∥∥ = Op(N−1) we have∥∥∥T−1F̂′
ẋF̂ẋ − Γ

′
ẍT−1F′

xFxΓẍ

∥∥∥ = Op(N−1) + Op((NT)−1/2), (1.16)∥∥∥(T−1F̂′
ẋF̂ẋ)

+ − (Γ
′
ẍT−1F′

xFxΓẍ)
+
∥∥∥ = Op(N−1) + Op((NT)−1/2). (1.17)

1.3 Cross-Section Bootstrap

We begin this section by describing the sampling scheme as given in De Vos and Stauskas (2024) in terms
of generic stack of b-rowed matrices A = (A′

1, A′
2, . . . , A′

N)
′. In what follows, →p∗ and →d∗ represent

convergence in probability and distribution with respect to the bootstrap induced probability measure,
while E∗(.) stands for bootstrap expectation (conditionally on the sample). This is how the scheme works:
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1. We model the pick of the matrix Ai from A through the 1 × N selection vectors wi = [wi,1, . . . , wi,N ],
which are drawn from a multinomial distribution with 1 trial and N events with a probability of
N−1. Hence, each wi is a unit-length vector with randomly realized 1 and zeros elsewhere. The
index of the non-zero element in wi denotes the unit (i∗) that is sampled from the stack A as unit i
in the bootstrap sample.

2. The selection vectors are further collected in the N × N matrix w = [w′
1, . . . , w′

N ]
′, which outlines

the allocation pattern in the bootstrap sample. In what follows,

ι′Nw =

[
N

∑
i=1

wi,1, . . . ,
N

∑
i=1

wi,N

]
= [s1, . . . , sN ] = s (1.18)

gives the total sampling frequency of each unit with the restriction ∑N
i=1 si = N. The random vector

s is a multinomial vector, where the coordinate si for every i has expectation 1, variance of 1 − N−1,
covariance between si and sj of −N−1 and a probability mass of N−1.

3. We ultimately define the cross-section bootstrap operator Wb = (w ⊗ Ib) ∈ RbN×bN which, given a
stack A of b-rowed matrices, produces a random draw with replacement of size N: WbA = A∗. An
example with N = 2 and A, B ∈ Rb×c would be

Wb

[
A
B

]
=

([
1, 0
1, 0

]
⊗ Ib

) [
A
B

]
=

[
A
A

]
or Wb

[
A
B

]
=

([
1, 0
0, 1

]
⊗ Ib

) [
A
B

]
=

[
A
B

]
.

The operator has the property W′
bWb = w′w ⊗ Ib = diag(s ⊗ ι′b), because w′w = diag(s). Let

also Ab = N−1(ι′N ⊗ Ib) be the cross-section average operator for stacked b−rowed matrices. Then, by
using the Kronecker properties, the CA of the bootstrap sample is obtained by

AbA∗ = AbWbA = N−1(ι′N ⊗ Ib)(w ⊗ Ib)A = N−1(s ⊗ Ib)A =
1
N

N

∑
i=1

siAi, (1.19)

which means that every summand is assigned a multinomial weight, such that E∗(AbA∗) = 1
N ∑N

i=1 Ai.

We implement the steps 1 - 3 above in the CCE context. We stack the T-rowed matrices over the individ-
uals:

X = Fx Γ + V ∈ RNT×k (1.20)

where X = [X′
1, . . . , X′

N ]
′, Fx = (IN ⊗ Fx), Γ = [Γ′

1, . . . , Γ′
N ]

′ and V = [V′
1, . . . , V′

N ]
′. Then, the draw is

given by

X∗ = WTX = (w ⊗ IT)(IN ⊗ Fx)Γ + WTV = (IN ⊗ Fx)(w ⊗ Imx)Γ + WTV = FxWmx Γ + WTV.
(1.21)

Simultaneously, the same is performed on y = [y′
1, . . . , y′

N ]
′ ∈ RNT×1, such that

y∗ = WTy = WTXβ + (w ⊗ IT)(IN ⊗ Fy)γ + WTε = (IN ⊗ Fy)(w ⊗ Imy)γ + WTε

= X∗β + FyWmy γ + WTε. (1.22)

By using the same Kronecker product properties as in (1.21), we can show that the cross-section average
of the bootstrap sample has the following expression:

F̂∗
x = X

∗
= ATX∗ = ATWTX = ATWT(Fx Γ + V) = FxAmx Wmx Γ + ATWTV = FxΓw + Vw (1.23)
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where Γw = 1
N ∑N

i=1 siΓi and Vw = 1
N ∑N

i=1 siVi. By implementing the selection of the averages, we get

F̂∗
ẋ = X

∗
qẍ = (FxΓw + Vw)qẍ = FxΓw,ẍ + Vw,ẍ. (1.24)

This representation ensures that Γw,,ẍ →p∗ Γẍ as N → ∞, and in turn Γ
+
w,ẍ →p∗ Γ+

ẍ . This confirms that the
asymptotic information content in the cross-section averages is replicated in the bootstrap samples. There-
fore, Assumption 3 holds in the original sample and in the bootstrap environment. Recall that asymptotic
singularity of T−1F̂′

ẋF̂ẋ under mx < g is the fundamental observation in the asymptotic analysis, which
requires introduction of the steps in (1.4) - (1.13). Hence, this information is also mapped to its bootstrap
equivalent T−1F̂∗′

ẋ F̂∗
ẋ.

2 Homogeneous Slopes

2.1 Pooled Estimator: Original Sample

Theorem 1. Under Assumptions 1 - 5 as (N, T) → ∞ such that TN−1 → τ < ∞ the following asymptotic
representations:

(a) If mx < g:
√

NT(β̂CCEP,ẋ − β) →d N
(

0k×1, Σ−1(Ψ + Ψ f )Σ
−1
)
+ Σ−1(

√
τh1 + h2)

with Ψ = limN,T→∞
1
N ∑N

i=1 E
(
T−1V′

iεiε
′
iVi
)
, h1 = h1,1 + h1,2 − h1,3, where

h1,1 = Σ′
γΓvec

(
(Γ+

ẍ )
′q′

ẍΣqẍTẋHẋ,mx ΣFx ΣFx,y

)
,

h1,2 = ĨẍΓ′(Γ+
ẍ )

′q′
ẍΣqẍTẋHẋ,mx Σ+

Fx
ΣFx,y γ,

h1,3 = ĨẍΣqẍTẋHẋ,mx Σ+
Fx

ΣFx,y γ, (2.1)

with Γẍ = Γqẍ, and Tẋ is a g× g partitioning matrix such that ΓẍTẋ = [Γẍ,mx , Γẍ,−mx ], where Γẍ,mx is an mx ×mx

full rank matrix, Γẍ,−mx is mx × (g − mx), and Hẋ,mx = [Γ−1
ẍ,mx

, 0mx×(g−mx)]
′. Lastly,

Ĩẍ = diag
(
[1(X1 /∈F̂ẍ)

, 1(X2 /∈F̂ẍ)
, . . . , 1(Xk /∈F̂ẍ)

]
)

,

Ψ f = lim
N,T→∞

1
N

N

∑
i=1

E
[
Ξẋ,y,i

(
T−1vec

(
V′

iF
)

vec
(
V′

iF
)′)

Ξ′
ẋ,y,i

]
with

h2 = Σ′
γΓ

(
ΣF0

ẋ,y
⊗ Dẋ,g−mx H′

ẋT′
ẋq′

ẍΣqẍΓ+
ẍ

)′
vec
(√

T
[
(T−1F̂0′

x F̂0
x)

+ − Σ+
F0

x,v

])
+ h2(Ĩẍ),

where h2(Ĩẍ) involves the terms depending on (T−1F̂0′
x F̂0

x)
+ − Σ+

F0
x,v

, which disappear if Ĩẍ = 0k×k. Next, for
Fx = Fpx and Fy = Fpy we have

Ξẋ,y,i = η′γ,i

(
py − pxΣ+

Fx
ΣFx,y

)′
⊗ Ik + Σ′

γΓ

[(
pxΣ+

Fx
ΣFx,y ⊗ qẍΓ+

ẍ

)′
−
(
py ⊗ (Ik − Dẋ,−mx Σ)qẍΓ+

ẍ
)′]

+ Ξẋ,y,i(Ĩẍ),

Dẋ,g−mx = diag(0mx , Ig−mx),

Dẋ,−mx = plim
N,T→∞

qẍTẋHẋ,−mx

(
T−1V0′

−mx
V0

−mx

)+
H′

ẋ,−mx
T′

ẋq′
ẍ,

where Ξẋ,y,i(Ĩẍ) summarizes the terms that disappear if Ĩẍ = 0k×k.

6



(b) If mx = g:

√
NT(β̂CCEP,ẋ − β) →d N

(
0k×1, Σ−1(Ψ + Ψ̃ f )Σ

−1
)
+
√

τΣ−1h̃1,

with Γẍ = Γqẍ, h̃1 = h̃1,1 + h̃1,2 − h̃1,3, where

h̃1,1 = Σ′
γΓvec

(
(Γ+

ẍ )
′q′

ẍΣqẍ(Γ
′
ẍΣFx Γẍ)

+ΓẍΣFx,y

)
,

h̃1,2 = ĨẍΓ′(Γ+
ẍ )

′q′
ẍΣqẍ(Γ

′
ẍΣFx Γẍ)

+Γ′
ẍΣFx,y γ,

h̃1,3 = ĨẍΣqẍ(Γ
′
ẍΣFx Γẍ)

+Γ′
ẍΣFx,y γ. (2.2)

Also,

Ψ̃ f = lim
N,T→∞

1
N

N

∑
i=1

E
[
Θẋ,y,i

(
T−1vec

(
V′

iF
)

vec
(
V′

iF
)′)

Θ′
ẋ,y,i

]
,

Θẋ,y,i = η′γ,i

(
py − pxΣFx ΣFx,y

)′
⊗ Ik + Σ′

γΓ

[(
pxΣ+

Fx
ΣFx,y − py

)
⊗ qẍΓ+

ẍ

]′
+ Θẋ,y,i(Ĩẍ),

where Ξẋ,y,i(Ĩẍ) summarizes terms that disappear if Ĩẍ = 0k×k.

Proof. See the proof of parts (a) and (b) of Proposition 1 in De Vos and Stauskas (2024).

2.2 Pooled Estimator: Bootstrap Distribution

Theorem 2. Under Assumptions 1 - 5 we have as (N, T) → ∞ such that TN−1 → τ < ∞ the following asymp-
totic representations:

(a) If mx < g:
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) →d∗ N (0k×1, Σ−1(Ψ + Ψ f )Σ

−1) + Σ−1(
√

τh1 + h2 + h+)

where h+ = 2(h∗
2 − h2) and

h∗
2 = Σ′

γΓ

(
ΣF0

ẋ,y
⊗ Dẋ,g−mx H′

ẋT′
ẋq′

ẍΣqẍΓ+
ẍ

)′
vec
(√

T
[
(T−1F̂0∗′

ẋ F̂∗0
ẋ )+ − Σ+

w,F0
ẋ,v

])
+ h∗

2(Ĩẍ)

with ΣF0
w,ẋ,v

= diag
[
ΣFx , (T−1V0′

w,ẍ,−mx
V0

w,ẍ,−mx
)
]

.The remaining quantities are as defined in Theorem 1.

(b) If mx = g:

√
NT(β̂

∗
CCEP,ẋ − β̂CCEP,ẋ) →d∗ N

(
0k×1, Σ−1(Ψ + Ψ̃ f )Σ

−1
)
+
√

τΣ−1h̃1,

where the quantities are the same as in Theorem 1 (b), and we have under the same conditions:

sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) ≤ x]− P[

√
NT(β̂CCEP,ẋ − β) ≤ x]

∣∣∣→p 0,

where the inequalities should be interpreted coordinate-wise.

Proof. See the proof of part (a) and (b) of Proposition 2 in De Vos and Stauskas (2024).
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3 Heterogeneous Slopes

3.1 Pooled Estimator

Theorem 3. Under Assumptions 1 - 7, for either mx < g or mx = g as (N, T) → ∞
√

N(β̂CCEP,ẋ − β) →d N
(

0k×1, Σ−1ΨνΣ−1
)

,

where Σ = plimN→∞
1

NT ∑N
i=1 V′

iVi and Ψν = limN→∞
1
N ∑N

i=1 ΣiΩνΣi.

Proof. To begin with, let mx < g. We use the model

yi = Xiβi + Fyγi + εi, (3.1)

Xi = FxΓi + Vi, (3.2)

which leads to the expansion of the CCEP estimator in the following way:

β̂CCEP,ẋ =

(
N

∑
i=1

X′
iMF̂ẋ

Xi

)−1 N

∑
i=1

X′
iMF̂ẋ

yi

=

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1

NT

N

∑
i=1

X′
iMF̂ẋ

yi

=

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xiβi +
1

NT

N

∑
i=1

X′
iMF̂ẋ

Fyγi +
1

NT

N

∑
i=1

X′
iMF̂ẋ

εi

)

= β +

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xiνi +
1

NT

N

∑
i=1

X′
iMF̂ẋ

Fy(γ + ηγ,i) +
1

NT

N

∑
i=1

X′
iMF̂ẋ

εi

)
.

