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Abstract

We study the licensing of a cost-reducing innovation in a Cournot oligopoly where an outside

innovator uses three part tariffs that are combinations of upfront fees, per unit royalties and ad

valorem royalties. Under general demand, the maximum possible licensing revenue under three

part tariffs can be always attained by a policy that uses at most two of the three components.

For relatively significant innovations, there exists an optimal policy consisting of a per unit

royalty and upfront fee and a continuum of other optimal policies that are three part tariffs

whose all components are positive. Completely characterizing optimal policies under linear

demand, we show that for oligopolies with four or more firms: (i) pure upfront fees are optimal

for insignificant innovations; (ii) for intermediate and significant innovations: (a) there is a

continuum of optimal policies which always includes a two part tariff with unit royalty and

upfront fee and (b) a two part tariff with an ad valorem royalty and fee or a two part royalty

can be optimal for some, but not all parametric configurations.
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1 Introduction

A patent grants an innovator monopoly rights over its innovation for a given period of time. This

paper studies the problem of patent licensing of a process innovation in a Cournot oligopoly with

an outside innovator. The licensing policies we study are general three part tariffs where a licensee

pays an upfront fee, a per unit royalty and an ad valorem royalty that is a fraction of its revenue.

Patent licensing by means of upfront fees, royalties or combinations of fees and different kinds of

royalties are commonly observed in practice. The survey of Rostoker (1983) on licensing agreements

of 37 corporations in the United States reports the prevalence of these policies and differences in

their relative uses across industries. For instance, in the electrical industry, “The favored license

type was the straight royalties method (55%) with decreasing dependence given to downpayment

and royalties (30%), paid-up licenses (14%). . . ” (p.66) while in the transportation industry, “. . . the

preference clearly was for the down payment and royalties method (58%), followed by straight

royalties (35%) and paid-up licenses (7%). . . ” (p.71).

In their study of 241 licensing contracts of Spanish firms, Macho-Stadler et al. (1996) find that

most contracts have simple, linear structures, involving either fixed fees, or “variable payments”

(royalties based on volumes of outputs or sales), or two part tariffs that combine fees and royalties.

The survey of Aulakh et al. (1998) on international licensing agreements of U.S. firms reports that

out of 110 agreements, 29 use only lump-sum fees, 49 are based on royalties and the remaining 32

use combinations of multiple policies or other methods.

In a dataset of 1458 patent licenses filed with the U.S. Securities and Exchange Commission

(SEC), Varner (2011) finds that 94% of all licenses involve one of the three modes: fixed fees, ad

valorem royalties based on sales percentages or unit royalties. This study also finds variation in

relative uses of different policies. For instance, only 3% agreements in the life sciences industry

include unit royalties, while they are more frequently used in high-tech (15%) and “other” industries

that include chemicals, automotive and financial services (21%) (Table 4, p.234).

A natural question is whether three part tariffs are observed in practice. The study of Vish-

wasrao (2007) on foreign technology licenses by manufacturing firms in India is illuminating in this

regard. Technology transfer by a foreign licensor may involve an “equity purchase,” which is an

ad valorem profit royalty where the licensor obtains a fraction of the licensee’s profit. A contract

having an equity purchase together with a unit royalty and a fee is a three part tariff. Out of 4025

contracts in this study, 11% are three part tariffs, while 28% are “arms’ length” (that is, licensing

without equity purchase) two part tariffs with unit royalties and fees. Other arms’ length contracts

are unit royalties (12%) and fees (36%). The remaining 7% are two part tariffs with equities and

fees and 6% are two part royalties with equities and unit royalties.1 There is variation in relative

1These percentages are computed from the numbers given in Table 2 (p.748) of Vishwasrao (2007). We study
three part tariffs that are combinations of upfront fees, unit royalties and ad valorem revenue royalties rather than
equities or ad valorem profit royalties that are observed in Vishwasrao (2007). If the rate of equity is relatively small,
any equity-based three part tariff is equivalent to a revenue-based three part tariff in our theoretical framework (see
Remark 3). It should be mentioned that for international technology transfer agreements, sometimes the rate of
equity may be small due to an institutionally fixed upper bound on foreign equity ownerships (see, e.g., Eun and
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uses of equity-based and arms’ length contracts across industries (Table 4, p.749).

The broad pattern that emerges from these empirical studies is that fixed fees, per unit and ad

valorem royalties are commonly used either separately or as two part tariffs. Three part tariffs that

are combinations of all of these three components are also observed, but their use is less frequent.

