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Abstract

We quantify the economic costs of air pollution associated with drug expenditures.
First, following a 1% increase in the annual average of PM2.5, the combined expen-
ditures on respiratory, cardiovascular, and antitumor drugs are predicted to rise by
an amount equivalent to 1.81% of the annual per capita drug expenditure. Second,
we compare expenditures on Western Medicine (WM) and Chinese Herbal Medicine
(CHM), noting that research on the latter is significantly limited. After a rise in PM2.5
levels, the responsiveness and increase in expenditures for CHM drugs are similar to
those for WM drugs, highlighting CHM’s significance in understanding the economic
impacts of air pollution. Third, cities with higher socioeconomic status—indicated by
greater per capita fiscal revenue, higher disposable income, and a larger proportion of
college graduates—exhibit a greater response in drug expenditures to air pollution.
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1 Introduction

Outdoor air pollution has significant health implications, particularly causing respiratory

diseases, cardiovascular diseases, and tumors.1 The economic costs of air pollution can be

can be categorized, though not exclusively, into defensive expenditures (Deschenes, Green-

stone, and Shapiro, 2017; Zhang and Mu, 2018; Ito and Zhang, 2020), drug expenditures

(Williams et al., 2019), and hospitalization costs(Schlenker and Walker, 2016; Deryugina

et al., 2019). While the health outcomes and economic costs of air pollution have been ex-

tensively studied in the context of developed countries (Currie and Neidell, 2005; Schlenker

and Walker, 2016; Jans, Johansson, and Nilsson, 2018; Deryugina et al., 2019; Giaccherini,

Kopinska, and Palma, 2021; Margaryan, 2021; Alexander and Schwandt, 2022; von Hinke

and Sørensen, 2023; Bishop, Ketcham, and Kuminoff, 2023) and certain literature ex-

amines the impact of air pollution on mortality rates in China (Ebenstein et al., 2015;

He, Fan, and Zhou, 2016; He, Liu, and Zhou, 2020) and India (Greenstone and Hanna,

2014), research on the economic costs of air pollution in middle- and low-income coun-

tries, including China, remains insufficient despite that the impact of air pollution is more

pronounced in these countries.2 In China, Chinese herbal medicine (CHM) is commonly

used for the treatment of diseases related to air pollution, among other conditions, yet its

usage patterns are unexplored.3 Both the economic costs of air pollution in China and the

usage patterns of CHM are under-studied in the fields of environmental economics and

health economics.
1According to the World Health Organization, outdoor air pollution was estimated to cause 4.2 million

premature deaths worldwide in 2019 (see https://www.who.int/zh/news-room/fact-sheets/detail/ambient-
(outdoor)-air-quality-and-health). Coarse particles with a diameter greater than 2.5 microns can penetrate
into the lungs, while fine particles can cross the lung barrier and enter the bloodstream (Chang et al., 2019).
Exposure to fine particulate matter of 2.5 microns or less in diameter (PM2.5) can lead to respiratory
diseases, cardiovascular diseases, and tumors (Seaton et al., 1995).

2Middle- and low-income countries account for 89% of the 4.2 million premature deaths worldwide
in 2019. Particularly affected are countries in South-East Asia and the Western Pacific region (see
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health ).

3There exists a nontrivial preference for CHM drugs, as on average 13.5% of visits to hospital occur at
Traditional Chinese Medicine hospitals in the provinces to which these cities belong.
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The current study estimates the economic costs of air pollution in terms of drug

expenditures in China, utilizing novel data that record drug-level expenditures from public

hospitals in twenty major Chinese cities from 2014 to 2019. We examine how expenditures

on Western Medicine (WM) and Chinese Herbal Medicine respond to air pollution, and

how socioeconomic factors influence responses to air quality hazards across these cities.

Employing Two-Stage Least Squares (2SLS) regressions with maximum wind speed

and temperature inversions as instrumental variables for air pollution, we obtain three

key findings. First, air pollution exerts a substantial economic cost in terms of drug

expenditures. A 1% increase in the annual average of PM2.5 results in a 2.96% rise in

per capita expenditure on modern respiratory drugs, a 3.59% increase in expenditure

on modern cardiovascular drugs, and a 4.91% rise in per capita expenditure on modern

antitumor drugs. The corresponding combined increase in drug expenditures on WM drugs

amounts to 9.10 yuan, equivalent to 1.00% of the annual per capita drug expenditure in

our sample.

Second, CHM drugs are quantitatively important in accounting for the response of

expenditures to air pollution.4 Following a 1% increase in PM2.5, per capita expendi-

tures on CHM drugs for treating the three groups of diseases increase by 5.57%, 4.35%,

and 4.76%, respectively. In terms of expenditure increments, the corresponding rise in

expenditures on CHM drugs (for respiratory diseases, cardiovascular diseases, and tu-

mors combined) is 7.44 yuan, which is equivalent to 0.81% of the annual per capita drug

expenditure.

Third, the socioeconomic status of cities affects the expenditure response to air

pollution, contributing to regional disparities in drug expenditures. Cities with greater

per capita fiscal revenue, higher per capita disposable income, and a larger proportion

of college graduates among residents experience larger pollution-related increases in drug
4The WM drugs in our sample are classified into 14 groups, while the CHM drugs are classified into 13

groups. The classifications are detailed in Table 1.
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expenditures. Additionally, the impact of air pollution on drug expenditures is larger in

northern Chinese cities compared to southern cities, highlighting the higher costs associ-

ated with elevated air pollution levels in the north.

Our study contributes to the related literature in three ways. First, while most

papers estimate the effects of air pollution on drug expenditures by disease groups, such

as respiratory diseases, cardiovascular diseases (Schlenker and Walker, 2016; Xia et al.,

2022), psychological disorders (Chen, Oliva, and Zhang, 2018), and flu (Graff Zivin et al.,

2023), our study offers a more comprehensive assessment of the impact of air pollution on

drug expenditures across three disease groups considered most susceptible to air pollution

(Seaton et al., 1995). In the context of China, our study is related to research by Barwick

et al. (2018) and Liao, Du, and Chen (2021), who estimate annual per capita medical

spending using data on credit and debit card transactions and the China Family Panel

Studies dataset, respectively. Drawing on a new data source, our study provides a specific

focus on drug expenditures. By exploiting variation in air pollution and drug expenditures

across major Chinese cities, we also improve upon Zhang et al. (2023) and Xia et al. (2022),

who base their estimates of drug expenditure responses to air pollution on data from a

single city.

Second, we highlight the importance of CHM drugs in the medical expenditures and

practices of China. These drugs account for 60% of the combined expenditures on respira-

tory, cardiovascular, and antitumor drugs. Despite the widespread use of CHM, there is

a significant lack of scientific evidence regarding the efficacy and pharmacoeconomic eval-

uation of CHM drugs (Zhou et al., 2019; Xiong et al., 2022). By exploiting the exogenous

change in demand for medical attention prompted by the occurrence of air pollution, we

demonstrate that the increase in expenditure on CHM drugs is comparable in magnitude

to that on WM drugs. To the best of our knowledge, this study is the first to examine

the usage pattern of CHM drugs. This finding has important implications for expanding
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research on CHM drugs.

Third, we contribute to the research on regional disparities in the impact of air

pollution. Existing literature has demonstrated that locations with better socioeconomic

status are less affected by air pollution. In the context of the U.S., a key finding by

Currie, Voorheis, and Walker (2023) is that exposure to air pollution tends to be lower

in communities with higher rates of home ownership, greater average educational attain-

ment, and higher mean public assistance income. Exploiting variation in early childhood

exposure to the London Smog of 1952, von Hinke and Sørensen (2023) find that individu-

als born in areas with higher socioeconomic status suffer fewer long-term effects from air

pollution, presumably because they are better at avoiding pollution or possess superior

health conditions. Our findings contribute to understanding how socioeconomic factors

moderate the impact of pollution by revealing that Chinese cities with higher socioeco-

nomic status spend more on drugs in response to air pollution. Additionally, the literature

on air pollution in China (Chen et al., 2013; Ebenstein et al., 2017; Fan, He, and Zhou,

2020) has established that residents in northern China suffer from lower life expectancy

because the free or subsidized coal-fired heating provided in northern cities during the

winter causes severe air pollution. We complement this strand of literature by showing

that there is also a higher economic cost in northern cities, as residents there spend more

to treat pollution-related diseases.

