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Abstract

We investigate the problem of testing the finiteness of moments for a class of semi-
parametric time series encompassing many commonly used specifications. The existence of
positive-power moments of the strictly stationary solution is characterized by the Moment
Determining Function (MDF) of the model, which depends on the parameter driving the
dynamics and on the distribution of the innovations. We establish the asymptotic distri-
bution of the empirical MDF, from which tests of moments are deduced. Alternative tests
based on estimation of the Maximal Moment Exponent (MME) are studied. Power com-
parisons based on local alternatives and the Bahadur approach are proposed. We provide
an illustration on real financial data and show that semi-parametric estimation of the MME
provides an interesting alternative to Hill’s nonparametric estimator of the tail index.

Keywords: Efficiency comparisons of tests, maximal moment exponent, stochastic recurrence equation,
tail index

1 Introduction

If a random variable X does not have finite moments of any order, its distribution is said to be
heavy-tailed. If the distribution of | X| is regularly varying with tail index o > 0, its distribution
is heavy-tailed and it is often said to be fat-tailed. In this case, one can say that the maximal
moment exponent (MME)—that is, the highest finite moment order—of | X| is equal to « because
E|X|* < for u < o and E|X|"* = oo for u > a.

Knowing the tail index (or MME) of the marginal distribution of a stationary time series
model is obviously of interest. Kesten [40] is a primary reference for tail index characterization
of general linear Stochastic Recurrence Equations (SREs). Basrak, Davis and Mikosch [3] gave
conditions for the existence of a tail index for general SREs and showed that the marginal
distribution of a GARCH process is regularly varying. Zhang and Ling [53] showed that, under
mild additional assumptions, the MME is also the tail index of GARCH extensions.

Based on these advances in the probabilistic structure of stochastic processes, tail index and
MME estimators have been proposed and studied by Berkes et al. [5], Chan et al. [14], and
Zhang et al. [52] for particular GARCH-type time series models.
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Surprisingly, little attention has been paid to testing moment finiteness (see however [31]).
Testing the existence of moments seems however crucial, in particular for the validity of many
statistical tools commonly used for the analysis of such models. Even if the consistency of
Quasi-Maximum Likelihood (QML) estimators may hold under strict stationarity without any
extra moment assumption (Berkes, Horvath and Kokoszka [6], and Francq and Zakoian [25]; see
also [27] for a review), many applications rest on finite unconditional moments. =~ Moreover, the
existence of moments for real time series (such as financial returns) is an interesting issue per
se, which is a controversial subject in the empirical literature.

The present paper proposes new methods for testing the existence of moments for a general
class of time series models.

1.1 Time series model

We consider the class of time series models defined, for some subsets H, F', and Y of R, by

{yt = g(ft,n; 60), (1)
fi = o1, fi—1;00),

where 8y € R? is a vector of parameters, (1;)¢=0 is a sequence of independent and identically
distributed (i.i.d.) H-valued random variables and the functions g : F x H — Y and ¢ :
H x F — F are measurable. The times series (y;) is observed, while the process (f;) is latent.
Two important examples are: (i) the additive model y; = f; + 1, in which the variable f; can
be interpreted as a time-varying location parameter, and (ii) the multiplicative model y; = fin,
where the variable f; can be interpreted as a time-varying volatility. More specific models, such
as first-order ARMA or GARCH-type models, belong to this class (examples will be provided
below).

1.2 Two characterizations of the existence of moments

Under conditions given below (see Proposition 2.1), Model (1) admits a strictly stationary solu-
tion (y¢), and f; is independent of 1. We make the assumption that, for any u > 0,

(Elne|* <o A E|fy|" <) = Ely|" <w©. (2)

Note that this implication holds true for the volatility and location models presented above, and
. . . 2 . .

is even an equivalence in the latter case. = Moreover, omitting 8¢ for ease of presentation, we
will show that if f ~ ¢(n, f) is Lipschitz continuous for all € H, we have, for any f° € F,

(B o, f0) = " <o A E{A“(n;00)} < 1) = E|fi|* < 0, (3)

where (e 1) — o, )
A(T]t,OO) = sup O\, J1 O\Nt, J2 )

f1,f2€F fl _f2
fi#fe

1 . . . .
For instance, the existence of the autocorrelation function of any transform (e.g. square or absolute values)
of the returns requires appropriate moments; prediction of the squared returns over a long horizon requires a
finite variance, and prediction confidence intervals require fourth-order moments.

2
Indeed, in the location model we have, through the C, inequality, E|y:|* < Cu(E|fi|* + E|n:|*) for some
constant C, > 0. Hence, (2) holds. Now, since f; and 7; are independent, if E|f:|* = oo, then E|f: + c|* = o for
all ¢ and, with obvious notations, it follows that E|y:|* = { E|f: + c|*dP,(c) = c0. Similarly, E|n:|" = o0 entails
Ely:|* = o0.



The behaviour of the function u — E {A%(n;1;00)}, referred to hereafter as the Moment Deter-
mining Function (MDF) of the model (1) is thus crucial for the existence of moments.

Under the conditions discussed below, there exists a unique ug > 0 such that E {A%(n1;00)} =
1 and the moment condition can be written

(U<u0 A E‘ﬁﬂ("?t7fo)—f0‘u<00 A E|?7t|u<00):>E|yt|u<OO-

Following Berkes et al.’s terminology [5], ug will be referred to as the Mazimal Moment Exponent
(MME). Under more restrictive assumptions, this coefficient will be related to the tail index of
the distribution of ;.

1.3 Testing the existence of moments

Our main contribution in this paper is to propose tests for the existence of moment of any
(positive) order, based on empirical versions of the MDF and MME. Using a semi-parametric
version of Model (1), in which the functions g and ¢ depend on a finite-dimensional parameter
6, but the distribution of 7 is left unspecified, we will provide conditions for the existence and
the consistency and asymptotic normality (CAN) of the empirical MDF and MME,

LA s 2 ~
ST(L“) =— Z A“(7;6,,) where u > 0, Up = sup {u > 0; ST(L“) < 1} , 4)
n
t=1
where én denotes any consistent estimator of 8¢, and 7, for ¢t = 1,...,n, denote residuals. For

the standard GARCH(1,1) model, these results were established by [5].
Building on this, we will derive tests for the existence of moments. Let the test statistics
based on the empirical MDF and MME,

Vi (s& -1 .
T = —( - ) and UM = vl =) (zj un)7
Uy Wy,

% denote consistent estimators of the asymptotic variances of S,(lu) and Uy,

respectively. Tests of the moment condition F lys[* < oo at the asymptotic level a € (0,1), are
defined by the rejection regions

where 02 and ©

ol = {T,@ > o1 g)} and Ol = {U};ﬂ > o 1(1 - g)} ,

where @ is the A/(0,1) Cumulative Distribution Function (CDF). Assuming that 7; has a known
density, or a parametric density, parametric versions VTE“) and Wr(lu) of the statistic U will also

be introduced.

1.4 Contributions of the paper

We study the aforementioned tests for the existence of moments in Model (1). Since the model
is semi-parametric, we will not restrict ourselves to the Maximum Likelihood (ML) estimation
method or any specific method of estimation for the parameter 6y. Our conditions allow for
general consistent estimators admitting a Bahadur-type expansion, although some of our results
are particular to the QML and ML methods.

Our contributions are as follows:

a) we discuss the existence and uniqueness of a solution to the SRE associated with Model
(1); providing conditions for the existence of a unique MME;



b) we establish the weak convergence of the empirical MDF process, from which we deduce
the asymptotic distribution of the estimator of the MME /tail index;

¢) we propose new tests of moment finiteness;
d) cases where the error density is either known or parameterized are discussed;

e) for a class of GARCH(L,1)-type models, we provide power comparisons of semi-parametric
and parametric tests under local alternatives or using the Bahadur approach.

1.5 Comparison with alternative approaches

Nonparametric procedures for checking the existence of finite moments have been developed
previously in the statistical literature. Note that they usually require assumptions about the
CDF of the observed variables (for instance a Pareto-type tail). The most widely used methods,
arguably, are based on estimation of the tail index, as in Hill [38]. In particular, many papers
have established the asymptotic properties of Hill’s tail index estimator for both independent
and stationary sequences of observations. The weaknesses of this estimator (in particular its
extreme sensitivity to the choice of tuning parameters) are well known and have given rise
to variants and improvements (see Embrechts et al. [23], Section 6.4, for a review). Other
nonparametric approaches do not require tail index estimation (in particular, see Trapani [49]
for a test based on the convergence versus divergence of sample moments, Ng and Yau [45] for
a bootstrap procedure).

Those nonparametric approaches focus on the existence of moments per se. Within the
semi-parametric framework of this study, once a model is chosen for a particular time series,
we scrutinize its applicability for various objectives, such as prediction, or estimation of condi-
tional risk measures. Reliable inference procedures generally require finiteness of some moments.
Although the tests presented in this paper are susceptible to model misspecification, their ad-
vantage is that they have a parametric convergence rate. Our numerical simulations clearly
demonstrate the superiority of our approach under correct model specification.

1.6 Structure of the paper

In Section 2, we develop the asymptotic theory for the empirical MDF and we derive a test
based on the MDF. Section 3 derives parametric and semi-parametric tests based on the MME.
In Section 4 we apply our results to GARCH-type processes. For these models, comparisons
based on local alternatives are studied in Section 5. An empirical illustration is provided in
Section 6. Technical assumptions, proofs, additional properties, and Monte-Carlo experiments
are provided in appendix.

2 Estimating the MDF and testing the existence of moments

Let 0 denote a generic value of the parameter, which is assumed to belong to a compact parameter
set © c R%.

The second equation in (1) has the form of an SRE which enables us to study its probability
properties. Assuming that f +— ¢(n, f;0) is Lipschitz continuous for all n € H and 6 € O, set

A 0) = sup | £ 10 =00, f2:6)]

f1,fo€F fl _f2
fi#f2




When the function f +— ¢(n, f;80) is differentiable with respect to f, which is the case for all
commonly used models, the supremum reduces to the supremum of the first derivative of this
function. Otherwise, it has to be computed on a case-by-case basis.

The existence of a strictly stationary solution to Model (1) rests on Assumption

AO0: f— p(n, f;00) is Lipschitz continuous for all n € H,
(i) Elog™ ‘gp(nt,fo; 0y) — fo‘ < oo for some constant f0 ¢ F;
(ii) Elog™ A(n;00) < oo and Elog A(n; ) < 0.

Proposition 2.1. Under AO, there exists a strictly stationary, ergodic and non(mticipative3
solution (y;) to Model (1). Moreover, if E |p(n:, f%;60) — fo‘r < o0 and E{A"(n;00)} < oo for
some r > 0, we have E|f|® < o for some s > 0. Finally, ifE‘go(nt,fO;Go) — fo‘u < o and
E {A“(n;00)} < 1 for some u > 0, we have E|f|* < .

The proof follows straightforwardly from Bougerol [12] and Straumann and Mikosch [47] (see
also Lemma 4.1 in Francq and Zakoian [30], and Lemmas 1 and 2 in Blasques et al. [9]).
2.1 Invertibility

Given observations ¥, ... ;Yn, and arbitrary initial values Yo € Y and fg € I, we define recur-
sively, for any 6, a sequence f;(6), which depends on the observations used to estimate 6y. We
make the following invertibility assumption.

A1: There exists a function g* such that, for all (y, f,n) €Y x F x E and 6 € O,
y=9(f,m0) < n=g"(fy;0).

Define, for t = 1,...,n and any 6 belonging to O,
J10) = ¢ | 9" {-1(0), 91130 . fi1(00:0) := v {wi1, Ti-1(0): 0} (5)

where fO(O) = fg and yo = ¥g. The above SRE raises the question of the invertibility of
the model, which holds only if ft(e) does not depend asymptotically on the initialization (see
Blasques et al. [10], and Straumann and Mikosch [47]). The sequence (f1(8))¢=0 can be approx-
imated by (f:(0)), the solution of the SRE

J1(0) = olg* {fi-1(0),y:-1;0}, fr 1(0);0] =¥ {y: 1, [; 1(0); 0}, t € Z. (6)

The existence of a strictly stationary solution to (6) is guaranteed by the following assumptions.
Set, for any 6 € O,

Al(y70) = sup w(yvflva) —w(?% f2a9)

f1,f2€F fl - f2 ’
fi#fe

and assume

A2: Fis a closed subset of R and for any (y,0) € Y x ©, the mapping f € F — 9(y, f;0) is
Lipschitz continuous. Moreover,
(i) Elog™ |v(y, f°;0) — f°| < oo for some constant fO € F;
(i) Elog™ A1(ys;0) < o0 and Elog Aq(y;6) < 0.

A uniform (in ) version of A2 is

3i.e. yt € Fi, the o-field generated by (n¢, ne—1,...).



A3: A2 holds with (i)-(ii) replaced by
(i") Elog" supgeo ‘w(yt, 10:0) — fo‘ < oo for some constant f° e F;
(i) Elog™ supgeg A1(yt; 0) < o0 and Elogsupgeg A1(y:; 0) < 0.