(3.3)

This leads to

√
N(β̂CCEP,ẋ − β) =

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi

+

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyηγ,i

+

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

εi

+

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγ

= I + II + III + IV (3.4)

By using the fact that Fx = (F̂ẋ − Vẍ)Γ
+
ẍ , Xi = (F̂ẋ − Vẍ)Γ

+
ẍ Γi + Vi and hence MF̂ẋ

F̂ẋ = 0T×k, we obtain

1
NT

N

∑
i=1

X′
iMF̂ẋ

Xi =
1

NT

N

∑
i=1

(Vi − VẍΓ
+
ẍ Γi)

′MF̂ẋ
(Vi − VẍΓ

+
ẍ Γi)

=
1
N

N

∑
i=1

T−1V′
iVi + Op(T−1/2)

= Σ + Op(T−1/2), (3.5)
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which comes directly from Lemma B-7 leading up to Theorem 4 in De Vos and Stauskas (2024), in addition
to T−1V′

iVi = Σi +Op(T−1/2). There it is assumed that Fx = Fy = F and F̂ = [y, X], which means that (3.5)
is a special case and the same rate of convergence applies. By using the same Lemma B-7 and Theorem 4
in De Vos and Stauskas (2024) in connection to (3.5) we have that

III =

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

εi = op(1) (3.6)

and

I =

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi = Σ−1 1√
N

N

∑
i=1

(T−1V′
iVi)νi + op(1), (3.7)

which means that the slope heterogeneity dominates εi in the asymptotic distribution. Again, these results
follow, because in the heterogeneous slope analysis in De Vos and Stauskas (2024) we have Fx = Fy = F
and F̂ = [y, X], thus the rates of convergence here are preserved or faster when only X is employed. As
such,

√
N(β̂CCEP,ẋ − β) = Σ−1 1√

N

N

∑
i=1

(T−1V′
iVi)νi

+

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1

︸ ︷︷ ︸
Op(1)

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyηγ,i

+

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1

︸ ︷︷ ︸
Op(1)

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγ + op(1). (3.8)

Note that IV is algebraically equal to 0k if qẍ = Ik. Otherwise, it has nearly identical structure to II.
Therefore, we will now examine II, and we will focus on its numerator. Because MF̂ẋ

= MF̂0
ẋ

since

Rẋ = TẋHẋDN is full-rank, we now decompose the numerator of II as

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyηγ,i =
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′MF̂ẋ
Fyηγ,i

=
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′MF̂0
ẋ
Fyηγ,i

=
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′MF0
ẋ
Fyηγ,i

− 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyηγ,i

=
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′Fyηγ,i −
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′PF0
ẋ
Fyηγ,i

− 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyηγ,i

= A − B − C. (3.9)
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We start from A, which leads to

A =
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′Fyηγ,i =
1√
N

N

∑
i=1

T−1V′
iFyηγ,i −

1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍFyηγ,i

= Op(T−1/2), (3.10)

because∥∥∥∥∥ 1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍFyηγ,i

∥∥∥∥∥ =

∥∥∥∥∥ 1
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ

√
NV′

ẍFyηγ,i

∥∥∥∥∥
≤ 1

N

N

∑
i=1

∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥∥∥ηγ,i

∥∥∥ ∥∥∥√NT−1V′
ẍFy

∥∥∥
= Op(T−1/2) (3.11)

and by cross-section independence of the error terms

E

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iFyηγ,i

∥∥∥∥∥
2
 =

1
N

N

∑
i=1

N

∑
j=1

E
(

T−2tr
[
V′

iFyηγ,iη
′
γ,jF

′
yVj

])

=
1
N

N

∑
i=1

E
(

T−2tr
[
V′

iFyηγ,iη
′
γ,iF

′
yVi

])
=

1
N

N

∑
i=1

E
(

T−2tr
[
η′γ,iF

′
yViV′

iFyηγ,i

])
=

1
N

N

∑
i=1

(
tr
[
E(ηγ,iη

′
γ,i)E(T−2F′

yViV′
iFy)

])
=

1
N

N

∑
i=1

(
tr

[
E(ηγ,iη

′
γ,i)

1
T2

T

∑
t=1

T

∑
s=1

E(fy,tv′
i,tvi,sf′y,s)

])
= O(T−1) (3.12)

due to summable covariances. Further, we look into B, and in particular we get

B =
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′PF0
ẋ
Fyηγ,i

=
1√
N

N

∑
i=1

T−1V′
iPF0

ẋ
Fyηγ,i −

1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍPF0
ẋ
Fyηγ,i

= Op(T−1/2),

because∥∥∥∥∥ 1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍPF0
ẋ
Fyηγ,i

∥∥∥∥∥ =

∥∥∥∥∥ 1
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ

√
NV′

ẍPF0
ẋ
Fyηγ,i

∥∥∥∥∥
≤ 1

N

N

∑
i=1

∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥∥∥ηγ,i

∥∥∥ ∥∥∥√NT−1V′
ẍF0

ẋ

∥∥∥ ∥∥∥(T−1F0′
ẋ F0

ẋ)
+
∥∥∥ ∥∥∥T−1F0′

ẋ Fy

∥∥∥
= Op(T−1/2) (3.13)
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as
∥∥∥√NT−1V′

ẍF0
ẋ

∥∥∥ = Op(T−1/2) and∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iPF0

ẋ
Fyηγ,i

∥∥∥∥∥ =

∥∥∥∥∥vec

(
1√
N

N

∑
i=1

T−1V′
iPF0

ẋ
Fyηγ,i

)∥∥∥∥∥
=

∥∥∥∥∥ 1√
N

N

∑
i=1

(
η′γ,i ⊗ T−1V′

iF
0
ẋ

)
vec
(
(T−1F0′

ẋ F0
ẋ)

+T−1F0′
ẋ Fy

)∥∥∥∥∥
≤
∥∥∥∥∥ 1√

N

N

∑
i=1

(
η′γ,i ⊗ T−1V′

iF
0
ẋ

)∥∥∥∥∥︸ ︷︷ ︸
Op(T−1/2)

∥∥∥vec
(
(T−1F0′

ẋ F0
ẋ)

+T−1F0′
ẋ Fy

)∥∥∥
= Op(T−1/2) (3.14)

by the exact same argument as in (3.12). Particularly, by using the Kronecker properties, cross-section
independence of the error terms and tr(A′A) = tr(AA′), we obtain

E

∥∥∥∥∥ 1√
N

N

∑
i=1

(
η′γ,i ⊗ T−1V′

iF
0
ẋ

)∥∥∥∥∥
2
 =

1
N

N

∑
i=1

N

∑
j=1

E
(

tr
[
η′γ,iηγ,j ⊗ T−2V′

iF
0
ẋF0′

ẋ Vj

])

=
1
N

N

∑
i=1

E
(

tr
[
η′γ,iηγ,i ⊗ T−2V′

iF
0
ẋF0′

ẋ Vi

])
=

1
N

N

∑
i=1

E
(

η′γ,iηγ,i

)
tr
[
E
(
T−2V′

iF
0
ẋF0′

ẋ Vi
)]

=
1
N

N

∑
i=1

E
(

η′γ,iηγ,i

) 1
T2

T

∑
t=1

T

∑
s=1

tr
[
E
(
vi,tf0′

ẋ,tf
0
ẋ,sv

′
i,s
)]

= O(T−1). (3.15)

Lastly, we show that C is negligible as well. To demonstrate this, we re-state the fact that

MF0
ẋ
− MF̂0

ẋ
= T−1V0

−mx
(T−1V0′

−mx
V0

−mx
)+V0′

−mx
+ T−1V0

mx
(T−1F′

xFx)
+V0′

mx

+ T−1V0
mx
(T−1F′

xFx)
+F′

x + T−1Fx(T−1F′
xFx)

+V0′
mx

+ T−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ , (3.16)

which comes from performing the same manipulations as in S25 - S29 from the supplementary material
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of Karabiyik et al. (2017). Therefore, we obtain

C =
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyηγ,i

=
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

+
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1V0
ẍ,mx

(T−1F′
xFx)

+V0′
ẍ,mx

Fyηγ,i

+
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1V0
ẍ,mx

(T−1F′
xFx)

+F′
xFyηγ,i

+
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1Fx(T−1F′
xFx)

+V0′
ẍ,mx

Fyηγ,i

+
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyηγ,i

= C1 + C2 + C3 + C4 + C5, (3.17)

where each of the terms is negligible. We will start with C1 and C5, which require the most work. In
particular,

C1 =
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

=
1√
N

N

∑
i=1

T−1V′
iT

−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

− 1
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ

√
NV′

ẍT−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

=
1√
N

N

∑
i=1

T−1V′
iT

−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i + Op(T−1/2), (3.18)

since ∥∥∥∥∥ 1
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ

√
NV′

ẍT−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

∥∥∥∥∥
≤
∥∥∥T−1V0′

ẍ,−mx
Fy

∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥∥T−1

√
NV′

ẍV0
ẍ,−mx

∥∥∥ 1
N

N

∑
i=1

∥∥∥Γ
+

Γi

∥∥∥ ∥∥∥ηγ,i

∥∥∥
= Op(T−1/2). (3.19)

By defining D̂ẋ,−mx = qẍHẋ,−mx(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+Hẋ,−mx q′
ẍ, the first term can be simplified in the fol-
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lowing way:

1√
N

N

∑
i=1

T−1V′
iT

−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

=
1√
NT2

N

∑
i=1

NV′
iVqẍHẋ,−mx(T

−1V0′
ẍ,−mx

V0
ẍ,−mx

)+Hẋ,−mx q′
ẍV′Fyηγ,i

=
1

N
√

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iVjD̂ẋ,−mx V′

lFyηγ,i

=
k

∑
u=1

k

∑
v=1

d̂ẋ,−mx ,u,v
1

N
√

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iV

(u)
j V(v)′

l Fyηγ,i, (3.20)

where d̂ẋ,−mx ,u,v is an element in row u and column v in Dẋ,−mx . Therefore,∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iT

−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

∥∥∥∥∥
=

∥∥∥∥∥ k

∑
u=1

k

∑
v=1

d̂ẋ,−mx ,u,v
1

N
√

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iV

(u)
j V(v)′

l Fyηγ,i

∥∥∥∥∥
≤

k

∑
u=1

k

∑
v=1

∣∣∣d̂ẋ,−mx ,u,v

∣∣∣ 1√
N

∥∥∥∥∥ 1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iV

(u)
j V(v)′

l Fyηγ,i

∥∥∥∥∥︸ ︷︷ ︸
Op(T−1/2)

= Op((NT)−1/2), (3.21)

where the Op(T−1/2) component is established in (2.80) of the supplementary material of De Vos and
Stauskas (2024), where they demonstrate the the normalized triple sum of with the triples of the same
variable multiplied by the fourth independent variable follows this order under our assumptions. In-
deed, {f′yηγ,i}T

t=1 is a zero-mean process independent from the model errors. Alternatively, this can be
demonstrated with∥∥∥∥∥ 1√

N

N

∑
i=1

T−1V′
iT

−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

∥∥∥∥∥
=

∥∥∥∥∥vec

(
1√
N

N

∑
i=1

T−1V′
iT

−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

)∥∥∥∥∥
=

∥∥∥∥∥ 1√
N

N

∑
i=1

(
η′γ,i ⊗ T−1V′

iV
0
ẍ,−mx

)
vec
(
(T−1V0′

ẍ,−mx
V0

ẍ,−mx
)+T−1V0′

ẍ,−mx
Fy

)∥∥∥∥∥
≤ 1√

T

∥∥∥∥∥ 1√
N

N

∑
i=1

(
η′γ,i ⊗ T−1V′

iV
0
ẍ,−mx

)∥∥∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1/2V0′

ẍ,−mx
Fy

∥∥∥
= Op(T−1) + Op((NT)−1/2), (3.22)

although at a slightly different rate. Nevertheless, this rate is sufficient show that in summary

∥C1∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

∥∥∥∥∥ = Op(T−1/2).

(3.23)
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We next move on to C5:

C5 =
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyηγ,i

=
1√
N

N

∑
i=1

T−1V′
iT

−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyηγ,i

− 1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍT−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyηγ,i

=
1√
N

N

∑
i=1

T−1V′
iT

−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyηγ,i + Op(T−1/2) + Op(N−1/2) (3.24)

since ∥∥∥∥∥ 1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍT−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyηγ,i

∥∥∥∥∥
≤
∥∥∥(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

∥∥∥ ∥∥∥T−1F̂0′
ẋ Fy

∥∥∥ ∥∥∥T−1
√

NV′
ẍF̂0

ẋ

∥∥∥ 1
N

N

∑
i=1

∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥∥∥ηγ,i

∥∥∥
= Op(T−1/2) + Op(N−1/2), (3.25)

because
∥∥∥T−1

√
NV′

ẍF̂0
ẋ

∥∥∥ ≤
∥∥∥T−1

√
NV′

ẍV0
ẍ

∥∥∥+ ∥∥∥T−1
√

NV′
ẍF0

ẋ

∥∥∥ =
∥∥∥T−1

√
NV′

ẍV0
ẍ

∥∥∥+ Op(T−1/2) = Op(1)

and
∥∥∥T−1F̂0′

ẋ Fy

∥∥∥ = Op(1). Next up, we re-write the first term in vectorized form to obtain∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iT

−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyηγ,i

∥∥∥∥∥
=

∥∥∥∥∥∥∥∥∥
1√
N

N

∑
i=1

(
η′γ,i ⊗ T−1V′

iF̂
0
ẋ

)
vec

[(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

]
︸ ︷︷ ︸

Op(N−1/2) + Op(T−1/2)

T−1F̂0′
ẋ Fy


∥∥∥∥∥∥∥∥∥

≤
∥∥∥∥∥ 1√

N

N

∑
i=1

(
η′γ,i ⊗ T−1V′

iF̂
0
ẋ

)∥∥∥∥∥ ∥∥∥vec
([

(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

]
T−1F̂0′

ẋ Fy

)∥∥∥
≤
∥∥∥∥∥ 1√

N

N

∑
i=1

(
η′γ,i ⊗ T−1V′

iF̂
0
ẋ

)∥∥∥∥∥ ∥∥∥(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

∥∥∥ ∥∥∥T−1F̂0′
ẋ Fy

∥∥∥
= Op(N−1) + Op(T−1), (3.26)

because the first component is asymptotically negligible, as well. Particularly, by using cross-section inde-
pendence of the loadings, multiplication properties of the Kronecker product and the fact that tr(A′A) =
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tr(AA′), we obtain

E

∥∥∥∥∥ 1√
N

N

∑
i=1

(
η′γ,i ⊗ T−1V′

iF̂
0
ẋ

)∥∥∥∥∥
2


=
1
N

N

∑
i=1

N

∑
j=1

E
(

tr
[
ηγ,iηγ,j ⊗ T−1V′

iF̂
0
ẋ(T

−1F̂0′
ẋ Vj)

])
=

1
N

N

∑
i=1

E
(

tr
[
η′γ,iηγ,i ⊗ T−1V′

iF̂
0
ẋ(T

−1F̂0′
ẋ Vi)

])
=

1
N

N

∑
i=1

E
(

η′γ,iηγ,itr
[

T−1V′
iF̂

0
ẋ(T

−1F̂0′
ẋ Vi)

])
=

1
N

N

∑
i=1

E
(

η′γ,iηγ,i

)
E
(

tr
[

T−1V′
iF̂

0
ẋ(T

−1F̂0′
ẋ Vi)

])
= O(N−1) + O(T−1), (3.27)

because
∥∥∥T−1F̂0′

ẋ Vi

∥∥∥ ≤
∥∥∥T−1V′

iV
0
ẍ

∥∥∥+∥∥T−1V′
iF

0
ẋ
∥∥ = (Op(N−1/2)+Op(T−1/2))+Op(T−1/2) = Op(N−1/2)+

Op(T−1/2). This means that overall

C5 =
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyηγ,i

= Op(N−1/2) + Op(T−1/2). (3.28)

We will finish by analysing C2, C3 and C4, which all have a similar structure. For instance,

∥C2∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1V0
ẍ,mx

(T−1F′
xFx)

+V0′
ẍ,mx

Fyηγ,i

∥∥∥∥∥
≤
∥∥∥(T−1F′

xFx)
+
∥∥∥ ∥∥∥√NT−1V0′

ẍ,mx
Fy

∥∥∥ 1
N

N

∑
i=1

∥∥∥T−1(Vi − VẍΓ
+
ẍ Γi)

′V0
ẍ,mx

)
∥∥∥ ∥∥∥ηγ,i

∥∥∥
= Op(T−1/2)

(
Op(N−1) + Op((NT)−1/2)

)
= Op(N−1T−1/2) + Op(N−1/2T−1) (3.29)

and

∥C3∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1V0
ẍ,mx

(T−1F′
xFx)

+F′
xFyηγ,i

∥∥∥∥∥
≤
∥∥∥T−1F′

xFy

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ 1

N

N

∑
i=1

∥∥∥T−1(Vi − VẍΓ
+
ẍ Γi)

′√NV0
ẍ,mx

∥∥∥ ∥∥∥ηγ,i

∥∥∥
= Op(N−1/2) + Op(T−1/2), (3.30)
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since
∥∥∥√NT−1V′

iV
0
ẍ,mx

∥∥∥ = Op(N−1/2) + Op(T−1/2) and
∥∥∥T−1V′

ẍV0
ẍ,mx

∥∥∥ = Op(N−1/2). Finally,

∥C4∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1Fx(T−1F′
xFx)

