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Abstract

How does the quality of information received by voters a¤ect political polarisation? We

address this long-standing question using an election competition model in which voters have to

infer an unknown state from some noisy and biased signals. Their policy preferences are shaped

by the posterior belief, which is unknown to the parties when they choose their platforms. The

greater the uncertainty faced by the parties, the greater the incentive to polarise. We show that

better information can either promote or suppress polarisation, depending on the gap between

voters� and politicians� beliefs (disagreement). We also examine the welfare implications of

polarisation.
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1 Introduction

A well-informed electorate is crucial for the functioning of representative democracy. Knowledge

and information about the state of the world, among other things, provide the basis for voters to

form their opinions and elect the representatives that best promote their interests. But in reality,

voters (and politicians alike) often have to make electoral decisions before conclusive evidence

or complete knowledge is available, for example, when deciding on policies that have long-term

social and economic repercussions, or when drafting measures to handle an unprecedented global

pandemic. The absence of an evidence-based consensus means that voters are susceptible to

con�icting news and biased information. It is well-documented that major elections in recent

years have been plagued by misinformation among voters and escalating polarisation between

political parties [see, for instance, Grinberg et al. (2019), Chen et al. (2021), and Munger et

al. (2022)]. What is less explored is the potential mechanism that links the two. The present

study is intended to address this important question. Speci�cally, we examine the theoretical

linkages between voters�political information processing and belief formation on the one side, and

political parties�strategic policy choices on the other. Our results highlight the importance of two

factors which are often overlooked in the existing literature, namely (i) perceived biasedness of the

information sources and (ii) disagreement between voters�and politicians�beliefs. The role and

signi�cance of these features will become clear in the following paragraphs.

Our analysis is based on a prototypical two-party electoral competition model in which voters�

policy preferences are contingent on an unknown state of the world.1 Thus, similar to the model

of Calvert (1985), Roemer (1994) and Bernhardt et al. (2009), the median voter�s ideal policy is

not a priori known to the political parties. In the presence of such uncertainty, the political gain

from choosing a moderate platform is likely to be small. This induces ideologically di¤erentiated

parties to abandon the middle ground and choose policies that are closer to their own ideals.

Bernhardt et al. (2009) show that such an environment can pave the way for policy polarisation in

equilibrium. In particular, political parties have a stronger incentive to polarise if they are more

uncertain about the electorate�s preferences. In their framework, voters�preferences are largely

driven by the exogenous state. Thus, polarisation depends on the parties�perceived uncertainty

about the hidden state, but not on the voters�belief. We depart from their study by assuming

1This can be interpreted either as some unanticipated major events (e.g., economic crisis, foreign wars, pandemic)
that can sway public opinion in an election, or as the optimal policy response to an issue that has far-reaching
consequences (e.g., immigration, abortion rights, economic reforms). Throughout this paper, we will use the terms
�hidden state�, �unknown state�, and �policy issue� interchangeably.
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that voters are Bayesian learners, who infer the unknown state from the news and information that

they receive before the election. As is standard in Bayesian learning models, the learners�posterior

belief is determined by two factors. The �rst one is their subjective prior belief, which captures

their pre-existing worldview. In our model, this includes any information and knowledge that the

voters possess before the political parties announce their platforms. The second factor is a set

of publicly observed signals. These represent the dissemination of political news and information

from both formal channels (such as mainstream news media, o¢ cial government announcements,

political endorsements, etc.) and informal ones (such as social media) after the parties announce

their platforms.2 We enrich the standard learning model by assuming that the random signals are

not only fraught with potential errors, they may also be biased. This added feature is motivated

by the extensive empirical evidence on the pervasiveness of biased reporting in mass media.3 In

our model, the biasedness of each signal is captured by an additive random bias term. Voters

possess prior belief about the hidden state and the biasedness of each information channel, but

they cannot separately identify these factors from the observed signals.4

The electorate�s policy preferences are shaped by their posterior belief about the hidden state.

This introduces an explicit channel through which voters�information processing and belief forma-

tion can a¤ect their electoral decisions. But, importantly, this posterior belief is unknown to the

politicians when they choose their platforms because the signals are realised afterwards.5 Thus,

in the decision stage political parties form expectation about the voters�posterior belief based on

(i) their perceived uncertainty of the signals and (ii) how voters will respond to those signals.6

The former depends on the parties�assessment of the hidden state and the quality of the signals

(i.e., their precision and biasedness). Greater uncertainty means that the parties are less able to

correctly predict the information received by the voters, and hence their posterior belief and policy

2The timing of the signals makes clear that we are focusing on the voters� learning process after the parties
announced their platforms but before the election.
Conceptually, these signals may include rumors (i.e., statements that are not backed by su¢ cient evidence) and

disinformation (i.e., false information which is intended to mislead, such as propaganda). The presumption here
is that voters are unable to distinguish these from true information. This opens up the possibility for rumors and
disinformation to a¤ect voters�belief formation.

3See Puglisi and Snyder (2015) for a comprehensive survey on the empirical evidence of biased reporting in
traditional news media (newspapers and cable news). A more recent study by Garz et al. (2020) provide evidence
on political media slant during the 2012 and 2016 US presidential elections. For an in-depth discussion about the
political e¤ects of social media, see Zhuravskaya et al. (2020).

4A similar learning model with biased signals is also considered in Little and Pepinsky (2021) and Little et al.
(2022).

5This setup captures the following ideas: Before entering the election booth, voters are free to adjust their policy
stance upon the arrival of any new information. But political parties are less likely to make signi�cant changes in
their platforms before the election to avoid any potential damages on credibility and reputation.

6We assume that the political parties have perfect knowledge on how the voters will update their belief under a
given set of signals. Thus, the random signals are the ultimate source of uncerainty faced by the parties.
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preferences. This will incentivise the parties to polarise. We refer to this as the uncertainty e¤ect.

Voters�responsiveness to the signals, on the other hand, depends on their subjective assessment

on the hidden state and signal quality (which may not coincide with the parties�assessment). For

instance, if the voters are unfamiliar with the policy implications of the hidden state (as captured

by a low precision of their prior belief), or if they believe the signals are of good quality, then they

will rely more heavily on the signals in the learning process. From the parties�perspective, this

means the voters are more easily in�uenced by the random signals and hence their policy prefer-

ences are less predictable. This will again encourage the parties to polarise. We refer to this as the

learning e¤ect. Using this framework, we examine how the precision and the perceived biasedness

of the signals will a¤ect the extent of policy polarisation in equilibrium. Our main �ndings are

summarised as follows.

Our �rst set of results concerns the e¤ects of an improvement in signal precision. We assume

that the statistical properties of the signal errors are common knowledge among voters and politi-

cians. Thus, any changes in signal precision will a¤ect both sides. On the one hand, more precise

signals will boost the voters�con�dence on the learning process and promote polarisation through

the learning e¤ect. But on the other hand, when the signals become less noisy, politicians can

better predict the information received by the voters, which weaken the uncertainty e¤ect and

lower polarisation. Which e¤ect dominates depends crucially on the voters�and parties�subjective

prior beliefs about the hidden state. In the current study, we abstract away from belief heterogene-

ity among voters and between the two parties.7 Instead, we focus on the disagreement in beliefs

between voters and political candidates. We �rst explain the implications of this model feature,

followed by a brief discussion on its empirical relevance. If the two sides share the same prior belief

about the hidden state (as is commonly assumed in the existing literature), then the learning e¤ect

dominates so that more precise signals will promote policy polarisation. The learning e¤ect will

continue to dominate if the voters hold a stronger (or more precise) prior belief about the hidden

state than the politicians. But if the politicians are more con�dent about their prior estimate,

then the uncertainty e¤ect will dominate and better signal precision will lower polarisation. As an

illustration, consider the extreme case in which voters have a ��at prior,�i.e., the precision of their

prior belief is zero. Then their posterior belief will simplify mirror the distribution of the random

signals (or a su¢ cient statistic of the signals).8 In this case, the learning e¤ect described above is

7Further discussions about this and other major assumptions can be found at the end of Section 2.
8For instance, if the signals are unbiased, normally distributed and independent of each other (Case 1 in Section

3), then voters will use the average value of the realised signals as their updated estimate of the hidden state.
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not operative and any improvement in signal precision will reduce polarisation through the uncer-

tainty e¤ect. If we interpret the unknown state as the optimal policy response to a particular issue,

then our �rst set of results yield the following implications: If voters share a strong pre-existing

view on how to best handle the issue, then more precise signals will promote polarisation. But for

issues that they know less about, then an improvement in signal precision will lower polarisation.

Three additional remarks are in order. First, our �rst set of results are robust under di¤erent

speci�cations of the signal process. In particular, these results are valid under both biased and

unbiased signals, and when the signals are correlated. Second, for correlated signals, we show

that reducing the correlation coe¢ cient between the signals will have the same e¤ect as improving

their precision. Intuitively, voters will have more con�dence in the learning process if they per-

ceive the news that they consumed as independent opinions rather than �echo chambers�. This

will strengthen the learning e¤ect and encourage policy polarisation. Reducing signal correlation,

however, will also reduce the uncertainty faced by the parties. This will weaken the uncertainty

e¤ect and reduce polarisation. The net e¤ect again depends on the two sides� prior beliefs as

described above. Third, the above discussion highlights the importance of disagreement between

voters and politicians in characterising our results. This raises a natural question of whether this

type of disagreement is empirically relevant. The answer is positive: There is ample evidence

showing that political elites and their sta¤ often misperceive their constituent�s opinions and pref-

erences [see, for instance, Broochman and Skovron (2018), Hertel-Fernandez et al. (2019), Pereira

(2021), Kärnä and Öhberg (2023)]. Several hypotheses have been put forward and investigated

by the existing studies, including (1) politicians�worldview and opinions are shaped by their own

socioeconomic and educational background, which may di¤er from their constituents, (2) elected

o¢ cials�opinions are more in�uenced by a subset of their constituency, such as activists, interest

groups, lobbyists and businesses [Giger and Kl½uver (2016)], and (3) elected o¢ cials often disregard

opinions and views that disagree with their own [Butler and Dynes (2016)]. In the present study,

we do not take a stance on why such disagreement exists. Instead, we focus on its implications on

political polarisation.9

Our second set of results concerns the perceived biasedness of the signals. We assume that

both voters and politicians expect the signals to be unbiased in their prior beliefs.10 The variance

9Kärnä and Öhberg (2023) provide an interesting and insightful account on how the disagreement between the
elected o¢ cials and the electorate in Sweden on immigration policies may have contributed to the rise of populist
parties and political polarisation.
10This assumption does not a¤ect the voters� learning process because they will subtract the prior mean of the

hidden state and the bias terms from the observed signals when forming their posterior estimate. See Lemma 1 for
a formal statement and proof of this result.
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of these beliefs then capture their con�dence on the impartiality of the news sources. A lower

variance (or higher precision) indicates that they are more con�dent in this regard. As before, we

do not require the two sides to share a common prior about the bias terms. We �rst consider the

case in which the bias terms are statistically independent of the hidden state.11 Introducing this

type of biases will simply add more noises to the signals. Thus, similar to an improvement in signal

precision, when voters become more con�dent about the news that they consumed, the learning

e¤ect will be intensi�ed which in turn promote polarisation. On the other hand, if politicians

become more con�dent about the news sources, then polarisation will be less likely and less severe

due to a weakened uncertainty e¤ect.12

The analysis becomes much more complicated when the bias terms are either positively or neg-

atively correlated with the unknown state. In order to simplify the analysis, we focus our attention

to only one random signal in this part. The signal is called exaggerating [resp., contradicting] if

the bias term is positively [resp., negatively] correlated with the hidden state.13 Regarding voters�

learning, one interesting implication of a contradicting signal is that voters may engage in what we

call �signal-de�ant� learning, i.e., they update their belief in the opposite direction as suggested

by the signal.14 This draws some similarities with COVID-19 deniers (or conspiracy theorists in

general) who distrust the mainstream news medias and government o¢ cials, and often misinterpret

or distort the information provided by these sources. This type of learning is not possible under

the conventional Bayesian model with unbiased signals. But regardless of which direction they

update their belief, polarisation will become more likely and more severe when voters are more

responsive to the signals. We provide a thorough analysis on how and when this will happen under

three scenarios: (i) when voters become more certain or more knowledgeable about the hidden

state in their prior belief, (ii) when voters become more con�dent about the impartiality of the

signal, and (iii) when the biased term is more correlated with the hidden state. Even with this

relatively simple framework, there is a great variety of possible cases and non-monotonic relations.

It is di¢ cult to explain these results clearly and precisely without �rst introducing some technical

11 In all the cases that we considered, the bias terms are independent of the signal errors and across each other.
12Since voters and politicians can have di¤erent subjective prior beliefs about signal biases, these two e¤ects can

happen independently.
13Examples of contradicting signals include rumors and disinformation that discredit the scienti�c evidence behind

man-made climate changes or the e¢ cacy of vaccination.
14For example, suppose the observed signal (m) is favourable to the right-wing candidate, i.e., m > 0: If the voters

believe that the signal contains a bias term (b) that is strongly negatively correlated with the actual state (s) ; then
they may interpret m > 0 as the result of a strongly positive bias (b > 0) when the actual state is negative (s < 0) :
This type of reasoning will direct them to update their beliefs in the opposite direction as suggested by the observed
signal. In our model, signal-de�ant learning happens only when s and b are su¢ ciently negatively correlated so that
s and m are negatively correlated.
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details. For this reason, we defer an in-depth discussion to Section 3 Case 4. As for the politicians,

we show that greater con�dence in the impartiality of the signal will lower polarisation even if the

signal is exaggerating or mildly contradicting.

Finally, our third set of results concerns how changes in policy polarisation will a¤ect the ex

ante welfare (i.e., before the signals are realised) of an arbitrary voter. From a risk-averse voter�s

perspective, policy divergence can provide a partial insurance against the uncertainty in their ideal

policy [Bernhardt et al. (2009, p.573)] and thus can be welfare-improving.15 Too much polarisation,

however, will turn a boon into a bane. There is thus an acceptable range of polarisation within

which all risk-averse voters will strictly prefer policy divergence to convergence, and beyond which

they are strictly worse o¤ under policy divergence. The size of this range is determined by the

voters�perceived uncertainty about their ideal policy. Greater uncertainty will create a higher

demand for the insurance provided by polarisation which then widens the acceptable range. The

extent of polarisation in equilibrium, on the other hand, is determined by the parties�choices and

their subjective belief. In particular, higher uncertainty shared by the parties will encourage them

to polarise. This shows that voters� belief and politicians� belief each plays a di¤erent role in

shaping the welfare results.