The remainder of the paper is structured as follows. Section 2 provides an overview

of the empirical strategy and data employed in this study. Section 3 presents the bench-

mark results. The disparities in expenditures associated with socioeconomic factors are

presented in Section 4, and robustness and extension results are presented in Section 5.

Finally, Section 6 concludes the paper.
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2 Empirical Design
2.1 Regression setup

Building on recent studies such as Deryugina et al. (2019) and Xia et al. (2022), we

estimate the log-linear effects of air pollution on drug expenditure. Our model is specified

as follows:

lnYijt = α+ β · lnPM2.5it + ϕ · lnXit + γi + ηt + ϵijt (1)

where Yijt is per capita expenditure on drug j in city i during year t. In our study, we

focus on three groups of diseases, the respiratory diseases, cardiovascular diseases and

tumors. By the origin of medicine practice, there are two types of drugs. One type is the

modern chemical drugs used in WM, such as penicillin, which are sold in countries around

the world.

The other type is CHM drugs, mainly sold and used in China and Japan. CHM drugs

primarily originate from natural substances and their processed products, including herbs,

animal-based drugs, mineral drugs, as well as certain chemical and biological products.

The use of CHM drugs is widespread in China. Among the 685 drugs listed in China’s

National Essential Medicines List (2018 edition), 268 are CHM drugs, while 417 are WM

drugs. For instance, “Huangqi Granules”, produced by “Sichuan Biokin Pharmaceutical”,

are derived from the roots of Astragalus membranaceus (Fisch.) and Bunge. This CHM

drug is commonly used to enhance immune function. National and provincial-level health

authorities regularly issue guidelines regarding the inclusion of CHM drugs in public health

insurance programs in China. The classifications of WM drugs and CHM drugs in our

sample, reported in Table 1, largely overlap.

CHM drugs play a crucial role in our analysis, as the per capita expenditure on them

is approximately 75% of the expenditure on WM drugs for treating respiratory diseases,

cardiovascular diseases, and tumors. Since our sample includes both WM and CHM drugs
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Table 1: Grouping of WM drugs and CHW drugs

WM drugs CHW drugs
Identical grouping:
Antitumor drugs Antitumor drugs
Cardiovascular drugs Cardiovascular drugs
Respiratory drugs Respiratory drugs
Dermatological drugs Dermatological drugs
Neurological drugs Neurological drugs
Musculoskeletal drugs Musculoskeletal drugs
Hematological drugs Hematological drugs
Gastrointestinal drugs Gastrointestinal drugs
Miscellaneous drugs Miscellaneous drugs

Differentiated grouping:
Anti-infective drugs Otorhinolaryngology drugs
Systemic Hormonal Preparations Pediatric drugs
Sensory System drugs Gynecological drugs
Antiparasitic, Insecticide, and Repellent drugs Urological Disorder drugs
Genitourinary and Sex Hormones
Notes : [1] The classification of Western medicine drugs follows the Anatomical Therapeutic Chemical (ATC)
classification developed by the World Health Organization. The classification of CHM drugs is developed by the
MENET Database, with reference to the ATC classification. [2] Systemic Hormonal Preparations in WM drugs
excluding Sex Hormones and Insulins.

for treating respiratory diseases, cardiovascular diseases and tumors, we conduct separate

regressions for each of the six combinations of origin of medicine and disease group.

The variable PM2.5it represents the mean of PM2.5 in city i during year t. Consid-

ering the potential lag effects of air pollution on health and its typical peak in the winter

in China, we define a year in the regression as the period from the fourth quarter of one

calendar year to the third quarter of the following calendar year to better capture the

dynamic effects of pollution.

Xit is a vector of control variables. Within Xit, the first set of controls comprises

climate-related indicators, including the within-period average precipitation, average hu-

midity, and average temperature. The second set of controls consists of socioeconomic

characteristics of the cities: within-period per capita GDP in city i, fiscal revenue in city

i, the fraction of urban residents covered by employment-based health insurance in city

i, and the number of public hospitals at the provincial level. All regressions include city

fixed effects and year fixed effects.
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2.2 Data
2.2.1 Drug Expenditures

As discussed above, our main dependent variable is the total expenditure on a drug that

occurs in public hospitals in a city in a year. Each drug is identified by its commercial prod-

uct name, dosage, package, and producer. We obtain quarterly expenditure and quantity

consumed data for WM drugs in public hospitals across 20 major Chinese cities from the

MENET database5. For example, an observation in the original data represents the total

expenditure in the city of Beijing in the fourth quarter of 2019 on “Felodipine Tablets”

(dosage: 5mg; package: 28 tablets) produced by “Beijing Union Pharmaceutical Factory”.

We then aggregate the amounts to an annual frequency. The 20 cities include Beijing,

Changchun, Changsha, Chengdu, Chongqing, Fuzhou, Guangzhou, Hangzhou, Harbin,

Jinan, Nanjing, Shanghai, Shenyang, Shenzhen, Shijiazhuang, Taiyuan, Tianjin, Wuhan,

Xi’an, and Zhengzhou. The combined population of the 20 cities was 253.82 million by

the end of 2019. Quarterly data on expenditure and quantity consumed for CHM drugs

are available for nine cities (Beijing, Chengdu, Chongqing, Guangzhou, Harbin, Nanjing,

Shenyang, Xi’an, and Zhengzhou) over the same period. The combined population of

the nine cities was 130.79 million by the end of 2019. The WM drugs data and CHM

drugs data are collected from 1,805 public hospitals, accounting for 60.17% of total public

hospitals in all cities in China. Our sample period cover the years from 2014 to 2019.

To mitigate the impact of outliers, observations with annual per capita expenditure

and annual average prices falling below the 1st percentile or exceeding the 99th percentile

are excluded. Consequently, we retain 28,636, 49,110, and 47,205 observations for Western

Medicine (WM) drugs associated with respiratory diseases, cardiovascular diseases, and

tumors, respectively. Similarly, for CHM drugs in the same categories, we retain 8,748,

13,249, and 4,033 observations.
5Source: https://www.menet.com.cn/menetDatabase/dbCountyHispital.html
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In Figure 1, the time series of nominal expenditures on WM drugs for the treatment

of respiratory diseases and cardiovascular diseases exhibit no discernible trends, while

expenditure on antitumor drugs demonstrates an upward trajectory. In contrast to WM

drugs, the per capita expenditure on cardiovascular diseases is higher than that on tumors

for CHM drugs. The expenditures remain stable over the sample period, signifying the

enduring significance of CHM drugs in medical practice in China. Figure 2 illustrates

the per capita drug expenditure for each type of drug in all cities in 2019. There is a

pronounced regional disparity in per capita expenditure for both WM drugs and CHM

drugs. Notably, in 2019, the city with the highest GDP per capita (Nanjing, 165,294 yuan)

exceeded the expenditure of the city with the lowest GDP per capita (Shenyang, 40,324

yuan) by 310%. Locations of the cities, together with drug expenditures, are shown in

Figure 3.
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Figure 1: Expenditures on Western Medicine and Chinese Herbal Medicine Drugs

Notes : The top panel and bottom panel plot the current price expenditures per capita on WM drugs
and CHM drugs, respectively. Source: authors’ calculation.

10



Figure 2: City-level Expenditures on WM drugs and CHM drugs

Notes : The left panel shows the current price expenditures per capita on Western medicine drugs for
treating respiratory diseases, cardiovascular diseases and tumors in 20 cities in 2019. The right panel
shows the current price expenditures per capita on Chinese herbal medicine drugs for treating respiratory
diseases, cardiovascular diseases and tumors in nine cities in 2019. Source: authors’ calculation.
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Figure 3: Maps of City-level Expenditures on WM drugs and CHM drugs

Notes : The top (bottom, respectively) panel shows locations of cities and combined current price
expenditures per capita on Western medicine drugs (Chinese herbal medicine) for treating respiratory
diseases, cardiovascular diseases and tumors, averaged between 2014 to 2019. Source: authors’
calculation.
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2.2.2 Air Pollution

Our measure for air pollution is PM2.5. The primary data source is PM2.5 pollution

metric provided by the Tracking Air Pollution program. This program integrates data

from satellite-based observations by the National Aeronautics and Space Administration

(NASA) and ground-based facilities in China. 6 In the robustness checks, we also use

the PM2.5 data from the Air Quality Index (AQI) published by the Chinese government,

derived from readings obtained through a network of ground-based detection facilities.