Lemma 1. Under assumptions A0-A2, for any 8 € O there exists a stationary and ergodic
solution {f:(0)} (with f;(0) € F') to the SRE (6). If in addition, A3 holds, for any starting value
fo € F, there exists p € (0,1) such that p* SUPgeo ‘ﬁ(@) - ft(G)‘ —0 as. as t— o0

The latter results shows that the difference between the stationary ergodic sequence f;(0)
and its feasible approximation f;(€) tends to zero exponentially fast.

2.2 Asymptotic distribution of S

Let u > 0. Assuming Sgg) = E {A%(n1;600)} is finite, we now derive the asymptotic distribution

of the estimator SO defined in (4), where 7y = g*(ﬁ,yt; én) with f, = ﬁ(@n)
It will be useful to consider the quantities defined for 8 € © by

n

1 & ~ _ 1
=~ 2 A"{m(9):6}, S{(0) =~ 2 “{7.(0
t=1

3

where 1,(0) = g* {f:(0),y:; 0} and 7,(0) = g* {ﬁ(é’),yt; 9}. We introduce the following high-
level assumptions, which will be worked out in particular cases.

HL1: There exists a vector g, € R? such that

Vi (889 = S8&7) = v (809(60) = &) + gliv/n(B — 80) + 0p (1),

HL2: 6, belongs to the interior (i) of ©, @n € O is a strongly consistent estimator of Oy and the
following Bahadur expansion holds

\/ﬁ (@n — 90) = \/15 tzzl Atflv(nt) + Op(l),

where V (+) is a measurable function, V : H ~ R for some positive integer k, and A;_;
is a Fi_j-measurable d x k matrix, (A;) being stationary. The variables A; and V(1)
belong to L? with E{V (1)} = 0, var{V (n;)} = ¥ and E (A;) = A. Moreover, ©'A; is a
non-constant random vector for any non-zero vector € R% and Y is positive definite.

For a given model, HL1 can be checked by: i) noting that Si = §,§“)(§n), ii) showing the
asymptotic irrelevance of the initial values (i.e. §7(Lu) can be replaced by 57(1“)); iii) performing a

Taylor expansion of Sr(Lu)(H) around 6y. We follow this approach in the proof of Corollary 1 for
a class of GARCH-type models. HL2 is a mild assumption that is satisfied by many commonly
used estimators, as illustrated in Corollary 7 in the the appendix.

The following result provides the asymptotic distribution of the empirical MDF Sr(lu).

Theorem 1. Under A0, A1, A3 and HL1-HL2 and assuming E {A*(n; 0p)} < oo for s > 0 we
have, for 0 < u < s/2 such that &, = AE{V(n)A"(n;00)} exists,

Vi (800 =) 5 N (0,02 = gL Tg, + b +290E,) (7)

where ¥ = E(A;YA}) and v, = Var {A%(n1;00)}. Moreover, if 1, > 0 we have v2 > 0.



Figure 1: MDF for A(n;) = 0.1n7 + 0.85 and for Student errors with v degrees of freedom. The values
of the MME wug are displayed over the horizontal axis.

Theorem 1 does not require any moment assumption on the observed process (y;). The
moment assumption on A(n; 0g) is in general very weak: for instance, in some models, this
assumption is innocuous (as in the Beta-t-GARCH models of Harvey [36, Chapter 4| and Creal
et al. [15], see the appendix Section D, where the variables A(n;, 0y) are bounded).

2.3 Testing the existence of moments of a given order

In this section, we test the following assumptions, for a specific u > 0,
Hy,: E{A"(m)} <1 against Hi,: E{A"(n)}>1, (8)

where A(n:) = A(nt;0p). In view of (2) and (3), E{A"(n:)} < 1 entails the existence of a finite
u-th order moment for |y;|, provided E‘Lp(nt,fo) — fo‘u < o and E|m|" < oo. The reverse
hypotheses could also be tested, that is Hg, : E{A"(n;)} > 1 against HY, : E{A"(n,)} < 1,
simply by reversing the inequalities in the critical regions that we are going to define.

By definition of the MME ug, the null hypothesis can also be written Hy, : u < ug. The
next proposition gathers existing results on the existence of a finite MME.

Proposition 2.2. Suppose v = Elog A(n1) < 0.

i) If P{A(m) < 1} =1, then for all u >0, E {A"(m)} < 1.

i) If 1 < E{A%(m)} < oo for some s > 0, then there exists a unique ug > 0 such that
B (A% ()} = 1.
Moreover, if E{A"(n1)} <1 and E{A’(n1)} > 1 for 0 < u < v then up € (u,v).

Remark 1. When A(n;) has unbounded support and admits moments of any order m, these
moments tend to infinity when m increases and the condition 1 < E {A®(11)} < oo for some
s > 0 is satisfied. More generally, the condition is satisfied for most classical distributions with
unbounded support. However, the following example shows that the condition is non trivial:
suppose that the density g of A(m) is such that g(z) <™ K(22log?z)~!. Then we have
E {A®*(m)} = oo for any s > 1 but E{A(n1)} < oo (if, for instance, g is bounded). It is clear
that the latter expectation can be made smaller than 1 by scaling the function A. For these
distributions, ug does not exist.

The shape of the MDF is illustrated in Figure 1 for the quadratic function A(n;) = an? + 3
(corresponding for instance to a standard GARCH(1,1) model) with Student error distributions.
Under the assumptions of Proposition 2.2 case ii), this shape is general: as w increases the
function u — S&? ) first decreases and then increases, crossing the horizontal line f(u) = 1 at
U = ug.

Define the test statistic based on the empirical MDF,

TT(Lu) — Vﬁ(kz(i)_l), (9)

assuming 02 > 0 is a consistent estimator of v2. We introduce the following assumption.

HL3: For any sequence (6,,) such that 6,, — 6 in probability, we have, for any r < s,
§£L’”)(9n) — 57([)(00) — (0, in probability as n — c0.



This assumption implies that the initial values and the estimation of 8y both have negligible
effects on the asymptotic behaviour of the empirical MDF. This will be verified explicitly for
the models of Section 4.

Proposition 2.3. Under the assumptions of Theorem 1 and HL3, a test of Hy,, at the asymp-
totic level a € (0,1) is defined by the rejection region

ol = {T;;o > o711 - g)} . (10)

Moreover, the tests is consistent: under Hi,, we have P (Céﬂ”)> —1asn— w.

The condition u < s/2 in Theorem 1 ensures the existence of Sgu)—allowing the use of the

CLT—and is crucial for o to be the asymptotic frequency of rejection of Ho,,. It also ensures

)

the consistency of the test of the latter proposition, since ST(LU) converges in probability to Ség
under the alternative.

3 Estimating the MME and alternative tests

We now investigate the estimation of the MME wg and the corresponding test under three
different settings.

3.1 Semi-parametric estimation of the MME

For 0 € O let
1 & - 1 & - A
’Yn(e) :E Z log A{nt(e); 9}7 'Yn(e) = E Z log A{nt(e); 0}7 Yn = ’}/n(en)'
t=1 t=1

The following result is the sample counterpart of Proposition 2.2.

Proposition 3.1. Suppose v, < 0.

If A7 én) <1 forall1<t<mn, then S,(lu) <1, for all u > 0.

Conversely, if A(7);0,,) > 1 for at least one 1 < t < n, then there exists a unique u, > 0
such that S,(lu”) = 1. Moreover, if S7(,,u) <1 and S,(LU) > 1 for 0 <u<wv then uy, € (u,v).

Letting u,, = sup{u > 0; s < 1}, we have u, = o0 when A(ﬁt;an) <lforall<t<n,
and U, = u, (of Proposition 3.1) in the opposite case. Let A(n) = A(n;0). We will show the
strong consistency of 4, under the following assumption

HL4: ~, = 7,(00) + o(1), S = 57(1“)(00) +0(1), almost surely (a.s.) for any u < s.
Theorem 2. Assume that A0-A2 and HL4 hold. Then v, — «, a.s. Moreover,
i) if P{A(m) <1} =1, then u, — o0, a.s.
i) if 1 < E{A®*(m)} < o for some s > 0, then 4, — wug, a.s., where ug > 0 satisfies
E{A"™(m)} = 1.
In order to obtain the asymptotic distribution of u,, we will now consider a functional

extension of Theorem 1. For u; < ug, let Cluy, us] denote the space of continuous functions on
[u1, u2], and let = denote weak convergence in the space C equipped with uniform distance. Let

Tp(u) =+/n (ST(«LU) - 5&?)) and, in view of HL1, let

T = (900 - SE) 4l D AciVin)

To prove a uniform extension of Theorem 1, we need to introduce the following assumptions:



HL5: For [u1, u2] = (0,5/2), we have supe(y, uy) T'n(u) — % (u)| = op(1).
HL6: For any 0 < u,v < s/2, we have |g, — g, < K|u—v|.

Theorem 3. Under the assumptions of Theorem 1 and if HL5-HL®6 hold,

Vi (800 - s 2 p) (11)

where I'(u) stands for a Gaussian process with ET(u) = 0 and Cov {I'(uv),I'(v)} = ¢/, 3g, +
Yup + g0 + g,€, where ¥y, = Cov {A%(n1;60), A"(1n1;00)} -
Let D) = E[A"(m;60) log{A(n1;00)}] be the first-order derivative of the MDF u — Sgg),

which is well-defined for ©v < s. Note that Dggo) is positive (in view of the convexity of the
MDF established in the proof of Proposition 2.2). The asymptotic distribution of the MME
was derived for standard GARCH models by Mikosch and Starica [44] and by Berkes et al. |5],
for an AR(1)-ARCH(1) model by Chan et al. [14], and for both models using a least absolute
deviation estimator by Zhang et al. [52]. For Model (1), we have the following result.

Theorem 4. Let the assumptions of Theorem 3 hold, and let 1 < E {A®*(n;)} < oo for some s > 0,
with ug € (u1,u2). Then, we have

-2
vty — ugp) i/\/(o,wﬁo), wi, = (Dﬁé‘”) vl

2

where vy

is the asymptotic variance defined in Theorem 1.

This result allows us to build asymptotic confidence intervals (CIs) for the MME g, as will be
illustrated in the case of multiplicative models.

For a given u > 0, define D = f),@(@n) with
1 ¢ ~ I N N
D(0) =— > A"{m(0): 0} log A{n(0): 0}, D{Y(0) = — > A"{7i(6); 0} log A{7(6): 6}.
t=1 t=1
Let the test statistic, assuming wg, > 0,

. N2
gl _ V=) e [P )
n g, ’ u D
HL7: For any sequence (6,,) such that 8,, — 6y, a.s. we have, for any u < s,
ﬁ,(lu)(On) - Dé“)(oo)‘ — 0, in probability as n — oo.

Proposition 3.2. Under the assumptions of Theorem 4 with wgo > 0, HL7, a test of Hy, at
the asymptotic level a € (0,1) is defined by the rejection region

o) ={vl > 21—, (12

and an asymptotic 100(1 — a) % CI for ug is G, £ n Y201 (1 — )i, .

Moreover, the test is consistent: under Hy , we have P (C’((]“)) — 1 asn — 0.

We will now consider situations where the errors have a density that is either known or known
up to a finite-dimensional parameter, yielding alternative estimators of the MME.



3.2 Purely parametric estimators of the MME

We assume that 7; has a density h and we make the following assumption, which is satisfied for
many distributions, including the Gaussian distribution.

HLS8: 6 — { A" (z;0)h(x)dz is continuously differentiable under the integral sign.

3.2.1 When the error density h is known
When the MME ug = ug ,(60) exists, by definition it is the solution of the implicit equation

JA”O (x;00)h(x)dz = 1.

Under HLS8 this solution satisfies, through the implicit function theorem,

dupp(Bo)  —1 0 (uwo) wo—17. . O (nt;00)
60 - Dggo) ruo7 Tuo = 070 0 =F UOA (nhoo)T .

~

Let Uy, p, = uop(0n, 1) where ?)n,ML is the MLE of 8y. This estimator satisfies

f AP (s B g ) h(@)da = 1.

Note that 4, is the ML estimator of ug (because of the functional invariance of the ML
estimator) unlike «,, (even when 6, is the ML estimator of 6o).
Suppose that the distribution of én ML is asymptotically Gaussian, with variance 3.
Let the test statistic
V= )

V,S“) ==

Oh

where o, is a consistent estimator of

Oug Oug 1/2 1 1/2
o= (G=ns) = g Sra)

Proposition 3.3. Let the assumptions of Theorem J (with én replaced by @n,ML) and Assump-
tion HL8 hold, and let r,, # 0. Then, a test of H,, at the asymptotic level a € (0,1) is defined
by the rejection region

o = {0 > e 1 - o)} (13
and an asymptotic 100(1 — a)% CT for ug is tnp £ n 20711 — a)5y. Moreover, the test is

consistent: under Hy ,, we have P (C‘(/u)) —1asn— o0.

