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Finite moments testing in a general class of nonlinear time

series models

Christian Francq and Jean-Michel Zakoïan*

June 2024

Abstract

We investigate the problem of testing the �niteness of moments for a class of semi-
parametric time series encompassing many commonly used speci�cations. The existence of
positive-power moments of the strictly stationary solution is characterized by the Moment
Determining Function (MDF) of the model, which depends on the parameter driving the
dynamics and on the distribution of the innovations. We establish the asymptotic distri-
bution of the empirical MDF, from which tests of moments are deduced. Alternative tests
based on estimation of the Maximal Moment Exponent (MME) are studied. Power com-
parisons based on local alternatives and the Bahadur approach are proposed. We provide
an illustration on real �nancial data and show that semi-parametric estimation of the MME
provides an interesting alternative to Hill's nonparametric estimator of the tail index.

Keywords: E�ciency comparisons of tests, maximal moment exponent, stochastic recurrence equation,

tail index

1 Introduction

If a random variable X does not have �nite moments of any order, its distribution is said to be
heavy-tailed. If the distribution of |X| is regularly varying with tail index α ¡ 0, its distribution
is heavy-tailed and it is often said to be fat-tailed. In this case, one can say that the maximal
moment exponent (MME)�that is, the highest �nite moment order�of |X| is equal to α because
E|X|u   8 for u   α and E|X|u � 8 for u ¡ α.

Knowing the tail index (or MME) of the marginal distribution of a stationary time series
model is obviously of interest. Kesten [40] is a primary reference for tail index characterization
of general linear Stochastic Recurrence Equations (SREs). Basrak, Davis and Mikosch [3] gave
conditions for the existence of a tail index for general SREs and showed that the marginal
distribution of a GARCH process is regularly varying. Zhang and Ling [53] showed that, under
mild additional assumptions, the MME is also the tail index of GARCH extensions.

Based on these advances in the probabilistic structure of stochastic processes, tail index and
MME estimators have been proposed and studied by Berkes et al. [5], Chan et al. [14], and
Zhang et al. [52] for particular GARCH-type time series models.
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Surprisingly, little attention has been paid to testing moment �niteness (see however [31]).
Testing the existence of moments seems however crucial, in particular for the validity of many
statistical tools commonly used for the analysis of such models. Even if the consistency of
Quasi-Maximum Likelihood (QML) estimators may hold under strict stationarity without any
extra moment assumption (Berkes, Horváth and Kokoszka [6], and Francq and Zakoïan [25]; see

also [27] for a review), many applications rest on �nite unconditional moments.
1
Moreover, the

existence of moments for real time series (such as �nancial returns) is an interesting issue per

se, which is a controversial subject in the empirical literature.
The present paper proposes new methods for testing the existence of moments for a general

class of time series models.

1.1 Time series model

We consider the class of time series models de�ned, for some subsets H,F , and Y of R, by"
yt � gpft, ηt;θ0q,
ft � φpηt�1, ft�1;θ0q, (1)

where θ0 P Rd is a vector of parameters, pηtqt¥0 is a sequence of independent and identically
distributed (i.i.d.) H-valued random variables and the functions g : F � H ÞÑ Y and φ :
H � F ÞÑ F are measurable. The times series pytq is observed, while the process pftq is latent.
Two important examples are: (i) the additive model yt � ft � ηt, in which the variable ft can
be interpreted as a time-varying location parameter, and (ii) the multiplicative model yt � ftηt,
where the variable ft can be interpreted as a time-varying volatility. More speci�c models, such
as �rst-order ARMA or GARCH-type models, belong to this class (examples will be provided
below).

1.2 Two characterizations of the existence of moments

Under conditions given below (see Proposition 2.1), Model (1) admits a strictly stationary solu-
tion pytq, and ft is independent of ηt. We make the assumption that, for any u ¡ 0,

pE|ηt|u   8 ^ E|ft|u   8q ùñ E|yt|u   8. (2)

Note that this implication holds true for the volatility and location models presented above, and

is even an equivalence in the latter case.
2
Moreover, omitting θ0 for ease of presentation, we

will show that if f ÞÑ φpη, fq is Lipschitz continuous for all η P H, we have, for any f0 P F ,�
E
��φpηt, f0q � f0

��u   8 ^ E tΛupηt;θ0qu   1
� ùñ E|ft|u   8, (3)

where

Λpηt;θ0q � sup
f1,f2PF

f1�f2

����φpηt, f1q � φpηt, f2q
f1 � f2

���� .
1
For instance, the existence of the autocorrelation function of any transform (e.g. square or absolute values)

of the returns requires appropriate moments; prediction of the squared returns over a long horizon requires a
�nite variance, and prediction con�dence intervals require fourth-order moments.

2
Indeed, in the location model we have, through the Cr inequality, E|yt|

u ¤ CupE|ft|
u � E|ηt|

uq for some
constant Cu ¡ 0. Hence, (2) holds. Now, since ft and ηt are independent, if E|ft|

u � 8, then E|ft� c|u � 8 for
all c and, with obvious notations, it follows that E|yt|

u �
³
E|ft � c|udPηpcq � 8. Similarly, E|ηt|

u � 8 entails
E|yt|

u � 8.
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The behaviour of the function u ÞÑ E tΛupη1;θ0qu, referred to hereafter as the Moment Deter-

mining Function (MDF) of the model (1) is thus crucial for the existence of moments.
Under the conditions discussed below, there exists a unique u0 ¡ 0 such that E tΛupη1;θ0qu �

1 and the moment condition can be written�
u   u0 ^ E

��φpηt, f0q � f0
��u   8 ^ E|ηt|u   8� ùñ E|yt|u   8.

Following Berkes et al.'s terminology [5], u0 will be referred to as theMaximal Moment Exponent

(MME). Under more restrictive assumptions, this coe�cient will be related to the tail index of
the distribution of yt.

1.3 Testing the existence of moments

Our main contribution in this paper is to propose tests for the existence of moment of any
(positive) order, based on empirical versions of the MDF and MME. Using a semi-parametric
version of Model (1), in which the functions g and φ depend on a �nite-dimensional parameter
θ0 but the distribution of ηt is left unspeci�ed, we will provide conditions for the existence and
the consistency and asymptotic normality (CAN) of the empirical MDF and MME,

Spuqn � 1

n

ņ

t�1

Λuppηt; pθnq where u ¡ 0, pun � sup
!
u ¡ 0; Spuqn ¤ 1

)
, (4)

where pθn denotes any consistent estimator of θ0, and pηt, for t � 1, . . . , n, denote residuals. For
the standard GARCH(1,1) model, these results were established by [5].

Building on this, we will derive tests for the existence of moments. Let the test statistics
based on the empirical MDF and MME,

T puqn �
?
n
�
S
puq
n � 1

	
pυu and U puq

n �
?
n pu� punqpw

pun

,

where pυ2u and pw2
pun

denote consistent estimators of the asymptotic variances of S
puq
n and pun,

respectively. Tests of the moment condition E|yt|u   8 at the asymptotic level α P p0, 1q, are
de�ned by the rejection regions

C
puq
T �

!
T puqn ¡ Φ�1p1� αq

)
and C

puq
U �

!
U puq
n ¡ Φ�1p1� αq

)
,

where Φ is the N p0, 1q Cumulative Distribution Function (CDF). Assuming that ηt has a known

density, or a parametric density, parametric versions V
puq
n and W

puq
n of the statistic U will also

be introduced.

1.4 Contributions of the paper

We study the aforementioned tests for the existence of moments in Model (1). Since the model
is semi-parametric, we will not restrict ourselves to the Maximum Likelihood (ML) estimation
method or any speci�c method of estimation for the parameter θ0. Our conditions allow for
general consistent estimators admitting a Bahadur-type expansion, although some of our results
are particular to the QML and ML methods.

Our contributions are as follows:

a) we discuss the existence and uniqueness of a solution to the SRE associated with Model
(1); providing conditions for the existence of a unique MME;
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b) we establish the weak convergence of the empirical MDF process, from which we deduce
the asymptotic distribution of the estimator of the MME/tail index;

c) we propose new tests of moment �niteness;

d) cases where the error density is either known or parameterized are discussed;

e) for a class of GARCH(1,1)-type models, we provide power comparisons of semi-parametric
and parametric tests under local alternatives or using the Bahadur approach.

1.5 Comparison with alternative approaches

Nonparametric procedures for checking the existence of �nite moments have been developed
previously in the statistical literature. Note that they usually require assumptions about the
CDF of the observed variables (for instance a Pareto-type tail). The most widely used methods,
arguably, are based on estimation of the tail index, as in Hill [38]. In particular, many papers
have established the asymptotic properties of Hill's tail index estimator for both independent
and stationary sequences of observations. The weaknesses of this estimator (in particular its
extreme sensitivity to the choice of tuning parameters) are well known and have given rise
to variants and improvements (see Embrechts et al. [23], Section 6.4, for a review). Other
nonparametric approaches do not require tail index estimation (in particular, see Trapani [49]
for a test based on the convergence versus divergence of sample moments, Ng and Yau [45] for
a bootstrap procedure).

Those nonparametric approaches focus on the existence of moments per se. Within the
semi-parametric framework of this study, once a model is chosen for a particular time series,
we scrutinize its applicability for various objectives, such as prediction, or estimation of condi-
tional risk measures. Reliable inference procedures generally require �niteness of some moments.
Although the tests presented in this paper are susceptible to model misspeci�cation, their ad-
vantage is that they have a parametric convergence rate. Our numerical simulations clearly
demonstrate the superiority of our approach under correct model speci�cation.

1.6 Structure of the paper

In Section 2, we develop the asymptotic theory for the empirical MDF and we derive a test
based on the MDF. Section 3 derives parametric and semi-parametric tests based on the MME.
In Section 4 we apply our results to GARCH-type processes. For these models, comparisons
based on local alternatives are studied in Section 5. An empirical illustration is provided in
Section 6. Technical assumptions, proofs, additional properties, and Monte-Carlo experiments
are provided in appendix.

2 Estimating the MDF and testing the existence of moments

Let θ denote a generic value of the parameter, which is assumed to belong to a compact parameter
set Θ � Rd.

The second equation in (1) has the form of an SRE which enables us to study its probability
properties. Assuming that f ÞÑ φpη, f ;θq is Lipschitz continuous for all η P H and θ P Θ, set

Λpη;θq � sup
f1,f2PF

f1�f2

����φpη, f1;θq � φpη, f2;θq
f1 � f2

���� .
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When the function f ÞÑ φpη, f ;θq is di�erentiable with respect to f , which is the case for all
commonly used models, the supremum reduces to the supremum of the �rst derivative of this
function. Otherwise, it has to be computed on a case-by-case basis.

The existence of a strictly stationary solution to Model (1) rests on Assumption

A0: f ÞÑ φpη, f ;θ0q is Lipschitz continuous for all η P H,
(i) E log�

��φpηt, f0;θ0q � f0
��   8 for some constant f0 P F ;

(ii) E log� Λpηt;θ0q   8 and E log Λpηt;θ0q   0.

Proposition 2.1. Under A0, there exists a strictly stationary, ergodic and nonanticipative
3

solution pytq to Model (1). Moreover, if E
��φpηt, f0;θ0q � f0

��r   8 and E tΛrpηt;θ0qu   8 for

some r ¡ 0, we have E|ft|s   8 for some s ¡ 0. Finally, if E
��φpηt, f0;θ0q � f0

��u   8 and

E tΛupηt;θ0qu   1 for some u ¡ 0, we have E|ft|u   8.

The proof follows straightforwardly from Bougerol [12] and Straumann and Mikosch [47] (see
also Lemma 4.1 in Francq and Zakoian [30], and Lemmas 1 and 2 in Blasques et al. [9]).

2.1 Invertibility

Given observations y1, . . . , yn, and arbitrary initial values ry0 P Y and rf0 P F , we de�ne recur-
sively, for any θ, a sequence rftpθq, which depends on the observations used to estimate θ0. We
make the following invertibility assumption.

A1: There exists a function g� such that, for all py, f, ηq P Y � F � E and θ P Θ,
y � gpf, η;θq ðñ η � g�pf, y;θq.

De�ne, for t � 1, . . . , n and any θ belonging to Θ,

rftpθq � φ
�
g�

! rft�1pθq, yt�1;θ
)
, rft�1pθq;θ

�
:� ψ

!
yt�1, rft�1pθq;θ

)
(5)

where rf0pθq � rf0 and y0 � ry0. The above SRE raises the question of the invertibility of
the model, which holds only if rftpθq does not depend asymptotically on the initialization (see
Blasques et al. [10], and Straumann and Mikosch [47]). The sequence p rftpθqqt¥0 can be approx-
imated by pftpθqq, the solution of the SRE

ftpθq � φ rg� tft�1pθq, yt�1;θu , ft�1pθq;θs � ψ tyt�1, ft�1pθq;θu , t P Z. (6)

The existence of a strictly stationary solution to (6) is guaranteed by the following assumptions.
Set, for any θ P Θ,

Λ1py;θq � sup
f1,f2PF

f1�f2

����ψpy, f1;θq � ψpy, f2;θq
f1 � f2

���� ,
and assume

A2: F is a closed subset of R and for any py,θq P Y � Θ, the mapping f P F ÞÑ ψpy, f ;θq is
Lipschitz continuous. Moreover,
(i) E log�

��ψpyt, f0;θq � f0
��   8 for some constant f0 P F ;

(ii) E log� Λ1pyt;θq   8 and E log Λ1pyt;θq   0.

A uniform (in θ) version of A2 is

3
i.e. yt P Ft, the σ-�eld generated by pηt, ηt�1, . . .q.
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A3: A2 holds with (i)-(ii) replaced by
(i') E log� supθPΘ

��ψpyt, f0;θq � f0
��   8 for some constant f0 P F ;

(ii') E log� supθPΘ Λ1pyt;θq   8 and E log supθPΘ Λ1pyt;θq   0.

Lemma 1. Under assumptions A0-A2, for any θ P Θ there exists a stationary and ergodic
solution tftpθqu (with ftpθq P F ) to the SRE (6). If in addition, A3 holds, for any starting valuerf0 P F , there exists ρ P p0, 1q such that ρ�t supθPΘ

��� rftpθq � ftpθq
���Ñ 0 a.s. as tÑ8.

The latter results shows that the di�erence between the stationary ergodic sequence ftpθq
and its feasible approximation rftpθq tends to zero exponentially fast.

2.2 Asymptotic distribution of S
puq
n

Let u ¡ 0. Assuming S
puq
8 :� E tΛupη1;θ0qu is �nite, we now derive the asymptotic distribution

of the estimator S
puq
n de�ned in (4), where pηt � g�p pft, yt; pθnq with pft � rftppθnq.

It will be useful to consider the quantities de�ned for θ P Θ by

Spuqn pθq � 1

n

ņ

t�1

Λutηtpθq;θu, rSpuqn pθq � 1

n

ņ

t�1

Λutrηtpθq;θu,
where ηtpθq � g� tftpθq, yt;θu and rηtpθq � g�

! rftpθq, yt;θ) . We introduce the following high-

level assumptions, which will be worked out in particular cases.