To account for weather conditions, we have retrieved the daily values of tempera-

ture, precipitation, humidity, wind speed, and temperature inversion from representative

meteorological stations in each city through the National Weather Bureau. We include

their annual averages in the regressions. Following the common practice in the literature

(Bondy, Roth, and Sager, 2020; Peet, 2021), we employ maximum wind speed and temper-

ature inversion as instrumental variables for the weather data metrics. Figure 4 illustrates

the substantial variation in air pollution levels across cities. Simultaneously, air quality

has demonstrated improvement in all cities over time. From the map in Figure 5, we can

see that the pollution level is higher in northern China on average.
6The Tracking Air Pollution in China initiative is managed by a group of researchers at Tsinghua

University, and the data is accessible at http://tapdata.org.cn.

13



Figure 4: City-level PM2.5

Notes : This figure illustrates the annual average PM2.5 of 20 cities in 2015 and 2019. The PM2.5 data
are based on readings from a system of ground-based facilities and the information from NASA satellites.
Source: authors’ calculation.
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Figure 5: Map of City-level PM2.5

Notes : The map shows locations of cities and the level of PM2.5 averaged between 2014 to 2019. Source:
authors’ calculation.

As for socioeconomic characteristics, we incorporate the following indicators: per

capita GDP from the National Bureau of Statistics, fiscal revenue from WIND datasets,

the fraction of urban residents covered by employment-based health insurance from the

China City Statistical Yearbook, and the number of public hospitals at the provincial level

from the China Health Statistical Yearbook. A summary of the key variables is provided

in Table 2. In addition to the previously noted disparities in drug expenditure, there

exists substantial variation in key socioeconomic indicators such as GDP per capita, fiscal

revenue per capita, household income, and educational attainment.
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Table 2: Summary Statistics

Variable N Mean SD Min Max
Dependent Variables :
Annual expenditure per capita
WM drugs: respiratory diseases 28,636 0.067 0.157 0 1.338
(yuan)

CHM drugs: respiratory diseases 8,748 0.131 0.372 0 3.911
(yuan)

WM drugs: cardiovascular diseases 49,110 0.113 0.308 0 2.681
(yuan)

CHM drugs: cardiovascular diseases 13,249 0.317 0.695 0 5.482
(yuan)

WM drugs: tumors 47,205 0.246 0.522 0 3.794
(yuan)

CHM drugs: tumors 4,033 0.526 1.026 0 7.008
(yuan)

Measures of Air Pollution
Annual PM2.5 in TAP data, mean 140 52.290 19.104 16.410 106.205
(µg/m3)

Annual PM2.5 in TAP data, maximum 140 182.843 63.584 47.967 334.362
(µg/m3)

Annual PM2.5 in AQI data, mean 120 54.238 17.138 23.964 100.215
(µg/m3)

Annual PM2.5 in AQI data, maximum 120 263.486 141.669 72.375 903.792
(µg/m3)

Weather Controls
Annual precipitation 140 3.188 1.043 1.366 5.970
(mm)

Annual average relative humidity 140 66.385 9.905 47.265 83.158
(%)

Annual average temperature 140 15.661 4.621 4.302 24.046
(Celsius)

Socioeconomic Factors
Annual GDP per capita 140 88335.570 33034.430 13744 165294
(yuan)

Number of public hospitals in the province 133 1151.797 547.062 328 2615

Percentage of employee subscribed to basic 140 0.465 0.538 0.004 4.525
health insurance over residents(%)

Annual fiscal revenue per capita 140 11436 6438 3001 29509
(yuan)

Household income 133 40823 11310 23058 73849
(yuan)

Fraction of residents with college education 140 16.001 8.473 7.730 50.490
(%)

Notes : [1] Each drug is identified by commercial product name, dosage, package, and producer. For example,
an observation is the total expenditure on ‘Felodipine Tablets’ (size:5mg; packaging: 28 tablets) produced by
‘Beijing Union Pharmaceutical Factory’ in the city of Beijing in 2019. [2] The source of Air Quality Index (AQI)
data is prefecture-level governments in China. The source of TAP data is the Tracking Air Pollution in China
program run by a group of researchers at Tsinghua University.
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3 Benchmark Results
3.1 OLS estimates of effects of air pollution on drug expenditure

We report the OLS estimation results based on the specification in equation (1) in column

(1) of Table 3. A 1% increase in the average level of PM2.5 during a year is associated

with an average increase of 0.95% in per capita expenditure on western respiratory drugs.

As for CHM drugs for treating respiratory diseases, the corresponding elasticity estimate

in column (3) is 1.62%, exceeding that of WM drugs. The estimated coefficients of the

socioeconomic control variables align with common intuition, as drug expenditures per

capita are higher in cities with higher GDP per capita, higher medical insurance cov-

erage, and better access to hospitals. Per capita fiscal revenue demonstrates a positive

relationship with drug expenditure, although this association lacks statistical significance.

Collectively, these regression results establish a statistically and practically significant

relationship between the level of air pollution and expenditure on respiratory drugs.

Relative to respiratory diseases, cardiovascular diseases and tumors are typically

more chronic and hence can be practically more important for understanding long-term

consequences of air pollution. We report regression results for cardiovascular diseases

in Table 4. In the OLS regressions reported in Columns (1) and (3), a 1% increase

in the average level of PM2.5 during a year is associated with an average increase of

0.83% in per capita expenditure on WM drugs for treating cardiovascular diseases, and

an average increase of 2.00% in per capita expenditure on CHM drugs. Antitumor drugs

are also crucial for our analysis of drug expenditures, as the group of drugs ranks first in

expenditures on WM drugs among all 14 groups of drugs and second in CHM drugs among

all 13 groups of drugs reported in Table 1. In the OLS regression analysis presented in

Columns (1) and (3) in Table 5, we observe that a 1% increase in the annual average level

of PM2.5 is associated with a 1.27% increase in per capita spending on western tumor

drugs and a 1.93% increase in per capita spending on CHM drugs.
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Table 3: Per capita Drug Expenditure: Respiratory Diseases

Western medicine Chinese herbal medicine

(1) (2) (3) (4)
OLS 2SLS OLS 2SLS

ln(PM2.5) 0.952∗∗∗ 2.963∗∗∗ 1.623∗∗∗ 5.571∗∗∗
(0.067) (0.295) (0.242) (0.560)

ln(Precipitation) 0.196∗∗∗ 0.522∗∗∗ 0.415∗∗∗ 1.319∗∗∗
(0.026) (0.040) (0.036) (0.186)

ln(Humidity) -0.181∗∗ 0.288∗∗ -0.274 -0.700
(0.083) (0.075) (0.284) (0.492)

ln(Temperature) 0.516∗∗∗ 2.536∗∗∗ 0.894∗∗∗ 4.176∗∗∗
(0.047) (0.176) (0.264) (0.491)

ln(GDP per capita) 2.638∗∗∗ 5.035∗∗∗ 2.713∗∗∗ 4.972∗∗∗
(0.176) (0.368) (0.053) (0.053)

ln(Fiscal revenue) 0.282 1.252 0.830 2.081
(0.489) (0.669) (1.297) (1.155)

ln(Health insurance) 0.216∗∗∗ 0.611∗∗∗ 0.320∗∗∗ 0.946∗∗∗
(0.038) (0.055) (0.032) (0.033)

ln(Hospital) 1.161∗∗∗ 1.518∗∗∗ 0.121 -0.921
(0.107) (0.241) (0.505) (0.476)

City FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Dep. Var. Mean 2.423 2.423 2.957 2.957
CD F statistic 1270.697 558.707
KP F statistic 1662.084 322.563
Within R2 0.224 0.268
N 28,636 28,636 8,748 8,748
Notes : [1] Table reports OLS and 2SLS estimates of equation (1) from the main text. [2] Dependent variable
is the log of per capita expenditure on drug j for treating respiratory diseases in city i in year t. The variables
PM2.5, Precipitation, Humidity, Temperature, GDP per capita, Fiscal revenue, Health insurance, and
Hospital are the annual average PM2.5, annual precipitation, annual average humidity, annual average tem-
perature, GDP per capita, fiscal revenue per capita, and fraction of residents covered by basic public health
insurance in city i in year t. The variable Hospital is the number of public hospitals in the province to which a
city belongs in year t. [3] ***, **, * denote significance at the 1%, 5% and 10% level, respectively. [4] Standard
errors reported in parenthesis are clustered by disease category. There are 6 categories of drugs within western
medicine drugs for treating respiratory diseases.
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Table 4: Per capita Drug Expenditure: Cardiovascular Diseases