To fully understand the interrelation of these licensing devices and their effects on market outcomes,

it is useful to see if incorporating both kinds of royalties in licensing contracts would increase the

licensing revenue despite the potential complexity it may add to the transaction.

Another stylized fact is that relative uses of different policies vary across industries. In a related

context of licensing of mining rights, Hogan and Goldsworthy (2010) state: “The specific or unit-

based royalty is still utilized in most countries for low value, high volume minerals (for example,

industrial minerals). . . The main advantage of the specific royalty is its relative administrative

simplicity. . . ” (p.142). On the other hand, Gajigo et al. (2012) find an ad valorem or sales royalty

to be the most commonly used policy for gold mining in African countries, noting that: “. . . it is less

onerous on mining companies relative to unit royalty when commodity prices fall. . . ” (p.2). Thus

transaction costs and external factors could be plausible reasons behind the variation of licensing

policies across industries. However, in situations where different contracts can work seamlessly, it

is of interest to know if a specific royalty format is preferable over others.

Seeking to better understand these issues, we present a theoretical analysis of licensing with

three part tariffs in a parsimonious model of a general oligopoly that has no uncertainty, risk or

informational asymmetry. We show that the maximum possible licensing revenue under three part

tariffs can be always attained by a policy that uses at most two of the three components. For

relatively significant innovations: (i) there always exists an optimal policy that is a two part tariff

consisting of a per unit royalty and an upfront fee; (ii) there is a continuum of other optimal policies

that are three part tariffs in which all three components are positive and (iii) a two part tariff with

an ad valorem royalty and upfront fee or a two part royalty with ad valorem and unit royalties can

achieve the maximum possible licensing revenue for some, but not all parametric configurations

(Propositions 3,4).

Our results show that even in the absence of transaction costs of writing more complicated

contracts, at most two components are sufficient to attain the maximum possible licensing revenue

under three part tariffs. The presence of transaction costs will further tilt the scale in favor of two

part tariffs. This provides a clear explanation of why licensing contracts in practice more frequently

use one or two components. We also show that whether a two part tariff with a fee and an ad

valorem royalty is optimal or not may depend on intercepts of the demand curve (Propositions 4,5).

This indicates that aspects such as market size and elasticity can determine the use of different kinds

of royalties, providing a plausible explanation of variation of licensing policies across industries.

The theoretical literature of patent licensing can be traced back to Arrow (1962), who ar-

gued that a perfectly competitive industry provides a higher incentive to innovate compared to

a monopoly. The early literature found upfront fees to be superior to unit royalties for outside

Janakiramanan 1986, Hoang and Mateus 2023).
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innovators (e.g., Kamien and Tauman 1986; Kamien et al. 1992), although royalties can be optimal

when the innovator is an incumbent firm in the industry (e.g., Shapiro 1985, Wang 1998, Kamien

and Tauman 2002), or due to integer constraints on the number of licenses (Sen 2005a).

The literature has looked at several aspects of licensing in oligopolies such as cost asymmetry

(e.g., Katz and Shapiro 1985, Marjit 1990), differentiated products (e.g., Muto 1993, Fauĺı-Oller and

Sandońıs 2002, Poddar and Sinha 2004, Stamatopoulos and Tauman 2008, Colombo 2012), leader-

follower structures (e.g., Kabiraj 2004, Filippini 2005), returns to scale (e.g., Sen and Stamatopoulos

2009a, 2016, 2019, Fauĺı-Oller and Sandońıs 2022), the role of licensing or patent agreements in

facilitating or deterring entry (e.g., Eswaran 1994, Rodriguez 2002, Che and Facchini 2009, Duchêne

and Serfes 2012, Duchêne et al. 2015) and informational asymmetry (e.g., Gallini and Wright 1990,

Macho-Stadler and Pérez-Castrillo 1991, Beggs 1992, Sen 2005b, Fan et al. 2018a).2 Two part

tariffs with upfront fees and per unit royalties are studied in Sen and Tauman (2007), but they do

not consider ad valorem royalties.

This is the first work to study three part tariffs in a general oligopoly. The literature on three

part tariffs is sparse. Bousquet et al. (1998) consider these policies for a product innovation with

an outside innovator and one risk averse firm. Savva and Taneri (2015) examine three part tariffs

consisting of an equity (an ad valorem profit royalty3 as in Vishwasrao 2007), a per unit royalty

and a fixed fee. Recently Banerjee et al. (2023) study three part tariffs in a Hotelling duopoly

where the innovator is one of the two competing firms.

