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Abstract 
This paper investigates the contribution of industrial robots to employment change in 
manufacturing in a sample of 17 European countries and the USA over the period 2004 to 2019. 
We combine index decomposition analysis (IDA) and production-theoretical decomposition 
analysis (PDA). First, we use IDA to decompose employment change in the manufacturing 
industry into changes in (aggregate) manufacturing output, changes in the sectoral structure of 
the manufacturing industry, and changes in labour intensity which is a composite index of 
labour intensity change within each of the nine sub-sectors of total manufacturing. Second, we 
use PDA to further decompose labour intensity change to isolate the contribution of technical 
efficiency change, technological change, human capital change, change in non-robot capital 
intensity and change in robot capital intensity to employment change. In almost all of the 
countries considered, the labour intensity is falling in entire manufacturing, which has a 
dampening effect on employment. Robotisation contributes to this development by reducing 
labour intensities and employment in all countries and sub-sectors, though to varying degrees. 
Manufacturing output, in turn, grows in all countries (except Greece, Spain and Italy), which 
increases employment and counteracts or in some countries even more than offsets the 
dampening effect of declining labour intensities. The structural change within manufacturing 
has an almost neutral effect in many countries. 
 
JEL-Classification: C43, J21, J24, O33 
Keywords: automation, robotisation, decomposition, structural change, data envelopment 
analysis 
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1. Introduction 

Economic development in industrialized and emerging countries in recent decades has been 
characterized, inter alia, by a noticeable decline in employment in the manufacturing sector. 
The total number of hours worked in manufacturing fell on average by 12.13% in advanced 
European countries over the last fifteen years (2004-2019), with significant differences between 
individual countries, and by 5.37% in the USA. Between 2004 and 2019 the manufacturing 
sector's share in overall economic employment fell from 16.12% to 13.15% in advanced 
European countries and from 11.68% to 9.88% in the USA (OECD Detailed National Accounts 
statistics, Labour input by activity – ISIC Rev. 4). These changes document the shift of 
employment to other economic sectors and are often seen as a sign of deindustrialization in 
developed European countries and the USA. 
 
Another key development across the entire manufacturing sector is the automation of produc-
tion processes, particularly the increasing use of (industrial) robots. According to data from the 
International Federation of Robotics (Müller and Kutzbach, 2020) and again considering the 
time span 2004-2019, the number of robots in manufacturing has tripled in advanced Europe, 
while it has increased nearly fivefold in the same industries in the United States. The use of 
robots is only one part of automation, albeit a very important one and is often viewed as a proxy 
for the whole. 
 
The decline in employment and robotisation are occurring simultaneously. This raises the 
question of whether the two happened at the same time by chance or whether they are connected 
in some way. The present study examines how the increasing use of robots contributes to the 
development of overall employment in manufacturing. This question has been discussed, both 
in theoretical works and in empirical studies. Theoretical studies show very different impact 
mechanisms, which are either labour-saving or labour-creating. The detailed works by Barbieri 
et al. (2020) and Acemoglu and Restrepo (2019a,b), among others, present a variety of 
theoretical considerations regarding market mechanisms and different impact channels, but do 
not provide a clear-cut conclusion regarding the net effect on employment. The impact depends 
on a number of factors, including model assumptions, parameters, elasticities and model 
calibrations. Ultimately, it remains up to empirical studies to answer the question. Empirical 
studies were carried out at different levels of aggregation, including the micro-level (i.e., 
workers and firms; e.g., Dauth et al. 2021; De Backer et al., 2018; etc.), the meso-level (i.e., 
industries, metropolitan areas/cities and regions; e.g., Graetz and Michaels, 2018; Dahlin, 2019; 
Kariel, 2021; etc.) and the macro-level (i.e., countries; e.g., Fu et al., 2021; Jung and Lim, 2020; 
etc.), and with different industry focuses. The findings of empirical studies depend on the 
selected sample (countries, industries and observation periods) as well as the data sources, the 
model specification and the unit of analysis (e.g., firm, sector, economy). The spectrum ranges 
from significantly positive to insignificant to significantly negative effects of robot use on 
employment. 
 
We investigate the employment effects of robotisation at the manufacturing sub-sector level, 
using observations on nine manufacturing industries over the period 2004-2019 from 17 
European economies and the USA. Sub-sectors are characterized by different production 
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technologies, which is reflected by varying labour intensities across sectors, making them 
distinctly susceptible to changes in labour costs. Furthermore, due to technology heterogeneity, 
there are divergent potentials across sub-sectors for substituting labour with robots. In addition, 
the manufacturing sub-sector level offers an interesting political perspective, since wage 
bargaining between employer and employee representatives are usually undertaken at the level 
of manufacturing sub-sectors. The effects of the use of industrial robots on employment play 
an indirect role for this bargaining as it is influenced by possible labour cost savings as a result 
of replacement potentials of (human) labour through robots. Furthermore, sector level data sets 
cover also small enterprises which are underrepresented in most firm level data sets. In 
advanced economies, small firms present the majority of the total number of enterprises. Robot 
use plays a different role on the firm level according to non-random factors (e.g., size, business 
model) and random factors. Thus, when the interest is on the net effect on the economy, it is 
natural to work with aggregate level data, where the sub-sector level provides the most detail 
while still covering the whole economy. 
 
Only few existing studies on the relationship between robot adoption and employment are based 
on country industrial data. The pioneering work with such data is Graetz and Michaels (2018). 
It includes data from 14 robot-using industries in 17 countries (USA, South Korea, Australia, 
and 14 European countries) from 1993 to 2007. The industries considered also include non-
manufacturing sectors such as agriculture, mining, utilities, construction, and “education and 
R&D”. The empirical results show that, on average, robots did not significantly reduce total 
employment. The data set used by Carbonero et al. (2018) comprised 15 manufacturing and 
non-manufacturing sectors in 41 developed and emerging countries from all over the world in 
the years 2005 to 2014. On average, they find a statistically significant negative impact (greater 
in emerging economies than in developed countries) of industrial robots on employment. An 
examination of manufacturing employment as a share of total employment shows a statistically 
weakly negative effect, again stronger in emerging than in developed countries. Kromann et al. 
(2020) consider 10 manufacturing industries in 9 countries (Japan, Germany, UK, France, Italy, 
Spain, Sweden, Finland, and Denmark) in the years 2004 to 2007. According to their results, 
robot use is associated with unchanged or higher employment in total manufacturing. De Vries 
et al. (2020) examined 19 industries in 37 high-income as well as emerging market and 
transition economies between 2005 and 2015. Their results indicate that there is no significant 
relationship between industrial robot adoption and aggregate employment growth. Klenert et 
al. (2023) use a data set covering 9 manufacturing and 5 non-manufacturing sectors in 14 
countries of the European Union from 1995 to 2017. Their results indicate the use of robots is 
positively associated with aggregate employment in the manufacturing sector. 
 
Those previous studies use regression techniques to investigate the employment effects of 
robotisation and report average effects across countries and industries. In contrast, to our 
knowledge, at the first time, we use a non-parametric approach, which combines index 
decomposition analysis (IDA) with production-theoretical decomposition analysis (PDA) and 
allows to provide country- and sector-specific estimates of robot induced employment changes. 
In this way, we gain deeper insights into individual manufacturing sub-sectors of the economy 
with high overall economic importance and a high degree of robotisation, such as the 
automotive industry, the machine and metal industry or the electronics and computer industry. 
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Few previous studies explicitly consider manufacturing and none address heterogeneous 
employment effects across manufacturing sub-sectors. 
 
Our estimation procedure consists of two steps. First, we use IDA to decompose employment 
change in manufacturing into changes in (aggregate) manufacturing output (output effect), 
changes in the sectoral structure of manufacturing (output mix effect), and changes in labour 
intensity (intensity or productivity effect) which is a composite index of labour intensity change 
within each of the nine sub-sectors of total manufacturing. Second, we use PDA based on 
distance functions to further decompose labour intensity change to isolate the contribution of 
technical efficiency change, technological change, human capital change, change in non-robot 
capital intensity and change in robot capital intensity to employment change. Distance functions 
for the PDA are estimated by Data Envelopment Analysis and the procedure accounts for 
heterogeneity in production technologies across sub-sectors and time. 
 
Our approach is anchored in production economic theory but does not require to assume a 
functional form of the production function (like Cobb-Douglas or CES), i.e., it is a non-
parametric data driven approach. This allows to relax the often unrealistic assumptions made i) 
about the elasticities of substitution between inputs and ii) the nature of technological change 
(i.e. Hicks-neutral technological change). It also identifies the contribution of structural change 
to employment variation separately from technical efficiency change (i.e. movements towards 
the frontier) and technological change (i.e. shifts of the frontier). Finally, it enables to report 
country-specific and sub-sector-specific employment effects of robotisation instead of averages 
across countries and sectors. The decomposition methodology allows estimating the direct 
labour-saving effects, but not compensation effects which work (indirectly) via increases in 
output, and are thereof part of the output change component. 
 
Results indicate, that labour intensity is falling (or in other words labour productivity is rising) 
in entire manufacturing and all sub-sectors in almost all countries examined, which has a 
dampening effect on employment. Robotisation contributes to this development by reducing 
labour intensities and thus employment in all countries and manufacturing sub-sectors, though 
to varying degrees. Manufacturing output, in turn, grows in all countries (except Greece, Spain 
and Italy), which increases employment and counteracts, or in some countries even more than 
offsets the dampening effect of declining labour intensities. The structural change within 
manufacturing contributes little in many countries. 
 
The remainder of this paper is structured as follows. Section 2 describes the data, discusses the 
choice of the variables and provides selected descriptive statistics. It is followed by Section 3 
which explains the applied methodology. Section 4 presents the empirical results. Section 5 
summarizes our results and concludes. 
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2. Data 

Our data set consists of four variables representing production factors, i) labour, ii) human 
capital, iii) non-robot physical capital, iv) robot capital, and one variable for the output, value 
added. We use three different data sources: First, input data for labour and non-robot physical 
capital as well as value added data are derived from OECD Detailed National Accounts 
statistics. Second, we take human capital information from the Penn World Table (PWT) 
version 10.0 (Feenstra et al., 2015). Third, we use data from the International Federation of 
Robotics (Müller and Kutzbach, 2020) to estimate industrial robot capital stocks. 
 
2.1. Sample selection 

Müller and Kutzbach (2020) provide data on annual robot installations and robot stocks for 
1993–2019 for a comprehensive set of developed and emerging countries from around the 
world. While at the macroeconomic level this database is less limited in quality and coverage, 
at a more disaggregated level, such as individual industries or manufacturing sub-sectors, data 
availability is significantly lower and requires careful selection of countries and years, defini-
tion of industries, and in several cases data interpolation. Similar issues apply to labour market 
data and other national accounts data, which are available for many countries at the macroeco-
nomic level, but only for relatively few at the industry-level. After checking the availability and 
quality of time series, we arrive at a sample of nine-manufacturing sub-sectors covering 18 
countries and the years 2000 to 2019 resulting in a total number of 3,240 observations.2 The 
industries considered ranges from “Manufacture of food products, beverages and tobacco” 
(C10-C12) to “Other manufacturing, repair and installation of machinery and equipment” (C31-
C33) (see Table 2). Countries included are Austria, Belgium, Czech Republic, Denmark, 
Finland, France, Germany, Greece, Hungary, Italy, the Netherlands, Norway, Portugal, Slovak 
Republic, Spain, Sweden, United Kingdom, and the United States. 
 
2.2. Robot capital stock variables 

The International Federation of Robotics (IFR) provides data on annual robot installations by 
country, industry, and application (Müller and Kutzbach, 2020). The IFR uses the definition of 
a ‘manipulating industrial robot’ given by the ISO 8373:2012 standard from the International 
Organization for Standardization. Accordingly, an industrial robot is defined as ‘an automati-
cally controlled, reprogrammable, multipurpose manipulator programmable in three or more 
axes, which can be either fixed in place or mobile for use in industrial automation applications’ 
(Müller and Kutzbach, 2020, p. 23). 
 
