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Abstract

The Common Correlated Effects (CCE) approach by Pesaran (2006) is a popu-
lar method for estimating panel data models with interactive effects. Due to its
simplicity, i.e. unobserved common factors are approximated with cross-section
averages of the observables, the estimator is highly flexible and lends itself to
a wide range of applications. Despite such flexibility, however, properties of
CCE estimators are typically only examined under the restrictive assumption
that all the observed variables load on the same set of factors, which ensures
joint identification of the factor space. In this paper, we take a different per-
spective, and explore the empirically relevant case where the dependent and
explanatory variables are driven by distinct but correlated factors. Hence, we
consider the case of Distinct Correlated Effects. Such settings can be argued to be
relevant for practice, for instance in studies linking economic growth to climatic
variables. In so doing, we consider panel dimensions such that TN~! — 7 < o
as (N, T) — oo, which is known to induce an asymptotic bias for the pooled
CCE estimator even under the usual common factor assumption. We subse-
quently develop a robust boostrap-based toolbox that enables asymptotically
valid inference in both homogeneous and heterogeneous panels, without re-
quiring knowledge about whether factors are distinct or common.

JEL classification: C33, C38, C15
Keywords: panel data, bootstrap, interactive effects, CCE, factors, information cri-
terion



1 Introduction

Consider the interactive effects model for uniti = 1,..., N and period t =1, ..., T,
where y;; € R, x;; € RF and g;+ is a mean zero, weakly dependent idiosyncratic
innovation:

yir = PB'xis+eir, eir = vift +€iy, (1.1)

Equation (1.1) defines a multi-factor error structure, where the panel units exhibit
“strong” cross-section dependence (see e.g. Chudik et al., 2011) due to common un-
observed factors f; € R™ to which they respond with heterogeneous intensities
(loadings) v; € R™. Interactive effects come natural in macroeconomic applications
with panel data where both N and T are large. For instance, f; may represent the
unobserved global technological progress, where v; is the local absorption intensity
(see e.g. Eberhardt and Teal, 2011). For micro applications, see for instance Wester-
lund et al. (2019).

In practice, f; is typically correlated with x; ;. Pesaran (2006), and many subsequent
studies, allow for this possibilty by explicitly letting the regressors be driven by the
same factors, f;:

xi,i’ = r:ft + Vi,l’ (12)

where I; € R"™*k is the loading matrix and v;; € RF is the vector of idiosyncratic
innovations. Model (1.1) - (1.2) then exhibits not only strong cross-section depen-
dence, but also endogeneity, thus making it essential to control for f; in the estima-
tion of B. Under the assumption that factors are common and the matrix of average
loadings C = L YN, C;, with C; = [, + I8, has at least rank m, this is easy
to achieve with the Common Correlated Effects (CCE) approach of Pesaran (2006),
which estimates the factor space with the cross-section averages (CAs) of the observ-
ables f; = z; = % YNz, wherez;; = [y;,, x;,]' € R¥*L. The latter is then added as
a regressor to (1.1), which is in turn estimated by Least Squares (LS). The resulting
estimator is consistent as N — oo and exhibits excellent small sample performance
(see e.g. Westerlund and Urbain, 2015). It has accordingly been applied and ex-
tended to various more general settings, such as structural break modelling or unit
root testing (see e.g. Karavias et al., 2023, and Norkuté and Westerlund, 2021).

In the standard CCE model, the set of CAs z; are sufficiently informative for the m
unobserved factors when rk(C) = m, and f; is then consistent for (the space spanned
by) f:, which is sufficient for consistency. This assumption can be verified with the
procedure in De Vos et al. (2024). Adding 1; as observed regressors and estimating
the resulting model with LS then yields consistent estimates of f as N — oo, for T
tixed or growing (see Westerlund et al., 2019). Asymptotic normal inference ensues
provided TN -1 5 0, whereas if TN~! — T < oo, a bias-correction is unavoidably
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needed due to the accumulation of factor estimation error (see e.g. Westerlund and
Urbain, 2015). This is, however, not straightforward, as the specific structure (func-
tional form) of the bias depends on whether the number of employed averages (g)
exceeds or matches the number of factors (1), because in the former case g — m CAs
are redundant and produce nuisance parameters (see Karabiyik et al., 2017). This
makes the resulting asymptotic bias exceedingly difficult to remedy with analytical
corrections, as not all bias-components (or the functional form) are known or con-
sistently estimable, unless in specific and restrictive settings. De Vos and Stauskas
(2024) therefore provide a consistent bootstrap correction to sidestep the issue and
remedy the bias problem without knowledge of ¢ and m.

Notwithstanding, the common assumption in most theoretical work so far, is that
all the observed variables in (1.1)-(1.2) are driven by the same factors, thus enabling
a straightforward joint estimation of the factor space. In this paper, we challenge
this assumption, and investigate properties of the CCE approach when y;; and x; ;
may be driven by distinct but correlated factors. We refer to this setting as Dis-
tinct Correlated Effects (DCE), as opposed to the standard Common Correlated Effects
(CCE) assumption. The setting is easily seen to be empirically relevant, as it is not
always reasonable to expect factors to be common over all observables. Consider
for example a regression of economic growth on climatic variables in the spirit of
Dell et al. (2012). Unobserved factors underlying the climatic regressors (e.g. global
climate patterns and trends) are likely to be distinct from those directly affecting
economic growth (e.g. technological progress, productivity, business cycles, crises,
according to economic theory). The two sets of factors are, however, likely to be
correlated (climatic hardship drives technological innovation), thus consistency still
requires the unobserved factor space in either y; ; or the regressors to be controlled
for. The asymptotic behavior of the CCE estimators in this case is, however, largely
unknown, so we relax in this paper the common factor assumption, and establish
properties and solutions for CCE estimation in practice.

To make the above discussion a little more precise, we depart from (1.1)-(1.2) by
following Cui et al. (2022) or De Vos and Stauskas (2024), and let

Yip = B'xip + 'Ygfy,t + &t (1.3)
Xit = Lifxr + viy (1.4)

such that fy; € R™ and fy; € R"™* denote respectively the m, factors affecting
the regressand, and the m, factors affecting the regressors. The total number of
factors is then m = my + m, and gathered in f; = [fy ,, £, ,]'. We also explicitly allow
that Cov(fy,, fxt) # Om,xm,, such that factors can be correlated. We will focus in
particular on the case where fy; N fyx; = O, as it is the most extreme/challenging
case for CCE, thereby making the conclusions most relevant for practice. That is,
solutions for the former will also allow consistent inference when fy; C fy;. It is

now easy to see that in the Distinct Correlated Effects setting, the full factor space f;
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is not generally estimable by the CAs. That is, if rk(T) = my, then X; is consistent for
the space spanned by f ;. However, since fy ; loads on y;; only, taking cross-section
averages of (1.3) and rearranging implies that the estimating equation for fy ; would
in principle be:

Ty =7, — X — %,
fyr = (77) 7@, — B’Xe) + Op(N1/2)

since & = Op(N -1/ 2) under our assumptions. Yet, since y € R™*1 we have that
rk(7) < 1, so that the inverse (7%') ! does not exist when m, > 1. In effect, the
rank condition is not generally satisfied for fy; in this distinct factor setting, and
the latter factors cannot be estimated. fy; is thus only estimable with CCE in the
unlikely case that m, = 1, or fy; = fx; = f; (common factors). Since neither of these
special cases is also easy to verify in practice, the properties of CCE need to be veri-
tied and a generally robust approach is needed for inference. This is the objective of
the current paper.

Several versions of the distinct factor case have been considered in the literature
with clear advantages and drawbacks. For example, Bai (2009) or Moon and Wei-
dner (2015) assume no particular model (or factor space) for x;;, and focus on es-
timating the factors in ¢;; from (1.1) only, with Principal Components (PC). While
flexible, this approach relies on a non-linear optimization problem, therefore con-
vergence issues may arise (see e.g. Jiang et al., 2021). For CCE estimators, Juodis
(2022) considers f; = [f; ,, f; ]’ that drives x; ;, while y; ; loads on f; ; only, which can
be nested in (1.1) - (1.2). Here, f;; is not estimable from the CAs since its average
loading has zero rank, therefore the problem differs from ours. The setup closest to
ours is discussed in Cui et al. (2022), who aim to produce an unbiased estimator of
B with the Two Stage Instrumental Variable (2SIV) approach. Specifically, f; is es-
timated with PC, and x; ; is purged of their effect thus “de-correlating” it with ¢; ; in
(1.1) and ensuring consistency (see their Proposition 3.1). Next, PC is applied to the

-~/
first stage residuals y;; — B x;; to extract fy ;. This leads to the second stage, where
fy + is asymptotically purged ensuring an asymptotically standard normal inference.

The CCE estimators are very commonly applied in practice, and it turns out the lat-
ter strategy is partially feasible for CCE estimators too for solving the problem of an
uninformative 7,. As the rank of T is m, by assumption, it validates estimating fy ;
with X; and performing the (first stage) de-correlation step to make CCE consistent.
We will also follow this approach. The second stage purge, however, is not gen-
erally feasible with CCE, but also not necessary for consistency. The consequences
are that fy ; will remain in the residuals of the model, which in turn necessitates the
bootstrap for valid inference. To a limited degree, this route was already taken in
Proposition 1 of De Vos and Stauskas (2024) to illustrate the possibilities of the panel
cross-section (CS) bootstrap scheme by Kapetanios (2008). The key finding is that
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fy + renders the asymptotic distribution of CCE non-standard if m, < g, because the
excess CAs have a non-trivial effect (see a similar finding in Juodis, 2022). They also
demonstrate that the variance and the bias of the asymptotic distribution depend on
the unknown Cov(fy 4, fy,t), which renders both the bias and variance analytically in-
estimable. In turn, they establish conditions under which the CS bootstrap is able to
replicate this distribution. As a result, this re-enables estimation of the asymptotic
variance and remedies bias under the usual TN~! — T < oo asymptotics, in the
spirit of Gongalves and Perron (2014) or Djogbenou et al. (2015). However, the anal-
ysis of distinct factors in De Vos and Stauskas (2024) is restricted to homogeneous S
estimated with the pooled CCE (CCEP) estimator and with covariance stationary f;,
which somewhat limits the generality.

The contribution of the current study is thus the development of the CCE method-
ology in the Distinct Correlated Effects setting. This involves extending the CCE
methodology to handle distinct factors in heterogeneous panels for CCEP and Mean
Group (CCEMGQG) estimators, while establishing an inferential bootstrap toolbox that
is possibly also robust to deviations from stationarity. The key result is that while
the standard asymptotic tools and variance estimators may fail depending on slope
heterogeneity, the asymptotic distributions and biases, if present, can in each case
be captured by the proposed CS bootstrap tools. This leads to a powerful outcome:
asymptotically valid (bootstrap-aided) inference can ensue under uninformative v,
under homogeneity or heterogeneity, so long as the rank of T is m,. The latter, we
note, can be verified with De Vos et al. (2024). This significantly boosts applicability
of the CCE methods.

This paper is organized as follows: Section 2 presents our assumptions, the details
on CCEP and CCEMG and explains the CS bootstrap scheme. In Section 3, we derive
the asymptotic distribution of both estimators in the original and bootstrap samples
and discuss inference. Monte Carlo evidence and a comparison to 2SIV approach
by Cui et al. (2022) are provided in Section 4. We use the following notation: rk(A),
det(A) and tr(A) denote respectively the rank, determinant, and trace of an arbi-
trary matrix A, while vec(A) vectorizes A by stacking its columns on top of each
other. ||A|| = y/tr(A’A) is the Frobenius (Euclidean) norm, while ‘— ;" stands for
convergence in distribution. By diag(A, B), we represent a matrix with A and B as
diagonal blocks. The symbols —« (—p) and —4« (—,) represent convergence in
probability and convergence in distribution with respect to the induced (generic)
probability measure.



2 Econometric Setup

2.1 Assumptions and Estimation
Consider model (1.3) - (1.4) in time-stacked notation fori =1,..., N:

Yy = Xlﬁ + Fy')’l' + &, (21)
X; =FI;+V; (2.2)

such that the set of observables is Z; = [y;, X;], where y; = [yi1,...,yir) € RT*1,
Xi = X1, xi7] € RPE Vi = [vig,..vir) € RP%and & = [ej1,...,ei7)' €
RT*1. Let also F = [Fy, Fx] € RT*", with Fy = [fy1,...,fy 7]’ € RT*™ and Fy =
[fx1, ..., fx 7] € RT*™x. Since we focus on the likely case with my > 1,y is not
generally sufficiently informative to estimate the full Fy. Therefore, we propose to
instead de-correlate the regressors with Fy ; by projecting out the estimated Fx. The

latter factor space can in the Distinct Correlated Effects setting be estimated with X,
since averaging (2.2) over units gives:

Fx=X=FIT+V, (2.3)

which implies, assuming rk(T) = m,, that

Fy = (F,— V)T, (2.4)

where f+ is the MP inverse of T. While the above estima_tor is consistent for Fy, we
note that this does not necessarily require all the CAs in X. As such, we accomodate

the use of subsets of the CA (or IC selection of averages) by defining Fx c R™%asa
selection of g averages from X by the k x ¢ selector qx:
Fi = Xqx = FxI'qx + Vax

For a given subset, the corresponding rank condition needed for consistency is then
rk(T'qx) = my, as in Assumption 4 below. This implies that the chosen subset is
sufficiently informative on Fy.

For the analysis, we work under the following assumptions:

Assumption 1 (Idiosyncratic errors) €;, and v;; are stationary variables, independent
across i with E(e;;) = 0, E(v;¢) = Oy, 07 = E(¢? ) L; = E(visvi,), O = E(ge)),
with Q;, ; positive definite and E(e$,) < oo, B(||v;, f|| ) < oo forall i and t. Additionally,
let @;p = (€4, V lt) Then

T T T T
32222 (18] ;5] ) | = O(1), ZZH]E ;i) = O(1)

tls

as T — oo, whereas %Zfilaf—nfz < ooandﬁzll-il):i%z < ooas N — oo,
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Assumption 2 (Distinct factors) Let fr = (fy, £} )’ be covariance stationary with (| f; ") <
0o, absolute summable autocovariances and T~F'F —P g as T — oo, such that

/
Lp = [;Fy Z;:‘Fx,y]
Fry XF

X

with Lg,, = pli'II.lT oo 'T._lF;Fy denoting the covariance between Fy and Fy. Also Ly, and
and X, are positive definite.

Assumption 3 (Factor loadings) The factor loadings are given by

Vi=7t, Noi ™ IID(Op, x1,€2y)
Li=T+nr;  vec(yp,;) ~ IID(Ogy, <1, Or)

where vy, T are constant matrices, L,r = IE(U%Z- & ’71",1') 1S a covariance matrix, y,, ;, fy ; are

independent across i and of the other model components, and ||y||, |T||, [|Zr ], |||, [|Qr ||
are finite.

Assumption 4 (Rank condition) tk(Tqx) = my, with qx a k x g selector matrix.
Assumption 5 (Independence) £, ¢; , Vil 1, are mutually independent for all i,j,n,t,s,l.
Assumption 6 (Slope heterogeneity) The slopes B; follow

B; =B+ v; ~ 11D (0xx1, Q)

with Qy a finite nonnegative definite k X k matrix and the v; are independent of f1,€;5,v; 1,1,
foralli,j,n,t,s,l.

Assumption 7 (Identification) Qy; = T~'X{Mg X, with Fx = Xqy, is non-singular for
all N, T, and

2
E (H(T—lngfxvi)—lH ) <

also when Fy = Fy, where Mg =Ir— fx(f;l?xﬁf;

The above assumptions are similar to those in Pesaran (2006); Karabiyik et al. (2017)
or Westerlund (2018). Assumption 1, however, generalizes the aforementioned stud-
ies by allowing the idiosyncratic innovations v;; and ¢;; to be both serially corre-
lated and heteroskedastic, unlike in e.g. Karabiyik et al. (2017). The combination
of time series dependence and our TN~! — T < oo asymptotics also necessitates
some stronger requirements, as reflected in the additional summability conditions
for higher moments given in Assumption 1. Assumption 2 imposes covariance sta-
tionarity on the factors specific to the dependent and explanatory variables and is
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similar to the one in Cui et al. (2022). Later we relax this requirement. Assumption 3
also generalizes Pesaran (2006) by allowing the loadings to be correlated within, but
not between, individuals. Next, Assumption 4 enables a flexible specification of the
(CAs included in the) factor estimator through the selector matrix qx € R¥*8, and
thus avoids the restriction in our theory that CAs of all the explanatory variables are
necessarily required in the CCE specifications. This corresponds to practice where
some observables (e.g. dummy variables, or regressors with low (cross-section) vari-
ation) are excluded from the set of CA to enable computation and identification (see
e.g. Westerlund and Petrova, 2018; De Vos and Westerlund, 2019, for examples). As-
sumption 6 formalizes the slope heterogeneity, while Assumption 7 is sufficient for
identification of the mean B when the slopes are heterogeneous.

We next define the CCEP and CCEMG estimators as a function of a given dataset
and specification. Letting B = {Z;}Y ; denote the observed dataset, and defining

Q; = 4 XN, Qq;, we have respectively
Bccepx = Becep(%, B) = Q, NT ) XiMg yi,
i=1

11 X
—B+0 Y (11#0 x XMz Xiv; + XMz, Fyy; + X;Mﬁxei) (2.5)
=1

NT

and

1 Y
= B+1us0 X T+ 1o Z Q. (X{Mg Fyy; + X{Mg &), (2.6)

where v = 4; YN | v;, and the x subscript refers to the specification of the CAs (Fy).
I, 40 is an indicator function which equals Ij or 0y, depending on whether the
slopes are heterogeneous or not.! The estimators of the asymptotic variance sug-
gested by Pesaran (2006) depend similarly on the chosen averages, and are defined

INote that if qx = I, such that the whole X is employed, then (2.5) simplifies by noticing that

1 ¥ 1o 1 ¥ 1 ¥
NT Z% XiMg Fy (v +11,,,) = 2X Mg Fyy + o Z% XiMg Fyr1,; = 7 Z% XiMg Fy. ;,
1= 1= 1=

since then Y,Mﬁx = O 7. We conduct our analysis for the upcoming theorems with an arbitrary qx
as long as the rank condition is satisfied to accommodate general choices.



as:

~ ——1 1 N A —-1

Occepx = Qy (m l; Qx,iVinQx,z’) Qy (27)

. 1 N

Occemcx = NIN=T) Y v (2.8)
i=1

with v; = sz — .Bcc emc i for the CCEP and CCEMG estimator, respectively.

Clearly, the expansions in (2.5) and (2.6) reveal that Fy non-trivially enters the asymp-
totic analysis of both estimators. Intuitively, since Fy is not projected out (as it is
non-estimable), it will affect the asymptotic distribution by altering the variance and
possibly the mean (since Fy is typically not mean-zero). Moreover, because 1, is un-
known and likely to be bigger than 1, we also run the risk of having more factors
than available CAs. In order to handle the consequences of this deviation from the
standard CCE assumption, we propose the cross-section (CS) bootstrap approach
established by De Vos and Stauskas (2024) for CCE estimators in (N, T) — oo pan-
els. We begin with a general description and outline the practical implementation
of the resampling scheme.