Against this backdrop, we �nd that when there is little disagreement between voters and

politicians, voters strictly prefer a society with partisan parties and any positive level of polarisation

to an otherwise identical society but with more congruent parties and convergent platforms. It

seems surprising that this is true even for highly polarised policy platforms. Intuitively, equilibrium

policies are very polarised only when the parties perceive a high level of uncertainty on voters�

ideal policies. This high level of uncertainty is shared by the voters when the prior beliefs of the

two groups coincide. Consequently, voters would prefer polarised policies. However, when there is

strong disagreement between the two, this result will no longer hold. In other words, parties can

be polarised to such an extent that voters would rather have convergent platforms.

An improvement in signal quality can potentially lead to a welfare loss, but only when there

is signi�cant disagreement between voters�and politicians�beliefs.16 This can happen in either

one of the following two ways: (1) Better signal quality lowers the parties�perceived uncertainty

and induces them to narrow the gap between their platforms. This in turn reduces the insurance

15 In equilibrium, the outcome of the election is determined by the median voter�s ideal policy, which is ultimately
determined by the realised signals. Thus, for an arbitrary voter, the perceived uncertainty about the election outcome
is shaped by her prior belief about the signals (or more precisely, the hidden state, the bias terms and the signal
errors combined).
16Ashworth and Bueno de Mesquita (2014) also present di¤erent setups where better voter information can be

welfare-reducing due to the strategic interaction between voters and politicians.
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provided by polarisation. (2) Better signal quality increases the parties�perceived uncertainty by

strengthening the learning e¤ect. Polarisation increases signi�cantly as a result and goes beyond

the voters�acceptable range, leading to a welfare loss. We provide two sets of numerical examples

to demonstrate that both scenarios are possible.

Related Literature The present study contributes to the growing literature that examines the

e¤ect of voter information on policy outcomes. Each of these studies discussed below, however,

focuses on a di¤erent mechanism from the one that we considered. Gul and Pesendorfer (2012)

consider how the media industry structure and voter polarisation can a¤ect the candidate endorse-

ment strategies of the pro�t-maximising media and consequently policy choices of parties. When

the number of media �rms approaches in�nity, each voter is able to �nd a media �rm that endorses

her favorite party in each state of the world. This means that the electorate behaves as if perfectly

informed and this leads to policy polarisation. In Levy and Razin (2015), voters receive private

signals about the state of the world, and if voters have correlation neglect, they become more

sensitive to the signals and therefore their beliefs become more dispersed. Levy and Razin (2015)

show that this does not necessarily lead to policy polarisation. They also note that correlation

neglect of voters makes the information aggregation more e¢ cient, which increases voter welfare.

In Yuksel (2022), voters di¤er in the policy dimensions they �nd important, and when they spe-

cialise in their learning accordingly, this leads to more dispersed voter beliefs and consequently

to more policy polarisation. However, for a given level of specialised learning, better access to

information of voters leads to reduced party polarisation. In Yuksel (2022)�s model, policy polari-

sation always reduces voter welfare. In a related paper to Yuksel (2022), Perego and Yuksel (2022)

show how media competition leads to informational specialization across voters and consequently

to social disagreement. Personalised demand for information leads to ine¢ cient policy outcomes in

Matejka and Tabellini (2021). Similarly, personalised news aggregators result in di¤erent types of

voters (centrist and extreme voters) receiving di¤erent information and potentially lead to policy

polarisation in Lin et al. (2023).

On a di¤erent vein, the political agency literature studies the implications of voter information

on electoral accountability and selection. When the incumbent politician type�s is private infor-

mation, better voter information creates a trade-o¤ between accountability and selection in Besley

and Smart (2007) and Smart and Sturm (2013). Ashworth et al. (2017) show that such a trade-o¤

exists even with symmetric information when the politician e¤ort and type are complementary in
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the production function of public goods. Li and Lin (2023) study the e¤ect of personalised news

aggregators on electoral accountability and selection.

Finally, in the empirical literature on political polarisation, there is a consensus that party

polarisation in the U.S. is on the rise (McCarty et al., 2006), but whether voters are now more

polarised is less clear (Barber and McCarty, 2015). The explanation we provide for party polari-

sation does not rely on voter polarisation, but rather on the interaction between voter information

and the disagreement between voters and politicians.

The rest of the paper is organised as follows. Section 2 presents the model environment.

Section 3 presents the main results under four di¤erent speci�cations of the signal process. Section

4 examines the welfare implications of policy polarisation. Section 5 concludes.

2 The Model

Consider an election in which two political parties, L and R; compete on a one-dimensional policy

issue. Prior to the election, the two parties simultaneously propose a policy from the policy space

X � R: The electorate consists of a continuum of voters with heterogeneous policy preferences.

The size of the electorate is normalised to one. Each voter v�s policy preferences are determined by

two factors: (i) a deterministic parameter �v 2 R which captures the voter�s pre-existing political

attitudes, and (ii) a random variable s 2 R which captures the exogenous state of the world. In

any given state s; voter v�s utility from policy x 2 R is given by

U (x; �v) = � (�v + s� x)2 :

The median of �v across voters is normalised to zero. The exact distribution of �v is irrelevant to

our analysis.

Voters do not observe the realisation of s at the time of the election.17 Instead, they receive

imperfect information about s from n � 1 sources. Each information channel i 2 f1; 2; :::; ng

produces a noisy signal mi which is potentially biased. Let mi = bi + s + "i; where bi is the bias

and "i is the error term, for all i 2 f1; 2; :::; ng : Voters share the same subjective prior belief about

the state variable s and the biases b = (b1; :::; bn)
T :18 This is assumed to take the form of a joint

17Based on our interpretations of s in Footnote 1, this means the full e¤ect of the unforeseen major event, or the
optimal policy response to a certain issue, is unknown when the election takes place.
18We will discuss the rationale behind this and other major assumptions at the end of this section.
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multivariate normal distribution N (�0;�0) ; where

�0 =

264 �s

�b

375 and �0 =

264 �2s 
T


 �b

375 :
In the above expressions, �s and �

2
s are scalars representing the mean and variance of the marginal

distribution of s; whereas �b and �b are the mean vector and the covariance matrix of the marginal

distribution of b:19 The covariances between s and b are captured by the 1-by-n row vector


T = (!1;:::; !n) ; where !i � Cov (s; bi) : A positive value of !i means that the bias term bi tends

to exaggerate or complement the e¤ect of the hidden state variable, whereas a negative value means

that bi tends to contradict the e¤ect of s: Voters�subjective prior belief may not coincide with the

true distribution of (s;b) and it may also di¤er from the political parties�belief about the same

variables.

The error terms, " = ("1; :::; "n)
T ; are drawn from a normal distribution N (0;�") : Each "i is

independent of the distribution of �v and the voters�prior belief about (s;b) : The statistical prop-

erties of " are known to both voters and political parties. In other words, there is no disagreement

regarding the distribution of the error terms.

Given the voters�prior belief, the signals m have a joint normal distribution with mean vector

�m = �s � 1n + �b;

where 1n is an n-by-1 column of ones, and covariance matrix

�m = E
h
(m��m) (m��m)T

i
= �b + �

2
s � 1n1Tn +�" +
1

T
n +


T1n: (1)

Equation (1) suggests that the quality of the signals (as measured by the inverse of �m) is de-

termined by three groups of factors:20 (i) the precision of the voters� subjective prior belief, as

captured by the inverse of �b and the scalar value � s � ��2s ; (ii) the precision of the signal errors,

as captured by the inverse of �"; and (iii) the covariances between s and b; which are contained

in 
:
19All the covariance matrices appeared in this study are assumed to be (at least) positive semide�nite.
20Except for some special cases (such as those considered in Section 3), there is no general formula for ��1

m : Hence,
the discussion here should be considered as heuristic in nature.

10



Before the election, voters observe the same set of signalsm = (m1; :::;mn)
T but not the realised

values of s or b: They then update their belief about (s;b) using Bayes� rule. The resulting

posterior belief is again a multivariate normal distribution. For the purpose of our analysis, it

su¢ ce to focus on the marginal distribution of s in the posterior beliefs which is characterised in

Lemma 1.21 In order to state this result, we need to introduce two additional notations: De�ne

� � E
h
(s� �s) (m��m)T

i
; which is a 1-by-n row vector capturing the covariance between s and

m: The ith element of � is �i � Cov (s;mi) = �2s +!i. Let �i;j be the element on the ith row and

jth column of the precision matrix ��1m :

Lemma 1 The marginal distribution of s in the voters� posterior belief is a normal distribution

with mean

E (s jm) = �s +

nX
j=1

�j

�
mj � �s � �bj

�
; (2)

and variance

var (s jm) = �2s �
nX
j=1

�j�j ; (3)

where �j �
Pn

i=1 �i�i;j for all j 2 f1; 2; :::; ng :

Unless otherwise stated, all proofs can be found in the Appendix. As an illustrative example,

consider the case when there is only one biased signal, i.e., n = 1: The covariance matrix of the

voters�prior belief can be simpli�ed to become

�0 =

264 �2s �s;b�s�b

�s;b�s�b �2b

375 ;
where �2b is the variance of the bias b and �s;b 2 (�1; 1) is the correlation coe¢ cient between s and

b: The matrices � and �m are now replaced by the scalars � = Cov (s;m) = �2s + �s;b�s�b and

var (m) = �2s + 2�s;b�s�b + �
2
b + �

2
";

respectively. Note that Cov (s;m) ? 0 if and only if �s;b ? ��s=�b: Thus, a negative correlation

between s and b is necessary but not su¢ cient for Cov (s;m) < 0: In other words, a mildly

contradicting bias term (i.e., ��s=�b < �s;b < 0) can still generate a positive covariance between

21The full details of the posterior distribution of (s;b) are shown in the proof of Lemma 1 located in the Appendix.
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s and m: The expressions in (2) and (3) can now be simpli�ed to become22

E (s j m) = �s +
Cov (s;m)

var (m)
(m� �s � �b) ; (4)

var (s j m) = �2s �
[Cov (s;m)]2

var (m)
: (5)

Equation (4) shows that only the di¤erence (m� �s � �b) matters when forming the posterior

expectation E (s j m) : In particular, voters will adjust the observed signal either upward or down-

ward according to the prior means (�s; �b). Equation (5) shows that learning can always reduce

voters�uncertainty about s, i.e., var (s j m) < �2s; even when the signal is perceived to be biased

and when it is negatively correlated to the hidden state. The size of the reduction (i.e., the gain

from learning) is negatively related to �2"; which means more can be learned from a more precise

signal. The e¤ect of changing �2b on var (s j m) ; however, depends on parameter values. We will

examine this and other special cases more fully in Section 3.

Given the posterior belief about s, voter v�s expected utility from policy x is given by

E [U (x; �v) jm] = E
h
� (�v + s� x)2 jm

i
: (6)

The voter�s ideal policy, ��v; is one that maximises (6), i.e.,

��v � argmax
x2R

n
E
h
� (�v + s� x)2 jm

io
= �v + E (s jm) : (7)

Equations (2) and (7) together show how voters use the observed signals to form their policy

preferences. Let fxR; xLg be the policies proposed by the two parties. If xR = xL; then voters are

indi¤erent between the two. If xR 6= xL; then after observing m, voter v will choose xR over xL if

and only if

� (��v � xR)
2 > � (��v � xL)

2

, (xR � xL) (��v � x) > 0; (8)

where x = (xL + xR) =2: Hence, voter v will support R if either (i) xR > xL and ��v > x; or (ii)

xR < xL and ��v < x: The voter is indi¤erent between any xR 6= xL if x = ��v:

22The same equation for E (s j m) also appears in Little and Pepinsky (2021, p.610) but in a very di¤erent context.
Their study is not directly related to electoral competition and policy polarisation.
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The two political parties are assumed to be both o¢ ce-motivated and policy-motivated. This

means they not only care about their chance of winning, but also the policy implemented by the

winner of the election. The parties�preferences on policy x are represented by

U (�k; x) = � (x� �k)2 ;

where �k 2 R is the ideal policy of party k 2 fL;Rg : If R wins, then xR is implemented and it

receives a payo¤ of � (xR � �R)2 + ; where  � 0 represents the additional bene�ts of holding

o¢ ce. If R loses, then its payo¤ is � (xL � �R)2 : The payo¤s for L are de�ned symmetrically.

Events in the model unfold in three stages: First, the two parties simultaneously choose a policy

that maximises their own expected utility. Both parties are fully aware of the median value of �v;

the probability distribution of " and the voters�prior belief about (s;b) : Hence, the parties are also

fully aware of the updating rule in (2). The two parties, however, do not observe the realisation

of m and s when they make their choices. Hence, they will act according to their expectations on

E (s jm) : In the second stage, the signals m are realised and made public. Voters then update

their belief according to (2) and (3), and choose a party based on (8). Following Bernhardt et al.

(2009), it is assumed that the political parties cannot revoke or adjust their policy platforms at

this stage. Finally, the party that garners a majority of votes wins.

We now focus on the �rst stage of events and characterise the parties�policy choices. We begin

by formulating the parties�winning probability. If xL = xR, then the winner is decided by a fair

coin toss. Suppose xL 6= xR: Given m and (8), R wins if it gains the median voter�s support.

Since the median value of �v is normalised to zero, the median voter�s ideal policy is captured

by E (s jm) alone. Hence, R wins if either (i) xR > xL and E (s jm) > x; or (ii) xR < xL

and E (s jm) < x: The value of E (s jm) ; however, is unknown to the parties as m is not yet

revealed at this stage. The parties�perceived probability of winning thus depends on their perceived

probability distribution ofm; which in turn hinges on their subjective beliefs about (s;b) : In order

to capture the separate e¤ects of voters�belief and parties�belief on policy polarisation, we depart

from the existing literature by allowing them to be di¤erent.