We construct the stock of industrial robots in physical units based on annual installations using 
the perpetual inventory method (PIM), assuming annual depreciation rates of 15%.3 Section A 

 
2 Though, we have data for the period 2000 to 2019, the period of investigation in the Sections 2.4 and 4 is 2004–

2019. The reasons for this are methodological considerations which are explained in Section 3.2. 
3 For the purpose of sensitivity analysis, we also created robot capital stock data assuming a depreciation rate of 

10% as well as using a ‘one-hoss shay’ depreciation method assuming that the average operating service life of 
an industrial robot is 12 years. A comparison of these series reveals that they are highly correlated with each 
other (correlation coefficients higher than 99.8%). For this reason and based on the results of an empirical study 
on the macroeconomic level (Eder et al., 2023), we assume that the depreciation method has only a minor 
influence on the estimation results as well as on the conclusions. 
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of the supplementary material describes the data preparation steps and the construction of the 
robot installation series and the robot stock series in detail. Section B of the supplementary 
material provides figures on the evolution of our estimated robot stock series over the period 
2000 to 2019 for each of the 18 countries and nine manufacturing sub-sectors in our sample. 
Thereafter, we derive monetary robot capital stocks in constant prices (of the base year and 
country) by multiplying the robot stock in physical units by the average unit price of robots in 
the United States in 2017 and use the monetary robot capital stocks only for the calculation of 
monetary non-robot capital stocks. 
 
Kromann et al. (2020) and Graetz and Michaels (2018) report that the quality of robots in-
creased markedly between 1990-2005. To account for quality changes in the robot stocks we 
follow Eder et al. (2023) and consider annual robot installations in efficiency units by multiply-
ing the robot installations in physical units with an index of robot quality. The robot quality 
index is based on two price indices developed by the IFR (IFR, 2006; Chapter III and Annex 
C) for the period 1990-2005, one is quality adjusted and one is not. The robot quality index is 
derived by dividing the quality adjusted robot price index by the non-quality adjusted robot 
price index. For the years 2006-2019 we use forecasted values of the robot quality index based 
on a linear trend model. 
 
At the industry level, robust-quality data on robot usage is only available for broad manufac-
turing sub-sectors. The grouping is only partially compatible with labour market and national 
accounts data. A compromise requires that the robot usage data is aggregated into nine broad 
manufacturing sub-sectors to be combinable with other data. The exact sector division is shown 
in subsection 2.4. 
 
2.3. Labour, non-robot capital and output variables 

The data for labour, non-robot physical capital and output is derived from OECD Detailed Na-
tional Accounts statistics. In particular, labour input is measured as “Labour input by activity – 
ISIC Rev. 4” in annual million hours worked; The non-robot physical capital stocks are com-
puted as “Net fixed assets by activity and by asset, ISIC Rev. 4” minus our estimated monetary 
robot capital stock described in section 2.2.; The output is measured by “Gross value added and 
its components by activity, ISIC Rev4”. The OECD statistics provide the time series of data 
measured in monetary units in national currencies valued at current year prices. To adjust this 
data for price differences over time, we brought it to the price level of 2015 using the respective 
price deflators from the OECD Detailed National Accounts statistics. Afterwards, the non-robot 
physical capital data as well as the output data were adjusted for spatial price differences and 
converted to million Euros using purchasing power parity (PPP) for 2015 from Eurostat for 
capital goods and for gross domestic product, respectively.4 
 

 
4 We are aware that adjusting for the spatial price differences of all different sectors of the economy with a single 

purchasing power parity per country brings with it a certain vagueness. However, the availability of PPP data 
leaves us with no other option. As far as we know, PPPs broken down by economic sector are only available for 
production GDP (cf. Olislager, Konijn, 2016). 
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Human capital is measured by the human capital index from the Penn World Table (PWT) 
version 10.0 (Feenstra et al., 2015). Its calculation follows a common approach in the literature 
and is based on data on years of schooling and returns to education. We follow Walheer (2016a, 
b) and assume the human capital endowment to be the same for all industries considered in the 
respective country. In this way, we account for interdependencies of the sectors which share 
the country's education system. 
 
2.4. Descriptive Statistics 

Figure 1 presents the employment development in hours worked across the entire manufactur-
ing sector from 2004 to 2019 in four European regions as well as in the USA in the form of an 
index. The graph shows declining or stagnating employment for all regions. While in Central 
Europe and the USA employment has recovered after the downward trend during the crisis 
years of 2009/10 and has reached the level of 2004 (Central Europe) or not fully reached it 
(USA), this is not the case in the other regions. They have not recovered from the shock and 
employment in 2019 is well below pre-crisis levels. 
 

 
Figure 1 Index of employment (measured in hours worked) in total manufacturing in Northern, Central, 
Western, Southern Europe and the USA 
Note: Northern Europe … Denmark, Finland, Norway and Sweden; Central Europe … Austria, Czech Republic, 
Germany, Hungary and Slovak Republic; Western Europe … Belgium, France, the Netherlands, and United 
Kingdom; Southern Europe … Greece, Italy, Spain and Portugal 

 
Table 1 presents the robot intensities in total manufacturing in 2004 and 2019 as well as the 
growth rates, revealing above all the heterogeneity of the countries. What is striking is that 
Germany has by far the highest and Greece by far the lowest intensity in both years. Interest-
ingly, the USA does not stand out regarding the robot intensity of its manufacturing sector. 
Robot intensity is increasing in all countries of this sample. Growth is highest in Hungary, the 
Slovak Republic and the Czech Republic and lowest in Finland, Germany and France. The high 
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growth rates in the three Central and Eastern European countries clearly document the catching 
up of these three former transition countries. 
 
Table 1 
Robot intensity in total manufacturing by countries 

Country Robot intensity in 2004 Robot intensity in 2019 
Growth rate of robot 
intensity 2004–2019 

Denmark (DNK) 215.77 770.73 257.21% 
Finland (FIN) 287.15 486.91 69.57% 
Norway (NOR) 98.65 203.87 106.66% 
Sweden (SWE) 298.31 763.28 155.87% 
    

Austria (AUT) 196.17 611.00 211.46% 
Czech Republic (CZE)c 38.23 446.86 1,068.91% 
Germany (DEU) 559.33 1031.47 84.41% 
Hungary (HUN) 12.40 323.80 2,511.98% 
Slovak Republic (SVK) 25.85 466.76 1,705.45% 
    

Belgium (BEL) 273.04 632.37 131.60% 
France (FRA) 301.73 565.09 87.28% 
Netherlands (NLD) 86.34 561.85 550.75% 
United Kingdom (GBR) 113.51 231.99 104.38% 
    

Greece (GRC) 4.85 43.37 794.19% 
Italy (ITA) 328.01 615.61 87.68% 
Portugal (PRT) 43.76 232.24 430.74% 
Spain (ESP) 236.72 586.25 147.66% 
    

United States (USA) 198.63 584.65 194.34% 
Note: Robot intensity is measured as number of non-quality-adjusted robots per one hundred million hours 
worked. Number of robots are estimated with the perpetual inventory method assuming a depreciation rate of 
15%. 

 
Table 2 shows the average robot intensities of individual sub-sectors across the 18 countries in 
our sample. In 2004, robot intensity was highest in the “basic metals and fabricated metal 
products industry” (C24 + C25) and lowest in the “paper products industry + other 
manufacturing” (C16-C18 + C31-C33). This changed fundamentally by 2019. In 2019, the 
intensity is highest in the “automotive industry” (C29 + C30) followed by the “rubber and 
plastics industry” (C22 + C23). This change is due to the significant growth of the robot 
intensities in the automotive and plastic industry in the former transition countries in Central 
and Eastern Europe. Robot intensity is increasing in almost all sub-sectors. The highest growth 
by far is observed for the “paper products industry + other manufacturing” (C16-C18 + C31-
C33), the “rubber and plastics industry” (C22 + C23) and the “automotive industry” (C29 + 
C30). The only sub-sector with a decline is the “textile industry” (C13-C15). This reflects the 
off-shoring activities in these industries to countries outside our sample. Detailed descriptive 
statistics of other variables used in our analysis are available in the supplementary material in 
section C.  



9 

 

Table 2 
Robot intensities in manufacturing sub-sectors 

Sub-sector 
Robot intensity in 

2004 
Robot intensity in 

2019 
Growth rate of robot intensity 

2004–2019 
C10-C12 251.29 294.03 17.01% 
C13-C15 68.51 25.96 -62.11% 
C16-C18 + C31-C33 8.91 364.19 3,985.67% 
C19-C21 64.86 192.46 196.74% 
C22 + C23 27.92 1,015.39 3,536.65% 
C24 + C25 528.28 964.55 82.58% 
C26 + C27 474.12 796.74 68.05% 
C28 218.16 312.59 43.28% 
C29 + C30 48.60 1,286.50 2,546.90% 
Note: Robot intensity is measured as number of robots per one hundred million hours worked. Number of robots 
are estimated with the perpetual inventory method assuming a depreciation rate of 15%. 
C10-C12 … Manufacture of food products, beverages and tobacco, C13-C15 … Manufacture of textiles, wearing 
apparel, leather and related products, C16-C18 + C31-C33 … Manufacture of wood and paper products; printing 
+ Other manufacturing, repair and installation of machinery and equipment, C19-C21 … Manufacture of basic 
pharmaceutical products and preparations + Manufacture of coke and refined petroleum products + Manufacture 
of chemicals and chemical products, C22 + C23 … Manufacture of rubber and plastics products, and manufacture 
of other non-metallic mineral products, C24 + C25 … Manufacture of basic metals and fabricated metal products, 
except machinery and equipment, C26 + C27 … Manufacture of computer, electronic, optical products; and 
manufacture of electrical equipment, C28 … Manufacture of machinery and equipment not elsewhere classified, 
C29 + C30 … Manufacture of transport equipment. 

 
3. Methodology 

Similar to Lin and Du (2014) we combine index decomposition analysis (IDA) with production-
theoretical decomposition analysis (PDA). The procedure aims to overcome the weakness of 
PDA in potentially generating misleading conclusions regarding the effect of changes in 
industrial structure (output structure or output-mix) on changes in the outcome variable of 
interest (Lin and Du, 2014). 
 
In addition to the weakness of PDA discussed in Lin and Du (2014),5 we identify the following 
limitation of PDA regarding the estimation of output-mix effects: PDA relies on distance 
functions representing the distance of an input-output bundle from a production frontier. Most 
commonly, distance functions in PDA are estimated with Data Envelopment Analysis (DEA). 
DEA can handle multiple inputs and multiple outputs. However, the number of units under 
investigation (e.g., firms, sectors, regions, countries) relative to the number of input and output 
variables has to be sufficiently high to get reasonable estimates of a distance function (Dyson 
et al., 2001). Estimating output-mix effects in PDA requires to consider all relevant outputs as 
separate output variables in a DEA model (see, e.g., Wang, 2007, 2011, 2013). If the number 
of units under investigation is relatively small (e.g., few regions in a country exist; sectoral data 
is available only for a small number of countries) compared to the number of outputs (e.g., 

 
5 Lin and Du (2014) prove (cf. Appendix A in Lin and Du, 2014) that due to the characteristics of distance functions 

PDA can, under certain conditions, reveal that a change in industrial structure from high-energy intensity to low-
energy intensity industries contributes to an increase in energy intensity. As an example of such a counterintuitive 
result they mention the studies of Wang (2007, 2011). 
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outputs of many different sectors) the effect of changes in output structure on the change in the 
outcome variable of interest can hardly be estimated with PDA. Estimating the effect of changes 
in industry output structure with IDA is less restrictive and imposes fewer requirements on the 
data structure. 
 