Western medicine Chinese herbal medicine

(1) (2) (3) (4)
OLS 2SLS OLS 2SLS

ln(PM2.5) 0.829∗∗∗ 3.592∗∗∗ 1.998∗∗∗ 4.347∗∗∗
(0.060) (0.198) (0.167) (0.313)

ln(Precipitation) 0.204∗∗∗ 0.587∗∗∗ 0.416∗∗∗ 1.098∗∗∗
(0.039) (0.029) (0.031) (0.060)

ln(Humidity) -0.145∗ -0.066 -0.798∗∗∗ -0.586∗∗∗
(0.083) (0.075) (0.023) (0.040)

ln(Temperature) 0.573∗∗∗ 2.905∗∗∗ 1.284∗∗∗ 3.256∗∗∗
(0.027) (0.187) (0.077) (0.188)

ln(GDP per capita) 2.696∗∗∗ 5.329∗∗∗ 3.260∗∗∗ 6.414∗∗∗
(0.167) (0.124) (0.198) (0.267)

ln(Fiscal revenue) -0.316 1.493∗∗ -1.886∗∗∗ -1.355∗∗
(0.406) (0.563) (0.461) (0.400)

ln(Health insurance) 0.248∗∗∗ 0.668∗∗∗ 0.490∗∗∗ 1.010∗∗∗
(0.048) (0.041) (0.086) (0.068)

ln(Hospital) 1.138∗∗∗ 1.501∗∗∗ 0.331∗∗∗ 0.455∗
(0.090) (0.111) (0.119) (0.154)

City FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Dep. Var. Mean 2.617 2.617 3.952 3.952
CD F statistic 1995.189 941.627
KP F statistic 1794.176 23781.385
Within R2 0.198 0.267
N 49,110 49,110 13,249 13,249
Notes : [1] Table reports OLS and 2SLS estimates of equation (1) from the main text. [2] Dependent variable
is the log of per capita expenditure on drug j for treating cardiovascular diseases in city i in year t. The
variables PM2.5, Precipitation, Humidity, Temperature, GDP per capita, Fiscal revenue, Health insurance,
and Hospital are the annual average PM2.5, annual precipitation, annual average humidity, annual average
temperature, GDP per capita, fiscal revenue per capita, and fraction of residents covered by basic public health
insurance in city i in year t. The variable Hospital is the number of public hospitals in the province to which a
city belongs in year t. [3] ***, **, * denote significance at the 1%, 5% and 10% level, respectively. [4] Standard
errors reported in parenthesis are clustered by disease sub-category. [5] For OLS regression, we report within
adjusted R2.
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Table 5: Per capita Drug Expenditure: Tumors

Western medicine Chinese herbal medicine

(1) (2) (3) (4)
OLS 2SLS OLS 2SLS

ln(PM2.5) 1.268∗∗∗ 4.910∗∗∗ 1.928∗∗∗ 4.763∗
(0.065) (0.348) (0.032) (0.430)

ln(Precipitation) 0.274∗∗∗ 0.701∗∗∗ 0.567∗∗∗ 1.082
(0.013) (0.031) (0.061) (0.195)

ln(Humidity) -0.217∗∗ 0.033 -0.712 -1.262∗
(0.096) (0.104) (0.503) (0.101)

ln(Temperature) 0.863∗∗∗ 4.050∗∗∗ 1.072∗∗∗ 3.516∗
(0.048) (0.311) (0.199) (0.377)

ln(GDP per capita) 3.506∗∗∗ 6.047∗∗∗ 3.707∗∗∗ 6.929∗∗
(0.025) (0.113) (0.173) (0.152)

ln(Fiscal revenue) 1.473∗∗ 3.542∗∗∗ 2.274 1.269
(0.681) (0.348) (1.791) (2.421)

ln(Health insurance) 0.379∗∗∗ 0.826∗∗∗ 0.669∗∗∗ 1.210∗∗
(0.011) (0.117) (0.067) (0.030)

ln(Hospital) 1.572∗∗∗ 2.051∗∗∗ 1.392∗∗ 1.076
(0.102) (0.150) (0.688) (0.717)

City FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Dep. Var. Mean 3.623 3.623 4.667 4.667
CD F statistic 1842.036 277.304
KP F statistic 5925.387 .
Within R2 0.247 0.265
N 47,205 47,205 4,033 4,033
Notes : [1] Table reports OLS and 2SLS estimates of equation (1) from the main text. [2] Dependent variable
is the log of per capita expenditure on drug j for treating tumors in city i in year t. The variables PM2.5,
Precipitation, Humidity, Temperature, GDP per capita, Fiscal revenue, Health insurance, and Hospital
are the annual average PM2.5, annual precipitation, annual average humidity, annual average temperature, GDP
per capita, fiscal revenue per capita, and fraction of residents covered by basic public health insurance in city
i in year t. The variable Hospital is the number of public hospitals in the province to which a city belongs in
year t. [3] ***, **, * denote significance at the 1%, 5% and 10% level, respectively. [4] Standard errors reported
in parenthesis are clustered by disease sub-category. [5] For OLS regression, we report within adjusted R2.
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3.2 Two-Stage Least Squares estimates

Before suggesting that the estimated relation is causal, we must consider and address

potential endogeneity bias in estimation. The leading cause of endogeneity bias is missing

variable. For instance, it is well known in China that individuals sensitive to air pollution

may travel, especially in the winter, to cities with better air quality to avoid the adverse

effect of air pollution. Such seasonal migration pattern will reduce expenditure on drugs in

cities subject to heavy air pollution and bias our estimates toward zero. Another source of

endogeneity bias is measurement error in PM2.5 that is correlated with control variables.

For instance, because a city with fewer fiscal resources faces more challenge in maintaining

the quality in data collection, the measured level of PM2.5 may not adequately reflect the

average degree of air pollution experienced by residents in the city. Meanwhile, because it

is unlikely that expenditures on drugs affect air quality, endogeneity bias caused by reverse

causality is a lesser concern.

To address the potential endogeneity bias associated with missing variables or mea-

surement errors, we follow the literature to use maximum wind speed and temperature

inversion in a year as instrumental variables for PM2.5 in regression analysis. When wind

is strong at a location, pollution tends to linger in the local air for a shorter period of time.

Temperature inversion refers to the situation in which air temperature near the ground

level is lower than in the layer of atmosphere above. When temperature inversion occurs,

it is more difficult for pollutants to diffuse in the air, leading to a higher concentration of

air pollutants. The 2SLS regression results in columns (2) and (4) of Table 3 reveal that

the coefficients on PM2.5 remain positive and significant, indicating a likely causal effect

of PM2.5 on expenditure on respiratory drugs. The magnitude of the coefficients (2.96

and 5.57) is substantially larger than the OLS estimates (0.95 and 1.62).7

Regarding cardiovascular diseases and tumors, the 2SLS regressions in columns (2)
7In unreported regressions, we use indicators for four directions of wind as instrumental variables and

obtain similar results.
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and (4) of Table 4 and Table 5 reveal that a 1% increase in the average level of PM2.5

during a year is associated with an average increase of 3.59% and 4.91%, respectively,

in per capita expenditure on WM drugs for treating cardiovascular diseases and tumors.

The coefficients of PM2.5 for CHM drugs are 4.35 and 4.76, respectively. Similar to the

regressions for expenditure on respiratory drugs, the coefficients in 2SLS are significantly

larger compared to the OLS coefficients in columns (1) and (3) of the same table.

The large difference between OLS and 2SLS coefficients is common in studies that

use wind speed and temperature inversion as IVs (e.g., Fu, Viard, and Zhang 2021). In the

remainder of the paper, we mainly report and discuss results based on 2SLS regressions

with the understanding that OLS estimates provide conservative yet still practically large

estimate of the impact of air pollution. Overall, the benchmark results in Table 3, Table 4,

and Table 5 provide city-level evidence of the adverse health effects of air pollution on drug

expenditures. In addition, the responsiveness of drug expenditure on CHM drugs is much

larger in the sample of respiratory and cardiovascular diseases, as the coefficients on PM2.5

for CHM drugs(5.57 and 4.35) are larger than their WM drug counterparts (2.96 and 3.59).

For tumors, the coefficient for PM2.5 in the case of CHM drugs (4.76) is slightly smaller

than WM drugs (4.91).