In all of these papers on three part tariffs, the opportunity cost for a license does not depend on

licensing policies, because there is only one potential licensee. This is not the case in an oligopoly

where the profit a firm obtains without a license depends on the licensing policy as well as the

number of other firms having licenses. Our analysis of three part tariffs in a general oligopoly

contributes to the existing literature by fully exploring the strategic interaction among potential

licensees in the downstream market.

As a starting point, a key question is: to what extent are the two kinds of royalties substi-

tutable? In other words, can the same market outcome be sustained by slightly lowering one kind

of royalty and raising the other? Attempting to answer this question, we show that the same ef-

fective magnitude of the innovation (denoted by δ) which determines the market outcomes (price,

2Other related issues include sequential innovations and patent pools (e.g., Brenner 2009, Llanes and Trento 2012,
Choi and Stefanadis 2018), R&D spillovers (e.g., Suzumara 1992, Amir et al. 2000), capacities (e.g., Mukherjee
2001, Colombo et al. 2023) and asymptotic properties for large sizes of oligopolies (e.g., Tauman and Watanabe
2007, Hiroaki and Kawamori 2009). The literature is large and growing, and we do not attempt to summarize it
here (for surveys, see, Kamien 1992; Bhattacharya et al. 2014). For two part tariffs with fees and only one kind of
royalties, whether ad valorem or per unit royalty is superior can depend on factors such as the nature of product
differentiation (Colombo and Filippini 2015, San Mart́ın and Saracho 2015), demand uncertainty (Ma and Tauman
2020), informational asymmetry (Heywood et al. 2014) or scale economies (Colombo and Filippini 2016).

3In a cost asymmetric differentiated duopoly with an incumbent licensor, Mukhopadhyay et al. (1999) show that
ad valorem profit royalties can induce profitable licensing regardless of the extent of product differentiation. Colombo
et al. (2021) show that ad valorem profit royalties are generally equivalent to upfront fees for an outside innovator.
For an incumbent innovator that has a partial passive ownership (PPO) of a rival firm (which is an ad valorem profit
royalty with the royalty fraction not exceeding half), Leonardos et al. (2021) show that consumer surplus and social
welfare are improved whenever licensing by lump-sum fees is profitable under PPO.
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quantities) can generally be supported by a continuum of per unit and ad valorem royalties. Offer-

ing a licensing policy with any δ, the innovator faces two constraints: (i) an acceptability constraint

to ensure that the net profit from having a license is no less than the profit without a license and

(ii) a feasibility constraint to ensure that the royalties are within their permissible bounds.

The licensing revenue of the innovator under a three part tariff is completely determined by the

effective magnitude,4 so the same licensing revenue can be attained through multiple combinations

of the two kinds of royalties. In the case of a monopoly, we show that among all three part tariffs,

it is optimal to set a pure upfront fee (Proposition 1). For a general oligopoly we show that there

always exists an optimal three part tariff that uses at most two of the three components. Moreover

for relatively significant innovations, there always exists an optimal policy that is a two part tariff

with a per unit royalty and an upfront fee and there is a continuum of other optimal policies that

are three part tariffs in which all three components are positive (Proposition 3).

Completely characterizing the optimal policies under linear demand,5 we show that for oligopolies

with at least four firms: (i) pure upfront fees are optimal for insignificant innovations, (ii) for inter-

mediate and significant innovations, there is a continuum of optimal licensing policies which always

includes a two part tariff consisting of a unit royalty and upfront fee, (iii) for significant innovations,

there also exists an optimal policy that is a two part tariff with ad valorem royalty and fee, (iv) for

intermediate innovations, a two part tariff with ad valorem royalty and fee or a two part royalty can

be optimal depending on the demand intercept and the magnitude of the innovation (Proposition

4(I)-(IV)). Similar qualitative conclusions for insignificant and certain intermediate innovations are

obtained for smaller sizes of oligopolies with two or three firms (Proposition 5).

Furthermore, under linear demand we obtain the limiting result that for any fixed demand

intercept, marginal cost and magnitude of the innovation, for all sufficiently large sizes of oligopolies:

(i) there is a continuum of optimal licensing policies, (ii) there exists an optimal policy that is a two

part tariff with a per unit royalty and upfront fee and (iii) there is a continuum of other optimal

policies that are three part tariffs with all three components positive (Proposition 4(V)).

The paper is organized as follows. The model is presented in Section 2. The acceptability

and feasibility constraints are discussed in Section 3. Optimal licensing policies are presented in

Section 4. Some general properties of optimal policies are studied in Section 4.2 and the case of

linear demand is considered in Section 5.7. Section 4.4 discusses optimal policies for an incumbent

innovator in a duopoly. We conclude in Section 5.