More speci�cally, we assume the two political parties share a common belief about (s;b) ; which
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is given by a normal distribution N
�b�0; b�0� with

b�0 =
264 b�sb�b

375 and b�0 =
264 b�2s b
T

b
 b�b

375 :
The elements of b�0 and b�0 can be interpreted similarly as those of �0 and �0: Under this belief,
each signal mi has an expected value Ep (mi) = b�s + b�bi : The covariance structure among the n
signals is determined by

Covp (mi;mj) = Covp (bi; bj) + b�2s + Covp (s; bi) + Covp (s; bj) ;
where Covp (bi; bj) is the (i; j)th element of b�b and Covp (s; bi) is the ith element of b
; for all i;
j 2 f1; 2; :::; ng : We use the subscript �p� to indicate that these moments are derived from the

parties�belief. It follows that, from the parties�perspective, E (s jm) is a normal random variable

with mean

Ep [E (s jm)] � e� = �s +
nX
j=1

�j

h
(b�s � �s) + �b�bj � �bj�i (9)

and variance

varp fE (s jm)g � e�2 = nX
i=1

nX
j=1

�i�jCovp (mi;mj) : (10)

A higher value of e�2 means that the parties are more uncertain about the median voter�s policy
ideal. This variance is in the centre stage of our analysis, and we will refer to it as the parties�

perceived uncertainty. Equation (10) shows that this variable not only depends on the parties�

subjective belief, but also on the voters�prior belief and the precision of the signals which are

embedded in f�1; :::; �ng.

Let H (�) be the cumulative distribution function of N
�e�; e�2� ; and h (�) be the corresponding

probability density function. Then R�s winning probability is given by

Pr [E (s jm) > x] =

8>>>><>>>>:
1=2 if xR = xL;

1�H (x) if xR > xL;

H (x) if xR < xL:

(11)

Notice that apart from xR = xL, the two parties have equal opportunity of winning if x coincides

with the median of the distribution N
�e�; e�2� ; which is e�: We will refer to this as the centrist
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policy position. Party R is deemed as the �right-wing�party if its ideal policy �R is on the right

side of the centrist position, i.e., �R > e�: Similarly, party L is the left-wing party if �L < e�: Since
the actual value of e� is immaterial to the following analysis, it is normalised to zero from this

point onward. This is achieved by setting �s = 0 in the voters�prior belief and having �0 � b�0 so
that voters�and parties�beliefs di¤er only in the covariance matrices. We further assume that the

two parties�ideal policies are symmetric, i.e., they are equidistant on both sides of e� = 0; so that
�R = ��L = � > 0:

Taking xL 2 R as given, party R�s policy choice problem is to choose xR 2 R so as to maximise

its expected utility

WR (xR;xL) =
h
� (xR � �)2 + 

i
Pr [E (s jm) > x]� (xL � �)2 f1� Pr [E (s jm) > x]g ;

subject to (11). Let BR (xL) denote R�s best-response correspondence under a given xL 2 R; i.e.,

BR (xL) � argmax
xR2R

fWR (xR;xL)g :

Party L�s expected utility WL (xL;xR) and best-response correspondence BL (xR) are similarly

de�ned.

We focus on pure-strategy Nash equilibria of the voting game. Speci�cally, a voting equilibrium

is a pair of policies (x�R; x
�
L) 2 R2 such that x�R 2 BR (x�L) and x�L 2 BL (x�R) : It can be shown that

any voting equilibrium, if exists, must satisfy23

�� < x�L � x�R < �: (12)

The main intuition is straightforward: Given that �R > �L; it is never optimal for R to choose a

policy to the left of x�L; and likewise it is never optimal for L to choose a policy to the right of x
�
R:

Hence, x�R < x�L cannot occur in any voting equilibrium. Similar to Bernhardt et al. (2009), we

further con�ne our attention to symmetric equilibrium, i.e., one in which x�R and x
�
L are equidistant

on both sides of the centrist position, so that x�R = �x�L = x�eq � 0: Policy convergence is said

to occur if x�eq = 0: Policy divergence or polarisation, on the other hand, refers to x
�
R 6= x�L: In a

symmetric equilibrium, this happens when x�eq > 0:

The following result, which is due to Bernhardt et al. (2009, Corollary 2), provides a detailed

23This result is well-known in the existing literature and is often stated without proof. A detailed proof of this
statement can be found on the authors�personal website.
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characterisation of symmetric equilibrium.24 The model in Bernhardt et al. (2009), however,

di¤ers from ours in one important regard: In their framework, voters observe the realised value of

s before the election and e� is an exogenous parameter. In the present study, voters have imperfect
information about s and e� is endogenously determined by their learning process and politicians�
belief. This allows us to examine how the quality of information received and possessed by the

two groups will a¤ect political polarisation.

Proposition 1 (a) If � � h (0) =2; then there exists a unique symmetric equilibrium in which

both parties choose the same policy which is the centrist position, i.e., x�eq = 0:

(b) If � > h (0) =2; then there exists a unique symmetric equilibrium in which the two parties

choose di¤erent policies, i.e., x�R = �x�L = x�eq > 0 and x
�
eq is given by

x�eq =
2�� h (0)
4h (0)�+ 2

: (13)

This result can be explained by considering the �rst-order condition of party R�s policy choice

problem (conditional on xR � xL), which is

@WR (xR;xL)

@xR
= �2 (xR � �) [1�H (x)] +

1

2

h
(xR � �)2 � (xL � �)2 � 

i
h (x) � 0: (14)

Taking xL 2 R as given, suppose R is thinking about moving its policy from some xR � xL to

xR+�; where � > 0 is in�nitesimal. Conditional on winning, such a move will bring R closer to its

ideal policy and raise its utility by 2 (xR � �)�: This happens with probability [1�H (x)] : Hence,

the expected marginal bene�t from this is 2 (xR � �) [1�H (x)]�: The same move, however, will

take R further away from its opponent�s policy and jeopardise its winning opportunity. The

associated loss in expected utility is given by

h
(xR � �)2 � (xL � �)2 � 

i
h (x)�=2:

When evaluated at xR = xL = 0; the condition in (14) can be simpli�ed to become

@WR (xR; 0)

@xR

����
xR=0

= �� 1
2
h (0) � 0:

24Bernhardt et al. (2009, Proposition 4) establish the same result without imposing the assumptions of quadratic
utility and normal distribution. For the sake of completeness and consistency in notations, we provide a detailed
proof of Proposition 1 in an (unpublished) online technical appendix available from the author�s website.
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If � � h (0) =2; then the expected marginal cost of moving from xR = 0 to xR = � is greater

than the expected marginal bene�t. Hence, it is optimal for R to choose xR = xL = 0:
25 If instead

� > h (0) =2; then the �rst-order condition in (14) will have a unique interior solution. The

�rst-order condition of party L�s policy choice problem can be interpreted in the same fashion.

The main message of Proposition 1 is that the additional bene�ts of holding o¢ ce  (which

captures the strength of the parties�o¢ ce motivation) must be su¢ ciently large in order to in-

duce the parties to sacri�ce their own political ideals (policy motivation) and move towards their

opponent�s policy position. Since h (0) � 1=
�e�p2�� for the normal distribution N �0; e�2� ;

� 7 h (0) =2 if and only if e� 7 �min � =(2
p
2��):

This states that �min is a unique threshold value of e� below which o¢ ce motivation will dominate
policy motivation so that policy convergence will emerge, and above which policy motivation will

dominate and policy polarisation will occur. Put it di¤erently, heightened uncertainty shared by

the political parties will weaken their o¢ ce motivation. Hence, policy polarisation is more likely to

happen and more severe when e� increases. This observation is summarised in Corollary 1, which
follows immediately by di¤erentiating (13) with respect to e�:
Corollary 1 Assume � > h (0) =2: Then, the degree of policy polarisation is strictly increasing

in e�; i.e.,
dx�eq
de� =

h (0)e� 2
�
 + 4�2

�
[4h (0)�+ 2]2

> 0: (15)

Remarks on Model Assumptions Before proceeding further, we �rst discuss several key

assumptions in our model. The �rst one is the assumption that all voters share the same prior

belief about (s;b) and receive the same set of signals. This is mainly for the sake of simplifying

the analysis. Note that if we allow for heterogeneity in both �v and the learning process (e.g.,

heterogeneous priors among voters or privately observed signals), then there will not be a single

decisive voter in the model. Instead, the election outcome will be decided by those voters whose

ideal policy after observing the signals (��v) is at the median position across voters, i.e., any � that

25The condition � � h (0) =2 also implies that the objective function WR (xR; 0) is strictly decreasing in xR for
all xR � 0: Thus, xR = 0 is R�s unique best response to xL = 0:
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satis�es

��med = �v + Ev (s jmv) ;

where Ev is the expectation operator based on voter v�s posterior belief after observing mv (which

will di¤er across voters if we allow for private signals). This will greatly increase the complexity

of the analysis and also make it much harder to interpret the results. Hence, we do not follow this

route.

The second major assumption in our model is that the two political parties share a common

belief about (s;b) : This is mainly chosen to suit the purpose of studying symmetric equilibrium.

In Bernhardt et al. (2009), the two political parties are assumed to have the same utility function,

receive the same bene�ts from holding o¢ ce and share the same belief about the hidden state. The

only di¤erence between them is their policy ideals, which are equally distanced on both sides of

the centrist position.26 These assumptions set the stage for de�ning and characterising symmetric

voting equilibrium. Our common prior assumption between the two parties can be viewed as a

natural extension of this tradition.

Finally, we assume that there is no disagreement between voters and politicians regarding signal

precision (i.e., �"). Our analysis in the following sections can be easily extended to accommodate

this type of disagreement. In all the cases that we considered, we report the separate e¤ect of

signal precision on the voters� learning process and the politicians�perceived uncertainty about

the signals.

3 Special Cases

In this section we examine how the quality of information possessed by voters and political parties

will a¤ect the extent of policy polarisation in equilibrium. In particular, we focus on �ve aspects

of information and beliefs, namely (i) the precision of the voters�and political parties�prior beliefs

about s and fb1; :::; bng ; (ii) the precision of the errors in the signals; (iii) the disagreement between

voters�and parties�prior beliefs as captured by �0 and b�0; (iv) the pairwise correlation between
di¤erent signals; and (v) the perceived correlation between the state variable and the biases.

In order to convey the main results in a clear and parsimonious manner, we focus on a series

of special cases. In each of these cases, voters�posterior expectation of s and parties�perceived

26The same assumptions on political parties are also adopted by Ossokina and Swank (2004), Saporiti (2008),
Xefteris and Zudenkova (2018), among many others.
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uncertainty can be expressed as

E (s jm) =  bm and e�2 =  2varp (bm) ;
where bm is a su¢ cient statistic of the observed signals fm1; :::;mng and  > 0 captures the

responsiveness of voters�posterior expectation to bm: The exact form of  and bm vary across cases,

but several general principles apply to all. First,  is determined by the voters�learning process.

It thus depends on the quality of information available to the voters and their subjective prior

belief (i.e., �" and �0), but is independent of the parties�beliefs. An increase in  will encourage

polarisation by raising the parties�perceived uncertainty
�e�2� : We refer to this mechanism as the

learning e¤ect. Second, varp (bm) summarises the parties�subjective uncertainty regarding bm: It
thus depends solely on the information available to the parties and their subjective belief (i.e.,

�" and b�0), but not on the voters�. An increase in varp (bm) will increase the uncertainty faced
by the parties and promote polarisation. We refer to this as the uncertainty e¤ect. Third, any

changes in the precision of the error terms f"1; :::; "ng will have opposite e¤ects on  and varp (bm) :
The overall e¤ect on e�2 depends on the relative magnitude between 2varp (bm) and var (bm) ; where
var (bm) is the unconditional variance of bm under the voters�subjective prior belief. The details of

these points will be explained more fully in each of the special cases.

Case 1: Unbiased Independent Signals

We begin with the case in which (i) both voters and politicians believe with certainty that all

n signals are unbiased so that each bi is a deterministic constant and normalised to zero, and

(ii) the error terms f"1; :::; "ng are independently drawn from di¤erent probability distributions.

Speci�cally, each "i is assumed to be drawn from a normal distribution N
�
0; ��1"i

�
; where � "i is

the precision of mi. The expressions of E (s jm) ; var (s jm) and e�2 are shown in Lemma 2.27
Lemma 2 Suppose all the signals are unbiased and each "i is independently drawn from the

distribution N
�
0; ��1"i

�
for all i: De�ne  and bm according to

 �
Pn

i=1 � "i
� s +

Pn
i=1 � "i

> 0 and bm �
nX
i=1

�imi; (16)

27The proof of Lemmas 2 and 3 also serve as a demonstration on how to apply the formulas in (2) and (3). We
are aware of other (simpler) methods that can derive the posterior mean and posterior variance when signals are
unbiased.
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where � s � ��2s and �i � � "i=
Pn

i=1 � "i for all i: Then the mean and variance of s in the voters�

posterior beliefs are given by

E (s jm) =  bm and var (s jm) = 1

� s +
Pn

i=1 � "i
: (17)

The political parties�perceived uncertainty is given by e�2 =  2varp (bm) ; where
varp (bm) � (b� s +Pn

i=1 � "i)b� s (Pn
i=1 � "i)

; (18)

and b� s � b��2s :

In this special case, the summary measure bm is a weighted average of all the signals whereby

more precise signals are weighted more heavily. If the error terms f"1; :::; "ng are i.i.d. normal

random variables, so that � "i = � " for all i; then the summation
Pn

i=1 � "i in (16)-(18) will be

replaced by n� ": The parties�perceived uncertainty then becomes

e�2 = n� " (b� s + n� ")b� s (� s + n� ")2 :
On the other hand, if voters and parties share the same subjective prior beliefs about s so that

b� s = � s; then the parties�perceived uncertainty becomes

e�2 = (
Pn

i=1 � "i)

� s (� s +
Pn

i=1 � "i)
:

Recall that policy polarisation will emerge in a symmetric equilibrium if and only if e�2 exceeds
a certain threshold value �2min. Thus, understanding the relations between f� s;b� s; � "1 ; :::; � "ng ande�2 is essential in understanding how quality of information and disagreement will a¤ect policy

polarisation.28 To this end, we �rst examine the e¤ects of changing f� s;b� s; � "1 ; :::; � "ng on e�2 in
Proposition 2.