To assess the explanatory power of PM2.5, we follow Korovkin and Makarin (2023)

to compute the following statistic

explanatory power =
[ln(PM2.5p75)− ln(PM2.5p25)] · |βPM2.5|
ln(expenditurep75)− ln(expenditurep25)

· 100% (2)

where PM2.5p25 and PM2.5p75 are the 25th and 75th centiles of PM2.5 values net of

year and city fixed effects,8 βPM2.5 the coefficient on PM2.5 in the 2SLS regressions, and

expenditurep25 and expenditurep75 the 25th and 75th centiles of per capital expenditure

net of year and fixed effects.
8To obtain these values, we regress lnPM2.5i,t on year and city fixed effects and obtain the residuals.

The 25th and 75th centiles of the residuals are the 25th and 75th centiles of PM2.5 values net of year and
city fixed effects.

22



As summarized by Table 6, the statistics for explanatory power are 9.7%, 10.9% and

14.0% for WM drugs for treating respiratory diseases, cardiovascular diseases and tumors,

respectively. The corresponding percentages for CHM drugs for the same three groups of

diseases are 17.1%, 12.8% and 14.8%. Therefore, air pollution appears to be an important

factor in explaining the variation in drug expenditures, especially expenditures on CHM

drugs.

Table 6: Explanatory Power of PM2.5

Variables p25 p75 p75-p25 β Power(%)
Panel A. Respiratory Diseases: Western medicine

ln(PM2.5) -0.042 0.064 0.107 2.963 9.658
ln(expenditure per capita) -1.742 1.550 3.292

Panel B. Respiratory Diseases: Chinese herbal medicine

ln(PM2.5) -0.032 0.064 0.097 5.571 17.108
ln(expenditure per capita) -1.683 1.466 3.149

Panel C. Cardiovascular Diseases: Western medicine

ln(PM2.5) -0.040 0.063 0.103 3.592 10.939
ln(expenditure per capita) -1.833 1.539 3.373

Panel D. Cardiovascular Diseases: Chinese herbal medicine

ln(PM2.5) -0.036 0.056 0.092 4.347 12.823
ln(expenditure per capita) -1.581 1.544 3.125

Panel E. Tumors: Western medicine

ln(PM2.5) -0.036 0.063 0.099 4.910 14.048
ln(expenditure per capita) -1.750 1.711 3.461

Panel F. Tumors: Chinese herbal medicine

ln(PM2.5) -0.036 0.058 0.094 4.763 14.772
ln(expenditure per capita) -1.531 1.495 3.026
Note: The table reports statistics for explanatory power of PM2.5, which is the fraction of interquartile range
of log per capita expenditure on drugs explained by the interquartile range of log PM2.5. The formula for the
statistic is explanatory power =

[ln(PM2.5p75)−ln(PM2.5p25)]·|βPM2.5|
ln(expenditurep75)−ln(expenditurep25)

· 100%.

Our estimates suggest that a 10 µg/m3 increase in the annual average PM2.5 results

in a per capita annual increase of 108.27 yuan in both WM and CHM drug expenditures

related to the three disease groups. This figure is calculated as follows: In our sample,

the mean annual satellite-measured PM2.5 is 52.3 µg/m3 (denoted as PM2.5base), and

a 10 µg/m3 increase corresponds to a new value of 62.3 µg/m3 (denoted as PM2.5new).
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Using the elasticity coefficients (βg) from benchmark regressions, we calculate the predicted

change in expenditure for each disease group g:

ln(expenditureg,new)− ln(expenditureg,base) = βg × [ln(PM2.5new)− ln(PM2.5base)].
(3)

For the baseline expenditure on WM drugs treating respiratory diseases, cardiovas-

cular diseases, and tumors (23.44, 66.21, and 122.76 yuan per capita annually from 2014

to 2019) and the respective coefficients of 2.963, 3.592, and 4.910, we use the formula:

ln(expenditureg,new) = [ln(62.3) − ln(52.3)] ∗ βg + ln(expenditureg,base). Consequently,

the annual expenditures for the three groups are projected to increase to 27.69, 76.55, and

153.26 yuan per capita, respectively.

For CHM drugs used in the treatment of respiratory diseases, cardiovascular diseases,

and tumors, the anticipated new expenditure levels are 38.90, 124.71, and 58.54 yuan per

capita annually. The total increase in annual expenditure across these six groups, 108.27

yuan per capita, is obtained by adding the new expenditures and subtracting the baseline

figures: (27.69 + 76.55 + 153.26 + 38.90 + 124.71 + 58.54) - (23.44 + 66.21 + 122.76 +

29.28 + 87.91 + 41.77).9
9In the context of China, several studies based on different datasets consistently report a significant

economic cost of air pollution. Utilizing a dataset comprising the universe of credit and debit card transac-
tions from 2013 to 2015, Barwick et al. (2018) estimate the impact of air pollution on healthcare spending.
Their estimates imply that a decrease of PM2.5 by 10 micrograms per cubic meter (µg/m3) would result in
at least 43.47 yuan reduction in annual healthcare spending per capita. This amount is equivalent to 1.5%
of the annual healthcare expenditure in their sample. Based on the China Family Panel Studies dataset,
Liao, Du, and Chen (2021) suggest a larger estimate that an increase of PM2.5 by 10 µg/m3 is associated
with an increase in annual per capita medical cost of 60.84 yuan in 2016-2018. Focusing on the single city
of Wuhan, Zhang et al. (2023) analyze the expenditure records of 1% randomly-selected patients at public
health access points in 2013-2015. They found that a 10µg/m3 reduction in monthly average PM2.5 is
estimated to lower annual healthcare expenditure by 43.87 yuan. In comparison, Xia et al. (2022) take
a short-term perspective. They found that following a 10µg/m3 increase in daily PM2.5 concentrations
in Beijing, per beneficiary expenditure recorded in public health care system in the subsequent three-day
period increases by 0.38%.
In the current study, we estimate that a 10 µg/m3 increase in annual average PM2.5 will result in a

108.27 yuan increase in drug expenditures associated with the three groups of diseases. While the difference
in data sources, scope of expenditures, and time interval studied prevents a straightforward comparison
of economic costs between the above four studies and ours, our estimated expenditure effect confirms the
existence of a significant medical cost. In comparison to these studies, we emphasize the importance of
CHM drugs in understanding the impact of air pollution, as the expenditure response associated with
CHM drugs is also quantitatively large.
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Lastly, exploiting the information on the quantity of drugs consumed in our dataset,

we run regressions with quantity as the dependent variable. We report the results in

Panel A of Table 7, while the benchmark results from the expenditure regressions are

reproduced in Panel B for comparison. The relation between PM2.5 and the quantity of

drugs consumed are all positive and significant. The sizes of coefficients in the quantity

regressions are equal to 0.30 to 0.75 times their counterparts in the expenditure regressions.

Loosely speaking, around half of the increase in expenditure can be explained by increase

in quantities of drug consumed.

Table 7: Effects of Air Pollution on Quantity of Drugs Consumption: 2SLS

Respiratory Diseases Cardiovascular Diseases Tumors

Panel A: Dep. Var. (1) (2) (3) (4) (5) (6)
ln(Quantity per capita) WM CHM WM CHM WM CHM
ln(PM2.5) 1.857∗∗∗ 2.513∗∗∗ 2.695∗∗∗ 2.273∗∗∗ 1.497∗∗ 1.749∗

(0.240) (0.331) (0.264) (0.144) (0.414) (0.227)
All other controls Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Dep. Var. Mean 1.480 1.032 1.888 1.389 0.936 1.261
N 28638 8748 49110 13249 47205 4033

Respiratory Diseases Cardiovascular Diseases Tumors

Panel B: Dep. Var. (1) (2) (3) (4) (5) (6)
ln(Expenditure per capita) WM CHM WM CHM WM CHM
ln(PM2.5) 2.963∗∗∗ 5.571∗∗∗ 3.592∗∗∗ 4.347∗∗∗ 4.910∗∗∗ 4.763∗

(0.295) (0.560) (0.198) (0.313) (0.348) (0.430)
All other controls Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Dep. Var. Mean 2.423 2.957 2.617 3.952 3.623 4.667
N 28636 8748 49110 13249 47205 4033
Notes : [1] Table reports 2SLS estimates of equation (1) from the main text. [2] Dependent variable in Panel A
is the log of quantity of drug consumption per capita of the relevant city in a year. Dependent variable in Panel
B is the log of expenditure of drug consumption per capita of the relevant city in a year. [3] ***, **, * denote
significance at the 1%, 5% and 10% level, respectively. [4] Standard errors reported in parenthesis are clustered
by disease sub-category. [5] All other controls include weather and socioeconomic controls.
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3.3 Significance of expenditures on CHM drugs

In this subsection, we highlight the practical significance of estimated effects of air pollu-

tion on expenditure on drugs, especially CHM drugs. In our sample, per capita expendi-

ture on WM and CHM drugs is 652.23 yuan and 262.22 yuan, respectively.10 Within the

per capita expenditure on WM drugs (CHM drugs, respectively), the share of WM drugs

(CHM drugs) for treating respiratory diseases is 3.59% (11.17%) and the amount is 23.44

yuan (29.28 yuan).