2.2 Bootstrap Algorithm

The CS bootstrap scheme is straightforward to implement, and has the advantage
that all factors in the data are automatically replicated in the bootstrap realm, with-
out requiring a decision or knowledge about distinct vs. common factors by the re-
searcher. Given the need to approximate the asymptotic distribution in both cases,
this is an important advantage for practice. The core assumption behind the CS
resampling algorithm is that N — oo and that Z;, Z; are independent for each i
and j # i, conditional on c{F}. That is, the cross-section correlation in the data
is due to the unobserved factors. To present the resampling scheme, recall that
B = {Z;}} | denotes the original dataset, and let B} = {Z}}}, denote bootstrap
sample b = 1,..., B, obtained as described in Algorithm 1 below. Accordingly, for

s € {CCEP,CCEMG}, we use B:,b = BS(X, B;) to denote the estimates in bootstrap
sample b following the specification x.



Algorithm 1: Cross-section resampling scheme.

1) Initialization: Estimate given the chosen specification qx and estimator s the
Bs = B(x, B) based on the original sample.

2) forb=1:Bdo:
i) Generate B} = {Z}} | according to

7' =7 for i=1,...,N

1
where i* is for each i an independent random draw fromZ = {1,...,N}.
ii) Obtain F: = X" qx and estimate ﬁ:’b = B.(x, B;)
3) Save the results B} = [B:/l, e, B: ) and form the following confidence

interval widely used in the bootstrap literature (see Davison and Hinkley,
1997, p. 194) to test the null B:

CI([X’B:,X) |:2:Bsx 1 w/2) ( ) 2ﬁsx oc/Z(B*)] (29)

where 6 (-) is the empirical (row-wise) a-quantile of the obtained bootstrap
distribution inside the brackets.

We refer to the Supplement for the formal representation of the resampling scheme
and expressions of the estimators for asymptotic analysis. It also straightforwardly
follows that a bootstrap sample B, generated according to Algorithm 1 adheres to:

XF = Xj+ = Fx[js + Vi (2.11)

such that the unobserved factors Fx and Fy are indeed copied in the bootstrap realm,
regardless of their number or the data generating process. The factor loadings and
innovation matrices are similarly copied in their entirety, but implicitly permuted
across units under the assumption that these matrices are cross-sectionally inde-
pendent. This retains the within-unit correlations and variances of loadings and
innovations, as well as their time series properties, which is crucial to capture the
asymptotic distribution. It is easy to show that the estimator of the factor space in
the bootstrap realm corresponds to:

~ 1 N e _
F; = N Y Xfqx =X qx = (Fxlw + Vo) g (212)
i=1

where I, = %] 21'111 s;T;and V, = %, Zfil s;V; are unobserved bootstrap quantities,
reweighted by the sampling frequencies s;, where s; denotes the sampling frequency
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of unit 7 in the bootstrap dataset 5}, and s; follows a multinomial distribution. The
properties of s; imply that Vo —p Orxk and Twqx —p* Iqx as N — o0, and in turn
(Twqx) ™ —p+ (Tqx) ™. This confirms that the asymptotic information content in the
cross-section averages, as determined by (I'qx) ™, is also replicated in the bootstrap
sample.

3 Asymptotic Results

In this section we will discuss the asymptotic distribution of both CCEP and CCEMG
estimators in the original and bootstrap samples, based on Algorithm 1. We consider
both heterogeneous and homogeneous slopes and demonstrate that as long as the
condition m, = g can be met, asymptotically standard normal inference can ensue,
though in some cases aid by the bootstrap is necessary. To begin with, we assume
that I, .o = Oyx. This case, among other results, was discussed in De Vos and
Stauskas (2024). We re-state the key results in order to identify the challenges of the
distinct CE case, and subsequently extend it to heterogeneous panels and discuss
the possibility of non-stationary factors.

3.1 Homogeneous Slopes

Consider first the asymptotic distribution of the CCEP estimator when slopes are
homogeneous:

Theorem 1. Under Assumptions 1 -5, we haveas (N, T) — oo such that TN~! — T < o0
the following asymptotic representations:

(a) If my < g:
\/m(:BCCEP,X —B) —a N <0kx1zz_1(‘f + Tf)2_1> +Z7(v/1hy + hy)
withTx = Tqs, ¥ = imy 700 & Y1 E (T 1VigielV;), hy = hy g +hyp — hy 3, where
hyy = E)roec ((TF)' q4Zas TxHym B, Er,, )

hi, = LI'(T{) 95 EqxTsHem I ZF, , 7,
hy 3 = LZqxTxHym Z{ ¥, , 7,

and Tx is a g x g partitioning matrix such that TsTx = [Txm,, T'x,—m, |, where Tx m, is an
My X My full rank matrix, Tg —p, is my X (§ — my), and Hypm, = [l";,lnx,Omxx(g,mx)]’.

Moreover, Iy = diag ([1&1@*),1&2@5&),. .., 1(Yk¢f:x)]>' The definition of ¥ ¢ and h; are
provided in the Supplement.
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(D) If my = g:

\/W(BCCEP,X —B) —a N (0kx1,2_1(‘1’ + 'Tff)z_1> +VTE 'y,
where hy = Hl,l + ﬁl,z — Hl,S/ where

hi; = E)roec ((TF)' q4Zax (TiZr,T5) “TiZr,, ),

hip = LI (T{) 952 qx (TiZr, Is) T TEZF, , 7,

hy 3 = LEqx(TZr ) "TLEF, ,7-
The definition of ¥ 7 is provided in the Supplement.

Theorem 1 (a) and (b) confirm our prediction that the presence of the unaccounted
Fy affects both the mean and the variance of the asymptotic distribution of the CCEP
estimator as TN~! — T < oo. In particular, the asymptotic variance is affected by
Fy irrespective of the relative expansion rate of N and T. Asymptotic bias similarly
is a function of the remaining factors due to the presence of L  , the covariance
between the y- and x-specific factors. We similarly find that the asymptotic dis-
tribution also depends on the difference between g (the number of CA used) and
my (the number of x-specific factors). Importantly, in part (a), we have g > my, in
which case the distribution features hy, a stochastic term which does not converge
to the normal distribution, thereby making the overall distribution non-standard
and invalidating standard normal inference. The guilty term is mainly driven by
the interaction of two components: the error part of the ¢ — m, redundant CAs, and
the covariance between Fy and Fy. Unlike the other deterministic bias components,
h; cannot be eliminated even if TN~! — 0. In addition, the asymptotic variance
estimator in (2.7) is also inconsistent due to the presence of Fy in the model resid-
uals. As shown by De Vos and Stauskas (2024) (see Proposition 3), the analytical
variance estimators are only consistent in the common factor case Fx = Fy = F,
otherwise ¥ is not captured. Part (b), on the other hand, shows that if we have ex-
actly my = g, then the distribution does not contain terms that impede asymptotic
normality as such. Nevertheless, the bias h; still depends on Z§,,- This means that
the bias cannot be estimated and corrected as in Westerlund and Urbain (2013), even
under m, = g, because Fy is neither observed nor estimable. In addition, we have
similarly to Part (a) that the variance estimator in (2.7) is inconsistent.

The key conclusion from the above theory is thus that standard asymptotic inference
with CCEP cannot be trusted when factors are distinct, even if TN~1 — 0. Analyt-
ical variance estimators are inconsistent (regardless of ¢ and m), asymptotic bias is
not estimable with standard approaches, and the asymptotic distribution features a
non-normal component when ¢ > m,. The cross-section bootstrap, however, does
enable valid inference in this setting, as we show next in Theorem 2.
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Theorem 2. Under Assumptions 1 -5 we have as (N, T) — oo such that TN~ — 7 < o0
the following asymptotic representations:

(a) If my < g:
v NT(B:;CEP,X - BCCEP,X) g N (O, Z7H(F+¥)Z ) + Z7(v/Thy + hy +h')

where h™ = 2(h} — hy) with the definition of h} provided in the Supplement. The remain-
ing quantities are as defined in Theorem 1.

(b) If my = g:
VNT(Beceps — Becepy) —ar N (kal,zfl(‘l’ + ‘T’f)):'-’l> + 7= 'hy,
with definitions as in Theorem 1 (b), and we have under the same conditions:

sup P*[\/W(BzCEP,x - BCCEP,X) <x]— H)[\/W(BCCEP,X -B) < x]‘ —p 0,

x€Rk*1 N

where the inequalities should be interpreted coordinate-wise.

It is evident for the m, < ¢ case in part (a) that while the asymptotic variance is
replicated in the bootstrap realm, the bias is not due to the presence of an extra
noise term hy. The latter represents a distortion of the stochastic term h; in the
bootstrap realm caused by the moments of resampling weights s;. The bootstrap is
thus not consistent when ¢ exceeds m,. However, if m, = g, the original sample
and bootstrap distributions coincide due to the fact that there are no excess CAs.
The bootstrap is thus consistent in this case. In practice, this implies that bootstrap-
aided inference in the distinct factor case requires verification of g = m,. In order
to asymptotically guarantee this condition, we follow De Vos and Stauskas (2024)
and employ the following Information Criterion (IC) adapted from Margaritella and
Westerlund (2023):

IC(Mx) = log (det(Qy)) + g k- pn,1, (3.1)

where My is a combination of column indices of X, and qx picks the corresponding
g = cols(qx) averages in practice as before. Let accordingly My denote the set
of averages from X such that rk(T'qx) = my, cols(qx) = my, and py 1 is a penalty
term in function of the panel dimensions N, T, such that py 7 — 0. This leads to the
following selector for the CAs such that m, = g, which should be implemented in
Step 1 of Algorithm 1:

My = arg min IC(My), (3.2)

My CMyx

13



where M, denotes the index set of all possible combinations of CAs. Provided that
(N, T) — cosuch that py,rC},  — 0o where Cy,r = min{v/N, V/T}, we have that

P(My = Myg) —» 1 and P(g=my) — 1.

This condition on the penalty is satisfied by several suggestions made by Bai and Ng
(2002), among others. For instance, pn,r = % log(C]z\]’T) showcases the best small
sample performance provided that T is sufficiently large, which is a suitable option
as we consider TN ! — T < co. Importantly, My o does not have to be unique as the
selected set of CAs will be the one with the most informative loadings T'qx (see the
characterisation of such a set in Proposition 3 of De Vos and Stauskas, 2024).2 Note
that the rank condition in Assumption 4, which ensures that the selection exercise
is feasible in the first place, can be checked with the methodology of De Vos et al.
(2024). In summary, the consistency of (3.1) asymptotically guarantees that the con-
ditions in part (b) of Theorem 2 are met, so that the asymptotic bias and the variance
can be estimated consistently by the means of the CS bootstrap, and asymptotically
unbiased inference can ensue with (2.9).

3.2 Heterogeneous Slopes

We now consider the case of heterogeneous slopes by letting I, .o = I} and explore
both the CCEP and CCEMG estimator.

Theorem 3. Under Assumptions 1-7,as (N, T) — oo
\/N(BCCEP,X —B) —=a N <0kx1,2_1'¥v2_1> ,
where & = pli L YN VV.and ¥, = li 1yN vy )
= plimy_,, 7 Liz1 V;Viand ¥, = limy 00 77 221 ZiW X5

Theorem 3 reveals that the CCEP estimator remains v/ N-consistent, unbiased, and
asymptotically normal in the distinct factor case under heterogeneity, irrespective of
the relative expansion rate of N and T. The theorem also puts forward two striking
and somewhat counter-intuitive results, which are major deviations from the ho-
mogeneous setup. The first is that the CCEP estimator is asymptotically normal and
unbiased irrespective of whether m, < ¢ or my = g. Moreover, Fy no longer affects
the asymptotic variance. This result coincides with the findings for Fx = Fy = F of
Stauskas (2022) (with non-stationary factors) and the heterogeneous slopes analysis
(with stationary factors) of De Vos and Stauskas (2024). To the best of our knowl-
edge, Theorem 3 is the first to highlight robustness of the CCEP estimator to distinct
factors in heterogeneous panels. The intuition behind this result is as follows. First,

2In the original paper of Margaritella and Westerlund (2023), that set minimizes the mean

squared error G2 = ﬁ vy, ﬁfMﬁxi;\i, with v; = y; — X;B,.
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the slope heterogeneity v; dominates the asymptotic distribution through

1 N 1 N
INT 1221 XiM; Xiv; = TN 1:21 Zivi+0p(1), (3.3)

which obeys the standard Central Limit Theorem (CLT), while the terms driven by
Fy and the idiosyncratic error ¢; in (2.5) are of a lower order. The Fy term in par-
ticular is also of lower order because Mg X; is asymptotically uncorrelated with Fy,
since Fy is projected out. Therefore,

op(1). (3.4)

[ L

In effect, the influence of Fy is asymptotically negligible so long as Fyx can be consis-
tently estimated, as implied by Assumption 4. We next turn to the CCEMG estima-
tor.

Theorem 4. Under Assumptions 1-7,as (N, T) — oo such that TN~ — 7> 0

\/N(BCCEMG,X —B) =a N (01, ),
where O, = E(v;v}) .

Similarly to Theorem 3, the main takeaway is that the CCEMG estimator is asymp-
totically normal and unbiased, with its variance unaffected by the presence of Fy.
This result also holds irrespective of m, < g or my; = g.> The rationale behind this
outcome is the same as behind Theorem 3, meaning that the slope heterogeneity is
the slowest decaying term:

\/N(BCCEMG,X - +0p(1 (3.5)

- RLv
This result is new in the CCE literature, and it also extends Theorem 4.1 in Cui
et al. (2022) in the PC context, because in the latter study (3.5) holds only when m1,
is known. Particularly, their two-stage procedure can now be reduced to the first
stage estimation of Fx only, where the dominance of v; relegates the effect Fy to the
idiosyncratic components.* This is also the main message of our Theorem 4 for CCE

3Note that the requirement of TN~! — T < oo is only a sufficient condition to asymptotically
eliminate the accumulated errors. While it is suitable under our N, T configurations, it may not be
necessary as in Theorem 3.

“Note that according to (2.6) and Theorem 4, under homogeneous B, we have v N (BCCE MGx —
B) = 0p(1). This means that we can always consistently estimate the homogeneous g by CCEMG ,

but inference should be based on v N T(,IA%CCE MG — B), as suggested by Theorem 1 and 2. We skip
such analysis in the interest of space.
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estimation.

Theorems 3 and 4 suggest that the variance estimators in (2.7) - (2.8) should be con-
sistent, unlike in the homogeneous case. This is confirmed by Theorem 5.

Theorem 5. Under Assumptions 1-7,as (N, T) — oo

(a) NOccepx —p T I,
() NO®ccemcx —p Q-

Clearly, bootstrap inference is not required with the CCE approach if it is known
a priori that slopes are heterogeneous. Additionally, we do not need to take into
consideration whether m, = g or m, < g, which is a major convenience. However,
as it is often unknown whether factors are distinct or slopes are heterogeneous, the
most suitable approach would be one robust to each setting, and which does not
require discrimination between the two cases. Indeed, as we can rely on the CS
bootstrap so long as m, = g is guaranteed in the homogeneous slopes case, it is nat-
ural to attempt the same in heterogeneous panels. It is especially innocuous, since
the asymptotic properties of CCEP and CCEMG are invariant to whether m, = g
or my < g, according to Theorems 3 and 4. In Theorem 6 below, we thus establish
bootstrap consistency for both estimators when slopes are heterogeneous.

Theorem 6. Under Assumptions 1-7,as (N, T) — oo such that TN~' — 7 > 0,

(a) sup |P*[v NT(BzCEP,x - BCCEP,x) < x] -P[v NT(ECCEP,X —B) < x]) — 0,
x€Rk*1

(b) sup |P*[v NT(BZCEMG,X - BCCEMG,X) < x] -TP[v NT(BCCEMG,X —B) < x]‘ —p 0,
xE]kal

where inequalities are to be interpreted coordinate wise.

The main practical implication of Theorems 2 and 6 is that with bootstrap inference,
researchers do not need to differentiate between homogeneous and heterogeneous
panels, nor whether y; and X; are driven by common or distinct factors. That is, the
same confidence intervals and bias-adjustments apply in either setting under As-
sumption 4. Even if the bootstrap is not strictly necessary in heterogeneous panels,
Theorem 6 shows that its application is innocuous. Theorem 7 in the supplemen-
tary material also provides the bootstrap world equivalent of Theorem 5, for com-
pleteness, and thereby establishes also the validity of the bootstrap-t interval in this
setting.

Remark 1. Note that the cross-section independence of V; and &; is not required if it

is known that slopes are heterogeneous. This is because the asymptotic distribution does
not feature these variance components, so their dependence structure does not need to be
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replicated in the bootstrap realm. We can therefore relax this assumption along the lines
of Pesaran and Tosetti (2011) by requiring instead Uy = (My ® Ixy1)&,, where Uy €
RNU+1)>1 45 g cross-section stack of u;; and &, obeys the time-dependence requirements of
Assumption 1. Here, My is an N X N "network matrix” with bounded row and column
norms.

3.3 Distinct Correlated Effects with General Unknown Processes

It is known that CCE estimators are able to accommodate a wide variety of data
generating processes of the factors without sacrificing asymptotic normal inference
or the rate of consistency. This includes factors that are (mixtures of) integrated
processes or deterministic trends, as demonstrated by Westerlund (2018) for the
homogeneous case, or Stauskas (2022) in the heterogeneous setting. Both studies,
however, examined properties under the common factor assumption. It is there-
fore natural to wonder whether this generality of CCE translates to the distinct
factor setting. Let accordingly F be such that D;'FFD;! = X is asymptotically
full-rank, and D;}’k Hvec(UgF) converges weakly as T — oo, where D71 =
(D7 ® Ix41) for some normalization matrix Dy = diag(Dry, Drx), such that
Dr, = diag(TPa1,...,TFPama), a € {x,y} and Paj = 1/2. Here, "®” and ”=" rep-
resent Kronecker product and weak convergence, respectively. Proposition 1 below
formulates conditions under which asymptotically normal inference ensues for the
CCEP and CCEMG estimators with general unknown factors.

Proposition 1. Under Assumptions 1 -7 for my < gas (N,T) — oo with TN~ —
T > 0, plus a covariance stationary Fy with absolute summable autocovariances, we have
the following asymptotic representations:

N
@ (eterogencous ) VN(Becgnx— B) = £ < 3 Zi +0,(1),
i=1
~ 1 N
VN(Becemcx — B) = N > vi+op(1).
i=1

If, in addition, ZFx,y is deterministic, then

(b) (homogeneous B) V NT(BCCEPX —B)
V/
( Z { =y ®,D; ; ,vec(ViF) | + v/thi(Zg, ) + hz)

+0p(1),

where O is a random matrix in function of the factor loadings. Also, hy and h; are equiva-
lents of the respective terms in Theorem 1.
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Part (a) reveals that the findings in Westerlund (2018) or Stauskas (2022) carry over
to the DCE setting so long as the general x-factors are asymptotically projected out.
Therefore, the conclusions of Theorems 3 and 4 apply. The restriction of covari-
ance stationary Fy, which remains in the residuals, is then sufficient to preserve the
same rate of consistency and the asymptotic normal distribution. Indeed, the terms
akin to (3.4) remain asymptotically negligible (see the Supplement for details). Since
pooling causes bias under homogeneous B, part (b) requires another restriction to
keep the bias terms h; non-random and avoid a non-standard asymptotic distribu-
tion. This is because the expansions depend on the covariance matrix X, , similarly
to Theorem 1. The latter is deterministic if Fyx contains at most deterministic trends
or moderately integrated processes (see e.g. Magdalinos and Phillips, 2009). For in-
stance, if fx; = (1,t,£2,..., ") with Dryx = diag(Tl/Z, T3/2 ..., me—l/z) and
Dry = VT Imy, it can be shown that

1
Zf,, = plim D} | F,F,D —/ (s x pf. )ds
’ T—00 s=0 Y

as T — oo, wheres = (1,s,s2,...,s™ 1) and e, = [E(fy,) (see the supplementary

material). Clearly, this restriction is not needed if TN~! — 0. Under these con-
ditions, the first component in the brackets is asymptotically normal. Similarly to
Theorem 1, we have that h, is not a normal variate, but that it is absent when m, = g.