3.2.2 When the error density is parameterized

In practical situations, it is unrealistic to assume that the density h of 1; is known. Alternatively,
the density can be assumed to be known up to some finite parameter: h(-) = h(-,vo) where
vo € R™ for m e N. Let ¢, = (0, v}) and assume ¢ € & < R™*4. Given ¢, the MME, when
it exists, is now the solution ug = ug () of

JA“O (z;0)h(z,v)dx = 1.

Under HLS8 and
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HL9: The function v — (A" (z;0)h(z,v)dz is continuously differentiable under the integral

sign,
we have
Quon(po) _ —1 - Juon(pg) _ —1 s
06 Do) 1o ov Do) 1o’
: oh(ne; ~ ~ ~
with s,, = E(A“O(nt;eo)h(ml;uo) h(gzr/o))' Let u,; = U, (P ) Where @,y =

~

(@n, ML, Vnar) is the MLE of ¢, obtained by solving
JAanvfz(m; 6,010, Dpprr)de = 1. (14)

Suppose that the distribution of @,, y/, is asymptotically Gaussian, with variance ®ys7,. Let the

test statistic Wéu) = % where {, is a consistent estimator of

1 N 1/2
Sh = D(uo) {(rluo’ Sito) (I)ML (rgto’ S;lo) } .
e}
Proposition 3.4. Let the assumptions of Proposition 3.3 hold, along with Assumption HL9
(with h(-) replaced by h(-;vo) in HL8), and let (1,,,s,,) # 0. Then, a test of Ho, at the

asymptotic level a € (0,1) is defined by the rejection region
o) = {wi > e (1 - )}, (15)

and an asymptotic 100(1 — a)% CI for ug is u, 7 + n~12071(1 — a)3,.

We now consider an important particular sub-class of Model (1).

4 Multiplicative/Garch-type models

Tests of the existence of even-order moments for standard GARCH models have been studied by
Francq and Zakoian [31]. In this setup, the problem reduces to the derivation of the joint asymp-
totic distribution of the QML estimator of the volatility parameter and of a vector of moments
of the innovations process (see Heinemann [37] for a bootstrap-based approach). However, this
approach cannot be extended to other GARCH formulations for which the moment conditions
are less explicit. Moreover, it cannot be used for general moments, in particular non-even power
moments. Here, we consider the class of augmented GARCH processes (see e.g. Aue et al. [1]),

defined as
{ Et = Ut(GO)nta (16)
ol(60) = w(ne-1;00) +alm—1;60)0_1(00),

where En? = 1, and 6 > 0 is given. ! Necessary and sufficient conditions for the finiteness of
moments of GARCH and augmented GARCH models have been derived by Ling and McAleer
[42], Aue et al. [1], and Hérmann [39]. This class includes most of the first-order GARCH-type
specifications proposed in the literature. Examples of commonly used specifications are provided
in the appendix Section D. Assume that, for any 8 € O, the functions w(-;@) and a(-;0) are
differentiable and satisfy w(+;0) : R — |w, +00) and a(+;0) : R — [a, +0) with w > 0 and @ > 0.
The detailed assumptions required for the multiplicative model (16) are listed in Appendix A
(labelled MM1-MMD9). .

4
The case where § is estimated will be considered in Section 4.3.
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4.1 Estimating the MDF and related tests

It is clear that Model (16) is of the form (1) with y; = ¢, f; = of and, omitting 8 for simplicity,

o(n, f) = w(n) +aln)f, and g(f,n) = f/°n. We also have g*(f,€) = f~/% and A(n) = a(n).
Assumptions A0-A1 are thus satisfied under MM1. Under condition MM2, there exists a

stationary ergodic solution to the SRE

o0) = w <0::(10);9> +a (U:_tl—(lo);e> o0 (0), tel, (17)

and A2-A3 are satisfied. The sequence 59 (6) satisfies the same SRE, but for ¢ > 1 with initial
values 7y and g as in (5).
Theorem 1 takes the following simplified form for Model (16).

Corollary 1 (Augmented GARCH models). For a strongly consistent estimator of 6 satis-
fying HL2, if MM1-MMS5 and MMG6(u) with u € (0, s/2] hold, we have

Vi (00— SE) 5 N (0,02 = gl g, + v+ 290E,) (18)
with S0 = Ly u5:0,), S = E{a"(m:00)}, 9. = F(g.,) and g,, =

(550" {m(6):0}]g_4, -
One example of an Equation (16)-type model is Ding et al.’s [19] APARCH (asymmetric

power ARCH) model defined by w(n) = w, a(n) = a4 |n|*W,=o0 + a_|n|¥y<o + 8. For APARCH
models estimated by Gaussian QML, the assumptions of Corollary 1 can be considerably reduced.

Corollary 2 (APARCH models estimated by QML). Under the assumptions:

i) P(n; > 0) € (0,1), the support of the distribution of 7, contains at least three points, and
E(|n:|*?) < oo with s > 4,

ii) © < [w, ) x (0,00)* x [0,1) is compact and 8y = (wo, @0+, x0.—, Bo)’ eé,

iii) Flog a(m,AHo) < 0,

(18) holds when 6,, is the QML estimator of 8y and u < s/2.

The GARCH(1,1) process is a particular case of this APARCH model, obtained for 6 = 2
and a(n) = an?® + . In the appendix (Corollary 7) we provide an explicit expression of the
asymptotic variance v2 in (18) when (16) is a GARCH(1,1) model and 6, is the ML or QML
estimator.

Under the conditions

E|771|u6 < 0, Ewu(nl) < 0, (19)

the testing problem (8) in Model (16) is equivalent to Ho,, : E(|e;|*?) < o0, Vu/ < u, against
Hy, : E(J&|*®) = oo (see Ling and McAleer [42] and Aue et al. [1]).

Corollary 3 (T, test for augmented GARCH models). Under the assumptions of Corollary
1 with v, > 0 and assuming (19), the conclusion of Proposition 2.3 holds: a test of Hg, at the

asymptotic level a € (0,1) is defined by the rejection region C(Tu) = {T,(Lu) >® (1 - g)} :

This result is an extension of a test studied by Francq and Zakoian [31] in the case where u
is even and (&) follows a standard GARCH process (see the appendix Section E for details).

12



4.2 Estimating the MME and related tests

First, we provide results complementing Proposition 2.2. The following result shows that the
tail index of ¢ is closely related to ug.

Proposition 4.1 (Tail index). When Eloga(n) < 0 and 1 < E{a®(m)} < o for some
s >0, if the law of log a(n1) is nonarithmetic (i.e. not supported by any arithmetic progression
hZ), and if Ea(n)™log™ a(m) < oo, there ewists ¢ > 0 such that P(oy > x) ~ cx™%, and
P(let] > x) ~ Elne|*® P(oy > x), asx — oo.

These tail properties—established for standard GARCH models by Mikosch and Starica [44]
and for augmented GARCH models by Zhang and Ling [53]-show that, under mild additional as-
sumptions, the coefficient dug is also the tail indez of augmented GARCH processes. Conditions
for the existence of a tail index for general SRE were derived by Basrak et al. [3], and Kesten
[40] characterized this coefficient as the solution of an equation taking the form E {a"0(n;)} =1
in the case of an augmented GARCH(1,1) process.

In the case of multiplicative models, HL4 is the consequence of more primitive conditions,
allowing the assumptions of Theorem 2 to be simplified.

Corollary 4 (Strong consistency of 1,). For Model (16), under MM1-MM5 and MM7, if
0, is a strongly consistent estimator of 8, the conclusions of Theorem 2 hold.

Now, we give more explicit conditions for the weak convergence in Theorem 3, and the
asymptotic distribution in Theorem 4, to hold. We refer to Section 3.1 for the weak convergence
notation.

Corollary 5 (Asymptotic distribution of u,). Under the assumptions of Corollary 1 and if
" w)\ Clui,u
MM6(s) and MMT hold, for any [u1,us2] < (0, s/2), we have 4/n <S7(1 ) _ Sgo)) [52] ['(u).

If, in addition, 1 < E{a®*(m)} < o and ug < s/2, we have /n(u, — uo) A
-2
N{o, (D%)) U2}

This result allows the calculation of asymptotic Cls for MME vy and thus, by Proposition
4.1, for the tail index of the distribution of ;.

Remark 2 (Comparison with Hill’s estimator of the tail index). It is well known that
Hill’s estimator ([38]) crucially depends on which part of the sample it is calculated on (see for
instance Figure 1 in Zhu and Ling [54]). Moreover, Baek et al. [2] showed that the Hill estimator
is extremely biased for estimating the tail index of ARCH-type models. Even for i.i.d. data and
very large samples, estimating the tail index using Hill’s estimator is very challenging unless the
underlying data comes from a Pareto distribution’ (this will be illustrated in Section 6 using
Student distributions and real series). Deriving Cls for the tail index using Hill’s estimator is
even more challenging. By Proposition 4.1 and Corollary 5, one can estimate the tail index of
augmented GARCH models at a parametric rate, instead of resorting to extreme value statistics.
A similar situation occurs in estimating the density of a GARCH(1,1) models since, by exploiting
the dynamic structure of the model, Delaigle et al. [18] managed to obtain a root-n consistent
estimator. Trapani [49] also noted that Hill’s estimation of the tail index "is fraught with
difficulties" and proposed a randomised testing procedure applied on sample moments for testing
for (in)finite moments in a general nonparametric framework.

In the case of Model (16), the test based on U™ takes the following form.

5 . . .
According to Drees et al. [20], "One would have to be paranormal to discern with confidence the true value
from the Hill plot."
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Corollary 6 (U, test for augmented GARCH models). Under the assumptions of Corollary
5, if w?m > 0, and (19) holds, a test of Hy, at the asymptotic level a is defined by the

rejection region Cl(]u) = {Uéu) > ® (1 —g)}, and an asymptotic 100(1 — @)% CI for wug is
Uy £ 0~ 20711 — )i, .

Now we turn to purely parametric estimators of the MME. Under regularity assumptions
(derived by Berkes and Horvath [4] for a standard GARCH(p, ¢) model), the MLE of 6 satisfies
the expansion given in MMS8. Let

1 4 _ 172 wo— da(n; 0
op = DS;jO) (T;OJ 17‘u0) y Tuy = E{uoa 0 1(77t;90)(500)}7

where ¢y, defined in MIM8, refers to the Fisher information for scale (whose existence is guar-
anteed by Assumption FIS). For the classical GARCH(1,1) model, we have r,, = ugm,, where
m,, is defined in the appendix, Corollary 7. Proposition 3.3 can be specialized as follows.

Proposition 4.2 (V,, test for augmented GARCH models). Let for s > 0, 1 <
E{a*(m)} < oo, with ug < s/2. Let HL8 (with A\(-) = a(-)), Assumptions (19), FIS and
MMS hold, and let r,, # 0. Then, a test of Hy, al the asymptotic level o is defined by the

rejection region C‘(/u) = { () o-1(1 —g)}, and an asymptotic 100(1 — a)% CI for ug is

Upp & n~120-1(1 — )6}, where &, is a consistent estimator of oy,.

When the error density is parameterized, the asymptotic properties of the MLE of ¢ were
established by Straumann (Chapter 6, [46]). For the sake of brevity, we defer to this reference
for the precise assumptions underlying these properties. Assuming that the MLE satisfies the
Bahadur expansion in MM9, the conclusions of Proposition 3.4 hold with ®,,;, replaced by
3! (defined in MM9).

4.3 Selecting ¢ in augmented GARCH models

In practice, estimating § > 0 in Model (16) is very challenging. Even if asymptotic normality
of the joint QML estimator of § and 0y has been established, the value of § can be extremely
difficult to identify in finite samples (see Hamadeh and Zakoian [35]). Since the quasi-likelihood
is very flat in the direction of (56, estimating this coefficient is extremely difficult in practice. For
this reason, instead of treating § as a real-valued parameter, practitioners tend to select § from
a finite set of values corresponding to well-known models such as standard or GJR-GARCH
models (6 = 2) or T-GARCH models (0 = 1) (see the appendix Section D for definitions and
references). To reflect the existence of several candidates for §, assume that the true value d
belongs to a finite set,

50€D={51,...,5d}, 6; > 0, izl,...,d.

For the sake of illustration, we focus on APARCH models (see the appendix Section D) and the
QML estimator.

Writing the vector of parameters 9 = (6,0’)" and assuming 9 € D x © where © is a compact
subset of (0,00) x [0,00)3 x [0,1), the true parameter value is denoted 9o = (o, 0;)’. To define
the QMLE of 9, we recursively define &4, for t > 1, by

N - _ N 1/6
o = 0¢(9) = {w + a+(et+_1)6 + 04,(—%_1)(S + ﬁaf_l}

%See Table 1 and Figure 1 in [35].
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~QML N ~QML ~QML
A QMLE of ¢ is defined as any measurable solution 19? = (&?ML,GQ ) of 19Q =
~ ~ ~ ~ ~ 2
arg mingepyo In(9), 1,(9) =n"130 b, £ = 0(9) = 5—"2 +1nG2.
Let a(n,¥) = ay|n|%,~0 + a_|n|°W,<o + 3 and let S(u) Lyt a (77t719 ).