Multiplying coefficient on PM2.5 in the 2SLS regression for WM drugs in Table 3

with the per capita drug expenditures on WM drugs, a 1% increase in PM2.5 value is

expected to increase the expenditure on WM drugs for treating respiratory diseases by 0.69

yuan (23.44× 2.963% = 0.69 yuan), which is equivalent to 0.1% of per capita expenditure

on WM drugs. The corresponding numbers for CHM drugs for treating respiratory diseases

are 1.63 yuan and 0.62%.

In terms of the share in drug expenditure, cardiovascular diseases are more promi-

nent than respiratory diseases, as the share of WM drugs (CHM drugs, respectively) for

treating cardiovascular diseases make up 10.15% (33.53%) of total expenditure on all WM

drugs (CHM drugs). Multiplying coefficient on PM2.5 in the 2SLS regression for WM

drugs in Table 4 with the per capita drug expenditures on WM drugs, we find that a 1%

increase in PM2.5 value is associated with a 2.38 yuan rise in expenditure on WM drugs

for treating cardiovascular diseases, resulting in 0.36% increase in per capital expendi-

ture on WM drugs. The corresponding figures for CHM drugs used in the treatment of

cardiovascular diseases are 3.82 yuan and 1.50%.

WM drugs (and CHM drugs, respectively) for treating tumors make up 18.82%

(15.93%) of the total expenditure on all WM drugs (CHM drugs). And the expenditure
10The per capita expenditure on WM drugs (CHM drugs, respectively) is calculated by dividing total

expenditure on all WM drugs (CHM drugs) in all cities in the sample by the total population of these
cities.
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on antitumor drugs is the highest among 14 groups of drugs. By multiplying the coefficient

on PM2.5 in the 2SLS regression on WM drugs in Table 5 with per capita expenditures

on WM drugs, we observe that a 1% increase in the PM2.5 value is associated with a 6.03

yuan increase in expenses on WM drugs for treating tumors, resulting in a 0.92% rise in

per capita expenditure on WM drugs. The corresponding figures for CHM drugs used in

the treatment of tumors are 1.99 yuan and 0.76%.

Taken together, a 1% increase in PM2.5 causes practically significant rise in drug

expenditures. The combined increase in drug expenditures on WM drugs at 9.10 yuan

(the sum of 0.69 yuan for respiratory diseases, 2.38 yuan for cardiovascular diseases, and

6.03 for tumors) which is equal to 1.00% of the per capital expenditure on all drugs in

our sample. In comparison, following a 1% rise in PM2.5, the combined increase in drug

expenditures on CHM drugs at 7.44 yuan (the sum of 1.63 yuan for respiratory diseases,

3.82 yuan for cardiovascular diseases, and 1.99 for tumors) which is equal to 0.81% of

the per capital expenditure on all drugs in our sample. To the best of our knowledge,

we are the first to examine separately expenditures on WM drugs and CHM drugs. Our

results highlight the importance of CHM drugs in the understanding of drug expenditures

in general.

4 Regional Disparities in Response of Drug Expenditures to
Pollution

4.1 Socioeconomic factors

Existing research indicates that individual-level factors affect their exposure to pollution.

Individuals at low socioeconomic status, measured by income, level of education, occupa-

tion, ethnicity, nationality, social security enrollment, neighborhood, and household reg-

istration status, are disproportionately exposed to environmental pollution (Tonne et al.,

2008; Currie, Neidell, and Schmieder, 2009; Currie, 2011). Recognizing the importance of

socioeconomic factors, we examine whether the regional disparities in three such factors
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contribute to the disparities in drug expenditures associated with air pollution.

The first factor is local fiscal resources. In the discussion of public health policy,

differences in fiscal resources across countries are known to be a driver of disparities in

health care spending (WHO et al., 2018). In the context of China, because as a significant

portion of the funding of local public health programs comes from the budgets of cities,

the fraction of expenditure covered by the public medical insurance programs vary consid-

erably across cities.11 We include in the regression fiscal revenue per resident to capture

the effect of local fiscal resources on drug expenditure.

The second factor is household disposable income. If the burden of drug costs is

significant enough, we should observe that cities with lower per capita disposable income

will spend less on drugs following a rise in air pollution. Moreover, individuals with more

disposable income are more likely to seek information related to personal health, have

better access to information, and achieve a higher level of health literacy (Tang et al.,

2019). Therefore, we conjecture individuals with more disposable income are more likely

to spend more on medical treatment following an increase in air pollution.

The third factor is education attainment. Individuals with better education are more

likely to possess better knowledge of air pollution and seek medical help after observing

symptoms related to pollution. In addition, these individuals may contribute to positive

externalities by sharing their knowledge about air pollution. Therefore, we add the fraction

of college graduates among residents to the regression to examine the effect of education

on drug expenditure.12

We introduce each of the three variables along with its interaction with PM2.5

into the benchmark regressions. Due to our focus on these socioeconomic factors, in this
11In a policy document titled “Key Tasks For Further Reform of the Medical and Health Care System

in 2022” (Shenhua Yiyao Weisheng Tizhi Gaige 2021 Nian Zhongdian Gongzuo Renwu), the State Council
of China recognized the substantial difference in coverage of medical insurance programs that are run by
and called for further integration of the programs in each province.

12The three variables are retrieved from the National Bureau of Statistics of China and China Health
Statistical Yearbook.
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section, we pool the observations from all three disease groups to estimate the interaction

effects. In the regressions reported in Table 8, we remove the sample mean from all

variables that are interacted, such that the main coefficient on each of these variables is

the marginal effect of the variable evaluated at the sample mean.

The coefficient on the interaction term between fiscal revenue per resident and PM2.5

is 1.430 and statistically significant for expenditure on WM drugs. If ln(Fiscal revenue)

increases by one standard deviation (0.527 in the sample), pollution elasticity of per capita

expenditure on WM drugs rises by 0.75 (0.527 × 1.430 = 0.75). As for expenditure on

CHM drugs, the coefficient on the interaction term is 3.65 but not significant. Thus there

is some evidence that the expenditure response is larger in cities with a higher level of

fiscal revenue per resident.

As for household disposable income, the coefficient on the variable is negative and

significant in two relevant regressions in Table 8. Thus, cities with a higher level of income

report a lower baseline level of drug expenditures, i.e. the expenditure level at a very

low level of air pollution. Meanwhile, coefficients on the two interaction terms involving

household disposable income are 1.892 and 1.861. For cities with ln(HHD income) that

is one standard deviation (0.275 in the sample) above the mean level, pollution elasticity

of per capita expenditure on WM drugs rises by 0.52 (0.275 × 1.892 = 0.52), and the

corresponding elasticity of per capita expenditure on CHM drugs rises by 0.51 (0.275 ×

1.861 = 0.51). Therefore, average household disposable income has a strong influence of

regional disparity in drug expenditures.