If Fy is not restricted to be covariance stationary, however, further restrictions are
needed. Since it remains unobserved, Fy will generally dominate the asymptotic
distribution and alter the rate of consistency, implying that we need to analyze
VN DT,Y(BCCE px — B)- While it is appealing to keep m, unrestricted, we must now
impose that m, < k. Otherwise, some y-specific factors will not be stabilized and
the distribution may diverge. For these reasons, we leave exploration of an unre-
stricted Fy for future research.

Remark 2. Even under covariance stationary Fx, we can allow the whole common com-
ponent to be non-stationary by means of breaking loadings. Suppose that at time t* the
loadings change from Ty ; to Ty ;. Let T;; = I(t < *)Ty; + 1(t > t*)I; be the resulting
time-varying version of I'; with 1(A) being the indicator function for the event A taking the
value one when A is true and zero otherwise. This means that the common component of X; ;
can be written as

T} £ = T(t < )0 s +A(E > 1)1 6 = Eigy, (3.6)
where ;i = [T}, Th;] € R¥ >k and g = [I(t < t*)f ,I(t > t*)f ] € R¥™,

Xt/
similarly to Breitung and Eickmeier (2011). Hence, the model with breaking loadmgs can be
wrztten equivalently as a model without break but with 2my factors. Following Assumption

4,if ¢ > 2my, EqQx = [Ex2m,, Ex,—2m, |, where Exom, and Eg, ~2my are 2m, X 2my and
me (¢ — 2my), respectively, whereas if 2m, = g, then & qu = Exom, and in any case

rk(Eqx) = 2my.

18



4 Monte Carlo Simulations

In this section, we verify our theoretical predictions with a simulation study. To that
end, we utilize a data generating process similar to De Vos and Stauskas (2024). In
particular, we let the time varying unobservables follow:

fa,t = Pfu,tfl + \/ 1— PZV{/ V{ ~ N(Omuxlz Imu /ma)/ ac {x/ Y}

€ € 2
€it = PEit—11 1/ 1- szi,t/ Vip ™ N(0,07)

X X 2
Vit =pVit—1+4/1— szi,tr Vig ™~ N(kalar,iIk)

where each variable is initiated at 0 and the first 50 periods are discarded as a burn-
in to neutralize initial conditions. We set the autocorrelation parameter to p = 0.8
for all experiments in accordance with the high serial correlation that is typically en-
countered in practice. We set k = 3 and m, = m, = 2 to let distinct Fy and Fy drive
yi and X;, respectively. With m, < k and m, > 1, the design reflects the setting of
interest in this paper, where the rank condition on C fails and Fy is inestimable with
the CA. Hence, only rk(T) = m, applies, so that only Fy is estimable. Moreover,
we induce a correlation of p = corr(Fy, Fx) € (0.3,0.7) between the two factor sets.
We thus consider both low and high dependence in the factors. To illustrate also
robustness to heteroskedasticity, variances are drawn from ¢? ~ ¢ + (x? — 1) and

02, ~ 0%+ (x3 — 1) respectively, with 02 = 2 and 0 = 1 for all experiments.

X,
To generate loadings, we let C = [y,,I;] = C+;t},,, with ; ~ N (01,05 Tm).
This implies that loadings are perfectly correlated within individuals. Because we
only estimate Fy from the CAs, we also regulate their informativeness through the
population mean T, as controlled through the parameter d = det(I'T’). For the
latter, we generate given an upper bound d" the entries in I' independently from
U[0,2] such that d* — 0.1 < d < d". The obtained T is then fixed over Monte Carlo
replications and sample sizes. We take d“ = 10 as our baseline scenario with a
standard information content, and study the impact of a less informative setting by
lowering d" to 5.° Slopes are generated as

B: = Buxi+vi,  with vy~ (x3—1)/02/2 for {=1,...k

where v; ; denotes the ¢-th row of v;, so that 02 € {0,1} considers respectively the
common and variable slopes setting. We set the slope population mean to § = 1.

In the simulations below, we denote CCE estimators as CCEP, and CCEMG,, re-
spectively, with the A subscript referring to the used specification of the CAs. We

5These numbers are based on the (simulated) distribution of the determinant of 2 x 3 matrices
with elements drawn from 0, 2], which ranges roughly from 0 to 40 (with a long right tail) with
E(d) ~9.2.
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include 3 specifications: 1) A = x: all CAs except fory, 2) A = x;,s: infeasible spec-
ifications with the optimal6 sub-selection from X such that g = my, 3) A = Xx: CAs
selected with the IC from (3.1). Note, as such, that m, < g for A = x, m, = g for
A = x;;r and A = X versions are estimated versions of the A = x;, ¢ specification.
In the interest of space, we report the most relevant specifications for each experi-
ment, but note that others are available upon request. All tests are performed at the
norminal 5% significance level. Further, "boots” denote bootstrap equivalents for
the corresponding CCE specification, obtained from B = 2000 bootstrap samples
generated with CS-resampling. Reported size for the bootstrap methods is from ap-
plication of (2.9). As the main alternative to the CCE and bootstrap approaches, we
include the 2SIV estimator recently proposed by Cui et al. (2022), where a two-stage
PC method is used to atrive at an asymptotically unbiased estimator as TN~! — T,
with 0 < T < co. The approach also accommodates in its design potential distinct
factors, and as such serves as a good benchmark for the CCE method. Clearly, as the
2SIV achieves the same goal as the CS-bootstrap, comparisons will be informative.
We include the second stage IV estimator with the number of factors in both stages
estimated using the eigenvalue ratio approach of Ahn and Horenstein (2013), as per
the authors’ suggestion.

4.1 Results: Homogeneous Slopes

We start with the results for homogeneous slopes. First, it is clear that standard
asymptotic t-tests with CCEP cannot be trusted in case of distinct factors. In par-
ticular, Table 1 reveals the near-zero size for all asymptotic ¢-tests with CCEP. This
occurs because the standard errors in (2.7) are inconsistent in this setting, and in-
ference needs to be aided by means of the bootstrap. However, bootstrap inference
performs well. We find that bias and size are adequate for booty when m, < g.
On the other hand, booty,,, (mx = g) is slightly more accurate with an empirical
size closer to the nominal one. As demonstrated in Theorem 2 (a), size distortions
for booty are due to my, < g, whereas the bootstrap was shown to be consistent if
my = g, as is the case for booty;, ;- Results suggest, however, that the distortions for
my < g are not too large, and have a fairly minor effect on testing. The IC crite-
rion in (3.1) can also clearly estimate the optimal set of averages for which m, = ¢
well, at least given sufficiently large T.” Indeed, the boot; estimator achieves prac-
tically the same bias and empirical size as its target, booty,,,, when T > 100. This
confirms the effectiveness of the combination of the IC selector and CS-bootstrap in
the distinct factor case. Ultimately, we note that also the 2SIV estimator achieves
a close-to-nominal size for sufficiently large T, but find that our bootstrap tests are

®The specified g = m, averages are optimal in the sense that ||(I'qx) ™| is minimized. For com-
pleteness, this optimal selection is [X1,Xz].

’Selection frequencies in Table B-6 of Supplement B of De Vos and Stauskas (2024) confirm that
my, = g is achieved with probability approaching 1, and shows that the same averages are selected
as for the a priori unknown x;, s specification ([X;, Xz)).
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generally more accurate, especially for smaller T. Comparison of the bias in Table 1
with that for the low-dependence factors (available upon request) also confirms the
conclusion of Theorem 1 that asymptotic bias for CCEP is larger when correlation
between Fx and Fy, is stronger. As before, performance of the bootstrap is practically
unaffected, whereas the 2SIV suffers some size distortions for T < 100.

Table 1: High dependence non-common factors

V'NT x bias size
N 25 50 100 500 25 50 100 500

CCEPx 25 032 024 010 043 0.01 0.01 0.00 0.00
50 029 026 016 0.19 0.02 0.01 0.01 0.00

100 018 021 0.15 0.10 0.01 0.01 0.01 0.00

500 0.09 0.02 0.03 0.15 0.01 0.01 0.00 0.01

25 036 031 -0.07 054 0.02 0.02 0.00 0.00

50 027 032 002 031 0.03 0.02 0.01 0.00
100 0.16 022 -0.05 0.18 0.03 0.02 0.00 0.01
500 0.02 0.05 0.05 0.20 0.02 0.03 0.00 0.01

CCEPy 25 041 032 -0.07 054 0.03 0.02 0.00 0.00
50 026 032 0.02 031 0.03 0.02 0.01 0.00

100 0.13 021 -0.05 0.18 0.04 0.02 0.00 0.01

500 -0.10 0.03 0.05 0.20 0.05 0.03 0.00 0.01

booty 25 013 0.02 -0.06 0.03 0.08 0.07 0.07 0.06
50 013 0.08 0.03 -0.09 0.07 0.06 0.08 0.05

100 0.05 0.07 0.08 -0.10 0.07 0.06 0.07 0.07

500 0.04 -0.07 0.00 0.07 0.06 0.06 0.04 0.06

bootxl.nf 25 018 0.04 -012 0.13 0.06 0.06 0.08 0.05

50 011 0.09 0.03 -0.02 0.05 0.06 0.06 0.05
100 0.04 0.03 -0.03 -0.08 0.06 0.04 0.06 0.06
500 -0.04 -0.05 0.08 0.08 0.04 0.05 0.06 0.05

bootg 25 015 0.03 -0.12 0.13 0.07 0.06 0.08 0.05
50 0.01 0.09 0.02 -0.02 0.06 0.06 0.06 0.05

100 -0.11 0.02 -0.03 -0.08 0.07 0.05 0.06 0.06

500 -0.35 -0.10 0.07 0.08 0.06 0.05 0.06 0.05

2SIV 25 028 0.16 0.06 0.03 0.15 0.11 0.08 0.08
50 046 017 012 -0.12 0.09 0.07 0.07 0.06

100 0.68 0.18 0.18 0.05 0.08 0.05 0.07 0.07

500 1.67 036 0.06 0.03 0.21 0.06 0.05 0.05

Experiment parameters: (d", B, o2, cr,?, o2, 0 f) = (10,1,1,1,0,0.7). This experiment
features m, = 2 y-specific factors Fy that are correlated (o = 0.7) with m, = 2
x-specific factors Fy. An X subscript denotes CCE specifications with CA selected
with the IC criterion in (3.1), and x;, is the infeasible CCEP specification with the

CCEPy,,,

optimal ¢ = 2 averages from X (optimal in terms of their information content on
Fy). These are [X1,Xp]. Size reported for boots estimators are for the bootstrap
interval in (2.9) based on 2000 replications.
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4.2 Results: Heterogeneous Slopes

For the heterogeneous case, we similarly begin with the CCEP estimator. Our imme-
diate focus is on the plain CCEPy estimator because the key message of Theorem 3 is
its robustness to the distinct factors case. Table 2 corroborates this. We find that the
estimator is virtually unbiased for all combinations of larger N and T, and that it dis-
plays minimal bias only if N = 25. However, any small sample bias is substantially
smaller than in the homogeneous setting of Table 1. This observation carries over
when we employ the infeasible selection of CAs (CCEPy,, f), where ¢ = my. For both
A € {x,X;uf}, the empirical size is similar and revolves closely around the nominal
0.05 level for all combinations of (N, T), with the exception of N = 25. This can
be partially explained by the large N that CCE estimators require to approximate
the factor space. Also, the slight distortions, especially those that occur in medium-
sized samples, can be attributed to the fact that the heterogeneity v; is simulated
from a chi-squared distribution with 0? = 1, unlike in Pesaran and Tosetti (2011) or
Stauskas (2022), where v; is normal and ¢ = 0.02. We also see that the bootstrap
CCEP estimators behave similarly to the original sample ones both in terms of bias
and size. Particularly, the infeasible booty,, ; is almost identical to bootg, where the
IC selector is employed in the first stage. The latter even performs slightly better
for a small N and T > 50. Eventually, we see that both CCEP, and boot, for all
versions of A perform very similarly to the 2SIV of Cui et al. (2022), which is specif-
ically constructed to accommodate distinct factors. In fact, we note that plain CCEP
showcases a better performance in terms of empirical size, especially in small and
medium samples. Because 2SIV is a PC-based estimator, this can be explained by
the fact that it needs not only a large N but also a large T to consistently estimate
the factor space. Overall, the discussion implies that our theoretical predictions in
Theorems 3, 5 and 6 are borne out well.
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Table 2: High dependence non-common factors (CCEP)

V'NT x bias size
N 25 50 100 500 25 50 100 500

CCEPy 25 -0.02 0.01 -0.01 -0.02 0.04 0.11 0.08 0.09
50 0.01 0.01 0.00 0.00 0.06 0.05 0.06 0.06

100 0.00 0.01 0.02 0.00 0.05 0.05 0.08 0.06

500 0.01 0.00 0.00 0.00 0.06 0.06 0.05 0.06

25 -0.01 0.01 -0.01 -0.02 0.08 0.11 0.07 0.09
50 0.01 0.01 0.00 0.01 0.07 0.06 0.06 0.06
100 0.00 0.00 0.02 0.00 0.06 0.06 0.08 0.06
500 0.01 0.00 0.00 0.00 0.06 0.06 0.05 0.07

bootxinf 25 -0.01 0.01 -0.02 -0.03 0.11 0.13 0.09 0.11
50 0.01 0.01 0.00 0.00 0.10 0.06 0.08 0.08

100 0.00 0.00 0.02 0.00 0.07 0.06 0.08 0.09

500 0.01 0.00 0.00 0.00 0.06 0.06 0.05 0.06

boot; 25 -0.03 0.00 -0.02 -0.02 0.12 0.12 0.09 0.09
50 0.00 0.01 0.00 0.00 0.10 0.07 0.07 0.08

100 0.00 0.00 0.02 0.00 0.06 0.07 0.09 0.08

500 0.01 0.00 0.00 0.00 0.07 0.06 0.05 0.06

2SIV 25 -0.03 0.00 -0.02 -0.03 0.11 0.12 0.11 0.10
50 0.01 0.00 -0.01 0.00 0.10 0.07 0.06 0.07

100 -0.01 0.00 0.02 0.00 0.06 0.05 0.08 0.07

500 0.01 0.00 0.00 0.00 0.07 0.08 0.03 0.07

Experiment parameters: (d,, B, 0?,02,02, 0 f) = (5,1,1,1,1,0.7). This experiment
features m, = 2 y-specific factors Fy, that are correlated (py = 0.7) with m, = 2 x-
specific factors Fx. An A € {X, x;;¢ } subscript denotes CCE specifications with CA
selected from (3.1), and the infeasible CCEP specification with the optimal g = 2
averages from X (optimal in terms of their information content on Fy), respec-
tively. These are [X;,X;]. Size reported for booty estimators are for the bootstrap
interval in (2.9).

CCEP

Xinf

We further move on to Table 3, which contains results for the CCEMG estimator un-
der heterogeneous slopes. The overall findings are fairly similar to the CCEP case,
especially when it comes to bias. In line with our theory, we find that the plain
CCEMG estimator is virtually unbiased even when N ~ T, and the empirical size
hovers very closely to the nominal one. Again, some distortions can be attributed
to the fact that a large N is needed to approximate the factor space, and v; comes
from a chi-squared distribution, which weakens normal approximations in finite
samples. Plus, in comparison to the CCEP case, we can see smaller size distortions
for N = 25 and T > 100 across the board for both the original and bootstrap es-
timator. Moreover, boots for both A € {x;,f,X} performs slightly better than its
CCEP counterpart for (N, T) < 100. Similarly to the CCEP case displayed in Table
2, all the considered estimators behave similarly to the 2SIV estimator. However, the
plain CCEMG estimator no longer exhibits a clear size advantage, at least in small
samples.
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Table 3: High dependence non-common factors (CCEMG)

V/NT x bias size
N 25 50 100 500 25 50 100 500

CCEMGy 25 -0.03 0.01 0.00 -0.01 0.05 0.08 0.04 0.06
50 0.02 0.00 -0.01 0.00 0.08 0.05 0.07 0.05

100 0.00 0.00 0.01 0.00 0.05 0.04 0.08 0.07

500 0.00 0.00 0.00 0.00 0.04 0.06 0.04 0.05

25 -0.03 0.01 0.00 -0.01 0.04 0.08 0.05 0.06

50 0.02 0.00 -0.01 0.00 0.06 0.05 0.07 0.05
100 -0.01 0.00 0.01 0.00 0.06 0.04 0.08 0.07
500 0.00 0.00 0.00 0.00 0.06 0.06 0.04 0.05

bootxmf 25 -0.03 0.00 0.00 -0.01 0.05 0.08 0.06 0.06

50 0.01 0.00 -0.01 -0.01 0.06 0.06 0.07 0.05
100 -0.01 0.00 0.01 0.00 0.06 0.04 0.09 0.07
500 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.05

booty 25 -0.03 0.00 0.00 -0.01 0.05 0.09 0.05 0.06
50 0.02 0.00 -0.01 -0.01 0.06 0.05 0.07 0.06

100 -0.01 0.00 0.01 0.00 0.05 0.04 0.08 0.07

500 0.00 0.00 0.00 0.00 0.04 005 0.04 0.05

251V 25 -0.03 0.00 0.00 -0.02 0.06 0.07 0.04 0.06
50 0.02 0.00 -0.01 -0.01 0.07 0.06 0.06 0.05

100 -0.01 0.00 0.01 0.00 0.05 0.03 0.08 0.07

500 0.00 0.00 0.00 0.00 0.07 0.07 0.05 0.06

Experiment parameters: (4, §, o2, (7,?, Ug,pf) = (5,1,1,1,1,0.7). This experiment fea-
tures my = 2 y-specific factors Fy that are correlated (o; = 0.7) with m, = 2 x-specific
factors Fx. An A € {X,x;,s} subscript denotes CCE specifications with CA selected
from (3.1), and the infeasible CCEMG specification with the optimal ¢ = 2 averages
from X (optimal in terms of their information content on Fy), respectively. These are
[X1,X2]. Size reported for boot estimators are for the bootstrap interval in (2.9).

CCEMGy,,

5 Application: climate shocks and economic growth

In this section, we illustrate our procedures to study the effect of climate shocks on
economic growth as in Dell et al. (2012). Data are taken from the aforementioned
paper, which constitutes an unbalanced panel dataset with N = 127 countries and
an average timespan of observations of T = % YN | T; = 39 years, from 1961 to 2003.
The authors regress the annual per capita economic growth rate y; ; on temperature
and precipitation for both developed and developing nations, and find significant
effects. The main model is

Vit = 0 + a1 + B1Tmp; s + BoPrec; s + €; 4

where Tmp;; denotes the temperature (in °C) for country i at time ¢, and Prec;;
is the precipitation level in 100mm units. 6; are country fixed effects, and a;,;
represent time-and-region dummies to account for e.g. region-specific and time-
varying labour productivity (technological progress). The latter can be seen as a
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restricted unobserved factor, with the assumption that regions have a common re-
sponse/absorption speed. Following e.g. Cui et al. (2022), we generalize this as-
sumption by replacing the set of dummies a;, ; with interactive effects:

Vie = 0; + vifyr + 1 Tmp; s + BaPreci; + € (5.1)

where fy,t now encompasses also time and region effects, but enables more flexi-
ble responses and captures potentially more growth-specific unobservables besides
technological progress. These can entail e.g. business cycles, shifting trends and
preferences, crises,... etc, with potentially heterogeneous responses. Naturally, the
climate regressors can similarly be thought of as being affected by common factors,
for instance the global temperature and precipitation climate, to which countries
contribute or react depending on the characteristics of the land. Factors underlying
the climate regressors, fy;, are thus intuitively distinct from the factors directly af-
fecting economic growth, but the two sets are nevertheless likely to be correlated.
Indeed, historical changes in the global climate fy; (climate trends, deforestation,
disasters, floods) have affected technological developments over the years. Techno-
logical progress to optimize agrucultural yield and production processes in difficult
climates, for instance. Accordingly, investigating the impact of weather shocks on
growth would seem to require controlling for this unobserved effect space for con-
sistent estimates.