Proposition 4.3. Under the following assumptions: 1) T]t has a positive density in some neigh-

borhood of zero, E(|n|*%) < o with ség = 4; i) O e@ and iit) Eloga(ni, ) < 0, we have
5QM = dg for n large enough and the weak convergence in Corollary 5 holds. If n, has positive
density over the real line, the asymptotic distribution of u, holds.

It is because D is discrete that the effects of estimating § do not appear in the asymptotic results.

5 Asymptotic power comparisons

In this section, we focus on multiplicative models. To compare the tests of Hg, we first note
that, under the assumptions of Theorem 4 and from the proof of this theorem,

Ulwo) — 7o) 4 op(1). (20)

Thus the statistics are equivalent at the frontier of the null assumption and, from Le Cam’s
theory, they are also equivalent under local alternatives. In this section, we will compare these
tests with the parametric tests and also provide non-local comparisons.

5.1 Asymptotic power under local alternatives

Conditional on € and 00, the density of the observations (€1,...,€n) satisfying (16) is given by

Lpp(600) =110 0p L@p)n {at (6p) et} Around 6 e@ consider a sequence of local parameters
of the form

0, = 0y +7/v/n, (21)

where 7 € R?. We denote P, + (resp. Py) the distribution of the observations when the parameter
is 0y, (resp. Op). If 1 < E{a®(m)} < o for some s > 0, with ug € (0, uz), for given h and 8,
there exists a unique ug := ugp(@o, h) such that E{a“(n;)} = 1. Without loss of generality,
assume that n is sufficiently large so that 8,, € ©. Note that, under appropriate assumptions on
T, the parameter 6,, belongs to the alternative for testing H .

Drost and Klaassen |21] showed that for standard GARCH models, the log-likelihood ratio
Ay 1 (0n,600) =log Ly, 1,(6,)/Ly 1(00) satisfies the LAN property

1
Ay n(0n,00) = 7' A, 1 (00) — 57"3117' +op,, (1), (22)

where J;, = (L, E (0%2 aag(g‘v )aa(;(e, )) and A, ,(00) = IZt 191 (ﬁt)(}t aot(eo) 4, N (0,7},) un-

der Pg, as n — o0. Note that the so-called central sequence An’h(Bo) is conditional on the
initial values. It is shown in [22] and [43] that (22) continues to hold for extensions of standard
GARCH models. Lee and Taniguchi [41] showed that the initial values have no influence on the
LAN property. Together with Le Cam’s third lemma, the LAN property allows us to derive the
local asymptotic powers (LAPs) of our tests.

Proposition 5.1. Under Assumptions FIS, (22) and the assumptions of Corollaries 3 and 6,
respectively, the LAPs of the tests of Ho., defined in (10) and (12) are given by

lim P, (Cé“‘”) = lim P,, <C,(]“°>) = @ {chu(60) — 11 —a)}, (23)

n—0o0 n—aoo
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where

Chyuy (60) = ;:, [E (Ult aa;fO)> E{a™(m)g1(m)} + E (;t aang)gLOAt_1> E{V(m)an (m)}] :

In standard GARCH(1,1) models estimated by QML and ML, the calculations reported in
the appendix Section G show that, with obvious notations,

Pt (8o) < el (o). (24)

Again, in standard GARCH(1,1) models, uy decreases as ay or (31 increases: ug(0o + e, h) <
uo(0o, h) for all directions e = (0, e2, e3)’ such that ez > 0 and e3 > 0, with at least one inequality
being strict. In the more general case where the power ug decreases when the parameter increases
in a given direction e € R%, we are able to derive the power of asymptotically locally uniformly
most powerful unbiased (UMPU) tests and provide conditions for the tests 7' and U to be
optimal in this sense.

Proposition 5.2. Assume that ug(6@g + ﬁ, h) < ug(@g, h) for all n. Then, under the assump-
tions of Proposition 5.1, any asymptotically locally UMPU test for Ho,, : uo(0o,h) > u against
Hi,y: u(6o+ %, h) < u has asymptotic power bounded by

1/2
. _ ool , _yTee
Jim P, ,,,(C) = @{ce =@ (1= )}, with ce= N
The assumption on the MME of Proposition 5.2 is satisfied for any commonly used GARCH-type
model where the volatility increases with any component of the parameter.

(25)

Remark 3 (Testing the existence of the second-order moment in standard GARCH
models). For standard GARCH(1,1) models with up = 1 and e = (0, 1,1)’, the tests C;l) and
C((Jl) obtained by QML/ML estimation are optimal if and only if the density of 7; has the form

aCL

I'(a)

The following result gives the LAPs of the test assuming the density is known.

a0
e—ay2|y|2a—1’ a > 0’ F(a) — J ta_le_tdt. (26)
0

h(y) =

Proposition 5.3. Under the assumptions of Propositions 4.2 and 5.1, the LAPs of the test of
H,,, defined in (13) is given by

. “ _ i
lim P, (C(VO>) = @ {dpuy(00) — 7 (1 — @)}, diuo(B0) = 7 /4 /;r;LOJ Ly, (27)

Under the assumptions of Proposition 5.2, the test C‘(/uo)
the vectors r,, and 7 are collinear in the same direction.
Next, we turn to the case of Section 3.2.2 where the error density is parameterized and

is optimal if dp, ,,(60) = c-, that is if

estimated. Around ¢, = (0, v}) E‘%, we now consider a sequence of local parameters of the
form

0, =00+ T1/\/n, vy,=vo+T2/Vn, (28)
where 71 € R% 79 € R™. We still denote P, + (resp. Py) the distribution of observations
when the parameter is @, = (0 + T)/+v/n, v} + Th/\/n) = @y + 7/+/n (resp. ). Let the
log-likelihood ratio An(@y + 7/4/1, ¢o) = 10g Ly 1 (,,)/Ln.n(@0)-
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As shown in Drost and Klaassen [21], the LAN property (22) holds when the density h
can be treated as an infinite-dimensional nuisance parameter. In Francq and Zakoian [32], we
showed that the LAN property also holds in the parametric framework of this section: a Taylor
expansion around ¢ of the log-likelihood ratio yields

L .
A (P #0) = T Bnp(po) = 5T In(Po)T + 0py, (1), (29)

where J, () is a consistent estimator of J and, under Py,

!
1 ao—t 77t;VO) d ~
n,h CP() ( gl 77taV0 o ao/ 77t7V0 o' N(Onj) (30)

The next result provides the LAPs of test .

Proposition 5.4. Under Assumptions FIS, (29)-(30), and the assumptions of Proposition 3.4,
the LAPs of the test of Hy ., defined in (15) is given by

! !
TuT1 + SupT2
/ ;Y ~—1 (0 Y
\/(TUO’ S?to) J (TUO’ SUO)

Under the assumptions of Proposition 5.2, the test C(uo) is optimal if e, ,,,(60) = ¢, that is,
if the vectors (v}, s}, ) and 7/ are collinear in the same dlrectlon An example of the calculation
and comparison of the LAPs of tests T, U,V and W is given in the appendix Section H. It is
shown that, for GARCH(1,1) models with Student innovations, tests 7" and U are dominated

by test W. As expected, test V is locally asymptotically more efficient than the other tests.

lim Por (CH7) = @ {enu(80) = @711 =)}, enuy(80) =

n—00

5.2 Comparisons based on Bahadur slopes

To be able to distinguish tests T' and U, we turn to the Bahadur approach. We will also compare
them with tests V' and W, which require knowledge or estimation of the density. Recall that
the Bahadur slope is defined as the almost sure limit of —2/n times the logarithm of the p-value
of the test. In Bahadur’s sense, one test is more efficient than another if the slope of the first
test is greater than the slope of the second test.

W is more efficient than U7(L") if and only if

( ‘(’g)_lf Vg > 1,

(u—1up)® (E[a(n1;00)log{a(n; 80)}])* v2

Proposition 5.5. In Bahadur’s sense, test T7(l

and test W is more efficient than Ut if and only if v (7, s, )3 (rl,, s, )I > 1.

uo’ uQ up? T uUQ

Note that the latter condition does not depend on u, i.e. on the alternative. Examples and
comparisons of asymptotic slopes are given in the appendix Section H, showing that test 7" is in
general less efficient than the others.

6 Empirical application

Davis and Mikosch [16] noted that "In applications to real-life data one often observes that the
sum of the estimated parameters a1 + (1 is close to 1 implying that moments slightly larger than
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two might not exist for a fitted GARCH process. " Francq and Zakoian [31| made a first attempt
to check this intuition by considering the returns of the French energy company Total SA, one
of the main constituents of the CAC40 index, over the period 2001-07-16 to 2018-09-21. On this
series of 4418 observations, we fitted a standard GARCH(1,1) model and, using T,&“) to test the
existence of even-order moments, found strong evidence for the existence of the second-order
marginal moment and suspicions of non-existence of the 8-th order moment. Given that (i) tests
based on Trg " often turn out to be much less powerful than those based on Uqg W and WTKL ); (i1)
the finiteness of any positive-order moment can be tested, and (iii) our analysis is not restricted
to standard GARCH models, it should be possible to improve on the results obtained in [31].

We thus re-investigated the same series with APARCH(1,1) models, using the QMLE for
tests T,(Lu), UT(LU) and V,Su) (the QMLE is actually the Gaussian MLE in the latter case), and
the MLE, assuming a standardized Student distribution with v degrees of freedom for the i.i.d.
innovations, for the WT(LU) test. We searched ¢ € {0.5,1,1.5,2}, and estimated the optimal value
0 = 1 with both the QML and ML estimators. The volatility model estimated by QML is

71 = 0037 + 0.018cr-1 -0 + 0,132 er-1 ey <o + 0,916
(0.006)  (0.010) (0.0 (0.009)

where the estimated standard deviations in brackets are obtained from the asymptotic distribu-
tion of the QMLE.
The model estimated by Student-ML is

= 0.033 + 0.016 W + 0. 126 W + 0922 , ~ St(11.1
0,033 (0010)|6t 1¥e, >0 ol |€t 1¥e, <0 09 )Ut 1, Mt ((1.7))

where St(v) denotes the standardized Student distribution with v degrees of freedom. Note
that the volatilities estimated by QML and ML are almost the same. The results presented
in the appendix Section J show no dependence in the QMLE and MLE residuals and that the
distribution of the residuals is better reproduced by a Student distribution than by a Gaussian
distribution (in particular the empirical kurtosis of the QMLE and MLE residuals are respectively
3.807 and 3.816, which is much closer to the kurtosis of the fitted Student distribution, 3+6/(v—
4) = 3.848, than to the Gaussian kurtosis). Table 1 shows that the tests based on U™ and Wi

are much more conclusive than the test based on T, ,(Lu). The test based on V}S“) does not seem
reliable since we have seen that the empirical distribution of the residuals is far from Gaussian.
The estimated maximum moment order is tig = 7.9 with the Uéu) statistic, and g = 7.8 with the
Wéu) statistic. At an asymptotic confidence level of 95%, the estimated Cls for ug is [4.5,11.3]
with the U statistic and [5.9,9.6] with the W statistic. The estimated value of uo based on
Ué“) is ug = 7.9. To evaluate the variability of this estimator without using asymptotic theory,
we simulated APARCH(1,1) models with a parameter 6,,-the QMLE calculated on the Total
series—and noise with a distribution equal to that of the QML residuals. The empirical 95% CI
for ug obtained from 10000 bootstrap replications is [5.7,9.8], which is similar to the estimates
based on asymptotic theory. The two estimation methods based on Uqgu) and WT(LU) therefore give
similar estimated tail indexes but, as expected, the CI from the fully parametric method based
on Wéu) is tighter. These results strongly support the existence of finite moments of order 5 or 6,
allowing the validation of certain statistical procedures, such as the construction of confidence
intervals for the prediction of the squared returns at long horizons. In contrast, illustrating
Remark 2 and footnote ®, Figure 2 shows that the conventional Hill estimator provides little
information on the value of the tail index, both for the Total series (left graph) and for a
simulation of the model for which ug = 7.8 is known to be the maximum moment order. Note
that Figure 2 is in perfect agreement with Figures 2 and 3 in Baek et al. [2].
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Table 1: Test statistics TT(L”), U,(Lu), AL (assuming Gaussian innovations), wiw (assuming Student innovations)
based on a APARCH(1,1) model for the Total return series.

u 1 2 3 4 5 6 7 8 9 10 11 12
7 471 418 -350 -2.72 -1.91 -1.15 -0.49 0.04 046 0.76 097 1.11
U™ 394 -3.37 -2.80 -2.23 -1.66 -1.09 -0.52 0.05 0.62 1.19 1.76 2.33
v 725 623 521 -419 -318 -2.16 -1.14 -0.12 0.89 191 293 3.95
w688 -5.86 -4.84 -3.82 -281 -1.79 -0.77 025 126 228 3.30 4.32

Threshold Threshold

5.430000 1.630000 0.982000 0.565000 0.250000 7.29000 1.83000 1.16000 0.74800 0.41300 0.12400

alpha (ClI, p =0.95)
alpha (Cl, p =0.95)

15 420 875 1381 1938 2495 3052 3609 4166 15 413 861 1359 1907 2455 3003 3551 4099

Order Statistics Order Statistics

Figure 2: Hill plots of a simulation of an APARCH model with tail index 7.8 (left graph) and of the
absolute value of the Total return series (right graph).