 
Figure 2 The framework of combined index decomposition analysis (IDA) and production-theoretical 
decomposition analysis (PDA) for separating out causes of employment change in manufacturing 

 
Figure 2 visualizes our decomposition approach. In a first step we use IDA to decompose 
employment change into changes in aggregate output, change in structure and change in labour 
intensity. The IDA, in principle, can be carried out in two different perspectives. The first, 
which is the more natural and commonly applied one, decomposes employment change in the 
manufacturing industry into changes in manufacturing output, change in sectoral structure of 
the manufacturing industry, and change in labour intensity (see, e.g., Kopidou et al., 2016, for 
decomposing employment changes using this IDA approach). Accordingly, this kind of IDA 
can be performed separately for every country in the sample. Alternatively, the IDA can also 
decompose the change in employment of any sub-sector of manufacturing, aggregated over all 
countries considered, into change in the sub-sector’s output, aggregated over countries, change 
in country-structure (i.e., changing distribution of the sub-sector’s output over countries), and 
change in labour intensity. This kind of IDA is performed for every sub-sector in the sample. 
The labour intensity component of IDA is given a different meaning in the two alternative 
perspectives. While, in the first case, it is a composite index of labour intensity changes within 
each sub-sector of total manufacturing in a specific country, in the second case it is a composite 
index of labour intensity changes within each country regarding the respective manufacturing 
sub-sector. In a second step we use PDA to further decompose the sub-sectoral labour intensity 
changes to isolate the contribution of technical efficiency change, technological change, 
changes in the (non-robot) capital-labour ratio (capital deepening), and changes in the robot-
labour ratio (robot deepening) to employment change (see, e.g., Färe et al., 2018, for a 
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decomposition of employment changes using PDA).6 The procedure accounts for heterogeneity 
in production technologies across (sub-)sectors and time. We will show in the following how 
integrating the IDA and PDA part involves a weighting scheme to aggregate the sub-sector and 
country-specific labour intensity changes and how this varies according to the different 
perspectives of IDA. 
 
3.1. Index decomposition analysis 

Several different index methods for IDA have been proposed. Following Ang (2004, 2005) we 
apply the multiplicative version of the logarithmic mean Divisia index (LMDI) approach due 
to its fulfilment of three desirable properties (factor-reversal, time-reversal, and zero-value 
robust). Consider 𝑁 countries indexed with 𝑛 = 1, . . . , 𝑁. The manufacturing sector of each 
country consists of 𝑀 (𝑚 = 1, . . . , 𝑀) different sub-sectors. 𝑌௧

௡, 𝐿௧
௡ and 𝐼௧

௡ = 𝐿௧
௡/𝑌௧

௡ is output 
(measured in value added), employment (measured in hours worked), and labour intensity of 
the entire manufacturing sector in country 𝑛 at time 𝑡 (𝑡 = 1, . . . , 𝑇), respectively. Output, 
employment and labour intensity of sub-sector 𝑚 in country 𝑛 at time t is denoted as, 𝑌௠,௧

௡ , 𝐿௠,௧
௡ , 

𝐼௠,௧
௡ = 𝐿௠,௧

௡ /𝑌௠,௧
௡ , respectively. 𝑆௠,௧

௡ = 𝑌௠,௧
௡ /𝑌௧

௡ is the share of output of sub-sector 𝑚 in total 

manufacturing output of country 𝑛 at time 𝑡. Manufacturing employment in country 𝑛 can be 
expressed as follows: 
 

𝐿௧
௡ = ∑ 𝐿௠,௧

௡ெ
௠ୀଵ = 𝑌௧

௡ ∑
௒೘,೟

೙

௒೟
೙

ெ
௠ୀଵ

௅೘,೟
೙

௒೘,೟
೙ = 𝑌௧

௡ ∑ 𝑆௠,௧
௡ெ

௠ୀଵ 𝐼௠,௧
௡ . (1) 

 
Following Ang (2005) the multiplicative form of the change in manufacturing employment 
from the base year 𝑏 to current year 𝑐 for country 𝑛 is given by: 
 

𝛥𝐿⬚
௡ =

௅೎
೙

௅್
೙ = 𝑒𝑥𝑝 ൬∑

ோ൫௅೘,೎
೙ ,௅೘,್

೙ ൯

ோ൫௅೎
೙,௅್

೙൯
𝑙𝑛 ൬

௒೎
೙

௒್೙൰ெ
௠ୀଵ ൰ × 𝑒𝑥𝑝 ൬∑

ோ(௅೘,೎
೙ ,௅೘,್

೙ )

ோ(௅೎
೙,௅್

೙)
𝑙𝑛 ൬

ௌ೘,೎
೙

ௌ೘,್
೙ ൰ெ

௠ୀଵ ൰ ×

𝑒𝑥𝑝 ൬∑
ோ(௅೘,೎

೙ ,௅೘,್
೙ )

ோ(௅೎
೙,௅್

೙)
𝑙𝑛 ൬

ூ೘,೎
೙

ூ೘,್
೙ ൰ெ

௠ୀଵ ൰ = 𝛥𝑌⬚
௡ × 𝛥𝑆⬚

௡ × 𝛥𝐼⬚
௡ , (2) 

 

where 
ோ(௅೘,೎

೙ ,௅೘,್
೙ )

ோ(௅೎
೙,௅್

೙)
=

(௅೘,೎
೙ ି௅೘,್

೙ )/(௟௡(௅೘,೎
೙ )ି௟௡(௅೘,್

೙ ))

(௅೎
೙ି௅್

೙)/(௟௡(௅೎
೙)ି௟௡(௅್

೙))
 are the weights for each sub-sector 𝑚. 

 
Equation (2) shows that the change in manufacturing employment in country 𝑛 can be 
decomposed into three components: i) 𝛥𝑌⬚

௡ captures the effect of overall manufacturing output 

change (output effect), ii) 𝛥𝑆⬚
௡  represents the effect of industry structure change (output mix 

effect), and iii) 𝛥𝐼⬚
௡  describes the effect of labour intensity change which is a composite index 

of sub-sectoral labour intensity changes (intensity or productivity effect). 
 

 
6 While PDA has overwhelmingly used to study changes at the country-level with macroeconomic data (e.g., 

Kumar and Russell (2002), Henderson and Russell (2005), Badunenko and Romero-Avila (2013)), Walheer 
(2020) suggests a purely PDA-based approach to investigate contributions of sectors to country-level changes in 
the variable of interest. Contrary to IDA, the weights for aggregating the sector contributions are determined 
endogenously by DEA and are different for each component of the decomposition. 
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3.2. Production-theoretical decomposition analysis 

To further investigate the drivers of labour intensity change in manufacturing we use PDA to 
divide labour intensity change between base year 𝑏 and current year 𝑐 in each sub-sector 𝑚 of 
country 𝑛 into i) technical efficiency change (𝐸𝐹𝐹௠

௡), ii) technological change (𝑇𝐸𝐶𝐻௠
௡ ), iii) 

human capital accumulation (𝐻𝐴𝐶𝐶௠
௡ ), iv) changes in the (non-robot) capital-labour ratio 

(𝐾𝐴𝐶𝐶௠
௡ ), and v) changes in the robot-labour ratio (𝑅𝐾𝐴𝐶𝐶௠

௡ ): 
 
ூ೘,೎

೙

ூ೘,್
೙ ≡ 𝐸𝐹𝐹௠

௡ × 𝑇𝐸𝐶𝐻௠
௡ × 𝐻𝐴𝐶𝐶௠

௡ × 𝐾𝐴𝐶𝐶௠
௡ × 𝑅𝐾𝐴𝐶𝐶௠

௡ . (3) 

 
This decomposition requires an estimation of a separate cross-country production frontier for 
each individual sub-sector and efficiency levels of individual sub-sectors in individual countries 
(distances from the respective sub-sector frontier) using the nonparametric Data Envelopment 
Analysis (DEA) approach. The basic idea is to envelop the data in the smallest convex cone, 
and the upper boundary of this set then represents the “best practice” production frontier. 
 
In addition to the two previously mentioned variables, employment 𝐿௠,௧

௡  (i.e., an input), and 

output 𝑌௠,௧
௡ , our technology considers human capital 𝐻௠,௧

௡ , (non-robot) capital 𝐾௠,௧
௡ , and robot 

capital 𝑅௠,௧
௡  as input variables. Following most of the macroeconomics literature, we assume 

that human capital, denoted as 𝐻௠,௧
௡ , enters the technology as a multiplicative augmentation of 

physical labour, i.e., 𝐿෠௠,௧
௡ = 𝐿௠,௧

௡ 𝐻௠,௧
௡ , which is the amount of labour input measured in 

efficiency units. Thus, ⟨𝑌௠,௧
௡ , 𝐿෠௠,௧

௡ , 𝐾௠,௧
௡ , 𝑅௠,௧

௡ ⟩ represents our set of 𝑁 × 𝑀 × 𝑇 observations on 

these four variables. 
 
Constant returns to scale and labour augmentation of human capital allow us to construct the 
production frontiers and efficiency indices. Utilizing the “sequential production set” 
formulation of Diewert (1980) to preclude implosion of the frontier over time, we construct the 
convex, free-disposal, constant-returns-to-scale technology for sub-sector 𝑚 in year 𝑡, using all 
the data of sub-sector 𝑚 up to that point in time, as 
 

ϒ௠,௧ =

⎩
⎨

⎧
⟨𝑌௠,௧

௡ , 𝐿෠௠,௧
௡ , 𝐾௠,௧

௡ , 𝑅௠,௧
௡ ⟩ ∈ ℝା

ସ |𝑌௠ ≤ ∑ ∑ 𝜆௠,ఛ
௡

௡ఛஸ௧ 𝑌௠,ఛ
௡ , 𝐿෠௠ ≥ ∑ ∑ 𝜆௠,ఛ

௡
௡ 𝐿෠௠,ఛ

௡
ఛஸ௧ ,

𝐾௠ ≥ ∑ ∑ 𝜆௠,ఛ
௡

௡ 𝐾௠,ఛ
௡

ఛஸ௧ , 𝑅௠ ≥ ∑ ∑ 𝜆௠,ఛ
௡

௡ 𝑅௠,ఛ
௡

ఛஸ௧

𝜆௠,ఛ
௡ ≥ 0∀𝑛, 𝑚, 𝜏 ⎭

⎬

⎫

, (4) 

 
where 𝜆௠,ఛ

௡  are the intensity variables. 𝜏 represents all years from the beginning of the 

observation period up to time t. Like Los and Timmer (2005) we limit the decomposition 
analysis to the time span that starts four years after the first observations of robot stock data are 
available to us. Hence, the first year of the analysis is 2004, for which we estimate the frontier 
based on the observations for the period 2000-2004. This makes it less likely that frontier 
techniques observed for the first year of the analysis are dominated by unobserved combinations 
in the past, and avoids that part of what would be interpreted as frontier movements is confused 
with ‘assimilation of knowledge’, i.e., efficiency change (Los and Timmer, 2005). 
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The Farrell (1957) output-based efficiency index for sub-sector 𝑚 in country 𝑛 at time 𝑡 is 
defined by 
 

𝑒௠,௧
௡ ൫𝑌௠,௧

௡ , 𝐿෠௠,௧
௡ , 𝐾௠,௧

௡ , 𝑅௠,௧
௡ ൯ = 𝑚𝑖𝑛൛𝜃௠

௡ |⟨𝑌௠,௧
௡ /𝜃௠

௡ , 𝐿෠௠,௧
௡ , 𝐾௠,௧

௡ , 𝑅௠,௧
௡ ⟩ ∈ ϒ௠,௧ൟ. (5) 

 
This index is the inverse of the maximal proportional amount that output 𝑌௠,௧

௡  can be expanded 

while remaining technologically feasible, given the technology and input quantities. It is less 
than or equal to unity and takes the value of unity if and only if the 𝑚𝑛𝑡 observation is on the 
period-𝑡 production frontier of sub-sector 𝑚. In our special case of a scalar output, the output-
based efficiency index equals the ratio of actual to potential output, evaluated at the actual input 
quantities. 
 