Given the above, we thus re-evaluate the model of Dell et al. (2012) with the CCE
method to allow for interactive effects. As it can be argued that the setting is one
with distinct correlated effects, we follow the theory above and focus on estimat-
ing the factor space in the regressors with X; = [Tmp,, Prec;]’. Indeed, as economic
growth (from theory) tends to feature more than 1 factor, fy; is in that case not es-
timable with a single cross-section average, and will be left in the error term of the
model. As mentioned above, this requires the bootstrap for estimating standard
errors and bias-correction of the pooled slope coefficients. In addition to pooled
slopes, we also estimate an explicitly heterogeneous version of (5.1) with the CCEMG
estimator. For both estimators, we employ the Information Criterion in (3.1) to select
averages from X; such that ¢ = my. In all of the regressions below, this resulted in
the selection of a single average Tmp,, such that we use fy; = [1, Tmp,]’ to estimate
the factor space in all the reported regressions. Note that the one is added as an
observed factor to directly capture the fixed effect 0;.

Finally, to generalize further the approach with region-time dummies, we also more
explicitly account for potential country-group specific factors by splitting the sample
between developed and developing countries. The advantage in the CCE context is
that the approximated factors are then also allowed to differ among the developed
and developing nations, thus potentially better controlling for factors specific to
each nation group. The initial downside for the pooled CCE estimator is that the N
dimension is split in half, such that the relevant TN ! ratio is increased from 0.31
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in the full sample to roughly 0.6 in each sample, thus increasing the likelihood of
distortive bias effects (cfr. Theorem 1). The proposed bootstrap toolbox, however,
has been shown to remedy the implied increase in asymptotic bias. We accordingly
report bootstrap-corrected slopes and confidence intervals as in (2.9) based on B =
1999 bootstrap samples obtained with CS resampling.

5.1 Results

Consider the results in Tables 4 and 5, which report respectively a linear and non-
linear version of (5.1). An interesting general finding is that, after controlling for
unobserved factors, we find no significant effects of temperature and precipitation
shocks on economic growth in the developed countries in the dataset. This is the
case for both the pooled and mean group estimates, and applies to both the lin-
ear and non-linear specification of the model. We thus find insufficient evidence
to conclude that growth in developed economies is affected by temperature and
precipitation shocks. This suggests economies that are less agriculture based. While
bootstrap-corrected estimators show sizeable differences in the estimated slopes and
associated confidence intervals, which are somewhat more narrow than the asymp-
totic ones, the conclusions align with that of the standard estimators. Conclusions
are decidedly different, however, for the developing countries in the dataset, where
the regressions demonstrate significant and non-linear effects on growth. In the lin-
ear model, the pooled CCE estimator finds that a 1°C rise in temperature is expected
to decrease economic growth with 1.534 percentage points (p.p.), ceteris paribus,
which is significant at the 1% level. The bootstrap results in a slight downward
adjustment of this effect to a 1.53p.p. decrease, and similarly concludes a highly sig-
nificant effect. Mean group estimates, however, are not significant. Regarding the
effect of precipitation shocks, bootstrap inference with CCEP leads to different con-
clusions than the standard asymptotic test. Indeed, normal inference is potentially
distorted by the distinct factor setting as per our theory, and CCEP finds no signifi-
cant effect of precipitation on growth. The bootstrap confidence interval, however,
appears more narrow than the asymptotic one, and leads to the conclusion that an
additional 100mm of annual rainfall is expected to increase economic growth with
0.12p.p., ceteris paribus, which is significant at the 5% level. The mean group ap-
proach estimates this effect to be roughly 3 times larger, and both methods concur
with significance at the 1% level. As expected from theory, the mean group esti-
mator is unbiased and standard inference continues to apply under distinct factors.
Accordingly, asymptotic and bootstrap results are very similar.

To explore potential non-linear effects, squares of both Temperature and Precipita-
tion were added to the model. The effect of temperature was found to be linear,
such that its square was removed in the estimation reported in Table 5. The re-
sulting effect estimates are also similar in size to those in the linear specification.
Regarding the effect of precipitation, the asymptotic and bootstrap method arrive
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at very different conclusions. Indeed, asymptotic inference with CCEP suggests
no significant effect of precipitation, while bootstrap-corrected slopes and inference
indicate that the effect of precipitation on growth may be non-linear. This also cor-
responds to common logic, as the effect of an additional 100mm of rainfall is likely
to depend on how much rain has already fallen. Indeed, the bootstrap-corrected
slope received a sizeable downward adjustment compared to the CCEP estimate,
and the bootstrap confidence interval is also vastly different from the normal ones,
indicating the potential distortive effects of the distinct factors. By consequence, we
conclude that the bootstrap-corrected effect of precipitation is non-linear, and fol-
lows 0.414 — 2 x 0.009 x PRECIP. Indeed, the marginal effect of additional rainfall
turns negative when the precipitation level is already sufficiently high, while it is
positive in relatively dry areas.

Table 4: Climate shocks and economic growth: linear model

Developing Developed
variable estimator slope LB UB slope LB UB
TEMP  CCEP -1.534*** —2.292 —0.776 0159 —0413 0.731

CCEPbt -1.530"* —2.304 —0.708 0.138 —0.396 0.690
CCEMG -0911 —-2.527 0.705 0211 —-0.504 0.927
CCEMGbt -0917 —2.641 0.582 0.194 —0.475 0.906
PRECIP CCEP 0.121 —-0.044 0.287 -0.057 —0.164 0.050
CCEPbt 0.120*  0.018 0.214 -0.060 —0.152 0.016
CCEMG 0.400*** 0.123 0.676 0.036 —0.159 0.231
CCEMGbt  0.399*** 0.108 0.656 0.035 —0.166 0.222

(N, T,7) 65 39 0.60 62 39 0.63

Notes: *,** and *** denote respectively significance at the 10%, 5%, and 1% level. CCE es-
timators feature IC-selected averages (Tmp for all specifications). Bootstrap procedures
(with a ”bt” ending) employ 1999 replications.
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Table 5: Climate shocks and economic growth: non-linear model

Developing Developed
variable estimator slope LB UB slope LB UB
TEMP CCEP -1.585*** —2.460 —0.711 0.091 —-1.209 1.390

CCEPbt -1.634*** —2.485 —0.693 0.071 —0.502 0.638
CCEMG -0.734 —2.408 0.941 0.153 —0.615 0.921
CCEMGbt -0.789 —2.558 0.880 0.142 —0.582 0.929
PRECIP CCEP 0.442 —0.829 1.714 -0.045 —4.458 4.367
CCEPbt 0.414** 0.009 0.784 -0.049 —-0.252 0.132
CCEMG 3.118*** 0.834 5.403 0.887 —0.467 2.241
CCEMGbt 3.190** 0.825 5.722 0.846 —0.686 2.251
PRECIP? CCEP -0.010 —0.055 0.036 0.000 —0.152 0.151
CCEPbt -0.009* —0.017 0.001 0.000 —0.005 0.004
CCEMG -0.097 —0.398 0.204 -0.114 —-0.326 0.098
CCEMGbt -0.096¢ —0.446 0.184 -0.106 —0.320 0.150
(N, T,7) 65 39 0.60 62 39 0.63

Notes: *** and *** denote respectively significance at the 10%, 5%, and 1% level. CCE es-
timators feature IC-selected averages (Tmp for all specifications). Bootstrap procedures
employ 1999 replications.

6 Conclusions

In this study we consider the practically relevant issue of CCE-based estimation
when the dependent and explanatory variables are driven by distinct sets of factors,
and their cross-section averages are not necessarily consistent for the space spanned
by all of them. This generally distorts inference, unless in the specific case where the
number of distinct factors underlying the dependent variable is equal to 1. To cir-
cumvent this problem, we develop a toolbox that can be seen as a CCE-counterpart
of the Two-Stage Instrumental Variable (25IV) approach of Cui et al. (2022). We em-
ploy a user-friendly cross-section bootstrap algorithm to approximate the asymp-
totic distribution that is affected by the unattended factors in the dependent vari-
able. We derive conditions for bootstrap consistency and show that the algorithm
and asymptoptic distributions remain the same in both homogeneous and heteroge-
neous panels, which means that asymptotically normal inference can ensue without
a need to discriminate between the different cases. Our Monte Carlo simulations
show that the theoretical predictions are born out well, and that our methodology
performs well in comparison to alternative estimators.
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Abstract

In this supplementary material we provide the proofs of Theorems 3 - 6 in the main text. Section 1
sets up assumptions, preliminary details and introduces to cross-section bootstrap. Section 2 states and
explains the original and bootstrap sample results for homogeneous slopes derived in a separate study.
In Section 3, Theorems 3 and 4 establish the asymptotic distribution of the CCEP and CCEMG estima-
tors, respectively. Theorem 6 establishes bootstrap consistency for both CCEP and CCEMG bootstrap
estimators. In Section 4, Theorem 5 demonstrates consistency of the asymptotic variance estimators,
while Theorem 7 demonstrates the same for their bootstrap equivalents for completeness. The supple-
mentary material is completed with the discussion on potentially non-stationary factors.
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1 Preliminaries

1.1 Notation and Assumptions

In this supplement we use A to denote the Moore-Penrose pseudo-inverse of the matrix A, rk(A) for
its rank, det(A) for the determinant and let ||A|| = \/tr (A’A) be the Euclidean (Frobenius) matrix norm.
Let furthermore ¢, be an a-rowed vector of ones and the vec(.), ® operators denote respectively the vec-
torization operation and the Kronecker products. Barred variables A denote the cross-section average
(CA) over the cross-section specific matrices A; as in A = ; YN, A;. For the analysis of the bootstrap,
starred objects A* denote observed variables (matrix or scalar) subject to bootstrap randomness (induced
by the resampling weights). On the other hand, A, denotes a weighted (by resampling weights) un-
observed primitive of the model. On the other hand, A, denotes a weighted (by resampling weights)
unobserved primitive of the model. Bootstrap probability laws are formalized similarly to Galvao and
Kato (2014). In particular, for any matrix bootstrap sequence Aj, which depends on a generic index
n, and a deterministic sequence a, € Ry, we denote ||Aj| = o0, (a,) if for every e > 0O and 6 > 0
we have P(IP*(a,!||A%|| > €) > 6) — 0asn — oo, where P*(-) is a bootstrap-induced measure.
Accordingly, Aj = A* +0,-(1) implies ||A; — A*|| = 0,(1) for a limiting bootstrap matrix A*. Simi-
larly, we use [|Af|| = Op+(ay) if for every 6 > 0 and 5 > 0, there exists a constant C > 0, such that
P(P*(a,'||A}|| > C) > 6) < nyforalln > 1. The symbols —,. (—,) and —4 (—4) represent conver-
gence in probability and distribution with respect to the induced (generic) probability measure.

We apply the following set of assumptions:

Assumption 1 (Idiosyncmtic errors) € and v are stationary variables, independent across i with E(e;;) = 0,
E(vi;) = Oy, 07 = E(e? ), Li = E(viyvi,), Q = E(ee;), with O, X; positive definite and IE(E?,t) < 0o,
E(|[vig]|®) < oofor all i and t. Additionally, let ;; = (g;t,v;,)". Then

T T
ZZ ul fuzs H - (1>

t=1s=1

==

1 T T T T .
T3 Z Z Z Z ITE( ultu ul,rﬁi,s>H =0(1),
t=1g=1r=1s=1

asT%w,whereas%ZfilUiZ%aZ<ooand%2?i12i—>2<ooasN—>oo.

Assumption 2 (Distinct factors) Let fi = (fy, ;)" be covariance stationary with E(||f]|*) < oo, absolute
summable autocovariances and T YF'F —? Lgas T — oo, such that
/
ZF = ZFy ZFX'Y
Lf,, LF,

with Tg,, = plimy T~1F}Fy denoting the covariance between Fy and Fy. Also Ty, and and Ly, are positive
definite.

Assumption 3 (Factor loadings, distinct factors) The factor loadings are given by

Vi=T+U,; My~ 1ID(Op,x1,Qy)
I =T+ r,i Uec(’h“,i) ~ IID(Okmxxlr Or)

where vy, I are constant matrices, L,r = IE(UW. ® 1y ;) is a covariance matrix, 1., Mr,; are independent across i
and of the other model components, and |||, |T||, |2 ||, [|Q ||, || Qr || are finite.

Assumption 4 (Rank condition) tk(Tqx) = m, with qx a k x g selector matrix.
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Assumption 5 (Independence) 1, ¢;5,v; 1,1, are mutually independent for all i,j, n,t,s, 1.
Assumption 6 (Slope heterogeneity) The slopes B, follow
B, =pB+v; v; ~ II1D(0kx1, Qo)
with Q, a finite nonnegative definite k X k matrix and the v; are independent of f;, ¢; 5, Vj,l/;in foralli,j,n,t,s,l

Assumption 7 (Identification) Qx1 = T*1X§MRXZ-, with Fy = Xqx, is non-singular for all N, T, and
1 1]?
E (H(T— VIM; Vi)~ H ) < oo
also when E = Fy.

1.2 Rotation Matrix: my < gvs. my =g

Let Fx = Zqx = Xqx, where Z = [y, X] is the full set of available CAs and let qx = [0gx1,q})' be a (1 +
k) x g selection matrix that picks g cross-section averages determined by qx (a k x ¢ matrix) exclusively
from X, such that

Xqx = (FI + V)qx = FTx + V. (1.1)

Firstly, we consider m, < g case. To setup the key arguments in the proofs, we follow Karabiyik et al.
(2017) and notice that because || V|| = O,(N~1/2) for the fixed T, we have

P (rk [Tﬂ?;?x} > rk [T*lf;F;FXED 1 (1.2)
as (N, T) — oo, which means that the condition

‘rk {T”?;?x} ~rk [T’lf;F;Fxfi}

— 0 almost surely, (1.3)

which ensures convergence in MP inverses (see Andrews, 1987), is violated. To take this into account, we
introduce the following rotation matrix:

——1 — —
H, = !0 Fxrmx —ri,mxrx,—mx] — [ﬁxlmx,ﬁx,_mx]’ (1.4)
(

g—My) X iy Ig*mx

such that the average loading matrix is partitioned as ['xTx = [Txm,, [x,—m,], where Iy, € R™*"x and
Ti—m, € R™x*(8=mx) and Ty is the partitioning matrix. This leads to

FiTxHx = F) + Vi TiHy, (1.5)

such that F) = [Fy, 07y (g—my)] and ViTxHx = [ViTsHxm,, Vi TxHx —m,|. Because the upper-left block of

T‘lﬁ;Tﬁ(fﬁ(fxTxﬁx converges to Lg,, but the lower-right block is O, (N —1), we still encounter a violation
of (1.3). Eventually, we introduce

L Om,x( —hy)
Dy = x xx(g=m) | 1.6
O(g—mx)xmx \% ng*mx ( )

Let Ry = T<H;Dy. This matrix ensures that

F) = FyRy = FyTHiDy = F + [ViTxHym,, VNVsTsHx ] = F + [V, , Vs . ]

X,myr VX, —Mmy

(1.7)



= Op(1). This ensures that

X

does not have g — m, asymptotically degenerating columns since va_m

TEYE) = TURYF) + T 1ROV + T IV F + TV, Vy

=Zp +O0y(N"2) +0,(T"?), (1.8)
where the limiting matrix is

ZF%D = diag [ZFX, (Tilvgffmxvg,fmx)} . (1.9)

This approximation holds because

HT_lFQ Vi = 0p(T7?), (1.10)
<0 _
HT 1 xmAmeH :OP(N 1)/ (111)
0 o0 _
[TV Ve | = 0, (N2, (1.12)
and so because ‘rk [T%?g’ /152} —rk |:ZFQ } we obtain
H 1F0’FO —z;o = 0,(N7V2) +0,(T2). (1.13)

Because My = Mg due to Ry = TxHyDy being a full rank matrix, by using the same steps as in 525 -
529 in Karab1y1k et al. (2017), we then arrive at the following important expansion of projection matrices,
which will play a key role in our proofs:

MF?.( - Mi:\x = MFg — Mf:g = Tﬁlvg,*mx(Tilvgffmxv?{,—mx)+vgf7mx + Tﬁlv?{,mx(TilF;Fx>+vgfmx
150 _ _ _ -0
+T 1V5€,mx(T 1F;FX)+F; +T 1Fx(T 1F;(FX)+VXfmx

However, if m, = g, then (1.3) is not violated by constrution and by definition the rotation matrix becomes

Ry = ffl so that Mg = ME,. Also, by the properties of the generalized inverse we have Mg = Mf, =
M 5, and also Mg = Mg . Here, all the components are well behaved. Next, we simplify and analyze
the decomposition in (1. 14) given that now m, = g as

Mg — Mg = Mg, — Mg = T~ 'V (T7'FF) "V, + TV (T 'F,Fy) T4 F,
+ TR T (T B F) TV + T IR [(T1F.E) T — (T, T 'F.F,Tx) T F., (1.15)

where now because ||T~'F, Vx| = O,((NT)"'/2) and HT*

= O0,(N~1) we have

1ara =
HT IF By — TL T 'F.F, Ty

= 0,(N"1) +0,((NT)"1/?), (1.16)
H T-FF )t — (T;T—lF;FXR)+H = 0,(N"1) 4+ 0,((NT)"/2), (1.17)

1.3 Cross-Section Bootstrap

We begin this section by describing the sampling scheme as given in De Vos and Stauskas (2024) in terms
of generic stack of b-rowed matrices A = (A}, A),...,Ay)". In what follows, —,, and — ;- represent
convergence in probability and distribution with respect to the bootstrap induced probability measure,
while [E*(.) stands for bootstrap expectation (conditionally on the sample). This is how the scheme works:
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1. We model the pick of the matrix A; from A through the 1 x N selection vectors w; = [w; 1, ..., Wi N],
which are drawn from a multinomial distribution with 1 trial and N events with a probability of
N~ Hence, each w; is a unit-length vector with randomly realized 1 and zeros elsewhere. The
index of the non-zero element in w; denotes the unit (i*) that is sampled from the stack A as unit i
in the bootstrap sample.

2. The selection vectors are further collected in the N x N matrix w = [w}, ..., w}]’, which outlines
the allocation pattern in the bootstrap sample. In what follows,

N

N
LW = [Zw,',l,...,Zwi,N] =[s1,...,sn] = s (1.18)
i=1

i=1

gives the total sampling frequency of each unit with the restriction Y-~ ; s; = N. The random vector
s is a multinomial vector, where the coordinate s; for every i has expectation 1, variance of 1 — N},
covariance between s; and s; of —N~! and a probability mass of N~'.