+V0′
ẍ,mx

Fyηγ,i

∥∥∥∥∥
≤
∥∥∥√NT−1V0′

ẍ,mx
Fy

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ 1

N

N

∑
i=1

∥∥∥T−1(Vi − VẍΓ
+
ẍ Γi)

′Fx

∥∥∥ ∥∥∥ηγ,i

∥∥∥
= Op(T−1/2)

(
Op(T−1/2) + Op((NT)−1/2)

)
= Op(T−1). (3.31)

Hence, by combining the rates of C1 - C5, we have that

∥C∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyηγ,i

∥∥∥∥∥
= Op(N−1/2) + Op(T−1/2), (3.32)

and in connection to the rates of A and B, we obtain

∥II∥ =

∥∥∥∥∥∥
(

1
NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyηγ,i

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
(

1
NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
∥∥∥∥∥∥︸ ︷︷ ︸

Op(1)

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyηγ,i

∥∥∥∥∥︸ ︷︷ ︸
Op(N−1/2) + Op(T−1/2)

= Op(N−1/2) + Op(T−1/2). (3.33)

We are left to deal with IV. Note that it follows exactly the same analysis as II and will retain the same
order results if we replace ηγ,i with γ in any of the equations above, because the steps do not depend on
the statistical properties of the loadings. For example, (3.12) and (3.15) are solely driven by the covariance
summability and not the loading properties. By using tr(A′A) = tr(AA′)T, this gives

E

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iFyγ

∥∥∥∥∥
2
 =

1
N

N

∑
i=1

N

∑
j=1

E
(

T−2tr
[
V′

iFyγγ′F′
yVj

])

=
1
N

N

∑
i=1

E
(

T−2tr
[
V′

iFyγγ′F′
yVi

])
=

1
N

N

∑
i=1

E
(

T−2tr
[
γ′F′

yViV′
iFyγ

])
=

1
N

N

∑
i=1

(
tr
[
γγ′E(T−2F′

yViV′
iFy)

])
=

1
N

N

∑
i=1

(
tr

[
γγ′ 1

T2

T

∑
t=1

T

∑
s=1

E(fy,tv′
i,tvi,sf′y,s)

])
= O(T−1), (3.34)
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and similarly by cross-section independence

E

∥∥∥∥∥ 1√
N

N

∑
i=1

(
γ′ ⊗ T−1V′

iF
0
ẋ

)∥∥∥∥∥
2
 =

1
N

N

∑
i=1

N

∑
j=1

E
(
tr
[
γ′γ ⊗ T−2V′

iF
0
ẋF0′

ẋ Vj
])

=
1
N

N

∑
i=1

E
(
tr
[
γ′γ ⊗ T−2V′

iF
0
ẋF0′

ẋ Vi
])

=
1
N

N

∑
i=1

γ′γtr
[
E
(
T−2V′

iF
0
ẋF0′

ẋ Vi
)]

= γ′γ
1
N

N

∑
i=1

1
T2

T

∑
t=1

T

∑
s=1

tr
[
E
(
vi,tf0′

ẋ,tf
0
ẋ,sv

′
i,s
)]

= O(T−1). (3.35)

The two exceptions are (3.26) and (3.21), which slightly change. In particular,∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iT

−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyγ

∥∥∥∥∥
=

∥∥∥∥∥ 1√
N

N

∑
i=1

(
γ′T−1F′

yF̂0
ẋ ⊗ T−1V′

iF̂
0
ẋ

)∥∥∥∥∥ ∥∥∥vec
([

(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

])∥∥∥
≤
∥∥∥γ′T−1F′

yF̂0
ẋ ⊗

√
NT−1V′F̂0

ẋ

∥∥∥
∥∥∥∥∥∥∥∥∥vec

[(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

]
︸ ︷︷ ︸

Op(N−1/2) + Op(T−1/2)


∥∥∥∥∥∥∥∥∥

= Op(N−1/2) + Op(T−1/2), (3.36)

because
√

NT−1V′F̂0
ẋ is bounded. Also,∥∥∥∥∥ 1√

N

N

∑
i=1

T−1V′
iT

−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyγ

∥∥∥∥∥
=
∥∥∥√NT−1V′V0

ẍ,−mx
Σ̂
+
v0

ẋ,−mx
T−1(V0

ẍ,−mx
)′Fyγ

∥∥∥
≤
∥∥∥√NT−1V′V0

ẍ,−mx

∥∥∥ ∥∥∥Σ̂
+
v0

ẋ,−mx

∥∥∥ ∥∥∥T−1(V0
ẍ,−mx

)′Fyγ
∥∥∥ = Op(T−1/2). (3.37)

This means that

∥IV∥ ≤

∥∥∥∥∥∥
(

1
NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
∥∥∥∥∥∥︸ ︷︷ ︸

Op(1)

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγ

∥∥∥∥∥︸ ︷︷ ︸
Op(N−1/2) + Op(T−1/2)

= Op(N−1/2) + Op(T−1/2). (3.38)

By putting the results together, we simplify (3.8) and obtain the asymptotic distribution by standard
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Lindeberg-Lévy Central Limit Theorem:

√
N(β̂CCEP,ẋ − β) = Σ−1 1√

N

N

∑
i=1

(T−1V′
iVi)νi + op(1)

= Σ−1 1√
N

N

∑
i=1

Σiνi + op(1)

→d N
(

0k×1, Σ−1ΨνΣ−1
)

(3.39)

as (N, T) → ∞, where Ψν = limN→∞
1
N ∑N

i=1 ΣiΩνΣi. The simplification comes from

E

∥∥∥∥∥ 1√
N

N

∑
i=1

[
(T−1V′

iVi)− Σi

]
νi

∥∥∥∥∥
2
 =

1
N

N

∑
i=1

N

∑
j=1

tr
[

E

([
(T−1V′

iVi)− Σi

]
νiνj

[
T−1V′

jVj)− Σj

]′)]

=
1
N

N

∑
i=1

tr
[

E

([
(T−1V′

iVi)− Σi

]
Ων

[
T−1V′

iVi)− Σi

]′)]
=

1
N

N

∑
i=1

tr
[

ΩνE

([
(T−1V′

iVi)− Σi

]′ [
(T−1V′

iVi)− Σi

])]
= O(T−1). (3.40)

Now, we let mx = g, which means that we will use the expansion

MF0
ẋ
− MF̂0

ẋ
= MFxΓẍ

− MF̂ẋ
= T−1Vẍ(T−1F̂′

ẋF̂ẋ)
+V′

ẍ + T−1Vẍ(T−1F̂′
ẋF̂ẋ)

+Γ
′
ẍF′

x

+ T−1FxΓẍ(T−1F̂′
ẋF̂ẋ)

+V′
ẍ + T−1FxΓẍ[(T−1F̂′

ẋF̂ẋ)
+ − (Γ

′
ẍT−1F′

xFxΓẍ)
+]Γ

′
ẍF′

x. (3.41)

Under mx = g case the results of De Vos and Stauskas (2024) hold, and so we arrive at the approximation
in (3.8), where the remainder is of even lower order. In order to verify that the results hold, we only look
at the most complex term C in (3.9) as the analysis of A and B would stay exactly the same and they will
be negligible. This is so, because

(F0′
ẋ F0

ẋ)
+ =

[
F′

xFx 0mx×(g−mx)

0(g−mx)×mx 0(g−mx)

]+
=

[
(F′

xFx)+ 0mx×(g−mx)

0(g−mx)×mx 0(g−mx)

]
,

leading to

PF0
ẋ
= F0

ẋ(F
0′
ẋ F0

ẋ)
+F0′

ẋ =
[

Fx, 0T×(g−mx)

] [ (F′
xFx)+ 0mx×(g−mx)

0(g−mx)×mx 0(g−mx)

] [
F′

x
0(g−mx)×T

]
= F′

x(F
′
xFx)

+Fx = PFx .
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Then, particularly for C, we have

∥C∥ =

∥∥∥∥∥ 1
N

N

∑
i=1

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyηγ,i

∥∥∥∥∥
≤
∥∥∥∥∥ 1

N

N

∑
i=1

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1Vẍ(T−1F̂′
ẋF̂ẋ)

+V′
ẍFyηγ,i

∥∥∥∥∥
+

∥∥∥∥∥ 1
N

N

∑
i=1

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1Vẍ(T−1F̂′
ẋF̂ẋ)

+Γ
′
ẍF′

xFyηγ,i

∥∥∥∥∥
+

∥∥∥∥∥ 1
N

N

∑
i=1

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1FxΓẍ(T−1F̂′
ẋF̂ẋ)

+V′
ẍFyηγ,i

∥∥∥∥∥
+

∥∥∥∥∥ 1
N

N

∑
i=1

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1FxΓẍ[(T−1F̂′
ẋF̂ẋ)

+ − (Γ
′
ẍT−1F′

xFxΓẍ)
+]Γ

′
ẍF′

xFyηγ,i

∥∥∥∥∥
= Op(N−1/2) + Op(T−1/2), (3.42)

which is driven by the highest order component∥∥∥∥∥ 1
N

N

∑
i=1

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1Vẍ(T−1F̂′
ẋF̂ẋ)

+Γ
′
ẍF′

xFyηγ,i

∥∥∥∥∥
≤
∥∥∥(T−1F̂′

ẋF̂ẋ)
+
∥∥∥ ∥∥∥T−1F′

xFy

∥∥∥ 1
N

N

∑
i=1

∥∥∥ηγ,i

∥∥∥ ∥∥Γẍ
∥∥ ∥∥∥√NT−1V′

iVẍ

∥∥∥
+
∥∥∥(T−1F̂′

ẋF̂ẋ)
+
∥∥∥ ∥∥∥T−1F′

xFy

∥∥∥ 1
N

N

∑
i=1

∥∥∥ηγ,i

∥∥∥ ∥∥Γẍ
∥∥ ∥∥∥√NT−1V′

ẍVẍΓ
+
ẍ Γi

∥∥∥
= Op(N−1/2) + Op(T−1/2). (3.43)

The same order result will hold in the expansion equivalent to (3.9) in case of IV, when we replace ηγ,i
with γ. By looking at the equivalent leading term, we obtain∥∥∥∥∥ 1

N

N

∑
i=1

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1Vẍ(T−1F̂′
ẋF̂ẋ)

+Γ
′
ẍF′

xFyγ

∥∥∥∥∥
≤
∥∥∥(T−1F̂′

ẋF̂ẋ)
+
∥∥∥ ∥∥∥T−1F′

xFy

∥∥∥ 1
N

N

∑
i=1

∥γ∥
∥∥Γẍ

∥∥ ∥∥∥√NT−1V′
iVẍ

∥∥∥
+
∥∥∥(T−1F̂′

ẋF̂ẋ)
+
∥∥∥ ∥∥∥T−1F′

xFy

∥∥∥ 1
N

N

∑
i=1

∥γ∥
∥∥Γẍ

∥∥ ∥∥∥√NT−1V′
ẍVẍΓ

+
ẍ Γi

∥∥∥
= Op(N−1/2) + Op(T−1/2). (3.44)

3.2 Mean Group Estimator

Theorem 4. Under Assumptions 1 - 7, for either mx < g or mx = g as (N, T) → ∞ with TN−1 → τ > 0
√

N(β̂CCEMG,ẍ − β) →d N (0k×1, Ων) ,

where Ων = E(νiν
′
i) .
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Proof. Firstly, we assume mx < g. We expand the CCEMG estimator in the following way:

β̂CCEMG,ẋ =
1
N

N

∑
i=1

(
X′

iMF̂ẋ
Xi

)−1
X′

iMF̂ẋ
yi

=
1
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
yi

=
1
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
(Xiβi + Fyγi + εi)

=
1
N

N

∑
i=1

βi +
1
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
X′

iMF̂ẋ
Fyγi +

1
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
εi

= β +
1
N

N

∑
i=1

νi +
1
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
Fyγi +

1
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
εi,

(3.45)

which implies that

√
N(β̂CCEMG,ẋ − β) =

1√
N

N

∑
i=1

νi +
1√
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
Fyγi

+
1√
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
εi

= I + II + III. (3.46)

Clearly, I is asymptotically normal by the standard arguments:

I =
1√
N

N

∑
i=1

νi →d N (0k×1, Ων) , (3.47)

as (N, T) → ∞. We further move to III, which is much simpler than its analog in Theorem 6 of De Vos and
Stauskas (2024). In particular, in the later study, ε is used to approximate the factor space via F̂ = [y, X],
which makes the numerator and the denominator dependent for each i. In the current case, we only use
X and hence (any subset of) V, which is independent from εi for all i. This implies that III is mean-zero
and by our assumptions on existence of moments, we obtain

E

∥∥∥∥∥ 1√
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
εi

∥∥∥∥∥
2


=
1
N

N

∑
i=1

N

∑
j=1

E

(
tr
[(

T−1X′
iMF̂ẋ

Xi

)−1
T−2X′

iMF̂ẋ
εiε

′
jMF̂ẋ

Xj

(
T−1X′

jMF̂ẋ
Xj

)−1
])

=
1
N

N

∑
i=1

E

(
tr
[(

T−1X′
iMF̂ẋ

Xi

)−1
T−2X′

iMF̂ẋ
εiε

′
iMF̂ẋ

Xi

(
T−1X′

iMF̂ẋ
Xi

)−1
])

= O(T−1), (3.48)

which comes from the fact that
∥∥∥T−1/2X′

iMF̂ẋ
εi

∥∥∥ = Op(1). This can easily be seen from the expansion
similar to (3.9)

T−1/2X′
iMF̂ẋ

εi = T−1/2(Vi − VẍΓ
+
ẍ Γi)

′MF̂ẋ
εi

= T−1/2(Vi − VẍΓ
+
ẍ Γi)

′εi − T−1/2(Vi − VẍΓ
+
ẍ Γi)

′PF0
ẋ
εi

− T−1/2(Vi − VẍΓ
+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)εi, (3.49)
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where the leading terms are the ones with Vi from the left, because Vẍ will either preserve the same order
or bring it down. Clearly,∥∥∥T−1/2V′

iεi

∥∥∥ = Op(1), (3.50)∥∥∥T−1/2Γ′
iΓ

+′
ẍ V′

ẍεi

∥∥∥ = Op(N−1/2) (3.51)

under our assumptions. Next,∥∥∥T−1/2V′
iPF0

ẋ
εi

∥∥∥ ≤
∥∥∥T−1/2V′

iF
0
ẋ

∥∥∥ ∥∥∥(T−1F0′
ẋ F0

ẋ)
+
∥∥∥ ∥∥∥T−1F0′

ẋ εi

∥∥∥ = Op(T−1/2), (3.52)∥∥∥T−1/2Γ′
iΓ

+′V′PF0
ẋ
εi

∥∥∥ ≤
∥∥∥T−1/2Γ′

iΓ
+′
ẍ V′

ẍF0
ẋ

∥∥∥ ∥∥∥(T−1F0′
ẋ F0

ẋ)
+
∥∥∥ ∥∥∥T−1F0′

ẋ εi

∥∥∥ = Op((NT)−1/2). (3.53)