The decomposition is carried out according to the following two equations (6) and (7), which 
are obtained by forming the reciprocal of equations (7) and (8) in Eder et al. (2023), 
respectively: 
 
ூ೘,೎

೙

ூ೘,್
೙ =

௘೘,್
೙

௘೘,೎
೙ ×

௬ത೘,್
೙ (௞෠ ೘,೎

೙ ,௥̂೘,೎
೙ )

௬ത೘,೎
೙ (௞෠ ೘,೎

೙ ,௥̂೘,೎
೙ )

× ൤
௬ത೘,್

೙ (௞෨ ೘,೎
೙ ,௥̃೘,೎

೙ )

௬ത೘,್
೙ (௞෠ ೘,೎

೙ ,௥̂೘,೎
೙ )

⋅
ு೘,್

೙

ு೘,೎
೙ ൨ ×

௬ത೘,್
೙ (௞෠ ೘,್

೙ ,௥̂೘,್
೙ )

௬ത೘,್
೙ (௞෨ ೘,೎

೙ ,௥̂೘,್
೙ )

×
௬ത೘,್

೙ (௞෨ ೘,೎
೙ ,௥̂೘,್

೙ )

௬ത೘,್
೙ (௞෨ ೘,೎

೙ ,௥̃೘,೎
೙ )

≡

𝐸𝐹𝐹௠ 
௡ × 𝑇𝐸𝐶𝐻௠

௡,௖ × 𝐻𝐴𝐶𝐶௠
௡,௕ × 𝐾𝐴𝐶𝐶௠

௡,௕ × 𝑅𝐾𝐴𝐶𝐶௠
௡,௕ (6) 

 
and 
 
ூ೘,೎

೙

ூ೘,್
೙ =

௘೘,್
೙

௘೘,೎
೙ ×

௬ത೘,್
೙ (௞෠ ೘,್

೙ ,௥̂೘,್
೙ )

௬ത೘,೎
೙ (௞෠ ೘,್

೙ ,௥̂೘,್
೙ )

× ൤
௬ത೘,೎

೙ ൫௞෠ ೘,್
೙ ,௥̂೘,್

೙ ൯

௬ത೘,೎
೙ ൫௞෨ ೘,್

೙ ,௥̃೘,್
೙ ൯

⋅
ு೘,್

೙

ு೘,೎
೙ ൨ ×

௬ത೘,೎
೙ ൫௞෨ ೘,್

೙ ,௥̂೘,೎
೙ ൯

௬ത೘,೎
೙ ൫௞෠ ೘,೎

೙ ,௥̂೘,೎
೙ ൯

×
௬ത೘,೎

೙ ൫௞෨ ೘,್
೙ ,௥̃೘,್

೙ ൯

௬ത೘,೎
೙ ൫௞෨ ೘,್

೙ ,௥̂೘,೎
೙ ൯

≡ 𝐸𝐹𝐹௠ 
௡ ×

𝑇𝐸𝐶𝐻௠
௡,௕ × 𝐻𝐴𝐶𝐶௠

௡,௖ × 𝐾𝐴𝐶𝐶௠
௡,௖ × 𝑅𝐾𝐴𝐶𝐶௠

௡,௖, (7) 
 
where 𝑒௠,௕

௡  and 𝑒௠,௖
௡  are values of the efficiency indexes of sub-sector 𝑚 in country 𝑛 in the 

years 𝑏 and 𝑐, respectiveley, as calculated in equation. (5). 𝑦ത௠,௕
௡ (𝑘෠௠,௕

௡ , 𝑟̂௠,௕
௡ ) = 𝑌௠,௕

௡ 𝑒௠,௕
௡ 𝐿෠௠,௕

௡⁄  

and 𝑦ത௠,௖
௡ ൫𝑘෠௠,௖

௡ , 𝑟̂௠,௖
௡ ൯ = 𝑌௠,௖

௡ 𝑒௠,௖
௡ 𝐿෠௠,௖

௡⁄  are potential output values per efficiency unit of labour 

in periods 𝑏 and 𝑐, respectively. 𝑘෠௠,௕
௡ = 𝐾௠,௕

௡ /𝐿෠௠,௕
௡ , 𝑘෠௠,௖

௡ = 𝐾௠,௖
௡ /𝐿෠௠,௖

௡  and 𝑟̂௠,௕
௡ = 𝑅௠,௕

௡ /𝐿෠௠,௕
௡ , 

𝑟̂௠,௖
௡ = 𝑅௠,௖

௡ /𝐿෠௠,௖
௡  denote the ratios of non-robot capital and robot capital to effective labour 

𝐿෠௠,௕
௡ , 𝐿෠௠,௖

௡ , respectively, where 𝐿෠௠,௕
௡ = 𝐿௠,௕

௡ 𝐻௠,௕
௡  and 𝐿෠௠,௖

௡ = 𝐿௠,௖
௡ 𝐻௠,௖

௡  are the amount of labour 

input measured in efficiency units in year 𝑏 and 𝑐, respectively. The ratio of (non-robot) 
physical capital to labour measured in efficiency units, and the ratio of robot capital to labour 
measured in efficiency units under the counterfactual assumption that human capital has not 

changed from its base period is given by 𝑘෨௠,௖
௡ = 𝐾௠,௖

௡ /𝐿௠,௖
௡ 𝐻௠,௕

௡  and 𝑟̃௠,௖
௡ = 𝑅௠,௖

௡ /𝐿௠,௖
௡ 𝐻௠,௕

௡ , 

respectively. The ratio of (non-robot) physical capital to labour measured in efficiency units 
and the ratio of robot capital to labour measured in efficiency units under the counterfactual 

assumption that human capital is equal to its current year period is 𝑘෨௠,௕
௡ = 𝐾௠,௕

௡ /𝐿௠,௕
௡ 𝐻௠,௖

௡  and 

𝑟̃௠,௕
௡ = 𝑅௠,௕

௡ /𝐿௠,௕
௡ 𝐻௠,௖

௡ . Then, 𝑦ത௠,௕
௡ (𝑘෠௠,௖

௡ , 𝑟̂௠,௖
௡ ), 𝑦ത௠,௕

௡ (𝑘෨௠,௖
௡ , 𝑟̂௠,௕

௡ ), 𝑦ത௠,௕
௡ (𝑘෨௠,௖

௡ , 𝑟̃௠,௖
௡ ) are the 

potential outputs per efficiency unit of labour at (𝑘෠௠,௖
௡ , 𝑟̂௠,௖

௡ ), (𝑘෨௠,௖
௡ , 𝑟̂௠,௕

௡ ), and (𝑘෨௠,௖
௡ , 𝑟̃௠,௖

௡ ) 

evaluated against the base-period technology. 𝑦ത௠,௖
௡ (𝑘෠௠,௕

௡ , 𝑟̂௠,௕
௡ ), 𝑦ത௠,௖

௡ (𝑘෨௠,௕
௡ , 𝑟̂௠,௖

௡ ), 
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𝑦ത௠,௖
௡ (𝑘෨௠,௕

௡ , 𝑟̃௠,௕
௡ ) are the potential outputs per efficiency units of labour at (𝑘෠௠,௕

௡ , 𝑟̂௠,௕
௡ ), 

(𝑘෨௠,௕
௡ , 𝑟̂௠,௖

௡ ), and (𝑘෨௠,௕
௡ , 𝑟̃௠,௕

௡ ) using the current-period technology as the reference-technology. 

 
For each component of the decomposition, only the variable of interest is different between the 

denominator and the numerator of each component. For instance, for 𝑅𝐾𝐴𝐶𝐶௠
௡,௕ only the robot-

labour ratio changed (from 𝑟̂௠,௕
௡ = 𝑅௠,௕

௡ /𝐿௠,௕
௡ 𝐻௠,௕

௡  to 𝑟̃௠,௖
௡ = 𝑅௠,௖

௡ /𝐿௠,௖
௡ 𝐻௠,௕

௡ ) while all the other 

variables are held constant. Hence, 𝑅𝐾𝐴𝐶𝐶 indicates the contribution of the change in the robot-
labour ratio to labour intensity change. The same reasoning applies for the other components. 
 
While the decomposition in eq. (6) measures the contribution of technological change to labour 
intensity change by the shift in the frontier in the output direction at the current-period capital 
to efficiency-labour ratio, and the current-period robot to efficiency-labour ratio, the 
decomposition in equation. (7) measures the contribution of  technological change to labour 
intensity change by the shift in the frontier in the output direction at the base-period capital to 
efficiency-labour ratio, and the base-period robot to efficiency-labour ratio. Similarly, equation. 
(6) measures the effect of (non-robot) physical and robot capital deepening, as well as human 
capital accumulation along the base-period frontier, whereas equation. (7) measures the effect 
of (non-robot) physical and robot deepening, as well as human capital accumulation along the 
current-period frontier. 
 
These two decompositions do not yield the same results, i.e., the decomposition is path 
dependent. In fact, the two decompositions are only equal if technological change is Hicks-
neutral. Though, one advantage of our approach is that it allows for non-neutral technological 
change. To overcome the path dependence of the decomposition we follow Kumar and Russel 
(2002), Henderson and Russell (2005) and others, and adopt the “Fisher Ideal” decomposition 
introduced by Caves et al. (1982) and Färe et al. (1994). This is based on the geometric averages 
of the two measures of the effects of technological change, human capital accumulation, (non-
robot) physical capital deepening, and robot capital deepening: 
 
ூ೘,೎

೙

ூ೘,್
೙ = 𝐸𝐹𝐹௠ 

௡ × (𝑇𝐸𝐶𝐻௠
௡,௕ ⋅ 𝑇𝐸𝐶𝐻௠

௡,௖)ଵ/ଶ × (𝐻𝐴𝐶𝐶௠
௡,௕ ⋅ 𝐻𝐴𝐶𝐶௠

௡,௖)ଵ/ଶ × (𝐾𝐴𝐶𝐶௠
௡,௕ ⋅

𝐾𝐴𝐶𝐶௠
௡,௖)ଵ/ଶ × (𝑅𝐾𝐴𝐶𝐶௠

௡,௕ ⋅ 𝑅𝐾𝐴𝐶𝐶௠
௡,௖)ଵ/ଶ ≡ 𝐸𝐹𝐹௠ 

௡ × 𝑇𝐸𝐶𝐻௠
௡ × 𝐻𝐴𝐶𝐶௠

௡ × 𝐾𝐴𝐶𝐶௠
௡ ×

𝑅𝐾𝐴𝐶𝐶௠
௡ . (8) 

 
3.3. Combining index decomposition analysis and production-theoretical 
decomposition analysis 

The following formula, which is obtained by substituting Equation (8) into Equation (2), 
connects the IDA to the PDA and gives the final decomposition: 
 

𝛥𝐿⬚
௡ =

𝐿௖
௡

𝐿௕
௡ = 𝑒𝑥𝑝 ൭ ෍

𝑅(𝐿௠,௖
௡ , 𝐿௠,௕

௡ )

𝑅(𝐿௖
௡, 𝐿௕

௡)
𝑙𝑛 ቆ

𝑌௖
௡

𝑌௕
௡ቇ

ெ

௠ୀଵ

൱ 
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× 𝑒𝑥𝑝 ൭ ෍
𝑅(𝐿௠,௖

௡ , 𝐿௠,௕
௡ )

𝑅(𝐿௖
௡, 𝐿௕

௡)
𝑙𝑛 ቆ

𝑆௠,௖
௡

𝑆௠,௕
௡ ቇ

ெ

௠ୀଵ

൱ 

× 𝑒𝑥𝑝 ൭ ෍
𝑅(𝐿௠,௖

௡ , 𝐿௠,௕
௡ )