3. We ultimately define the cross-section bootstrap operator W), = (w ®@1I;)) € RPN*PN which, given a
stack A of b-rowed matrices, produces a random draw with replacement of size N: W,A = A*. An
example with N =2 and A,B € R?*¢ would be

wela] = (o] o) 8] = 8] oo 5] = (s3] =) [5] = 5]

The operator has the property W, W, = w'w ® I, = diag(s ® 1;), because w'w = diag(s). Let
also A, = N™1(i}y ® I)) be the cross-section average operator for stacked b—rowed matrices. Then, by
using the Kronecker properties, the CA of the bootstrap sample is obtained by
1 N
AA* = AWA =N L,)(WRI,)A=N"1(s®I,)A = N Y siA;, (1.19)
i=1

which means that every summand is assigned a multinomial weight, such that E* (A,A*) = & YNLA,

We implement the steps 1 - 3 above in the CCE context. We stack the T-rowed matrices over the individ-
uals:

X=F I[+VeRNT (1.20)

where X = [X|,....X\], B, = IN®F), T = [I},..., Ty and V = [V],..., V}]. Then, the draw is
given by

X = WX = (wIp)(Iy @ F)T + WrV = (Iy @ F) (W @ I, )T + WrV = EW,, T + WV,

(1.21)
Simultaneously, the same is performed on'y = [y},...,yy]' € RNT*! such that
vy =Wry = WrXB+ (wIr)(Iy ® Fy)l +Wre = (IN®Fy)(w® Imy>1+ Wre
=X"B+ E Wy, v + Wre. (1.22)

By using the same Kronecker product properties as in (1.21), we can show that the cross-section average
of the bootstrap sample has the following expression:

Fr=X = ArX* = AfWrX = AfWr(F, T+ V) = F,A,, W, T + AfWrV =T, +V,  (1.23)



where T, = % YN sTiand V,, = % YN 5/V;. By implementing the selection of the averages, we get

This representation ensures that T, x —p+ I'x as N — o0, and in turn f;;x —p+ I{. This confirms that the
asymptotic information content in the cross-section averages is replicated in the bootstrap samples. There-
fore, Assumption 3 holds in the original sample and in the bootstrap environment. Recall that asymptotic
singularity of T~'F,Fy under m, < g is the fundamental observation in the asymptotic analysis, which
requires introduction of the steps in (1.4) - (1.13). Hence, this information is also mapped to its bootstrap
equivalent T~ 'FYF.

2 Homogeneous Slopes

2.1 Pooled Estimator: Original Sample
Theorem 1. Under Assumptions 1 -5 as (N, T) — oo such that TN™! — T < oo the following asymptotic
representations:
(a)If my < g:
VNT (Becppx — B) = N (0pat, Z7H (Y + )2 ) + 271 (v/7hy + o)

with ¥ = limy 700 % Zfil E (TflVgsisgVi), h; =h;1 +hyp —hy 3 where

hl,l = Z{YI*’UEC ((r:—)/q;ZQxTxHx,mesz‘ny) ’
hy, = LI (T]) 95 EqsTsHm, Zf ZF,, 7,
hi 3 = LZqxTsHem If Zr,, 7, 2.1)

with Ty = Tqx, and Ty is a § x g partitioning matrix such that TxTx = [Txm,, Tx,—m, |, where Ts y, is an my X my

full rank matrix, Tx, _p, is my X (§ — my), and Hy,,, = [I’;{rlnx,omxx(g_mx)]’. Lastly,

N
Y= NI%IEOO% Y E [Ex,y,i (T’lvec (ViF) vec (V:F)/> E‘.;/y,i} with
' i=1

/ PPN ~
hy = X (Zgy, @ Dy g HET4akEqsTy ) vec (VT [(TTRVEY ™ — 2 |) +ha(T),

where hy(Iy) involves the terms depending on (T VFYFY)+ — ZEOW, which disappear if Ty = Ogyx. Next, for
Fx = Fpx and Fy = Fpy we have

o]
H
d

! /
syi = 11’%1. (Py — prRZFX,y> QI + nyl" {(prRZFX’y X qil"j{) — (Py ® (Ik - D,-(,,me,)qxr;-)’

+ Biyi(Ix),
D)'(’gfmx - diag(()m\,lgfmx),
_ + __
D)'(,—mx = phm qkTXHX,—mx (T_lv()_/mx—()m ) H/
N, T—oc0

where Ey (Tx) summarizes the terms that disappear if Ty = Op.
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(6 I = g
V NT(BCCEP,,'( —B) =N (0kx1,2_1(‘1’ + ‘T’f))l_1> + /72 hy,
with T'y = T'qx, h; = Hl,l + 1~11,2 — 1~11,3, where

hu1 = X roec ((T})'ak2qx(ThEr,T%) 'TxEx,,, ),
hip = LI'(TY) gk Eqx (TiZr Ix) "TLEF, 7,
hi 3 = LEqx(TiZe Ix) "T4ZE, 7. (2.2)

Also,

¥ = NI%IEOO N - ZIE [ % (T_lvec (ViF) vec (ViF) ) 8;y1i| ,

/ / -
Oy =11, (py ~PxErEr,, ) ®L+Er | (PeEL TR, — Py) @ GsT5 | + Oxyi(x),

where By, ;(Ix) summarizes terms that disappear if Iy = O

Proof. See the proof of parts (a) and (b) of Proposition 1 in De Vos and Stauskas (2024).

2.2 Pooled Estimator: Bootstrap Distribution

Theorem 2. Under Assumptions 1 - 5 we have as (N, T) — oo such that TN~ — T < oo the following asymp-
totic representations:

(a) Ifmx <g:

VNT(Beceps — Beceps) —a N Ok, T (¥ +¥5)Z ") + Z7'(v/Thy + hy + h)
where h™ = 2(h} — hy) and

s = %y (Zrg, © Do BiTeaZant ) wec (VT [(1RR) T 2] ]) +ha(l

with Lpo = diag [ZFX, (T*lv‘j;x_mxvg,li,_mx)} .The remaining quantities are as defined in Theorem 1.

) Ifm, =g
V NT(BZCEP,X - BCCEP,)'() —a N (kal,):_l(‘l’ + q’f)z_l) +v7Z 'hy,
where the quantities are the same as in Theorem 1 (b), and we have under the same conditions:

sup P*[M(BZCEP,X - BCCEP,X) < x| - IP[\/W(BCCEP,X -B) < x]’ —p 0,

xelRkx1

where the inequalities should be interpreted coordinate-wise.

Proof. See the proof of part (a) and (b) of Proposition 2 in De Vos and Stauskas (2024).



3 Heterogeneous Slopes

3.1 Pooled Estimator

Theorem 3. Under Assumptions 1 -7, for either my < gormy = gas (N, T) — oo
m(ﬁcczsp,x —B) »a N (kalfz_l‘fvz_l> p

where T = plimy,_, . o7 Loy VIV and ¥, = imy_e0 & T g ZiQW X

Proof. To begin with, let m, < g. We use the model

yi = X,‘,Bi + Fy’)’i + &, (31)
Xi=FI;+V; 3.2)

which leads to the expansion of the CCEP estimator in the following way:

N
Y XiMg i

Il
—_
\—/
|
—
Il
—_

N
Bccepx = (2 XMz X;

Il
—

T T
1 Y AR 1 1
+ m ZXZM/IEXXZ m ZX M Xll/z NT ZX M F (’)/ + 11,)/1 NT ZX MFXSZ .

(3.3)
This leads to
(F VAPV R T IO
VN(Beceps — B) = NT Y XiMg X; Wi Y T 'X{Mg X,
i=1 i=1
1Y TN s
i=1 i=
1 TN o
1= 1=
L8 ) LSy
+| 57 Y XiMg X; I Zl T~ 'X;Mz Fyy
i=1 i=
=I+II+II+1V (3.4)
By using the fact that Fy, = (Fy — Vx)Ty, X; = (Fx — Vi)T; T; + V; and hence Mg, Fx = O7,, we obtain
1 &, 1 Y I —
T 2 XM Xi = 1 ) (Vi = Vil Ti) Mg (Vi = Vil T)

=T+ 0,(T"?), (3.5)



which comes directly from Lemma B-7 leading up to Theorem 4 in De Vos and Stauskas (2024), in addition
toT- VIV, =%, + O,,(Tfl/z). There it is assumed that Fx = Fy = Fand F= [y, X], which means that (3.5)
is a special case and the same rate of convergence applies. By using the same Lemma B-7 and Theorem 4
in De Vos and Stauskas (2024) in connection to (3.5) we have that

-1
1 1 X
111 = XiMz X; — VY ' T XM= & = 0,(1 3.6
(NT Z ) \/N 1221 1 F*SZ Op( ) ( )
and
1 N -1 1 N 1 1 1 N 1
_ ! — !/ /
= (%7 1221 XMg X; i ; T'X{Mg Xjv; = £~ Z ViVi)vi+0,(1), (3.7)

which means that the slope heterogeneity dominates ¢; in the asymptotic distribution. Again, these results
follow, because in the heterogeneous slope analysis in De Vos and Stauskas (2024) we have Fx = Fy, = F
and F = [y, X], thus the rates of convergence here are preserved or faster when only X is employed. As
such,

\/N(BCCEP,X —B)= Elx}ﬁ i(TlVQVi)Vi
+ <1 iX’M x)l —iT*lx’.MA Fy1,
NT & VN &~ iV F T Y i
0, (1)
+ (1 iX‘MA x-) R 1 % T~ XMz Fyy +0,(1). (3.8)
NTz':l TR \/Nizl TR ’
0, (1)

Note that IV is algebraically equal to 0 if qx = I;. Otherwise, it has nearly identical structure to II.
Therefore, we will now examine II, and we will focus on its numerator. Because Mf:x = My since

Ry = TxHDy is full-rank, we now decompose the numerator of II as

1 X 1 X

< L TXMg By = = ) T (Vi = Vil 1) Mg o
i=1 i=1
1 <
= — ZT (V — VI T ) MFOFY”'W
Nz:l
1 ¥ =+
= —= Y T (V;— Vil ) MpFyy,
Nz:l
1 N
— =Y T YV, — VI, Ty (Mo — Mg )Fyry,
N o
= iirl(v — Vi, T;) Fyyy iirl(v — Vi T;) PpoFyy
1 X+ x 1 1 X+ x 1
Nz:l Y \/Nifl ey
1 N -1 + !
— ﬁ 1221 T (Vl — VI ri) (MFO MFO)FYﬂ'yz
=A-B-C. (3.9)



We start from A, which leads to

because

ZT T[Ty VNVFyn, |

i=

1 Y I
HN-Z%T I'Ty ViFyr, :‘
vV 1=
1

N
— T 1/2)

ol [VRTViRy|

and by cross-section independence of the error terms

2

L %T‘lv’-F 1]=2L i %IE (T2t | ViFy, 1, Fy V)] )
VN o i N = =1 Py ty
1 N
=N Y E ( {Vny’iy,i’ily,iF;Vz’D
i=1
1 N
N EE ( ztr [1771 iV;FY”y,i})
i=1
1 N
= < X (e [EGr, i, ) E(TF ViVE) )
i=1
1 N 1 T T
- N Z (tr E(”y,jﬂiy,i)ﬁ Z E E(fy/f"g,tvirsf;fs)
i=1 t=1s=1
=0(T™)

due to summable covariances. Further, we look into B, and in particular we get

1 Y -
B = ﬁ;T (Vi — ViI T;) ProFy1y,
1 al 1 / 1
:ﬁle ViPpFyn, ; — \FZT [Ty ViPpoFyn
1=
:OP(T_UZ),
because

1 Y R pp— —/
—ZT 't \/NVXPFQFWW

1 Y I
||NZT I'Ty ViProFy1y, ;
1=

IN

v L[] ln.d

=0 (T 1/2)

10

|VNT VR

(3.10)

(3.11)

(3.12)

rwny |

(3.13)



as H\/NT_lv;Fg = 0,(T~1/2) and

1§ -1 N .
H\/N ;T VFREy (\F le ViPgFyr,,
= =
= i B VA 150/ g0+ —150/
= || — QT V.F.> vec ((T* FYF) T IFYF )
\/Nll( nx X x 1y
N
= \ﬁZ(’iw@T 1V§F?-(> Hvec ((T*Fg/pgﬁrng,Fy)H
i=1
0,(T71/2)

by the exact same argument as in (3.12). Particularly, by using the Kronecker properties, cross-section
independence of the error terms and tr(A’A) = tr(AA’), we obtain

\/N =~ 11%1 1= X N i:1j:1 ’77,1’1%] 1mXTx V]
1 = / 2 00/
=N Z;]E (tr [11%1-11%1- ® T>VIF{FYV; ])
1=
1 - / —2x7/z0 07
= % L (1), ) te [E (T2VIFRY'V,)]
i=1
1 N 1 I T
- ﬁlzzllE (17'7111'71) ﬁ;;tr UE (Vltfxtfxs 15)]
=O0(T™) (3.15)
Lastly, we show that C is negligible as well. To demonstrate this, we re-state the fact that
Mg — Mpo = Tﬁlvofmx(T”Wmﬁ(im v mo+ T v (T*lF;FX)+ﬂ1’X
+ TV, (T 'FFy) B+ T (T FLE) PV,

which comes from performing the same manipulations as in S25 - S29 from the supplementary material
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of Karabiyik et al. (2017). Therefore, we obtain

1 & —
C= i Y T H(Vi— Vi I)) (Myo — My ) By,
i=1
1 N 1 < =t v 10 150 0 150
:7NET (Vi— VI T)'T Vk,—mx(T Vk,—mei,—mx) Vx,—mey'l%i
i=1
1 & -1 .7\ 7—1570 —1g/ g \+ Y
e LT V= VRIS TV, (T RE) Vi, By
i=1
1 & T 7150 g E O\
+—NZT (Vi = Vil I;) T~ Vg, (T B Fx) "FFyy.
i=1
13 T el g VY
+—NZT (Vi = Vil I;) TR (T FF) "V, Fynp
i=1
1 & T Vo150 [ 18080\ + st ] TO/
o LT V= V) TR (TEYE) " — 2, | Yy,
i=1 b
=C1+C2+C3+ C4+C5, (3.17)

where each of the terms is negligible. We will start with C1 and C5, which require the most work. In
particular,

70/ 0 <0/
) +VX,7711X Fyﬂ'y,i

N

_ _ 10 _1==07
ZT 1V;T 1Vs&,fmx(T le&,meVx,fmx)+Vx,fmey77%i
3 1t A 150 -1 iV
Z:T [T, VNVLT 'V L (T 0 Vi
_ _ 10 _ 1507 07 _
T'VIT 'V o (T Vi Vi) TV Byt + Op(T7H2), (3.18)
since

T & et ot 1530 R V— —0
N Z T 1r;rsz NVXT 1V5&,fmx (T 1V5&,fmxvi,fmx)JFVi,fmeY”'y,i
i=1

]

= 0,(T?). (3.19)

X,—my VX,

_ _ _ 1 N
o L e e S o
i—1

By defining Dx ., = qxHx _m, (T‘lvgf,mxvg,,mx)J“ﬁx,_mx q%, the first term can be simplified in the fol-
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lowing way:

15507 -0 -0/
\/>ZT 1V, Vx — My (T 1V5&,—mxvi,—mx)+Vi,—mey11'y,i

150 0 = <
ZNV’qu oo (T, Ve ) Hy i, @V By,

X, — My

\FTZ
NIRRT Zi iViDs,m. Vi
VIVDy ., ViFy1, .
N TZZ aa ! Y
kK k 1 N N N ()< (o)1
ZEZd g ﬁTZZZZVZV] V," Fyn.,;, (3.20)

=1 i=1j=11=

where dy 0 is an element in row u and column v in Dy _,, . Therefore,

1 N

1 157 570 0/
‘ ﬁ;T V T" Vx — My (T 1‘/x mex,fmx)JrVi,fmey”%i
-l Y VIVIVITEy
— X,— My, U,V A i
u=10=1 NVNT? = =B A v

<y Y| AL Sy Y vivieverE
> X,— My, U,V iV ! Ji

u=10v=1 \/N NT? i=1j=11=1 o Y

0p(T71/2)

= 0,((NT)~/?), (3.21)

where the O,(T~1/2) component is established in (2.80) of the supplementary material of De Vos and
Stauskas (2024), where they demonstrate the the normalized triple sum of with the triples of the same
variable multiplied by the fourth independent variable follows this order under our assumptions. In-
deed, {fyij,w ;_1 is a zero-mean process independent from the model errors. Alternatively, this can be
demonstrated with

o TV (VT )

15507
1V T 1‘/x — My (T 1V5&,—me", X,—mey”'y,i

1 N
— ) T
W&

1 ¥ v Y,
vec (ZT_lva 172 — My (T_lv(')‘/ V?z mx)+V9, Fy’h,i)H

N X, — My 2 X,—Mx
i=1

lel o
1 1 & 1/ 1/2%)’
< S| L (e T ) T |
= 0,(T™) + O, ((NT)"/?), (3.22)

although at a slightly different rate. Nevertheless, this rate is sufficient show that in summary

1N - =+ 150 10 =0 —0r _
€1 = ' WZT YV = VI T TV (T 0 Vi ) Vs By, || = O (T71/2).
i=1
(3.23)
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We next move on to C5:

1N _ o0 T 10y -
C5 = = T-1(V; — ViI, T;) T~ 1F [(T FVF) T - L, ] F)Fyr
i=1 b
1 al 1xy7/ 1370 150/70 707
=75 Y T WVIT TR [(T— FUFO)* — z;}»} FFyr,
i=1 e
1 et 150 [ 150/80 =0
- TN;T T, 'V, T 1§ [(T FURO)+ _Z;QJ F)Fyr
1 N P 1505 - _ _
=75 Y TWVIT IR [(T TFE) -z, } FYFyry, ; +O0p(T7/2) + 0,(N71/2) (3.24)
i=1 e
since

1 N I 1 O F
N Y T'IT, VT 'H [(T”FQ’FQV - Zlfo,] F/Fy1, ;
— X,0

N
—1F0F0Y+ —1%0 -1 </ =0l 1 —
< H(T FUF))+ — Fx/FYH HT VNV, F NZH <
i=
= 0,(T72) + 0,(N"1/2), (3.25)
because HT*R/NVTX.?Q < HT* “1L/NVE| = HT*R/NVXV ,(T71/2) = 0,(1)

and H TR Fy ‘ = Op(1). Next up, we re-write the first term in vectorized form to obtain

SVITTR (TR - X, [ VR,

Y (i, @ T Vi) vec | [(T'BYRY)* — £, | TEYE,

XU

Bl
M=

0, (N"1/2) +0,(T1/2)

1 Y -~
< Iy 0 H 13030 + 150/ H
< \/N;:l (1171®T V/E | vec T FUEO)* ZFQJ T FxFy>
< L N ’1 ®T 1vlF0 H lFO,F()) 1?(_)/};- H
- \/lezl v Y
=Op(N) +0,(T™), (3.26)

because the first component is asymptotically negligible, as well. Particularly, by using cross-section inde-
pendence of the loadings, multiplication properties of the Kronecker product and the fact that tr(A’A) =
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tr(AA’), we obtain

E ( 1Ni (1,0 T 'VIE) 2)

_ Ibi}im (tr [, @ TVE(T RV
_ IiliIE (tr [o i, 0 TVEUT RV

_ Ibilﬂg (1t [T VLT BV

_ % é}E (1, 1,0 ) E ([T VEUTEY V)] )

1D _ 570 _ _ _ _
becauseHT lF?-(’VZ-H < HT vivy WIFY| = (Op(N7Y2)+0,(T72)) + 0, (T~1/2)