Eventually, by using the expansion in (3.16), we obtain∥∥∥T−1/2V′
i(MF0

ẋ
− MF̂0

ẋ
)εi

∥∥∥ ≤
∥∥∥T−1V′

iV
0
ẍ,−mx

∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1/2V0′

ẍ,−mx
εi

∥∥∥
+
∥∥∥T−1V′

iV
0
ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1/2V0′

ẍ,mx
εi

∥∥∥
+
∥∥∥T−1V′

iV
0
ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1/2F′

xεi

∥∥∥
+
∥∥∥T−1V′

iFx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1/2V0′

ẍ,mx
εi

∥∥∥
+
∥∥∥T−1V′

iF̂
0
ẋ

∥∥∥ ∥∥∥[(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

]∥∥∥ ∥∥∥T−1/2F̂0′
ẋ εi

∥∥∥
= Op(N−1/2) + Op(T−1/2), (3.54)

and ∥∥∥T−1/2Γ′
iΓ

+′V′
(MF0

ẋ
− MF̂0

ẋ
)εi

∥∥∥ ≤
∥∥∥T−1Γ′

iΓ
+′
ẍ V′

ẍV0
ẍ,−mx

∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1/2V0′

ẍ,−mx
εi

∥∥∥
+
∥∥∥T−1Γ′

iΓ
+′V′V0

ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1/2V0′

ẍ,mx
εi

∥∥∥
+
∥∥∥T−1Γ′

iΓ
+′V′

ẍV0
ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1/2F′

xεi

∥∥∥
+
∥∥∥T−1Γ′

iΓ
+′V′

ẍFx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1/2V0′

ẍ,mx
εi

∥∥∥
+
∥∥∥T−1Γ′

iΓ
+′V′

ẍF̂0
ẋ

∥∥∥ ∥∥∥[(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

]∥∥∥ ∥∥∥T−1/2F̂0′
ẋ εi

∥∥∥
= Op(N−1/2), (3.55)

since
∥∥∥T−1V′

iV
0
ẍ,−mx

∥∥∥ = Op(N−1/2) + Op(T−1/2),
∥∥∥T−1V′

ẍV0
ẍ,−mx

∥∥∥ = Op(N−1/2),
∥∥∥T−1/2V0′

ẍ,−mx
εi

∥∥∥ =

Op(1),
∥∥T−1V′

iFx
∥∥ = Op(T−1/2),

∥∥T−1/2F′
xεi
∥∥ = Op(1),

∥∥∥T−1/2F̂0′
ẋ εi

∥∥∥ = Op(1) and the rest of the terms
are of a lower order. Therefore,∥∥∥T−1/2X′

iMF̂ẋ
εi

∥∥∥ = Op(1), (3.56)∥∥∥T−1X′
iMF̂ẋ

εi

∥∥∥ = Op(T−1/2) (3.57)

and hence

∥III∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
εi

∥∥∥∥∥ = Op(N−1/2) + Op(T−1/2). (3.58)
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We will proceed with II. In particular, we can re-write it as

II =
1√
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
Fyγi

=
1√
N

N

∑
i=1

Σ−1
i T−1X′

iMF̂ẋ
Fyγi +

1√
N

N

∑
i=1

[(
T−1X′

iMF̂ẋ
Xi

)−1
− Σ−1

i

]
T−1X′

iMF̂ẋ
Fyγi

= A + B, (3.59)

which is not the “sharpest” split of this term, but as we will see, the restriction on N, T expansion will be
needed anyway. Here we will focus on A, first. We have

A =
1√
N

N

∑
i=1

Σ−1
i T−1X′

iMF̂ẋ
Fyγi =

1√
N

N

∑
i=1

Σ−1
i T−1(Vi − VẍΓ

+
ẍ Γi)

′MF̂ẋ
Fyγi

=
1√
N

N

∑
i=1

Σ−1
i T−1(Vi − VẍΓ

+
ẍ Γi)

′Fyγi −
1√
N

N

∑
i=1

Σ−1
i T−1(Vi − VẍΓ

+
ẍ Γi)

′PF0
ẋ
Fyγi

− 1√
N

N

∑
i=1

Σ−1
i T−1(Vi − VẍΓ

+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyγi

= A1 − A2 − A3, (3.60)

where ∥A1∥ = Op(T−1/2), because∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1Γ′

iΓ
+′
ẍ V′

ẍFyγi

∥∥∥∥∥ ≤
∥∥∥√NT−1V′

ẍFy

∥∥∥ 1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥γi∥ = Op(T−1/2), (3.61)

and by the cross-section independence of Vi

E

∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1V′

iFyγi

∥∥∥∥∥
2
 =

1
N

N

∑
i=1

tr
[
E
(
γiγ

′
i
)

E
(

Σ−1
i T−2V′

iFyF′
yViΣ

−1
i

)]
= O(T−1) (3.62)

since
∥∥∥T−1F′

yVi

∥∥∥ = Op(T−1/2). The term A2 follows a similar structure, because∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1Γ′

iΓ
+′
ẍ V′

ẍPF0
ẋ
Fyγi

∥∥∥∥∥
≤
∥∥∥(T−1F0′

ẋ F0
x)

+
∥∥∥ ∥∥∥T−1F0′

x Fy

∥∥∥ ∥∥∥√NT−1V′F0
ẋ

∥∥∥ 1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥γi∥ = Op(T−1/2) (3.63)

and ∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1V′

iPF0
ẋ
Fyγi

∥∥∥∥∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

(
γ′

i ⊗ Σ−1
i T−1V′

iF
0
ẋ

)
vec
[
(T−1F0′

ẋ F0
ẋ)

+T−1F0′
ẋ Fy

]∥∥∥∥∥
≤
∥∥∥∥∥ 1√

N

N

∑
i=1

(
γ′

i ⊗ Σ−1
i T−1V′

iF
0
ẋ

)∥∥∥∥∥︸ ︷︷ ︸
Op(T−1/2)

∥∥∥(T−1F0′
ẋ F0

ẋ)
+T−1F0′

ẋ Fy

∥∥∥
= Op(T−1/2), (3.64)
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where the order comes by exactly the same argument as in (3.62) by using the Kronecker properties:

E

∥∥∥∥∥ 1√
N

N

∑
i=1

(
γ′

i ⊗ Σ−1
i T−1V′

iF
0
ẋ

)∥∥∥∥∥
2
 =

1
N

N

∑
i=1

N

∑
j=1

E
(

tr
[
γ′

iγj ⊗ Σ−1
i T−2V′

iF
0
ẋF0′

ẋ VjΣ
−1
j

])

=
1
N

N

∑
i=1

E
(

tr
[
γ′

iγi ⊗ Σ−1
i T−2V′

iF
0
ẋF0′

ẋ ViΣ
−1
i

])
=

1
N

N

∑
i=1

E
(
γ′

iγi
)

tr
[
E
(

Σ−1
i T−2V′

iF
0
ẋF0′

ẋ ViΣ
−1
i

)]
= O(T−1). (3.65)

We now move to A3, where we again use (3.16):

A3 =
1
N

N

∑
i=1

Σ−1
i

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyγi

=
1
N

N

∑
i=1

Σ−1
i

√
NT−1V′

i(MF0
ẋ
− MF̂0

ẋ
)Fyγi −

1
N

N

∑
i=1

Σ−1
i

√
NT−1Γ′

iΓ
+′
ẍ V′

ẍ(MF0
ẋ
− MF̂0

ẋ
)Fyγi

= A3.1 − A3.2, (3.66)

such that

∥A3.1∥ ≤ 1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥√NT−1V′
iV

0
ẍ,−mx

∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1V0′

ẍ,−mx
Fyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥√NT−1V′
iV

0
ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1V0′

ẍ,mx
Fyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥√NT−1V′
iV

0
ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1F′

xFyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥T−1V′
iFx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥√NT−1V0′

ẍ,mx
Fyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥T−1V′
iF̂

0
ẋ

∥∥∥√N
∥∥∥[(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]∥∥∥ ∥∥∥T−1F̂0′
ẋ Fyγi

∥∥∥
= Op(N−1/2) + Op(T−1/2) (3.67)

if we assume that TN−1 = O(1). Under this restriction, the first term, which is the dominant one, also be-
comes negligible, because

∥∥∥√NT−1V′
iV

0
ẍ,−mx

∥∥∥ =
√

N(Op(N−1/2) + Op(T−1/2)) = Op(1) then. A similar

logic applies to the last term, because
√

N
∥∥∥∥[(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]∥∥∥∥ = Op(1),
∥∥∥T−1F̂0′

ẋ Fyγi

∥∥∥ = Op(1) and
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the total order is driven by the terms of the form
∥∥∥√NT−1V′

iV
0
ẍ,mx

∥∥∥ = Op(N−1/2) + Op(T−1/2). Further,

∥A3.2∥ ≤ 1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥Γ
+
ẍ Γi

∥∥∥∥∥∥ ∥∥∥√NT−1V′
ẍV0

ẍ,−mx

∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1V0′

ẍ,−mx
Fyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥∥∥√NT−1V′
ẍV0

ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1V0′

ẍ,mx
Fyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥∥∥√NT−1V′
ẍV0

ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1F′

xFyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥∥∥T−1V′
ẍFx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥√NT−1V0′

ẍ,mx
Fyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥∥∥√NT−1V′
ẍF̂0

ẋ

∥∥∥ ∥∥∥[(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

]∥∥∥ ∥∥∥T−1F̂0′
ẋ Fyγi

∥∥∥
= Op(N−1/2) + Op(T−1/2) (3.68)

by similar arguments, but we do not need TN−1 = O(1). This means that overall

∥A∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1X′

iMF̂ẋ
Fyγi

∥∥∥∥∥ = Op(N−1/2) + Op(T−1/2). (3.69)

Eventually, we move to term B, which gives

∥B∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

[(
T−1X′

iMF̂ẋ
Xi

)−1
− Σ−1

i

]
T−1X′

iMF̂ẋ
Fyγi

∥∥∥∥∥
≤

√
N sup

i

∥∥∥∥[(T−1X′
iMF̂ẋ

Xi

)−1
− Σ−1

i

]∥∥∥∥︸ ︷︷ ︸
Op(1) if TN−1 = O(1)

1
N

N

∑
i=1

∥∥∥T−1X′
iMF̂ẋ

Fyγi

∥∥∥
= Op(N−1/2) + Op(T−1/2), (3.70)

where the order is dictated by
∥∥∥T−1X′

iMF̂ẋ
Fyγi

∥∥∥, because
∥∥∥∥[(T−1X′

iMF̂ẋ
Xi

)−1
− Σ−1

i

]∥∥∥∥ = Op(T−1/2) uni-

formly as discussed below (3.5). Therefore, we have∥∥∥T−1X′
iMF̂ẋ

Fyγi

∥∥∥ ≤
∥∥∥T−1(Vi − VẍΓ

+
ẍ Γi)

′Fyγi

∥∥∥+ ∥∥∥T−1(Vi − VẍΓ
+
ẍ Γi)

′PF0
ẋ
Fyγi

∥∥∥
+
∥∥∥T−1(Vi − VẍΓ

+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyγi

∥∥∥
≤
∥∥∥T−1(Vi − VẍΓ

+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyγi

∥∥∥+ Op(T−1/2)

= ∥a∥+ ∥b∥+ Op(T−1/2), (3.71)

where the dominating order of the remainder is given by the first two terms since
∥∥T−1V′

iF
0
ẋ
∥∥ = Op(T−1/2)

and
∥∥∥T−1V′

ẍF0
ẋ

∥∥∥ = Op((NT)−1/2), and also
∥∥T−1V′

iFy
∥∥ = Op(T−1/2),

∥∥∥T−1V′
ẍFy

∥∥∥ = Op((NT)−1/2) . By

using the expansion in (3.16) and recognizing the fact that the terms involving Vẍ from the left will either
preserve the same order or bring it down similarly to (3.49), we obtain the following from the remaining
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a and b terms:

∥a∥ =
∥∥∥T−1V′

i(MF0
ẋ
− MF̂0

ẋ
)Fyγi

∥∥∥ ≤
∥∥∥T−1V′

iV
0
ẍ,−mx

∥∥∥︸ ︷︷ ︸
Op(N−1/2) + Op(T−1/2)

∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1V0′

ẍ,−mx
Fyγi

∥∥∥︸ ︷︷ ︸
Op(T−1/2)

+
∥∥∥T−1V′

iV
0
ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1V0′

ẍ,mx
Fyγi

∥∥∥
+

∥∥∥T−1V′
iV

0
ẍ,mx

∥∥∥︸ ︷︷ ︸
Op(N−1) + Op((NT)−1/2)

∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1F′

xFyγi

∥∥∥
+
∥∥∥T−1V′

iFx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1V0′

ẍ,mx
Fyγi

∥∥∥
+
∥∥∥T−1V′

iF̂
0
x

∥∥∥ ∥∥∥[(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

]∥∥∥ ∥∥∥T−1F̂0′
ẋ Fyγi

∥∥∥
= Op(T−1) + Op(N−1) + Op((NT)−1/2), (3.72)

and

∥b∥ =
∥∥∥T−1Γ′

iΓ
+′
ẍ V′

ẍ(MF0
ẋ
− MF̂0

ẋ
)Fyγi

∥∥∥ ≤
∥∥∥T−1Γ′

iΓ
+′
ẍ V′

ẍV0
ẍ,−mx

∥∥∥︸ ︷︷ ︸
Op(N−1/2)

∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1V0′

ẍ,−mx
Fyγi

∥∥∥︸ ︷︷ ︸
Op(T−1/2)

+
∥∥∥T−1Γ′

iΓ
+′
ẍ V′

ẍV0
ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1V0′

ẍ,mx
Fyγi

∥∥∥
+
∥∥∥T−1Γ′

iΓ
+′
ẍ V′

ẍV0
ẍ,mx

∥∥∥︸ ︷︷ ︸
Op(N−1)

∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1F′

xFyγi

∥∥∥
+
∥∥∥T−1Γ′

iΓ
+′
ẍ V′

ẍFx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1V0′

ẍ,mx
Fyγi

∥∥∥
+
∥∥∥T−1Γ′

iΓ
+′
ẍ V′

ẍF̂0
x

∥∥∥ ∥∥∥[(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

]∥∥∥ ∥∥∥T−1F̂0′
ẋ Fyγi

∥∥∥
= Op(T−1) + Op(N−1) + Op((NT)−1/2), (3.73)

with the drivers of the order indicated. In summary,

∥B∥ ≤
√

N sup
i

∥∥∥∥[(T−1X′
iMF̂ẋ

Xi

)−1
− Σ−1

i

]∥∥∥∥ 1
N

N

∑
i=1

∥∥∥T−1X′
iMF̂ẋ

Fyγi

∥∥∥
= Op(N−1) + Op(T−1/2), (3.74)

under TN−1 = O(1) and so

∥II∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
Fyγi

∥∥∥∥∥ = Op(N−1/2) + Op(T−1/2), (3.75)

which ultimately leads to

√
N(β̂CCEMG,ẋ − β) =

1√
N

N

∑
i=1

νi + Op(N−1/2) + Op(T−1/2)

→d N (0k×1, Ων) (3.76)

as (N, T) → ∞ under TN−1 = O(1).
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We now let mx = g, which means that we will again use the expansion in (3.41). Because now the con-
vergence rate will be quicker, (3.58) will hold as well, therefore it is sufficient to check II in the expansion
(3.45) and in particular we start with A3 as the analysis of A1 and A2 will be the same and these terms
will be negligible. Hence,