𝑅(𝐿௖
௡, 𝐿௕

௡)
𝑙𝑛(𝐸𝐹𝐹௠

௡)

ெ

௠ୀଵ

൱ 

× 𝑒𝑥𝑝 ൭ ෍
𝑅(𝐿௠,௖

௡ , 𝐿௠,௕
௡ )

𝑅(𝐿௖
௡, 𝐿௕

௡)
𝑙𝑛(𝑇𝐸𝐶𝐻௠

௡ )

ெ

௠ୀଵ

൱ 

× 𝑒𝑥𝑝 ൭ ෍
𝑅(𝐿௠,௖

௡ , 𝐿௠,௕
௡ )

𝑅(𝐿௖
௡, 𝐿௕

௡)
𝑙𝑛(𝐻𝐴𝐶𝐶௠

௡ )

ெ

௠ୀଵ

൱ 

× 𝑒𝑥𝑝 ൭ ෍
𝑅(𝐿௠,௖

௡ , 𝐿௠,௕
௡ )

𝑅(𝐿௖
௡, 𝐿௕

௡)
𝑙𝑛(𝐾𝐴𝐶𝐶௠

௡ )

ெ

௠ୀଵ

൱ 

× 𝑒𝑥𝑝 ൭ ෍
𝑅(𝐿௠,௖

௡ , 𝐿௠,௕
௡ )

𝑅(𝐿௖
௡, 𝐿௕

௡)
𝑙𝑛(𝑅𝐾𝐴𝐶𝐶௠

௡ )

ெ

௠ୀଵ

൱ 

= 𝛥𝑌⬚
௡ × 𝛥𝑆⬚

௡ × 𝐸𝐹𝐹⬚
௡ × 𝑇𝐸𝐶𝐻⬚

௡ × 𝐻𝐴𝐶𝐶⬚
௡ × 𝐾𝐴𝐶𝐶⬚

௡ × 𝑅𝐾𝐴𝐶𝐶⬚
௡ , (9) 

 
where 𝛥𝑆⬚

௡  gives the contribution of changes in output/sectoral-mix to employment change of 
a specific country. 
 
Equation (9) separate out approximate causes of employment change in total manufacturing for 
each country under consideration. Note that each sub-sector 𝑚 in a common international 
market consists of the sum of the respective sub-sectors over the 𝑛 countries considered. For 
instance, the sub-sector of the automotive industry on a common international market consists 
of the automotive industries of the individual countries under consideration. The total 
employment of the international sub-sector is the sum of the employment in the sub-sectors of 

the individual countries, i.e., 𝐿௠,௧
⬚ = ∑ 𝐿௠,௧

௡ே
௡ୀଵ  and its total output is the sum of the outputs of 

the sub-sectors in the individual countries, i.e., 𝑌௠,௧
⬚ = ∑ 𝑌௠,௧

௡ே
௡ୀଵ . Employment in sub-sector 𝑚 

across all countries can be expressed as follows: 
 

𝐿௠,௧
⬚ = ∑ 𝐿௠,௧

௡ே
௡ୀଵ = 𝑌௠,௧

⬚ ∑
௒೘,೟

೙

௒೘,೟
⬚

ே
௡ୀଵ

௅೘,೟
೙

௒೘,೟
೙ = 𝑌௠,௧

⬚ ∑ σ௠,௧
௡ே

௡ୀଵ 𝐼௠,௧
௡ , (10) 

 

where σ௠,௧
௡ = 𝑌௠,௧

௡ /𝑌௠,௧
⬚  is the share of output of country 𝑛 in total sub-sector output of all 𝑁 

countries together at time 𝑡. 
 
To estimate the approximate causes of employment change from base period 𝑏 to current period 
𝑐 for each sub-sector 𝑚 across all 𝑛 countries considered we construct the following 
decomposition: 
 

𝛥𝐿௠
⬚ =

𝐿௠,௖
⬚

𝐿௠,௕
⬚

= 𝑒𝑥𝑝 ൭෍
𝑅(𝐿௠,௖

௡ , 𝐿௠,௕
௡ )

𝑅(𝐿௠,௖
⬚ , 𝐿௠,௕

⬚ )
𝑙𝑛 ቆ

𝑌௠,௖
⬚

𝑌௠,௕
⬚

ቇ

ே

௡ୀଵ

൱ 
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× 𝑒𝑥𝑝 ൭෍
𝑅(𝐿௠,௖

௡ , 𝐿௠,௕
௡ )

𝑅(𝐿௠,௖
⬚ , 𝐿௠,௕

⬚ )
𝑙𝑛 ቆ

σ௠,௖
௡

σ௠,௕
௡ ቇ

ே

௡ୀଵ

൱ 

× 𝑒𝑥𝑝 ൭෍
𝑅(𝐿௠,௖

௡ , 𝐿௠,௕
௡ )

𝑅(𝐿௠,௖
⬚ , 𝐿௠,௕

⬚ )
𝑙𝑛(𝐸𝐹𝐹௠

௡)

ே

௡ୀଵ

൱ 

× 𝑒𝑥𝑝 ൭෍
𝑅(𝐿௠,௖

௡ , 𝐿௠,௕
௡ )

𝑅(𝐿௠,௖
⬚ , 𝐿௠,௕

⬚ )
𝑙𝑛(𝑇𝐸𝐶𝐻௠

௡ )

ே

௡ୀଵ

൱ 

× 𝑒𝑥𝑝 ൭෍
𝑅(𝐿௠,௖

௡ , 𝐿௠,௕
௡ )

𝑅(𝐿௠,௖
⬚ , 𝐿௠,௕

⬚ )
𝑙𝑛(𝐻𝐴𝐶𝐶௠

௡ )

ே

௡ୀଵ

൱ 

× 𝑒𝑥𝑝 ൭෍
𝑅(𝐿௠,௖

௡ , 𝐿௠,௕
௡ )

𝑅(𝐿௠,௖
⬚ , 𝐿௠,௕

⬚ )
𝑙𝑛(𝐾𝐴𝐶𝐶௠

௡ )

ே

௡ୀଵ

൱ 

× 𝑒𝑥𝑝 ൭෍
𝑅(𝐿௠,௖

௡ , 𝐿௠,௕
௡ )

𝑅(𝐿௠,௖
⬚ , 𝐿௠,௕

⬚ )
𝑙𝑛(𝑅𝐾𝐴𝐶𝐶௠

௡ )

ே

௡ୀଵ

൱ 

= 𝛥𝑌௠
⬚ × 𝛥𝑆௠

⬚ × 𝐸𝐹𝐹௠
⬚ × 𝑇𝐸𝐶𝐻௠

⬚ × 𝐻𝐴𝐶𝐶௠
⬚ × 𝐾𝐴𝐶𝐶௠

⬚ × 𝑅𝐾𝐴𝐶𝐶௠
⬚, (11) 

 

where 
ோ(௅೘,೎

೙ ,௅೘,್
೙ )

ோ(௅೘,೎
⬚ ,௅೘,್

⬚ )
=

(௅೘,೎
೙ ି௅೘,್

೙ )/(௟௡(௅೘,೎
೙ )ି௟௡(௅೘,್

೙ ))

(௅೘,೎
⬚ ି௅೘,್

⬚ )/(௟௡(௅೘,೎
⬚ )ି௟௡(௅೘,್

⬚ ))
 are the weights for each country component 𝑛, 

and 𝑆௠
⬚ describes the contribution of changes in country-mix to employment change in a specific 

sub-sector. 
 
4. Results 

Based on the novel combination of index decomposition analysis (IDA) and production 
theoretical decomposition analysis (PDA) presented in the previous section we found new 
insides into the relationship between robotization and employment in manufacturing sectors. 
Tables 3, 4 and 5 report the results on the approximate causes of employment change by 
country, country groups, and manufacturing sub-sectors, respectively. Note that we report 
percentage changes of the decomposition indices in equation. (9) and equation. (11). Hence, 
summing individual components does not give the overall employment change. Tables D1 to 
D3 in section D of the supplementary material provide the results for the multiplicative 
decomposition indexes before conversion to percentage changes. The second column of Table 
3, 4 and 5 reports the country-specific, country-group specific and sub-sector-specific changes 
in employment for the period 2004 to 2019, respectively. Columns three, four and five of Table 
3, 4 and 5 present the components of employment change resulting from IDA (i.e., output, 
structural, and labour intensity change). Columns six to ten of Table 3, 4 and 5 show the 
components of labour intensity change stemming from PDA (i.e., efficiency, technological, 
human capital, capital intensity, and robot intensity change). Or, to put it another way, columns 
three and four, together with columns six to ten, are the components of changes in employment 
shown in equation. (9) and equation. (11). 
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Table 3 
Employment change (in percent) for total manufacturing by country and percentage change of decomposition indexes, 2004–2019 

Country 
Employment 

Change 
(𝛥𝑌⬚

௡–1) 
×100 

(𝛥𝑆⬚
௡ –1) 
×100 

(𝛥𝐼⬚
௡ –1) 
×100 

(𝐸𝐹𝐹⬚
௡–1) × 

100 
(𝑇𝐸𝐶𝐻⬚

௡ –1) 
× 100 

(𝐻𝐴𝐶𝐶⬚
௡ –1) 

× 100 
(𝐾𝐴𝐶𝐶⬚

௡ –1) 
× 100 

(𝑅𝐾𝐴𝐶𝐶⬚
௡ –1) 

× 100 
Denmark (DNK) –20.28 39.45 –19.92 –28.61 2.01 –13.60 –5.77 –4.79 –9.71 
Finland (FIN) –20.84 1.13 –3.06 –19.26 6.96 –16.20 –6.31 –0.69 –3.19 
Norway (NOR) –6.39 11.90 –0.24 –16.14 4.36 –10.92 –5.21 0.31 –5.14 
Sweden (SWE) –17.73 11.16 –0.54 –25.58 –0.31 –11.74 –4.28 –5.34 –6.65 
          
Austria (AUT) –0.46 44.78 –3.75 –28.57 –1.65 –11.31 –5.19 –4.08 –9.95 
Czech Republic (CZE) 5.84 119.94 –0.98 –51.41 –13.00 –9.48 –0.87 –21.38 –20.83 
Germany (DEU) 1.24 30.81 –2.95 –20.26 –6.52 –12.20 –0.94 –0.78 –1.15 
Hungary (HUN) –5.38 26.48 6.97 –30.06 54.30 –7.52 –5.29 –22.42 –33.30 
Slovak Republic (SVK) 4.83 162.05 –5.65 –57.60 –14.31 –13.46 –7.06 –9.85 –31.76 
          
Belgium (BEL) –16.88 8.76 –7.80 –17.11 1.39 –11.10 –2.76 0.48 –5.88 
France (FRA) –17.71 8.82 –2.80 –22.21 2.63 –12.32 –6.49 –4.47 –3.22 
Netherlands (NLD) –8.09 24.45 –5.93 –21.49 10.21 –10.77 –4.90 0.55 –16.51 
United Kingdom (GBR) –16.32 18.55 1.14 –30.21 –14.77 –10.25 –2.40 –2.56 –4.07 
          
Greece (GRC) –24.09 –31.10 –12.33 25.66 56.79 –6.05 –3.56 –7.10 –4.78 
Italy (ITA) –18.48 –0.13 –0.16 –18.24 12.72 –14.19 –7.64 –3.80 –4.87 
Portugal (PRT) –17.15 10.88 –2.45 –23.40 42.93 –13.96 –8.05 –10.64 –24.19 
Spain (ESP) –29.80 –5.07 –2.62 –24.07 1.41 –12.81 –7.95 –2.87 –3.95 
          
United States (USA) –5.37 21.70 0.21 –22.41 5.94 –13.44 –2.63 –3.32 –10.11 
Arithmetic Mean –11.84 28.03 –3.49 –23.94 8.39 –11.74 –4.85 –5.71 –11.07 
Note: 𝛥𝑌⬚

௡ … value added change, 𝛥𝑆⬚
௡  … structural change, 𝛥𝐼⬚

௡  … labour intensity change (= 1 / labour productivity change), 𝐸𝐹𝐹⬚
௡  … efficiency change, 𝑇𝐸𝐶𝐻⬚

௡  … 
technical change, 𝐻𝐴𝐶𝐶⬚

௡  … human capital accumulation, 𝐾𝐴𝐶𝐶⬚
௡ … capital intensity change, 𝑅𝐾𝐴𝐶𝐶⬚

௡  … robot intensity change. 
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According to Table 3, total manufacturing employment fell in most countries over the 2004–
2019 period. The Czech Republic, Slovak Republic, and Germany were the few exceptions. On 
average, employment decreased by 11.84%. Everywhere, except in Greece, we see a labour 
intensity decline (i.e., labour productivity increase), which dampened employment dynamics. 
In all countries except for Greece, Spain and Italy, we observe an increase in output (i.e., value 
added), which partially offset or, in a few countries, (Czech Republic, Slovak Republic and 
Germany) even overcompensate the decline in employment caused by the reduction in labour 
intensity. Structural change made an almost negligible contribution in all countries except for 
Denmark, Belgium and Greece. The mostly negative sign of the structural change component 
indicates a shift within the entire manufacturing sector towards less labour-intensive sub-
sectors. On average, the contribution of output change, labour intensity change and structural 
change to employment change is 28%, –24% and –3.5%, respectively. 
 