The conclusions drawn from this study are: 1) that the estimators proposed here are much
more effective than the Hill estimator in assessing the value of the tail index of a GARCH-type
model; 2) that estimating the maximum moment order is a difficult problem (since the CIs remain
large, even in a fully parametric framework); 3) that at least for the Total series, moments seem
to exist at orders much larger than two, moderating the overly pessimistic statement quoted at
the beginning of this section.
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APPENDIX

This Appendix provides assumptions, proofs, examples of augmented GARCH models, com-
plementary results for the MDF of GARCH models, power comparisons of tests, Monte-Carlo
experiments and a supplement to the empirical application.

A

Assumptions

The following assumptions are used for the multiplicative model in Section 4. Let p be a generic
constant belonging to (0, 1).

MM1:

MM2:

MM3:

MM4:

MM5:

E {w®(n1,00)} < o0, Eloga(ni,Bp) <0 and E{a®(n1,00)} < oo for s > 0.

For all @ € © and € € R, the function z — w <Z%, 9) +a (ﬁ, 0) z is differentiable over
[w, +00). There exists zp > w such that

Elog* supgeg w (;/5, 0) < 0, Flog" supgeg a (z‘jt/&, 0) < o0, and we have
0 0

aa { (%;0) —i—a(%;ﬂ) z}‘ < 0.

The F;_i-measurable function 8 — (0:(0),5:(0)) is a.s. twice continuously differen-

505‘5 ) 95+( 0)‘ < Ktp where K; € F;_1 and

FElog sup sup

zzw OO

tiable. Moreover, supgeg |0+(0) — 5:(0)| +

sup, E(K]) < oo for some r > 0.

T
There exists a neighborhood V(0y) of 6y such that F (Supgev(go) %) < o and

E supgey(g,) [00:(8)/06]" < oo for some r > 0.

For almost all €, the function (o, 8) — a(%;0) is twice differentiable over [w, +00) x V (6y)
and there exist C, 7 > 0 such that, for any (¢,0,0) € R x |w,+00) x V(6y),

max {a (g; 0) ,

dlog a(i' )| |0%loga(%;6)

o2

S H} A 1}

dloga(%;0)
00

Y ) )

Let n:(0) = €;/0+(0). For any u > 0, we introduce the following assumption.

MMG6(u): There exist p,q > 0 such that % + % =1and

MMT:

MMS:

dloga(n:(0);6) |

E sup (a“p(nt(e);ﬂ)—i-H 20

GEV(GQ)

0% log a(n,(6); 6)
0000’

q/2
) <o

Letting g1(y) =1 + y%(y) and assuming v, 1= E{g?(m;)} < o, we have

E supgev(a,) H 25 log a(er/o1(0 H

2J 1 & 1 do?

0, v —00) = -2 — 1
Vn(On m1 — 6o) i/ 23 57 00 —~g1(ne) + op(1).
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1 n 1 0o
2/n Zt:l o2 00 gl(nt)
1 2h(nv0)

Ve + op(1), where
T Dbt W) o

MM9: /1B, 31, — P0) =T "

L oh t sV
i -308 (20

N 1 (n¢) _0h(ne;v0) 1 0h(nevo) Oh(nesvo)
_iE <h€’:}t7ljo) gi/’jo )Q/ E <h2(’r]z;1/0) g];/yo glt//’jo )

Assumption MM1 ensures the existence of a strictly stationary and ergodic solution (&) to
Model (16) (see e.g. Brandt [13]), while MM2 ensures the existence of a strictly stationary and
ergodic solution to the SRE (17) by Lemma 1. Assumption MMS3 controls the effect of the
initial values on the studied statistics as the sample size increases. Assumptions MM4-MM7
are considerably weakened for particular specifications of the MDF, see for instance Corollary
2.

To derive the asymptotic distribution of the V,, and W, tests, which are based on the ML
estimation method, we use the Fisher information for scale ¢5. Assuming that h is everywhere
positive, conditions for the existence of ¢, and its interpretation as the Fisher information for
scale are (see e.g. Lehmann and Casella [?], Berkes and Horvath [4], and Francq and Zakoian
126]):

FIS: h has third-order derivatives and satisfies i) limy, o yh(y) = limy, . y*h/(y) = 0, and
ii) for some positive constants K and g,

(%) ]+

Assumption FIS is used for the purely parametric estimators of the MME in Propositions 4.2
and 5.1 and is satisfied by many distributions (including the Gaussian distribution).

h/

h/ "
L)+ (%) <K@+, 2wk <.

|yl

B Proofs of the main results

Proofs of key results in Sections 2 and 3 are provided below.

B.1 Proof of Theorem 1

Noting that the sequence {(V (n:)'A}_1, A%(n;00) — E {A“(n4;60)}), Fi} is a second-order sta-
tionary martingale difference, the asymptotic distribution in (7) follows from HL1-HL2 and
the CLT of Billingsley[8]. Now assume v2 = 0. Then

A"(ny;00) — E{A"(n;00)} + g, A, V() =0, as.

It follows that g, # 0, otherwise the random variable A%(n;; 8y) would be degenerate, in contra-
diction of ¢, > 0. Because, from HL2, g/ A;_; is non-degenerate, and is independent of 7;, two
d x k matrices exist, Aj and Ag, with g/, (A1 — Ag) # 0, such that A%(n;0p) — E {A"(n:;00)} +
gLAV () =0, as., fori =1,2. It follows that g/,(A] — AL)V(n) = 0, a.s., which is
impossible because Y is positive definite. Thus we have shown that v2 > 0.

B.2 Proof of Theorem 2

The a.s. convergence of v, follows from HL4 by the ergodic theorem. Similarly,

S Séﬁj) a.s., for any u such that Ség) < 0. (31)
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Now, we turn to case i). We have S&?) < 1 by Proposition 2.2, thus S,(lu) < 1 for n large
enough by (31). It follows, from Proposition 3.1, that @, > u for all u and n large enough.
Turning to case ii), the consistency of 4, follows from the fact that, for € € (0, max{ug, s —

uo}),

lim as. 0072 = 5879 <1, lim as. §{0+) = 580 5 1

n—ao n—a0

B.3 Proof of Theorem 3
Under HL5, it suffices to show that

o Clui,uz]
n =1

r T. (32)

By the Cramér-Wold device, and the CLT of Billingsley [8] used in the proof of Theorem 1, it
can be established that the finite-dimensional distributions of T2 converge to those of I'. By
showing that

the sequence {I'%(u;)} is tight (33)
and, for some constant K > 0,
E{T)(u) ~T0(0)}" < K(u— ), (34)

the tightness of the sequence {I'?} will be established, according to Theorem 12.3 of Billingsley
[7]. The weak convergence in (32) follows from Theorem 8.1 of Billingsley [7].
The convergence in distribution of {I'(wu;)} entails (33). We have

I (u) — Z (nt;00) — E{A" (n:;00)} — A” (03 60)

+E{AY (500} + (9, — 9,)’ 7 Z A1 V() o= Ana(u,0) + Apa(u,v).

Note that
EA}, 1 (u,v) =Var{A"(n:) — A”()} < (u—0)2E ({A* () + A*2 () Hlog A(n:)}?) < K(u—v)?.

Moreover Var (ﬁ Dy At,1V(nt)> = 3. It follows that, using HL6, EA?.L’Q(U, v) < K(u—v)2.

This completes the proof of weak convergence in (32).

B.4 Proof of Theorem 4

Writing 0 = §lin) _ Sc(go) = gl _ SS}") + Sc(g") - ng‘”), we deduce, by the mean-value theorem,
1 1

- (an)_ (ﬁn) _ -
V(s - s8) = Lo e
0

Vil = w0) = ——
plun

where v} is between u, and ug. By continuity of D&é‘ ) we have Dggi) — D&?O) in probability
(and also a.s.), and '), (@,,) 4 I'(up). Indeed, for ¢,¢' > 0,

P{T,(u,) > x} < P{Tw(Uyp) > x, |ty — uo| < s} + P (Ju, —uol > <)
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lu—uo|<s

<P{ sup I'p(u) > x} + P |ty — uo| > <)

lu—uo|<s

<P{Tp(w) >z —<¢'} + P{ sup |Tp(u) — Ty (ug)| > g’} + P (|4, —uwo| >5).

Using the tightness property of the sequence I',{-} (a consequence of (32) and HL5) and the
a.s. convergence of U, the last two probabilities can be made arbitrarily small for n sufficiently
large and ¢ small enough. The other probability converges to P {T'(up) > x — ¢’} which is arbi-
trarily close to P {T'(ug) > x} for ¢’ small enough. A similar upper bound can be obtained for
P {T',(u,) < x} from which the conclusion follows.

C Additional proofs for the general model

C.1 Proof of Lemma 1

This result can be seen as a consequence of Theorem 2.8 in Straumann and Mikosch [47]. We
nevertheless give a direct proof.
For ease of presentation we omit € and set I'y = A1(y;). For allne N, n > 0, and t € Z, let

ft,n =@ [9*(ft—1,n71,yt71),ft—1,n71] = @Z)(ytfbftfl,nfl)a

where fi_no = f°. For fixed n, the sequence (f;,); is stationary and ergodic. We have

|frm = From1]l < Tectlficimo1 — fiotmn—2| STl o Tyt | (Wien, ) — ).

Thus, for n < m,

m—n—1
|ft,m - ft,n| < Z |ft,mfk - ft,m7k71|
k=0
m—n—1
< | IS TR IS AR (1] C TP fo) - f0|
k=0

Ty_1. ..Ft_j+1|w(yt_j,f0) — f0| —-0 as. as n— ©. (35)

N
18

<
I
3

T

L

The latter convergence follows from the Cauchy rule applied to the infinite sum, using FlogI'; <
0 and Elog* | (w, f°) — f°] < . We have shown that, a.s., (fin)nen is a Cauchy sequence

on the complete space F. Therefore fi(0) = lim, o ft, provides the stationary solution of the
SRE (6).
Now, note that

sup|£:(6) — f1(0)| < Ty_1Tyo---Tosup |fo(6) — fol,
256 0e©

where Ty = supgeg It with Ty = A1(y:; 0). By (ii) of A3 one can choose p such that
1> p>ePleln 5
so that

1 _ _ _
lim Elnp*frt_lrt_Q +-Tg=—Inp+EInT; <0.

t—00
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Now, by letting m — oo and taking n = 0 in (35), we have
| f¢ (0 Zrt LTl ye g, £0) = £0
Thus
sup |f:(6 Z g Tejma sup [y, £0) — 10

By the arguments given in the fist part of the proof, supgeg | f0(0)]| is almost surely finite under
A3 (i), and the conclusion follows.

C.2 Proof of Proposition 2.2

Part i) is obvious: the condition P {A(n;) < 1} = 1 entails E {A%(n1)} < 1 and the inequality is
strict because v < 0.
Now suppose P {A(m) < 1} < 1 and let € > 0 such that P {A(n1) > 1 + ¢} > 0. Then we have

W = E{A"(m)} > A+ e)"P{A(m) >1+¢€} > o0 as u — oo. For any n > 0, the function
u+— A¥(n) is convex. Thus u — E {A"(m)} is convex on (0, s]. We consider two cases: a) when
P{A(m) =0} =p> 0 we have S&?Jr) =1-p<SY =1. In view of the convexity and the fact
S > 1, the conclusion follows; b) when P {A(n1) = 0} = 0, the right derivative of u — S
in the neighborhood of 0 is negative. Thus a value 0 < sg < s exists for which the function

u— E{A"(n1)} decreases over (0, so) and increases over (so,s]. Since S’C(S) > 1, it follows that
there is a unique u > 0 such that E {A%(n;)} = 1. This completes the proof of Proposition 2.2.

C.3 Proof of Proposition 2.3

Noting that ¢, = S(Qu)( 0,) — {S v 6 »)}2, the strong consistency of ¥y follows from HL3 and

the strong consistency of 0 It follows that ¥, is a consistent estimator of v,. Now, noting that
(u) (uo)
a0

< 5% for u < ug, we have
P, (CY)) = Pu,, {Ailx/ﬁ (51(1“) - 1) > o (1 —g)}
Py, {07V (S59 = S80) + 07 (880 - 869) > 071 (1 - )
<Py, {0, (50 - 8) > 07 (1 - )

which tends to o as n — o0 by Theorem 1. The conclusion under Hy , follows.