∥A3∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1(Vi − VẍΓ

+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyγi

∥∥∥∥∥
≤
∥∥∥∥∥ 1

N

N

∑
i=1

Σ−1
i

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1Vẍ(T−1F̂′
ẋF̂ẋ)

+V′
ẍFyγi

∥∥∥∥∥
+

∥∥∥∥∥ 1
N

N

∑
i=1

Σ−1
i

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1Vẍ(T−1F̂′
ẋF̂ẋ)

+Γ
′
ẍF′

xFyγi

∥∥∥∥∥
+

∥∥∥∥∥ 1
N

N

∑
i=1

Σ−1
i

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1FxΓẍ(T−1F̂′
ẋF̂ẋ)

+V′
ẍFyγi

∥∥∥∥∥
+

∥∥∥∥∥ 1
N

N

∑
i=1

Σ−1
i

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1FxΓẍ[(T−1F̂′
ẋF̂ẋ)

+ − (Γ
′
ẍT−1F′

xFxΓẍ)
+]Γ

′
ẍF′

xFyγi

∥∥∥∥∥
= Op(N−1/2) + Op(T−1/2), (3.77)

which is driven the highest order term which is almost identical to (3.43). Note that we still use the
restriction TN−1 = O(1) just as in case of mx < g. We need this to show that B term is negligible as well,
because II is generally not mean-zero. Particularly, the split

II =
1√
N

N

∑
i=1

(T−1V′
iMFx Vi)

−1T−1X′
iMF̂ẋ

Fyγi

+
1√
N

N

∑
i=1

[(
T−1X′

iMF̂ẋ
Xi

)−1
− (T−1V′

iMFx Vi)
−1
]

T−1X′
iMF̂ẋ

Fyγi (3.78)

is not viable, because even if
∥∥∥∥(T−1X′

iMF̂ẋ
Xi

)−1
− (T−1V′

iMFx Vi)
−1
∥∥∥∥ = op(N−1/2) under g = mx, the

first component is not mean-zero, and its second moment is not negligible. Hence, we implement

II =
1√
N

N

∑
i=1

Σ−1
i T−1X′

iMF̂ẋ
Fyγi

+
1√
N

N

∑
i=1

[(
T−1X′

iMF̂ẋ
Xi

)−1
− Σ−1

i

]
T−1X′

iMF̂ẋ
Fyγi = A + B (3.79)

where ∥A∥ = op(1) still as
∥∥∥Σ−1

i

∥∥∥ = O(1) and deterministic. Under mx = g we have that

√
N
∥∥∥∥(T−1X′

iMF̂ẋ
Xi

)−1
− Σ−1

i

∥∥∥∥ = Op(1) (3.80)

under TN−1 = O(1) uniformly, and hence

∥B∥ ≤
√

N sup
i

∥∥∥∥(T−1X′
iMF̂ẋ

Xi

)−1
− Σ−1

i

∥∥∥∥ 1
N

N

∑
i=1

∥∥∥T−1X′
iMF̂ẋ

Fyγi

∥∥∥ = op(1). (3.81)
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3.3 Bootstrap Distributions

Theorem 6. Under Assumptions 1 - 7, for either mx < g or mx = g as (N, T) → ∞,

(a) sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) ≤ x]− P[

√
NT(β̂CCEP,ẋ − β) ≤ x]

∣∣∣→p 0,

(b) sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEMG,ẋ − β̂CCEMG,ẋ) ≤ x]− P[

√
NT(β̂CCEMG,ẋ − β) ≤ x]

∣∣∣→p 0,

where inequalities are to be interpreted coordinate wise.

Proof. (a) We assume mx < g. Let MF̂∗
ẋ
= IT − F̂∗

ẋ(F̂
∗′
ẋ F̂∗

ẋ)
+F̂∗′

ẋ and MF̂∗
ẋ
= (IN ⊗ MF̂∗

ẋ
). We derive the CCEP

estimator from the bootstrap sample:

β̂
∗
CCEP,ẋ =

(
X∗′MF̂∗

ẋ
X∗
)−1

X∗′MF̂∗
ẋ
y∗

=
(

X′W′
TMF̂∗

ẋ
WTX

)−1
X′W′

TMF̂∗
ẋ
WTy

=
(

X′W′
TWTMF̂∗

ẋ
X
)−1

X′W′
TWTMF̂∗

ẋ
y

=
(

X′diag(s ⊗ ι′T)MF̂∗
ẋ
X
)−1

X′diag(s ⊗ ι′T)MF̂∗
ẋ
y

=

(
N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1 N

∑
i=1

siX′
iMF̂∗yi

= β +

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xiνi +

1
NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Fyγi +

1
NT

N

∑
i=1

siX′
iMF̂∗

ẋ
εi

)
,

(3.82)

which implies that

√
N(β̂

∗
CCEP,ẋ − β) =

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1

×
(

1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Xiνi +

1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Fyγi +

1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
εi

)
.

(3.83)
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Next, we can write
√

N(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) =

√
N(β̂

∗
CCEP,ẋ − β)−

√
N(β̂CCEP,ẋ − β)

=

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Xiνi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi

)

+

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Fyγi −

1√
N

N

∑
i=1

T−1X′
iMF̂x

Fyγi

)

+

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
εi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

εi

)

+

( 1
NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1

−
(

1
NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1


×
(

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi +
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi +
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

εi

)
.

(3.84)

In what follows, we will use the crucial lemma from Cheng and Huang (2010), which connects the rates of
convergence in bootstrap and original (unconditional) probability measures. Particularly, given a vector
valued statistic △n which depends on Z1, . . . Zn and multinomial weights s1, . . . , sn (independent from
model primitives), then for a deterministic sequence an we have

△n = Op∗(an) in probability ⇔ △n = Op(an) unconditionally.
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Due to this result, we have

√
N(β̂

∗
CCEP,ẋ − β̂CCEP,ẋ) =

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Xiνi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi

)

+

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Fyγi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi

)

+

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
εi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

εi

)

+

( 1
NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1

−
(

1
NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1


︸ ︷︷ ︸
op∗ (1)

×
(

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi +
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyηγ,i +
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

εi

)
︸ ︷︷ ︸

Op∗ (1)

=

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Xiνi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi

)

+

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Fyγi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi

)

+

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
εi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

εi

)
+ op∗(1)

= I + II + III + op∗(1) (3.85)

in probability, where
∥∥∥∥( 1

NT ∑N
i=1 siX′

iMF̂∗
ẋ
Xi

)−1
−
(

1
NT ∑N

i=1 X′
iMF̂ẋ

Xi

)−1
∥∥∥∥ = op∗(1) by Theorem 2 in De Vos

and Stauskas (2024). By using the bootstrap consistency results from the same study,

∥III∥ ≤

∥∥∥∥∥∥
(

1
NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1
∥∥∥∥∥∥
(∥∥∥∥∥ 1√

N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
εi

∥∥∥∥∥+
∥∥∥∥∥ 1√

N

N

∑
i=1

T−1X′
iMF̂ẋ

εi

∥∥∥∥∥
)

= op∗(1) (3.86)

in probability and

I =

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Xiνi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi

)

= Σ−1 1√
N

N

∑
i=1

(si − 1)Σiνi + Op∗(T−1/2)

→d∗ N
(

0k×1, Σ−1ΨνΣ−1
)

(3.87)
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in probability. We are left with evaluating II. For this, we introduce the bootstrap rotation matrix

Hw,ẋ = [Hw,ẋ,mx , Hw,ẋ,−mx ] =

[
Γ
−1
w,ẍ,mx

−Γ
−1
w,ẍ,mx

Γw,ẍ−mx

0(g−mx)×mx Ig−mx

]
, DN =

[
Imx 0mx×(g−mx)

0(g−mx)×mx

√
NIg−mx

]
(3.88)

with its limiting matrix Hẋ = [Hẋ,mx , Hẋ,−mx ] =

[
Γ−1

ẍ,mx
−Γ−1

ẍ,mx
Γẍ,−mx

0(g−mx)×mx Ig−mx

]
such that

F̂0∗
ẋ = F̂∗

ẋHw,ẋDN = F0
ẋ + [Vw,ẍHw,ẋ,mx ,

√
NVw,ẍHw,ẋ,−mx ] = F0

ẋ + [V0
w,ẍ,mx

, V0
w,ẍ,−mx

]. (3.89)

From now on, we can repeat exactly the same steps as in the analysis of II (and IV, which is now merged
together) in the original sample by using independence of bootstrap weights from the model primitives,
the rate conversion lemma of Cheng and Huang (2010) and a few key results, such as

(1)
∥∥Vw,ẍ

∥∥ = Op∗(N−1/2), (3.90)

(2)
∥∥∥T−1V′

w,ẍVi

∥∥∥ = Op∗(N−1) + Op∗((NT)−1/2), (3.91)

(3)
∥∥∥∥(T−1F̂0∗′

ẋ F̂0∗
ẋ

)+
− Σ+

w,F0
ẋ,v

∥∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2), (3.92)

(4) E(si) = 1, (3.93)

(5) Var(si) = E[(si − 1)2] = 1 − N−1 (multinomial variance) (3.94)

where

Σw,F0
ẋ,v = diag

[
ΣFx , (T−1V0′

w,ẍ,−mx
V0

w,ẍ,−mx
)
]

. (3.95)

Therefore,

∥II∥ =

∥∥∥∥∥∥
(

1
NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Fyγi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi

)∥∥∥∥∥∥
≤

∥∥∥∥∥∥
(

1
NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1
∥∥∥∥∥∥
∥∥∥∥∥
(

1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Fyγi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi

)∥∥∥∥∥
≤

∥∥∥∥∥∥
(

1
NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1
∥∥∥∥∥∥︸ ︷︷ ︸

Op∗ (1)

(∥∥∥∥∥ 1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Fyγi

∥∥∥∥∥+
∥∥∥∥∥ 1√

N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi

∥∥∥∥∥
)

= Op∗(N−1/2) + Op∗(T−1/2). (3.96)

Note how (3.94) ensures that whenever we analyze mean-square convergence, we will obtain the expec-
tation of the square of the main object of analysis, plus a lower order term, hence the limits will stay the
same. Hence,∥∥∥∥∥ 1√

N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Fyγi

∥∥∥∥∥ ≤
∥∥∥∥∥ 1√

N

N

∑
i=1

(si − 1)T−1X′
iMF̂∗

ẋ
Fyγi

∥∥∥∥∥+
∥∥∥∥∥ 1√

N

N

∑
i=1

T−1X′
iMF̂∗

ẋ
Fyγi

∥∥∥∥∥
= Op∗(N−1/2) + Op∗(T−1/2). (3.97)
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In summary, we obtain

√
N(β̂

∗
CCEP,ẋ − β̂CCEP,ẋ) = Σ−1 1√

N

N

∑
i=1

(si − 1)Σiνi + op∗(1)

→d∗ N
(

0k×1, Σ−1ΨνΣ−1
)

(3.98)

as (N, T) → ∞ in probability. The consistency holds uniformly by multivariate Polya’s Theorem, simi-
larly to the argument in Gonçalves and Perron (2014). The latter states that when

√
N(β̂CCEP,ẋ − β) →d

N (0k×1, Σ−1ΨνΣ−1) (proven in Theorem 1), then

sup
x∈Rk×1

∣∣∣P(
√

N(β̂CCEP,ẋ − β) ≤ x)− Φ(x; 0k×1, Σ−1ΨνΣ−1)
∣∣∣→ 0,

where Φ(x; µ, Ω) is the Gaussian CDF with mean µ and variance Ω. Hence, uniformity follows if also

sup
x∈Rk×1

∣∣∣P∗(
√

N(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) ≤ x)− Φ(x; 0k×1, Σ−1ΨνΣ−1)

∣∣∣→p 0

which is in turn guaranteed by Polya’s Theorem because (3.98) holds in probability. Hence, uniform
consistency follows:

sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) ≤ x]− P[

√
NT(β̂CCEP,ẋ − β) ≤ x]

∣∣∣
= sup

x∈Rk×1

∣∣∣ (P∗[
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) ≤ x]− Φ(x; 0k×1, Σ−1ΨνΣ−1

)
−
(

P[
√

NT(β̂CCEP,ẋ − β) ≤ x]− Φ(x; 0k×1, Σ−1ΨνΣ−1)
) ∣∣∣

≤ sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) ≤ x]− Φ(x; 0k×1, Σ−1ΨνΣ−1

∣∣∣
+ sup

x∈Rk×1

∣∣∣P[
√

NT(β̂CCEP,ẋ − β) ≤ x]− Φ(x; 0k×1, Σ−1ΨνΣ−1)
∣∣∣

= op(1), (3.99)

which completes the proof.

The argument for mx = g is exact the same as in the discussion of Theorem 3.

(b) The bootstrap CCEMG estimator is given by

β̂
∗
CCEMG, ˙̇x =

1
N

N

∑
i=1

si

(
X′

iMF̂∗
ẋ
Xi

)−1
X′

iMF̂∗
ẋ
yi

=
1
N

N

∑
i=1

siβi +
1
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1
X′

iMF̂∗
ẋ
Fyγi +

1
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1
T−1X′

iMF̂∗
ẋ
εi

= β
1
N

N

∑
i=1

si︸︷︷︸
N

+
1
N

N

∑
i=1

siνi +
1
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1
T−1X′

iMF̂∗
ẋ
Fyγi

+
1
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1
T−1X′

iMF̂∗
ẋ
εi, (3.100)
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hence

√
N(β̂

∗
CCEMG,ẋ − β) =

1√
N

N

∑
i=1

siνi +
1√
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1
T−1X′

iMF̂∗
ẋ
Fyγi

+
1√
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1
T−1X′

iMF̂∗
ẋ
εi, (3.101)

and so
√

N(β̂
∗
CCEMG,ẋ − β̂CCEMG,ẋ) =

√
N(β̂

∗
CCEMG,ẋ − β)−

√
N(β̂CCEMG,ẋ − β)

=
1√
N

N

∑
i=1

(si − 1)νi

+
1√
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1 (
T−1X′

iMF̂∗
ẋ
Fyγi − T−1X′

iMF̂ẋ
Fyγi

)
+

1√
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1 (
T−1X′

iMF̂∗
ẋ
εi − T−1X′

iMF̂ẋ
εi

)
+

1√
N

N

∑
i=1

si

[(
T−1X′

iMF̂∗
ẋ
Xi

)−1
−
(

T−1X′
iMF̂ẋ

Xi

)−1
]

×
(

T−1X′
iMF̂ẋ

Fyγi + T−1X′
iMF̂ẋ

εi

)
=

1√
N

N

∑
i=1

(si − 1)νi

+
1√
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1 (
T−1X′

iMF̂∗
ẋ
Fyγi − T−1X′

iMF̂ẋ
Fyγi

)
+

1√
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1 (
T−1X′

iMF̂∗
ẋ
εi − T−1X′

iMF̂ẋ
εi

)
+ op∗(1)