The contribution of the increased use of robots (robot capital deepening) to labour intensity and 
subsequently employment change is negative for every country indicating a clear labour 
replacing effect of industrial robots in total manufacturing. The results show that robot 
penetration dampened employment growth. However, robot penetration is the most important 
driver of labour intensity change in manufacturing in only a few countries (i.e., the Netherlands, 
and Slovak Republic). The component with the greatest contribution to reducing labour 
intensity in many countries is technological change. Its contribution is negative in all countries, 
as is that of robot deepening. Change in efficiency, human capital accumulation and non-robot 
capital deepening contribute comparatively little to changes in labour intensities. On average, 
efficiency change contributed 8.39%, technical change –11.74%, human capital accumulation 
–4.85%, non-robot capital deepening –5.71% and robot capital deepening –11.07% to the 
change in labour intensity. 
 
Table 4 shows that Central Europe was the only region in Europe with growing employment in 
the manufacturing sector. The mean increase was 1.22%. Southern Europe, on the other hand, 
was the region with the weakest employment dynamics. Employment there fell by 22.38%, on 
average. Only in Central Europe output change induced employment growth could exceed the 
employment decline caused by a decreasing labour intensity. In all other regions, output growth 
could not compensate for the employment reduction due to a decline in labour intensity. In 
Southern Europe, manufacturing output even fell. The increasing penetration of robots 
dampened the employment development in all regions considered. In Central Europe it was the 
most important factor of labour intensity change. In the four other regions examined, 
technological progress reduced employment more than robot use. The change in the sectoral 
structure within the manufacturing sector as well as the change in human capital and non-robot 
capital deepening contributed comparably little to the employment development. The 
contribution of efficiency change was also relatively small in all regions except for Southern 
Europe. 
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Table 4 
Mean employment change (in percent) for total manufacturing by country group and mean percentage change of decomposition indexes, 2004–2019 

Country Group 
Employment 

Change 
(𝛥𝑌⬚

௡–1) 
×100 

(𝛥𝑆⬚
௡ –1) 
×100 

(𝛥𝐼⬚
௡ –1) 
×100 

(𝐸𝐹𝐹⬚
௡–1) 

× 100 
(𝑇𝐸𝐶𝐻⬚

௡ –1) 
× 100 

(𝐻𝐴𝐶𝐶⬚
௡ –1) 

× 100 
(𝐾𝐴𝐶𝐶⬚

௡ –1) 
× 100 

(𝑅𝐾𝐴𝐶𝐶⬚
௡ –1) 

× 100 

Northern Europe* –16.31 15.91 –5.94 –22.40 3.26 –13.11 –5.39 –2.63 –6.17 
Central Europe+ 1.22 76.81 –1.27 –37.58 3.76 –10.79 –3.87 –11.70 –19.40 
Western Europe† –14.75 15.15 –3.85 –22.76 –0.14 –11.11 –4.14 –1.50 –7.42 
Southern Europe§ –22.38 –6.35 –4.39 –10.01 28.46 –11.75 –6.80 –6.10 –9.45 
United States –5.37 21.70 0.21 –22.41 5.94 –13.44 –2.63 –3.32 –10.11 
All countries –11.84 28.03 –3.49 –23.94 8.39 –11.74 –4.85 –5.71 –11.07 
Note: 
* Denmark, Finland, Norway, Sweden. 
+ Austria, Czech Republic, Germany, Hungary, Slovak Republic. 
† Belgium, France, Great Britain, Netherlands. 
§ Greece, Italy, Spain, Portugal. 
𝛥𝑌⬚

௡ … output change, 𝛥𝑆⬚
௡  … structural change, 𝛥𝐼⬚

௡  … labour intensity change (= 1 / labour productivity change), 𝐸𝐹𝐹⬚
௡  … efficiency change, 𝑇𝐸𝐶𝐻⬚

௡  … technical 
change, 𝐻𝐴𝐶𝐶⬚

௡  … human capital accumulation, 𝐾𝐴𝐶𝐶⬚
௡  … capital intensity change, 𝑅𝐾𝐴𝐶𝐶⬚

௡  … robot intensity change. 
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Table 5 
Employment change (in percent) for manufacturing sub-sectors and percentage change of decomposition indexes, 2004–2019 

Sub-sector 
Employment 

Change 
(𝛥𝑌௠

⬚–1)  
× 100 

(𝛥𝑆௠
⬚–1)  

× 100 
(𝛥𝐼௠

⬚–1)  
× 100 

(𝐸𝐹𝐹௠
⬚–1)  

× 100 
(𝑇𝐸𝐶𝐻௠

⬚–1)  
× 100 

(𝐻𝐴𝐶𝐶௠
⬚–1)  

× 100 
(𝐾𝐴𝐶𝐶௠

⬚–1)  
× 100 

(𝑅𝐴𝐶𝐶௠
⬚–1)  

× 100 
C10-C12 3.47 10.99 –0.14 –6.65 8.21 –1.68 –4.99 –0.87 –6.84 
C13-C15 –39.72 –15.70 –1.54 –27.37 25.37 –23.03 –5.21 –6.18 –15.37 
C16-C18 + C31-C33 –15.46 4.84 0.84 –20.04 14.04 –12.29 –3.74 –3.01 –14.38 
C19-C21 5.04 7.86 1.98 –4.50 22.14 –7.14 –3.92 –3.08 –9.57 
C22 + C23 –18.12 –0.47 3.84 –20.78 –9.19 –5.45 –4.22 –2.01 –1.70 
C24 + C25 –8.10 11.76 0.04 –17.80 1.02 –12.19 –3.92 –3.13 –0.43 
C26 + C27 –20.12 104.95 –0.16 –60.96 –38.19 –25.53 –3.02 –9.02 –3.88 
C28 –0.47 16.91 2.40 –16.86 25.31 –13.93 –3.09 –5.06 –16.22 
C29 + C30 5.25 48.11 2.04 –30.36 –0.28 –15.66 –2.35 –8.32 –7.51 
Note:  
C10-C12 … Food products, beverages and tobacco, C13-C15 … Manufacture of textiles, wearing apparel, leather and related products, C16-C18 + C31-C33 … Manufacture of 
wood and paper products: printing + Other manufacturing, repair and installation of machinery and equipment, C19-C21 … Manufacture of basic pharmaceutical products and 
preparations + Manufacture of coke and refined petroleum products + Manufacture of chemicals and chemical products, C22 + C23 … Rubber and plastics products, and other 
non-metallic mineral products, C24 + C25 … Manufacture of basic metals and fabricated metal products, machinery and equipment, C26 + C27 … Computer, electronic, optical 
products; electrical equipment, C28 … Manufacture of machinery and equipment not elsewhere classified, C29 + C30 … Manufacture of transport equipment. 
𝛥𝑌௠

⬚ … value added change, 𝛥𝑆௠
⬚ … structural change, 𝛥𝐼௠

⬚ … labour intensity change (= 1 / labour productivity change), 𝐸𝐹𝐹௠
⬚ … efficiency change, 𝑇𝐸𝐶𝐻௠

⬚ … technical 
change, 𝐻𝐴𝐶𝐶௠

⬚ … human capital accumulation, 𝐾𝐴𝐶𝐶௠
⬚ … capital intensity change, 𝑅𝐴𝐶𝐶௠

⬚ … robot intensity change. 
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Table 5 presents employment trends and their drivers in nine manufacturing sub-sectors in ad-
vanced Europe and the USA. Employment fell in most manufacturing sub-sectors, most clearly 
in the textile industry (C13-C15) by almost –40% and at the least in the machinery and 
equipment industry (C28) by –0.5%. Only the automotive industry (C29 + C30), the chemical 
industry (C19-C21), and the food industry (C10-C12) experienced a rise in employment by 
+5.25%, +5.04% and +3.47% respectively. 
 
In all manufacturing sub-sectors, we observe a reduction in labour intensity, thus reducing em-
ployment growth by the same proportion. In only a few sub-sectors the growth in output com-
pensated the decline in employment caused by reduced labour intensity. In the textile industry 
(C13-C15) and, to a lesser extent, in the rubber and plastics industry (C22 + C23), the decline 
in output even contributed to a reduction in employment. According to our results, the use of 
robots reduced employment in all industries examined indicating a substitutive effect on em-
ployment. In the food industry (C10-C12), the paper products industry + other manufacturing 
(C16-C18 + C31-C33), the chemical industry (C19-C21) and the machinery and equipment 
industry (C28), the growing use of robots was actually the largest employment-reducing factor. 
Our analysis reveals substantial heterogeneity in employment and labour intensity changes 
across manufacturing sub-sectors. Not less diverse is the extent to which robots contributed to 
these developments. 
 
Technological progress also reduced employment in all sectors. It dampened employment more 
than any other component in the textile industry (C13-C15), the basic metals and fabricated 
metal products industry (C24 + C25) and in the automotive industry (C29 + C30). In the rubber 
and plastics industry (C22 + C23) and computer, electronic and electrical equipment industry 
(C26 + C27), efficiency change reduced employment the most. The contributions of structural 
change (i.e., international relocation of production), growth in human capital and increased use 
of non-robotic capital were comparatively small across all manufacturing sub-sectors. 
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Figure 3 Robot Intensity change and robot induced employment decline in total manufacturing, 2004 
to 2019 

 
Figure 3 shows the positive relationship between the robot intensity change and robot induced 
employment decline in total manufacturing in the countries examined over the period 2004 to 
2019. The more the number of robots per employee increases (i.e., the more robot deepening 
occurs), the greater the labour savings. The figure shows saturation and a decreasing marginal 
product. The higher the growth in robot intensity, the smaller the additional robot-induced 
employment decline. Greece is an exception that seems to break this rule. However, the 
situation in Greece was dominated by austerity policy during the observation period, which 
might explain the deviant behaviour. 
 