2 The model

Consider a Cournot oligopoly with n ≥ 2 firms where the set of competing firms is N = {1, . . . , n}.
For j ∈ N , let qj be the quantity produced by firm j and Q =

∑
j∈N qj . Initially each firm j ∈ N

4When the innovator is a competing firm, the market outcomes separately depend on ad valorem and per unit
royalties. This is illustrated in Section 4.4, where the innovator is an incumbent firm in a duopoly.

5Table 1 presents the complete description of optimal three part tariffs for an outside innovator under linear
demand.
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produces under constant marginal cost c > 0. An outside innovator I has a patent for a process

innovation that reduces the per unit cost from c to c− ε (0 < ε < c), so ε is the magnitude of the

innovation. I can license the innovation to some or all firms in N.

For the licensing policies that we study in this paper, under any licensing configuration firms

without a license have the initial marginal cost c, while firms with a license have marginal cost c−δ
for some δ ∈ [0, ε]. Below we list two alternative sets of sufficient conditions that ensure existence

and uniqueness of Cournot equilibrium under any licensing configuration.

(A1) The price function or the inverse demand function p(Q): R++ → R+ is non-increasing

and ∃ Q > 0 such that p(Q) is decreasing and twice continuously differentiable for Q ∈ (0, Q).

(A2) p ≡ limQ↓0 p(Q) > c, limQ↓0 p
′(Q)Q + p − c > 0 and ∃ 0 < Qc < Qc−ε < Q such that

p(Qc) = c > p(Qc−ε) = c− ε > p(Q).

(A3) p(Q) is log-concave for Q ∈ (0, Q).

Noting that cost functions of all firms are convex (since firms have constant marginal costs),

applying the results of Amir (1996) and Amir and Lambson (2000),6 it follows that when [A1-A3]

hold, under any licensing configuration, the resulting oligopoly has a unique Cournot equilibrium.

An alternative set of sufficient conditions involves dropping (A3) and adding conditions (A4),

(A5):

(A4) For p ∈ (0, p), the price elasticity η(p) := −pQ′(p)/Q(p) is non-decreasing.

(A5) For Q ∈ (0, Q), the revenue function γ(Q) := p(Q)Q is strictly concave, that is, γ′′(Q) =

2p′(Q) +Qp′′(Q) < 0.

By Kamien et al. (1992), the uniqueness of Cournot equilibrium is also ensured by the alter-

native set of assumptions [A1-A2, A4-A5]. Using p′ < 0, it can be seen that (A3) implies (A4).

Regarding (A5), recall the condition of Novshek (1985): p′(Q) + Qp′′(Q) ≤ 0 (this means each

firm’s marginal revenue is decreasing in the aggregate quantity of other firms). Since p′ < 0, (A5)

is a weaker requirement than the Novshek condition.

We assume either [A1-A3] or [A1-A2, A4-A5] hold.7 This ensures: (a) the Cournot equilibrium is

unique for any licensing configuration and (b) the general conclusions of our analysis are applicable

to a wide class of demand functions that satisfy either of these two alternative sets of sufficient

conditions. As examples: (i) the inverse demand function p(Q) = max{(a−Q)t, 0} (where a, t > 0,

t ≤ 1 and c < at), satisfies all conditions (A1)-(A5); (ii) for s, t > 0, the constant elasticity inverse

demand function p(Q) = s/Qt satisfies (A4), but does not satisfy (A3); for 0 < t < 1, it satisfies

[A1-A2, A4-A5], but for t ≥ 1 it fails to satisfy (A2) or (A5).

Drastic and nondrastic innovations The notion of drastic innovations (Arrow, 1962) is

useful for the analysis of licensing. A cost-reducing innovation is drastic if the monopoly price under

6See the discussion after Theorem 2.3 (p.240), Amir and Lambson (2000). For other sufficient conditions on the
existence and uniqueness of Cournot equilibrium, see, e.g., Novshek (1985), Gaudet and Salant (1991), Badia et al.
(2014). Also see Dixit (1986).

7There are two comparative statics results (Lemma 1(vi)(c) and Lemma 2(ii)(b)) that specifically require (A5).
These results hold under [A1-A2, A4-A5], but may not hold under [A1-A3]. Both of these involve the comparison of
the Cournot profit of a licensee when all firms have licenses with that of a non-licensee when all but one have licenses.
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the new technology does not exceed the old marginal cost c; otherwise it is nondrastic. If only one

firm in an oligopoly has a drastic innovation, it becomes a monopolist with the new technology and

drives all other firms out of the market. To classify drastic and nondrastic innovations, define

θ ≡ c/η(c) = −Q(c)/Q′(c) (1)

For k = 1, . . . , n, define the function Hk : (0, p)→ R as

Hk(p) := p[1− 1/kη(p)] (2)

Note that Hk(p) is the marginal revenue of a firm in a k-firm oligopoly when each firm produces

Q(p)/k. The following property is immediate from condition (A4) that8 η(p) is non-decreasing.