Proposition 2 Suppose all the signals are unbiased and each "i is independently drawn from the

distribution N
�
0; ��1"i

�
for all i:

(a) Holding other factors constant, an increase in either � s or b� s will lower the value of e�2.
(b) Holding other factors constant, an increase in � "i ; for any i 2 f1; 2; :::; ng ; will raise the
28The threshold value �2min itself is independent of the precision parameters f�s;b�s; �"1 ; :::; �"ng :
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value of  but lower the value of varp (bm) :
(c) Holding other factors constant,

de�2
d� "i

? 0 if and only if 2varp (bm) ? var (bm) ; (19)

for any i 2 f1; 2; :::; ng :

The �rst part of Proposition 2 states that policy polarisation is less likely to emerge and less

severe when either voters or parties are more certain about the hidden state in their prior beliefs.

This result can be easily explained through the learning e¤ect and the uncertainty e¤ect. As

voters become more certain about s, they will be less reliant on the signals in the learning process.

Consequently, their posterior expectation will be less responsive to bm (i.e.,  decreases): From

the parties� perspective, this means less ex ante uncertainty in the median voter�s ideal policy

E (s jm) ; hence a lower value of e�2.29 As explained before, this will strengthen the parties�o¢ ce
motivation and incentivise them to move closer to their opponent�s position in order to boost their

winning probability. Hence, an increase in � s will lower polarisation by weakening the learning

e¤ect. An increase in b� s; on the other hand, has no impact on the voters�learning process. But
as the parties�become more certain about the hidden state, they also perceive the signals as less

uncertain. This suppresses the uncertainty e¤ect and reduces the extent of polarisation.

The other parts of Proposition 2 analyse the e¤ects of changing a single � "i on e�2: Part (b)
shows that such a change will have opposite e¤ects on  and varp (bm) : Firstly, having more precise
signals will encourage voters to become more reliant on them when updating their beliefs. This

will enhance polarisation by strengthening the learning e¤ect. An increase in � "i also means that

the signal mi becomes more precise which will curb the uncertainty e¤ect and lower polarisation.

To determine the overall e¤ect on e�2; consider the following decomposition of ln e�2;
d ln e�2
d ln � "i

= 2
d ln 

d ln � "i
+
d ln varp (bm)
d ln � "i

: (20)

The �rst term on the right captures the changes in e�2 due to the learning e¤ect, while the second
term captures the contribution of the uncertainty e¤ect. As shown in the proof of Proposition 2,

29 In the extreme case when �s is arbitrarily large, var (s jm) will converge to zero and E (s jm) will converge to
the expected value of s in the prior distribution, which is �s = 0: The median voter�s ideal policy then converges to
the median value of �v; which is a known constant. This eliminates the uncertainty faced by the parties and paves
the way for policy convergence.
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the contribution of the learning e¤ect is inversely related to var (bm) : Speci�cally,
d ln 

d ln � "i
=

� "i

(
Pn

i=1 � "i)
2

1

var (bm) > 0: (21)

The intuition of this is as follows: First, note that

var (bm) = ��1"i +
X
j 6=i

��1"j + �
�1
s :

If voters are highly uncertain about bm to begin with [e.g., due to a low value of � s or � "j ; for

j 6= i], then a one-percentage increase in � "i will have a small impact on var (bm) and the outcome
of the learning process. On the same vein, the contribution of the uncertainty e¤ect is inversely

related to varp (bm) ; i.e.,
d ln varp (bm)
d ln � "i

= � � "i

(
Pn

i=1 � "i)
2

1

varp (bm) < 0: (22)

By combining (20)-(22), we can show that which e¤ect dominates depends on the relative magni-

tude between 2varp (bm) and var (bm) :
We can also express this condition in terms of the precision parameters. In the current special

case, 2varp (bm) ? var (bm) if and only if
� s ?

b� sPn
i=1 � "ib� s + 2Pn
i=1 � "i

: (23)

Thus, improving the precision of the noisy signals will increase [resp., reduce] perceived uncertainty

and polarisation if and only if � s is greater [resp., less] than a threshold that is determined by b� s
and

Pn
i=1 � "i : Notice that if there is no disagreement between voters and parties so that � s = b� s

and var (bm) = varp (bm), then more precise signals will always lead to an increase in e�2 and
polarisation.30 This is no longer the case when voters and political parties disagree. In particular,

if the political parties are su¢ ciently more certain or more knowledgeable on the policy issue (the

hidden state) so that 2varp (bm) < var (bm) ; then more precise signal(s) will reduce polarisation.31
30A similar result is reported in Gul and Pesendorfer (2012, Lemma 2). The main focus of Gul and Pesendorfer

(2012), however, is on the relation between media competition and party polarisation.
31Note that the expression on the right side of (23) is strictly lower than b�s: Hence, part (c) of Proposition 2

implies
de�2
d�"i

< 0 i¤ �s <
b�sPn

i=1 �"ib�s + 2Pn
i=1 �"i

< b�s:
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Case 2: Unbiased, Correlated and Exchangeable Signals

In this subsection we maintain the assumption that all signals are (believed to be) unbiased so

that bi = 0 for all i, but the error terms f"1; :::; "ng are now assumed to be exchangeable normal

random variables. Speci�cally, this means each "i has the same marginal distribution with mean

zero and precision � "; and each pair ("i; "j) ; i 6= j; has the same covariance. The covariance matrix

�" is now given by

�" =
1

� "

266666664

1 � � � � �

� 1 � � � �

...
. . .

...

� � � � � 1

377777775
; (24)

where � � �1= (n� 1) is the correlation coe¢ cient between any pair ("i; "j) ; i 6= j: The lower

bound of � is necessary for �" to be positive semi-de�nite. The resulting expressions of E (s jm) ;

var (s jm) and e�2 are shown in Lemma 3.
Lemma 3 Suppose all the signals are unbiased and the error terms f"1; :::; "ng are exchangeable

normal random variables with zero mean vector and covariance matrix �" as shown in (24). De�ne

 and bm according to

 � n� "
n� " + � s [1 + (n� 1) �]

> 0 and bm � 1

n

nX
i=1

mi:

Then the mean and variance of s in the voters�posterior beliefs are given by

E (s jm) =  bm and var (s jm) = 1 + (n� 1) �
n� " + � s [1 + (n� 1) �]

:

The political parties�perceived uncertainty is given by e�2 =  2varp (bm) ; where
varp (bm) = n� " + b� s [1 + (n� 1) �]

n� "b� s :

The results in Proposition 2 can be readily extended to the current case with only minor

changes. These are formally stated in the �rst three parts of Proposition 3. The interpretations

are essentially the same as before, hence they are not repeated here.
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Proposition 3 Suppose all the signals are unbiased and the error terms f"1; :::; "ng are exchange-

able normal random variables with zero mean vector and covariance matrix �" as shown in (24).

(a) Holding other factors constant, an increase in either � s or b� s will lower the value of e�2.
(b) Holding other factors constant, an increase in � " will raise the value of  but lower the value

of varp (bm) :
(c) Holding other factors constant,

de�2
d� "

? 0 if and only if 2varp (bm) ? var (bm) : (25)

(d) Holding other factors constant, an increase in � will lower the value of  but raise the value

of varp (bm) :
(e) Holding other factors constant,

de�2
d�

? 0 if and only if 2varp (bm) 7 var (bm) : (26)

The last two parts of Proposition 3 concern the e¤ects of � on e�2: A higher value of �means that
the signals fm1; :::;mng are more correlated. In the extreme case when � = 1, all the signals are

essentially echoing each other. From the voters�perspective, observing n > 1 perfectly correlated

signals is no better than observing a single one in terms of learning the hidden state s. Thus, a more

positive value of � will erode the voters�con�dence on the signals and weaken the learning e¤ect.32

The same increase in �; however, also raises the parties�perceived variance of bm; strengthening
the uncertainty e¤ect. The overall e¤ect on e�2 again depends on the relative magnitude between
2varp (bm) and var (bm) : Interestingly, the condition in (26) is the exact opposite of the one in (25).
This means, for any given set of f� s;b� s; � "; n; �g ; � " and � tend to have opposite e¤ects on e�2:

In the current special case, 2varp (bm) ? var (bm) if and only if
� s ?

n� "b� s
2n� " + b� s [1 + (n� 1) �] :

Similar to Case 1, if there is no disagreement between voters� and politicians� beliefs so that

varp (bm) = var (bm) ; then an increase in the precision of the signals or a decrease in the correlation
32The same idea has been put forward by Ortoleva and Snowberg (2015, p.518), but they have not explored the

relation between perceived sigal correlation and policy polarisation.
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between signals will raise the parties�perceived uncertainty. However, when voters and politicians

disagree, it is possible that an increase in � " or a decrease in � will lead to a lower degree of

perceived uncertainty. As in Case 1, this happens when b� s is su¢ ciently higher than � s or when
� is su¢ ciently low.

Case 3: Biased Signals (I)

Suppose now both voters and political parties expect the signals to be unbiased in their prior

beliefs but they are not entirely sure about this. Speci�cally, both groups share the same belief

that (i) each bi is drawn from a normal distribution with mean zero, (ii) the bias terms fb1; :::; bng

are mutually independent, so that Cov (bi; bj) = Covp (bi; bj) = 0; for all i 6= j; and (iii) each bi is

independent of the state variable s so that Cov (bi; s) = Covp (bi; s) = 0: Voters and politicians,

however, may have di¤erent degrees of con�dence on the unbiasedness of the signal sources. Let

� bi and b� bi denote, respectively, the precision of bi in the voters�and the parties�prior beliefs. A
higher value of � bi [resp., b� bi ] means that voters [resp., politicians] become more �rmly believed in
the impartiality of the source ofmi: As in Case 1, it is assumed that each "i is independently drawn

from the distribution N
�
0; ��1"i

�
. The current special case can thus be viewed as a generalisation

of Case 1 with the addition of independent random biases.

Lemma 4 Suppose both voters and parties believe that each "i is independently drawn from

N
�
0; ��1"i

�
for all i; but they disagree on the precision of the hidden state and the bias terms, i.e.,

� s 6= b� s and � bi 6= b� bi : De�ne  and bm according to

 �
Pn

i=1 e� i
� s +

Pn
i=1 e� i > 0 and bm �

nX
i=1

e�imi; (27)

where e� i � ���1bi + ��1"i ��1 and e�i � e� i=Pn
i=1 e� i for all i: Then the mean and variance of s in

the voters�posterior beliefs are given by

E (s jm) =  bm and var (s jm) = 1

� s +
Pn

i=1 e� i :
The political parties�perceived uncertainty is given by e�2 =  2varp (bm) ; where

varp (bm) = (
Pn

i=1 e� i)2 + b� sPn
i=1 e�2i �b��1bi + ��1"i �b� s (Pn
i=1 e� i)2 :
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When comparing the expressions in (27) to those in (16), it is clear that we are now replacing

f� "1 ; :::; � "ng in the latter with fe�1; :::;e�ng ; where each e� i � ���1bi + ��1"i ��1 : Intuitively, adding
a set of independent bias terms is similar to adding more noises to the signals. In particular, an

increase in either � bi or � "i will raise the value of e� i; so that
de� i
d� bi

> 0 and
de� i
d� "i

> 0 for all i:

But the nonlinearity of e� i = ���1bi + ��1"i ��1 also creates a complementarity between � bi and � "i ,
i.e.,

d2e� i
d� "id� bi

> 0:

Similar to part (a) of Propositions 2 and 3, an increase in either � s or b� s will lower the value
of e�2: The intuition is the same as before. Here we focus on the e¤ects of changing f� bi ;b� bi ; � "ig
on e�2: The main results are summarised below.
Proposition 4 Suppose both voters and parties believe that each "i is independently drawn from

N
�
0; ��1"i

�
for all i: Suppose they disagree on the precision of the hidden state and the bias terms,

i.e., � s 6= b� s and � bi 6= b� bi for all i:
(a) Holding other factors constant, an increase in either � bi or � "i will raise the value of  :

(b) Holding other factors constant, an increase in b� bi will lower varp (bm) and e�2:
(c) Suppose � bi = � b; b� bi = b� b and � "i = � " for all i: Then, holding other factors constant, any

changes in � b will have no e¤ect on varp (bm) ; whereas an increase in � " will lower varp (bm) :
(d) Suppose � bi = � b; b� bi = b� b and � "i = � " for all i: Then

de�2
d� "

? 0 if and only if 2varp (bm) ? var (bm) :
Part (a) implies that an increase in either � bi or � "i will promote the voters� con�dence in

the signals and enhance polarisation by strengthening the learning e¤ect. Part (b) implies that

an increase in any b� bi will reduce polarisation by suppressing the uncertainty e¤ect. The e¤ects
of changing � bi or � "i on varp (bm) are more di¢ cult to determine. This is due to the fact that,
in general, varp (bm) not only depends on the politicians� subjective belief, but also depends on
f� b1 ; :::; � bng ; which is part of the voters�subjective belief. This feature is not found in the previous
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two cases. In order to obtain sharper results, we focus on a narrower case in which all n signals

share the same precision parameters f� bi ;b� bi ; � "ig in the last two parts of Proposition 4. Under
this assumption, varp (bm) is independent of the voters� prior beliefs (i.e., � s and � b) as in the
previous special cases. As a result, any increase in � b will have a positive e¤ect on e�2 through  
alone; which is similar to an increase in � s:

The last part of Proposition 4 states that, when f� bi ;b� bi ; � "ig are identical across signals, any
changes in signal precision will have the same e¤ect as in part (b) of Propositions 2 and 3. The

overall e¤ect on e�2 is again determined by the relative magnitude between 2varp (bm) and var (bm).
In the current case, 2varp (bm) ? var (bm) if and only if

� s ?
nb� s

2n+ b� s �2b��1b + ��1" � ��1b
� :

In the absence of any disagreement between voters and politicians, i.e., when b� s = � s and b� b = � b;

improving signal precision will always lead to a greater extent of policy polarisation. If b� b = � b

but b� s 6= � s; then

de�2
d� "

? 0 if and only if � s ?
nb� s

2n+ b� s ���1b + ��1"
� :

Likewise, if b� s = � s but b� b 6= � b; then

de�2
d� "

? 0 if and only if � b ?
� s

n+ � s
�
2b��1b + ��1"

� :
In both cases, disagreement opens up the possibility that a more precise signal will make polar-

isation less likely and less severe. This happens when the voters are more ignorant about the

underlying policy issue (i.e., � s is signi�cantly lower than b� s) or when they have low con�dence in
the impartiality of the signal (i.e., a su¢ ciently low value of � b).