HL1: There exists a vector gu P Rd such that

?
n
�
Spuqn � S

puq
8

	
� ?

n
�
Spuqn pθ0q � S

puq
8

	
� g1u

?
nppθn � θ0q � oP p1q.

HL2: θ0 belongs to the interior
�
Θ of Θ, pθn P Θ is a strongly consistent estimator of θ0 and the

following Bahadur expansion holds

?
n
�pθn � θ0

	
� 1?

n

ņ

t�1

∆t�1V pηtq � oP p1q,

where V p�q is a measurable function, V : H ÞÑ Rk for some positive integer k, and ∆t�1

is a Ft�1-measurable d � k matrix, p∆tq being stationary. The variables ∆t and V pηtq
belong to L2 with E tV pηtqu � 0, vartV pηtqu � Υ and E p∆tq �∆. Moreover, x1∆t is a
non-constant random vector for any non-zero vector x P Rd and Υ is positive de�nite.

For a given model, HL1 can be checked by: i) noting that S
puq
n � rSpuqn ppθnq; ii) showing the

asymptotic irrelevance of the initial values (i.e. rSpuqn can be replaced by S
puq
n ); iii) performing a

Taylor expansion of S
puq
n pθq around θ0. We follow this approach in the proof of Corollary 1 for

a class of GARCH-type models. HL2 is a mild assumption that is satis�ed by many commonly
used estimators, as illustrated in Corollary 7 in the the appendix.

The following result provides the asymptotic distribution of the empirical MDF S
puq
n .

Theorem 1. Under A0, A1, A3 and HL1-HL2 and assuming E tΛspηt;θ0qu   8 for s ¡ 0 we
have, for 0   u ¤ s{2 such that ξu �∆E tV pηtqΛupηt;θ0qu exists,

?
n
�
Spuqn � S

puq
8

	
dÑ N

�
0, υ2u :� g1uΣgu � ψu � 2g1uξu

�
, (7)

where Σ � Ep∆tΥ∆1
tq and ψu � Var tΛupη1;θ0qu. Moreover, if ψu ¡ 0 we have υ2u ¡ 0.
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Figure 1: MDF for Λpηtq � 0.1η2t � 0.85 and for Student errors with ν degrees of freedom. The values

of the MME u0 are displayed over the horizontal axis.

Theorem 1 does not require any moment assumption on the observed process pytq. The
moment assumption on Λpηt;θ0q is in general very weak: for instance, in some models, this
assumption is innocuous (as in the Beta-t-GARCH models of Harvey [36, Chapter 4] and Creal
et al. [15], see the appendix Section D, where the variables Λpηt,θ0q are bounded).

2.3 Testing the existence of moments of a given order

In this section, we test the following assumptions, for a speci�c u ¡ 0,

H0,u : EtΛupηtqu ¤ 1 against H1,u : EtΛupηtqu ¡ 1, (8)

where Λpηtq � Λpηt;θ0q. In view of (2) and (3), EtΛupηtqu   1 entails the existence of a �nite
u-th order moment for |yt|, provided E

��φpηt, f0q � f0
��u   8 and E|ηt|u   8. The reverse

hypotheses could also be tested, that is H�
0,u : EtΛupηtqu ¥ 1 against H�

1,u : EtΛupηtqu   1,
simply by reversing the inequalities in the critical regions that we are going to de�ne.

By de�nition of the MME u0, the null hypothesis can also be written H0,u : u ¤ u0. The
next proposition gathers existing results on the existence of a �nite MME.

Proposition 2.2. Suppose γ � E log Λpη1q   0.
i) If P tΛpη1q ¤ 1u � 1, then for all u ¡ 0, E tΛupη1qu   1.
ii) If 1 ¤ E tΛspη1qu   8 for some s ¡ 0, then there exists a unique u0 ¡ 0 such that

E tΛu0pη1qu � 1.
Moreover, if E tΛupη1qu   1 and E tΛvpη1qu ¡ 1 for 0   u   v then u0 P pu, vq.
Remark 1. When Λpη1q has unbounded support and admits moments of any order m, these
moments tend to in�nity when m increases and the condition 1 ¤ E tΛspη1qu   8 for some
s ¡ 0 is satis�ed. More generally, the condition is satis�ed for most classical distributions with
unbounded support. However, the following example shows that the condition is non trivial:
suppose that the density g of Λpη1q is such that gpxq xÑ8� Kpx2 log2 xq�1. Then we have
E tΛspη1qu � 8 for any s ¡ 1 but E tΛpη1qu   8 (if, for instance, g is bounded). It is clear
that the latter expectation can be made smaller than 1 by scaling the function Λ. For these
distributions, u0 does not exist.

The shape of the MDF is illustrated in Figure 1 for the quadratic function Λpηtq � αη2t � β
(corresponding for instance to a standard GARCH(1,1) model) with Student error distributions.
Under the assumptions of Proposition 2.2 case ii), this shape is general: as u increases the

function u ÞÑ S
puq
8 �rst decreases and then increases, crossing the horizontal line fpuq � 1 at

u � u0.
De�ne the test statistic based on the empirical MDF,

T puqn �
?
n
�
S
puq
n � 1

	
pυu , (9)

assuming pυ2u ¡ 0 is a consistent estimator of υ2u. We introduce the following assumption.

HL3: For any sequence pθnq such that θn Ñ θ0 in probability, we have, for any r ¤ s,��� rSprqn pθnq � S
prq
n pθ0q

���Ñ 0, in probability as nÑ8.
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This assumption implies that the initial values and the estimation of θ0 both have negligible
e�ects on the asymptotic behaviour of the empirical MDF. This will be veri�ed explicitly for
the models of Section 4.

Proposition 2.3. Under the assumptions of Theorem 1 and HL3, a test of H0,u at the asymp-

totic level α P p0, 1q is de�ned by the rejection region

C
puq
T �

!
T puqn ¡ Φ�1p1� αq

)
. (10)

Moreover, the tests is consistent: under H1,u, we have P
�
C
puq
T

	
Ñ 1 as nÑ8.

The condition u ¤ s{2 in Theorem 1 ensures the existence of S
p2uq
8 �allowing the use of the

CLT�and is crucial for α to be the asymptotic frequency of rejection of H0,u0 . It also ensures

the consistency of the test of the latter proposition, since S
puq
n converges in probability to S

puq
8

under the alternative.

3 Estimating the MME and alternative tests

We now investigate the estimation of the MME u0 and the corresponding test under three
di�erent settings.

3.1 Semi-parametric estimation of the MME

For θ P Θ let

γnpθq � 1

n

ņ

t�1

log Λtηtpθq;θu, rγnpθq � 1

n

ņ

t�1

log Λtrηtpθq;θu, γn � rγnppθnq.

The following result is the sample counterpart of Proposition 2.2.

Proposition 3.1. Suppose γn   0.

If Λppηt; pθnq ¤ 1 for all 1 ¤ t ¤ n, then S
puq
n   1, for all u ¡ 0.

Conversely, if Λppηt; pθnq ¡ 1 for at least one 1 ¤ t ¤ n, then there exists a unique un ¡ 0

such that S
punq
n � 1. Moreover, if S

puq
n   1 and S

pvq
n ¡ 1 for 0   u   v then un P pu, vq.

Letting pun � suptu ¡ 0; S
puq
n ¤ 1u, we have pun � 8 when Λppηt; pθnq ¤ 1 for all 1 ¤ t ¤ n,

and pun � un (of Proposition 3.1) in the opposite case. Let Λpηq � Λpη;θ0q. We will show the
strong consistency of pun under the following assumption

HL4: γn � γnpθ0q � op1q, S
puq
n � S

puq
n pθ0q � op1q, almost surely (a.s.) for any u ¤ s.

Theorem 2. Assume that A0-A2 and HL4 hold. Then γn Ñ γ, a.s. Moreover,
i) if P tΛpη1q ¤ 1u � 1, then pun Ñ8, a.s.
ii) if 1   E tΛspη1qu   8 for some s ¡ 0, then pun Ñ u0, a.s., where u0 ¡ 0 satis�es

E tΛu0pη1qu � 1.

In order to obtain the asymptotic distribution of pun, we will now consider a functional
extension of Theorem 1. For u1   u2, let Cru1, u2s denote the space of continuous functions on
ru1, u2s, and letñ denote weak convergence in the space C equipped with uniform distance. Let

Γnpuq �
?
n
�
S
puq
n � S

puq
8

	
and, in view of HL1, let

Γ0
npuq � ?

n
�
Spuqn pθ0q � S

puq
8

	
� g1u

1?
n

ņ

t�1

∆t�1V pηtq.

To prove a uniform extension of Theorem 1, we need to introduce the following assumptions:
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HL5: For ru1, u2s � p0, s{2q, we have supuPpu1,u2q |Γnpuq � Γ0
npuq| � oP p1q.

HL6: For any 0   u, v ¤ s{2, we have }gu � gv} ¤ K|u� v|.

Theorem 3. Under the assumptions of Theorem 1 and if HL5-HL6 hold,

?
n
�
Spuqn � S

puq
8

	 Cru1,u2sùñ Γpuq (11)

where Γpuq stands for a Gaussian process with EΓpuq � 0 and Cov tΓpuq,Γpvqu � g1uΣgv �
ψu,v � g1uξv � g1vξu where ψu,v � Cov tΛupη1;θ0q,Λvpη1;θ0qu .

Let D
puq
8 � ErΛupη1;θ0q logtΛpη1;θ0qus be the �rst-order derivative of the MDF u Ñ S

puq
8 ,

which is well-de�ned for u   s. Note that D
pu0q8 is positive (in view of the convexity of the

MDF established in the proof of Proposition 2.2). The asymptotic distribution of the MME
was derived for standard GARCH models by Mikosch and St ric  [44] and by Berkes et al. [5],
for an AR(1)-ARCH(1) model by Chan et al. [14], and for both models using a least absolute
deviation estimator by Zhang et al. [52]. For Model (1), we have the following result.

Theorem 4. Let the assumptions of Theorem 3 hold, and let 1   E tΛspη1qu   8 for some s ¡ 0,
with u0 P pu1, u2q. Then, we have

?
nppun � u0q dÑ N

�
0, w2

u0

�
, w2

u0
�

�
D
pu0q8

	�2
υ2u0

,

where υ2u0
is the asymptotic variance de�ned in Theorem 1.

This result allows us to build asymptotic con�dence intervals (CIs) for the MME u0, as will be
illustrated in the case of multiplicative models.

For a given u ¡ 0, de�ne D
puq
n � rDpuq

n ppθnq with

Dpuq
n pθq � 1

n

ņ

t�1

Λutηtpθq;θu log Λtηtpθq;θu, rDpuq
n pθq � 1

n

ņ

t�1

Λutrηtpθq;θu log Λtrηtpθq;θu.
Let the test statistic, assuming pw

pun
¡ 0,

U puq
n �

?
n pu� punqpw

pun

, where pw2
u �

� pυu
D
puq
n

�2

.

HL7: For any sequence pθnq such that θn Ñ θ0, a.s. we have, for any u ¤ s,��� rDpuq
n pθnq �D

puq
n pθ0q

���Ñ 0, in probability as nÑ8.

Proposition 3.2. Under the assumptions of Theorem 4 with w2
u0
¡ 0, HL7, a test of H0,u at

the asymptotic level α P p0, 1q is de�ned by the rejection region

C
puq
U �

!
U puq
n ¡ Φ�1p1� αq

)
, (12)

and an asymptotic 100p1� αq% CI for u0 is pun � n�1{2Φ�1p1� αq pw
pun
.

Moreover, the test is consistent: under H1,u we have P
�
C
puq
U

	
Ñ 1 as nÑ8.

We will now consider situations where the errors have a density that is either known or known
up to a �nite-dimensional parameter, yielding alternative estimators of the MME.
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3.2 Purely parametric estimators of the MME

We assume that ηt has a density h and we make the following assumption, which is satis�ed for
many distributions, including the Gaussian distribution.

HL8: θ ÞÑ ³
Λu0px;θqhpxqdx is continuously di�erentiable under the integral sign.

3.2.1 When the error density h is known

When the MME u0 � u0,hpθ0q exists, by de�nition it is the solution of the implicit equation»
Λu0px;θ0qhpxqdx � 1.

Under HL8 this solution satis�es, through the implicit function theorem,

Bu0,hpθ0q
Bθ � �1

D
pu0q8

ru0 , ru0 :� B
BθS

pu0q8 � E

�
u0Λ

u0�1pηt;θ0qBΛpηt;θ0q
Bθ



.

Let pun,h � u0,hppθn,MLq where pθn,ML is the MLE of θ0. This estimator satis�es»
Λpun,hpx; pθn,MLqhpxqdx � 1.

Note that pun,h is the ML estimator of u0 (because of the functional invariance of the ML

estimator) unlike pun (even when pθn is the ML estimator of θ0).
Suppose that the distribution of pθn,ML is asymptotically Gaussian, with variance ΣML.
Let the test statistic

V puq
n �

?
npu� pun,hqpσh ,

where pσh is a consistent estimator of

σh �
�Bu0
Bθ1ΣML

Bu0
Bθ


1{2
� 1

D
pu0q8

�
r1u0

ΣMLru0

�1{2
.

Proposition 3.3. Let the assumptions of Theorem 4 (with pθn replaced by pθn,ML) and Assump-

tion HL8 hold, and let ru0 � 0. Then, a test of H0,u at the asymptotic level α P p0, 1q is de�ned
by the rejection region

C
puq
V �

!
V puq
n ¡ Φ�1p1� αq

)
, (13)

and an asymptotic 100p1 � αq% CI for u0 is pun,h � n�1{2Φ�1p1 � αqpσh. Moreover, the test is

consistent: under H1,u, we have P
�
C
puq
V

	
Ñ 1 as nÑ8.

3.2.2 When the error density is parameterized

In practical situations, it is unrealistic to assume that the density h of ηt is known. Alternatively,
the density can be assumed to be known up to some �nite parameter: hp�q � hp�,ν0q where
ν0 P Rm for m P N. Let φ0 � pθ10,ν 10q1 and assume φ P Φ � Rm�d. Given φ, the MME, when
it exists, is now the solution u0 � u0,hpφq of»

Λu0px;θqhpx,νqdx � 1.

Under HL8 and

10



HL9: The function ν ÞÑ ³
Λu0px;θqhpx,νqdx is continuously di�erentiable under the integral

sign,

we have Bu0,hpφ0q
Bθ � �1

D
pu0q8

ru0 ,
Bu0,hpφ0q

Bν � �1
D
pu0q8

su0 ,

with su0 � E
�
Λu0pηt;θ0q 1

hpηt;ν0q
Bhpηt;ν0q

Bν
	
. Let pu

n,ph
� u0,hppφn,MLq where pφn,ML �

ppθn,ML, pνn,MLq is the MLE of φ0, obtained by solving»
Λ
pu
n,phpx; pθn,MLqhpx, pνn,MLqdx � 1. (14)

Suppose that the distribution of pφn,ML is asymptotically Gaussian, with variance ΦML. Let the

test statistic W
puq
n �

?
npu�pu

n,ph
q

pςh
where pςh is a consistent estimator of

ςh � 1

D
pu0q8

!�
r1u0

, s1u0

�
ΦML

�
r1u0

, s1u0

�1)1{2
.