Observation 1 Let p, p̃ ∈ (0, p) and suppose Hk(p̃) > 0. Then Hk(p) > Hk(p̃) for p > p̃ and

Hk(p) < Hk(p̃) for p < p̃.

To characterize drastic innovations, consider a monopolist who has unit cost c − ε. The profit of

this monopolist at price p is

G(p) := [p− (c− ε)]Q(p) (3)

If either [A1-A3] or [A1-A2, A4-A5] hold, there exists a unique pM (ε) (the monopoly price) that

maximizes G(p). The monopoly price satisfies pM (ε) ∈ (c − ε, p) and H1(pM (ε)) = c − ε, where

Hk is given in (2) (see the Appendix for the proof of these properties). The monopoly profit under

cost c− ε is denoted by φM (ε), that is, φM (ε) = G(pM (ε)). Note that φM (ε) > 0.

An innovation of magnitude ε is drastic if and only if pM (ε) ≤ c. Since c−ε > 0, by Observation

1, pM (ε) ≤ c ⇔ H1(pM (ε)) ≤ H1(c) ⇔ ε ≥ c/η(c) ≡ θ. Thus, an innovation of magnitude ε is

drastic if ε ≥ θ and nondrastic if ε < θ.

The industry profit at price p is at most G(p). Since G(p) ≤ φM (ε) = G(pM (ε)), under any

licensing configuration the industry profit is bounded above by the monopoly profit φM (ε). So the

maximum licensing revenue that the innovator can obtain is φM (ε). If I has a drastic innovation, it

can sell only one license and collect the entire monopoly profit φM (ε) from the sole license through

an upfront fee.9 Henceforth we consider nondrastic innovations.

2.1 Licensing policies

The set of licensing policies for I is the set of all three part tariffs consisting of a unit royalty, an ad

valorem revenue royalty and an upfront fee. Under a three part tariff (k, r, v), I offers k ∈ {1, . . . , n}
licenses (committing to sell no more than k) at a unit royalty r ≥ 0, an ad valorem royalty v ∈ [0, 1]

and charges a non-negative upfront fee from each licensee. Under this policy any licensee has to

8Since (A3) implies (A4), the condition (A4) holds under both sets of alternative conditions [A1-A3] and [A1-A2,
A4-A5].

9It should be mentioned that this pure upfront fee policy is not the unique optimal policy for an outside innovator
of a drastic innovation. There are other optimal policies involving positive per unit royalties and upfront fees that
also enable the innovator to earn the monopoly profit with a drastic innovation. See Sen and Stamatopoulos (2009b).
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pay: (i) an upfront fee, (ii) r for every unit it produces and (iii) fraction v of its revenue to I. When

v = 0, we have a two part tariff FR (a policy consisting of an upfront fee and unit royalty, but no

ad valorem royalty) and when r = 0, we have a two part tariff FV (a policy consisting of an upfront

fee and ad valorem royalty, but no unit royalty).

The upfront fee is collected through an auction (possibly with a minimum bid).10 Firms are

asked to simultaneously place non-negative bids. Suppose I offers to sell k licenses. If m ≤ k firms

place bids, each of the bidding firms wins a license. If m > k firms place bids, bids are arranged in

descending order as f1 ≥ . . . ≥ fk ≥ . . . ≥ fm. If fk > fk+1, firms with k highest bids win licenses.

If fk = fk+1: (a) firms with bids strictly higher than fk win licenses and (b) a random tie breaking

process is run among the firms who placed bid fk to determine who get the remaining licenses.11

Any firm that wins a license pays its bid as upfront fee to I.

Remark 1 If I offers n licenses (that is, k = n), each firm is guaranteed a license, so no one will

place a positive bid. To ensure positive upfront fees, I announces to auction n licenses together

with a minimum bid f̂ > 0. It can be shown that under this modified process, for suitably chosen

f̂ , there is an equilibrium in which each firm will have a license with the minimum bid, so each will

pay upfront fee f̂ (see Lemma 3).

2.2 The Licensing game Γ

The strategic interaction between I and the firms in N is modeled as the licensing game Γ that has

the following stages. In stage 1, I announces a licensing policy. In stage 2, firms simultaneously

decide whether to purchase a license or not. Any firm willing to purchase a license places its bid.