The conclusions of this analysis are hardly comparable with the results of other empirical stud-
ies. The overall result of a negative relationship between the development in total employment 
in the manufacturing sector and the increasing penetration of industrial robots was also found 
in other studies (such as in Carbonero et al., 2018) examining different country samples and 
study periods. But none of the previous studies reported any country specific and sub-sector 
specific results. The only previous study that is quite similar to ours in terms of country sample, 
study period and disaggregation into sub-sectors is Jestl (2024). However, it was carried out on 
the basis of regional data. Robot deployment data from the IFR is only available at the country- 
and sector-level and has to be broken down to regional level. This procedure results in robot 
exposure as a proxy variable of regionally used robot stock and might deviate from actual robot 
use of individual industries in individual regions. Such a proxy variable could bias the empirical 
results. 
 
5. Conclusions 

The relationship between the use of robots and employment development is intensively dis-
cussed in the general public as well as in science. Theoretical considerations present positive 
and negative arguments and are therefore ambiguous in their answers. It remains an open ques-
tion for empirical investigations. 
 
We analyse the contribution of robotisation and seven other growth factors to total employment 
change over the period 2004 to 2019 in manufacturing and its sub-sectors in 17 advanced Eu-
ropean countries and the USA. Thereby, we combine index decomposition analysis (IDA) with 
production-theoretical decomposition analysis (PDA). IDA decomposes the change in 
employment into changes in output, structural change and changes in labour intensity (the 
reciprocal of labour productivity). The PDA separates out changes in labour intensities into 
components associated with changes in technical efficiency (technological catch-up), changes 
in technology (frontier shift), human capital accumulation, non-robot capital deepening (i.e., 
change of non-robot capital to labour ratio) and robot capital deepening (i.e., change of robot 
capital to labour ratio). The PDA is based on the non-parametric production frontier approach 
of Färe et al. (2018). In the spirit of Eder et al. (2023) we extend it by considering industrial 
robots as separate production factor. The required production frontiers and distances to the 
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frontiers are estimated by Data Envelopment Analysis (DEA), a method based on linear 
programming models. 
 
Previous literature on the employment effects of robotisation apply regression analysis 
techniques and report average effects of robot penetration on employment change across firms, 
industries or countries. In contrast to this, our decomposition approach allows to provide 
estimates of individual employment effects differentiated by industries and countries. Few 
previous studies explicitly considered manufacturing and none addressed heterogeneous 
employment effects across manufacturing sub-sectors. The distinction between individual sub-
sectors or industries makes sense because they are characterized, among others, by differences 
in production technologies, automation potentials and actual levels and changes in robot 
deployment. Sub-sector level analyses also provide an interesting political perspective, since 
collective bargaining on wages, working hours and labour conditions between employer and 
employee representatives are usually undertaken for individual sub-sectors and not for 
manufacturing as a whole. The effects of the use of industrial robots on employment play an 
indirect role for this bargaining as they are influenced by possible labour cost savings as a result 
of replacement (potentials) of (human) labour through robots. The substitutability of labour 
varies considerably across individual sub-sectors due to technology differences. 
 
Our analysis reveals substantial heterogeneity in employment and labour intensity (i.e., the 
inverse of labour productivity) changes across manufacturing sub-sectors. Not less diverse is 
the extent to which robots contributed to these developments. Our findings show that labour 
intensity decreased (or, in other words, labour productivity increased) in total manufacturing of 
all countries (with the exception of Greece) studied and in all sub-sectors during the sample 
period, contributing to a decrease in employment. Robotisation contributed by lowering labour 
intensities and thus employment in all countries and manufacturing sub-sectors, albeit to 
different extents. Our results therefore confirm the negative relationship between robot adoption 
and employment growth found in previous studies (e.g., Carbonero et al., 2018; Jestl, 2024). 
Substantial contributions of robotisation to employment decline are found particularly in 
manufacturing of Czech Republic, Hungary, the Netherlands, Portugal and Slovak Republic as 
well as in textile industry, in wood and paper industry and in machinery and equipment industry. 
 
Output, in turn, rose, leading to increased employment and, in many countries and manufactur-
ing sub-sectors, counteracting the negative impact of declining labour intensities. The structural 
changes within manufacturing had little effect in many countries and in most sub-sectors. Apart 
from robot deepening, only technical progress contributed considerably to the change in labour 
intensity. The contributions of efficiency change, human capital accumulation and non-robot 
capital deepening are comparatively small in total manufacturing of almost all countries and in 
almost all sub-sectors examined. 
 
Our results show the robot penetration as part of labour-saving technical progress in the manu-
facturing industry. In times of demographic change, increasing application of industrial robots 
may help alleviating any shortage of skilled workers in production facilities in some sectors. 
Abeliansky and Prettner (2024) explore how automation could potentially mitigate the adverse 
economic impacts of population ageing. Basic theoretical analysis indicates that a slower (or 
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negative) growth rate of the labour force tends to accelerate automation. Empirical data shows 
that a larger proportion of the population aged 55 and above, along with lower population 
growth, encourages the uptake of industrial robots, as evidenced by studies such as Acemoglu 
and Restrepo (2022) and Abeliansky and Prettner (2023). Recognizing that automation is, to 
some degree, a natural reaction to the decrease in labour supply caused by population ageing 
could provide insight into why we have not seen labour shortages despite population aging. 
 
Like any other sub-sector level studies our decomposition methodology estimates the direct 
labour-saving effects, but not compensation effects which work (indirectly) via increases in 
output, and are thereof part of the output change component (Montobbio et al., 2023, p. 21). 
Future research should develop an approach for sub-sector level studies capturing possible 
indirect employment effects of robotization based on a multi-sectoral model. The indirect 
effects could compensate for the negative direct effects and possibly result in positive net 
effects. A suitable model would reflect the interdependencies of the individual sectors of an 
economy. 
 
Another interesting research question would be to investigate what type of labour in terms of 
skill levels, occupations, tasks, age, income, etc. is substitutable and to what extent. This 
question has already been addressed, but only at the country (e.g., Albinowski and 
Lewandowski, 2024; de Vries et al., 2020) or regional level (e.g., Borjas and Freeman, 2019; 
Stemmler, 2019) and not at total manufacturing or manufacturing sub-sector level. The 
substitutability of older workers might be a solution of skill shortage in the context of 
demographic change. Last but not least, we are aware that robotisation is only a part of new 
current technologies (including digitalisation and artificial intelligence). Consequently, it would 
be useful to expand our analysis to include the indicators of digitalisation, which are covered, 
for example, by the Digital Economy and Society Index (DESI) of the European Commission. 
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manufacturing: A combination of index decomposition analysis and 

production-theoretical decomposition analysis 

 

Supplementary Material 

 

A. Overview on the preparation of the robot installations and stocks data 

Data on robot installations and stocks have been obtained from the International Federation of 
Robotics (IFR). Based on this data base and on additional information gained from the annual 
reports (IFR, 2005-2020) we prepared our data base consisting of time series for installations 
and several measures of stocks for total manufacturing and nine manufacturing sub-sections in 
18 countries. These data preparation steps aim at correcting, enhancing, and expanding the 
original data as seen appropriate for our research project. The issues described and the data 
preparation applied by us have considerable overlap with the ones described by Klump at al. 
(2021) and by other scientific work based on the IFR data. The manipulation steps can be 
grouped into six broad groups: i) simple resolution of inconsistencies in the IFR data set, e.g., 
when data on installations and stocks of robots are not consistent with each other; ii) 
disaggregation over countries of aggregated data when the annual reports of IFR give sufficient 
information on approximate shares for disaggregation; iii) extrapolation back in time of 
installations and stocks when time series start with stocks higher than installations; iv) 
extrapolation back in time of installation and stocks when official time series start with identical 
values for installation and stocks but plausibility considerations and, occasionally, verbal 
explanations in the annual reports suggest that the “true” numbers of installations and stocks 
start earlier than that; v) taking account of country specific information from annual reports to 
make adjustment of the time series, vi) distribution of sectoral aggregated or unspecified values 
to the most detailed industry scheme used by IFR, by using the proportions found in the 
following year and applying an iterative procedure starting from the most recent year and 
iterating back to the beginning of the time series. For further details on steps i) to v), which are 
needed for the preparation of sectoral aggregated data, the reader is referred to the 
Supplementary Material of Eder et al. (2024). As a final step of the data preparation the data on 
installations are aggregated from the level of 17 IFR-reported industries to the 9 industries used 
in the present analysis. 
 
For reasons of space the data preparation has not been described in full detail here. Detailed 
information on robot stock data in total manufacturing and the manufacturing sub-sectors of 
each country in the sample are available upon request from the authors. 
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B. Evolution of robot stocks 

 
Figure B1 Evolution of (non-quality-adjusted) robot stocks in total manufacturing in four European 
country groups and the USA over 2000–2019 

Note: Northern Europe … Denmark, Finland, Norway and Sweden; Central Europe … Austria, Czech Republic, 
Germany, Hungary and Slovak Republic; Western Europe … Belgium, France, Great Britain and the Netherlands; 
Southern Europe … Greece, Italy, Spain and Portugal 
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Figure B2 Evolution of (non-quality-adjusted) robot stocks in total manufacturing in Northern European 
countries over the period 2000–2019 

 

Figure B3 Evolution of (non-quality-adjusted) robot stocks in total manufacturing in Central European 
countries over the period 2000–2019 
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Figure B4 Evolution of (non-quality-adjusted) robot stocks in total manufacturing in Western European 
countries over the period 2000–2019 

 
Figure B5 Evolution of (non-quality-adjusted) robot stocks in total manufacturing in Southern European 
countries over the period 2000–2019 
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Figure B6 Evolution of (non-quality-adjusted) robot stocks in C10-C12 (Food products, beverages and 
tobacco) in four European country groups and the USA over 2000–2019 

 

Figure B7 Evolution of (non-quality-adjusted) robot stocks in C13-C15 (Manufacture of textiles, 
wearing apparel, leather and related products) in four European country groups and the USA over 
2000–2019 
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Figure B8 Evolution of (non-quality-adjusted) robot stocks in C16-C18 + C31-C33 (Manufacture of wood 
and paper products: printing + Other manufacturing, repair and installation of machinery and equipment) in four 
European country groups and the USA over 2000–2019 

 

Figure B9 Evolution of (non-quality-adjusted) robot stocks in C19-C21 (Manufacture of basic 
pharmaceutical products and preparations + Manufacture of coke and refined petroleum products + Manufacture 
of chemicals and chemical products) in four European country groups and the USA over 2000–2019 
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Figure B10 Evolution of (non-quality-adjusted) robot stocks in C22 + C23 (Rubber and plastics products, 
and other non-metallic mineral products) in four European country groups and the USA over 2000–2019 

 

Figure B11 Evolution of (non-quality-adjusted) robot stocks in C24 + C25 (Manuf. of basic metals and 
fabricated metal products, except mach. & equip.) in four European country groups and the USA over 
2000–2019 
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Figure B12 Evolution of (non-quality-adjusted) robot stocks in C26 + C27 (Computer, electronic, optical 
products; electrical equipment) in four European country groups and the USA over 2000–2019 

 

Figure B13 Evolution of (non-quality-adjusted) robot stocks in C28 (Manufacture of machinery and 
equipment n.e.c.) in four European country groups and the USA over 2000–2019 

  

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

20002001200220032004200520062007200820092010201120122013201420152016201720182019

nu
m

be
r o

f r
ob

ot
s

Northern Europe Central Europe Western Europe

Southern Europe United States

0

1 000

2 000

3 000

4 000

5 000

6 000

7 000

8 000

9 000

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 20152016 2017 2018 2019

nu
m

be
r o

f r
ob

ot
s

Northern Europe Central Europe Western Europe

Southern Europe United States



36 

 

Figure B13 Evolution of (non-quality-adjusted) robot stocks in C29 + C30 (Manufacture of transport 
equipment) in four European country groups and the USA over 2000–2019 

 

C. Descriptive statistics 

Table C1 
Descriptive statistics of input and output variables in total manufacturing 
 mean minimum maximum 

Output (real gross value added at 2015 PPP-adjusted mill. EUR) 182,667 6,376 1,741,841 
    

Efficiency units of labour (mill. hours worked × human capital index) 13,974 1,217 127,478 
    

Non-robot physical capital stock (in PPP-adjusted mill. 2015 EUR) 308,568 22,176 2,878,274 
    

Quality-adjusted industrial robot stock (in physical units based on PIM 
with δ=15%) 

28,663 46 411,869 

Note: Means are based on a balanced panel of 18 countries' manufacturing sectors for the years 2000–2019 covering 360 
observations. 
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Table C2 
Descriptive statistics of levels of employment, labour intensity, capital intensities and human capital index in 
2004 and 2019 in total manufacturing 
 mean minimum maximum 

Year 2004 

Labour intensity (mill. hour worked per output, PPP-adjusted 2015 EUR) 0.034 0.020 0.079 
    

Robot intensity (quality-adjusted number of robots per mill. hours worked) 2.76 0.07 8.40 
    

Non-robot capital intensity (non-robot physical capital stock per hour 
worked, PPP-adjusted 2015 EUR) 

67.15 23.99 133.35 
    

Human capital index 3.18 2.23 3.62 
    

Year 2019 

Labour intensity (mill. hour worked per output, PPP-adjusted 2015 EUR) 0.024 0.014 0.045 
    

Robot intensity (quality-adjusted number of robots per mill. hours worked) 12.96 1.13 25.99 
    

Non-robot capital intensity (non-robot physical capital stock per hour 
worked, PPP-adjusted 2015 EUR) 

83.90 30.56 138.39 
    

Human capital index 3.41 2.51 3.85 

Note: The quality-adjusted number of robots is estimated with the perpetual inventory method assuming a depreciation rate 
of 15%. The quality index of robots is used to adjust robot installations for quality changes. 