Proposition 3.4. Let the assumptions of Proposition 3.3 hold, along with Assumption HL9

(with hp�q replaced by hp�;ν0q in HL8), and let pr1u0
, s1u0

q � 0. Then, a test of H0,u at the

asymptotic level α P p0, 1q is de�ned by the rejection region

C
puq
W �

!
W puq

n ¡ Φ�1p1� αq
)
, (15)

and an asymptotic 100p1� αq% CI for u0 is pu
n,ph

� n�1{2Φ�1p1� αqpςh.
We now consider an important particular sub-class of Model (1).

4 Multiplicative/Garch-type models

Tests of the existence of even-order moments for standard GARCH models have been studied by
Francq and Zakoïan [31]. In this setup, the problem reduces to the derivation of the joint asymp-
totic distribution of the QML estimator of the volatility parameter and of a vector of moments
of the innovations process (see Heinemann [37] for a bootstrap-based approach). However, this
approach cannot be extended to other GARCH formulations for which the moment conditions
are less explicit. Moreover, it cannot be used for general moments, in particular non-even power
moments. Here, we consider the class of augmented GARCH processes (see e.g. Aue et al. [1]),
de�ned as "

ϵt � σtpθ0qηt,
σδt pθ0q � ωpηt�1;θ0q � apηt�1;θ0qσδt�1pθ0q, (16)

where Eη2t � 1, and δ ¡ 0 is given.
4
Necessary and su�cient conditions for the �niteness of

moments of GARCH and augmented GARCH models have been derived by Ling and McAleer
[42], Aue et al. [1], and Hörmann [39]. This class includes most of the �rst-order GARCH-type
speci�cations proposed in the literature. Examples of commonly used speci�cations are provided
in the appendix Section D. Assume that, for any θ P Θ, the functions ωp�;θq and ap�;θq are
di�erentiable and satisfy ωp�;θq : RÑ rω,�8q and ap�;θq : RÑ ra,�8q with ω ¡ 0 and a ¥ 0.
The detailed assumptions required for the multiplicative model (16) are listed in Appendix A
(labelled MM1-MM9). .

4
The case where δ is estimated will be considered in Section 4.3.
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4.1 Estimating the MDF and related tests

It is clear that Model (16) is of the form (1) with yt � ϵt, ft � σδt and, omitting θ0 for simplicity,
φpη, fq � ωpηq � apηqf , and gpf, ηq � f1{δη. We also have g�pf, ϵq � f�1{δϵ and Λpηq � apηq.
Assumptions A0-A1 are thus satis�ed under MM1. Under condition MM2, there exists a
stationary ergodic solution to the SRE

σδt pθq � ω

�
ϵt�1

σt�1pθq ;θ


� a

�
ϵt�1

σt�1pθq ;θ


σδt�1pθq, t P Z, (17)

and A2-A3 are satis�ed. The sequence rσδt pθq satis�es the same SRE, but for t ¥ 1 with initial
values rσ0 and ry0 as in (5).

Theorem 1 takes the following simpli�ed form for Model (16).

Corollary 1 (Augmented GARCH models). For a strongly consistent estimator of θ0 satis-
fying HL2, if MM1-MM5 and MM6(u) with u P p0, s{2s hold, we have

?
n
�
Spuqn � S

puq
8

	
dÑ N

�
0, υ2u � g1uΣgu � ψu � 2g1uξu

�
, (18)

with S
puq
n � 1

n

°n
t�1 a

uppηt; pθnq, S
puq
8 � E taupη1;θ0qu , gu � E

�
gu,t

�
and gu,t �� B

Bθa
utηtpθq;θu

�
θ�θ0

.

One example of an Equation (16)-type model is Ding et al.'s [19] APARCH (asymmetric
power ARCH) model de�ned by ωpηq � ω, apηq � α�|η|δ⊮η¡0�α�|η|δ⊮η 0�β. For APARCH
models estimated by Gaussian QML, the assumptions of Corollary 1 can be considerably reduced.

Corollary 2 (APARCH models estimated by QML). Under the assumptions:
i) P pηt ¡ 0q P p0, 1q, the support of the distribution of ηt contains at least three points, and

Ep|ηt|sδq   8 with sδ ¥ 4,

ii) Θ � rω,8q � p0,8q2 � r0, 1q is compact and θ0 � pω0, α0,�, α0,�, β0q1 P
�
Θ,

iii) E log apη1,θ0q   0,
(18) holds when pθn is the QML estimator of θ0 and u ¤ s{2.

The GARCH(1,1) process is a particular case of this APARCH model, obtained for δ � 2
and apηq � αη2 � β. In the appendix (Corollary 7) we provide an explicit expression of the
asymptotic variance υ2u in (18) when (16) is a GARCH(1,1) model and pθn is the ML or QML
estimator.

Under the conditions

E|η1|uδ   8, Eωupη1q   8, (19)

the testing problem (8) in Model (16) is equivalent to H0,u : Ep|ϵt|u1δq   8,@u1   u, against
H1,u : Ep|ϵt|uδq � 8 (see Ling and McAleer [42] and Aue et al. [1]).

Corollary 3 (Tn test for augmented GARCH models). Under the assumptions of Corollary
1 with υu ¡ 0 and assuming (19), the conclusion of Proposition 2.3 holds: a test of H0,u at the

asymptotic level α P p0, 1q is de�ned by the rejection region C
puq
T �

!
T
puq
n ¡ Φ�1p1� αq

)
.

This result is an extension of a test studied by Francq and Zakoian [31] in the case where u
is even and pϵtq follows a standard GARCH process (see the appendix Section E for details).
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4.2 Estimating the MME and related tests

First, we provide results complementing Proposition 2.2. The following result shows that the
tail index of ϵt is closely related to u0.

Proposition 4.1 (Tail index). When E log apη1q   0 and 1   E taspη1qu   8 for some

s ¡ 0, if the law of log apη1q is nonarithmetic (i.e. not supported by any arithmetic progression

hZ), and if Eapη1qu0 log� apη1q   8, there exists c ¡ 0 such that P pσt ¡ xq � cx�δu0 , and
P p|ϵt| ¡ xq � E|ηt|δu0P pσt ¡ xq, as xÑ8.

These tail properties�established for standard GARCH models by Mikosch and St ric  [44]
and for augmented GARCH models by Zhang and Ling [53]�show that, under mild additional as-
sumptions, the coe�cient δu0 is also the tail index of augmented GARCH processes. Conditions
for the existence of a tail index for general SRE were derived by Basrak et al. [3], and Kesten
[40] characterized this coe�cient as the solution of an equation taking the form E tau0pη1qu � 1
in the case of an augmented GARCH(1,1) process.

In the case of multiplicative models, HL4 is the consequence of more primitive conditions,
allowing the assumptions of Theorem 2 to be simpli�ed.

Corollary 4 (Strong consistency of pun). For Model (16), under MM1-MM5 and MM7, ifpθn is a strongly consistent estimator of θ0, the conclusions of Theorem 2 hold.

Now, we give more explicit conditions for the weak convergence in Theorem 3, and the
asymptotic distribution in Theorem 4, to hold. We refer to Section 3.1 for the weak convergence
notation.

Corollary 5 (Asymptotic distribution of pun). Under the assumptions of Corollary 1 and if

MM6(s) and MM7 hold, for any ru1, u2s � p0, s{2q, we have ?n
�
S
puq
n � S

puq
8

	 Cru1,u2sùñ Γpuq.
If, in addition, 1   E taspη1qu   8 and u0   s{2, we have

?
nppun � u0q dÑ

N
"
0,
�
D
pu0q8

	�2
υ2u0

*
.

This result allows the calculation of asymptotic CIs for MME u0 and thus, by Proposition
4.1, for the tail index of the distribution of ϵt.

Remark 2 (Comparison with Hill's estimator of the tail index). It is well known that
Hill's estimator ([38]) crucially depends on which part of the sample it is calculated on (see for
instance Figure 1 in Zhu and Ling [54]). Moreover, Baek et al. [2] showed that the Hill estimator
is extremely biased for estimating the tail index of ARCH-type models. Even for i.i.d. data and
very large samples, estimating the tail index using Hill's estimator is very challenging unless the

underlying data comes from a Pareto distribution
5
(this will be illustrated in Section 6 using

Student distributions and real series). Deriving CIs for the tail index using Hill's estimator is
even more challenging. By Proposition 4.1 and Corollary 5, one can estimate the tail index of
augmented GARCH models at a parametric rate, instead of resorting to extreme value statistics.
A similar situation occurs in estimating the density of a GARCH(1,1) models since, by exploiting
the dynamic structure of the model, Delaigle et al. [18] managed to obtain a root-n consistent
estimator. Trapani [49] also noted that Hill's estimation of the tail index "is fraught with
di�culties" and proposed a randomised testing procedure applied on sample moments for testing
for (in)�nite moments in a general nonparametric framework.

In the case of Model (16), the test based on U
puq
n takes the following form.

5
According to Drees et al. [20], "One would have to be paranormal to discern with con�dence the true value

from the Hill plot."
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Corollary 6 (Un test for augmented GARCH models). Under the assumptions of Corollary
5, if w2

u0
¡ 0, and (19) holds, a test of H0,u at the asymptotic level α is de�ned by the

rejection region C
puq
U �

!
U
puq
n ¡ Φ�1p1� αq

)
, and an asymptotic 100p1 � αq% CI for u0 ispun � n�1{2Φ�1p1� αq pw

pun
.

Now we turn to purely parametric estimators of the MME. Under regularity assumptions
(derived by Berkes and Horváth [4] for a standard GARCHpp, qq model), the MLE of θ0 satis�es
the expansion given in MM8. Let

σh � 1

D
pu0q8

�
4

ιh
r1u0

J�1ru0


1{2
, ru0 � E

"
u0a

u0�1pηt;θ0qBapηt;θ0q
Bθ

*
,

where ιh, de�ned in MM8, refers to the Fisher information for scale (whose existence is guar-
anteed by Assumption FIS). For the classical GARCH(1,1) model, we have ru0 � u0mu0 where
mu0 is de�ned in the appendix, Corollary 7. Proposition 3.3 can be specialized as follows.

Proposition 4.2 (Vn test for augmented GARCH models). Let for s ¡ 0, 1  
E taspη1qu   8, with u0   s{2. Let HL8 (with λp�q � ap�q), Assumptions (19), FIS and

MM8 hold, and let ru0 � 0. Then, a test of H0,u at the asymptotic level α is de�ned by the

rejection region C
puq
V �

!
V
puq
n ¡ Φ�1p1� αq

)
, and an asymptotic 100p1 � αq% CI for u0 ispun,h � n�1{2Φ�1p1� αqpσh where pσh is a consistent estimator of σh.

When the error density is parameterized, the asymptotic properties of the MLE of φ0 were
established by Straumann (Chapter 6, [46]). For the sake of brevity, we defer to this reference
for the precise assumptions underlying these properties. Assuming that the MLE satis�es the
Bahadur expansion in MM9, the conclusions of Proposition 3.4 hold with ΦML replaced by
J�1 (de�ned in MM9).

4.3 Selecting δ in augmented GARCH models

In practice, estimating δ ¡ 0 in Model (16) is very challenging. Even if asymptotic normality
of the joint QML estimator of δ and θ0 has been established, the value of δ can be extremely
di�cult to identify in �nite samples (see Hamadeh and Zakoïan [35]). Since the quasi-likelihood

is very �at in the direction of δ
6
, estimating this coe�cient is extremely di�cult in practice. For

this reason, instead of treating δ as a real-valued parameter, practitioners tend to select δ from
a �nite set of values corresponding to well-known models such as standard or GJR-GARCH
models (δ � 2) or T-GARCH models (δ � 1) (see the appendix Section D for de�nitions and
references). To re�ect the existence of several candidates for δ, assume that the true value δ0
belongs to a �nite set,

δ0 P D � tδ1, . . . , δdu, δi ¡ 0, i � 1, . . . , d.

For the sake of illustration, we focus on APARCH models (see the appendix Section D) and the
QML estimator.

Writing the vector of parameters ϑ � pδ,θ1q1 and assuming ϑ P D�Θ where Θ is a compact
subset of p0,8q � r0,8q3 � r0, 1q, the true parameter value is denoted ϑ0 � pδ0,θ10q1. To de�ne
the QMLE of ϑ, we recursively de�ne rσt, for t ¥ 1, by

rσt � rσtpϑq � !
ω � α�pϵ�t�1qδ � α�p�ϵ�t�1qδ � βrσδt�1

)1{δ
.

6
See Table 1 and Figure 1 in [35].
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A QMLE of ϑ is de�ned as any measurable solution pϑQML

n � ppδQML
n , pθQML1q1 of pϑQML

n �
arg minϑPD�Θ

rlnpϑq, rlnpϑq � n�1
°n

t�1
rℓt, rℓt � rℓtpϑq � ϵ2t

rσ2
t
� ln rσ2t .

Let apη,ϑq � α�|η|δ⊮η¡0 � α�|η|δ⊮η 0 � β and let S
puq
n � 1

n

°n
t�1 a

uppηt; pϑnq.
Proposition 4.3. Under the following assumptions: i) ηt has a positive density in some neigh-

borhood of zero, Ep|ηt|sδ0q   8 with sδ0 ¥ 4; ii) θ0 P
�
Θ, and iii) E log apη1,ϑ0q   0, we havepδQML

n � δ0 for n large enough and the weak convergence in Corollary 5 holds. If ηt has positive
density over the real line, the asymptotic distribution of pun holds.

It is because D is discrete that the e�ects of estimating δ do not appear in the asymptotic results.

5 Asymptotic power comparisons

In this section, we focus on multiplicative models. To compare the tests of H0,u we �rst note
that, under the assumptions of Theorem 4 and from the proof of this theorem,

U pu0q
n � T pu0q

n � oP p1q. (20)

Thus the statistics are equivalent at the frontier of the null assumption and, from Le Cam's
theory, they are also equivalent under local alternatives. In this section, we will compare these
tests with the parametric tests and also provide non-local comparisons.

5.1 Asymptotic power under local alternatives

Conditional on ϵ0 and σ0, the density of the observations pϵ1, . . . , ϵnq satisfying (16) is given by

Ln,hpθ0q �
±n

t�1 σ
�1
t pθ0qh

 
σ�1
t pθ0qϵt

(
. Around θ0 P

�
Θ, consider a sequence of local parameters

of the form
θn � θ0 � τ {?n, (21)

where τ P Rd. We denote Pn,τ (resp. P0) the distribution of the observations when the parameter
is θn (resp. θ0). If 1   E taspη1qu   8 for some s ¡ 0, with u0 P p0, u2q, for given h and θ0,
there exists a unique u0 :� u0pθ0, hq such that Etau0pη1qu � 1. Without loss of generality,
assume that n is su�ciently large so that θn P Θ. Note that, under appropriate assumptions on
τ , the parameter θn belongs to the alternative for testing H0,u0 .