Following the rules described before, the set of licensees is determined and commonly known. In

stage 3, firms in N compete in quantities. Any licensee produces under the reduced marginal cost

and pays I according to the licensing policy. Any non-licensee produces under the initial marginal

cost. Denote by Γ(k, r, v) the subgame of Γ that follows the announcement of the policy (k, r, v).

Consider a licensing policy with unit royalty r and ad valorem royalty v. Let L ⊆ N be the set

of licensees, so L̄ = N \ L is the set of non-licensees. Any licensee j ∈ L has marginal cost c − ε
and its payment for the license has the following components: (i) it pays r to I for every unit, (ii)

it pays fraction v of its revenue to I, so it keeps the remaining fraction 1 − v and (iii) it pays fee

fj ≥ 0 to I. A non-licensee has marginal cost c and makes no payment. So the payoffs of firms are

πj =

{
(1− v)p(Q)qj − (c− ε)qj − rqj − fj if j ∈ L
[p(Q)− c]qj if j ∈ L̄

(4)

The payoff of I is the sum of three components: (i) revenue from unit royalty, (ii) revenue from ad

10The innovator can alternatively set the fee as a posted price. However, compared to a posted price, an auction
generates more competition among firms that raises the willingness to pay for a license (see, e.g., Kamien and Tauman
1986, Katz and Shapiro 1986).

11The only constraint we impose on the random tie breaking process is that every firm with bid fk has a positive
probability of winning a license.
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valorem royalty and (iii) upfront fees. This payoff is

πI =
∑
j∈L

rqj +
∑
j∈L

vp(Q)qj +
∑
j∈L

fj (5)

We confine to Subgame Perfect Nash Equilibrium (SPNE) outcomes of Γ.

Remark 2 Observe from (4) that if v = 1, a licensee obtains negative or zero payoff. Clearly a

negative payoff will not be acceptable to a firm. With v = 1, the payoff of a licensee can be zero

only if both qj = 0 and fj = 0, but in that case I has zero licensing revenue, so such a licensing

policy is redundant. Ruling out unacceptable or redundant policies, henceworth we only consider

policies with v < 1.

Remark 3 As mentioned in the introduction, a three part tariff in Vishwasrao (2007) consists of:

(i) an equity purchase, which is an ad valorem profit royalty α ∈ (0, 1) (the licensor keeps fraction

α of the licensee’s profit), (ii) a per unit royalty r̂ ∈ (0, ε) and (iii) a fixed fee. Under this policy the

payoff of any licensee firm j ∈ L that pays fixed fee f̂j is π̂j = (1−α)[p(Q)qj − (c− ε)qj − r̂qj ]− f̂j
and the payoff of the innovator is π̂I =

∑
j∈L r̂qj +

∑
j∈L α[p(Q)qj − (c − ε)qj − r̂qj ] +

∑
j∈L f̂j .

Taking v = α, r = (1 − α)r̂ − α(c − ε) and fj = f̂j , we have π̂j = πj (given in (4)) and π̂I = πI

(given in (5)). Since r < r̂ and r̂ < ε, we have r < ε. Noting that r > 0 iff α < r̂/(r̂ + c − ε), we

conclude that provided the rate of equity α is relatively small, an equity-based three part tariff is

equivalent to a revenue-based three part tariff.

2.3 Effective magnitude of the innovation

To determine SPNE of Γ, consider stage 3 (Cournot stage) of this game where firms in N choose

quantities. By (4), in stage 3 any licensee firm j ∈ L has payoff

πj = (1− v)p(Q)qj − (c− ε)qj − rqj − fj = (1− v)[p(Q)− (c− ε+ r)/(1− v)]qj − fj (6)

For r ≥ 0 and 0 ≤ v < 1, denote

δ(r, v) := [ε− (r + cv)]/(1− v) (7)

Using δ(r, v) from (7) in (6), we have

πj = (1− v)[p(Q)− (c− δ(r, v))]qj − fj (8)

Since the fee fj is paid upfront, it does not affect the choice of quantities at the Cournot stage.

Because 1 − v > 0, by (8), at the Cournot stage any licensee solves the same problem as a firm

that has marginal cost c− δ(r, v). This means for a licensing policy that has unit royalty r and ad

valorem royalty v, the effective magnitude of the innovation is δ(r, v). Note from (7) that δ(r, v) is

decreasing in each of r, v, so δ(r, v) ≤ δ(0, 0) = ε.