Case 4: Biased Signals (II)

We now revisit the case in which there is only one biased signal. Both voters and parties believe

that the bias term is correlated with the hidden state. The covariance matrices of (s; b) in the
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voters�and parties�beliefs are, respectively, denoted by

�0 =

264 �2s �s;b�s�b

�s;b�s�b �2b

375 and b�0 =
264 b�2s b�s;bb�sb�bb�s;bb�sb�b b�2b

375 : (28)

Suppose �s = b�s = 0 and �b = b�b = 0: Then the mean and variance of s in the voters�posterior
beliefs are

E (s j m) =
�
Cov (s;m)

var (m)

�
| {z }

 

m;

var (s j m) = �2s �
[Cov (s;m)]2

var (m)
;

where Cov (s;m) = �2s + �s;b�s�b and var (m) = �2s + �2b + �2" + 2�s;b�s�b: In all the previous

cases, the responsiveness coe¢ cient  is always strictly positive. In the current case,  can be

either positive or negative depending on the sign of Cov (s;m) ; which in turn depends on �s;b:

Speci�cally,

 ? 0 if and only if �s;b ? �
�s
�b
:

A negative  means that voters will update their beliefs in the opposite direction as suggested by

the signal. Note that this type of learning is possible only when �s;b 6= 0 and �2b > 0: The sign of

 ; however, does not a¤ect the parties�perceived uncertainty because

e�2 = �Cov (s;m)
var (m)

�2
varp (m) ;

where varp (m) = b�2s + b�2b + �2" + 2b�s;bb�sb�b. In the current context, learning e¤ect refers to an
increase in polarisation brought by an increase in j j or  2: Proposition 5 summarises the e¤ects

of the precision parameters f� s; � b;b� s;b� b; � "g and the correlation parameters ��s;b;b�s;b	 on e�2:
Proposition 5 Suppose there is only one biased signal and the covariance matrices of (s; b) in

the voters�and parties�beliefs are given by those in (28).

(a) Holding other factors constant,

de�2
d�s;b

? 0 if and only if Cov (s;m) [var (m)� 2Cov (s;m)] ? 0: (29)
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(b) Holding other factors constant,

de�2
d� s

? 0 if and only if
�
�s;b +

�s
�b

�"
�s;b +

2
�
�2b + �

2
"

��
�2s + �

2
b + �

2
"

� �s
�b

#
7 0: (30)

(c) Holding other factors constant,

de�2
d� b

? 0 if and only if
�
�s;b +

�s
�b

���
�s;b

�
�2s + �

2
b � �2"

�
+ 2�s�b

��
? 0: (31)

(d) For any z 2
�b� s;b� b;b�s;b	 ;

de�2
dz

? 0 if and only if
dvarp (s;m)

dz
? 0: (32)

(e) Holding other factors constant,

de�2
d� "

? 0 if and only if 2varp (m) ? var (m) :

The �rst three parts of Proposition 5 consider the e¤ects of changing any z 2
�
�s;b; � s; � b

	
on

e�2: Since these parameters are related to the voters�subjective prior belief, they will only a¤ect  
but not varp (m) :We begin with a heuristic discussion on the conditions in (29)-(31), which share

the same root:
de�2
dz

? 0 if and only if  
d 

dz
? 0:

This states that an increase in any z 2
�
�s;b; � s; � b

	
will promote polarisation if and only if it

intensi�es the learning e¤ect (i.e., making  more positive or more negative). Contrarily, such an

increase will lessen polarisation if and only if it suppresses the learning e¤ect by moving  closer

to zero. The e¤ect of z on  can be further decomposed according to

d 

dz
=  

�
1

Cov (s;m)

dCov (s;m)

dz
� 1

var (m)

dvar (m)

dz

�
:

This captures the idea that any changes in z will a¤ect both Cov (s;m) and var (m) ; thus leading

to two (potentially opposing) e¤ects on  : As an illustration, we will explain the various e¤ects in

detail for the case of �s;b:

Recall that a positive (negative) value of �s;b means that the bias term tends to complement

(contradict) the e¤ect of s: Thus, a more positive (more negative) value is associated with both a

29



larger (smaller) spread in the observed signal and a larger (smaller, or even negative) covariance

between s and m: A higher absolute value of Cov (s;m) means that voters are now more responsive

to the signals, which intensify the learning e¤ect and encourage polarisation. On the other hand,

a higher value of var (m) signi�es a deterioration in signal quality, which weakens the learning

e¤ect. The net e¤ect on polarisation depends on (i) the sign of Cov (s;m) ; and (ii) whether

var (m) or Cov (s;m) is more sensitive to �s;b: These factors are encapsulated in (29), which covers

three main scenarios: First, if Cov (s;m) < 0 then an increase in �s;b will lower e�2 and lessen
polarisation. Recall that Cov (s;m) < 0 is equivalent to �s;b < ��s=�b and  < 0:33 As �s;b

increases toward ��s=�b; both Cov (s;m) and  will approach zero which means there is nothing

to learn about s from m: As a result, the median voter�s policy ideal E (s j m) will converge to

a deterministic constant (zero). This will incentivise the two parties to choose the same policy

position and eliminate polarisation. The second scenario is when 2Cov (s;m) > var (m) > 0; which

is equivalent to �2s >
�
�2b + �

2
"

�
and  > 1=2: In this case, increasing �s;b will have a larger positive

e¤ect on var (m) than on Cov (s;m) : This presses  toward the lower bound 1=2 and reduces

polarisation. Finally, if var (m) > 2Cov (s;m) > 0; or equivalently 1=2 >  > 0; then an increase

in �s;b will induce a stronger positive e¤ect on Cov (s;m) than on var (m) and raise the value of

 : Overall, these results describe a non-monotonic relationship between �s;b and polarisation. In

particular, a more exaggerating bias term (i.e., a higher positive value of �s;b) does not necessarily

lead to more polarisation. It also depends on other confounding factors such as
�
�2s; �

2
b ; �

2
"

	
:

The e¤ects of � s and � b on e�2 can be interpreted along the same line. But their e¤ects will also
depend on the sign of �s;b and other parameter values which vastly expands the number of possible

cases. In general, if �s;b > 0; then an increase in � s will unambiguously reduce the learning e¤ect

and suppress polarisation. This is consistent with the �ndings in the previous cases. If �s;b > 0

and �2s + �
2
b > �2" are both satis�ed, then an increase in � b will have the same e¤ect.

Part (d) of Proposition 5 examines the e¤ects of changing
�b� s;b� b;b�s;b	 on e�2: Since these

represent di¤erent aspects of the politicians�subjective prior belief, any changes in these parameters

will a¤ect e�2 through varp (m) alone and has no impact on  : Using varp (m) = b�2s + b�2b + �2" +

2b�s;bb�sb�b; we can get
dvarp (m)

db� s = �
�b�s + b�s;bb�b� b�3s;

dvarp (m)

db� b = �
�b�b + b�s;bb�s� b�3b and

dvarp (m)

db�s;b = 2b�sb�b > 0:
33Obviously, this scenario can be ruled out by assuming �s � �b: There is, however, no a priori reason for (or

against) this assumption. Hence, we consider this as one possible scenario.

30



These results, together with (32), imply the following: First, an increase in b�s;b will unambiguously
raise the value of e�2 through varp (m) : Intuitively, this means the uncertainty e¤ect will become
stronger if the parties perceive the bias term as more exaggerating. Second, an increase in either

b� s or b� b will lower varp (m) and e�2; provided that b�s;b is not too negative, i.e.,
b�s;b > �b�sb�b :

This condition is equivalent to Covp (s;m) > 0; i.e., the political parties believe that the signal is

positively correlated with the hidden state. This shows that the �ndings in part (a) of Propositions

2 and 3, and part (b) of Proposition 4 can be extended to the more general case in which b�s;b 6= 0
and Covp (s;m) � 0. Finally, part (e) of Proposition 5 shows that our previous results regarding

the e¤ect of � " on e�2 will continue to hold in this case, regardless of the sign of �s;b:
4 Welfare Analysis

In this section we focus on the ex ante welfare (i.e., welfare before the realisation of the signals)

of an arbitrary voter in a polarised equilibrium. We present two sets of results. The �rst one

concerns the welfare implications of parties�ideological di¤erences in a polarised equilibrium. The

second set of results concerns the welfare e¤ects of signal quality improvement. In both instances,

the disagreement between voters�and politicians�beliefs plays a crucial role in shaping the results.

4.1 Ideological Polarisation

We start by deriving a measure of ex ante welfare, which is a single arbitrary voter�s expected

utility based on her prior belief. Similar to the equilibrium analysis, we maintain the assumption

that all voters share the same prior belief as the median voter. In all the cases considered in

Section 3, the median voter�s ideal policy position is determined by E (s jm) =  bm; where bm
is a weighted average of the signals m =(m1;m2; :::;mn)

T : Since the signals are jointly normally

distributed with a zero mean vector, the su¢ cient statistic bm is a normal random variable with

mean zero. This is true even if the signals are correlated. The variance of bm under the voter�s prior

belief is denoted by �2m � var (bm) : Let G (�) be the cumulative distribution function of N �0; �2m� :
Upon observing the signals, voter v updates her belief according to (2) and (3). Conditional
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on m, her expected utility if R wins is given by

E
�
U
�
x�eq; �v

�
jm
�

= �E
h�
�v +  bm� x�eq + s�  bm�2 jmi

= �E
h�
�v +  bm� x�eq�2 jmi| {z }

Expected utility under prediction

� var (s jm)| {z }
Prediction error

:

The �rst term is the expected utility based on the voter�s prediction of s; i.e., E (s jm) =  bm:
The second term is the prediction error, which is a constant according to (3). If L wins, then the

above expression becomes

�E
h�
�v +  bm+ x�eq

�2 jmi� var (s jm) :
In any symmetric equilibrium, R wins if E (s jm) =  bm > x = 0 and L wins if  bm < 0: Hence,

before m is realised, the voter�s expected utility is

E
�
U
�
x�eq; �v

��
= �

Z 1

0
E
h�
�v +  bm� x�eq

�2 jmi dG (bm)
�
Z 0

�1
E
h�
�v +  bm+ x�eq

�2 jmi dG (bm)� var (s jm)
=

"
2

r
2

�
 �m � x�eq

#
x�eq �

�
�2v + �

�1
s

�
: (33)

The derivation of (33) is shown in the Appendix. In the convergent equilibrium, i.e., x�eq = 0; the

voter�s expected utility can be simpli�ed to become

E [U (0; �v)] = �
�
�2v + �

�1
s

�
: (34)

Combining (33) and (34) gives

E
�
U
�
x�eq; �v

��
� E [U (0; �v)] =

"
2

r
2

�
 �m � x�eq

#
x�eq; (35)

which indicates the welfare gain or loss due to policy polarisation in equilibrium. Based on this

measure, polarisation is welfare-improving if and only if

0 � x�eq =
2�� h (0)
4h (0)�+ 2

� 2
r
2

�
 �m: (36)
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The equality in the middle is the formula in (13). The welfare gain is at its highest level at the

mid-point of this range, i.e., xmid =
p
2=� �m: A graphical illustration is shown in Figure 1.

Figure 1: Welfare Gain from Polarisation.

The intuition behind Figure 1 is as follows. In the above discussion, the term  �m =p
var ( bm) captures the voter�s perceived uncertainty about the election outcome, which is deter-

mined by E (s jm) =  bm: The higher is this uncertainty, the greater the welfare gain from polar-

isation. This is because divergent policy platforms (i.e., xR 6= xL) can partially insure against the

risk in election outcome faced by the voters, which explains why policy polarisation can improve

the welfare of risk-averse voters. We refer to this as the insurance e¤ect of policy polarisation.

However, as the extent of policy divergence increases, further polarisation starts to reduce welfare.

As shown in Figure 1, the net bene�t of polarisation is positive and increasing when x�eq is below

the mid-point xmid =
p
2=� �m; and decreasing when x�eq is above it. The diagram also shows

that any further increase in polarisation will eventually turn the welfare gain into a welfare loss.

We are now ready to explore the welfare implications of parties�ideological di¤erences. The

�rst inequality in (36), which is derived in Proposition 1, states that polarised equilibrium exists

only if the two parties�ideological di¤erences are su¢ ciently large. In terms of our notations, these

di¤erences are captured by the parameter �: It follows that

x�eq � 0 if and only if � � h (0)

2
=

p
2�e� � �min:

Our next result examines the conditions under which the second inequality in (36) is also satis�ed.
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Proposition 6

(i) Suppose the following condition is valid,

e�
 �m

�

s
varp (bm)
var (bm) � 4

�
:

Then polarisation is welfare-improving, i.e., E
�
U
�
x�eq; �v

��
� E [U (0; �v)] ; for any x�eq � 0;

or equivalently, � � �min:

(ii) Suppose the following condition is valid,

e�
 �m

�

s
varp (bm)
var (bm) > 4

�
:

Then polarisation is welfare-improving if and only if

�min � � �
p
� (8 �m � e� + )
2
p
2 [�e� � 4 �m] : (37)

Proposition 6 shows that whether polarisation is welfare-improving depends crucially on the

interplay between two factors, namely (i) the disagreement between voters and politicians, and (ii)

the ideological di¤erences between the two parties. This can be explained as follows: From (13),

it is evident that the extent of policy polarisation x�eq is strictly increasing in �: As the ideological

di¤erences between the two parties continue to grow (i.e., as � ! 1), x�eq will increase towards

the limit

lim
�!1

x�eq =
1

2h (0)
=
e�p2�
2

:

This represents the maximum degree of polarisation possible under a given value of e�; hence it is
dependent on the parties�perceived variance varp (bm) : If this limit falls within the range of positive
welfare gain in Figure 1, i.e., 0 � lim

�!1
x�eq � 2

p
2=� �m; then polarisation is always welfare-

improving. Note that the upper boundary of this range is determined by the voters�perceived

variance var (bm) : Thus, a comparison between lim
�!1

x�eq and 2
p
2=� �m can be translated into a

comparison between varp (bm) and var (bm) : Speci�cally,
lim
�!1

x�eq =
e�p2�
2

7 2
r
2

�
 �m i¤

e�
 �m

=

s
varp (bm)
var (bm) 7 4

�
:

Holding  constant, as the voter becomes more uncertain about bm [i.e., when var (bm) increases],
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the insurance e¤ect of policy divergence will become more pronounced which makes polarisation

more bene�cial to the voters. In terms of Figure 1, this will take the form of an expansion in the

range of positive welfare gain. On the other hand, when the parties become more uncertain about

the election outcome [i.e., when varp (bm) increases], they will have a greater incentive to polarise
which raise the value of x�eq: The �rst part of Proposition 6 states that if var (bm) is su¢ ciently
large relative to varp (bm) ; then all voters will be strictly better o¤ in a society with highly partisan
political parties (� > �m) and policy polarisation (x

�
eq > 0) to an otherwise identical society but

with more congruent parties (� < �min) and policy convergence (x
�
eq = 0): The second part of the

proposition states that if varp (bm) is su¢ ciently larger than var (bm) ; then the parties will have
a stronger incentive to polarise but the bene�ts of policy divergence to the voters are modest. It

follows that if both disagreement and the parties�ideological di¤erences are large, i.e.,

s
varp (bm)
var (bm) > 4

�
and � >

p
� (8 �m � e� + )
2
p
2 [�e� � 4 �m] ;

then policy convergence (i.e., x�eq = 0) will be favoured by all voters and any equilibrium with

x�eq > 0 is suboptimal.
34

4.2 Improvement in Signal Quality

We now consider the welfare implications of an improvement in signal quality. Such an im-

provement can take any one of the following forms: (i) an increase in � "i in Case 1, for any

i 2 f1; 2; :::; ng ; (ii) an increase in � " or a decrease in � in Case 2; (iii) an increase in either � " or

� b in Case 3, under the assumption that all signals share the same (� "; � b) ; or (iv) an increase in

� " in Case 4. In the absence of disagreement, all such changes will raise the value of e�: We will
collectively represent this as

de�
dz

> 0; (38)

where z corresponds to � "i ; � "; � b or �� depending on the speci�c case considered.