Drost and Klaassen [21] showed that for standard GARCH models, the log-likelihood ratio
Λn,hpθn,θ0q � logLn,hpθnq{Ln,hpθ0q satis�es the LAN property

Λn,hpθn,θ0q � τ 1∆n,hpθ0q � 1

2
τ 1Ihτ � oPθ0

p1q, (22)

where Ih � ιhE
�

1
σ2
t

Bσtpθ0q
Bθ

Bσtpθ0q
Bθ1

	
and ∆n,hpθ0q � �1?

n

°n
t�1 g1pηtq 1

σt

Bσtpθ0q
Bθ

dÝÑ N p0,Ihq un-
der Pθ0 as n Ñ 8. Note that the so-called central sequence ∆n,hpθ0q is conditional on the
initial values. It is shown in [22] and [43] that (22) continues to hold for extensions of standard
GARCH models. Lee and Taniguchi [41] showed that the initial values have no in�uence on the
LAN property. Together with Le Cam's third lemma, the LAN property allows us to derive the
local asymptotic powers (LAPs) of our tests.

Proposition 5.1. Under Assumptions FIS, (22) and the assumptions of Corollaries 3 and 6,

respectively, the LAPs of the tests of H0,u0 de�ned in (10) and (12) are given by

lim
nÑ8Pn,τ

�
C
pu0q
T

	
� lim

nÑ8Pn,τ

�
C
pu0q
U

	
� Φ

 
ch,u0pθ0q � Φ�1p1� αq( , (23)
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where

ch,u0pθ0q ��τ
1

υu0

�
E

�
1

σt

Bσtpθ0q
Bθ



Etau0pη1qg1pη1qu � E

�
1

σt

Bσtpθ0q
Bθ g1u0

∆t�1



EtV pη1qg1pη1qu

�
.

In standard GARCH(1,1) models estimated by QML and ML, the calculations reported in
the appendix Section G show that, with obvious notations,

cQML
h,u0

pθ0q ¤ cML
h,u0

pθ0q. (24)

Again, in standard GARCH(1,1) models, u0 decreases as α1 or β1 increases: u0pθ0� e, hq  
u0pθ0, hq for all directions e � p0, e2, e3q1 such that e2 ¥ 0 and e3 ¥ 0, with at least one inequality
being strict. In the more general case where the power u0 decreases when the parameter increases
in a given direction e P Rd, we are able to derive the power of asymptotically locally uniformly
most powerful unbiased (UMPU) tests and provide conditions for the tests T and U to be
optimal in this sense.

Proposition 5.2. Assume that u0pθ0 � e?
n
, hq   u0pθ0, hq for all n. Then, under the assump-

tions of Proposition 5.1, any asymptotically locally UMPU test for H0,u : u0pθ0, hq ¡ u against

H1,n,u : u0pθ0 � e?
n
, hq ¤ u has asymptotic power bounded by

lim
nÑ8PH1,n,upCq � Φ

 
ce � Φ�1 p1� αq( , with ce �

ι
1{2
h e1e

2
?
e1J�1e

. (25)

The assumption on the MME of Proposition 5.2 is satis�ed for any commonly used GARCH-type
model where the volatility increases with any component of the parameter.

Remark 3 (Testing the existence of the second-order moment in standard GARCH

models). For standard GARCH(1,1) models with u0 � 1 and e � p0, 1, 1q1, the tests Cp1q
T and

C
p1q
U obtained by QML/ML estimation are optimal if and only if the density of ηt has the form

hpyq � aa

Γpaqe
�ay2 |y|2a�1, a ¡ 0, Γpaq �

» 8

0
ta�1e�tdt. (26)

The following result gives the LAPs of the test assuming the density is known.

Proposition 5.3. Under the assumptions of Propositions 4.2 and 5.1, the LAPs of the test of

H0,u0 de�ned in (13) is given by

lim
nÑ8Pn,τ

�
C
pu0q
V

	
� Φ

 
dh,u0pθ0q � Φ�1p1� αq( , dh,u0pθ0q � r1u0

τ {
c

4

ιh
r1u0

J�1ru0 . (27)

Under the assumptions of Proposition 5.2, the test C
pu0q
V is optimal if dh,u0pθ0q � cτ , that is if

the vectors ru0 and τ are collinear in the same direction.
Next, we turn to the case of Section 3.2.2 where the error density is parameterized and

estimated. Around φ0 � pθ10,ν 10q1 P
�
Φ, we now consider a sequence of local parameters of the

form
θn � θ0 � τ 1{

?
n, νn � ν0 � τ 2{

?
n, (28)

where τ 1 P Rd, τ 2 P Rm. We still denote Pn,τ (resp. P0) the distribution of observations
when the parameter is φn � pθ10 � τ 11{

?
n,ν 10 � τ 12{

?
nq1 :� φ0 � τ {?n (resp. φ0). Let the

log-likelihood ratio Λnpφ0 � τ {?n,φ0q � logLn,hpφnq{Ln,hpφ0q.
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As shown in Drost and Klaassen [21], the LAN property (22) holds when the density h
can be treated as an in�nite-dimensional nuisance parameter. In Francq and Zakoïan [32], we
showed that the LAN property also holds in the parametric framework of this section: a Taylor
expansion around φ0 of the log-likelihood ratio yields

Λn,hpφn,φ0q � τ 1∆n,hpφ0q �
1

2
τ 1Jnpφ0qτ � oPθ0

p1q, (29)

where Jnpφ0q is a consistent estimator of J and, under P0,

∆n,hpφ0q �
�
�1?
n

ņ

t�1

g1pηt,ν0q 1
σt

Bσtpθ0q
Bθ1 ,

1?
n

ņ

t�1

1

hpηt,ν0q
Bhpηt,ν0q

Bν 1
�1

dÝÑ N p0, Jq . (30)

The next result provides the LAPs of test W .

Proposition 5.4. Under Assumptions FIS, (29)-(30), and the assumptions of Proposition 3.4,

the LAPs of the test of H0,u0 de�ned in (15) is given by

lim
nÑ8Pn,τ

�
C
pu0q
W

	
� Φ

 
eh,u0pθ0q � Φ�1p1� αq( , eh,u0pθ0q �

r1u0
τ 1 � s1u0

τ 2b�
r1u0

, s1u0

�
J�1

�
r1u0

, s1u0

�1 .
Under the assumptions of Proposition 5.2, the test C

pu0q
W is optimal if eh,u0pθ0q � cτ , that is,

if the vectors
�
r1u0

, s1u0

�
and τ 1 are collinear in the same direction. An example of the calculation

and comparison of the LAPs of tests T,U, V and W is given in the appendix Section H. It is
shown that, for GARCH(1,1) models with Student innovations, tests T and U are dominated
by test W . As expected, test V is locally asymptotically more e�cient than the other tests.

5.2 Comparisons based on Bahadur slopes

To be able to distinguish tests T and U , we turn to the Bahadur approach. We will also compare
them with tests V and W , which require knowledge or estimation of the density. Recall that
the Bahadur slope is de�ned as the almost sure limit of �2{n times the logarithm of the p-value
of the test. In Bahadur's sense, one test is more e�cient than another if the slope of the �rst
test is greater than the slope of the second test.

Proposition 5.5. In Bahadur's sense, test T
puq
n is more e�cient than U

puq
n if and only if�

S
puq
8 � 1

	2

pu� u0q2
υ2u0

pErau0pη1;θ0q logtapη1;θ0qusq2 υ2u
¡ 1,

and test W
puq
n is more e�cient than U

puq
n if and only if υ2u0

�
r1u0

, s1u0

�
J�1

�
r1u0

, s1u0

�1 ¡ 1.

Note that the latter condition does not depend on u, i.e. on the alternative. Examples and
comparisons of asymptotic slopes are given in the appendix Section H, showing that test T is in
general less e�cient than the others.

6 Empirical application

Davis and Mikosch [16] noted that "In applications to real-life data one often observes that the

sum of the estimated parameters pα1� pβ1 is close to 1 implying that moments slightly larger than
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two might not exist for a �tted GARCH process." Francq and Zakoïan [31] made a �rst attempt
to check this intuition by considering the returns of the French energy company Total SA, one
of the main constituents of the CAC40 index, over the period 2001-07-16 to 2018-09-21. On this

series of 4418 observations, we �tted a standard GARCH(1,1) model and, using T
puq
n to test the

existence of even-order moments, found strong evidence for the existence of the second-order
marginal moment and suspicions of non-existence of the 8-th order moment. Given that (i) tests

based on T
puq
n often turn out to be much less powerful than those based on U

puq
n and W

puq
n ; (ii)

the �niteness of any positive-order moment can be tested, and (iii) our analysis is not restricted
to standard GARCH models, it should be possible to improve on the results obtained in [31].

We thus re-investigated the same series with APARCH(1,1) models, using the QMLE for

tests T
puq
n , U

puq
n and V

puq
n (the QMLE is actually the Gaussian MLE in the latter case), and

the MLE, assuming a standardized Student distribution with ν degrees of freedom for the i.i.d.

innovations, for the W
puq
n test. We searched δ P t0.5, 1, 1.5, 2u, and estimated the optimal value

δ � 1 with both the QML and ML estimators. The volatility model estimated by QML is

σt � 0.037
p0.006q

� 0.018
p0.010q

|ϵt�1|⊮ϵt�1¡0 � 0.132
p0.012q

|ϵt�1|⊮ϵt�1 0 � 0.916
p0.009q

σt�1

where the estimated standard deviations in brackets are obtained from the asymptotic distribu-
tion of the QMLE.

The model estimated by Student-ML is

σt � 0.033
p0.007q

� 0.016
p0.010q

|ϵt�1|⊮ϵt�1¡0 � 0.126
p0.016q

|ϵt�1|⊮ϵt�1 0 � 0.922
p0.013q

σt�1, ηt � Stp11.1
p1.7q

q

where Stpνq denotes the standardized Student distribution with ν degrees of freedom. Note
that the volatilities estimated by QML and ML are almost the same. The results presented
in the appendix Section J show no dependence in the QMLE and MLE residuals and that the
distribution of the residuals is better reproduced by a Student distribution than by a Gaussian
distribution (in particular the empirical kurtosis of the QMLE and MLE residuals are respectively
3.807 and 3.816, which is much closer to the kurtosis of the �tted Student distribution, 3�6{pν�
4q � 3.848, than to the Gaussian kurtosis). Table 1 shows that the tests based on U

puq
n andW

puq
n

are much more conclusive than the test based on T
puq
n . The test based on V

puq
n does not seem

reliable since we have seen that the empirical distribution of the residuals is far from Gaussian.

The estimated maximum moment order is pu0 � 7.9 with the U
puq
n statistic, and pu0 � 7.8 with the

W
puq
n statistic. At an asymptotic con�dence level of 95%, the estimated CIs for u0 is r4.5, 11.3s

with the U
puq
n statistic and r5.9, 9.6s with the W

puq
n statistic. The estimated value of u0 based on

U
puq
n is pu0 � 7.9. To evaluate the variability of this estimator without using asymptotic theory,

we simulated APARCH(1,1) models with a parameter pθn�the QMLE calculated on the Total
series�and noise with a distribution equal to that of the QML residuals. The empirical 95% CI
for u0 obtained from 10000 bootstrap replications is r5.7, 9.8s, which is similar to the estimates

based on asymptotic theory. The two estimation methods based on U
puq
n andW

puq
n therefore give

similar estimated tail indexes but, as expected, the CI from the fully parametric method based

onW
puq
n is tighter. These results strongly support the existence of �nite moments of order 5 or 6,

allowing the validation of certain statistical procedures, such as the construction of con�dence
intervals for the prediction of the squared returns at long horizons. In contrast, illustrating
Remark 2 and footnote 5, Figure 2 shows that the conventional Hill estimator provides little
information on the value of the tail index, both for the Total series (left graph) and for a
simulation of the model for which u0 � 7.8 is known to be the maximum moment order. Note
that Figure 2 is in perfect agreement with Figures 2 and 3 in Baek et al. [2].
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Table 1: Test statistics T puq
n , U

puq
n , V

puq
n (assuming Gaussian innovations), W

puq
n (assuming Student innovations)

based on a APARCH(1,1) model for the Total return series.

u 1 2 3 4 5 6 7 8 9 10 11 12

T
puq
n -4.71 -4.18 -3.50 -2.72 -1.91 -1.15 -0.49 0.04 0.46 0.76 0.97 1.11

U
puq
n -3.94 -3.37 -2.80 -2.23 -1.66 -1.09 -0.52 0.05 0.62 1.19 1.76 2.33

V
puq
n -7.25 -6.23 -5.21 -4.19 -3.18 -2.16 -1.14 -0.12 0.89 1.91 2.93 3.95

W
puq
n -6.88 -5.86 -4.84 -3.82 -2.81 -1.79 -0.77 0.25 1.26 2.28 3.30 4.32
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Figure 2: Hill plots of a simulation of an APARCH model with tail index 7.8 (left graph) and of the

absolute value of the Total return series (right graph).

The conclusions drawn from this study are: 1) that the estimators proposed here are much
more e�ective than the Hill estimator in assessing the value of the tail index of a GARCH-type
model; 2) that estimating the maximummoment order is a di�cult problem (since the CIs remain
large, even in a fully parametric framework); 3) that at least for the Total series, moments seem
to exist at orders much larger than two, moderating the overly pessimistic statement quoted at
the beginning of this section.
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Appendix

This Appendix provides assumptions, proofs, examples of augmented GARCH models, com-
plementary results for the MDF of GARCH models, power comparisons of tests, Monte-Carlo
experiments and a supplement to the empirical application.

A Assumptions

The following assumptions are used for the multiplicative model in Section 4. Let ρ be a generic
constant belonging to p0, 1q.

MM1: E tωspη1,θ0qu   8, E log apη1,θ0q   0 and E taspη1,θ0qu   8 for s ¡ 0.

MM2: For all θ P Θ and ϵ P R, the function z ÞÑ ω
�

ϵ
z1{δ

;θ
	
� a

�
ϵ

z1{δ
;θ
	
z is di�erentiable over

rω,�8q. There exists z0 ¡ ω such that

E log� supθPΘ ω
�

ϵt
z
1{δ
0

;θ



  8, E log� supθPΘ a

�
ϵt

z
1{δ
0

;θ



  8, and we have

E log sup
z¥ω

sup
θPΘ

���� BBz !ω � ϵt

z1{δ
;θ
	
� a

� ϵt

z1{δ
;θ
	
z
)����   0.

MM3: The Ft�1-measurable function θ Ñ pσtpθq, rσtpθqq is a.s. twice continuously di�eren-

tiable. Moreover, supθPΘ |σtpθq � rσtpθq| � ���Bσtpθq
Bθ � Brσtpθq

Bθ
��� ¤ Ktρ

t where Kt P Ft�1 and

suptEpKr
t q   8 for some r ¡ 0.