= I + II + III + op∗(1) (3.102)

in probability, because∥∥∥∥∥ 1√
N

N

∑
i=1

si

[(
T−1X′

iMF̂∗
ẋ
Xi

)−1
−
(

T−1X′
iMF̂ẋ

Xi

)−1
] (

T−1X′
iMF̂ẋ

Fyγi + T−1X′
iMF̂ẋ

εi

)∥∥∥∥∥
≤

√
N sup

i

∥∥∥∥(T−1X′
iMF̂∗

ẋ
Xi

)−1
−
(

T−1X′
iMF̂ẋ

Xi

)−1
∥∥∥∥ 1

N

N

∑
i=1

|si|
(∥∥∥T−1X′

iMF̂ẋ
εi

∥∥∥+ ∥∥∥T−1X′
iMF̂ẋ

Fyγi

∥∥∥)
=

√
N sup

i

∥∥∥∥(T−1X′
iMF̂∗

ẋ
Xi

)−1
−
(

T−1X′
iMF̂ẋ

Xi

)−1
∥∥∥∥ 1

N

N

∑
i=1

|si|
∥∥∥T−1X′

iMF̂ẋ
εi

∥∥∥
+
√

N sup
i

∥∥∥∥(T−1X′
iMF̂∗

ẋ
Xi

)−1
−
(

T−1X′
iMF̂ẋ

Xi

)−1
∥∥∥∥ ∥∥∥T−1X′

iMF̂ẋ
Fyγi

∥∥∥
= op∗(1) (3.103)
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as TN−1 = O(1) in analogy to (3.70). Then

∥III∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1 (
T−1X′

iMF̂∗
ẋ
εi − T−1X′

iMF̂ẋ
εi

)∥∥∥∥∥
≤
∥∥∥∥∥ 1√

N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1
T−1X′

iMF̂∗
ẋ
εi

∥∥∥∥∥+
∥∥∥∥∥ 1√

N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1
T−1X′

iMF̂ẋ
εi

∥∥∥∥∥
= op∗(1) (3.104)

in analogy to (3.48) by using the fact that bootstrap weights are independent from the model primitives
and the results in (3.90) - (3.92). Further,

II =
1√
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1 (
T−1X′

iMF̂∗
ẋ
Fyγi − T−1X′

iMF̂ẋ
Fyγi

)
=

1√
N

N

∑
i=1

siΣ
−1
i

(
T−1X′

iMF̂∗
ẋ
Fyγi − T−1X′

iMF̂ẋ
Fyγi

)
︸ ︷︷ ︸

op∗ (1) in analogy to (3.69)

+
1√
N

N

∑
i=1

si

[(
T−1X′

iMF̂∗
ẋ
Xi

)−1
− Σ−1

i

] (
T−1X′

iMF̂∗
ẋ
Fyγi − T−1X′

iMF̂ẋ
Fyγi

)
︸ ︷︷ ︸

op∗ (1) in analogy to (3.70)

= op∗(1) (3.105)

under TN−1 = O(1) by using the independence of the bootstrap weights from the model primitives.
Eventually,

√
N(β̂

∗
CCEMG,ẋ − β̂CCEMG,ẋ) =

1√
N

N

∑
i=1

(si − 1)νi + op∗(1)

→d∗ N (0k×1, Ων) (3.106)

as (N, T) → ∞ in probability. Similarly to part (a), consistency holds uniformly by multivariate Polya’s
Theorem. We have

sup
x∈Rk×1

∣∣∣P(
√

N(β̂CCEMG,ẋ − β) ≤ x)− Φ(x; 0k×1, Ων)
∣∣∣→ 0.

Hence, uniformity follows if also

sup
x∈Rk×1

∣∣∣P∗(
√

N(β̂
∗
CCEMG,ẋ − β̂CCEMG,ẋ) ≤ x)− Φ(x; 0k×1, Ων)

∣∣∣→p 0

which is in turn guaranteed by Polya’s Theorem because (3.106) holds in probability. Hence, uniform
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consistency follows:

sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEMG,ẋ − β̂CCEMG,ẋ) ≤ x]− P[

√
NT(β̂CCEP,ẋ − β) ≤ x]

∣∣∣
= sup

x∈Rk×1

∣∣∣ (P∗[
√

NT(β̂
∗
CCEMG,ẋ − β̂CCEMG,ẋ) ≤ x]− Φ(x; 0k×1, Ων

)
−
(

P[
√

NT(β̂CCEMG,ẋ − β) ≤ x]− Φ(x; 0k×1, Ων)
) ∣∣∣

≤ sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEMG,ẋ − β̂CCEMG,ẋ) ≤ x]− Φ(x; 0k×1, Ων)

∣∣∣
+ sup

x∈Rk×1

∣∣∣P[
√

NT(β̂CCEMG,ẋ − β) ≤ x]− Φ(x; 0k×1, Ων)
∣∣∣

= op(1), (3.107)

which completes the proof.

The argument for mx = g is exact the same as in the discussion of Theorem 4.

4 Variance Estimators

Theorem 5. Under Assumptions 1 - 7, for either mx < g or mx = g as (N, T) → ∞

(a) NΘ̂CCEP,ẋ →p Σ−1ΨνΣ−1

(b) NΘ̂CCEMG,ẋ →p Ων.

Proof. (a) The proofs for either mx < g or mx = g are identical as in the latter case the remainder will

be of even lower order. Let Q̂ẋ,i = T−1XiMF̂ẋ
Xi. We firstly find the workable expression of Q̂ẋ,i(β̂ẋ,i −

β̂CCEMG,ẋ). Notice how

β̂ẋ,i − β̂CCEMG,ẋ = Q̂−1
ẋ,i T−1X′

iMF̂ẋ
yi −

1
N

N

∑
i=1

Q̂−1
ẋ,i T−1X′

iMF̂ẋ
yi

= νi −
1
N

N

∑
i=1

νi + Q̂−1
ẋ,i

(
T−1X′

iMF̂ẋ
Fyγi + T−1X′

iMF̂ẋ
εi

)
− 1

N

N

∑
i=1

Q̂−1
ẋ,i

(
T−1X′

iMF̂ẋ
Fyγi + T−1X′

iMF̂ẋ
εi

)
= νi + op(1), (4.1)

because 1
N ∑N

i=1 νi = Op(N−1/2),
∥∥∥T−1X′

iMF̂ẋ
εi

∥∥∥ = op(1) and
∥∥∥T−1X′

iMF̂ẋ
Fyγi

∥∥∥ = op(1), which come
directly from (3.49) and (3.71), respectively. Also,∥∥∥∥∥ 1

N

N

∑
i=1

Q̂−1
ẋ,i

(
T−1X′

iMF̂ẋ
Fyγi + T−1X′

iMF̂ẋ
εi

)∥∥∥∥∥
≤ sup

i

∥∥∥Q̂−1
ẋ,i

∥∥∥ 1
N

N

∑
i=1

∥∥∥T−1X′
iMF̂ẋ

Fyγi

∥∥∥+ sup
i

∥∥∥Q̂−1
ẋ,i

∥∥∥ 1
N

N

∑
i=1

∥∥∥T−1X′
iMF̂ẋ

εi

∥∥∥
= op(1). (4.2)
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Therefore, because
∥∥∥Q̂ẋ,i

∥∥∥ = Op(1), we have that

Q̂ẋ,i(β̂ẋ,i − β̂CCEMG,ẋ) = Q̂ẋ,iνi + op(1). (4.3)

By using this, we obtain

NΘ̂CCEP,ẋ = N

( 1
N

N

∑
i=1

Q̂ẋ,i

)−1
1

N(N − 1)

N

∑
i=1

Q̂ẋ,i(β̂ẋ,i − β̂CCEMG,ẋ)(β̂ẋ,i − β̂CCEMG,ẋ)
′Q̂ẋ,i

(
1
N

N

∑
i=1

Q̂ẋ,i

)−1


=

(
1
N

N

∑
i=1

Q̂ẋ,i

)−1
1

N − 1

N

∑
i=1

Q̂ẋ,iνiν
′
iQ̂ẋ,i

(
1
N

N

∑
i=1

Q̂ẋ,i

)−1

+ op(1)

=

(
1
N

N

∑
i=1

T−1V′
iVi

)−1
1

N − 1

N

∑
i=1

(T−1V′
iVi)νiν

′
i(T

−1V′
iVi)

(
1
N

N

∑
i=1

T−1V′
iVi

)−1

+ op(1)

→p Σ−1ΨνΣ−1 (4.4)

as (N, T) → ∞.

(b) The result comes immediately from (4.1):

NΘ̂CCEMG,ẋ =
1

N − 1

N

∑
i=1

(β̂ẋ,i − β̂CCEMG,ẋ)(β̂ẋ,i − β̂CCEMG,ẋ)
′

=
1

N − 1

N

∑
i=1

νiν
′
i + op(1)

→p Ων (4.5)

as (N, T) → ∞.

Theorem 7. Under Assumptions 1 - 7, for either mx < g or mx = g as (N, T) → ∞

(a) NΘ̂
∗
CCEP,ẋ →p∗ Σ−1ΨνΣ−1

(b) NΘ̂
∗
CCEMG,ẋ →p∗ Ων.

Proof. (a) The proofs for either mx < g or mx = g are again identical since in the latter case the remainder

will be of even lower order in bootstrap probability measure. Generally, the proof follows Theorem 5
closely. Let Q̂∗

ẋ,i = T−1XiMF̂∗
ẋ
Xi. The first part of the workable expression of Q̂∗

ẋ,i(β̂
∗
ẋ,i − β̂

∗
CCEMG,ẋ) is given

by

β̂
∗
ẋ,i − β̂

∗
CCEMG,ẋ = Q̂∗−1

ẋ,i T−1X′
iMF̂∗

ẋ
yi −

1
N

N

∑
i=1

siQ̂∗−1
ẋ,i T−1X′

iMF̂ẋ
yi

= νi −
1
N

N

∑
i=1

siνi + Q̂∗−1
ẋ,i

(
T−1X′

iMF̂∗
ẋ
Fyγi + T−1X′

iMF̂∗
ẋ
εi

)
− 1

N

N

∑
i=1

siQ̂∗−1
ẋ,i

(
T−1X′

iMF̂ẋ
Fyγi + T−1X′

iMF̂∗
ẋ
εi

)
= νi + op∗(1), (4.6)
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since 1
N ∑N

i=1 siνi = Op∗(N−1/2),
∥∥∥T−1X′

iMF̂∗
ẋ
εi

∥∥∥ = op∗(1) and
∥∥∥T−1X′

iMF̂∗
ẋ
Fyγi

∥∥∥ = op∗(1), which come
from the proof of Theorem 6. Also,∥∥∥∥∥ 1

N

N

∑
i=1

siQ̂∗−1
ẋ,i

(
T−1X′

iMF̂∗
ẋ
Fyγi + T−1X′

iMF̂∗
ẋ
εi

)∥∥∥∥∥
≤ sup

i

∥∥∥Q̂∗−1
ẋ,i

∥∥∥ 1
N

N

∑
i=1

|si|
∥∥∥T−1X′

iMF̂∗
ẋ
Fyγi

∥∥∥+ sup
i

∥∥∥Q̂∗−1
ẋ,i

∥∥∥ 1
N

N

∑
i=1

|si|
∥∥∥T−1X′

iMF̂∗
ẋ
εi

∥∥∥
= op∗(1). (4.7)

Therefore, because
∥∥∥Q̂∗

ẋ,i

∥∥∥ = Op∗(1), we have that

Q̂∗
ẋ,i(β̂

∗
ẋ,i − β̂

∗
CCEMG,ẋ) = Q̂∗

ẋ,iνi + op(1). (4.8)

Based on these arguments, we again obtain

NΘ̂
∗
CCEP,ẋ

= N

( 1
N

N

∑
i=1

siQ̂∗
ẋ,i

)−1
1

N(N − 1)

N

∑
i=1

siQ̂∗
ẋ,i(β̂

∗
ẋ,i − β̂

∗
CCEMG,ẋ)(β̂

∗
ẋ,i − β̂

∗
CCEMG,ẋ)

′Q̂∗
ẋ,i

(
1
N

N

∑
i=1

siQ̂∗
ẋ,i

)−1


=

(
1
N

N

∑
i=1

siQ̂∗
ẋ,i

)−1
1

N − 1

N

∑
i=1

siQ̂∗
ẋ,iνiν

′
iQ̂

∗
ẋ,i

(
1
N

N

∑
i=1

siQ̂∗
ẋ,i

)−1

+ op∗(1)

=

(
1
N

N

∑
i=1

T−1siV′
iVi

)−1
1

N − 1

N

∑
i=1

si(T−1V′
iVi)νiν

′
i(T

−1V′
iVi)

(
1
N

N

∑
i=1

siT−1V′
iVi

)−1

+ op∗(1)

→p∗ Σ−1ΨνΣ−1 (4.9)

as (N, T) → ∞.

(b) Similarly to Theorem 5, the result comes immediately from (4.6):

NΘ̂
∗
CCEMG,ẋ =

1
N − 1

N

∑
i=1

si(β̂
∗
ẋ,i − β̂

∗
CCEMG,ẋ)(β̂

∗
ẋ,i − β̂

∗
CCEMG,ẋ)

′

=
1

N − 1

N

∑
i=1

siνiν
′
i + op∗(1)

→p∗ Ων (4.10)

as (N, T) → ∞.

5 Discussion on General Unknown Factors

Proposition 1. Under Assumptions 1 - 7 for mx < g as (N, T) → ∞ with TN−1 → τ > 0, plus a covariance
stationary Fy, we have the following asymptotic representations:

(a) (heterogeneous case)
√

N(β̂CCEP,ẋ − β) = Σ−1 1√
N

N

∑
i=1

Σiνi + op(1),

√
N(β̂CCEMG,ẋ − β) =

1√
N

N

∑
i=1

νi + op(1).
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If, in addition, ΣFx,y is deterministic, then

(b) (homogeneous case)
√

NT(β̂CCEP,ẋ − β)

= Σ−1

(
1√
N

N

∑
i=1

[
T−1/2V′

iεi + ΘiD−1
T,F,mvec(V′

iF)
]
+
√

τh1(ΣFxy) + h2

)
+ op(1),

where Θi is a random matrix that is a function of loadings. Also, h1 and h2 are equivalents of the respective terms
in Theorem 1.