(u)
Under H1 4, Tr(Lu) ~ M — o0, in probability as n — o0. The conclusion follows.

u

C.4 Proof of Proposition 3.1

We apply Proposition 2.2, substituting the empirical distribution of {A(7; én) :t=1,...,n} for
the theoretical distribution of A(n;). The condition on the existence of s > 0 vanishes because
moments exist at any order for the empirical distribution.

C.5 Proof of Proposition 3.2

Under Hy,, the arguments are the same as those in the proof of Proposition 2.3, using HL7
to show the consistency of @2, and the asymptotic normality of \/n(@, — ug) established in
Theorem 4. Under H; , we use the fact that w — u,, — u — ug > 0 in probability as n — co.
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C.6 Proof of Proposition 3.3
By the delta method we have,
oug

V1 (U, — uo) = W\/ﬁ(an,z\u —89) +op(1) L N (0,07) -

In view of the consistency of 03, the conclusion under H,, follows. Under H , we use the fact
that v — 4,5, = u — up > 0 in probability as n — 0.

(36)

C.7 Proof of Proposition 3.4
The proof is similar to that of Proposition 3.3, based on the Taylor expansion

n(ug — U, 7 _ ~
\F( 0 O,h) 1 (Zlgl)\/ﬁ(gn

~

Sh Sh

—6y) + gl;(,)\/ﬁ(an - VO)) +op(1)

D Examples of augmented GARCH models

The table below displays examples of models satisfying (16) (with z* = max(z,0), z= =
max(—=z,0)). GARCH models were introduced by Engle [24] and Bollerslev [11]. Taylor model
was introduced by Taylor [48]. Threshold GARCH (TGARCH) models were introduced by Za-
koian [51]. GJR-GARCH models were introduced by Glosten et al. [33]. Asymmetric Power
ARCH (APARCH) models were introduced by Ding et al. [19]. Beta-t-GARCH models were
introduced by Harvey [36] and Creal et al. [15].

Table 2
Model 0,0 a(ng, 0)
GARCH! (w,a, B),2 an’® + B
Taylor model? (w,a,B),1 aln| + B
TGARCH? (w,aq,a_,f),1 aynT +a_nT +f
GJR-GARCH* (w,ay,a,8),2 ant2+a n?2+5
APARCH® (w,a, &, B),6 w+a(n] —&n)’ +p
Beta-t-GARCHO (w, v, B, 1), 2 B+ pled,
T 2 T2

0 =w+ael_; + for
2 ot =w + Oé|6t_1| + ﬁO’t_l

Sop=wtase | tae |+ Bo

. Ofs =w+are? + oz,et__zlé-l— Ba?gl
08 = w+ alle1| — €a1)0 + ol
(v+D)ef 4
(v=2)+€i_1/o} 4

6o =w+ Bol, +a

E Empirical MDF of a GARCH process

The first-order GARCH process is a particular case of APARCH, obtained for § = 2 and a(n) =

an? + 3. The asymptotic variance of the empirical MDF has a more explicit form in GARCH
models for two important estimation methods:

Corollary 7 (GARCH estimated by ML or QML). If i) the distribution of n? is non-
degenerate and F(|n;|*) < o0;ii) © < [w, 00) x (0, 90) x[0, 1) is compact and 8¢ = (wo, o, Bo)’ eé,
iii) £ log(cgn?+Bo) < 0, then the conclusions of Corollary 1 hold for the QML and ML estimators
with u < 2. Moreover, letting M, , = E {n?*(aon? + B0)?}, z,y € R, and

1 002(60) 1 002(09) 0c2(0y)
O =E t S o - t t
(0‘3(9) 00 ) ’ J (af 00 00’ ) ’

(37)
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we find that g, = u (m,, — agMi ,—12), where m,, = (0, M1 4—1, Mo y—1), and
vZ = cuu? (m;J_lmu — Q3M12,u—1) + Mo 2, — M&u, (38)

where ¢, = k4 — 1 with x4 = Enj for the QMLE, and ¢, = 4/u), for the MLE.
Proof. i) When the model is estimated by QML we have

1 do2(8o)
Vi) =n?—1, A =J 15122
(nt) UD ’ t—1 O_tz 00
thus ¥ = (kg — 1)J 1. It follows that
ve = W(ka—1) (mLJ ' my + ogM? | — 200 M1 1m), J ')

+M072u — Mau + QU(MLU — M()’u) (m;J_lﬂ — aOMl,u—l) .

Noting that J~'Q = (wp, g, 0)’ (see Francq and Zakoian [29]), we obtain g/,&, = 0 and the
formula for v2 follows.

ii) If the model is estimated by ML we have
liaO—tQ (60)

4 2
X=—J1 Vg = Ay g =——J"
i ) (nt) = g1(ne), t—1 " Gtz 20

Noting that
Ea(n: 0)g1(m) =a+ 6+ [(aa? + f)ah()da
=a+ 3 — J(3aw2 + B)h(z)dxr = —20¢,
we have, using 2'J 1€ = 1 (see Remark 3 in Francq and Zakoian [29]) and J 1Q = (wo, ag, 0)’,

2
g€, = U{mu—OéOMl,u—lﬂ},EJ 'QEa" (n)g1(m) =0

and
, 4y? P
guz.gu = 7 (mu - aOMl,u—lﬂ) J (mu - CV0]\41,u—1S])
42 _
= — ( ;J 1mu - a%Mﬁufl) .

Lh

Thus
2 ’ 4u? ry—1 27 12 2
Uy = guzgu + ¢u = I (muJ my — aOMl,ufl) + M072u - MO,U‘

The MLE is more efficient than the QMLE since k4 — 1 > 4/1;, and, by the Cauchy-Schwarz
inequality,
m! J'm, — a%Miu L = mLJ'my, — (m J7IQ)?

m! I m, — (m),J'm,) (T IQ) = 0.

\%

O

In Francq and Zakoian [31] we provided a test of finite moments of order w in the case where
u is even and (e) is a standard GARCH process. In this case, the moment condition is an
explicit function of 8y and moments of 7;. The test statistic is thus computed differently, but is
equivalent to the test T, ,(lu) of Corollary 3, as the next example illustrates.

26



Ezample (2nd-order stationarity testing (v = 1)). Consider a standard GARCH model
(6 = 2). We have a(n,0) = an? + 8. When the model is estimated by Gaussian QML we have,
by Corollary 7, v = (k4 — 1)efJ 'eq + (o + Bo)? — 1, where e, = (0,1,1). Thus under Hy,

18
S(l = - Z annt + Bn = Qp + Bn + OP(l) U% = ('%4 - 1)66‘]_160'

3

We retrieve the Wald-type test statistic for testing second-order stationarity,

T = \/n (a0 + 571_—11) +op(1).
{(Ra — 1)ep T e}

F Proofs for the multiplicative model

F.1 Proof of Corollary 1

First note that E{A%(n;600)} = FEa®(n;00) < oo under MM1. The properties required in
A0-A3 are also satisfied by MM1-MMZ2. It therefore remains to demonstrate HL1 and apply
Theorem 1.

With a(£;0) = b(e,0;0) where b: R x Rt x © — R*, under MM4, for b or logb, V, (resp.
Vo) denotes the partial derivative with respect to o (vesp. ), and VZ_ (resp. V2,) denotes the
unmixed (resp. mixed) second-order partial derivative with respect to o (resp. o and 0).7 With
this notation, we can write for instance

0 0
(Tea{m( ); 0} = b{ﬁt,Ut( ); 0}

=Vob{et,01(0); 0} + Vb {er,04(0); 0} 0

%Ut(a).

We establish the following intermediate results:

IR1: There exists a neighborhood V' (6) of §y such that

inf a{n(0);0} >0 and sup n|SM(@) —SW(B) =0(1) as.
0eV(6o) 6eV(6o)

IR2: The function 8 — a{n(0);0} is continuously differentiable at 6y. Moreover, for any
sequence (6),) such that 8, — 6 a.s., we have

054 (6,) _ 25" (80)
00 00

— 0, a.s. asn — 0.

()
IR3: The expectation g, = F [%a“{m(@);@}]gzeo exists in RY and 63"576(90) — g,, &.8. as

n — oo.

7For instance in the standard GARCH(1,1) model with 8 = (w,q, ), we have b(¢,0;0) = « (§)2 + B,
. — -2 a (e)2 . 1 )2 ! .
Vo logb(e,0;0) = N L (U) and Vg logb(e,0;0) = N (O, (U) ,1) . In the ARCH(1) model, with
0 = (w,a), we have b(e,0;0) = a (§)2, thus V, logb(e,0;0) = =2 and Ve logb(e,0;0) = (0,1)".

et

a
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F.1.1 Proof of IR1
We have 77;(0) = €5, *(8) where 5(0) is defined after (17). For 8 € V(6,) we have

a*{71(0); 0} — a"{m:(0); 0} = b"{er,5¢(0);0} — b"{er,0¢(0); 6}
= ub“{e;,0;;0}V,logb(e,0,;0){0¢(0) — 04(0)} (39)

where o} is between 64(0) and 04(6).
Then, using MMS5 and the ¢, inequality, we deduce

t

N . |€t| T(u+1) N
4" 131(0): 0} ~ a* (. (0):0}] <u2'C™ {(a) +1}|at<e>—at<9>|.

The r.h.s. of the inequality is bounded by a variable of the form KX;p' where X; admits a
small moment uniformly in ¢, p € (0,1) and K is Fp-measurable, using Lemma 1 and MM3 and

noting that
0 0 Kpt o (0
( 0) ( ) < |77t| ( ) t( 0)

1+ — sup .
w / eeviey) o1(0)

Thus

n §T(ZU)(0) _ S,(L")(O)‘ < KZ Xipt < KZ X',

t=1

where the latter sum admits a small moment by MM4 and thus is finite a.s.

F.1.2 Proof of IR2

In view of IR1
as( )< 1 Z w1 (0): 0y 0L(9): 6}

“n 00

is well-defined in V' (6y). We also have

25M0) 1 & 0 0
60(?0(’) = ;ubu(et, 01(0);0) {ué’H log b(et, 04(0); )80' log b(et, 04(0); 0)
2
—1 0);0) ;.
+6080I Og b(et? Ut( )’ )}
From the Holder inequality and MM6(u)
025\ (0)
sup  ||[——==—| = O(1), a.s.
vev(0y)| 0000
The conclusions follows from a Taylor expansion of 2 ( n) around )

F.1.3 Proof of IR3

Noting that

as< 19 0
— E “(et,0¢(00); 00) =5 log b(er, 0¢(09); Oo)
n & 00
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the result is a straightforward consequence of the Holder inequality, MM6(u) and the ergodic
theorem. R R
Now, noting that S,(Lu) = S,(Lu)(On), a Taylor expansion of 57(1”)(0”) around 6y yields

255"(6%) 255" (80)
20’ 00’

Vi (809 = 580) =/ (509(8,) - S09(8) ) + { } V(B — 6y)
055 (8,)

/(8 — 00) + v/ { S17(80) - 5}

~ (u)
where 0 is between 6,, and 0. In view of IR1-IR3 and HL2, and since 55”579(60) — g, a.s. by
the ergodic theorem, we can conclude that HL1 holds true. Thus the conclusions of Theorem 1

apply.
F.2 Proof of Corollary 2
Part iii) shows that MM1 holds true. Noting that

a%{”< i 0) +a(50)2f =5

and that the strictly stationary solution admits a small-order moment, it can be check that
MM2 is satisfied. The CAN of the QMLE were established by Hamadeh and Zakoian [35]. By
Theorems 2.1 and 2.2 in Hamadeh and Zakoian [35], assumption HL2 holds with

o
Vi) =ni =1, Ara=5J5!

= A=_J;'0
of 00 o5

where Q5 = E(D;), J; = E(D:D}), D; = Dy(8y) and Dy(8) = 0, °(0)0c?(6)/00. As an
intermediate result to establish the CAN of the QMLE, [35] established MM3. By Equation
(5.18) in Hamadeh and Zakoian [35] the first moment condition in MIM4 is satisfied with r = 2.
The second moment condition is also satisfied, using supgeg | 5| < 1 and the existence of a small-
order moment for |¢;|. Noting that b(e, 0,0) = t—?(a+%€>o +a_W.0)+ B, it can be shown that
MMS5 is satisfied for 7 = §. It has also been shown that

d
< 0

1 909(0) ¢

af(a) 00

1 0%09(0)

E
e 73(6) 0000’

GEV(BO)

, FE sup
BGV(BO)

for any integer d (by (5.20) in the aforementioned paper). It follows that MM5(u) is satisfied
for any ¢ > 0 and for p close enough to 1 when u < s/2. We conclude from Corollary 1.