MM4: There exists a neighborhood V pθ0q of θ0 such that E
�
supθPV pθ0q

σtpθ0q
σtpθq

	r
  8 and

E supθPV pθ0q }Bσtpθq{Bθ}r   8 for some r ¡ 0.

MM5: For almost all ϵ, the function pσ,θq ÞÑ ap ϵσ ;θq is twice di�erentiable over rω,�8q�V pθ0q
and there exist C, τ ¡ 0 such that, for any pϵ, σ,θq P R� rω,�8q � V pθ0q,

max

"
a
� ϵ
σ
;θ
	
,

����B log ap ϵσ ;θqBσ
���� , ����B2 log ap ϵσ ;θqBσ2

���� , ����B log ap ϵσ ;θqBθ
���� ,����B2 log ap ϵσ ;θqBθBσ

����* ¤ C

"� |ϵ|
σ


τ

� 1

*
.

Let ηtpθq � ϵt{σtpθq. For any u ¡ 0, we introduce the following assumption.

MM6(u): There exist p, q ¡ 0 such that 1
p � 2

q � 1 and

E sup
θPV pθ0q

�
auppηtpθq;θq �

����B log apηtpθq;θqBθ

����q � ����B2 log apηtpθq;θqBθBθ1

����q{2
�
  8.

MM7: E supθPV pθ0q
�� B
Bθ log apϵt{σtpθq;θq

��   8.

MM8: Letting g1pyq � 1� y h1

h pyq and assuming ιh :� Etg21pηtqu   8, we have

?
nppθn,ML � θ0q � �2J�1

ιh
?
n

ņ

t�1

1

σ2t

Bσ2t
Bθ g1pηtq � oP p1q.
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MM9:
?
nppφn,ML �φ0q � J�1

�� 1
2
?
n

°n
t�1

1
σ2
t

Bσ2
t

Bθ g1pηtq
�1?
n

°n
t�1

1
hpηt;ν0q

Bhpηt;ν0q
Bν

�� oP p1q, where

J �
�� ιh

4 J �1
2ΩE

�
g1pηtq

hpηt;ν0q
Bhpηt;ν0q

Bν1
	

�1
2E

�
g1pηtq

hpηt;ν0q
Bhpηt;ν0q

Bν
	
Ω1 E

�
1

h2pηt;ν0q
Bhpηt;ν0q

Bν
Bhpηt;ν0q

Bν1
	 �.

Assumption MM1 ensures the existence of a strictly stationary and ergodic solution pϵtq to
Model (16) (see e.g. Brandt [13]), while MM2 ensures the existence of a strictly stationary and
ergodic solution to the SRE (17) by Lemma 1. Assumption MM3 controls the e�ect of the
initial values on the studied statistics as the sample size increases. Assumptions MM4-MM7

are considerably weakened for particular speci�cations of the MDF, see for instance Corollary
2.

To derive the asymptotic distribution of the Vn and Wn tests, which are based on the ML
estimation method, we use the Fisher information for scale ιh. Assuming that h is everywhere
positive, conditions for the existence of ιh and its interpretation as the Fisher information for
scale are (see e.g. Lehmann and Casella [?], Berkes and Horváth [4], and Francq and Zakoïan
[26]):

FIS: h has third-order derivatives and satis�es i) lim|y|Ñ8 yhpyq � lim|y|Ñ8 y2h1pyq � 0, and
ii) for some positive constants K and ς,

|y|
����h1h pyq

����� y2
�����h1h


1
pyq

����� y2
�����h1h


2
pyq

���� ¤ K p1� |y|ςq , E |η1|2ς   8.

Assumption FIS is used for the purely parametric estimators of the MME in Propositions 4.2
and 5.1 and is satis�ed by many distributions (including the Gaussian distribution).

B Proofs of the main results

Proofs of key results in Sections 2 and 3 are provided below.

B.1 Proof of Theorem 1

Noting that the sequence tpV pηtq1∆1
t�1,Λ

upηt;θ0q � E tΛupηt;θ0quq,Ftu is a second-order sta-
tionary martingale di�erence, the asymptotic distribution in (7) follows from HL1-HL2 and
the CLT of Billingsley[8]. Now assume υ2u � 0. Then

Λupηt;θ0q � E tΛupηt;θ0qu � g1u∆
1
t�1V pηtq � 0, a.s.

It follows that gu � 0, otherwise the random variable Λupηt;θ0q would be degenerate, in contra-
diction of ψu ¡ 0. Because, from HL2, g1u∆t�1 is non-degenerate, and is independent of ηt, two
d�k matrices exist, ∆1 and ∆2, with g1up∆1�∆2q � 0, such that Λupηt;θ0q�E tΛupηt;θ0qu�
g1u∆

1
iV pηtq � 0, a.s., for i � 1, 2. It follows that g1up∆1

1 �∆1
2qV pηtq � 0, a.s., which is

impossible because Υ is positive de�nite. Thus we have shown that υ2u ¡ 0.

B.2 Proof of Theorem 2

The a.s. convergence of γn follows from HL4 by the ergodic theorem. Similarly,

Spuqn Ñ S
puq
8 a.s., for any u such that S

puq
8   8. (31)
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Now, we turn to case i). We have S
puq
8   1 by Proposition 2.2, thus S

puq
n   1 for n large

enough by (31). It follows, from Proposition 3.1, that pun ¡ u for all u and n large enough.
Turning to case ii), the consistency of pun follows from the fact that, for ε P p0,maxtu0, s �

u0uq,
lim
nÑ8 a.s. Spu0�εq

n � S
pu0�εq
8   1, lim

nÑ8 a.s. Spu0�εq
n � S

pu0�εq
8 ¡ 1.

B.3 Proof of Theorem 3

Under HL5, it su�ces to show that

Γ0
n

Cru1,u2sùñ Γ. (32)

By the Cramér-Wold device, and the CLT of Billingsley [8] used in the proof of Theorem 1, it
can be established that the �nite-dimensional distributions of Γ0

n converge to those of Γ. By
showing that

the sequence tΓ0
npu1qu is tight (33)

and, for some constant K ¡ 0,

E
 
Γ0
npuq � Γ0

npvq
(2 ¤ Kpu� vq2, (34)

the tightness of the sequence tΓ0
nu will be established, according to Theorem 12.3 of Billingsley

[7]. The weak convergence in (32) follows from Theorem 8.1 of Billingsley [7].
The convergence in distribution of tΓ0

npu1qu entails (33). We have

Γ0
npuq � Γ0

npvq �
1?
n

ņ

t�1

rΛu pηt;θ0q � E tΛu pηt;θ0qu � Λv pηt;θ0q

�E tΛv pηt;θ0qus � pgu � gvq1
1?
n

ņ

t�1

∆t�1V pηtq :� ∆n,1pu, vq �∆n,2pu, vq.

Note that

E∆2
n,1pu, vq �VartΛupηtq � Λvpηtqu ¤ pu� vq2E �tΛ2u1pηtq � Λ2u2pηtqutlog Λpηtqu2

� ¤ Kpu� vq2.

Moreover Var
�

1?
n

°n
t�1∆t�1V pηtq

	
� Σ. It follows that, usingHL6, E∆2

n,2pu, vq ¤ Kpu�vq2.
This completes the proof of weak convergence in (32).

B.4 Proof of Theorem 4

Writing 0 � S
ppunq
n �Spu0q8 � S

ppunq
n �Sppunq8 �Sppunq8 �Spu0q8 , we deduce, by the mean-value theorem,

?
nppun � u0q � � 1

D
pu�nq8

?
n
�
Sppunq
n � S

ppunq8
	
� � 1

D
pu�nq8

Γnppunq
where u�n is between pun and u0. By continuity of D

puq
8 we have D

pu�nq8 Ñ D
pu0q8 in probability

(and also a.s.), and Γnppunq dÑ Γpu0q. Indeed, for ς, ς 1 ¡ 0,

P tΓnppunq ¡ xu ¤ P tΓnppunq ¡ x, |pun � u0| ¤ ςu � P p|pun � u0| ¡ ςq
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¤P
#

sup
|u�u0|¤ς

Γnpuq ¡ x

+
� P p|pun � u0| ¡ ςq

¤P  
Γnpu0q ¡ x� ς 1

(� P

#
sup

|u�u0|¤ς
|Γnpuq � Γnpu0q| ¡ ς 1

+
� P p|pun � u0| ¡ ςq .

Using the tightness property of the sequence Γnt�u (a consequence of (32) and HL5) and the
a.s. convergence of pun, the last two probabilities can be made arbitrarily small for n su�ciently
large and ς small enough. The other probability converges to P tΓpu0q ¡ x� ς 1u which is arbi-
trarily close to P tΓpu0q ¡ xu for ς 1 small enough. A similar upper bound can be obtained for
P tΓnppunq   xu from which the conclusion follows.

C Additional proofs for the general model

C.1 Proof of Lemma 1

This result can be seen as a consequence of Theorem 2.8 in Straumann and Mikosch [47]. We
nevertheless give a direct proof.

For ease of presentation we omit θ and set Γt � Λ1pytq. For all n P N, n ¡ 0, and t P Z, let

ft,n � φ rg�pft�1,n�1, yt�1q, ft�1,n�1s � ψpyt�1, ft�1,n�1q,

where ft�n,0 � f0. For �xed n, the sequence pft,nqt is stationary and ergodic. We have

|ft,n � ft,n�1| ¤ Γt�1|ft�1,n�1 � ft�1,n�2| ¤ Γt�1Γt�2 . . .Γt�n�1|ψpyt�n, f
0q � f0|.

Thus, for n   m,

|ft,m � ft,n| ¤
m�n�1¸
k�0

|ft,m�k � ft,m�k�1|

¤
m�n�1¸
k�0

Γt�1 . . .Γt�m�k�1|ψpyt�m�k, f
0q � f0|

¤
8̧

j�n�1

Γt�1 . . .Γt�j�1|ψpyt�j , f
0q � f0| Ñ 0 a.s. as nÑ8. (35)

The latter convergence follows from the Cauchy rule applied to the in�nite sum, using E log Γt  
0 and E log� |ψpyt, f0q � f0|   8. We have shown that, a.s., pft,nqnPN is a Cauchy sequence
on the complete space F . Therefore ftpθq � limnÑ8 ft,n provides the stationary solution of the
SRE (6).

Now, note that

sup
θPΘ

|ftpθq � rftpθq| ¤ Γt�1Γt�2 � � �Γ0 sup
θPΘ

|f0pθq � rf0|,
where Γt � supθPΘ Γt with Γt � Λ1pyt;θq. By (ii) of A3 one can choose ρ such that

1 ¡ ρ ¡ eE log Γ1 ¡ 0,

so that

lim
tÑ8

1

t
ln ρ�tΓt�1Γt�2 � � �Γ0 � � ln ρ� E ln Γ1   0.
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Now, by letting mÑ8 and taking n � 0 in (35), we have

|ftpθq � f0| ¤
8̧

j�1

Γt�1 . . .Γt�j�1|ψpyt�j , f
0q � f0|.

Thus

sup
θPΘ

|ftpθq � f0| ¤
8̧

j�1

Γt�1 . . .Γt�j�1 sup
θPΘ

|ψpyt�j , f
0q � f0|.

By the arguments given in the �st part of the proof, supθPΘ |f0pθq| is almost surely �nite under
A3 (i), and the conclusion follows.

C.2 Proof of Proposition 2.2

Part i) is obvious: the condition P tΛpη1q ¤ 1u � 1 entails E tΛupη1qu ¤ 1 and the inequality is
strict because γ   0.
Now suppose P tΛpη1q ¤ 1u   1 and let ϵ ¡ 0 such that P tΛpη1q ¡ 1� ϵu ¡ 0. Then we have

S
puq
8 � E tΛupη1qu ¡ p1 � ϵquP tΛpη1q ¡ 1� ϵu Ñ 8 as u Ñ 8. For any η ¡ 0, the function
u ÞÑ Λupηq is convex. Thus u ÞÑ E tΛupη1qu is convex on p0, ss. We consider two cases: a) when

P tΛpη1q � 0u � p ¡ 0 we have S
p0�q
8 � 1� p   S

p0q
8 � 1. In view of the convexity and the fact

S
psq
8 ¥ 1, the conclusion follows; b) when P tΛpη1q � 0u � 0, the right derivative of u ÞÑ S

puq
8

in the neighborhood of 0 is negative. Thus a value 0   s0   s exists for which the function

u ÞÑ E tΛupη1qu decreases over p0, s0q and increases over ps0, ss. Since Spsq8 ¥ 1, it follows that
there is a unique u ¡ 0 such that E tΛupη1qu � 1. This completes the proof of Proposition 2.2.

C.3 Proof of Proposition 2.3

Noting that pψu � rSp2uqn ppθnq � trSpuqn ppθnqu2, the strong consistency of pψu follows from HL3 and
the strong consistency of pθn. It follows that pυu is a consistent estimator of υu. Now, noting that

S
puq
8 ¤ S

pu0q8 for u ¤ u0, we have

PH0,upCpuq
T q � PH0,u

!pυ�1
u

?
n
�
Spuqn � 1

	
¡ Φ�1p1� αq

)
�PH0,u

!pυ�1
u

?
n
�
Spuqn � S

puq
8

	
� pυ�1

u

?
n
�
S
puq
8 � S

pu0q8
	
¡ Φ�1p1� αq

)
¤PH0,u

!pυ�1
u

?
n
�
Spuqn � S

puq
8

	
¡ Φ�1p1� αq

)
which tends to α as nÑ8 by Theorem 1. The conclusion under H0,u follows.

Under H1,u, T
puq
n �

?
npSpuq8 �1q

υu
Ñ8, in probability as nÑ8. The conclusion follows.

C.4 Proof of Proposition 3.1

We apply Proposition 2.2, substituting the empirical distribution of tΛppηt; pθnq : t � 1, . . . , nu for
the theoretical distribution of Λpη1q. The condition on the existence of s ¡ 0 vanishes because
moments exist at any order for the empirical distribution.

C.5 Proof of Proposition 3.2

Under H0,u, the arguments are the same as those in the proof of Proposition 2.3, using HL7
to show the consistency of pw2

u, and the asymptotic normality of
?
nppun � u0q established in

Theorem 4. Under H1,u we use the fact that u� pun Ñ u� u0 ¡ 0 in probability as nÑ8.
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C.6 Proof of Proposition 3.3

By the delta method we have,

?
n ppun,h � u0q � Bu0

Bθ1
?
nppθn,ML � θ0q � oP p1q dÝÑ N

�
0, σ2h

�
. (36)

In view of the consistency of pσh, the conclusion under H0,u follows. Under H1,u we use the fact
that u� pun,h Ñ u� u0 ¡ 0 in probability as nÑ8.