9



Any firm has marginal cost c without a license. Assuming no firm will accept a policy that raises

its marginal cost, we only consider policies for which the effective magnitude of the innovation is

non-negative, so we restrict r, v such that δ(r, v) ≥ 0. Thus 0 ≤ δ(r, v) ≤ ε.
Note that δ(r, v) ≥ 0 if and only if r+ cv ≤ ε. The line AB in Figure 1 has equation r+ cv = ε,

so δ(r, v) ≥ 0 if and only if (r, v) is in ∆OAB. In general, for any δ ∈ [0, ε], δ(r, v) = δ if and

only if r + (c− δ)v = ε− δ. This is demonstrated by the line CD in Figure 1, which has equation

r + (c− δ)v = ε− δ for some δ ∈ (0, ε).

Remark 4 For r ≥ 0 and 0 ≤ v < 1, the unique (r, v) that gives δ(r, v) = ε is (r = 0, v = 0). On

the other hand, for any δ ∈ [0, ε), there is a continuum of (r, v) for which δ(r, v) = δ, as shown by

lines AB and CD in Figure 1. For any δ, the maximum v that can support δ, denoted by v̄(δ), is

found by taking r = 0 in the equation r + (c− δ)v = ε− δ, so v̄(δ) = (ε− δ)/(c− δ), as shown in

Figure 1.

2.4 The auxiliary Cournot oligopoly game Cn(k, δ)

Let n ≥ 2 and 0 < ε < c. For k ∈ {0, 1, . . . , n} and δ ∈ [0, ε], denote by Cn(k, δ) the Cournot

oligopoly game with n firms in which k firms (licensees) have marginal cost c−δ and the remaining

n− k firms (non-licensees) have marginal cost c. From the discussion of Section 2.3, we know that

when there are k licensees under a licensing policy with per unit royalty r and ad valorem royalty

v, the game Cn(k, δ(r, v)) is played at the Cournot stage. For our analysis it is useful to look at the

equilibrium properties of Cn(k, δ) for all k, δ.

To determine (Cournot-Nash) equilibrium of Cn(k, δ) for k ≥ 1, the threshold θ/k will be useful

(recall θ ≡ c/η(c)). Lemma 1 shows that if δ < θ/k, all firms are active and if δ ≥ θ/k, all

non-licensees drop out of the market and a k-firm natural oligopoly is created with k licensees.

Lemma 1 Let n ≥ 2 and 0 < ε < c. Suppose either [A1-A3] or [A1-A2, A4-A5] hold. For

k ∈ {0, 1, . . . , n} and δ ∈ [0, ε], the game Cn(k, δ) has a unique equilibrium. Let qn(k, δ), qn(k, δ)

be the Cournot quantities of a licensee, non-licensee. Let φ
n
(k, δ), φn(k, δ) be the corresponding

Cournot profits and pn(k, δ) be the Cournot price. Any licensee always obtains a positive Cournot

profit. Properties (i)-(v) and (vi)(a)-(b) hold under either [A1-A3] or [A1-A2, A4-A5] and (vi)(c)

holds under [A1-A2, A4-A5].

(i) Let k = 0 (no firm has a license). Then c < pn(0, δ) < p and pn(0, δ) is the unique solution of

Hn(p) = c over p ∈ (0, p). All firms obtain positive Cournot profits.

(ii) Let 1 ≤ k ≤ n− 1 (there is at least one licensee and at least one non-licensee).

(a) If δ < θ/k, then c < pn(k, δ) < p and pn(k, δ) is the unique solution of Hn(p) = c−kδ/n
over p ∈ (0, p). All firms obtain positive Cournot profits.

(b) If δ ≥ θ/k, then c − δ < pn(k, δ) ≤ c [equality iff δ = θ/k] and pn(k, δ) is the unique

solution of Hk(p) = c−δ over p ∈ (0, p). A k-firm natural oligopoly is created, k licensees

obtain positive Cournot profit and the n− k non-licensees drop out of the market.
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(iii) Let k = n (all firms have licenses). Then c − δ < pn(n, δ) < p and pn(n, δ) is the unique

solution of Hn(p) = c − δ over p ∈ (0, p), where pn(n, δ) > c if δ < θ/n and pn(n, δ) ≤ c if

δ ≥ θ/n [equality iff δ = θ/n]. All firms obtain positive Cournot profits.

(iv) For k ≥ 1 and δ ≤ θ/k, the Cournot price depends on k and δ only through the term kδ.

Specifically, for any 1 ≤ k ≤ n− 1 and δ ≤ θ/k, if (k+ 1)δ̃ = kδ, then pn(k+ 1, δ̃) = pn(k, δ).