F.3 Proof of Corollary 3

The proof consists in checking the consistency of

. 05(“)0 IR A
9u = "2 E;é’i {575 en)agn}

and Assumption HL3. We start by showing that

255(0)  asy”(0)
20 20

sup
GGV(OO)

— 0, in probability as n — 0. (40)
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We have

2s:"(8) a5 1& vl 5
5 _ 20 _H;u[b {et,at(O),H}—b {Etygt(g)ag}]

6at (9)
00

X [VU log b {es, 04(0); 0} + Vo logb{et,at(O);H}}

6@(0)
00

1 n
+ 2 ub® {€;,01(0);0} [V logb{et, 04(0); 0} — V,logb{e,0:(0);0}]
t=1

LSt (e 5.00): o oy (001(8)  05,(6)
+n;Ub {€t70t(9)»9}Valogb{ﬁt,%(g);e}( 00 00

1 n N N
+ - Z ub® {€:,0+(0);0} [Vologb{e,0:(0);0} — Vglogb{e:, 5:(0);0}]
t=1

:=A1n(0) + Agn(e) + Agn(e) + A4n(9)
First consider A1, (0). From the proof of Corollary 1 we have

sup [b" {er, 04(0); 0} — b" {er, 5¢(0); 0} < Xyp'
GEV(O())
where X; admits a small moment. By MM3 and MM4, the other summands involved in A
also admit small moments. It follows that supgey (g, [A1(0)| — 0, in probability as n — o0.
Now we turn to As,. Another Taylor expansion yields

V. logb{es,0:(0);0} — V. logh{es,5:(0); 0} =V2,_ logb(es, of;0){5:(0) — 04(0)},
where o/ is between 6¢(6) and 04(6). By the same arguments, supgey (g, |A2:(0)] — 0, in
probability as n — 0. The last two terms can be handled similarly. Hence, (40)A is established.
Now using IR2-IR3 in the proof of Corollary 1, together with the consistency of 8,,, we conclude
that g, is a consistent estimator of g,,.

We similarly show that Assumption HL3 is satisfied, which completes the proof of Corollary
3.

F.4 Proof of Proposition 4.1

The tail result for oy is established using Theorem 4.1 in Goldie [34]. The tail result for ¢, follows
by the arguments given by Mikosch and Staricd[44] in proving their Theorem 2.1.

F.5 Proof of Corollary 4
It suffices to show that HL4 holds true. Similar to (39) we have

logb{et,01(0);0} —logb{e,5:(0);0} =V, logb(er, 075 0) {5:(0) — o1(0)}, (41)
thus, by arguments already used, 7, = %Z?Zl logb {et, at(én); én} +0(1), a.s.
Moreover,
0
logb {€;,0¢(0);0} —logb{e;,:(00); 00} =g logb{e;,0,(0%);0%} (6 — 6y), (42)

for 0* between 0 and 0. Using the consistency of én and MM, we conclude that

1 n
== 3 logb{er,01(80): 6o} + o(1), as.
"o

The second convergence in HL4 can be handled similarly.
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F.6 Proof of Corollary 5
In view of Theorem 3, we need to show HL5 and HL6. First note that

(u—v)
0=00,u=u;"

where the u} belong to (u,v) and the existence of the expectation follows from MM6(ug). Thus
HL6 is established. R
We will now show HL5. We have, for 8* between 0,, and 0y,

2 .
gu _gv = E (auaelb {Gtﬂo—t(e)’e}

Fan) =40 = Vi {9~ S09@0) ) + 1 1| e (01067} — g, Vi@~ 00

+ g; {\/ﬁ(an — 00) — Zn: At_1V(77t)} = Rn,l(u) + ang(u) + ang(u). (43)

1
vn t=1

The proof is thus divided into three steps.
i) We have, by MM3, with o;(0) between 7,(0) and o,(0)

| R, (w) Z sup ub"{e;,07(0);0} |V, logh {er, o7 (6): 0} Kip' = op(1),

\/>t 10eV(60)

uniformly in u € [u1, uz], noting that, by MMJ5, the supremum admits a small-order moment.
ii) The second term, R,2(u), can be handled by a Taylor expansion around 6y of
%a“{nt(ﬂ*); 0*}. Indeed, we have

2

0000’

1 < a 'lL & &
5257 {n:(6%);6"} — g,
i

a"{n:(60); 6o} — g, + — Z a"{n:(6**); 0**}(0" — 6o)

= ()+Rn5()

where 8** is between 0* and 0.
For any u* € (u1,us) and any positive integer k, let Vi (u*) = (u* — ¢, u* + ). We have, for
any k,

0
>, 20% U1e(80); 00} —

1
sup —
n

ueVi (u*)nfu1,uz)

1 n
— Z X g (u®
L}

+ |gu* gu| ) (44)

3\'—‘

o0
2*9 " {n(600); B0} — gy

where 5
Xy p(u*) = sup a"{n:(00); 6o} — *a“ {m(00); 00}

u€Vi (u*)n[u1,uz]

06

The last term tends to 0 as k increases to infinity by continuity of u — g,. The second term
converges to 0 a.s. by the ergodic theorem. Finally, the first sum in the r.h.s. of Equation (44)
converges a.s. as n — o to EX;(u*). Indeed, the ergodic theorem can be applied because the
variables inside the absolute values are both continuous in u and functions of the n;_;’s for ¢ = 0
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(see Francq and Zakoian [30], Exercise 7.4). By the Beppo Levi theorem, EX; ,(u*) decreases
to 0 as k — oo. We have shown that the left-hand side of (44) converges to 0 as k and n — oo.
This conclusion is based on a compactness argument: for any cover of the compact set [uj, ug]
by sets of the form Vi (u*), there exists a finite subcover, of the form Vi (u}),..., Vi(u}). We
have

= max sup = op(1).

i=1,..d ey, (u¥)n[ur,uz]

n a "
; aioa {nt(g())a 90} —9u

We have shown that sup,, Ry, 4(u) = op(1). Now, since

u1,u2]

0606’
0%log a{n.(0);0} , dloga{n,(6);0} dloga{n,(6);0}\ . '
- ( 0006’ 00 o0’ ) a {77t(9)a9}a

we deduce from MMG6(s) and the strong consistency of 8* to 8y that sup,epy, uo] Fn,5(u) =
op(1). Thus sup,ey, uy] Fn2(u) = op(1).

iii) The third term, Ry, 3(u), in the r.h.s. of (43) is an op(1) uniformly in v by MM5 and
using the fact that sup,¢ |lg.|l < oo. This latter property follows from

o (st )|

u1,uz2)

N

gl

whereas by Holder’s inequality, for each component 8; of 0,

dloga{n:(6o); 600} .,
sup E‘( 4 {gg 0 O}a {Ut(go);eo})‘
ue(u1,uz2) i

_ |9log a{n:(09); B0}
= 00;

sup |a“{n:(60); B0},

q/2 ue(u,uz)

(1a™ 7:(80): 80}, + |a"*{m:(60): B0}, ) < =0,

~ |9log a{n¢(09); 0o}
= 00;

q/2

using MM6(s). Thus HL5 is established.

F.7 Proof of Corollary 6

It can be shown that HL7 holds by the arguments used to establish HL3 in the proof of Corollary
3. The conclusion follows from Proposition 3.2.

F.8 Proof of Proposition 4.2

In view of MMS8, (36) and the consistency of 7}, we deduce

(uo) _ \/ﬁ(uo —an,h) _ é’uo -1 1 aUt 1 A
Vn ah Uth\/*Z ael 2 69 gl(nt) +0P( ) ( 5)

from which the conclusion follows.
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F.9 Proof of Proposition 4.3

The strong consistency of 19 QML follows from Theorem 3.1 in Hamadeh and Zakoian [35]. Be-
cause D is discrete, it follows that SOME 0o for sufficiently large n. By Corollary 2, the
assumptions required for Corollary 5 are satisfied for n large enough when ¢ is replaced by
SOML 1t ¢ has a positive density over the real line, the condition 1 < F {a*(n1)} < oo for s > 0
of Corollary 5 holds and the conclusion follows.

G Proofs for the asymptotic power comparisons

G.1 Proof of Proposition 5.1 and inequality (24)

In the proof of Corollary 1, we have seen that

1 L a" t -1 1
:%; (2 u\FZAt 1V () + op(1), (46)

where the first term is centered only for u = ug. By (22), it follows that under P

1 Y (0 ) (o ey )]
Ay n (00 + 7//n,00) —37'37 )7\ chao(B0)  T'IT '

Le Cam’s third lemma (see e.g. van der Vaart [50], page 90) shows that

T —L5 N (chuo(00),1),  under P, .

The conclusion of Proposition 5.1 easily follows for the two tests using (20).
With the notations used in the proof of Corollary 7, for the standard GARCH(1,1) model
estimated by QML we have

1 0o4(60) 1 do¢(6o) 1
E( 00 ;oAt 1) =E|— 00 Al’ﬁ—lguo - 59“0’ E{V(m)g1(m)} = =2,

ot (%47

while with the ML we have

1 8at(00) 1 6@(90) -1
E( T Gu At ) =E | — 30 Al 194, = Yu E{V (m)g1(m)} = th.

ot Ot
Moreover,
} ug E 2u01_1 1 ug ! 2 wuo—1 __
2Eat 1+ . (ne) ¢ + apuoEnfa® " = 5t3 @ (x)zh!(z)dz + agug | z°a = (z)h(z)d

_1 1 uQ ’ ) f _ uo @ E 7 _
_2+QJ ()b () + [a" (2) 3 ()] Ja (x)( : +2h(x)> dz0 = 0.
Thus, for the standard GARCH(1,1) model,

T/ ug

1
On(00) = = | SR s (1)) = o (s, = M) | = 27,

uo UUO

where the formulas for vy, are displayed in (38) for the ML and QML estimators.
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G.2 Proof of Proposition 5.2
Relation (22) implies that

1
Ap 1 (60 + 7/4/n,60) N (—27"37', T'jr) under Py,

which is the distribution of the log-likelihood ratio in the statistical model A/ (T,’J*l) of pa-
rameter 7. In other words, denoting by 7 a subset of R? containing a neighborhood of 0,
the so-called local experiments {L,, (6o + T/4/n), T € T} converge to the Gaussian experiment
{N (7,3_1) , T E T}.

Under the assumption of the proposition on ug(6o, h), for a given u, testing Hy, against
H,, ,, amounts to testing Hy: 7 = 0 against Hq: 7 = e in the limiting experiment. The
UMPU test based on X ~ N (’T, 371) is the test of rejection region

C= {e'X/\/ €3 le> o711 —g)}.

This UMPU test has the power given in (25).
In the case of the standard GARCH(1,1) model,

!/
QML(OO) _ ee

Ch1
\/(/@4 —1e'J e

ee Mele
ML
<Ch,l (00) = L Ce = h

ol 1,7
\/ie’J_le—i—ag(m—l—i) 2velJ e

by the Cauchy-Schwarz inequality, with equality only when ¢1(y) =
only if the density of 7; has the form (26) (see [28], Proposition 5.5).

K (1 — y?), that is if and

G.3 Proof of Proposition 5.3
By the arguments of the proof of Proposition 5.1, using (45), we obtain

1 ou —%T r&or

on 00~ 1o 10 4 1.
Oh 4 Ju y—1ou 4 -
\/Lh 60’J 00 \/Lh ruo’] Tug

G.4 Proof of Proposition 5.4

dhue(00) = —

Follows by the arguments of the proof of Proposition 5.1, using (37) and the LAN property
(29)-(30).

G.5 Proof of Proposition 5.5

The statistics T, ,(Lu), Uéu) and Wé“) are N(0,1) distributed under the null. The p-values of the
tests based on T,(Lu) and U7(Lu) are thus 1 — @ (TT(LU)) and 1 — & (Uéu)) respectively. Under the

alternative H1, : u > ug we have, almost surely, as n — o0,

(w) _ (w) _ ~
ry V" (s27-1) va(s¥-1) Gl _ VA=) /(=)
" Oy, Uy, ’ " Wz, Wy

)
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p = VIR Vil —w) oy VP TR A — )
" a‘h Op ’ '::h h .

It can be shown that log{1 — ®(z)} ~ —2%/2 as © — 4. The asymptotic slopes of the tests

are thus
@ _ 1)
o —1 u — ugp)? u — ugp)? uU—1u
er(u) :(1)2)7 cur(u) = (sz)’ ev(u) = (020)’ e (u) = ( - 0)
u uQ h h

The test T, éu) is more efficient than UT(Lu), in Bahadur’s sense, if and only if

oty _ (8 -1)° v, -

cv(w)  (u—up)® (E[a(m1;80)log{a(n;60)}])* v}

and the test W,S“) is more efficient than Uéu) if and only if

CW(U) — 2 (’I“/ s )3—1 (,r/ s )/ > 1.

uQ ug? < ug ug? ug

H Examples of asymptotic power comparisons

Propositions 5.1,5.3 and 5.4 (with 79 = 0) are illustrated in Figure 3 for Student distributions
with v = 5,20,30 and . For the GARCH(1,1) model, the LAPs of the tests T, U,V and W
depend on T through m;[)‘r, which is therefore shown on the horizontal axis. As expected, the
test V is locally asymptotically more efficient than the other tests, especially when wg is small
for the equivalent tests T" and U. The latter two tests are also dominated by the W test.