C.7 Proof of Proposition 3.4

The proof is similar to that of Proposition 3.3, based on the Taylor expansion
?
npu0 � pu

0,ph
qpςh � �1

ςh

�Bu0
Bθ1

?
nppθn � θ0q � Bu0

Bν 1
?
nppνn � ν0q



� oP p1q

D Examples of augmented GARCH models

The table below displays examples of models satisfying (16) (with x� � maxpx, 0q, x� �
maxp�x, 0q). GARCH models were introduced by Engle [24] and Bollerslev [11]. Taylor model
was introduced by Taylor [48]. Threshold GARCH (TGARCH) models were introduced by Za-
koïan [51]. GJR-GARCH models were introduced by Glosten et al. [33]. Asymmetric Power
ARCH (APARCH) models were introduced by Ding et al. [19]. Beta-t-GARCH models were
introduced by Harvey [36] and Creal et al. [15].

Table 2

Model θ, δ apηt,θq
GARCH1 pω, α, βq, 2 αη2 � β
Taylor model2 pω, α, βq, 1 α|η| � β
TGARCH3 pω, α�, α�, βq, 1 α�η� � α�η� � β
GJR-GARCH4 pω, α�, α�, βq, 2 α�η�2 � α�η�2 � β
APARCH5 pω, α, ξ, βq, δ ω � αp|η| � ξηqδ � β

Beta-t-GARCH6 pω, α, β, νq, 2 β � αpν�1qη2
pν�2q�η2

1 σ2t � ω � αϵ2t�1 � βσ2t�1
4 σ2t � ω � α�ϵ�2

t�1 � α�ϵ�2
t�1 � βσ2t�1

2 σt � ω � α|ϵt�1| � βσt�1
5 σδt � ω � αp|ϵt�1| � ξϵt�1qδ � βσδt�1

3 σt � ω � α�ϵ�t�1 � α�ϵ�t�1 � βσt�1
6 σ2t � ω � βσ2t�1 � α

pν�1qϵ2t�1

pν�2q�ϵ2t�1{σ2
t�1

E Empirical MDF of a GARCH process

The �rst-order GARCH process is a particular case of APARCH, obtained for δ � 2 and apηq �
αη2 � β. The asymptotic variance of the empirical MDF has a more explicit form in GARCH
models for two important estimation methods:

Corollary 7 (GARCH estimated by ML or QML). If i) the distribution of η2t is non-

degenerate and Ep|ηt|4q   8; ii)Θ � rω,8q�p0,8q�r0, 1q is compact and θ0 � pω0, α0, β0q1 P
�
Θ,

iii) E logpα0η
2
t�β0q   0, then the conclusions of Corollary 1 hold for the QML and ML estimators

with u ¤ 2. Moreover, letting Mx,y � E
 
η2xt pα0η

2
t � β0qy

(
, x, y P R, and

Ω � E

�
1

σ2t pθq
Bσ2t pθ0q
Bθ



, J � E

�
1

σ4t

Bσ2t pθ0q
Bθ

Bσ2t pθ0q
Bθ1



, (37)
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we �nd that gu � u pmu � α0M1,u�1Ωq , where mu � p0,M1,u�1,M0,u�1q1, and
υ2u � cηu

2
�
m1

uJ
�1mu � α2

0M
2
1,u�1

��M0,2u �M2
0,u, (38)

where cη � κ4 � 1 with κ4 � Eη4t for the QMLE, and cη � 4{ιh for the MLE.

Proof. i) When the model is estimated by QML we have

V pηtq � η2t � 1, ∆t�1 � J�1 1

σ2t

Bσ2t pθ0q
Bθ ,

thus Σ � pκ4 � 1qJ�1. It follows that

υ2u � u2pκ4 � 1q �m1
uJ

�1mu � α2
0M

2
1,u�1 � 2α0M1,u�1m

1
uJ

�1Ω
�

�M0,2u �M2
0,u � 2upM1,u �M0,uq

�
m1

uJ
�1Ω� α0M1,u�1

�
.

Noting that J�1Ω � pω0, α0, 0q1 (see Francq and Zakoïan [29]), we obtain g1uξu � 0 and the
formula for υ2u follows.

ii) If the model is estimated by ML we have

Σ � 4

ιh
J�1, V pηtq � g1pηtq, ∆t�1 � � 2

ιh
J�1 1

σ2t

Bσ2t pθ0q
Bθ .

Noting that

Eapηt;θqg1pηtq �α� β �
»
pαx2 � βqxh1pxqdx

�α� β �
»
p3αx2 � βqhpxqdx � �2α,

we have, using Ω1J�1Ω � 1 (see Remark 3 in Francq and Zakoïan [29]) and J�1Ω � pω0, α0, 0q1,

g1uξu � u tmu � α0M1,u�1Ωu1 2
ιh
J�1ΩEaupηtqg1pηtq � 0

and

g1uΣgu � 4u2

ιh
pmu � α0M1,u�1Ωq1 J�1 pmu � α0M1,u�1Ωq

� 4u2

ιh

�
m1

uJ
�1mu � α2

0M
2
1,u�1

�
.

Thus

υ2u � g1uΣgu � ψu � 4u2

ιh

�
m1

uJ
�1mu � α2

0M
2
1,u�1

��M0,2u �M2
0,u.

The MLE is more e�cient than the QMLE since κ4 � 1 ¥ 4{ιh and, by the Cauchy-Schwarz
inequality,

m1
uJ

�1mu � α2
0M

2
1,u�1 � m1

uJ
�1mu � pm1

uJ
�1Ωq2

¥ m1
uJ

�1mu � pm1
uJ

�1muqpΩ1J�1Ωq � 0.

l

In Francq and Zakoïan [31] we provided a test of �nite moments of order u in the case where
u is even and pϵtq is a standard GARCH process. In this case, the moment condition is an
explicit function of θ0 and moments of ηt. The test statistic is thus computed di�erently, but is

equivalent to the test T
puq
n of Corollary 3, as the next example illustrates.
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Example (2nd-order stationarity testing (u � 1)). Consider a standard GARCH model
(δ � 2). We have apη,θq � αη2 � β. When the model is estimated by Gaussian QML we have,
by Corollary 7, υ21 � pκ4 � 1qe10J�1e0 � pα0 � β0q2 � 1, where e10 � p0, 1, 1q. Thus under H0,1,

Sp1qn � 1

n

ņ

t�1

ppαnpη2t � pβnq � pαn � pβn � oP p1q, υ21 � pκ4 � 1qe10J�1e0.

We retrieve the Wald-type test statistic for testing second-order stationarity,

T p1qn � ?
n

ppαn � pβn � 1q
tppκ4 � 1qe10pJ�1

e0u1{2
� oP p1q.

F Proofs for the multiplicative model

F.1 Proof of Corollary 1

First note that E tΛspηt;θ0qu � Easpηt;θ0q   8 under MM1. The properties required in
A0-A3 are also satis�ed by MM1-MM2. It therefore remains to demonstrate HL1 and apply
Theorem 1.

With ap ϵσ ;θq � bpϵ, σ;θq where b : R�R��Θ ÞÑ R�, under MM4, for b or log b, ∇σ (resp.
∇θ) denotes the partial derivative with respect to σ (resp. θ), and ∇2

σσ (resp. ∇2
σθ) denotes the

unmixed (resp. mixed) second-order partial derivative with respect to σ (resp. σ and θ).
7
With

this notation, we can write for instance

B
Bθa tηtpθq;θu �

B
Bθ b tϵt, σtpθq;θu

�∇θb tϵt, σtpθq;θu �∇σb tϵt, σtpθq;θu B
Bθσtpθq.

We establish the following intermediate results:

IR1: There exists a neighborhood V pθ0q of θ0 such that

inf
θPV pθ0q

atηtpθq;θu ¡ 0 and sup
θPV pθ0q

n
��� rSpuqn pθq � Spuqn pθq

��� � Op1q a.s.

IR2: The function θ ÞÑ atηtpθq;θu is continuously di�erentiable at θ0. Moreover, for any
sequence pθnq such that θn Ñ θ0 a.s., we have

BSpuqn pθnq
Bθ � BSpuqn pθ0q

Bθ Ñ 0, a.s. as nÑ8.

IR3: The expectation gu � E
� B
Bθa

utηtpθq;θu
�
θ�θ0

exists in Rd and BSpuqn pθ0q
Bθ Ñ gu, a.s. as

nÑ8.

7
For instance in the standard GARCH(1,1) model with θ � pω, α, βq1, we have bpϵ, σ;θq � α

�
ϵ
σ

�2
� β,

∇σ log bpϵ, σ;θq � �2

αp ϵ
σ q

2
�β

α
σ

�
ϵ
σ

�2
and ∇θ log bpϵ, σ;θq �

1

αp ϵ
σ q

2
�β

�
0,
�

ϵ
σ

�2
, 1
	1
. In the ARCH(1) model, with

θ � pω, αq1, we have bpϵ, σ;θq � α
�

ϵ
σ

�2
, thus ∇σ log bpϵ, σ;θq � �2

σ
and ∇θ log bpϵ, σ;θq �

�
0, 1

α

�1
.
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F.1.1 Proof of IR1

We have rηtpθq � ϵtrσ�1
t pθq where rσδt pθq is de�ned after (17). For θ P V pθ0q we have

autrηtpθq;θu � autηtpθq;θu � butϵt, rσtpθq;θu � butϵt, σtpθq;θu
� ubutϵt, σ�t ;θu∇σ log bpϵt, σ�t ;θqtrσtpθq � σtpθqu (39)

where σ�t is between rσtpθq and σtpθq.
Then, using MM5 and the cr inequality, we deduce

|autrηtpθq;θu � autηtpθq;θu| ¤u2uCu�1

#� |ϵt|
σ�t


τpu�1q
� 1

+
|rσtpθq � σtpθq| .

The r.h.s. of the inequality is bounded by a variable of the form KXtρ
t where Xt admits a

small moment uniformly in t, ρ P p0, 1q and K is F0-measurable, using Lemma 1 andMM3 and
noting that

|ϵt|
σ�t

¤ |ηt|σtpθ0q
σtpθq

σtpθq
σ�t

¤ |ηt|
�
1� Kρt

ω



sup

θPV pθ0q

σtpθ0q
σtpθq .

Thus

n
��� rSpuqn pθq � Spuqn pθq

��� ¤ K
ņ

t�1

Xtρ
t ¤ K

8̧

t�1

Xtρ
t,

where the latter sum admits a small moment by MM4 and thus is �nite a.s.

F.1.2 Proof of IR2

In view of IR1
BSpuqn pθq
Bθ � 1

n

ņ

t�1

uau�1tηtpθq;θuBatηtpθq;θuBθ
is well-de�ned in V pθ0q. We also have

B2Spuqn pθq
BθBθ1 � 1

n

ņ

t�1

ubupϵt, σtpθq;θq
"
u
B
Bθ log bpϵt, σtpθq;θq BBθ1 log bpϵt, σtpθq;θq

� B2
BθBθ1 log bpϵt, σtpθq;θq

*
.

From the Hölder inequality and MM6(u)

sup
θPV pθ0q

�����B2Spuqn pθq
BθBθ1

����� � Op1q, a.s.

The conclusions follows from a Taylor expansion of BSpuqn pθnq
Bθ around θ0.

F.1.3 Proof of IR3

Noting that

BSpuqn pθ0q
Bθ � 1

n

ņ

t�1

ubupϵt, σtpθ0q;θ0q BBθ log bpϵt, σtpθ0q;θ0q
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the result is a straightforward consequence of the Hölder inequality, MM6(u) and the ergodic
theorem.

Now, noting that S
puq
n � rSpuqn ppθnq, a Taylor expansion of S

puq
n ppθnq around θ0 yields

?
n
�
Spuqn � S

puq
8

	
�?n

�rSpuqn ppθnq � Spuqn ppθnq
	
�
#
BSpuqn pθ�nq

Bθ1 � BSpuqn pθ0q
Bθ1

+
?
nppθn � θ0q

� BSpuqn pθ0q
Bθ1

?
nppθn � θ0q �

?
n
!
Spuqn pθ0q � S

puq
8

)
,

where θ�n is between pθn and θ0. In view of IR1-IR3 and HL2, and since BSpuqn pθ0q
Bθ Ñ gu a.s. by

the ergodic theorem, we can conclude that HL1 holds true. Thus the conclusions of Theorem 1
apply.

F.2 Proof of Corollary 2

Part iii) shows that MM1 holds true. Noting that

B
Bz

!
ω
� ϵt

z1{δ
;θ
	
� a

� ϵt

z1{δ
;θ
	
z
)
� β

and that the strictly stationary solution admits a small-order moment, it can be check that
MM2 is satis�ed. The CAN of the QMLE were established by Hamadeh and Zakoïan [35]. By
Theorems 2.1 and 2.2 in Hamadeh and Zakoïan [35], assumption HL2 holds with

V pηtq � η2t � 1, ∆t�1 � δ

2
J�1

δ

1

σδt

Bσδt pθ0q
Bθ , ∆ � δ

2
J�1

δ Ωδ,

where Ωδ � EpDtq, Jδ � EpDtD
1
tq, Dt � Dtpθ0q and Dtpθq � σ�δ

t pθqBσδt pθq{Bθ. As an
intermediate result to establish the CAN of the QMLE, [35] established MM3. By Equation
(5.18) in Hamadeh and Zakoïan [35] the �rst moment condition in MM4 is satis�ed with r � 2.
The second moment condition is also satis�ed, using supθPΘ |β|   1 and the existence of a small-

order moment for |ϵt|. Noting that bpϵ, σ,θq � |ϵ|δ
σδ pα�⊮ϵ¡0�α�⊮ϵ 0q�β, it can be shown that

MM5 is satis�ed for τ � δ. It has also been shown that

E sup
θPV pθ0q

���� 1

σδt pθq
Bσδt pθq
Bθ

����d   8, E sup
θPV pθ0q

���� 1

σδt pθq
B2σδt pθq
BθBθ1

����d   8

for any integer d (by (5.20) in the aforementioned paper). It follows that MM5(u) is satis�ed
for any q ¡ 0 and for p close enough to 1 when u ¤ s{2. We conclude from Corollary 1.

F.3 Proof of Corollary 3

The proof consists in checking the consistency of

pgu �
B rSpuqn ppθnq

Bθ � 1

n

ņ

t�1

B
Bθa

u

"
ϵtrσt ppθnq; pθn

*
and Assumption HL3. We start by showing that

sup
θPV pθ0q

�����B rSpuqn pθq
Bθ � BSpuqn pθq

Bθ

�����Ñ 0, in probability as nÑ8. (40)
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We have

BSpuqn pθq
Bθ � B rSpuqn pθq

Bθ � 1

n

ņ

t�1

u rbu tϵt, σtpθq;θu � bu tϵt, rσtpθq;θus
�
�
∇σ log b tϵt, σtpθq;θu BσtpθqBθ �∇θ log b tϵt, σtpθq;θu

�
� 1

n

ņ

t�1

ubu tϵt, rσtpθq;θu r∇σ log b tϵt, σtpθq;θu �∇σ log b tϵt, rσtpθq;θus BσtpθqBθ

� 1

n

ņ

t�1

ubu tϵt, rσtpθq;θu∇σ log b tϵt, rσtpθq;θu�BσtpθqBθ � Brσtpθq
Bθ



� 1

n

ņ

t�1

ubu tϵt, rσtpθq;θu r∇θ log b tϵt, σtpθq;θu �∇θ log b tϵt, rσtpθq;θus
:�∆1npθq �∆2npθq �∆3npθq �∆4npθq.