O,(T~1/2). This means that overall

L& e s [t -
C5 = —= Y TV, = Vily ) T'B [(TT'RVEY) " — X, | FFyr,,

U2 10,(T112),

We will finish by analysing C2, C3 and C4, which all have a similar structure. For instance,

1 ¥ - =
2 = | = ;1 TV = Vil ) T Vs, (TR Vs, By
< o memy VAT 19 B v Ve R ]
= 0,(T"1/?) (op(N—l) +0,((NT)™/2))
=O0,(N'TV2) + O, (N"V2T71)
and
al 150
HC3|\:' 2 (V= Vi I T;)'T™ Vim, (TT'EF) "FFyn,
=1

gHT—lF;FyHH T~1F.F, ’T (Vi — ViT3 T,)VNVY,,,

lxy [

= 0,(N"2) + 0,117,

15

(3.27)

= O,(N"12) +

(3.28)

(3.29)

(3.30)



since H\/NT 1V/H) H = ~1/2) 4+ 0,(T~1/%) and HT 1V, V, Sy H = ~1/2)_ Finally,
1 al -1 N V-1 1y
|C4|| = ﬁzT (Vi = VT3 T)) T By (T FLFy) *Vy , F Yo
i
< TV, F H H T-'F.F, H HT (V; — Vi, T;)
[Tty S
= 0,(T™/2) (0p(T72) + 0, ((NT) /%))
=0,(T™). (3.31)
Hence, by combining the rates of C1 - C5, we have that
el = fZT (Vi = ViI{ 1) (Mg — Mg Fyr,
= Op(NV2) +0,(T71?), (3.32)
and in connection to the rates of A and B, we obtain
1Y TN
I = — ) X:M; X; — ) T7'X;Mz Fyy. .
NT; 17 F M m; 1TV F T Yy
1 Y X
< — Y XM: X; —= ) T XMz Fyy,, ;
NTZ_;’ | \ﬁl; iVIF Y i
Op(l) OP(N—1/2)+OP(T71/2)
= 0,(N"V2) +0,(T7?). (3.33)

We are left to deal with IV. Note that it follows exactly the same analysis as II and will retain the same
order results if we replace #, ; with 7 in any of the equations above, because the steps do not depend on
the statistical properties of the loadings. For example, (3.12) and (3.15) are solely driven by the covariance
summability and not the loading properties. By using tr(A’A) = tr(AA’)T, this gives
1 ¢ ISV
El|—) T VF
\/N 1221 1 Y’Y

2) Ly Y B (T Vi)
L Y E (12 [ViEy o E V]

- LY B (T [y R viViEA))
. i (tr [17/E(T 2R, ViViEy))

1 N T T , ,
Ao ]

t: s=1
= O(T™Y), (3.34)



and similarly by cross-section independence

2

z

N
E =N L LE(r[v'y @ T2VIEFRV)])

(verViE)

i=1

=3 LE(r[yr o T2VIEF'V])
N
Y vt [E (T2VIREY V)]

1 T
—2r Lga 1 Lt [E (Vi)

The two exceptions are (3.26) and (3.21), which slightly change. In particular,

VTR (TR - X, | FUF

1
T

1 N I1—1g! 50 —1v7/10
_ \/NZ(')/T FEoT ViF,-()
i=1

Joee (1R 2 ]|

IN

YT 'F,H ® VNT 'V

vec [(T—lﬁ?{ﬁg) —Z }

X,'U

0y (N7Y/2) +-0,(T71/2)
= O0p(N"V2) +0,(T71?),

because v N T*lv/ig is bounded. Also,

WVITTV, L, (T, Vs,

b
—H\FT RVAI W

Vi, mxT_l(v?i—m /Fy'YH
< H\FT V'V

|77 (Vo | = 0y

Vi, —my

This means that

-1
1 X 1 Y
= (m 2X§MEXZ’> HmZT XMz Py
i=1

i=1

0p(1) 0p(N112) + 0, (T 1/2)

= Op(N"V2) +0,(T7V/2).

(3.35)

(3.36)

(3.37)

(3.38)

By putting the results together, we simplify (3.8) and obtain the asymptotic distribution by standard

17



Lindeberg-Lévy Central Limit Theorem:

\/N(BCCEP,X -B)=r'— Z(T71V§Vi)'/i +0p(1)

—a N (ka1, Z‘l‘m‘l) (3.39)

as (N, T) — co, where ¥, = limy_,co % YN, X;Q,%;. The simplification comes from

it[ <[ Vi) - & v, [Tlv;vj)—z]}/)]

]=

\_/“’
Z\H
Mz

N
Il
—

-1 Et E([rtvivo -z [rvvy -z )|
_ ;}ii:tr [QVIE <[(T1V§V1‘) — Zl}l [(T*lv§V1‘) - Zi])}
oy (3.40)

Now, we let m, = g, which means that we will use the expansion
Mg — Mpo = Mg, — Mg =T 'Vy(T~ VE By ) "V, + T 'V (T BBy ) T TF,
+ TR T (T B F) TV, + T IR (T F. B )t — (T T 'F.F,Tx) | T F.. (3.41)
Under m, = g case the results of De Vos and Stauskas (2024) hold, and so we arrive at the approximation
in (3.8), where the remainder is of even lower order. In order to verify that the results hold, we only look

at the most complex term C in (3.9) as the analysis of A and B would stay exactly the same and they will
be negligible. This is so, because

+
(F(_)/FQ)+ _ F;Fx Omxx(g—mx) } _ [ (F;Fx)+ Omxx(g—mx) ]
XX 0o 0o 0, 0o !
(§—my) xmy (g—mx) (§—mx) xmy (g—mx)

leading to

(FF) ™ 0y n(s-

F/
Poo = FO(FYFO)TEY = [ Fy, 07y (o [ (g=m) } { X ]
Fg X( X X) X [ Tx(g—my) :| O(gfmx)xmx O(gfmx) O(g—mx)XT

— F.(F.F,)"F, = Pg..
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Then, particularly for C, we have

IC|| = Z\/> (Vi — ViI, T;) (Mpo — Mo )Fyry,
N =
<% ;\F (Vi = Vi T,) T V(T ' FiE) " ViFy .
+ NZ\F T~ (Vi — Vil[y I) T~V (TR, Fe) " T F .
+ N ; VNT! xfil"i)'Tlexfx(Tﬁl?;?xVV;Fy’iy,i

Z
z

+ || Z VNT UV = VT 1) TR TR [(TT R ) — (T T B FTx) VT FLFyry
=

= 0,(N"V2) +0,(T7?), (3.42)

which is driven by the highest order component

\FT (Vi = VI3 T,)' TV (T 1, Fy ) T F.Fyyy. .
X X+ x y”'y,l

1Y . —
. H sl el ZE )
BB 88 5y 5 o el v
= 0p(N"V2) +0,(T7V?). (3.43)

The same order result will hold in the expansion equivalent to (3.9) in case of IV, when we replace 1, ;
with 1. By looking at the equivalent leading term, we obtain

\fT (Vi — ViIo T;)' TV (T 'FLFy) T T F.Fyy
X Xt xty

1Y =
< H TR |[TRE | 5 L i I VAT
SR [t P A M AR
= O,(N~ 1/Z)Jror,(T 172, (3.44)

3.2 Mean Group Estimator

Theorem 4. Under Assumptions 1 - 7, for either my < gor my = gas (N, T) — cowith TN™1 — 7> 0

\/N(BCCEMG,X —B) =a N (01,90,

where Q, = E(viv!) .
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Proof. Firstly, we assume m, < g. We expand the CCEMG estimator in the following way:

~ 1 N -1
Becemox = 3y Z (XI'MA X') XiMg, yi

[sy

MZ»

-1
N 1 ( T1X/M; x) T 'XM;. y;
i=
1 N —1y/ -1 —1y/
==Y ( X\M; X ) T~'XM;, (XiB; + Fyy; + &)
i=1
1Y 1 & -1 1 & -1
= LB L (TXMEX) XM Fyyi+ ) (TXIMe X)) T 'XiMg e,
i=1 i=1 i=1
1 1Y -1 1 -1
=B+ L vitn L (T7XMp X;)  T7'XMg Fyy; + <L (T7XMp X,) T 'XMgé,
z:l i=1 i=1
(3.45)
which implies that
N(Bccemcx — B) = N Y vi+ N Y. (T XifoXi) T~ XiMg Fyv,
i=1 i=1
1 & -1
i=1
=TI+ 114111 (3.46)
Clearly, I is asymptotically normal by the standard arguments:
\/7 Z Vi — 0k><1/ QO ) s (3-47)

as (N, T) — oo. We further move to III, which is much simpler than its analog in Theorem 6 of De Vos and
Stauskas (2024). In particular, in the later study, £ is used to approximate the factor space via F = [, X],
which makes the numerator and the denominator dependent for each i. In the current case, we only use
X and hence (any subset of) V, which is independent from g; for all i. This implies that III is mean-zero
and by our assumptions on existence of moments, we obtain

2
1 Fx 1 1 Fi“1

™=z

i=1

N -1 -1
Z <tr[(T1X§Mf:xXi> T=2XMg, &i¢{Mg, X; (T~'X/Mg, X; ) ])

Z\
Mz

Il
=

i

1 N -1 -1
= ) E <tr [(T—lngin> T 2X/M;, eiejM; X; (T—lx;MRxZ) D —O(T™Y), (3.48)
i=1
which comes from the fact that HT‘U ZXQMR‘C’Z'H = Op(1). This can easily be seen from the expansion

similar to (3.9)

I o VA (Vi — foil"i)'(MFg _ Mﬁg)eir (3.49)



where the leading terms are the ones with V; from the left, because Vi will either preserve the same order
or bring it down. Clearly,

= 0p(1), (3.50)

_ OP(N*W) (3.51)

HT_l/ZVQSi

_ S———
HT V20T Ve,

under our assumptions. Next,

HT—“ 2VIPe;

‘(T‘lFQ’F2)+H HT‘lFQ’siH = 0,(T7Y?), (3.52)
) =0,((NT)¥3).  (353)

< ||T2viE

(r-re) | [ -tere,

HT*”ZF;fHV,Pngi

S e Vi A

Eventually, by using the expansion in (3.16), we obtain

|72 viMg — M el | < | TVIVE | (TR VR L) || [ TRV e
+{| TV | (R TV
T Lo ey
+|T (T 'F,Fy V|
+ ||V (T*lFQ’Fg) A } ~1/2F0,
= 0,(N"V2) +0,(T71?), (3.54)
and
| T2V Mgy — Mpo)ei| < | T VY | (TR V) | TV e
+ [T V| (T EE | T2V
et 50
+ | VxmeH( T~'F.F, H HT 1/21:’81‘
+||T” (T~ 'F,Fy vy ‘
+ | T VR _(T‘ng’Fg) —z ||| |72
= 0,(N"1/2), (3.55)
since HT VAT H 0,(N~12) 4+ 0,(T~112) HT VAT H = O,(N1/2) HT 12y mxfi) _
O,(1), [T'V/E,|| = O,(T~V2), ||T~V?F.e&;|| = O,(1), |T~ 2R\l = O (1) and the rest of the terms
P i P X P X P
are of a lower order. Therefore,
HT’UZXﬁMEsi ) =0,(1), (3.56)
[T XMz & = 0,(T7172) (3.57)
and hence
al -1 1/2 1/2
|111|| = \FZ( lx;Mf;Xxi) T 'X{Mg &/ = O,(N""/2) + 0, (T""/2). (3.58)
=1
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We will proceed with II. In particular, we can re-write it as

-1
In = (T7XM5 X;)  T'XMg Fyy;

3~
1=

i

1 y -1
iy Y I 'TTIXIMg Fyy, + i Y, [(Tlngixxi) - zil] T~'X/Mg Fy,
i=1 i=1

1

—A+B, (3.59)

which is not the “sharpest” split of this term, but as we will see, the restriction on N, T expansion will be
needed anyway. Here we will focus on A, first. We have

1 ¥
A:—szilT 1x;MfXFy%_\FZZ (Vi — VI ;) Mg Fy,
i=1
1 Y )
= NZZZT Y(V; — Vi  T;) Fyy, — \FZZ YV — VI r)PFng%
i=1
1 J
—WZEI T (Vi — Vi T)) (Mg — Mpo)Fy
i=1
=A1— A, — A, (3.60)

where ||A;| = O,(T~1/2), because

1 XN - 1= 1N _ —+ _
—— Y E T Vi | < H\/NT IV,F H — Y|z 1”‘ 1| =0,(T"2),  (361)
Xty = y p 4
HVNil l o Z ” N = i’
and by the cross-section independence of V;
2 N
1 1 —1p—2 -1
E | T'V/Fy7, NZ r[E (v,9) E (7' T2VIEF, v,z ) |
i=1
=0(T™) (3.62)

since H T*1F§,

= O0,(T~1/2). The term A2 follows a similar structure, because

‘ JITT VP Fy
< H(T—lFQ’F2)+H HT—ng'FyH H\/NT—lv’Fg —1H )*j 1| = 0,(T7172) (3.63)
and
1 al 1 1x7/ 1 N 1 1v7/g0 10/(0 10/
i Y I T VPR Fyy|| = i y (% QL IT" ViF,.(> vec [(T‘ FUF) T 1F Fy]
i=1 i=1
1 al 1 1 0 —110/0\+ 10/
< \/NZ;(%@)Z T~ VF) H FUF))F T~ F,.(FyH
=
OP(T71/2)
=0,(T7?), (3.64)
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where the order comes by exactly the same argument as in (3.62) by using the Kronecker properties:

2

z

(o oy o507 v )

I
Z| =
=
1=

Il
—_

E

(Ve 1T VIR

Il
—_

i=1 ]

=

Il
_

E (tr |7/, 0 57 T2VIRFYViE )

Zl= Zz[=

E (v}y,) tr [E (57 T2VIEFYV,E ) |

=

Il
—_

-, (3.65)

2
lﬂ

We now move to A3, where we again use (3.16):
1 ul -1 -1 X7 v+ /
=¥, Z L VNT (Vi = Vi Ti) (Mg — Mo )y,

—ZZ 'VNT™'V}(Mgy — Mgo)Fyy, — Zz 'WNT I Vi (Mg — Mgy )y,

_A31- A3.2, (3.66)
such that
1 -1 IRVATA -1y 1%)/
lasa) < Y [=7| [VNTVIVE | (TR Ve ) | || T VR F
i=1
1Y 1 \/“ —1x 7570 1 F 17
WE x NT ViVX,mXH (T'F.F H HT ' F%)
=
1 & ~1|| [\/NT1 X770 g/ R Ip' F
+NX; pap NT ViVx,mxH (T~'F.F H HT F. y%H
1=
1 N -1 — -1 / 17
+= 2= |7 FF)* | | VNT TV, y%H
i=1
1 N -1 —1x7/10 —150r50\+ + —1307
+ 5 o= T viE (TEYEY) " — =, | FYFy
i=1 e
= O0,(N7V2) +0,(T"V?) (3.67)

if we assume that TN~! = O(1). Under this restriction, the first term, which is the dominant one, also be-
comes negligible, because H\/ﬁTflV;Vg,_mx H = VN(0,(N7Y2) + 0,(T~2)) = O,(1) then. A similar

[(T—lﬁgfﬁg) z:tj T~1FYFyv;

= 0p(1) and

‘ = 0p(1),
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the total order is driven by the terms of the form H VN T‘lngg,mx H = 0,(N~1/2) + 0,(T~1/2). Further,

1 N —1 {3t f 1x7 1559/ 1—0/
HA3‘2H NZ ‘ X H NT™ Vx X, — 1y H(T Vi&,— H HT X,— My y’Yz
i=1
1Y 1| ||+ 157 570 g/ F 17
+ L= | | var vame (T~'F.F H HT vy Fy"yiH
i=1
1Y 1| ||[F7+ -1 0 g/ F g/
+ < L | || v vame (T'F.F H HT F. y%(
i=1
1 ¢ 1| ||+ - -1p'F 1y
+x &= ||| | T F.F HH\FT vy y%(
i=1
1Y 1| [|F¥F -157' 50 — 13030+ + —130/
+ < L | ||| VN viE [(T FUF) —ZFQ} FUFy,
i=1 X0
Op( 1/2) + OP(T—l/Z) (368)

by similar arguments, but we do not need TN~! = O(1). This means that overall

= O0p(N"V2) +0,(T7?). (3.69)

1T S
Al = H T Z; T 'X{Mg Fyy;
1=
Eventually, we move to term B, which gives

-1
|B|| = T—lngin) - 2;1} T~'X{Mg Fyy;

1
Hm?l

-1 1 N
< VNsup | (TxiMx) - 20| § & T xime By |
i i=1

0,(1) if TN~1 = O(1)
= O0,(N7V2) +0,(T71/?), (3.70)

[(T—lx;Mﬁxxi) o 2;1]

+ H 7! (V;— Vszf;ri)/PFng'Yi‘

, because

’ = OP(T_l/z) uni-

where the order is dictated by H T‘lngfX Fyv;

formly as discussed below (3.5). Therefore, we have

| T XiMg By | < [T (Vi = VAT By,

|| T Vi = VAT (Mg — M) Fy

< || T (Vi = VRIS T (Mg — Mg ) By | + 0, (T7172)

= [la]| +[[b]| +O,(T12), (3.71)
where the dominating order of the remainder is given by the first two terms since HT‘lV’ F|| = 0,(T"1/2)
and HT”V;F?( = 0,((NT)"1/2), and also || T-1V'F, || = O,(T~1/2) HT IV.F H — 0,((NT)"1/2) . By

using the expansion in (3.16) and recognizing the fact that the terms involving V from the left will either
preserve the same order or bring it down similarly to (3.49), we obtain the following from the remaining
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a and b terms:

lall = | T ViMg = Mg By | < [T VIVE | (798 Vi) || T VR By
Op(N7V2) +0,(T71/2) Op(T71/2)
+HT ViV | |7 EE| HT Vi |
+ | v V| i me [ mE
op(mop((m)*“z)
+|rrvin| R [T Ve B
+HT*1V§?2 [ T-1FVR))* F%,,,] “1FVEy,
=0,(T 1) +0,(N71) +0,((NT)"1/?), (3.72)
and
b)) = | T'TT Vi(Mgg — Mg By | < || T T VeV | |79 Ve )| [TV )
Op(N~172) 0,(T-1/2)
T, VY, H (T~'F.F, H HT VY F %H
+ || T T VY H (T~'F.F, H HT LF'F y%H
Op(N’l)
+ |7V (T~'F.F, H HT Y Fy%H
+ | T VR [ T-1FVFY)+ FEJ “1EYFy,
= Op(T™") +Op(N™1) + Op((NT)~ 1/2); (3.73)
with the drivers of the order indicated. In summary,
_ N
HBHS\/ngpHRT_lXQMEXi) _x ] ElHT XM, Fy%H
= 0,(N"1) +0,(T"1/?), (3.74)
under TN~! = O(1) and so
’HH_H\FZ 1X§MRX1-)_1T_1X§MRFY%- = 0,(N7V2) 4 0,(T71/?), (3.75)
which ultimately leads to
~ 1 XN
m(ﬁCCEMG,X_ﬁ) ﬁ;‘/i‘kop(N*l/z)‘Fop(Tﬂ/Z)
iz
—a N (Okx1, Q) (3.76)

as (N, T) — counder TN~ = O(1).
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We now let m, = g, which means that we will again use the expansion in (3.41). Because now the con-
vergence rate will be quicker, (3.58) will hold as well, therefore it is sufficient to check II in the expansion
(3.45) and in particular we start with Az as the analysis of A; and A, will be the same and these terms
will be negligible. Hence,

1 N —
|As] = |N Y I T (Vi — VI Ii) (Mpy — Mpo) By,
i=1
1y -1 -1 Vv.rr VTN (TR BN
< sz‘i VNT NV, = VI T) TV (T FFx) TV Fyy;
i=1
1 al -1 -1 5 7t =17 15/ 5 \+7 ¢/
+ sz‘i VNT YV, = Vi I T T V(T EFy) T FFyy,
i=1
1 -1 -1 V. r VTl T T-19 %\ +V
+ sz‘i VNT NV, = ViI T T R Tk (T 'FFy) TViFyy,
i=1
1Y -1 -1 Tt r Vel T —1D/' T \+ ' =1/t T \ 17
+ sz‘i NT YV = VI, T) TRIR[(T I FF) T — (T3 T ' FETx) T T F Fyy,
i=1
= 0p(N7V2) +0,(T"1?), (3.77)

which is driven the highest order term which is almost identical to (3.43). Note that we still use the
restriction TN~! = O(1) just as in case of m, < g. We need this to show that B term is negligible as well,
because II is generally not mean-zero. Particularly, the split

N
Y (T IVIME, V) 7T X0M g By,

N -1
y [(Tlx;MﬁXxl) - (Tlngvai)l] T-'XM; Fy; (3.78)

is not viable, because even if

-1
(T—1x;Mf:Xxi) - (T—lngvai)—lu — 0,(N~1/2) under g = m,, the

tirst component is not mean-zero, and its second moment is not negligible. Hence, we implement
N
Z; ' T 'XMg Fyy,
= 1 - 1 1
— / — — !
y [(T XMpX;) —F; ] T-'XM; Fyy; = A +B (3.79)
where [|A|| = 0,(1) still as H}Zi’l H = O(1) and deterministic. Under m, = g we have that

VN H (T*lx;M?Xxi) o = 0,(1) (3.80)

under TN~! = O(1) uniformly, and hence

1

1 N
IBJ| < VN'sup H (T7xiMe X)) -7 S L || T XiMg By
i i=1

) =0,(1). (3.81)
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3.3 Bootstrap Distributions

Theorem 6. Under Assumptions 1 -7, for either m, < gormy = gas (N, T) — oo,

(a) SUE P*[v NT(ﬁzCEP,k - BCCEP,x) < x| -P[v NT(BCCEP,x - B) < x]’ — 0,
x€Rkx1

(b) sup P*[v NT(BZCEMG,X - BCCEMG,X) < x| -P[v NT(BCCEMG,)’( -B) < x]‘ —p 0,
xeRkx1

where inequalities are to be interpreted coordinate wise.