Lastly, cities with a higher percentage of college graduates among residents generally

report a lower baseline level of drug expenditures. As the coefficient on the interaction

term in column (3) of Table 8 is 0.112 and highly significant, the expenditures on WM

drugs rise sharply with air pollution in cities with more college-educated residents. For

cities in which the percentage of college graduates is one standard deviation (8.473 in the
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Table 8: Socioeconomic Factors and Regional Disparities in Drug Expenditure

Western medicine:2SLS Chinese herbal medicine:2SLS

(1) (2) (3) (4) (5) (6)
ln(PM2.5) 4.038∗∗∗ 4.209∗∗∗ 6.197∗∗∗ 5.290∗∗∗ 5.762∗∗∗ 7.157∗∗∗

(0.195) (0.228) (0.280) (0.311) (0.332) (0.378)

ln(Fiscal revenue) -2.742 4.693∗∗∗ 6.760∗∗∗ -12.547 -1.838 3.172∗∗∗
(2.833) (0.638) (0.577) (11.462) (1.290) (0.806)

ln(PM2.5)*ln(Fiscal revenue) 1.430∗ 3.650
(0.804) (3.010)

ln(HHD income) -6.277∗∗∗ -5.450∗∗∗
(0.613) (1.170)

ln(PM2.5)*ln(HHD income) 1.892∗∗∗ 1.861∗∗∗
(0.153) (0.372)

Education -0.376∗∗∗ -0.074∗
(0.017) (0.037)

ln(PM2.5)*Education 0.112∗∗∗ 0.008
(0.005) (0.009)

All other controls Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Category FE Yes Yes Yes Yes Yes Yes
Dep. Var. Mean 2.952 2.952 2.952 3.728 3.728 3.728
CD F statistic 2810.254 2350.493 2472.813 913.213 950.186 1353.908
KP F statistic 2383.254 2678.538 3120.141 515.259 511.661 454.628
N 124,951 124,951 124,951 26,030 26,030 26,030
Notes : [1] Table reports disparities associated with socioeconomic factors. Dependent variable is the log of per
capita expenditure on drugs of the relevant city in a year. [2] *, ** and *** are significance levels at 1%, 5%
and 10%, respectively. [3] Standard errors, clustered by disease sub-category, are reported in parenthesis. [4] All
other controls include socioeconomic and weather controls.
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sample) above the mean level, pollution elasticity of per capita expenditure on WM drugs

rises by 0.95 (8.473×1.112 = 0.95). In comparison, the coefficient on the interaction term

in column (6) is 0.008 and insignificant. Thus, there is no evidence that the responsiveness

of expenditure on CHM drugs is higher in other cities with more college-educated residents.

Overall, the three socioeconomic factors contribute to regional disparities in response

of drug expenditures to air pollution. Cities with a higher level of fiscal revenue, household

disposable income, and a higher fraction of college graduates among residents report a

higher degree of responsiveness in expenditures on WM drug to air pollution. Meanwhile,

household disposable income is the only significant factor that contributes to a higher

degree of responsiveness of expenditure on CHM drugs. To different extents, both public

and private ability to pay contribute, as well as the education attainment of residents, all

contribute to disparities in drug expenditure. 13

4.2 Northern vs. Southern Chinese Cities

Disparities in health care utilization can be ascribed not only to socioeconomic factors

detailed in the preceding subsection, but also to the geographical region of residence

(Sözmen and Ünal, 2016). When it comes to China, air quality in northern China is poorer

than southern China because of heavier use of coal in heating seasons, less precipitation,

and other factors. The literature on air pollution in China has established that the poor

air quality in northern China lowers life expectancy and raises mortality rate (Chen et al.,

2013; Ebenstein et al., 2017; Gong et al., 2023). Therefore, residents in northern China

might be forced to spend more to treat pollution-related diseases. On the other hand,

because humans can adapt to the environment (Komolafe et al., 2014), expenditure effects

of air pollution in the north may be mitigated by such adaptation.

To investigate whether the poor air quality in northern China leads to an expenditure
13It is perhaps surprising that higher values of the latter two variables are related to a lower level of

baseline drug expenditure. Future work is required to understand the mechanism through which higher
household income and better education reduce baseline drug expenditures.
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pattern different from southern China, we introduce to 2SLS regressions an indicator

variable for northern cities and interact it with air pollution.14 Similar to Subsection

4.1, we pool all observations from all three diseases groups. As presented in Table 9,

the coefficients on the interaction term between PM2.5 and indicator for northern cities

are positive and significant, which indicates a larger response of drug expenditure to air

pollution in northern cities than southern cities. As we alternate the dependent variable

among expenditure on WM and CHM drugs, the coefficients on the interaction term

are 1.02 and 2.03. Overall, the difference in pollution elasticities between southern and

northern China is significant in both economic and statistical sense.

Table 9: Difference between Northern and Southern Cities of China

(1) (2)
Western medicine: 2SLS Chinese herbal medicine: 2SLS

ln(PM2.5)*North 1.022∗∗∗ 2.029∗∗∗
(0.107) (0.153)

ln(PM2.5) 3.573∗∗∗ 3.678∗∗∗
(0.229) (0.209)

All other controls Yes Yes
City FE Yes Yes
Year FE Yes Yes
Category FE Yes Yes
Dep. Var. Mean 2.952 3.728
CD F statistic 2764.136 1140.193
KP F statistic 2218.415 444.321
N 124,951 26030
Notes : [1] Table reports disparities between northern and southern Chinese cities. [2] Dependent variable is the
log of expenditure on drug per capita of the relevant city in a year. [3] *, ** and *** are significance levels at
1%, 5% and 10%, respectively. [4] Standard errors, clustered by disease category, are reported in parenthesis.
[5] All other controls include weather and socio-economic controls.

The findings in Table 9 suggest that northern residents’ drug expenditure is sig-

nificantly more responsive to rise in air pollution than their southern counterparts. In

particular, the north-south difference in sensitivity of drug expenditure is larger for CHM
14In our samples, the northern cities include Beijing, Changchun, Harbin, Jinan, Shijiazhuang, Shenyang,

Taiyuan, Tianjin, Xi’an, and Zhengzhou; the southern cities include Changsha, Chengdu, Chongqing,
Fuzhou, Guangzhou, Hangzhou, Nanjing, Shanghai, Shenzhen, and Wuhan.
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drugs than WM drugs. Based on these results, targeted interventions aimed at reducing

air pollution in the northern cities may be particularly effective in mitigating the burden

of drug expenditure.

5 Robustness and Extension

In this section, we present results on the robustness of results to alternative measures of air

pollution and the long-term impact of air pollution. We adopt three alternative measures

of air pollution. Firstly, to alleviate the concern that the PM2.5 based on TAP dataset,

which incorporates information from the ground facilities and NASA satellites, may be

subject to measurement errors, we use the PM2.5 pollution measure from Air Quality

Index (AQI) published by the Chinese government based on readings from a system of

ground-based detection facilities. The data includes information on PM2.5 which is one

of the five components of the AQI. Second, because the exposure to extreme pollution

might be more damaging to health than average exposure, we measure air pollution as

the within-year maximum level of PM2.5 in AQI data and the maximum level of PM2.5

in TAP data. To facilitate comparison, we reproduce benchmark regressions results for

respiratory diseases in column (1) of Panel A and B in Table 10, and report regressions

with alternative pollution measures in other columns.

Based on column (2) of Table 10 Panel A, a 1% increase in maximum level of PM2.5

is associated with a 1.91% increase in per capita expenditure on WM drugs for respiratory

diseases. Columns (3) and (4) of Table 10 are regression of expenditure on the mean

and maximum level of PM2.5 from the AQI data. For both panel A and B, relative to

columns (1) and (3), the coefficient on maximum level of PM2.5 is smaller than mean

level of PM2.5. From the results, it is not conclusive which of mean pollution level and

maximum pollution level is a better indicator for measuring the effect of air pollution on

drug expenditure. Nevertheless, it remains robust that the negative effect of air pollution

33



Table 10: Alternative Measures of Air Pollution: Respiratory Diseases

Panel A: Western medicine

(1) (2) (3) (4)
ln(PM2.5) 2.963∗∗∗

(0.295)
ln(PM2.5 max) 1.906∗∗∗

(0.102)
ln(AQI:PM2.5 mean) 2.296∗∗∗

(0.365)
ln(AQI:PM2.5 max) 1.552∗∗∗

(0.084)
All other controls Yes Yes Yes Yes
City FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Dep. Var. Mean 2.423 2.423 2.454 2.454
N 28,636 28,636 28,215 28,215

Panel B: Chinese herbal medicine

(1) (2) (3) (4)
ln(PM2.5) 5.571∗∗∗

(0.560)
ln(PM2.5 max) 3.934∗∗∗

(0.205)
ln(AQI:PM2.5 mean) 12.003∗∗

(2.306)
ln(AQI:PM2.5 max) 2.919∗∗∗

(0.191)
All other controls Yes Yes Yes Yes
City FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Dep. Var. Mean 2.957 2.957 2.996 2.996
N 8,748 8,748 8,587 8,587
Notes : [1] Table reports 2SLS estimates of equation (1) from the main text. [2] *, ** and *** are significance
levels at 1%, 5% and 10%, respectively. [3] Standard errors, clustered by disease category, are reported in
parenthesis. [4] All other controls include socioeconomic and weather controls.