First consider ∆1npθq. From the proof of Corollary 1 we have

sup
θPV pθ0q

|bu tϵt, σtpθq;θu � bu tϵt, rσtpθq;θu| ¤ Xtρ
t

where Xt admits a small moment. By MM3 and MM4, the other summands involved in ∆1

also admit small moments. It follows that supθPV pθ0q |∆1npθq| Ñ 0, in probability as nÑ8.
Now we turn to ∆2n. Another Taylor expansion yields

∇σ log b tϵt, σtpθq;θu �∇σ log b tϵt, rσtpθq;θu �∇2
σσ log bpϵt, σ

�
t ;θqtrσtpθq � σtpθqu,

where σ�t is between rσtpθq and σtpθq. By the same arguments, supθPV pθ0q |∆2npθq| Ñ 0, in
probability as nÑ 8. The last two terms can be handled similarly. Hence, (40) is established.
Now using IR2-IR3 in the proof of Corollary 1, together with the consistency of pθn, we conclude
that pgu is a consistent estimator of gu.

We similarly show that Assumption HL3 is satis�ed, which completes the proof of Corollary
3.

F.4 Proof of Proposition 4.1

The tail result for σt is established using Theorem 4.1 in Goldie [34]. The tail result for ϵt follows
by the arguments given by Mikosch and St ric [44] in proving their Theorem 2.1.

F.5 Proof of Corollary 4

It su�ces to show that HL4 holds true. Similar to (39) we have

log b tϵt, σtpθq;θu � log b tϵt, rσtpθq;θu �∇σ log bpϵt, σ
�
t ;θq trσtpθq � σtpθqu , (41)

thus, by arguments already used, γn � 1
n

°n
t�1 log b

!
ϵt, σtppθnq; pθn

)
� op1q, a.s.

Moreover,

log b tϵt, σtpθq;θu � log b tϵt, σtpθ0q;θ0u �
B

Bθ1
log b

 
ϵt, σtpθ

�q;θ�
(
pθ � θ0q, (42)

for θ� between θ and θ0. Using the consistency of pθn and MM7, we conclude that

γn � 1

n

ņ

t�1

log b tϵt, σtpθ0q;θ0u � op1q, a.s.

The second convergence in HL4 can be handled similarly.
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F.6 Proof of Corollary 5

In view of Theorem 3, we need to show HL5 and HL6. First note that

gu � gv � E

�
B2

BuBθi b
utϵt, σtpθq;θu

����
θ�θ0,u�u�i

�
pu� vq

where the u�i belong to pu, vq and the existence of the expectation follows fromMM6(u2). Thus
HL6 is established.

We will now show HL5. We have, for θ� between pθn and θ0,

Γnpuq � Γ0
npuq �

?
n
!
Spuqn � Spuqn ppθnq

)
� 1

n

ņ

t�1

� B
Bθa

utηtpθ�q;θ�u � gu

�1?
nppθn � θ0q

� g1u

#
?
nppθn � θ0q � 1?

n

ņ

t�1

∆t�1V pηtq
+

:� Rn,1puq �Rn,2puq �Rn,3puq. (43)

The proof is thus divided into three steps.
i) We have, by MM3, with σ�t pθq between rσtpθq and σtpθq

|Rn,1puq| ¤ 1?
n

ņ

t�1

sup
θPV pθ0q

ubutϵt, σ�t pθq;θu |∇σ log b tϵt, σ�t pθq;θu|Ktρ
t � oP p1q,

uniformly in u P ru1, u2s, noting that, by MM5, the supremum admits a small-order moment.
ii) The second term, Rn,2puq, can be handled by a Taylor expansion around θ0 of

B
Bθa

utηtpθ�q;θ�u. Indeed, we have

1

n

ņ

t�1

B
Bθa

utηtpθ�q;θ�u � gu

� 1

n

ņ

t�1

B
Bθa

utηtpθ0q;θ0u � gu �
1

n

ņ

t�1

B2
BθBθ1a

utηtpθ��q;θ��upθ� � θ0q

�Rn,4puq �Rn,5puq,

where θ�� is between θ� and θ0.
For any u� P pu1, u2q and any positive integer k, let Vkpu�q � pu�� 1

k , u
�� 1

k q. We have, for
any k,

sup
uPVkpu�qXru1,u2s

����� 1n
ņ

t�1

B
Bθa

utηtpθ0q;θ0u � gu

�����
¤ 1

n

ņ

t�1

Xt,kpu�q �
����� 1n

ņ

t�1

B
Bθa

u�tηtpθ0q;θ0u � gu�

������ |gu� � gu| , (44)

where

Xt,kpu�q :� sup
uPVkpu�qXru1,u2s

���� BBθautηtpθ0q;θ0u � B
Bθa

u�tηtpθ0q;θ0u
���� .

The last term tends to 0 as k increases to in�nity by continuity of u ÞÑ gy. The second term
converges to 0 a.s. by the ergodic theorem. Finally, the �rst sum in the r.h.s. of Equation (44)
converges a.s. as nÑ8 to EXt,kpu�q. Indeed, the ergodic theorem can be applied because the
variables inside the absolute values are both continuous in u and functions of the ηt�i's for i ¥ 0
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(see Francq and Zakoian [30], Exercise 7.4). By the Beppo Levi theorem, EXt,kpu�q decreases
to 0 as k Ñ 8. We have shown that the left-hand side of (44) converges to 0 as k and nÑ 8.
This conclusion is based on a compactness argument: for any cover of the compact set ru1, u2s
by sets of the form Vkpu�q, there exists a �nite subcover, of the form Vkpu�1q, . . . , Vkpu�dq. We
have

sup
uPru1,u2s

����� 1n
ņ

t�1

B
Bθa

utηtpθ0q;θ0u � gu

�����
� max

i�1,...d
sup

uPVkpu�i qXru1,u2s

����� 1n
ņ

t�1

B
Bθa

utηtpθ0q;θ0u � gu

����� � oP p1q.

We have shown that supuPru1,u2sRn,4puq � oP p1q. Now, since

B2autηtpθq;θu
BθBθ1

�
�B2 log atηtpθq;θu

BθBθ1 � B log atηtpθq;θu
Bθ

B log atηtpθq;θu
Bθ1



autηtpθq;θu,

we deduce from MM6(s) and the strong consistency of θ� to θ0 that supuPru1,u2s Rn,5puq �
oP p1q. Thus supuPru1,u2sRn,2puq � oP p1q.

iii) The third term, Rn,3puq, in the r.h.s. of (43) is an oP p1q uniformly in u by MM5 and
using the fact that supuPpu1,u2q }gu}   8. This latter property follows from

}gu} ¤ u

����E �B log atηtpθ0q;θ0u
Bθ autηtpθ0q;θ0u


���� ,
whereas by Hölder's inequality, for each component θi of θ,

sup
uPpu1,u2q

E

�����B log atηtpθ0q;θ0u
Bθi

autηtpθ0q;θ0u

����

¤
����B log atηtpθ0q;θ0u

Bθi

����
q{2

sup
uPpu1,u2q

|autηtpθ0q;θ0u|p

¤
����B log atηtpθ0q;θ0u

Bθi

����
q{2

�
|au1tηtpθ0q;θ0u|p � |au2tηtpθ0q;θ0u|p

	
  8,

using MM6(s). Thus HL5 is established.

F.7 Proof of Corollary 6

It can be shown thatHL7 holds by the arguments used to establishHL3 in the proof of Corollary
3. The conclusion follows from Proposition 3.2.

F.8 Proof of Proposition 4.2

In view of MM8, (36) and the consistency of pσh, we deduce
V pu0q
n �

?
npu0 � pun,hqpσh � �2

σhιh
?
n

ņ

t�1

Bu0
Bθ1 J

�1 1

σ2t

Bσ2t
Bθ g1pηtq � oP p1q, (45)

from which the conclusion follows.
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F.9 Proof of Proposition 4.3

The strong consistency of pϑQML

n follows from Theorem 3.1 in Hamadeh and Zakoïan [35]. Be-
cause D is discrete, it follows that pδQML

n � δ0 for su�ciently large n. By Corollary 2, the
assumptions required for Corollary 5 are satis�ed for n large enough when δ is replaced bypδQML
n . If ηt has a positive density over the real line, the condition 1   E taspη1qu   8 for s ¡ 0
of Corollary 5 holds and the conclusion follows.

G Proofs for the asymptotic power comparisons

G.1 Proof of Proposition 5.1 and inequality (24)

In the proof of Corollary 1, we have seen that

T puqn � 1?
n

ņ

t�1

aupηtq � 1

υu
� g1u

1

υu
?
n

ņ

t�1

∆t�1V pηtq � oP p1q, (46)

where the �rst term is centered only for u � u0. By (22), it follows that under P0�
T
pu0q
n

Λn,hpθ0 � τ {?n,θ0q

�
dÝÑ N

"�
0

�1
2τ

1Iτ



,

�
1 ch,u0pθ0q

ch,u0pθ0q τ 1Iτ


*
.

Le Cam's third lemma (see e.g. van der Vaart [50], page 90) shows that

T pu0q
n

dÝÑ N pch,u0pθ0q, 1q , under Pn,τ .

The conclusion of Proposition 5.1 easily follows for the two tests using (20).
With the notations used in the proof of Corollary 7, for the standard GARCH(1,1) model

estimated by QML we have

E

�
1

σt

Bσtpθ0q
Bθ g1u0

∆t�1



� E

�
1

σt

Bσtpθ0q
Bθ ∆1

t�1gu0



� 1

2
gu0

, EtV pη1qg1pη1qu � �2,

while with the ML we have

E

�
1

σt

Bσtpθ0q
Bθ g1u0

∆t�1



� E

�
1

σt

Bσtpθ0q
Bθ ∆1

t�1gu0



� �1

ιh
gu0

, EtV pη1qg1pη1qu � ιh.

Moreover,

1

2
Eau0

t

"
1� ηt

h1

h
pηtq

*
� α0u0Eη

2
t a

u0�1
t �

1

2
�

1

2

»
au0pxqxh1pxqdx� α0u0

»
x2au0�1 � pxqhpxqd

�
1

2
�

1

2

»
au0pxqxh1pxqdx� rau0pxq

x

2
hpxqs �

»
au0pxq

�
hpxq

2
�
x

2
h1pxq



dx0 � 0.

Thus, for the standard GARCH(1,1) model,

ch,u0pθ0q � � τ 1

υu0

�
1

2
ΩEtau0pη1qg1pη1qu � u0 pmu0 � α0M1,u0�1Ωq

�
� u0
υu0

τ 1mu0 ,

where the formulas for υu0 are displayed in (38) for the ML and QML estimators.
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G.2 Proof of Proposition 5.2

Relation (22) implies that

Λn,hpθ0 � τ {?n,θ0q dÝÑ N
�
�1

2
τ 1Iτ , τ 1Iτ



under P0,

which is the distribution of the log-likelihood ratio in the statistical model N
�
τ ,I�1

�
of pa-

rameter τ . In other words, denoting by T a subset of Rd containing a neighborhood of 0,
the so-called local experiments tLn,hpθ0 � τ {?nq, τ P T u converge to the Gaussian experiment 
N

�
τ ,I�1

�
, τ P T

(
.

Under the assumption of the proposition on u0pθ0, hq, for a given u, testing H0,u against
H1,n,u, amounts to testing H0 : τ � 0 against H1 : τ � e in the limiting experiment. The
UMPU test based on X � N

�
τ ,I�1

�
is the test of rejection region

C �
!
e1X{

a
e1I�1e ¡ Φ�1p1� αq

)
.

This UMPU test has the power given in (25).
In the case of the standard GARCH(1,1) model,

cQML
h,1 pθ0q � e1eb

pκ4 � 1qe1J�1e

¤cML
h,1 pθ0q � e1ec

4
ιh
e1J�1e� α2

0

�
κ4 � 1� 4

ιh

	 ¤ ce �
ι
1{2
h e1e

2
?
e1J�1e

,

by the Cauchy-Schwarz inequality, with equality only when g1pyq � Kp1 � y2q, that is if and
only if the density of ηt has the form (26) (see [28], Proposition 5.5).

G.3 Proof of Proposition 5.3

By the arguments of the proof of Proposition 5.1, using (45), we obtain

dh,u0pθ0q � � 1

σh

Bu
Bθ1τ �

� Bu
Bθ1τb

4
ιh

Bu
Bθ1J

�1 Bu
Bθ

� r1u0
τb

4
ιh
r1u0

J�1ru0

.

G.4 Proof of Proposition 5.4

Follows by the arguments of the proof of Proposition 5.1, using (37) and the LAN property
(29)-(30).

G.5 Proof of Proposition 5.5

The statistics T
puq
n , U

puq
n and W

puq
n are N p0, 1q distributed under the null. The p-values of the

tests based on T
puq
n and U

puq
n are thus 1 � Φ

�
T
puq
n

	
and 1 � Φ

�
U
puq
n

	
respectively. Under the

alternative H1,u : u ¡ u0 we have, almost surely, as nÑ8,

T puqn �
?
n
�
S
puq
n � 1

	
pυu �

?
n
�
S
puq
8 � 1

	
υu

, U puq
n �

?
n pu� punqpw

pun

�
?
n pu� u0q
wu0

,
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V puq
n �

?
npu� pu

n,ph
qpσh �

?
npu� u0q
σh

, W puq
n �

?
npu� pu

0,ph
qpςh �

?
npu� u0q
ςh

.

It can be shown that logt1 � Φpxqu � �x2{2 as x Ñ �8. The asymptotic slopes of the tests
are thus

cT puq �

�
S
puq
8 � 1

	2

υ2u
, cU puq � pu� u0q2

w2
u0

, cV puq � pu� u0q2
σ2h

, cW puq � pu� u0q2
ς2h

.

The test T
puq
n is more e�cient than U

puq
n , in Bahadur's sense, if and only if

cT puq
cU puq �

�
S
puq
8 � 1

	2

pu� u0q2
υ2u0

pErau0pη1;θ0q logtapη1;θ0qusq2 υ2u
¡ 1,

and the test W
puq
n is more e�cient than U

puq
n if and only if

cW puq
cU puq � υ2u0

�
r1u0

, s1u0

�
J�1

�
r1u0

, s1u0

�1 ¡ 1.

H Examples of asymptotic power comparisons

Propositions 5.1,5.3 and 5.4 (with τ 2 � 0) are illustrated in Figure 3 for Student distributions
with ν � 5, 20, 30 and 8. For the GARCH(1,1) model, the LAPs of the tests T,U, V and W
depend on τ through m1

u0
τ , which is therefore shown on the horizontal axis. As expected, the

test V is locally asymptotically more e�cient than the other tests, especially when u0 is small
for the equivalent tests T and U . The latter two tests are also dominated by the W test.