Proof. (a) We assume m, < g. Let Mg, = It — F:(FYE:)TFY and M;. = (Iny ® Mg, ). We derive the CCEP
estimator from the bootstrap sample: ) )

ok * * -1 * *
Becepx = (X /Mﬁ;x ) X /M?;Y

-1
(x’w’TMﬁ;wa) X'W; Mg Wry

-1
(X'WrWrMg X)  X'WrWrMg.y

-1
(X’diag(s ® L%)MﬁX) X'diag(s ® t7)Mz.y
N 1N
SiX;Mﬁ;Xi Z SiX;Mf;* Yi
~ ‘
B

i i=1

(L
NT !

1

=

, N 1Y 1 Y
/ / 1
SiXiMf;in m 1221 SiXiMlA:;Xﬂ/l' + m 1221 siXiMF;FY’)’i + m 1221 SiXiMf:’t&‘ ’

(3.82)

Il
—

which implies that

5
=

Il
—_

-1
o~k 1
\/N(ﬁCCEP,x - B) = (N . SiX;Mf;;Xl)

1
X ST XM Xov; + —— isT‘lx’MA Fyyi isT‘lx’M &
i (e S g \/N = i iVUF; y7i \/N = 1 (i SR B

(3.83)

-
i
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Next, we can write

\/N(BZCEP,X o BCCEP,X) = \/N(BZCEP,X B ﬁ) - \/ﬁ ACCEP,X B ﬁ)

+ Lis-x/M X ; i)%s T~ 'X{M;.F L%T—lx/M F
NT &~ i IV A N & i iVIp: Ly Vi JN & iVIE Ly Vi
+ Lf:s»x/M X h iﬁs T 'X[M;, %T‘lx’M 2
NTl:ll CORT \/Ni:ll COR \/71:1 PR
1Y - 1 -
+ <NT 1:21 SZX:MF*Xi> — m 1:21 X;MF Xl)

e 1Y 1 &
X ( Z T_lng?XXil/i + ﬁ Z T_lngﬁxFy')’j + ﬁ Z T_lngE‘Sl) .
j i=1 i=1
(3.84)

2
Il

In what follows, we will use the crucial lemma from Cheng and Huang (2010), which connects the rates of
convergence in bootstrap and original (unconditional) probability measures. Particularly, given a vector
valued statistic A, which depends on Z;,...Z, and multinomial weights s, ...,s, (independent from
model primitives), then for a deterministic sequence a, we have

Ay = Op+(ay) in probability < A, = Op(a,) unconditionally.
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Due to this result, we have

-1
o - 1Y 1Y 1 &
\/N(.BCCEP,X — Becers) = (NT ZSiXQM?;Xi> Wy ZSiT 1X§M?;Xi‘/i N Z T 1X§M?xxi"i>

1 N , -1 1 N . 1 N o
‘ / i=1
-1 1 N 1 1 N )
i=

-1 1 N : 1N
—_— E ;T ' XMz, e — —— E T X’-MA_{-:‘
= TRTOUNS CoR

= 1+ 11+ I + 0, (1) (3.85)

-1
in probability, where H (ﬁ YN s XM xi) - (ﬁ YN, XM, xi)

and Stauskas (2024). By using the bootstrap consistency results from the same study,

’ =0y (1) by Theorem 2 in De Vos

1 &
WX;T XM & )
1=

= 0,:(1) (3.86)

+

-1

1 ¥ 1
11| < || == Y siX!Mg. X; — Y s T 'XM¢, &
NT = 1% Fx 1 lezl 1 1 Fx 1

in probability and

1y -1 1 N o 1N
I=| — $: XMz, X; —_— $; T " XMu Xv; — —— T " XMz X;v;
NTZZZIF*Z \/Ni;Z CURT \/Ni; FURST

1 N
=z ' — VY (si—1)Zw; 4+ O, (T2
\/lezl( 1 ) (A p ( )
N (0 >y z—1> 3.87
— i kex1s v (3.87)
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in probability. We are left with evaluating II. For this, we introduce the bootstrap rotation matrix

ﬁwx = [Hwi(m /ﬁw)‘( —m ] = rw'i'mx _rw,x,mxrw,i—mx ’ Dy = Imx Omxx(g—mx)
, T A O(g—mx)xmx Igfmx O(gfmx)xmx NIg—mx
(3.88)
r;l . U P
with its limiting matrix Hy = [Hym,, Hx—m,| = [ X, X X] such that
O(g—mx)xmx Ig My
=~ P S — — —0 —0
Fo* = F;HusDn = F2 + [V sHuwxm, VNV sHosx—m ] = FL + Vo somr Vaos—m. - (3.89)

From now on, we can repeat exactly the same steps as in the analysis of II (and I'V, which is now merged
together) in the original sample by using independence of bootstrap weights from the model primitives,
the rate conversion lemma of Cheng and Huang (2010) and a few key results, such as

(1) [[Vaxl| = Op (N712), (3.90)
2) H:r* =0, (N1 + 0, (NT)"1/2), (3.91)
aen
@ |(rRE) x| o o, 6.92)
(4) E(s;) =1, (3.93)
(5) Var(s;) = E[(s; — 1)} =1 — N~ (multinomial variance) (3.94)
where
. <0
z“w,F(,.)(,v = dlag |:ZFx/ (T wa mXVw,X,—mx):| . (395)

Therefore,

1y i
(11| = ﬁxsixiMf;xi i

N N
1
-1 -1
H ( Ys 1: X{Mg. Fyy; — = ) 1 T X;ME(Fy'yl) H
V = V 1=

Lr=
@

- 1 &
T 1X§M?;Fy7i— WZT 1X§M?XFy’Yi>

IA
/N
Z‘ —
)ﬂ
M-
>
X
<
k2
2
N———
|

N

Ly XMy By,
i=1

IN
—
Z‘ -
H
™=
»
Red
<
5
X
~
|

)

= 0p(N72) + 0, (T2, (3.96)

N
([ Bz

Note how (3.94) ensures that whenever we analyze mean-square convergence, we will obtain the expec-
tation of the square of the main object of analysis, plus a lower order term, hence the limits will stay the
same. Hence,

N
=, T71X§M?;Fy%‘
i=1

/2) + 0 (T7V2). (3.97)

1 &
i=1

N
Tzi
( -1/
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In summary, we obtain

iMZ

\/N(BZCEP,X - BCCEP,)'() =z T (si = DZivi + 0p+ (1)

—a N (01, ZHZ7) (3.98)

as (N, T) — oo in probability. The consistency holds uniformly by multivariate Polya’s Theorem, simi-
larly to the argument in Gongalves and Perron (2014). The latter states that when /N ( Becepx — B) —a
N (041, Z7 ¥, 1) (proven in Theorem 1), then

sup
xeRkx1

]P(\/N(BCCEP,X - :B) < x) - (I)<xr' Ox 1, 271‘1,1/271)‘ — 0,

where ®(x; u, Q) is the Gaussian CDF with mean p and variance Q). Hence, uniformity follows if also

sup
xcRkx1

]P*(\/N(BCCEP,X - BCCEP,X) <x)—®(x; kallzfl‘fuzfl)‘ —p 0

which is in turn guaranteed by Polya’s Theorem because (3.98) holds in probability. Hence, uniform
consistency follows:

Sufl P*[v NT(.BCCEP,x - .BCCEP,x) <x]—P[v NT(.BCCEP,x —B) < x]‘

xelRFX

= sup. (H’*[V NT(Becepx = Beceps) < ¥ — @(x; 0kx1,2_1‘1’u2_1)
xeR**

- (P[M(BCCEP,X —B) < x] - @(x; kallzfl‘fvzfl)) ‘

o~k ~ _ _
< sup [P*[VNT(Becppx — Beceps) < X — @ (%041, 27 ¥ B 1‘

x€Rkx1
+ sup |P[VNT(Becpps — B) < x] — @(x; okxl,Z*l‘I'VZ*l)\
xe]kal
= 0p(1), (3.99)

which completes the proof.
The argument for m, = g is exact the same as in the discussion of Theorem 3.

(b) The bootstrap CCEMG estimator is given by

Z

1 ! 1y
.BCCEMG x TN Y si (XiMfz;xi) XiMs.yi
i=1

z 0

1 1N ~ -1 1Y B -1
Nzlsiﬁﬁﬁgsi (T 1x;Mﬁixi> x;Mﬁ;Fy7i+N25i (T 1ng?§xi> T 1ngﬁisi
= = 1=

~

1 1Y -1
:ﬁﬁzsl+ﬁ zs,vl—k Zs,( 1X§M§§X,~) T 1X§M§;Fy'yi
i=1 i=1
N
1Y -1
+ 5 L (TXMeX)  T'X(Mge, (3.100)
i=1
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hence

\/N(BZCEMG,X - :B

1 N
Vi s
\/7 Z v \/N 1221 1
7N Esi <T—1X§M?;Xi) - T 'XMg. &,
i=1

and so

\/N(BZCEMG,X - BCCEMG,X) = \F(BZ CEMG,x — .3) - \/N(BCCEMG,X - ﬁ)
1

x (T—lx; £ FyYi+ T XM, &)

-1
(TXME X)) TIXMg By,

N -1
Yosi (T7XMg.Xi) (T XM Fyy; — T~ XIMg Fy ;)

N -1
Yosi (TXMg.X,) (T X Mg e — T'XMy &)

is [(T—lng?;Xi) o (T—lx;MRXi) 1]

1
VN
1 Y B -1,
+ﬁ; <T 1X;Mfi’ixi) (T XMz Fyy; — T~ XMg, y’Y)
1
N

(3.101)

+—= Y5 (T XM X)) B (T'XMg.&; — T~'X{Mg, &) + o0, (1)

i=1
=1+1I1+ 11+ 0, (1)

T;Si [( TIXM; x) . (T*lx;Min) _
< \/Nsxl;p ‘(Tlx;Mfgixl)1 _ (T*lngﬁxxi) - ‘ Ni
= v/Nsup ‘(T‘lijf:;Xl) o (T—lngﬁxxi) B ‘ ;]i B
+v/Nsup (ir—lngF,ﬁxJ_1 — (T XM x,)_1 | T XM Fy
;
= op*(l)
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-1
(T*lx;MRFy% i T*lx;Mﬁxsi)

sil HT XM, el‘

+ || T xiMg By

‘T XM, ¢

(3.102)

)

(3.103)



as TN~ = O(1) in analogy to (3.70). Then

) = || L 3 T-IXM- X} (T-1X'M T-1X'M
Juarl = |7 Yo (T X0MeX0) (T XM = XMy 1)
1 N —1+v/ -1 —1+v/ 1 al —1v/ -1 —1+v/
< ﬁzsi (T XiMf:;Xi) T XiMf;;Si + 7]\]251' (T Xl‘Mfzixi> T XiMf:).‘si
i=1 =1
—0,-(1) (3.104)

in analogy to (3.48) by using the fact that bootstrap weights are independent from the model primitives
and the results in (3.90) - (3.92). Further,

N -1
m=—-Y s (T7%Mg.X;) (T XMy, Fyy; — T~ XMz Fy ;)

VN i=1 x

1 A -1 1y —1y/
_ ﬁ;sizi (T XMy Fyy; — T~ XM Fy ;)

0p+(1) in analogy to (3.69)

1 N 1~/ -1 -1 —1~/ 1

+ﬁi:215i (T7XMg X ) — 27| (T XMy, Fyy; — T~' XM Fy ;)
0p+ (1) in analogy to (3.70)

—0,-(1) (3.105)

under TN~ = O(1) by using the independence of the bootstrap weights from the model primitives.
Eventually,

m(BZCEMG,X - BCCEMG %) \f Z Dvi+ 0p-(1)
7 N (0k><1/ Qv) (3.106)

as (N, T) — oo in probability. Similarly to part (a), consistency holds uniformly by multivariate Polya’s
Theorem. We have

P(VN(Becemcx — B) < x) — @(x; 0.0, Q)| = 0.

sup
x€Rkx1

Hence, uniformity follows if also

sup IP*(\/N(ﬁccmdc,x — Becemox) < x) — @(x;0kx1, Q)

xelRkx1

—p 0

which is in turn guaranteed by Polya’s Theorem because (3.106) holds in probability. Hence, uniform
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consistency follows:

sup. P*[VNT(Bccemox — Becemos) < x] —Plv NT(BCCEP,X -B) < x]}
xeRFX
= Sugl (H)*[V NT(.BCCEMG,X - ECCEMG,)‘() < x] = @(x; 0px1, Qv)

x€ERKX

- (P[\/W(BCCEMG,X —B) <x] - (x; kal,ﬂ,,)) ‘

< sup. P*[VNT(Bccemex — Becemos) < X1 — @ (%5 0p1, Q)
x€R>

+ sup |P[v NT(BCCEMG,X = B) < x] — @(x; 041, )
xelRkx1

—0,(1), (3.107)

which completes the proof.

The argument for m, = g is exact the same as in the discussion of Theorem 4.

4 Variance Estimators

Theorem 5. Under Assumptions 1 -7, for either my < gormy = gas (N, T) — oo

(a) N(:)CCEP,X —p Z_l‘YVZ_l
() NOccemcx —p Qv

Proof. (a) The proofs for either m, < g or my = g are identical as in the latter case the remainder will

be of even lower order. Let sz = T_lxiMfXXi- We firstly find the workable expression of sz(sz -
BCCE MG/,-(). Notice how

~

Bs.i _BCCEMG,X = Q 1T 1X,MA ZQ 17— 1X’MA

N ~

Yovi+ Q) (T 1XIMg Fyy; + T XMy &)
i=1

N Y05 ( XMz Fyy, + T’lngﬁxsi)

= Vi+0p(1)/ 4.1)

because & YN v; = O,(N~1/2), HT‘lngf:xei
directly from (3.49) and (3.71), respectively. Also,

= 0,(1) and | T71XMg Fyv,

+supHQ;’i1
i

= 0p(1), which come

1 & A -
~ L O (T7XMp By + T XMy &)
i=1

< sup HQ;}
;

1T &
X
1=

=0,(1). (4.2)

o] I

— T XMz g
&

N l
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Therefore, because HQXZ = Op(1), we have that

QX,i(Bx,i - BCCEMG,X) = Qyivi + 0p(1). (4.3)

-1

By using this, we obtain

N -1 N
~ ~ 1 ~ ~ ~ ~ ~ 1
NOccepx =N (N Z QV’) N(N—1) E Qs.i(Bs; — Becemcx) (Bsi — Becemcx) Qi (Ni

=

I
—

i=1

1 ~ B 1 N e 1 SRS o
A%

N
1 al 1 - 1 al 1 / 1 1 N 17/ -
S . - . -
= NZZT iVi| N1 Y (T7ViVivvi(TTV;Vy) Ni:1T Vivi|  +o,(1)
—, rly, x-1 (4.4)

as (N, T) — oo.

(b) The result comes immediately from (4.1):

~ 1 N o ~ ~ ~
NOccEMcx = N_1 Z(ﬂx,z‘ - ﬁCCEMG,x)(.Bx,i - ﬁCCEMG,)‘()/
i=1
_ ! ﬁv vi+0,(1)
N — i=1 1
=, Q, (4.5)
as (N, T) — oo.

Theorem 7. Under Assumptions 1 -7, for either my < gormy = gas (N, T) — oo

(@) NOccppx —p E ¥, L7

0k
(b) NGCCEMG,X —>p* QV-
Proof. (a) The proofs for either m, < g or m, = g are again identical since in the latter case the remainder

will be of even lower order in bootstrap probability measure. Generally, the proof follows Theorem 5
closely. Let Qil = T~ 1X;M;. X;. The first part of the workable expression of Qiz (ﬁ; — BZCE MG.x) 18 given
by )

A~k A~k Ny 1 1 N A*—17—
Bii — Bocemox = Qi ' T 1X§M?;Yi N Y siQ'T 1X;M?xyi
i=1
1 A1 (-1 1
= vi—~ Yoswi+ Q! (T XM Fyy + T XM )
i=1
1Y o 1 1y/ 1y/
- Z;siQ;; (T1XMg Fyy; + T~ XM, &)
=

= Vi—l—Op*(l), (4.6)
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since % Zfil sivi = Op- (N-1/2), ‘
from the proof of Theorem 6. Also,

Mg, &

= 0p+(1) and HT*X;M?%FY%-H = 0p+(1), which come

1Y
HN ZSZ‘Q;?l (Tﬁlngf:sz’yi + Tﬁlngf:isi)
i=1

. 1 N B L 1 N B
< sup HQx,il N Y Isil HT 1X§Mf:;Fy'yi +sup HQM =Y Isi] ‘T 1X§M§§si
i i=1 1 i=1
=0, (1). (4.7)
Therefore, because Qil = Op(1), we have that
Q;i(Bs,i — Becemc ) = Qxivi +0p(1). (4.8)

Based on these arguments, we again obtain

-1 -1
1Y 1 N o s s o ~, N
= (N Z SiQx,i) NIN=T) Z 5iQ%,i(Byi — Becemex) (Bsi — Becemcx) Qi (N Z siQx,i>

R A S T A & I N
v LsQu) o LsQuvviQu | s ) o)
1=
\%

i=1 i=1
1 N 1 . -1 1 N L , o 1 N o -1
=N ;T— sViVi | 1 ;sl-(T— VIVl (T VIV | Z;siT_ VIV, | +0,(1)
i= i— iz
—p ZTE,ETT (4.9)
as (N, T) — oo

(b) Similarly to Theorem 5, the result comes immediately from (4.6):

NG)CCEMG,)’( = Z Si ﬁCCEMG x) (.Bx,i - nBCCEMG,X)/
1
- N7— Z SiVjV; + Op* (1)
i=1
=, 0, (4.10)
as (N, T) — o0

5 Discussion on General Unknown Factors

Proposition 1. Under Assumptions 1 - 7 for my < g as (N,T) — oo with TN~ — T > 0, plus a covariance
stationary Fy, we have the following asymptotic representations:

N
(a) (heterogeneous case) V'N(Becpps — B) = —— Y Zivi+0,(1
S \ﬁ =
R N
\/ﬁ(ﬁCCEMG,X - 21
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If, in addition, L, is deterministic, then
(b) (homogeneous case) NT([ASCCEP,X - B)

1 N
e <\/N Z [T*1/2V28i + @iDilF,mvec(VfF)] + ﬁhl():pxy) + h2> +0,(1),
i=1

where ©; is a random matrix that is a function of loadings. Also, hy and hy are equivalents of the respective terms
in Theorem 1.