34



on health is significant. The results of cardiovascular diseases regressions reported in

Table 11 and tumors regressions reported in Table 12, also confirm the robustness regarding

different measures of PM2.5.

Table 11: Alternative Measures of Air Pollution: Cardiovascular Diseases

Panel A: Western medicine

(1) (2) (3) (4)
ln(PM2.5) 3.592∗∗∗

(0.198)
ln(PM2.5 max) 2.065∗∗∗

(0.071)
ln(AQI:PM2.5 mean) 3.041∗∗∗

(0.292)
ln(AQI:PM2.5 max) 1.708∗∗∗

(0.070)
All other controls Yes Yes Yes Yes
City FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Dep. Var. Mean 2.617 2.617 2.645 2.645
N 49,110 49,110 48,457 48,457

Panel B: Chinese herbal medicine

(1) (2) (3) (4)
ln(PM2.5) 4.347∗∗∗

(0.313)
ln(PM2.5 max) 2.788∗∗∗

(0.109)
ln(AQI:PM2.5 mean) 2.882∗∗

(0.686)
ln(AQI:PM2.5 max) 2.277∗∗∗

(0.010)
All other controls Yes Yes Yes Yes
City FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Dep. Var. Mean 3.952 3.952 3.982 3.982
N 13,249 13,249 13,103 13,103
Notes : [1] Table reports 2SLS estimates of equation (1) from the main text. [2] *, ** and *** are significance
levels at 1%, 5% and 10%, respectively. [3] Standard errors, clustered by disease category, are reported in
parenthesis. [4] All other controls include socioeconomic and weather controls.

To examine whether the impact of air pollution lasts beyond a year, we include the

one-year lag of PM2.5 in regressions and report the results in Table 13.15 The benchmark

regressions results for respiratory diseases, cardiovascular diseases and tumors are repro-
15When further lags are introduced in unreported regressions, they are statistically insignificant.
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Table 12: Alternative Measures of Air Pollution: Tumors

Panel A: Western medicine

(1) (2) (3) (4)
ln(PM2.5) 4.910∗∗∗

(0.348)
ln(PM2.5 max) 2.362∗∗∗

(0.172)
ln(AQI:PM2.5 mean) 4.757∗∗∗

(0.591)
ln(AQI:PM2.5 max) 1.980∗∗∗

(0.194)
All other controls Yes Yes Yes Yes
City FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Dep. Var. Mean 3.623 3.623 3.651 3.651
N 47,205 47,205 46,675 46,675

Panel B: Chinese herbal medicine

(1) (2) (3) (4)
ln(PM2.5) 4.763∗

(0.430)
ln(PM2.5 max) 3.239∗

(0.400)
ln(AQI:PM2.5 mean) 2.907∗

(0.425)
ln(AQI:PM2.5 max) 2.537∗

(0.319)
All other controls Yes Yes Yes Yes
City FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Dep. Var. Mean 4.667 4.667 4.698 4.698
N 4,033 4,033 3,995 3,995
Notes : [1] Table reports 2SLS estimates of equation (1) from the main text. [2] *, ** and *** are significance
levels at 1%, 5% and 10%, respectively. [3] Standard errors, clustered by disease category, are reported in
parenthesis. [4] All other controls include socioeconomic and weather controls.
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duced in Column (1), Column (3) and Column (5) respectively. In column (2) of Panel

A, the coefficient on the current year PM2.5 is positive but becomes insignificant, while

the one-year lag of PM2.5 is significant. In Panel B, the lag of PM2.5 has practically zero

effect on CHM drugs, while the current year PM2.5 remains positive and significant.

Table 13: Longer-term Effects of Air Pollution

PanelA: Respiratory Diseases Cardiovascular Diseases Tumors

Western medicine (1) (2) (3) (4) (5) (6)
ln(PM2.5) 2.963∗∗∗ 0.370 3.592∗∗∗ 0.483∗∗ 4.910∗∗∗ 2.240∗∗∗

(0.295) (0.243) (0.198) (0.185) (0.348) (0.196)
Lag.ln(PM2.5) 0.531∗∗ 0.947∗∗∗ 1.055∗∗

(0.194) (0.220) (0.195)
All other controls Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Dep. Var. Mean 2.423 2.678 2.617 2.871 3.623 3.873
N 28,636 20,605 49,110 35,657 47,205 34,539
PanelB: Respiratory Diseases Cardiovascular Diseases Tumors

Chinese herbal medicine (1) (2) (3) (4) (5) (6)
ln(PM2.5) 5.571∗∗∗ 4.076∗∗ 4.347∗∗∗ 1.956∗∗ 4.763∗ 1.814

(0.560) (0.918) (0.313) (0.371) (0.430) (0.552)
Lag.ln(PM2.5) -0.058 0.737∗∗∗ 0.915

(0.155) (0.081) (0.630)
All other controls Yes Yes Yes Yes Yes Yes
City FE Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Dep. Var. Mean 2.957 3.184 3.952 4.165 4.667 4.886
N 8,748 6,224 13,249 9,901 4,033 3,057
Notes : [1] Table reports TSLS estimates of equation (1) combined with the lag of PM2.5 from the main text. [2]
*, ** and *** are significance levels at 1%, 5% and 10%, respectively. [3] Standard errors, clustered by disease
category, are reported in parenthesis. [4] All other controls include socioeconomic and weather controls.

As for cardiovascular diseases, the results in Column (4) show that the one year lag

of PM2.5 has a positive and statistically significant effect on expenditure on both WM and

CHM drugs. The PM2.5 in the current year remains significant. In the case of tumors, the

findings in Column (6) of Panel A reveal a positive and significant impact of a one-year

lag in PM2.5 on WM drug expenditures while the PM2.5 levels in the current year remain

significant. As for the impact on expenditures for CHM drugs, both the current-year

PM2.5 and the one-year lag of PM2.5 are positive but insignificant. Thus, for all three
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groups of diseases, there is strong evidence that the effect of air pollution on expenditures

on WM drugs are persistent. In comparison, the degree of persistence of effect of air

pollution on CHM drugs varies across three groups of diseases.

Lastly, to address the potential impact of the COVID-19 Pandemic on our results,

we also run regressions with data from 2020 to 2021. The findings, not reported here but

available upon request, confirm the baseline results that air pollution continues to have a

significant positive effect on per capita expenditure on WM and CHM drugs for all three

groups of diseases.

6 Conclusion

By utilizing panel data on drug expenditures from major public hospitals in 20 large

Chinese cities over the period from 2014 to 2019, we estimate the impact of air pollution

on expenditures for Western Medicine (WM) and Chinese Herbal Medicine (CHM) drugs

used in treating respiratory diseases, cardiovascular diseases, and tumors. To address

the potential confounding effects of human migration activities and measurement errors

on causal identification, we employ maximum wind speed and temperature inversions as

instrumental variables to establish causality.

The results indicate that air pollution exerts a heavy economic burden by causing

an increase in drug expenditures. After a 1% rise in the annual average of PM2.5, the

total spending on respiratory, cardiovascular, and antitumor medications (including both

Western Medicine and Chinese Herbal Medicine drugs) is expected to rise by 1.81% of the

annual per capita drug expenditure. We examine how air pollution affects spending on WM

and CHM drugs, with the latter having been understudied in the literature. Our findings

indicate that following a PM2.5 increase, the rise in spending and the responsiveness

of spending for CHM drugs are comparable to those for WM drugs, highlighting the

significance of CHM in assessing the economic impacts of air pollution. Socioeconomic
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factors are found to be significant in explaining disparities in the impact of air pollution.

Cities with higher socioeconomic status—proxied by greater per capita fiscal revenue,

higher per capita disposable income, and a larger proportion of college graduates among

residents—spend more on drugs in response to air pollution. Moreover, the response

of drug expenditures to air pollution is more pronounced in cities in Northern China

compared to those in the South.

This study sheds light on the multifaceted impacts of air pollution on drug expen-

ditures, underscoring the importance of considering both WM and CHM drugs in future

research and policy initiatives. Within the medical community and broader Chinese so-

ciety, there is an ongoing discussion about the relative uses of WM versus CHM drugs.

In the context of treating respiratory diseases, cardiovascular diseases, and tumors, our

findings highlight the significant role of CHM drugs in China’s overall drug expenditures.

Clearly, further research is necessary to fully understand the factors that influence the

prescription and consumption patterns of CHM drugs.
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