Examples of asymptotic slopes for the standard GARCH(1,1) model with Gaussian and
Student errors are displayed in Figure 4 and 5. It is clear from these graphs that, for the
alternative H1,u : u ¡ u0, test U based on the MME is more e�cient than is test T based
on the GMF, and that the ratio cU puq{cT puq increases as u departs from u0. On the contrary,
for the alternative H�

1,u : u   u0, the asymptotic slopes favor test T . Test V is always more
powerful than U , but may be outperformed by T in the left-hand side of u0. Interestingly,
the left panel shows that the slope of test T may decrease for large values of u, which can be
explained by the fact that the numerator and denominator of this ratio both tend to in�nity as
u increases. On the other hand, for small values of u the moment condition u   s{2 required
for the validity of test T can be satis�ed while the condition u0   s{2, required for the validity
of test U , can be violated.

Monte-Carlo experiments displayed in the next section illustrate test T 's lack of power rela-
tive to the others, in agreement with Figures 4-5.

I Monte Carlo experiments

We �rst performed 10,000 simulations of a standard GARCH(1,1) model with pα0, β0q �
p0.10, 0.86q and Gaussian innovations such that u0 � 4, for di�erent sample sizes. The re-
sults are reported in Table 3. Concerning the tests, the most striking result is the low power of
test T relative to the others, in agreement with Figures 4-5. Even for large sample sizes, test T
is too conservative but the levels of tests U and V at the boundary of the null are correct. As
expected, test V is slightly more powerful than test U . The CIs based on the statistics pun andpun,h (lines U

puq
n and V

puq
n ) are similar and, as expected, slightly tighter with the fully parametric
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Figure 3: LAPs of tests T and U (blue line) based on the Gaussian QML, test V (dotted red line),

and test W (dotted orange line) as functions of m1
u0
τ , for a standard GARCH(1,1) model with α0 �

0.10, β0 � 0.85 and for Student errors with ν degrees of freedom.
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Figure 4: Asymptotic slopes of the tests T,U and V for Gaussian errors and the standard GARCH(1,1)

models.
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Figure 5: Asymptotic slopes of the tests T,U and V for Student errors pν � 40q and the standard
GARCH(1,1) models.

method (the method based on pun,h with f Gaussian). Note that the coverage probabilities are
excellent (i.e. very close to nominal level 1 � α) when n � 4000 or n � 8000. The results
reported in Table 4 come from tests of H�

0,u, for the same experiments. In agreement with
Figures 4-5 these results are more favorable to test T , even if the level is poorly controlled.

Next, we consider the Beta-t-GARCH models introduced by Harvey [36] and Creal et al.
[15], such that

σ2t � ω � βσ2t�1 � α
pν � 1qϵ2t�1

pν � 2q � ϵ2t�1{σ2t�1

,

and the rescaled innovations are Student's t distributed with a degree of freedom ν. This model

is of the form (1) with δ � 2, ωpηq � ω and apηq � β � αpν�1qη2
pν�2q�η2

. Note that for this model, even

if the disturbances are t-distributed, we have s � 8, i.e. apηtq admits moments at any order.
For the value of the parameter θ � pω, α, β, νq1 used for the simulations, we have u0 � 3.5. The
results in Tables 5 and 6, obtained for simulations of this Beta-t-GARCH model, lead to similar
conclusions as for standard GARCH models.

J Complement to the empirical application

The QMLE and MLE residuals of the Total return series do not show any sign of dependence (in
Figure 6, the aucorrelations of the squared residuals are not signi�cantly non�zero). Moreover,
it is seen that the distribution of the residuals is better represented by the Student than by the
Gaussian distribution.

The empirical MDF S
puq
n is drawn in red in Figure 7. This curve crosses the horizontal line

y � 1 at pu0 � 7.9, the estimated value of u0 based on U
puq
n . The MDF computed on the �rst 20

replications of the bootstrap simulation are plotted in Figure 7.
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Table 3: For tests T
puq
n and U

puq
n , relative frequency of rejection of H0,u at the nominal level α%. The null

hypothesis is true for u ¤ 4 and false for u ¡ 4. The last 3 columns are CIs for u0 at the asymptotic con�dence
level 1 � α. The column "mean" (resp. "median") gives the means (resp. medians) of the CI bounds. The
column "coverage" gives the empirical coverage probability, that is the proportion of CIs that contain u0 among
the N � 10, 000 replications.

n α Test u � 2 u � 3 u � 4 u � 5 u � 6 u � 7 mean median coverage

1000 1% T
puq
n 0.00 0.00 0.00 0.00 0.00 0.00

U
puq
n 0.00 0.02 1.32 8.44 22.15 38.96 [0.49,9.04] [0.62,8.03] 0.99

V
puq
n 0.00 0.02 1.25 8.81 23.35 41.68 [0.64,8.63] [0.74,7.83] 0.99

5% T
puq
n 0.00 0.02 0.20 0.54 0.46 0.04

U
puq
n 0.00 0.18 4.40 17.63 36.61 54.41 [1.51,8.02] [1.54,7.16] 0.97

V
puq
n 0.00 0.17 4.71 18.62 39.07 57.89 [1.60,7.68] [1.61,6.98] 0.97

10% T
puq
n 0.00 0.12 2.07 6.25 9.24 8.12

U
puq
n 0.00 0.55 8.02 25.04 46.13 63.58 [2.03,7.50] [2.02,6.72] 0.95

V
puq
n 0.00 0.60 8.15 26.58 48.76 66.89 [2.09,7.19] [2.05,6.55] 0.95

4000 1% T
puq
n 0.00 0.00 0.07 1.76 5.94 6.58

U
puq
n 0.00 0.01 1.29 22.69 63.80 88.73 [2.40,5.94] [2.37,5.81] 0.99

V
puq
n 0.00 0.00 1.27 23.83 66.49 90.86 [2.43,5.86] [2.40,5.76] 0.99

5% T
puq
n 0.00 0.01 1.94 21.05 52.55 72.22

U
puq
n 0.00 0.03 4.95 40.63 79.93 95.47 [2.82,5.51] [2.79,5.40] 0.95

V
puq
n 0.00 0.04 5.14 42.32 82.22 96.42 [2.84,5.45] [2.81,5.37] 0.96

10% T
puq
n 0.00 0.04 5.77 39.27 75.71 91.33

U
puq
n 0.00 0.06 9.08 52.30 86.35 97.51 [3.04,5.30] [3.00,5.20] 0.91

V
puq
n 0.00 0.05 9.39 54.00 88.53 98.10 [3.05,5.24] [3.01,5.16] 0.91

8000 1% T
puq
n 0.00 0.00 0.21 14.62 56.87 79.55

U
puq
n 0.00 0.00 1.26 40.82 90.13 99.38 [2.87,5.30] [2.84,5.25] 0.99

V
puq
n 0.00 0.00 1.34 42.84 91.94 99.69 [2.89,5.26] [2.87, 5.22] 0.99

5% T
puq
n 0.00 0.00 2.67 47.84 90.75 98.53

U
puq
n 0.00 0.00 5.30 62.47 96.47 99.92 [3.16,5.01] [3.13,4.96] 0.95

V
puq
n 0.00 0.00 5.21 64.21 97.34 99.96 [3.17,4.98] [3.15,4.93] 0.95

10% T
puq
n 0.00 0.00 7.06 65.63 96.55 99.80

U
puq
n 0.00 0.00 9.64 73.06 98.18 99.97 [3.31,4.86] [3.28,4.81] 0.90

V
puq
n 0.00 0.00 9.87 75.25 98.67 99.99 [3.31,4.83] [3.29,4.79] 0.90
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Table 4: As �rst part of Table 3, but for the null H�
0,u, which is true for u ¥ 4 and false for u   4.

n α Test u � 2 u � 3 u � 4 u � 5 u � 6 u � 7

1000 1% T
puq
n 5.51 1.39 0.45 0.23 0.14 0.10

U
puq
n 0.51 0.00 0.00 0.00 0.00 0.00

V
puq
n 2.73 0.00 0.00 0.00 0.00 0.00

5% T
puq
n 60.04 23.45 7.67 2.71 1.06 0.41

U
puq
n 51.54 9.13 0.04 0.00 0.00 0.00

V
puq
n 52.78 12.05 0.43 0.00 0.00 0.00

10% T
puq
n 80.74 42.08 17.17 6.48 2.71 1.26

U
puq
n 76.11 30.85 7.78 1.34 0.00 0.00

V
puq
n 76.29 31.44 8.22 1.39 0.03 0.00

4000 1% T
puq
n 95.65 30.49 2.05 0.02 0.01 0.00

U
puq
n 92.01 16.43 0.26 0.01 0.00 0.00

V
puq
n 92.58 17.48 0.31 0.00 0.00 0.00

5% T
puq
n 99.50 59.35 8.52 0.49 0.02 0.01

U
puq
n 99.22 49.96 4.33 0.07 0.01 0.00

V
puq
n 99.30 51.06 4.28 0.09 0.00 0.00

10% T
puq
n 99.89 73.17 14.96 1.23 0.03 0.02

U
puq
n 99.85 68.10 10.93 0.55 0.02 0.01

V
puq
n 99.90 68.31 10.39 0.51 0.02 0.00

8000 1% T
puq
n 100.00 59.40 2.16 0.00 0.00 0.00

U
puq
n 99.97 46.04 0.53 0.00 0.00 0.00

V
puq
n 100.00 47.94 0.46 0.00 0.00 0.00

5% T
puq
n 100.00 82.63 7.74 0.05 0.00 0.00

U
puq
n 100.00 77.97 4.95 0.01 0.00 0.00

V
puq
n 100.00 78.86 4.66 0.01 0.00 0.00

10% T
puq
n 100.00 90.34 13.61 0.16 0.00 0.00

U
puq
n 100.00 88.31 10.54 0.06 0.00 0.00

V
puq
n 100.00 88.77 10.30 0.04 0.00 0.00
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Table 5: Same results as presented in Table 3, but for N � 1000 replications of the Beta-t-GARCH model with
pω0, α0, β0, ν0q � p0.5, 0.1, 0.88, 7.78q. The boundary of the null corresponds to u � 3.5.

n α Test u � 1.5 u � 2.5 u � 3.5 u � 4.5 u � 5.5 u � 6.5

2000 1% T
puq
n 0.00 0.00 0.00 0.00 0.00 0.10

U
puq
n 0.00 0.00 2.10 9.80 25.40 44.30

W
puq
n 0.00 0.00 1.10 9.80 28.20 50.10

5% T
puq
n 0.00 0.00 0.60 3.80 6.10 7.60

U
puq
n 0.00 0.10 5.20 19.40 42.00 61.10

W
puq
n 0.00 0.10 4.30 19.60 45.70 64.20

10% T
puq
n 0.00 0.10 4.20 11.70 20.70 27.60

U
puq
n 0.00 0.60 8.60 28.70 51.70 68.90

W
puq
n 0.00 0.60 7.40 29.70 53.90 71.10

4000 1% T
puq
n 0.00 0.00 0.00 0.50 2.30 3.10

U
puq
n 0.00 0.00 1.40 16.70 45.10 69.30

W
puq
n 0.00 0.00 1.20 18.40 50.90 76.40

5% T
puq
n 0.00 0.00 2.10 13.60 29.10 41.40

U
puq
n 0.00 0.00 6.30 32.50 61.40 82.90

W
puq
n 0.00 0.00 5.30 33.60 68.40 84.90

10% T
puq
n 0.00 0.00 6.90 27.60 52.30 69.00

U
puq
n 0.00 0.10 10.50 42.10 70.70 88.00

W
puq
n 0.00 0.10 9.30 44.60 76.90 89.70

8000 1% T
puq
n 0.00 0.00 0.00 5.60 23.00 42.70

U
puq
n 0.00 0.00 1.30 25.90 70.20 91.70

W
puq
n 0.00 0.00 1.00 32.30 78.10 95.60

5% T
puq
n 0.00 0.00 2.90 29.00 68.80 87.50

U
puq
n 0.00 0.00 6.10 46.80 85.00 96.00

W
puq
n 0.00 0.00 5.60 54.00 89.40 98.60

10% T
puq
n 0.00 0.00 7.20 48.80 84.40 95.20

U
puq
n 0.00 0.00 10.30 58.60 89.60 98.10

W
puq
n 0.00 0.00 10.40 65.20 93.60 99.30
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Table 6: Same results as in Table 5, but for the null H�
0,u

n α Test u � 1.5 u � 2.5 u � 3.5 u � 4.5 u � 5.5 u � 6.5

2000 1% T
puq
n 13.80 2.40 0.00 0.00 0.00 0.00

U
puq
n 0.60 0.00 0.00 0.00 0.00 0.00

W
puq
n 7.80 0.00 0.00 0.00 0.00 0.00

5% T
puq
n 62.40 21.70 6.40 1.50 0.50 0.10

U
puq
n 49.70 5.60 0.00 0.00 0.00 0.00

W
puq
n 61.40 6.90 0.00 0.00 0.00 0.00

10% T
puq
n 82.50 39.40 13.40 4.40 1.20 0.50

U
puq
n 76.50 25.80 4.90 0.40 0.00 0.00

W
puq
n 86.50 29.80 1.60 0.00 0.00 0.00

4000 1% T
puq
n 62.60 10.50 0.90 0.00 0.00 0.00

U
puq
n 45.00 1.40 0.00 0.00 0.00 0.00

W
puq
n 68.50 1.80 0.00 0.00 0.00 0.00

5% T
puq
n 90.40 36.10 6.80 0.80 0.00 0.00

U
puq
n 87.30 23.80 2.40 0.00 0.00 0.00

W
puq
n 96.00 31.90 0.60 0.00 0.00 0.00

10% T
puq
n 96.00 51.80 11.90 2.80 0.20 0.00

U
puq
n 94.60 43.70 7.80 0.70 0.00 0.00

W
puq
n 99.10 53.70 6.90 0.00 0.00 0.00

8000 1% T
puq
n 96.20 25.90 1.30 0.00 0.00 0.00

U
puq
n 93.80 13.60 0.00 0.00 0.00 0.00

W
puq
n 99.10 23.00 0.00 0.00 0.00 0.00

5% T
puq
n 99.70 58.00 6.50 0.10 0.00 0.00

U
puq
n 99.60 47.40 3.90 0.00 0.00 0.00

W
puq
n 100.00 62.60 2.20 0.00 0.00 0.00

10% T
puq
n 99.70 72.40 11.30 0.80 0.00 0.00

U
puq
n 99.70 67.80 8.90 0.10 0.00 0.00

W
puq
n 100.00 78.60 7.80 0.00 0.00 0.00
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Figure 6: Autocorrelations of the squares of the QML and ML residuals, and empirical distributions

of the QML and ML residuals, after �tting an APARCH model to the Total return series.
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Figure 7: Empirical MDF for the APARCH(1,1) model �tted on the Total return series (red solid line),

MDF of 20 bootstrap replications (blue dotted line), and 95% bootstrap interval (delimited by vertical

dotted lines) over 10000 bootstrap replications.
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