Proof. (a) We begin with the CCEP estimator under heterogeneous slopes, where we use the expansion

-1
R 1 N 1 N
VN B = =Y XM: Xi | —= Y T XM X
(IBCCEP,X ﬁ) (NT; [y Z) m; iVAE, iVi
1 &, TN
— Y XM X | =Y T'XIM; &
" NT; PR \/N; RS

1 Y R
+ ==Y XM X | —= Y T 'X!M; Fyy,
NT; 1=V F M \/lezl 17" Fy Y’YI
=1+ I+ 111, (5.1)

which can be simplified by using results from Stauskas (2022), where general factors under heterogeneous
slopes were explored under common F. Particularly, by using Theorem 2 in the latter study, we obtain

41
I=X 1ﬁ ;Zﬂ/i + OP(l) (5.2)
and
[TT]] = 0,(1), (5.3)

where the negligible terms are of the same or lower order because Fx C F is independent form ¢; for all 7.
By the same Theorem 2,

-1
1 N
<NT i XQM?*Xl) = Ol (5.4)
therefore
~ 1 1 N
VN(Bccepx— B) =E '—= Y Zw;
N5
1 N , -1 1 N Lor
ANt Z;XiM?xXi N Z; T XiMg Fyy; +0p(1). (5.5)
1= 1=
Op(1)



In what remains, we will focus on the numerator of ITI, which can be further decomposed into

1 N

i=1

where clearly,

Z T~ XiMg Fyy; =

N
1=

T~ (V; — VsTg T1)' Mg Fy;

M= D=

Il
_

_ - =t
T~ (Vi = ViIx i)' Mpo Fy 1

_ .o
T~ (Vi — ViIy ri)/MFng'Yi

=

Il
—_

T UV, — ViI, ;) (Mg — Mg ) Fy;

T~ (V; — ViT4 T,)'Fyy; — ZT (Vi = Vi T;) Py,

™z L

Il
—_

\F

T~ (Vi — ViTR T) (M — Mg )Fy7y;

M=

I
—_

B-C, (5.6)

1 & 1 & _
Al < WZT 1V;Fy')’i ﬁzr:rx T 1VxFy’Yz‘ :Op(T 1/2)
i=1 i=1
as it follows (3.10) since Fy, is assumed to be covariance stationary. Moving on to B, we obtain
y Y- &
1 -1 v.r T\
B = 7N Z T (V;— ViI I)) PFng'Yi
i=1
1 ¥ - ,
= 7NZT (Vi — ViI T;) Pr, Fyy,
i=1
1 N T -1y
< —NZT VP Fyy; Zr Vi Pr Fyy,
i=1
12 1 A 1y 1 1! -1
<T" =) (vi@ viED7L) | || (D7 LEEDTL || | D7iRE, DT} |
“12[d > 7 SVl -1 —1g/ —1\+ —1g -1
+T712| 5 Y (e )| | VNVEDLL || (DT DL || | DriEE,DT) |
i=1
= 0,(T'?), (5.7)

because T~1/2F, = FyImyT_l/2
from Westerlund (2018):

Mpo — Mz, = Mpo —

= FyD;;,. We finally move to C, where we use the expansion adapted

Mgy = T_lv?i — iy (T_lv?zl—m,v?z )t Vx _—— +me D, 1Z£D;,ivgfmx
+V DT}():ﬁ T}(F;—l-F DT1<2‘+D 1?}3&/%
+ED (D, LVED, ) x| D
+FD7 (Zf, — (D7, FFD7)")D; F, (5.8)
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where
Drz = diag [DT,x, VT Ik—mx:| p (5.9)
which is needed to handle the k > m, case, and

H D; LFYEID “12) 4 0,(T*/2), (5.10)

which now takes into account the general factors. We split C into

1 X < =t 1 X
=N Z%T H(Vi = VI T;) (Mg — Mp)Fyy; = TZT 'Vi(Mg — Mp)Fy;
1=

ZT T, Vi( (Mo — Mgo)Fy;

= cl - Cz, (5.11)

which we split further according to the components of (5.8). Hence,

1570/ 0 =0/
HCHH - ' sz 1V/ Vx —My (T 1V5&,—mka,—m )+V FY')/Z
1 Y 1 50 50 150
- 7\/NZT VIT 'V 0 (T 'V Ve 0 )" Ve Fyy
i=1
1 ¥ =0 =0 —0r
+ NZT 1V/T Vx —My (T 1V meX,—mx)+VX,—mey17'y,i
i=1
4) <0 150
< VATV H LA OM | ]

<0

0 1570/
+ <\/*ZT lV/ x mx(T lVi,*me ) VX My y”’ﬂ)H

= [VNT V| (VR e | | T VR Ee

1 & —
=+ T 2 (”fy,i & T_lvgvg,—mx) vec ((T_lv?&f—mxvg,—mx)+T_1ng—mey> ‘
< [NV VR )|V ]
1 _ <70 1507 570 1/2¢/ X7
+—= Z(;/@T ViV ) H(T Ve Ve | || T12E V5
\/> \/> YA s x s X
— Op<T 1/2), (5.12)

which is driven by the first additive term, because

1 1 Y 10 _ _
- \/NZ(q’W.(@T lV;Vx,%) = 0,(T™) + 0,((NT)"1/2). (5.13)
i=1
Next up
1 & 1yt =17
[Cazfl = WZT ViV D1 xZg D1y Vi, Fy i
=1
N
-0/
< i LTV | [V [VNT 9 By
1
= Op(NITV2) + O,(N"/2T71) (5.14)
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and

Z

1Cusll = || = D7 Ef DI IFFyy,

i=1

<ﬁZHfT ViV || VTP

z

Iz, | | D7 LEE, DT} | il

>_|

= 0,(N7V2) +0,(T71/?), (5.15)
and
1 <0
[Caall = WZT 'VIED1 I D1 Vs, Fyri
i=1
11 8., 1 lvto:L|| || vNT-1/2vY +
< 7y 1 [ViEDz | VTR VNI e | 2
i=1
— Op(Tfl). (5.16)
Eventually, we obtain the following:
ICisl = ‘fz VD, L (D LVEID L) — £, | DrAFY Ry,
) X,0
- —1y//R0 1 0/50 07
< TZ V/EDTL (DT LFYEIDT L) — X, | DTLFYF,y
i=1 X,0

N
+ \/7 Z T 1V FO [(DT XF)O(,F?(D ) — ZE(Z-,;:| DT XF,O(,Fyﬂ,},,i

< ‘T 1/2\/>VF0 Tng/FSJ( ) o

AEVE, DL )

+ \FZ< 1, © T-/2VEDLL) | || (D7 LFVEIDT L)+ — TAEVR, D
= 0,(N~ 1/2)+OP(T—K/2), (5.17)
which is driven by the first additive term, because
|T12VNV'ED; VY| |vTork| + T2 | VNVED; L
= Op( ) (5.18)
and
2
E 1N£: (,;© T2ViEDLL)

% i %tr [IE (q’%iqw) ®E (T—lvgﬁgD;;D;;?g’vj)}

_.
Il
—_

\A

= Ibitr [IE (q’%iq%i) ®FE (T*lvgﬁgD 'D;LEYV, )}
i=

= % il}g (;7’%141%1.) tr {IE (T—lvgﬁgD;’QD;&ﬁg/Vi)} = 0(1). (5.19)
=
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Finally,

S _ - _
|C16l| = H\/NZT 'V/ED;L(Zf — (D7 LFFD; )" ) D LE Fy,

1 N
<7 (7@ ViED7L) || |25, — (D7AFFDTY | | D7LEE, DT
=1

= Oy (T~ 1172,

which follows from

2
\/1N i (vieviEDLL)| | = % iilﬁ (tr [vin © VBT DRV
i= ==

- % i]E (tr [%% @ ViIExD7 Dp FV; D
=

_ % i]}g (vivi) tr [IE (VgF;Df}(D;,}(F;‘Vi)}
=

—0(1)

We next, move on to C; and split it further according to (5.8), as well. Therefore,

N
_1=0r =0 —0
||C21H - ||\/*Z 1rr V T 1Vx — My (T 1VX,,meX,,m )+Vi,—mey'Yi
=1
N
1=/ 0 _ 107 40 —O/
<l [0 %
i=
=0,(T?).
Next,
N e Ayt =137
|Ca2l| = T Y T7'TTy ViVy,, D1 I DT Vi Fyv,
i=1
07
< wvan ST N, | | VTpz e | /v, By
= Op(N~ 1T 1/2),
and
y -1 1 1
/
[|Cas|| = ﬁz I’;I* VV m, D7 xZg D1 FiFy;
=1
1 et 71\/**/4) VTD:L + —1q —1
< § L rm Vv, | Vo =4 | ones o
i=
=0,(N"1/2)
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with

N
R e _ 150
[|Cosl| = | —) T 1r;r;/V;FXDT}(ZEDT,iVXfmeY'YiH
':1
11
< mZ | VeV [ || Vo] 7 Ve E
=1
= 0,(N712171) (5.25)
and
1 _ —+/'—/ 5 _ 150/ _ 18
HC25H = ﬁ ZT 1r§rx VngDT,li {(DT,;FQ/F?(DT}&)JF - Z;:ro ] DT,lﬁFg/Fy'Yi
i=1 e
—/ _ —/ _ —150/9 —
Ty H\/NT UZVXF?'(DT}Q DT,iFgIFgDT,li)+ _Zl—;?w
x HD AFO’F yD7y | Il
= O0p(N"V2) + 0, (T*?). (5.26)
Finally,
1 & 17 —1(y+ “1pep-1\H\Pp-11/
HC26H = ﬁ ZT 1) VxeDT,x(Z'FX - (DT,xF FDT,X) )DT,xeFy'Yi
i=1
N -/
< Tﬁ Y. ‘ \/NVxeDf,}(H HZE - (Df}(F,FDi}(VH
i=1
< |7 iEEDL | Il
= 0,(T~+/2), (5.27)

Overall, we have

1 N
—— Y ' T7X!Mz Fy.|| = O,(N"V2) +0,(T*/?), 5.28
||\/N§ 1 Fi Y’YI P( ) P( ) ( )
and so
VN Ly
N(Bcceps —B) =L —= ) _Lwv;
X \/lel 1v1
1 al / o 1 N 1
1= 1=
0p(1)
1 N
=X =Y Zv;+0,(1), (5.29)
N5

which completes the proof.
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Clearly, the same result holds under m, = g. The subtle and important difference is using a different
expansion:

Mg — Mg = Mg g, — M

£
=M, — Mg .
= ViTy D7 (D7AT, BRI, D7) DT, 'V
= =1
+ VI DT,x(DT,xrsz F;Fxrx DT, )JFDT}(F;

—_ R N e —
+ ED7L(D7 ATy "BET, DrL) D7 'V,
_ e o e —
+ FXDT,}( [(DT,}(FX F;(Fxrx DT}()+ - ZI?] DT,}(F/
+FD7k [Ef, - (D7AREDTL)*| DILF, (5.30)

Tx™x Tx"x/

which is just a different rotation of (3.41), which uses the fact that I'x is square and invertible. This rotation

is necessary in the non-stationary case in order to ensure that we work with HD; 'F, V,|| and similar terms

that are bounded in probability, because HD;;TX -

x is of single integration order.

The proof of CCEMG case closely follows Theorem 4:

~ 1 N 1 X/ -1
\/N(ﬁCCEMG,S( - B) = ﬁ i:ElVi + ﬁ 1221 (T X;M?xxi) T XgME‘Fy'Yi
1 & -1 L
+ o= 21 (T7XME X)) T'XMy e,
1=
1 ¢ 1 —1y/ -1 —1vy/
= gLVt s L (T7XMp X;)  T'XMg Fyy,
i=1 i=1
+0p(1), (5.31)

where the second term is negligible under general unknown factors as shown in Theorem 1 of Stauskas
(2022), but in the current case the remainder terms are of even lower order, because only Fy is being
approximated. To show that the first term is negligible as well, we use the interim results leading to the
same Theorem 1 of Stauskas (2022), which tell that

(T—lx;Min) T~ 21 = 0,(N"1) + 0,(T"V/2) + 0, (NV/2T*/2), (5.32)
Therefore,
! %( TIXMg X ) TOIXIMG Fy, Zz T XM, Fy,
Nz:l Y I \/7 Y l
—1y/ -1 1 al —1v/
+VNsup || (T XM X;)  —E7'|| < 1 | 77 XiMg By
i i=1

= 0,(1) (5.33)

under TN~! = O(1), because by the same steps as in the CCEP part, we have that H T~'X{M; Fyv;

0p(1). The first term is negligible as well, because it is almost identical (5.6), as scaling by Zlfl will not
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change the orders. For example, by implementing the same decomposition as in (5.6), we get

1 X, — =+ 1
||\/ﬁzz‘i "TH(V; - VT I;)'Fyy; ilT 1V;Fy'yi
i=1
N =
+ Z T, T V| = 0,(T2), (5.34)
i=1
or
ik
—— Y =TV, — VT, T;) ProFy
VN = < Vh
N
/
- T; Y(V; — VT4 I,) Py, Fy,
1 —17—1y7/ Aot =15
\/N-Z%Zi T 'ViPg Fyy; T'TT T 'VPg Fyy;
1=
N
<r|| Ly (v @z VD7) ‘ H D; \F,F,D; H HDT}(F’XF D; H
\/lel ’
1Y = _
+ T2 Z(%@Fiz;l) T, /\/NV;FXD;;H H D; \F,F,D; H HD;}XF;FYD;}YH
l
= 0,(T7V2). (5.35)
Lastly,
TZZ IT-1(V; = VI, I (Mg — Mgo)Fyy,
< Zz 'T'Vi(Mg — Mgo)Fy;
i=1
1 & 117
ﬁZzi T 'TiTy Vi(Mp — Mg )Fy;
= 0,(N"V2) 4+ 0,(T7?), (5.36)
p p
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as the simpler second term is bounded by

1 Y e
‘ VN Zziflelr;r;r,V;(MFg - M?g)Fy'Yi
i=1
< ke TV | [TV V)| HT VAV
i=1
1 1 Y T — JTD- N 12 /N
+MN>:\ u\r N | [0 e 2
1
1 al 1 0
+y ol \ VNV, | |Vl HﬁH |priFE, DTYH Il
=1
1 N
tTN Z!* WVVFDnHﬁMWb 1 L el
1 & .
ke -

HDT nglF DTyH H'YZH

vl

(x/ﬁv;FxD;}xH = - (D;,}(F’FD;;)*H

HDTiF;F D7y| I
+O0,(N"V2) 40,(T*/?),

which is driven by the second-to-last term, whereas the first term is bounded by

1 N
‘ T ;1 1V/(MF0 - M?g)Fy'Yi
N
S50 Gl | O | T A A | Lo s 27
i=1
1 1Y <0
+ e L= v | VDR VATV B e
N
+NZ}H vy H VIDLL |12, HD;;F;FyD;}yH Il
i=
11 ¥ / 1/2H)/ +
1 |2 Vi vz v =
TN & .
1 y 1/2 14y7/%0 1010 —130 -1
+ ﬁ;T /Z VFDTx H TxF/FD ) _Z+ T,ﬁFx/FyDT,yH (bl
N
Lz@ o T 22 ViDL ||| (D7 ARV ED L) — £ ||| D7 LEVE,DTL|
v,i Tx Tx TX 0 TXx " x Y= Ty
+l sl
== i(%@zi‘lVéFxD;i) |zt - o7iFEDL )| | D7 iEE D |
tUT| VR L ») || 5~ (PrF D)7 | [ D7 AP,

=0,(N7V2) +0,(T*/?),

45

i

(5.37)

(5.38)



which is driven by the third- and second-to-last terms due to
<y L[

£
+

v

‘\/>DTX

1 8 -1/2y—1y7/E0y—1
H\/NZ%T I 'VIERD ¢
1=

N
e vor - o0 =

under TN~! = O(1).

(b) The proof is almost identical to the proof of Proposition 1 of De Vos and Stauskas (2024), where the
expansion in (5.8) is used instead and by assuming Fy that is trending non-stochastically to ensure that
Lf,, is deterministic. An example of this would be fy; = (1,¢, t2,...,t""1) € R™ and fy,: is covari-
ance stationary with absolute summable autocovariances. Let D1y = diag(Tl/ 2 3/2  im=1/ 2)) and
Dry = V/Tl,,. Then

X,y

T 1
%r,, = plim Dy F,F,D; ] = plimD;L Y f,f), D7} = / (s % nt, ) ds, (5.40)
T—o0 =1 s=0

T—o00

where s = (1,s,5%,...,s™), s € [0,1] and e, = E(fy,). To see how this result comes about, we can

examine a typical element Z]}‘;iy = ]E(fy,l,t) fslzo sids forj=0,...,my—1and! =1,...,m,. Note how

1 IRV 1 L B 1L , 1 T
(DT/XF;FYDTW) - Tit/2\)T t; Py = E(fy"rf)f t;(t/T)] + Ti+1/2\/T t; (fyie = Elfyir))
1< ,
= E(fy,l,t)f Z(t/T)] + Op(T_l/Q)
t=1
1
E(fy,t) / slds (5.41)
s=0

as T — oo and

T r
i [(T]}\F N ‘E(fy'l'f”> (W Ly ‘E(fy""))ﬂ

1
~ 272 Zt IVar(fyu) + T2/T2 Z{;t]ﬂ@w Fyis Fyir)
r

:O( _)/

since 0 < (t/T) <1 = 0O(1) and hence

(t/T)? \War fyit)

1 &
; tIVar(fy4)| =
TZ]TZ t:Zl y

F.,
Il
—_

‘r—\ H‘r—\
01~ L=

IN

|Var( fylt)‘

I
,Q'ﬂ
=7

(5.42)
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and

= Y Y HrCo0(fyrp fyur)| < w372 Y Y tH |Cov(fyur fyir)|
t=1r#t t=1r#t

T T . .
_ % Y S (/T (r/TY |Coo(fyito fyir)|

t=1r#t
1 L&

< ﬁ E Z ‘Cov(fy,l,t/fy,l,r)‘
t=1r#t

_ oY) (5.43)

due to absolute summable autocovariances.
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