Examples of asymptotic slopes for the standard GARCH(1,1) model with Gaussian and
Student errors are displayed in Figure 4 and 5. It is clear from these graphs that, for the
alternative Hq1, : u > ug, test U based on the MME is more efficient than is test 7" based
on the GMF, and that the ratio cy(u)/cr(u) increases as u departs from ug. On the contrary,
for the alternative H’fu : u < ug, the asymptotic slopes favor test 1. Test V is always more
powerful than U, but may be outperformed by T in the left-hand side of ug. Interestingly,
the left panel shows that the slope of test T may decrease for large values of w, which can be
explained by the fact that the numerator and denominator of this ratio both tend to infinity as
u increases. On the other hand, for small values of u the moment condition u < s/2 required
for the validity of test T can be satisfied while the condition ug < s/2, required for the validity
of test U, can be violated.

Monte-Carlo experiments displayed in the next section illustrate test 1’s lack of power rela-
tive to the others, in agreement with Figures 4-5.

I Monte Carlo experiments

We first performed 10,000 simulations of a standard GARCH(1,1) model with (g, By) =
(0.10,0.86) and Gaussian innovations such that ug = 4, for different sample sizes. The re-
sults are reported in Table 3. Concerning the tests, the most striking result is the low power of
test T relative to the others, in agreement with Figures 4-5. Even for large sample sizes, test T
is too conservative but the levels of tests U and V at the boundary of the null are correct. As
expected, test V is slightly more powerful than test U. The CIs based on the statistics u, and

Up,p, (lines U,(Lu) and Vn(u)) are similar and, as expected, slightly tighter with the fully parametric
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a=0.1,3=0.85v=w, uy=4.536 a=0.1,B3=0.85v=30, up=4.119

0.8 1.0
L

0.6

0.4

1.0

0.4

0.2

0.0
L

Figure 3: LAPs of tests T and U (blue line) based on the Gaussian QML, test V' (dotted red line),
and test W (dotted orange line) as functions of m;, 7, for a standard GARCH(1,1) model with ag =
0.10, 8o = 0.85 and for Student errors with v degrees of freedom.

a=0.1, 3=0.86 a=0.09, p=0.8
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Figure 4: Asymptotic slopes of the tests T, U and V for Gaussian errors and the standard GARCH(1,1)
models.
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a=0.1,3=0.86,v=40 a=0.09,3=0.8,v=40
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Figure 5: Asymptotic slopes of the tests T, U and V for Student errors (v = 40) and the standard
GARCH(1,1) models.

method (the method based on @, with f Gaussian). Note that the coverage probabilities are
excellent (i.e. very close to nominal level 1 — «) when n = 4000 or n = 8000. The results
reported in Table 4 come from tests of Hg,, for the same experiments. In agreement with
Figures 4-5 these results are more favorable to test T, even if the level is poorly controlled.
Next, we consider the Beta-t-GARCH models introduced by Harvey [36] and Creal et al.
[15], such that
(v + ey
(v —2) +e_/of

o} =w+ Poi | +a

and the rescaled innovations are Student’s t distributed with a degree of freedom v. This model
is of the form (1) with § = 2, w(n) = w and a(n) = B+ % Note that for this model, even
if the disturbances are t-distributed, we have s = o0, i.e. a(n;) admits moments at any order.
For the value of the parameter 6 = (w, o, 3,v)" used for the simulations, we have ug = 3.5. The
results in Tables 5 and 6, obtained for simulations of this Beta-t-GARCH model, lead to similar

conclusions as for standard GARCH models.

J Complement to the empirical application

The QMLE and MLE residuals of the Total return series do not show any sign of dependence (in
Figure 6, the aucorrelations of the squared residuals are not significantly non-zero). Moreover,
it is seen that the distribution of the residuals is better represented by the Student than by the
Gaussian distribution.

The empirical MDF Séu) is drawn in red in Figure 7. This curve crosses the horizontal line
y=1at ug = 7.9, the estimated value of uy based on Ur(lu). The MDF computed on the first 20
replications of the bootstrap simulation are plotted in Figure 7.
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Table 3: For tests T,(lu) and U,(L“)7 relative frequency of rejection of Hy . at the nominal level %. The null
hypothesis is true for u < 4 and false for u > 4. The last 3 columns are CIs for uo at the asymptotic confidence
level 1 — . The column "mean" (resp. "median") gives the means (resp. medians) of the CI bounds. The
column "coverage" gives the empirical coverage probability, that is the proportion of CIs that contain uo among
the N = 10,000 replications.

n !
1000 1%

5%

10%

4000 1%

5%

10%

8000 1%

5%

10%

u=2 u=3 u=4 u=>5

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.02
0.02
0.02
0.18
0.17
0.12
0.55
0.60
0.00
0.01
0.00
0.01
0.03
0.04
0.04
0.06
0.05
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
1.32
1.25
0.20
4.40
4.7
2.07
8.02
8.15
0.07
1.29
1.27
1.94
4.95
5.14
5.77
9.08
9.39
0.21
1.26
1.34
2.67
5.30
5.21
7.06
9.64
9.87

0.00
8.44
8.81
0.54
17.63
18.62
6.25
25.04
26.58
1.76
22.69
23.83
21.05
40.63
42.32
39.27
52.30
54.00
14.62
40.82
42.84
47.84
62.47
64.21
65.63
73.06
75.25

u =6
0.00
22.15
23.35
0.46
36.61
39.07
9.24
46.13
48.76
5.94
63.80
66.49
52.55
79.93
82.22
75.71
86.35
88.53
56.87
90.13
91.94
90.75
96.47
97.34
96.55
98.18
98.67

u="7
0.00
38.96
41.68
0.04
54.41
57.89
8.12
63.58
66.89
6.58
88.73
90.86
72.22
95.47
96.42
91.33
97.51
98.10
79.55
99.38
99.69
98.53
99.92
99.96
99.80
99.97
99.99

mean

[0.49,9.04]
[0.64,8.63]

[1.51,8.02]
[1.60,7.68]

[2.03,7.50]
[2.09,7.19]

[2.40,5.94]
[2.43,5.86]

[2.82,5.51]
[2.84,5.45]

[3.04,5.30]
[3.05,5.24]

[2.87,5.30]
[2.89,5.26]

[3.16,5.01]
[3.17,4.98]

[3.31,4.86]
[3.31,4.83]

median

[0.62,8.03]
[0.74,7.83]

[1.54,7.16]
[1.61,6.98]

[2.02,6.72]
[2.05,6.55]

[2.37,5.81]
[2.40,5.76]

[2.79,5.40]
[2.81,5.37]

[3.00,5.20]
[3.01,5.16]

[2.84,5.25]
[2.87, 5.22]

[3.13,4.96]
[3.15,4.93]

3.28,4.81]
[3.29,4.79]

coverage

0.99
0.99

0.97
0.97

0.95
0.95

0.99
0.99

0.95
0.96

0.91
0.91

0.99
0.99

0.95
0.95

0.90
0.90
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Table 4: As first part of Table 3, but for the null Hf ,, which is true for u > 4 and false for u < 4.

n o Test ©v=2 u=3 uvu=4 u=5 u=6 u=7
1000 1% T 551 139 045 023 014  0.10
U™ 051 0.00 000 000 000 0.00

v 973 000 000  0.00 000 0.00

5% TV 60.04 2345 7.67 271 1.06  0.41

U™ 5154 913 004 0.00  0.00  0.00

W 5078 1205 043 0.00  0.00  0.00

10% T 80.74 4208 17.17 648 271  1.26

W 7611 3085 7.78  1.34  0.00  0.00

W) 7629 3144 822 139 0.03  0.00

4000 1% TSV 9565 3049 205 002 0.0l  0.00
W 9201 1643 026 001 000  0.00

v 9258 1748 031 0.00 0.00  0.00

5%  TY 9950 5935 852 049 002  0.01

U™ 9992 4996 433 0.07 001 0.00

W 9930 51.06 428  0.09  0.00  0.00

10% T  99.89 7317 1496 123  0.03  0.02

W 9985 6810 1093 055 0.02 0.0l

W 9990 6831 1039 051 0.02  0.00

8000 1% T 100.00 59.40 216  0.00  0.00  0.00
W 9997 4604 053 000 000  0.00

v 10000 47.94 046 0.00 0.00 0.0

5% T 10000 82.63 7.74  0.05  0.00  0.00

U™ 100.00 77.97 495 0.01  0.00  0.00

W 10000 78.86  4.66  0.01  0.00  0.00

10% TS 10000 90.34 1361 0.16  0.00  0.00
10000 8831 1054 0.06 0.00  0.00

0 100.00 8877 1030 0.04 0.0  0.00
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Table 5: Same results as presented in Table 3, but for N = 1000 replications of the Beta-t-GARCH model with
(wo, @0, Bo, 0) = (0.5,0.1,0.88,7.78). The boundary of the null corresponds to u = 3.5.

n « Test w=15 uwu=25 u=35 u=45 u=55 u=6.5
2000 1% TS 0.00 0.00 0.00 0.00 0.00 0.10
U 0.00 0.00 2.10 980 2540  44.30

W 0.00 0.00 1.10 980 2820  50.10

5% T 0.00 0.00 0.60 3.80 6.10 7.60
.00 0.10 520 19.40  42.00  61.10

W 0.00 0.10 430  19.60 4570  64.20

10% T  0.00 0.10 420 1170 20.70  27.60

W@ 0.00 0.60 860 2870 5170  68.90

W 0.00 0.60 740 2970 53.90  71.10

4000 1% T 0.00 0.00 0.00 0.50 2.30 3.10
U 0.00 0.00 140 1670 4510  69.30

W 0.00 0.00 120 1840  50.90  76.40

5% T 0.00 0.00 210  13.60  29.10  41.40

@ 0.00 0.00 6.30 3250 6140  82.90

W 0.00 0.00 530  33.60  68.40  84.90

10% T  0.00 0.00 6.90  27.60 5230  69.00

@ 0.00 0.10 1050  42.10  70.70  88.00

W 0.00 0.10 9.30  44.60  76.90  89.70

8000 1% T 0.00 0.00 0.00 560  23.00  42.70
U 0.00 0.00 130 2590 7020  91.70

W 0.00 0.00 .00 3230 7810  95.60

5% T 0.00 0.00 290  29.00 6880  87.50

@ .00 0.00 6.10  46.80  85.00  96.00

W 0.00 0.00 560  54.00  89.40  98.60

10% T 0.00 0.00 720 4880 8440  95.20

W 0.00 0.00  10.30  58.60  89.60  98.10

W 0.00 0.00 1040 6520  93.60  99.30
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Table 6: Same results as in Table 5, but for the null H ,

n « Test w=15 wu=25 u=35 u=45 u=55 u=6.5
2000 1% T¢W  13.80  2.40 0.00 0.00 0.00 0.00
U™ 0.60 0.00 0.00 0.00 0.00 0.00

W 7.80 0.00 0.00 0.00 0.00 0.00

5% TSV 6240 2170 6.40 1.50 0.50 0.10

U 4970 560 0.00 0.00 0.00 0.00
w6140  6.90 0.00 0.00 0.00 0.00

0% 7™ 8250 3940  13.40  4.40 1.20 0.50

W 7650 2580 4.90 0.40 0.00 0.00

W 8650 29.80  1.60 0.00 0.00 0.00

4000 1% T 62.60 1050  0.90 0.00 0.00 0.00
Ut 4500 1.40 0.00 0.00 0.00 0.00
w6850  1.80 0.00 0.00 0.00 0.00

5% TS 9040 3610 6.80 0.80 0.00 0.00

U 8730 2380  2.40 0.00 0.00 0.00

W 9600 3190 0.60 0.00 0.00 0.00

0% 7™ 96.00  51.80  11.90  2.80 0.20 0.00

W 9460 4370 7.80 0.70 0.00 0.00

W 99.10 5370 6.90 0.00 0.00 0.00

8000 1% T 9620  25.90  1.30 0.00 0.00 0.00
W 9380 13.60  0.00 0.00 0.00 0.00
w9910 23.00  0.00 0.00 0.00 0.00

5% T 9970 5800  6.50 0.10 0.00 0.00

UM 99.60 4740 3.90 0.00 0.00 0.00

W 10000 6260 2.20 0.00 0.00 0.00

0% 7™ 9970 7240 1130 0.80 0.00 0.00

W 9970 67.80  8.90 0.10 0.00 0.00

W 100.00  78.60  7.80 0.00 0.00 0.00
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Figure 6: Autocorrelations of the squares of the QML and ML residuals, and empirical distributions
of the QML and ML residuals, after fitting an APARCH model to the Total return series.
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Figure 7: Empirical MDF for the APARCH(1,1) model fitted on the Total return series (red solid line),
MDF of 20 bootstrap replications (blue dotted line), and 95% bootstrap interval (delimited by vertical
dotted lines) over 10000 bootstrap replications.
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