Proof. (a) We begin with the CCEP estimator under heterogeneous slopes, where we use the expansion

√
N(β̂CCEP,ẋ − β) =

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi

+

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

εi

+

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi

= I + II + III, (5.1)

which can be simplified by using results from Stauskas (2022), where general factors under heterogeneous
slopes were explored under common F. Particularly, by using Theorem 2 in the latter study, we obtain

I = Σ−1 1√
N

N

∑
i=1

Σiνi + op(1) (5.2)

and

∥II∥ = op(1), (5.3)

where the negligible terms are of the same or lower order because F̂ẋ ⊂ F̂ is independent form εi for all i.
By the same Theorem 2,∥∥∥∥∥∥

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
∥∥∥∥∥∥ = Op(1), (5.4)

therefore

√
N(β̂CCEP,ẋ − β) = Σ−1 1√

N

N

∑
i=1

Σiνi

+

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1

︸ ︷︷ ︸
Op(1)

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi + op(1). (5.5)
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In what remains, we will focus on the numerator of III, which can be further decomposed into

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi =
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′MF̂ẋ
Fyγi

=
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′MF̂0
ẋ
Fyγi

=
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′MF0
ẋ
Fyγi

− 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyγi

=
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′Fyγi −
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′PF0
ẋ
Fyγi

− 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyγi

= A − B − C, (5.6)

where clearly,

∥A∥ ≤
∥∥∥∥∥ 1√

N

N

∑
i=1

T−1V′
iFyγi

∥∥∥∥∥+
∥∥∥∥∥ 1√

N

N

∑
i=1

Γ′
iΓ

+′
ẍ T−1V′

ẍFyγi

∥∥∥∥∥ = Op(T−1/2)

as it follows (3.10) since Fy is assumed to be covariance stationary. Moving on to B, we obtain

∥B∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′PF0
ẋ
Fyγi

∥∥∥∥∥
=

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′PFx Fyγi

∥∥∥∥∥
≤
∥∥∥∥∥ 1√

N

N

∑
i=1

T−1V′
iPFx Fyγi

∥∥∥∥∥+
∥∥∥∥∥ 1√

N

N

∑
i=1

Γ′
iΓ

+′
ẍ T−1V′

ẍPFx Fyγi

∥∥∥∥∥
≤ T−1/2

∥∥∥∥∥ 1√
N

N

∑
i=1

(
γ′

i ⊗ V′
iFxD−1

T,x

)∥∥∥∥∥ ∥∥∥(D−1
T,xF′

xFxD−1
T,x)

+
∥∥∥ ∥∥∥D−1

T,xF′
xFyD−1

T,y

∥∥∥
+ T−1/2

∥∥∥∥∥ 1
N

N

∑
i=1

(γi ⊗ Γi)

∥∥∥∥∥ ∥∥∥Γ
+′
ẍ

√
NV′

ẍFxD−1
T,x

∥∥∥ ∥∥∥(D−1
T,xF′

xFxD−1
T,x)

+
∥∥∥ ∥∥∥D−1

T,xF′
xFyD−1

T,y

∥∥∥
= Op(T−1/2), (5.7)

because T−1/2Fy = FyImy T−1/2 = FyD−1
T,y. We finally move to C, where we use the expansion adapted

from Westerlund (2018):

MF0
ẋ
− MF̂ẋ

= MF0
ẋ
− MF̂0

ẋ
= T−1V0

ẍ,−mx
(T−1V0′

ẍ,−mx
V0

ẍ,−mx
)+V0′

ẍ,−mx
+ V0

ẍ,mx
D−1

T,xΣ+
Fx

D−1
T,xV0′

ẍ,mx

+ V0
ẍ,mx

D−1
T,xΣ+

Fx
D−1

T,xF′
x + FxD−1

T,xΣ+
Fx

D−1
T,xV0′

ẍ,mx

+ F̂0
ẋD−1

T,x̂

[
(D−1

T,x̂F̂0′
ẋ F̂0

ẋD−1
T,x̂)

+ − Σ+
F0

ẋ,v

]
D−1

T,x̂F̂0′
ẋ

+ FxD−1
T,x(Σ

+
Fx
− (D−1

T,xF′FD−1
T,x)

+)D−1
T,xF′

x, (5.8)
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where

DT,x̂ = diag
[
DT,x,

√
TIk−mx

]
, (5.9)

which is needed to handle the k > mx case, and∥∥∥(D−1
T,x̂F̂0′

ẋ F̂0
ẋD−1

T,x̂)
+ − Σ+

F0
ẋ,v

∥∥∥ = Op(N−1/2) + Op(T−κ/2), (5.10)

which now takes into account the general factors. We split C into

C =
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyγi =

1√
N

N

∑
i=1

T−1V′
i(MF0

ẋ
− MF̂0

ẋ
)Fyγi

− 1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍ(MF0
ẋ
− MF̂0

ẋ
)Fyγi

= C1 − C2, (5.11)

which we split further according to the components of (5.8). Hence,

∥C11∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iT

−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyγi

∥∥∥∥∥
=

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iT

−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyγ

∥∥∥∥∥
+

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iT

−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

∥∥∥∥∥
≤
∥∥∥√NT−1V′V0

ẍ,−mx

∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1V0′

ẍ,−mx
Fyγ

∥∥∥
+

∥∥∥∥∥vec

(
1√
N

N

∑
i=1

T−1V′
iT

−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

)∥∥∥∥∥
=
∥∥∥√NT−1V′V0

ẍ,−mx

∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1V0′

ẍ,−mx
Fyγ

∥∥∥
+

∥∥∥∥∥ 1√
N

N

∑
i=1

(
η′γ,i ⊗ T−1V′

iV
0
ẍ,−mx

)
vec
(
(T−1V0′

ẍ,−mx
V0

ẍ,−mx
)+T−1V0′

ẍ,−mx
Fy

)∥∥∥∥∥
≤
∥∥∥√NT−1V′V0

ẍ,−mx

∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1V0′

ẍ,−mx
Fyγ

∥∥∥
+

1√
T

∥∥∥∥∥ 1√
N

N

∑
i=1

(
η′γ,i ⊗ T−1V′

iV
0
ẍ,−mx

)∥∥∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1/2F′

yV0
ẍ,−mx

∥∥∥
= Op(T−1/2), (5.12)

which is driven by the first additive term, because

1√
T

∥∥∥∥∥ 1√
N

N

∑
i=1

(
η′γ,i ⊗ T−1V′

iV
0
ẍ,−mx

)∥∥∥∥∥ = Op(T−1) + Op((NT)−1/2). (5.13)

Next up

∥C12∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iV

0
ẍ,mx

D−1
T,xΣ+

Fx
D−1

T,xV0′
ẍ,mx

Fyγi

∥∥∥∥∥
≤ 1√

T
1
N

N

∑
i=1

∥∥∥T−1V′
iV

0
ẍ,mx

∥∥∥ ∥∥∥√TD−1
T,x

∥∥∥2 ∥∥∥√NT−1/2V0′
ẍ,mx

Fyγi

∥∥∥ ∥ΣFx∥

= Op(N−1T−1/2) + Op(N−1/2T−1) (5.14)
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and

∥C13∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iV

0
ẍ,mx

D−1
T,xΣ+

Fx
D−1

T,xF′
xFyγi

∥∥∥∥∥
≤ 1

N

N

∑
i=1

∥∥∥√NT−1V′
iV

0
ẍ,mx

∥∥∥ ∥∥∥√TD−1
T,x

∥∥∥ ∥ΣFx∥
∥∥∥D−1

T,xF′
xFyD−1

T,y

∥∥∥ ∥γi∥

= Op(N−1/2) + Op(T−1/2), (5.15)

and

∥C14∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iFxD−1

T,xΣ+
Fx

D−1
T,xV0′

ẍ,mx
Fyγi

∥∥∥∥∥
≤ 1

T
1
N

N

∑
i=1

∥∥∥V′
iFxD−1

T,x

∥∥∥ ∥∥∥√TD−1
T,x

∥∥∥ ∥∥∥√NT−1/2V0′
ẍ,mx

Fyγi

∥∥∥ ∥∥∥Σ+
Fx

∥∥∥
= Op(T−1). (5.16)

Eventually, we obtain the following:

∥C15∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iF̂

0
ẋD−1

T,x̂

[
(D−1

T,x̂F̂0′
ẋ F̂0

ẋD−1
T,x̂)

+ − Σ+
F0

ẋ,v

]
D−1

T,x̂F̂0′
ẋ Fyγi

∥∥∥∥∥
≤
∥∥∥∥∥ 1√

N

N

∑
i=1

T−1V′
iF̂

0
ẋD−1

T,x̂

[
(D−1

T,x̂F̂0′
ẋ F̂0

ẋD−1
T,x̂)

+ − Σ+
F0

ẋ,v

]
D−1

T,x̂F̂0′
ẋ Fyγ

∥∥∥∥∥
+

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iF̂

0
ẋD−1

T,x̂

[
(D−1

T,x̂F̂0′
ẋ F̂0

ẋD−1
T,x̂)

+ − Σ+
F0

ẋ,v

]
D−1

T,x̂F̂0′
ẋ Fyηγ,i

∥∥∥∥∥
≤
∥∥∥T−1/2

√
NV′F̂0

ẋD−1
T,x̂

∥∥∥ ∥∥∥(D−1
T,x̂F̂0′

ẋ F̂0
ẋD−1

T,x̂)
+ − Σ+

F0
ẋ,v

∥∥∥ ∥∥∥D−1
T,x̂F̂0′

ẋ FyD−1
T,y

∥∥∥ ∥γ∥

+

∥∥∥∥∥ 1√
N

N

∑
i=1

(
η′γ,i ⊗ T−1/2V′

iF̂
0
ẋD−1

T,x̂

)∥∥∥∥∥ ∥∥∥(D−1
T,x̂F̂0′

ẋ F̂0
ẋD−1

T,x̂)
+ − Σ+

F0
ẋ,v

∥∥∥ ∥∥∥D−1
T,x̂F̂0′

ẋ FyD−1
T,y

∥∥∥
= Op(N−1/2) + Op(T−κ/2), (5.17)

which is driven by the first additive term, because∥∥∥T−1/2
√

NV′F̂0
ẋD−1

T,x̂

∥∥∥ ≤
∥∥∥√NT−1V′V0

ẍ

∥∥∥ ∥∥∥√TD−1
T,x̂

∥∥∥+ T−1/2
∥∥∥√NV′F0

xD−1
T,x̂

∥∥∥
= Op(1) (5.18)

and

E

∥∥∥∥∥ 1√
N

N

∑
i=1

(
η′γ,i ⊗ T−1/2V′

iF̂
0
ẋD−1

T,x̂

)∥∥∥∥∥
2


=
1
N

N

∑
i=1

N

∑
j=1

tr
[
E
(

η′γ,iηγ,j

)
⊗ E

(
T−1V′

iF̂
0
ẋD−1

T,x̂D−1
T,x̂F̂0′

ẋ Vj

)]
=

1
N

N

∑
i=1

tr
[
E
(

η′γ,iηγ,i

)
⊗ E

(
T−1V′

iF̂
0
ẋD−1

T,x̂D−1
T,x̂F̂0′

ẋ Vi

)]
=

1
N

N

∑
i=1

E
(

η′γ,iηγ,i

)
tr
[
E
(

T−1V′
iF̂

0
ẋD−1

T,x̂D−1
T,x̂F̂0′

ẋ Vi

)]
= O(1). (5.19)
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Finally,

∥C16∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iFxD−1

T,x(Σ
+
Fx
− (D−1

T,xF′FD−1
T,x)

+)D−1
T,xF′

xFyγi

∥∥∥∥∥
≤ 1√

T

∥∥∥∥∥ 1√
N

N

∑
i=1

(
γ′

i ⊗ V′
iFxD−1

T,x

)∥∥∥∥∥ ∥∥∥Σ+
Fx
− (D−1

T,xF′FD−1
T,x)

+
∥∥∥ ∥∥∥D−1

T,xF′
xFyD−1

T,y

∥∥∥
= Op(T−(κ+1)/2), (5.20)

which follows from

E

∥∥∥∥∥ 1√
N

N

∑
i=1

(
γ′

i ⊗ V′
iFxD−1

T,x

)∥∥∥∥∥
2
 =

1
N

N

∑
i=1

N

∑
j=1

E
(

tr
[
γ′

iγj ⊗ V′
iFxD−1

T,xD−1
T,xF′

xVj

])

=
1
N

N

∑
i=1

E
(

tr
[
γ′

iγi ⊗ V′
iFxD−1

T,xD−1
T,xF′

xVi

])
=

1
N

N

∑
i=1

E
(
γ′

iγi
)

tr
[
E
(

V′
iF

′
xD−1

T,xD−1
T,xF′

xVi

)]
= O(1). (5.21)

We next, move on to C2 and split it further according to (5.8), as well. Therefore,

∥C21∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍT−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyγi

∥∥∥∥∥
≤ 1√

T
1
N

N

∑
i=1

∥∥∥Γ′
iΓ

+′
ẍ

∥∥∥ ∥∥∥√NT−1V′
ẍV0

ẍ,−mx

∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1/2V0′

ẍ,−mx
Fyγi

∥∥∥
= Op(T−1/2). (5.22)

Next,

∥C22∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍV0
ẍ,mx

D−1
T,xΣ+

Fx
D−1

T,xV0′
ẍ,mx

Fyγi

∥∥∥∥∥
≤ 1

N
√

T
1
N

N

∑
i=1

∥∥∥Γ′
iΓ

+′
ẍ

∥∥∥ ∥∥∥NT−1V′
ẍV0

ẍ,mx

∥∥∥ ∥∥∥√TD−1
T,x

∥∥∥2 ∥∥∥Σ+
Fx

∥∥∥ ∥∥∥T−1/2
√

NV0′
ẍ,mx

Fyγi

∥∥∥
= Op(N−1T−1/2), (5.23)

and

∥C23∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍV0
ẍ,mx

D−1
T,xΣ+

Fx
D−1

T,xF′
xFyγi

∥∥∥∥∥
≤ 1

N

N

∑
i=1

∥∥∥Γ′
iΓ

+′
ẍ

∥∥∥ ∥∥∥T−1
√

NV′
ẍV0

ẍ,mx

∥∥∥ ∥∥∥√TD−1
T,x

∥∥∥ ∥∥∥Σ+
Fx

∥∥∥ ∥∥∥D−1
T,xF′

xFyD−1
T,y

∥∥∥ ∥γi∥

= Op(N−1/2) (5.24)
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with

∥C24∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍFxD−1
T,xΣ+

Fx
D−1

T,xV0′
ẍ,mx

Fyγi

∥∥∥∥∥
≤ 1

T
1
N

N

∑
i=1

∥∥∥Γ′
iΓ

+′
ẍ

∥∥∥ ∥∥∥√NV′
ẍFxD−1

T,x

∥∥∥ ∥∥∥Σ+
Fx

∥∥∥ ∥∥∥√TD−1
T,x

∥∥∥ ∥∥∥T−1/2V0′
ẍ,mx

Fyγi

∥∥∥
= Op(N−1/2T−1) (5.25)

and

∥C25∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍF̂0
ẋD−1

T,x̂

[
(D−1

T,x̂F̂0′
ẋ F̂0

ẋD−1
T,x̂)

+ − Σ+
F0

ẋ,v

]
D−1

T,x̂F̂0′
ẋ Fyγi

∥∥∥∥∥
≤ 1

N

N

∑
i=1

∥∥∥Γ′
iΓ

+′
ẍ

∥∥∥ ∥∥∥√NT−1/2V′
ẍF̂0

ẋD−1
T,x̂

∥∥∥ ∥∥∥(D−1
T,x̂F̂0′

ẋ F̂0
ẋD−1

T,x̂)
+ − Σ+

F0
ẋ,v

∥∥∥
×
∥∥∥D−1

T,x̂F̂0′
ẋ FyD−1

T,y

∥∥∥ ∥γi∥

= Op(N−1/2) + Op(T−κ/2). (5.26)

Finally,

∥C26∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍFxD−1
T,x(Σ

+
Fx
− (D−1

T,xF′FD−1
T,x)

+)D−1
T,xF′

xFyγi

∥∥∥∥∥
≤ 1√

T
1
N

N

∑
i=1

∥∥∥Γ′
iΓ

+′
ẍ

∥∥∥ ∥∥∥√NV′
ẍFxD−1

T,x

∥∥∥ ∥∥∥Σ+
Fx
− (D−1

T,xF′FD−1
T,x)