From (34), it is clear that any changes in z will have no impact on welfare in the convergent

equilibrium. Our next result shows that, when voters�and politicians�beliefs align, then better

signal quality will improve all voters�welfare in any polarised equilibrium.

34Our Proposition 6 is similar in spirit to Proposition 8 in Bernhardt et al. (2009, p.578). However, in their model
the parties�perceived uncertainty about the median voter�s policy preference (i.e., e�) is an exogenous parameter and
there is no disagreement between voters�and parties�beliefs.
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Proposition 7 Suppose there is no disagreement between voters� and politicians� beliefs, i.e.,

�0 = b�0 and var (bm) = varp (bm) : Then any improvement in signal quality (as described above)
will unanimously improve voters�welfare in any polarised equilibrium, i.e.,

dE
�
U
�
x�eq; �v

��
dz

> 0; for any x�eq > 0 and for all �v:

A graphical illustration of this result is shown in Figure 2. To �x ideas, consider an increase in

� "i in Case 1, for some i 2 f1; 2; :::; ng : In the absence of disagreement, e�2 is the same as  2�2m:
As we have seen in Proposition 2, more precise signals will always increase the value of e�2 in this
case due to a dominating learning e¤ect. This has two implications: First, an increase in  �m

will strengthen the insurance e¤ect of polarisation and expand the range over which polarisation

is welfare-improving. Second, an increase in e�2 will incentivise the parties to polarise and lead
to an increase in x�eq: In the absence of disagreement, it can be shown that x

�
eq is always lower

than the mid-point xmid =
p
2=� �m (i.e., on the upward-sloping side of the curves both before

and after the increase in � "i). This means that increasing polarisation is always welfare-improving

when there is no disagreement.

Figure 2: Improvement in Signal Quality.

The above result, however, may not hold when there is signi�cant disagreement between voters

and politicians. We demonstrate this possibility through two sets of numerical examples with a

single unbiased signal. Set � = 1 and  = 3 so that �min = 0:60: In the �rst set of examples, we

consider three combinations of � s and b� s; namely (� s;b� s) = (0:06; 0:60) ; (� s;b� s) = (0:06; 0:20) and
(� s;b� s) = (0:06; 0:06) : In the �rst two scenarios, disagreement exists and b� s is much greater than
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� s: According to part (c) of Proposition 2, more precise signal may lower the parties�perceived

uncertainty and reduce polarisation when b� s � � s. In the third scenario, voters�and politicians�

beliefs coincide. Our theoretical results predict that in this case, any improvement in signal

precision will unambiguously increase perceived uncertainty. These predictions are veri�ed in

Figure 3. The three diagrams on the left plot the value of e� over a range of � " in these three cases:
We see that in the �rst two cases, higher signal precision will lead to a reduction in perceived

uncertainty and also policy polarisation.35

Figure 3: Results from Numerical Example 1.

The three diagrams on the right show the corresponding changes in the welfare gain mea-
35 In all the cases that we considered, e� is greater than the threshold �min = 0:60 so that x�eq is always strictly

positive. As shown in Corollary 1, x�eq is strictly increasing in e� when x�eq > 0: Hence, a plot of x�eq against �" will
have the same shape as those depicted in the left column of Figure 3.
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sure,
�
E
�
U
�
x�eq; �v

��
� E [U (0; �v)]

	
: The uppermost panel shows that when b� s is much greater

than � s; signal quality improvement can be welfare-reducing. This can be explained as follows:

Di¤erentiating the expression in (35) with respect to � " gives

d

d� "

�
E
�
U
�
x�eq; �v

��
� E [U (0; �v)]

	
= 2

 r
2

�
 �m � x�eq

!
| {z }

A

dx�eq
d� "

+ 2

r
2

�

d ( �m)

d� "
x�eq| {z }

(+)

: (39)

The �rst term in the second line captures the e¤ect of changing polarisation on voter welfare. As

shown in Figure 1, the welfare gain from polarisation increases as x�eq approaches xmid =
p
2=� �m

from either side. Hence, the �rst e¤ect is positive if an improvement in signal precision brings x�eq

closer to
p
2=� �m [e.g., if x�eq <

p
2=� �m and dx�eq=d� " > 0]. The second term represents the

e¤ect due to a change in voters�perceived uncertainty on election outcome ( �m). This essentially

captures the same kind of movement as depicted in Figure 2. Hence this term is always positive

whenever x�eq > 0:

In all three cases, equilibrium policy x�eq is far lower than xmid =
p
2=� �m over the range of

� " that we consider. Hence, the term that we label as A in (39) is always positive. In Case 3, x�eq

is strictly increasing in � ": This means any increase in � " will bring x�eq closer to
p
2=� �m and

increase the welfare gain from polarisation, hence

 r
2

�
 �m � x�eq

!
dx�eq
d� "

> 0:

This, together with the positive second term, leads to an unambiguous increase in welfare gain.

This con�rms the result in Proposition 7. On the other hand, x�eq is strictly decreasing in � " in

Case 1. This means any increase in � " will bring x�eq further away
p
2=� �m and reduce the

welfare gain, i.e.,  r
2

�
 �m � x�eq

!
dx�eq
d� "

< 0: (40)

The tug-of-war between this and the positive second term then contributes to the hump shape

in the top-right diagram. As suggested by the diagram, the negative e¤ect eventually dominates

when � " is su¢ ciently large. The middle-right diagram of Figure 3 can be explained along the

same line.36

36These results are robust to a wide range of values of (�; ; �s;b�s) ; hence it is easy to construct other examples
that can deliver the same messages. We do not present the robustness checks here due to space consideration. The
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Our second numerical example shows that signal quality improvement can also be welfare-

reducing when � s � b� s: Speci�cally, we set � = 5;  = 3 and (� s;b� s) = (0:6; 0:06) : Figure 4 shows
how e�2 and E �U �x�eq; �v���E [U (0; �v)] change over a range of � ": In this case, x�eq is greater than
xmid =

p
2=� �m (i.e., on the downward sloping side of the parabola in Figure 1) and is strictly

increasing in � " [as suggested by Proposition 2 part (c)]. Thus, better signal precision will bring

x�eq further away from
p
2=� �m and lower the welfare gain, i.e., (40) will hold. The diagram

on the right suggests that this negative term dominates the positive second term in (39) so that

welfare is strictly decreasing in � ":

Figure 4: Results from Numerical Example 2.

5 Conclusion

The main objective of this paper is to examine how voters�political information processing and

belief formation will a¤ect political parties�strategic policy choices. To this end, we extend the

canonical electoral competition model of Bernhardt et al. (2009) by introducing two new features,

namely (i) perceived biasedness of the information sources, and (ii) disagreement between voters�

and politicians�beliefs. Both are empirically relevant and we show that they can generate new

results and insights. For instance, adding a random bias opens up the possibility of what we called

�de�ant learning.�On the other hand, allowing for disagreement between voters�and politicians�

beliefs can overturn the conventional wisdom that better signal precision will always promote

polarisation and is always welfare-improving. Both empirical evidence and causal observations

MATLAB codes for generating the numerical results are available from the authors�personal website.
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suggest that disagreement is ubiquitous in the political arena. In this paper, we only explore

one form of disagreement (between politicians and their constituents). A broader investigation on

how other forms of disagreement (e.g., divergence in opinions and beliefs among voters) will a¤ect

voters�belief formation and polarisation may be a fruitful avenue for future research.
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Appendix

Proof of Lemma 1

The proof is based on a well-known result concerning conditional multivariate normal distributions

which is stated as follows [see, for instance, Greene (2012, p.1042, Theorem B.7)]. Suppose [X1;X2]

has a joint multivariable normal distribution N (�;�), where

� =

264 �1
�2

375 and � =

264 �11 �12

�21 �22

375 :
The marginal distribution of Xi is given by N (�i;�ii) for i 2 f1; 2g : Then the conditional distri-

bution of X1 given X2 is normal with mean vector

�1;2 = �1 +�12�
�1
22 (X2 � �2) ;

and covariance matrix

�11;2 = �11 ��12��122 �21:

In order to apply this result, �rst note that (s;b;m) has a joint multivariate normal distribution

with mean vector �y and covariance matrix �y given by

�y =

266664
�s

�b

�m

377775 and �y =

266664
�2s 
 �


T �b �

�T �T �m

377775 :

The meaning of � in the covariance matrix has been explained in the main text. The covariances

between b and m are captured by the n-by-n matrix � � E
h
(b� �b) (m��m)T

i
: The (i; j)th

element of � is denoted by �i;j � Cov (bi;mj) = !i + Cov (bi; bj) :

Using the theorem mentioned above, the posterior distribution of (s;b) after observing m is a

normal distribution with mean vector

�0 =

264 �s

�b

375+
264 �

�

375��1m (m��m) ; (41)
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and covariance matrix

�0 =

264 �2s 



T �b

375�
264 �

�

375��1m �
�T �T

�
: (42)

It follows that the marginal distribution of s in the voters�posterior belief is also normal. To derive

the posterior mean and posterior variance of s, we �rst de�ne �i;j as the element on the ith row

and jth column of ��1m : Then

264 �

�

375��1m (m��m) =

266666664

�1 � � � �n

�1;1 � � � �1;n
...

...

�n;1 � � � �n;n

377777775

266664
�1;1 � � � �1;n
...

. . .

�n;1 � � � �n;n

377775
266664
m1 � �m1

...

mn � �mn

377775

=

266666664

�1 � � � �n

�1;1 � � � �1;n
...

...

�n;1 � � � �n;n

377777775
| {z }

(n+1)-by-n

266664
Pn

j=1 �1;j

�
mj � �mj

�
...Pn

j=1 �n;j

�
mj � �mj

�
377775

| {z }
n-by-1

:

The �rst entry in the resulting (n+ 1)-by-1 vector is

���1m (m��m) =
nX
i=1

nX
j=1

�i�i;j

�
mj � �mj

�
:

It follows from (41) that the posterior mean of s is

E (s jm) = �s +
nX
i=1

nX
j=1

�i�i;j

�
mj � �mj

�

= �s +

nX
j=1

 
nX
i=1

�i�i;j

!
| {z }

�j

�
mj � �mj

�
:
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Similarly,

264 �

�

375��1m �
�T �T

�
=

266666664

�1 � � � �n

�1;1 � � � �1;n
...

...

�n;1 � � � �n;n

377777775

266664
�1;1 � � � �1;n
...

. . .

�n;1 � � � �n;n

377775
266664
�1 �1;1 � � � �n;1
...

...

�n �1;n � � � �n;n

377775

=

266666664

�1 � � � �n

�1;1 � � � �1;n
...

...

�n;1 � � � �n;n

377777775

266664
Pn

j=1 �1;j�j
Pn

j=1 �1;j�1;j � � �
Pn

j=1 �1;j�n;j
...

...Pn
j=1 �n;j�j

Pn
j=1 �n;j�1;j � � �

Pn
j=1 �n;j�n;j

377775 :

The (1; 1)th element of the resulting (n+ 1)-by-(n+ 1) matrix is

���1m �
T =

nX
i=1

nX
j=1

�i�i;j�j :

It follows from (42) that the posterior variance of s is

var (s jm) = �2s �
nX
j=1

 
nX
i=1

�i�i;j

!
�j :

This completes the proof of Lemma 1.

Proof of Lemma 2

Suppose each bi; i 2 f1; 2; :::; ng ; is a deterministic constant normalised to zero, and suppose

�s = 0: Then (s;m) has a joint multivariate normal distribution with zero mean vector and

covariance matrix V given by

V =

264 �2s �T

� �m

375 ;
where � = �2s � 1n: Thus, for Case 1 and Case 2 where signals are unbiased, �i = �2s for all i:

Suppose each "i is drawn from the distributionN
�
0; �2"i

�
; where �2"i = ��1"i : Then the covariance

structure of fm1; :::;mng is given by

Cov (mi;mj) =

8><>: �2s + �
2
"i for i = j;

�2s for i 6= j:
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Hence, �m can be expressed as the sum of two n-by-n matrices,

�m = A+ �
2
s1n1

T
n ;

where A is a diagonal matrix with diagonal elements
�
�2"1 ; :::; �

2
"n

�
: The inverse of �m can be

derived using equation (3) in Henderson and Searle (1981, p.53). Speci�cally, this equation states

that for any matrix M = A + ruvT ; where A can be any invertible matrix, r is a scalar, u is a

column vector and vT is a row vector, the inverse can be expressed as

M�1 = A�1 � �A�1uvTA�1; (43)

where

� =
r

1 + rvTA�1u
:

Hence, by setting r = �2s; u = 1n and v
T = 1Tn ; we can get

��1m = A�1 � �A�11n1TnA�1; (44)

where

� =
�2s

1 + �2s1
T
nA

�11n
:

Since A is a diagonal matrix, its inverse is simply

A�1 =

266666664

� "1 0 � � � 0

0 � "2
...