 
Table C3 
Descriptive statistics of growth rates of labour productivity, capital intensities and human capital 
index in total manufacturing over the period 2004 to 2019 
 mean minimum maximum 

Employment growth (in %) –11.84 –29.80 5.84 
Output growth (in %) 28.27 –31.39 164.81 
Labour intensity growth (in %) –26.88 –60.41 10.63 
Robot intensity growth (in %) 912.56 179.40 4,381.05 
Non-robot capital intensity growth (in %) 29.91 –4.01 78.69 
Human capital index growth (in %) 7.47 1.86 12.52 
Note: Quality-adjusted number of robots are estimated with the perpetual inventory method assuming a 
depreciation rate of 15%. The quality index of robots is used to adjust robot installations for quality changes. 
Mean, minimum and maximum over 18 countries. 
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D. Multiplicative Decomposition Indexes 

Table D1 
Multiplicative Decomposition Indexes of Employment Change for Total Manufacturing, 2004-2019 

Country 
Employment 

Change 
𝛥𝑌⬚

௡ 𝛥𝑆⬚
௡  𝛥𝐼⬚

௡  𝐸𝐹𝐹⬚
௡  𝑇𝐸𝐶𝐻⬚

௡  𝐻𝐴𝐶𝐶⬚
௡  𝐾𝐴𝐶𝐶⬚

௡  𝑅𝐾𝐴𝐶𝐶⬚
௡  

Austria 0.995 1.448 0.962 0.714 0.983 0.887 0.948 0.959 0.901 
Belgium 0.831 1.088 0.922 0.829 1.014 0.889 0.972 1.005 0.941 
Czech Republic 1.058 2.199 0.990 0.486 0.870 0.905 0.991 0.786 0.792 
Germany 1.012 1.308 0.971 0.797 0.935 0.878 0.991 0.992 0.989 
Denmark 0.797 1.394 0.801 0.714 1.020 0.864 0.942 0.952 0.903 
Spain 0.702 0.949 0.974 0.759 1.014 0.872 0.920 0.971 0.961 
Finland 0.792 1.011 0.969 0.807 1.070 0.838 0.937 0.993 0.968 
France 0.823 1.088 0.972 0.778 1.026 0.877 0.935 0.955 0.968 
Greece 0.759 0.689 0.877 1.257 1.568 0.939 0.964 0.929 0.952 
Hungary 0.946 1.265 1.070 0.699 1.543 0.925 0.947 0.776 0.667 
Italy 0.815 0.999 0.998 0.818 1.127 0.858 0.924 0.962 0.951 
Netherlands 0.919 1.245 0.941 0.785 1.102 0.892 0.951 1.006 0.835 
Norway 0.936 1.119 0.998 0.839 1.044 0.891 0.948 1.003 0.949 
Portugal 0.828 1.109 0.975 0.766 1.429 0.860 0.919 0.894 0.758 
Slovak Republic 1.048 2.620 0.943 0.424 0.857 0.865 0.929 0.901 0.682 
Sweden 0.823 1.112 0.995 0.744 0.997 0.883 0.957 0.947 0.934 
United Kingdom 0.837 1.186 1.011 0.698 0.852 0.898 0.976 0.974 0.959 
United States 0.946 1.217 1.002 0.776 1.059 0.866 0.974 0.967 0.899 
Geometric mean 0.876 1.223 0.963 0.744 1.066 0.882 0.951 0.940 0.883 

Note:  
𝛥𝑌⬚

௡ … value added change, 𝛥𝑆⬚
௡  … structural change, 𝛥𝐼⬚

௡  … labour intensity change, 𝐸𝐹𝐹⬚
௡  … efficiency change, 𝑇𝐸𝐶𝐻⬚

௡  
… technical change, 𝐻𝐴𝐶𝐶⬚

௡  … human capital accumulation, 𝐾𝐴𝐶𝐶⬚
௡ … capital intensity change, 𝑅𝐴𝐶𝐶⬚

௡  … robot intensity 
change. Employment Change = 𝛥𝑌⬚

௡ * 𝛥𝑆⬚
௡  * 𝛥𝐼⬚

௡ , 𝛥𝐼⬚
௡  = 𝐸𝐹𝐹⬚

௡  * 𝑇𝐸𝐶𝐻⬚
௡  * 𝐻𝐴𝐶𝐶⬚

௡  * 𝐾𝐴𝐶𝐶⬚
௡  * 𝑅𝐴𝐶𝐶⬚

௡  

 
Table D2 
Multiplicative Decomposition Indexes of Employment Change for Total Manufacturing (Country Groupings) 

Country Group 
Employment 

Change 
𝛥𝑌⬚

௡ 𝛥𝑆⬚
௡  𝛥𝐼⬚

௡  𝐸𝐹𝐹⬚
௡  𝑇𝐸𝐶𝐻⬚

௡  𝐻𝐴𝐶𝐶⬚
௡  𝐾𝐴𝐶𝐶⬚

௡  𝑅𝐾𝐴𝐶𝐶⬚
௡  

Northern Europe* 0.835 1.151 0.937 0.774 1.032 0.869 0.946 0.973 0.938 
Central Europe+ 1.011 1.690 0.986 0.607 1.011 0.892 0.961 0.879 0.797 
Western Europe† 0.852 1.150 0.961 0.771 0.994 0.889 0.958 0.985 0.924 
Southern Europe§ 0.775 0.923 0.955 0.879 1.265 0.882 0.932 0.938 0.901 
United States 0.946 1.217 1.002 0.776 1.059 0.866 0.974 0.967 0.899 
All countries 0.876 1.223 0.963 0.744 1.066 0.882 0.951 0.940 0.883 
Note: 
*Denmark, Finland, Norway, Sweden. 
+ Austria, Czech Republic, Germany, Hungary, Slovak Republic. 
† Belgium, France, Great Britain, Netherlands. 
§ Greece, Italy, Spain, Portugal. 
𝛥𝑌⬚

௡ … value added change, 𝛥𝑆⬚
௡  … structural change, 𝛥𝐼⬚

௡  … labour intensity change, 𝐸𝐹𝐹⬚
௡  … efficiency change, 

𝑇𝐸𝐶𝐻⬚
௡  … technical change, 𝐻𝐴𝐶𝐶⬚

௡  … human capital accumulation, 𝐾𝐴𝐶𝐶⬚
௡ … capital intensity change, 𝑅𝐴𝐶𝐶⬚

௡  … robot 
intensity change. Employment Change = 𝛥𝑌⬚

௡ * 𝛥𝑆⬚
௡  * 𝛥𝐼⬚

௡ , 𝛥𝐼⬚
௡  = 𝐸𝐹𝐹⬚

௡  * 𝑇𝐸𝐶𝐻⬚
௡  * 𝐻𝐴𝐶𝐶⬚

௡  * 𝐾𝐴𝐶𝐶⬚
௡  * 𝑅𝐴𝐶𝐶⬚

௡  
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Table D3 
Multiplicative Decomposition Indexes of Employment Change for Total Manufacturing (Sector Groupings) 

Sectors Group 
Employment 

Change 𝛥𝑌௠
⬚ 𝛥𝑆௠

⬚ 𝛥𝐼௠
⬚ 𝐸𝐹𝐹௠

⬚ 𝑇𝐸𝐶𝐻௠
⬚ 𝐻𝐴𝐶𝐶௠

⬚ 𝐾𝐴𝐶𝐶௠
⬚ 𝑅𝐾𝐴𝐶𝐶௠

⬚ 

C10-C12 α 1.035 1.110 0.999 0.934 1.082 0.983 0.950 0.991 0.932 
C13-C15 β 0.603 0.843 0.985 0.726 1.254 0.770 0.948 0.938 0.846 
C16-C18 + C31-
C33 γ 

0.845 1.048 1.008 0.800 1.140 0.877 0.963 0.970 0.856 

C19-C21 δ 1.050 1.079 1.020 0.955 1.221 0.929 0.961 0.969 0.904 
C22 + C23 ε 0.819 0.995 1.038 0.792 0.908 0.946 0.958 0.980 0.983 
C24 + C25 ζ 0.919 1.118 1.000 0.822 1.010 0.878 0.961 0.969 0.996 
C26 + C27 η 0.799 2.050 0.998 0.390 0.618 0.745 0.970 0.910 0.961 
C28 θ 0.995 1.169 1.024 0.831 1.253 0.861 0.969 0.949 0.838 
C29 + C30 ι 1.052 1.481 1.020 0.696 0.997 0.843 0.977 0.917 0.925 
Note: 
α Food products, beverages and tobacco. 
β Manufacture of textiles, wearing apparel, leather and related products. 
γ Manufacture of wood and paper products: printing + Other manufacturing, repair and installation of machinery and equipment 
δ Manufacture of basic pharmaceutical products and preparations + Manufacture of coke and refined petroleum products + 

Manufacture of chemicals and chemical products. 
ε Rubber and plastics products, and other non-metallic mineral products. 
ζ Manuf. of basic metals and fabricated metal products, except mach. & equip. 
η Computer, electronic, optical products; electrical equipment 
θ Manufacture of machinery and equipment n.e.c. 
ι Manufacture of transport equipment 
𝛥𝑌௠

⬚ … value added change, 𝛥𝑆௠
⬚ … structural change, 𝛥𝐼௠

⬚ … labour intensity change, 𝐸𝐹𝐹௠
⬚ … efficiency change, 𝑇𝐸𝐶𝐻௠

⬚ 
… technical change, 𝐻𝐴𝐶𝐶௠

⬚ … human capital accumulation, 𝐾𝐴𝐶𝐶௠
⬚… capital intensity change, 𝑅𝐴𝐶𝐶௠

⬚ … robot intensity 
change. Employment Change = 𝛥𝑌௠

⬚ * 𝛥𝑆௠
⬚ * 𝛥𝐼௠

⬚, 𝛥𝐼௠
⬚ = 𝐸𝐹𝐹௠

⬚ * 𝑇𝐸𝐶𝐻௠
⬚ * 𝐻𝐴𝐶𝐶௠

⬚ * 𝐾𝐴𝐶𝐶௠
⬚ * 𝑅𝐴𝐶𝐶௠

⬚ 
 

 
 
 