+
∥∥∥

×
∥∥∥D−1

T,xF′
xFyD−1

T,y

∥∥∥ ∥γi∥

= Op(T−(κ+1)/2). (5.27)

Overall, we have∥∥∥∥∥ 1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi

∥∥∥∥∥ = Op(N−1/2) + Op(T−κ/2), (5.28)

and so

√
N(β̂CCEP,ẋ − β) = Σ−1 1√

N

N

∑
i=1

Σiνi

+

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1

︸ ︷︷ ︸
Op(1)

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi + op(1)

= Σ−1 1√
N

N

∑
i=1

Σiνi + op(1), (5.29)

which completes the proof.
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Clearly, the same result holds under mx = g. The subtle and important difference is using a different
expansion:

MF0
ẋ
− MF̂0

ẋ
= MFxΓẍ

− MF̂ẋ

= MFx − M
F̂ẋΓ

−1
ẍ

= VẍΓ
−1
ẍ D−1

T,x(D
−1
T,xΓ

−1′
ẍ F̂′

ẋF̂ẋΓ
−1
ẍ D−1

T,x)
+D−1

T,xΓ
−1′
ẍ V′

ẍ

+ VẍΓ
−1
ẍ D−1

T,x(D
−1
T,xΓ

−1′
ẍ F̂′

ẋF̂ẋΓ
−1
ẍ D−1

T,x)
+D−1

T,xF′
x

+ FxD−1
T,x(D

−1
T,xΓ

−1′
ẍ F̂′

ẋF̂ẋΓ
−1
ẍ D−1

T,x)
+D−1

T,xΓ
−1′
ẍ V′

ẍ

+ FxD−1
T,x

[
(D−1

T,xΓ
−1′
ẍ F̂′

ẋF̂ẋΓ
−1
ẍ D−1

T,x)
+ − Σ+

Fx

]
D−1

T,xF′

+ FxD−1
T,x

[
Σ+

Fx
− (D−1

T,xF′
xFxD−1

T,x)
+
]

D−1
T,xF′

x, (5.30)

which is just a different rotation of (3.41), which uses the fact that Γẍ is square and invertible. This rotation
is necessary in the non-stationary case in order to ensure that we work with

∥∥∥D−1
T,xF′

xVi

∥∥∥ and similar terms

that are bounded in probability, because
∥∥∥D−1

T,xΓ
′
ẍF′

xVi

∥∥∥may not be, unless Fx is of single integration order.

The proof of CCEMG case closely follows Theorem 4:

√
N(β̂CCEMG,ẋ − β) =

1√
N

N

∑
i=1

νi +
1√
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
Fyγi

+
1√
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
εi

=
1√
N

N

∑
i=1

νi +
1√
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
Fyγi

+ op(1), (5.31)

where the second term is negligible under general unknown factors as shown in Theorem 1 of Stauskas
(2022), but in the current case the remainder terms are of even lower order, because only Fx is being
approximated. To show that the first term is negligible as well, we use the interim results leading to the
same Theorem 1 of Stauskas (2022), which tell that∥∥∥∥(T−1X′

iMF̂ẋ
Xi

)−1
T−1 − Σ−1

i

∥∥∥∥ = Op(N−1) + Op(T−1/2) + Op(N−1/2T−κ/2). (5.32)

Therefore,∥∥∥∥∥ 1√
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
Fyγi

∥∥∥∥∥ ≤
∥∥∥∥∥ 1√

N

N

∑
i=1

Σ−1
i T−1X′

iMF̂ẋ
Fyγi

∥∥∥∥∥
+
√

N sup
i

∥∥∥∥(T−1X′
iMF̂ẋ

Xi

)−1
− Σ−1

i

∥∥∥∥ 1
N

N

∑
i=1

∥∥∥T−1X′
iMF̂ẋ

Fyγi

∥∥∥
= op(1) (5.33)

under TN−1 = O(1), because by the same steps as in the CCEP part, we have that
∥∥∥T−1X′

iMF̂ẋ
Fyγi

∥∥∥ =

op(1). The first term is negligible as well, because it is almost identical (5.6), as scaling by Σ−1
i will not
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change the orders. For example, by implementing the same decomposition as in (5.6), we get∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1(Vi − VẍΓ

+
ẍ Γi)

′Fyγi

∥∥∥∥∥ ≤
∥∥∥∥∥ 1√

N

N

∑
i=1

Σ−1
i T−1V′

iFyγi

∥∥∥∥∥
+

∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i Γ′

iΓ
+′
ẍ T−1V′

ẍFyγi

∥∥∥∥∥ = Op(T−1/2), (5.34)

or ∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1(Vi − VẍΓ

+
ẍ Γi)

′PF0
ẋ
Fyγi

∥∥∥∥∥
=

∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1(Vi − VẍΓ

+
ẍ Γi)

′PFx Fyγi

∥∥∥∥∥
≤
∥∥∥∥∥ 1√

N

N

∑
i=1

Σ−1
i T−1V′

iPFx Fyγi

∥∥∥∥∥+
∥∥∥∥∥ 1√

N

N

∑
i=1

Σ−1
i Γ′

iΓ
+′
ẍ T−1V′

ẍPFx Fyγi

∥∥∥∥∥
≤ T−1/2

∥∥∥∥∥ 1√
N

N

∑
i=1

(
γ′

i ⊗ Σ−1
i V′

iFxD−1
T,x

)∥∥∥∥∥ ∥∥∥(D−1
T,xF′

xFxD−1
T,x)

+
∥∥∥ ∥∥∥D−1

T,xF′
xFyD−1

T,y

∥∥∥
+ T−1/2

∥∥∥∥∥ 1
N

N

∑
i=1

(
γi ⊗ ΓiΣ

−1
i

)∥∥∥∥∥ ∥∥∥Γ
+′
ẍ

√
NV′

ẍFxD−1
T,x

∥∥∥ ∥∥∥(D−1
T,xF′

xFxD−1
T,x)

+
∥∥∥ ∥∥∥D−1

T,xF′
xFyD−1

T,y

∥∥∥
= Op(T−1/2). (5.35)

Lastly,∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1(Vi − VẍΓ

+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyγi

∥∥∥∥∥
≤
∥∥∥∥∥ 1√

N

N

∑
i=1

Σ−1
i T−1V′

i(MF0
ẋ
− MF̂0

ẋ
)Fyγi

∥∥∥∥∥
+

∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1Γ′

iΓ
+′
ẍ V′

ẍ(MF0
ẋ
− MF̂0

ẋ
)Fyγi

∥∥∥∥∥
= Op(N−1/2) + Op(T−κ/2), (5.36)
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as the simpler second term is bounded by∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1Γ′

iΓ
+′
ẍ V′

ẍ(MF0
ẋ
− MF̂0

ẋ
)Fyγi

∥∥∥∥∥
≤ 1√

T
1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ′
iΓ

+′
ẍ

∥∥∥ ∥∥∥√NT−1V′
ẍV0

ẍ,−mx

∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1/2V0′

ẍ,−mx
Fyγi

∥∥∥
+

1
N
√

T
1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ′
iΓ

+′
ẍ

∥∥∥ ∥∥∥NT−1V′
ẍV0

ẍ,mx

∥∥∥ ∥∥∥√TD−1
T,x

∥∥∥2 ∥∥∥Σ+
Fx

∥∥∥ ∥∥∥T−1/2
√

NV0′
ẍ,mx

Fyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ′
iΓ

+′
ẍ

∥∥∥ ∥∥∥T−1
√

NV′
ẍV0

ẍ,mx

∥∥∥ ∥∥∥√TD−1
T,x

∥∥∥ ∥∥∥Σ+
Fx

∥∥∥ ∥∥∥D−1
T,xF′

xFyD−1
T,y

∥∥∥ ∥γi∥

+
1
T

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ′
iΓ

+′
ẍ

∥∥∥ ∥∥∥√NV′
ẍFxD−1

T,x

∥∥∥ ∥∥∥Σ+
Fx

∥∥∥ ∥∥∥√TD−1
T,x

∥∥∥ ∥∥∥T−1/2V0′
ẍ,mx

Fyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ′
iΓ

+′
ẍ

∥∥∥ ∥∥∥√NT−1/2V′
ẍF̂0

ẋD−1
T,x̂

∥∥∥ ∥∥∥(D−1
T,x̂F̂0′

ẋ F̂0
ẋD−1

T,x̂)
+ − Σ+

F0
ẋ,v

∥∥∥
×
∥∥∥D−1

T,x̂F̂0′
ẋ FyD−1

T,y

∥∥∥ ∥γi∥

+
1√
T

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ′
iΓ

+′
ẍ

∥∥∥ ∥∥∥√NV′
ẍFxD−1

T,x

∥∥∥ ∥∥∥Σ+
Fx
− (D−1

T,xF′FD−1
T,x)

+
∥∥∥

×
∥∥∥D−1

T,xF′
xFyD−1

T,y

∥∥∥ ∥γi∥

+ Op(N−1/2) + Op(T−κ/2), (5.37)

which is driven by the second-to-last term, whereas the first term is bounded by∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1V′

i(MF0
ẋ
− MF̂0

ẋ
)Fyγi

∥∥∥∥∥
≤ 1

N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥√NT−1V′
iV

0
ẍ,−mx

∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1V0′

ẍ,−mx
Fyγi

∥∥∥
+

1√
T

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥T−1V′
iV

0
ẍ,mx

∥∥∥ ∥∥∥√TD−1
T,x

∥∥∥2 ∥∥∥√NT−1/2V0′
ẍ,mx

Fyγi

∥∥∥ ∥ΣFx∥

+
1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥√NT−1V′
iV

0
ẍ,mx

∥∥∥ ∥∥∥√TD−1
T,x

∥∥∥ ∥ΣFx∥
∥∥∥D−1

T,xF′
xFyD−1

T,y

∥∥∥ ∥γi∥

+
1
T

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥V′
iFxD−1

T,x

∥∥∥ ∥∥∥√TD−1
T,x

∥∥∥ ∥∥∥√NT−1/2V0′
ẍ,mx

Fyγi

∥∥∥ ∥∥∥Σ+
Fx

∥∥∥
+

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1/2Σ−1
i V′

iF̂
0
ẋD−1

T,x̂

∥∥∥∥∥ ∥∥∥(D−1
T,x̂F̂0′

ẋ F̂0
ẋD−1

T,x̂)
+ − Σ+

F0
ẋ,v

∥∥∥ ∥∥∥D−1
T,x̂F̂0′

ẋ FyD−1
T,y

∥∥∥ ∥γ∥

+

∥∥∥∥∥ 1√
N

N

∑
i=1

(
η′γ,i ⊗ T−1/2Σ−1

i V′
iF̂

0
ẋD−1

T,x̂

)∥∥∥∥∥ ∥∥∥(D−1
T,x̂F̂0′

ẋ F̂0
ẋD−1

T,x̂)
+ − Σ+

F0
ẋ,v

∥∥∥ ∥∥∥D−1
T,x̂F̂0′

ẋ FyD−1
T,y

∥∥∥
+

1√
T

∥∥∥∥∥ 1√
N

N

∑
i=1

(
γ′

i ⊗ Σ−1
i V′

iFxD−1
T,x

)∥∥∥∥∥ ∥∥∥Σ+
Fx
− (D−1

T,xF′FD−1
T,x)

+
∥∥∥ ∥∥∥D−1

T,xF′
xFyD−1

T,y

∥∥∥
= Op(N−1/2) + Op(T−κ/2), (5.38)
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which is driven by the third- and second-to-last terms due to∥∥∥∥∥ 1√
N

N

∑
i=1

T−1/2Σ−1
i V′

iF̂
0
ẋD−1

T,x̂

∥∥∥∥∥ ≤ 1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥T−1
√

NV′
iV

0
ẍ

∥∥∥ ∥∥∥√TD−1
T,x̂

∥∥∥
+

√
N√
T

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥V′
iF

0
ẋD−1

T,x̂

∥∥∥ = Op(1) (5.39)

under TN−1 = O(1).

(b) The proof is almost identical to the proof of Proposition 1 of De Vos and Stauskas (2024), where the
expansion in (5.8) is used instead and by assuming Fx that is trending non-stochastically to ensure that
ΣFx,y is deterministic. An example of this would be fx,t = (1, t, t2, . . . , tmx−1)′ ∈ Rmx and fy,t is covari-
ance stationary with absolute summable autocovariances. Let DT,x = diag(T1/2, T3/2, . . . , T(mx−1/2)) and
DT,y =

√
TImy . Then

ΣFx,y = plim
T→∞

D−1
T,xF′

xFyD−1
T,y = plim

T→∞
D−1

T,x

T

∑
t=1

fx,tf′y,tD
−1
T,y =

∫ 1

s=0

(
s × µ′

fy

)
ds, (5.40)

where s = (1, s, s2, . . . , smx)′, s ∈ [0, 1] and µfy
= E(fy,t). To see how this result comes about, we can

examine a typical element Σ
j,l
Fx,y

= E( fy,l,t)
∫ 1

s=0 sjds for j = 0, . . . , mx − 1 and l = 1, . . . , my. Note how

(
D−1

T,xF′
xFyD−1

T,y

)j,l
=

1
T j+1/2

√
T

T

∑
t=1

tj fy,l,t = E( fy,l,t)
1
T

T

∑
t=1

(t/T)j +
1

T j+1/2
√

T

T

∑
t=1

tj( fy,l,t − E( fy,l,t))

= E( fy,l,t)
1
T

T

∑
t=1

(t/T)j + Op(T−1/2)

→p E( fy,l,t)
∫ 1

s=0
sjds (5.41)

as T → ∞ and

E

[(
1

T j+1/2
√

T

T

∑
t=1

tj( fy,l,t − E( fy,l,t))

)(
1

T j+1/2
√

T

T

∑
r=1

rj( fy,l,r − E( fy,l,r))

)]

=
1

T2jT2

T

∑
t=1

t2jVar( fy,l,t) +
1

T2jT2

T

∑
t=1

T

∑
r ̸=t

tjrjCov( fy,l,t, fy,l,r)

= O(T−1),

since 0 < (t/T)j ≤ 1 = O(1) and hence∣∣∣∣∣ 1
T2jT2

T

∑
t=1

t2jVar( fy,l,t)

∣∣∣∣∣ = 1
T2

T

∑
t=1

(t/T)2j ∣∣Var( fy,l,t)
∣∣

≤ 1
T2

T

∑
t=1

∣∣Var( fy,l,t)
∣∣

= O(T−1) (5.42)
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and ∣∣∣∣∣ 1
T2jT2

T

∑
t=1

T

∑
r ̸=t

tjrjCov( fy,l,t, fy,l,r)

∣∣∣∣∣ ≤ 1
T2jT2

T

∑
t=1

T

∑
r ̸=t

tjrj ∣∣Cov( fy,l,t, fy,l,r)
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=
1

T2

T

∑
t=1

T

∑
r ̸=t

(t/T)j(r/T)j ∣∣Cov( fy,l,t, fy,l,r)
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≤ 1
T2

T

∑
t=1

T

∑
r ̸=t

∣∣Cov( fy,l,t, fy,l,r)
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= O(T−1) (5.43)

due to absolute summable autocovariances.
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