...
. . .

...

0 � � � � � � � "n

377777775
: (45)

It follows that 1TnA
�11n =

Pn
i=1 � "i ; and

� =
�2s

1 + �2s
Pn

i=1 � "i
=

1

� s +
Pn

i=1 � "i
; (46)
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where � s � ��2s : In addition,

A�11n1
T
nA

�1 =

266666664

� "1

� "2
...

� "n

377777775
�
� "1 � "2 � � � � "n

�
=

266666664

�2"1 � "1� "2 � � � � "1� "n

� "1� "2 �2"2
...

...
. . .

...

� "1� "n � � � � � � �2"n

377777775
: (47)

Using (44)-(47), we can express the elements on any jth column of ��1m as

�i;j =

8><>: � "j � �� "j 2 for i = j;

��� "i� "j for i 6= j;

) �j =

nX
i=1

�i�i;j = �2s� "j

 
1� �

nX
i=1

� "i

!
=

� "j
� s +

Pn
i=1 � "i

:

Substituting these and �i = �2s into (2) and (3) gives

E (s jm) =
nX
i=1

�imi =

Pn
i=1 � "imi

� s +
Pn

i=1 � "i
=

Pn
i=1 � "i

� s +
Pn

i=1 � "i| {z }
 

�
nX
i=1

�imi| {z }bm
;

where �i � � "i=
Pn

i=1 � "i for all i; and

var (s jm) = 1

� s
�

nX
i=1

�i�i =
1

� s
� 1

� s

Pn
i=1 � "i

� s +
Pn

i=1 � "i
=

1

� s +
Pn

i=1 � "i
:

Finally, under the parties�beliefs, the covariance structure of fm1; :::;mng is given by

Covp (mi;mj) =

8><>: b�2s + �2"j for i = j;

b�2s for i 6= j;

for any given j, and the perceived uncertainty is given by

e�2 = � Pn
i=1 � "i

� s +
Pn

i=1 � "i

�2
varp (bm) ;

where

varp (bm) = nX
j=1

�j

nX
i=1

�iCovp (mi;mj) =

nX
j=1

�j

 b�2s nX
i=1

�i + �j�
2
"j

!
:

Since
Pn

j=1 �j = 1 and �j�
2
"j = (

Pn
i=1 � "i)

�1 for all j; we can simplify the above expression to
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become

varp (bm) = b�2s +
 

nX
i=1

� "i

!�1
=
(b� s +Pn

i=1 � "i)b� s (Pn
i=1 � "i)

: (48)

Using the same line of argument and replacing b�2s with �2s, we can show that
var (bm) = (� s +

Pn
i=1 � "i)

� s (
Pn

i=1 � "i)
; (49)

which is the unconditional variance of bm under the voters�subjective prior belief. This completes

the proof of Lemma 2.

Proof of Proposition 2

Recall that perceived uncertainty e�2 can be expressed as
e�2 = � Pn

i=1 � "i
� s +

Pn
i=1 � "i

�2
| {z }

 2

� b� s +Pn
i=1 � "ib� sPn

i=1 � "i| {z }
varp(bm)

:

It is clear that any changes in � s will only a¤ect  but not varp (bm) : Likewise, any changes in b� s
will only a¤ect varp (bm) but not  : Consider the logarithm of  ;

ln = ln

 
nX
i=1

� "i

!
� ln

 
� s +

nX
i=1

� "i

!
:

Totally di¤erentiating this with respect to f ; � s; � "ig gives

d 

 
= � � s

� s +
Pn

i=1 � "i

d� s
� s

+
� s� "i

(
Pn

i=1 � "i) (� s +
Pn

i=1 � "i)

d� "i
� "i

:

Suppose d� "i = 0; then we have

d 

d� s
= �  

� s +
Pn

i=1 � "i
< 0 ) de�2

d� s
< 0: (50)

On the other hand, if d� s = 0; then

d 

d� "i
=

� s 

(
Pn

i=1 � "i) (� s +
Pn

i=1 � "i)
> 0; (51)

) � "i
 

d 

d� "i
=

� "iPn
i=1 � "i

� s
� s +

Pn
i=1 � "i

=
� "i

(
Pn

i=1 � "i)
2

1

var (bm) :
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The second equality follows from (49). Similarly, totally di¤erentiating ln [varp (bm)] with respect
to f ;b� s; � "ig gives

ln [varp (bm)] = ln"b� s + nX
i=1

� "i

#
� lnb� s � ln nX

i=1

� "i

!

dvarp (bm)
varp (bm) = �

Pn
i=1 � "ib� s +Pn

i=1 � "i

db� sb� s � b� s� "i
(
Pn

i=1 � "i) (b� s +Pn
i=1 � "i)

d� "i
� "i

:

When all other factors except b� s are kept constant,
dvarp (bm)

db� s = �
Pn

i=1 � "ib� s +Pn
i=1 � "i

varp (bm)b� s < 0 ) de�2
db� s < 0: (52)

If d� s = 0; then
dvarp (bm)
d� "i

= � b� svarp (bm)
(
Pn

i=1 � "i) (b� s +Pn
i=1 � "i)

< 0; (53)

) � "i
varp (bm) dvarp (bm)d� "i

= � � "iPn
i=1 � "i

b� s
(b� s +Pn

i=1 � "i)
= � � "i

(
Pn

i=1 � "i)
2

1

varp (bm) :
The second equality follows from (48). Equations (51) and (53) together prove the statement in

part (b).

Holding � s and b� s constant, the overall e¤ect of changing � "i on e�2 can be determined by
� "ie�2 de�

2

d� "i
= 2

� "i
 

d 

d� "i
+

� "i
varp (bm) dvarp (bm)d� "i

=

�
2

var (bm) � 1

varp (bm)
�

� "i

(
Pn

i=1 � "i)
2 :

Hence,
de�2
d� "i

? 0, 2varp (bm) ? var (bm) :
Using (48) and (49), we can show that

2varp (bm) ? var (bm) if and only if
2� s

� s +
Pn

i=1 � "i
? b� sb� s +Pn

i=1 � "i
;

which is equivalent to

� s ?
b� sPn

i=1 � "ib� s + 2Pn
i=1 � "i

:

This completes the proof of Proposition 2.
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Proof of Lemma 3

Suppose � � �1= (n� 1) : The inverse of �" can be shown to take the following form

��1" =
� "

1 + (n� 2) �� (n� 1) �2

266666664

1 + (n� 2) � �� � � � ��

�� 1 + (n� 2) � � � � ��
...

. . .
...

�� � � � �� 1 + (n� 2) �

377777775
: (54)

To see this, note that all diagonal entries of �"�
�1
" are given by

1

1 + (n� 2) �� (n� 1) �2
�
1 + (n� 2) �� (n� 1) �2

�
= 1;

and all o¤-diagonal elements of �"�
�1
" are given by

1

1 + (n� 2) �� (n� 1) �2
�
��+ [1 + (n� 2) �] �+ (n� 2) �2

	
= 0:

De�ne the notation � according to

� � � "
1 + (n� 2) �� (n� 1) �2 =

� "
(1� �) [1 + (n� 1) �] :

The covariances among the signals fm1; :::;mng are given by Cov (mi;mj) = �2s +Cov ("i; "j) ;

which implies

�m = �" ++�
2
s1n1

T
n :

Using the same formula in (43), we can get

��1m = ��1" � ���1" 1n1Tn��1" ; (55)

where

� =
�2s

1 + �2s1
T
n�

�1
" 1n

=
1

� s + 1Tn�
�1
" 1n

:

It is straightforward to show that

1Tn�
�1
" 1n = n� (1� �) = n� "

1 + (n� 1) �:
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) � =
1 + (n� 1) �

n� " + � s [1 + (n� 1) �]
(56)

On the other hand,

��1" 1n1
T
n�

�1
" = �2 (1� �)2 1n1Tn : (57)

Using (55)-(57), we can write the elements on any jth column of ��1m as

�i;j =

8><>: � [1 + (n� 2) �]� ��2 (1� �)2 for i = j;

���� ��2 (1� �)2 for i 6= j:

Using these and �i = �2s = ��1s ; we can get

�j =
nX
i=1

�i�i;j =
1

� s

h
� (1� �)� n��2 (1� �)2

i
=

� "
� s [1 + (n� 1) �]

�
1� n� "�

1 + (n� 1) �

�
=

� "
n� " + � s [1 + (n� 1) �]

:

Hence, the posterior mean and posterior variance of s are given by

E (s jm) = n� "
n� " + � s [1 + (n� 1) �]| {z }

 

� 1
n

nX
i=1

mi| {z }bm
;

var (s jm) = 1

� s

 
1�

nX
i=1

�j

!
=

1 + (n� 1) �
n� " + � s [1 + (n� 1) �]

:

From the parties�perspective, the covariance structure of fm1; :::;mng is now given by

Covp (mi;mj) =

8><>: b��1s + ��1" for i = j;

b��1s + ��1" � for i 6= j;
(58)

and the perceived uncertainty is given by

e�2 = � n� "
n� " + � s [1 + (n� 1) �]

�2
varp (bm) ;
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where

varp (bm) =
1

n2

nX
j=1

nX
i=1

Covp (mi;mj)

=
1

n2

nX
j=1

�
nb��1s + ��1" [1 + (n� 1) �]

	
=

n� " + b� s [1 + (n� 1) �]
n� "b� s : (59)

Using the same steps, with b��1s replaced by ��1s in (58), we can show that

var (bm) = n� " + � s [1 + (n� 1) �]
n� "� s

: (60)

This completes the proof of Lemma 3.

Proof of Proposition 3

Part (a) As shown above,

e�2 = � n� "
n� " + � s [1 + (n� 1) �]

�2
| {z }

 2

� n� " + b� s [1 + (n� 1) �]
n� "b� s| {z }
varp(bm)

:

It is clear that any changes in � s will only a¤ect  but not varp (bm) : In particular,  (and hencee�2) is strictly decreasing in � s when � > �1= (n� 1) : If � = �1= (n� 1) ; then  ; varp (bm) ande�2 are all independent of � s: On the other hand, an increase in b� s will lower e�2 because
varp (bm) = 1b� s + [1 + (n� 1) �]n� "

;

which is strictly decreasing in b� s; and  is independent of b� s:
Part (b) Consider the logarithm of  and varp (bm) ;

ln = lnn+ ln � " � ln fn� " + � s [1 + (n� 1) �]g ;

ln [varp (bm)] = ln fn� " + b� s [1 + (n� 1) �]g � lnn� ln � " � lnb� s:
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Holding f� s;b� s; �; ng constant, consider the total derivatives of these with respect to � "; i.e.,
d 

 
=

� s [1 + (n� 1) �]
n� " + � s [1 + (n� 1) �]

d� "
� "

=
1 + (n� 1) �
n� "var (bm) d� "� " ; (61)

dvarp (bm)
varp (bm) = � b� s [1 + (n� 1) �]

n� " + b� s [1 + (n� 1) �] d� "� " = 1 + (n� 1) �
n� "varp (bm) d� "� " : (62)

These show that an increase in � " will raise the value of  but lower varp (bm).
Part (c) The overall e¤ect on e�2 is determined by

� "e�2 de�
2

d� "
= 2

� "
 

d 

d� "
+

� "
varp (bm) dvarp (bm)d� "

:

Using (61) and (62), it can be shown that

de�2
d� "

? 0 , 2varp (bm) ? var (bm) :
The condition on the right side is equivalent to

2� s
n� " + � s [1 + (n� 1) �]

? b� s
n� " + b� s [1 + (n� 1) �] ;

which can be simpli�ed to become

� s ?
n� "b� s

2n� " + b� s [1 + (n� 1) �] :
This establishes the condition in part (c).

Part (d) Holding f� s;b� s; � "; ng constant, consider the total derivatives of  and varp (bm) with
respect to �; i.e.,

d 

 
= � � s (n� 1) �

n� " + � s [1 + (n� 1) �]
d�

�
;

dvarp (bm)
varp (bm) = b� s (n� 1) �

n� " + b� s [1 + (n� 1) �] d�� :
Note that these equations are essentially the same as (61) and (62) but with opposite sides. The

desired result can be obtained by using the same steps as in part (a). This completes the proof of

Proposition 3.
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Proof of Lemma 4

Since each bi is independently drawn from the distribution N
�
0; ��1bi

�
; �b is a diagonal matrix

with diagonal elements
�
��1b1 ; :::; �

�1
bn

�
: Since each bi is also independent of the state variable s; it

follows that !i � Cov (s; bi) = 0 and �i � Cov (s;mi) = �2s for all i; so that � = �2s1n: It follows

from (1) that

�m = �b +�" + �
2
s � 1n1Tn :

The inverse of �m can again be evaluated using the formula in (43). Since both �b and �" are

diagonal matrices, we can de�ne

A = �b +�" =

266666664

��1b1 + �
�1
"1 0 � � � 0

0 ��1b2 + �
�1
"2

...
...

. . .
...

0 � � � � � � ��1bn + �
�1
"n

377777775
;

and its inverse is

A�1 =

266666664

e�1 0 � � � 0

0 e�2 ...
...

. . .
...

0 � � � � � � e�n

377777775
;

where e� i � ���1bi + ��1"i ��1 for all i: From this point on, we can follow the same steps as in the

proof of Lemma 2, with f� "1 ; :::; � "ng replaced by fe�1; :::;e�ng : Hence,
E (s jm) =

Pn
i=1 e� imi

� s +
Pn

i=1 e� i =
Pn

i=1 e� i
� s +

Pn
i=1 e� i| {z }

 

�
nX
i=1

e�imi| {z }bm
;

where e�i � e� i=Pn
i=1 e� i for all i; and

var (s jm) = 1

� s +
Pn

i=1 e� i :
Under the parties�beliefs, the covariance structure of fm1; :::;mng is given by

Covp (mi;mj) =

8><>: b��1s + b��1bj + ��1"j for i = j;

b��1s for i 6= j;
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for any given j: The perceived uncertainty is then given by

e�2 = � Pn
i=1 e� i

� s +
Pn

i=1 e� i
�2

varp (bm) ;
where

varp (bm) =
nX
j=1

e�j nX
i=1

e�iCovp (mi;mj) =
nX
j=1

e�j
"b��1s nX

i=1

e�i + e�j �b��1bj + ��1"j �
#

= b��1s
0@ nX
j=1

e�j
1A2 + nX

j=1

e�2j �b��1bj + ��1"j � :
Since

Pn
j=1
e�j = 1; we can simplify the above expression to become

varp (bm) = b��1s +

nX
j=1

� e� jPn
i=1 e� i

�2 �b��1bj + ��1"j � = (
Pn

i=1 e� i)2 + b� sPn
j=1 e�2j �b��1bj + ��1"j �b� s (Pn
i=1 e� i)2 : (63)

Using this line of argument, we can get

var (bm) = (
Pn

i=1 e� i)2 + � sPn
j=1 e�2j ���1bj + ��1"j �

� s (
Pn

i=1 e� i)2 : (64)

This proves the results in Lemma 4.

Proof of Proposition 4

Part (a) Recall the de�nition of  in this case, which is repeated below

 =

Pn
i=1 e� i

� s +
Pn

i=1 e� i > 0:
Holding � s and e� j for any j 6= i constant, the total derivative of ln is given by

d ln =
d 

 
=

� se� i
(
Pn

i=1 e� i) (� s +Pn
i=1 e� i) de� ie� i : (65)

Next, recall the de�nition of e� i; which is e� i � ���1bi + ��1"i ��1 : It follows that
de� ie� i = ��1bi

��1bi + �
�1
"i

d� bi
� bi

+
��1"i

��1bi + �
�1
"i

d� "i
� "i

: (66)
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Equations (65) and (66) together show that any increase in either � bi or � "i will raise the value of

 :

Part (b) Recall the de�nition of varp (bm) in (63). Since each e� i � ���1bi + ��1"i ��1 is independent
of b� bi ; it is obvious that varp (bm) is negatively related to b� bi : Since  is also independent of b� bi ; it
follows that any increase in b� bi will lower e�2 by lowering varp (bm) :
Part (c) Suppose � bi = � b; b� bi = b� b and � "i = � " for all i: Then  and varp (bm) can be simpli�ed
to become

 =
ne�

� s + ne� and varp (bm) = n+ b� s �b��1b + ��1"
�

nb� s ; (67)

where e� � �
��1b + ��1"

��1
: This clearly shows that varp (bm) is independent of � b and inversely

related to � ": Similarly, (64) can be simpli�ed to become

var (bm) = n+ � s
�
��1b + ��1"

�
n� s

: (68)

Part (d) Suppose � b and b� b are unchanged. Then from (67), we can get

d 

 
=

� s
� s + ne� de�e� =

� s
�
��1b + ��1"

�
n+ � s

�
��1b + ��1"

� de�e� ; (69)

where
de�e� =

��1"
��1b + ��1"

d� "
� "

; (70)

and
dvarp (bm)
varp (bm) = �b� s��1"

n+ b� s �b��1b + ��1"
� d� "
� "

: (71)

The overall e¤ect of changing � " on e�2 is determined by
de�2e�2 = 2

d 

 
+
dvarp (bm)
varp (bm) =

"
2� s

n+ � s
�
��1b + ��1"

� � b� s
n+ b� s �b��1b + ��1"

�# ��1" d� "
� "

:

The second equality is obtained by combining (69)-(71). This implies that

de�2
d� "

? 0 if and only if
2� s

n+ � s
�
��1b + ��1"

� ? b� s
n+ b� s �b��1b + ��1"

� ;
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which is equivalent to

� s ?
nb� s

2n+ b� s �2b��1b + ��1" � ��1b
� :

Using (67) and (68), we can show that this is equivalent to 2varp (bm) ? var (bm) : This completes
the proof of Proposition 4.

Proof of Proposition 5

Part (a) Given that Cov (s;m) = �2s + �s;b�s�b and var (m) = �2s + �
2
b + �

2
" +2�s;b�s�b; we can

write

 =
Cov (s;m)

var (m)
=

�2s + �s;b�s�b

�2s + �
2
b + �

2
" + 2�s;b�s�b

: (72)

Straightforward di¤erentiation gives

d 

d�s;b
=
�s�b [var (m)� 2Cov (s;m)]

[var (m)]2
;

where

var (m)� 2Cov (s;m) = �2b + �
2
" � �2s:

Hence,

de�2
d�s;b

= 2 
d 

d�s;b
� varp (bm) ? 0 i¤ Cov (s;m) [var (m)� 2Cov (s;m)] ? 0:

Part (b) Di¤erentiating the expression in (72) with respect to � s gives

d 

d� s
=

n�
2�s + �s;b�b

�
var (m)� 2�s

�
�s + �s;b�b

�2o
[var (m)]2

d�s
d� s|{z}
(�)

:

The expression inside the curly brackets can be simpli�ed as follows

�
2�s + �s;b�b

�
var (m)� 2�s

�
�s + �s;b�b

�2
=

�
2�s + �s;b�b

� �
�2s + �

2
b + �

2
" + 2�s;b�s�b

�
� 2�s

�
�s + �s;b�b

�2
= 2�s

�
�2b + �

2
"

�
+ �s;b�b

�
�2s + �

2
b + �

2
"

�
:
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Hence,
d 

d� s
=
�b
�
�2s + �

2
b + �

2
"

�
[var (m)]2

"
�s;b +

2�s
�
�2b + �

2
"

�
�b
�
�2s + �

2
b + �

2
"

�# d�s
d� s|{z}
(�)

:

This, together with

 =
Cov (s;m)

var (m)
=

�s�b
var (m)

�
�s;b +

�s
�b

�
;

implies that

de�2
d� s

= 2 varp (bm) � d 
d� s

? 0 i¤
�
�s;b +

�s
�b

�"
�s;b +

2
�
�2b + �

2
"

��
�2s + �

2
b + �

2
"

� �s
�b

#
7 0:

Part (c) Di¤erentiating the expression in (72) with respect to � b gives

d 

d� b
=
�s
�
�s;bvar (m)� 2

�
�s + �s;b�b

� �
�b + �s;b�s

�	
[var (m)]2

d�b
d� b|{z}
(�)

:

The term inside the curly brackets can be simpli�ed as follows:

�s;bvar (m)� 2
�
�s + �s;b�b

� �
�b + �s;b�s

�
= �s;b

�
�2s + �

2
b + �

2
" + 2�s;b�s�b

�
� 2

�
�s + �s;b�b

� �
�b + �s;b�s

�
= �

�
�s;b

�
�2s + �

2
b � �2"

�
+ 2�s�b

�
:

Hence,
d 

d� b
= � ��s

[var (m)]2
�
�s;b

�
�2s + �

2
b � �2"

�
+ 2�s�b

� d�b
d� b|{z}
(�)

It follows that

de�2
d� b

= 2 varp (bm) � d 
d� b

? 0 i¤
�
�s;b +

�s
�b

��
�s;b

�
�2s + �

2
b � �2"

�
+ 2�s�b

�
? 0:

Part (d) This result follows immediately from the fact that  is independent of
�b� s;b� b;b�s;b	 :

Part (e) Since Cov (s;m) is independent of � "; straightforward di¤erentiation yields

de�2
d� "

= [Cov (s;m)]2
�

1

[var (m)]2
dvarp (m)

d� "
� 2 varp (m)

[var (m)]3
dvarp (m)

d� "

�
:
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Note that
dvar (m)

d� "
=
dvarp (m)

d� "
=
d�2"
d� "

= ��4" < 0:

Combining these two equations gives

de�2
d� "

=

�
Cov (s;m)

var (m)

�2 �2varp (m)
var (m)

� 1
�
�4" ? 0 i¤ 2varp (m) ? var (m) :

This completes the proof of Proposition 5.

Derivation of (33)

Consider an arbitrary voter with �v 2 R: Conditional on m; the voter�s expected utility if R wins

is

E
�
U
�
x�eq; �v

�
jm
�

= �E
h�
�v +  bm� x�eq

�2 jmi� var (s jm)
= �

n�
�v � x�eq

�2
+ 2

�
�v � x�eq

�
 bm+ ( bm)2 + var (s jm)o :

Similarly, the voter�s expected utility if L wins is

E
�
U
�
�x�eq; �v

�
jm
�
= �

n�
�v + x

�
eq

�2
+ 2

�
�v + x

�
eq

�
 bm+ ( bm)2 + var (s jm)o :

Before m is realised, the voter�s expected utility is

E
�
U
�
x�eq; �v

��
=

Z 1

0
E
�
U
�
x�eq; �v

�
jm
�
dG (bm) + Z 0

�1
E
�
U
�
�x�eq; �v

�
jm
�
dG (bm)

= �
�
1

2

�
�v � x�eq

�2
+
1

2

�
�v + x

�
eq

�2
+ var (s jm)

�
�
�
2
�
�v � x�eq

�
 

Z 1

0
bmdG (bm) + 2 ��v + x�eq� bmZ 0

�1
bmdG (bm)�

� 2
Z 1

�1
bm2dG (bm)

= 4 x�eq

Z 1

0
bmdG (bm)� h�2v + �x�eq�2 + var (s jm) +  2var (bm)i : (73)

The last line follows from the fact that G (�) is the CDF of a symmetric distribution around zero,

hence Z 1

�1
bmdG (bm) = 0 and

Z 0

�1
bmdG (bm) = �Z 1

0
bmdG (bm) :
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Using the formula,

Z 1

0
x2n+1 exp

�
�Ax2

�
dx =

n!

2An+1
; for A > 0 and n = 0; 1; 2; :::;

we can get Z 1

0
bmdG (bm) = 1p

2��m

Z 1

0
bm exp h� �2�2m��1 (bm)2i dbm =

�mp
2�
:

Substituting this into (73) gives

E
�
U
�
x�eq; �v

��
= 2

r
2

�
x�eq �m �

�
x�eq
�2 � ��2v + var (s jm) +  2var (bm)� : (74)

Finally, by the law of total variance, we can get

var (s jm) +  2var (bm) = ��1s : (75)

To see this, �rst recall that �s in the voter�s subjective prior belief is normalised to zero, hence

the variance of s in their prior belief is given by

��1s = var (s) = E
�
s2
�
= E

�
E
�
s2 jm

��
;

where the outer expectation is taken with respect to the joint distribution of m: It follows that

��1s = E
n
var (s jm) + [E (s jm)]2

o
= var (s jm) +

Z 1

�1
[E (s jm)]2 dG (bm) : (76)

The last line uses the facts that var (s jm) is a deterministic constant according to (3) and

E (s jm) is a function of bm. Since the expected value of bm is zero,

Z 1

�1
[E (s jm)]2 dG (bm) = var [E (s jm)] =  2var (bm) : (77)

Substituting (77) into (76) gives (75). Combining (74) and (75) gives

E
�
U
�
x�eq; �v

��
= 2

r
2

�
x�eq �m �

�
x�eq
�2 � ��2v + ��1s � ;

which is equation (33).
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Proof of Proposition 6

The second inequality in (36) requires

2

r
2

�
 �m � x�eq =

2�� h (0)
4h (0)�+ 2

, 2
p
2 �m [4h (0)�+ 2] � 2

p
���

p
�h (0)

, 4
p
2 �m +

p
�h (0) � 2

hp
� � 4

p
2 �mh (0)

i
�:

There are two possible cases: If
p
� � 4

p
2 �mh (0) � 0; or equivalently,

e�
 �m

=

s
varp (bm)
var (bm) � 4

�
;

then the second inequality in (36) is automatically satis�ed. This means E
�
U
�
x�eq; �v

��
� E [U (0; �v)]

for any x�eq � 0:

But if
p
� � 4

p
2 �mh (0) > 0; or equivalently,

e�
 �m

=

s
varp (bm)
var (bm) > 4

�
;

then the second inequality in (36) holds if and only if

� �
p
2 �m +

p
�h (0)

2
�p
� � 4

p
2 �mh (0)

� = p
� (8 �m � e� + )
2
p
2 [�e� � 4 �m] :

This completes the proof of Proposition 6.

Proof of Proposition 7

Suppose var (bm) = varp (bm) ; which implies  �m = e�: Then equation (33) can be rewritten as
E
�
U
�
x�eq; �v

��
= 2

r
2

�
e�x�eq � �x�eq�2 � ��2v + ��1s � ;

for any x�eq > 0; or equivalently e� > �min: Straightforward di¤erentiation yields

d

dz
E
�
U
�
x�eq; �v

��
= 2

r
2

�

�e�dx�eq
dz

+ x�eq
de�
dz

�
� 2x�eq �

dx�eq
dz

=

"
2

 r
2

�
e� � x�eq

!
dx�eq
de� + 2

r
2

�
x�eq

#
de�
dz
:
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The second line uses the chain rule of di¤erentiation,

dx�eq
dz

=
dx�eq
de� � de�

dz
:

As shown in Corollary 1, x�eq is strictly increasing in e� whenever e� > �min: This, together with

x�eq > 0 and (38), means that
p
2=�e� � x�eq is a su¢ cient condition for

d

dz
E
�
U
�
x�eq; �v

��
> 0:

Recall that the extent of polarisation x�eq is determined by

x�eq =
2�� h (0)
4h (0)�+ 2

; where h (0) � 1=
�e�p2�� :

Hence, x�eq can also be expressed as

x�eq =
2
p
2��e� � 

4�+ 2
p
2�e� = 2

p
2�� (e� � �min)
4�+ 2

p
2�e� ; where �min �



2
p
2��

:

The su¢ cient condition
p
2=�e� � x�eq can now be rewritten as

e� � �� (e� � �min)
2�+

p
2�e�

, e� �2�+p2�e�� � �� (e� � �min)
,
p
2�e�2 � � (� � 2) e� + ���min � 0: (78)

Consider the following quadratic equation:

p
2�y2 � � (� � 2) y + ���min = 0:

Since � (� � 2) > 0 and ���min > 0; this equation has two distinct real roots. The sum and the

product of roots are, respectively, given by �� (� � 2) < 0 and ���min > 0: Hence, the two roots

must be negative-valued. This in turn implies that
p
2�y2�� (� � 2) y+���min > 0 for all y � 0:

Hence, (78) is valid for any e� > �min > 0: This proves the desired result.
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