(v) For 1 ≤ k ≤ n, the Cournot price pn(k, δ) is decreasing in δ; for 1 ≤ k ≤ n− 1, the Cournot

profit of a non-licensee φn(k, δ) is decreasing for δ ≤ θ/k and equals zero for δ ≥ θ/k.

(vi) For δ = 0, all firms obtain the same Cournot profit; specifically φ
n
(n, 0) = φ

n
(k, 0) = φn(k, 0)

for all 1 ≤ k ≤ n− 1. For any δ > 0:

(a) pn(k − 1, δ) > pn(k, δ) for 1 ≤ k ≤ n.

(b) φn(k − 1, δ) ≥ φn(k, δ) and φ
n
(k, δ) > φn(k, δ) for 1 ≤ k ≤ n− 1.

(c) φ
n
(n, δ) > φn(n− 1, δ).

Proof When either [A1-A3] or [A1-A2, A4-A5] hold, by applying the first and second order con-

ditions of profit functions, it follows that Cn(k, δ) has a unique equilibrium and parts (i)-(iii) hold.

Part (iv) follows from parts (ii) and (iii) by applying Observation 1. See the Appendix for the

proofs of parts (v)-(vi).

2.5 The monopoly case

Before studying licensing policies for a general oligopoly, let us first consider the case of a monopoly,

where the innovator I interacts with a monopolist M who faces the inverse demand described before

in Section 2. Without a license, M has constant marginal cost c. By (6) and (8), under a licensing

policy with unit royalty r ≥ 0 and ad valorem royalty v ∈ [0, 1), the effective marginal cost of M is

c− δ, where δ = δ(r, v) given in (7). When either [A1-A3] or [A1-A2, A4-A5] holds, the monopoly

problem under marginal cost c − δ has a unique solution for any δ ∈ [0, ε]. The monopoly price,

quantity, profit under marginal cost c − δ are denoted by pM (δ), QM (δ), φM (δ). As functions of

δ, pM (δ) is decreasing and QM (δ), φM (δ) are increasing (see the Appendix for the proof of these

properties).

Proposition 1 When an outside innovator interacts with a monopolist, the unique optimal three

part tariff is a pure upfront fee policy (that is, it has no ad valorem or per unit royalty) with positive

fee φM (ε) − φM (0). Under this policy, the innovator obtains φM (ε) − φM (0) and the monopolist

earns net payoff φM (0).

Proof Consider a three part tariff with per unit royalty r, ad valorem royalty v and upfront fee

f. If the monopolist M has a license under this policy, its operational monopoly profit is φM (δ),

where δ = δ(r, v) given by (7). The per unit royalty r is already included in δ. By (8), taking into

account the ad valorem royalty payment, M keeps fraction 1 − v of its operational profit and in
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addition pays upfront fee f, so its payoff is (1− v)φM (δ)− f. Without a license M obtains φM (0).

Thus, for a three part tariff with r, v, the maximum upfront fee f that can be set is where the

payoff of M with a license equals its payoff without a license:12

(1− v)φM (δ)− f = φM (0)⇒ f = (1− v)φM (δ)− φM (0) ≡ f̂(v, δ)

The payoff of the innovator I at this policy is the sum of its revenues from unit royalty, ad valorem

royalty and the upfront fee f̂(v, δ), which is

ΠFRV (r, v, δ) = rQM (δ) + vpM (δ)QM (δ) + f̂(v, δ)

= rQM (δ) + vpM (δ)QM (δ) + (1− v)[pM (δ)− (c− δ)]QM (δ)− φM (0)

Noting that (1 − v)(c − δ) = c − ε + r (by (7)) and using the function G(p) from (3), we have

ΠFRV (r, v, δ) = ΠFRV (δ) = G(pM (δ)) − φM (0). Since pM (δ) is decreasing for δ ∈ [0, ε] and pM (ε)

is the unique maximizer of G(p), we have G(pM (δ)) ≤ G(pM (ε)), with equality iff δ = ε. This

shows that the unique maximum of ΠFRV (δ) is attained at δ = ε, which implies r = 0, v = 0 (see

Figure 1), proving that the unique optimal three part tariff is the pure upfront fee policy with fee

f̂(0, ε) = φM (ε)− φM (0). Since φM (ε) > φM (0), this fee is positive. The payoffs are immediate.

3 Acceptability and feasibility constraints

To study licensing policies for a general oligopoly, we need to consider two kinds of constraints: (i)

acceptability constraints that ensure that the payoff of a licensee net of its licensing payments is no

less than its payoff without a license and (ii) feasibility constraints that ensure that per unit and

ad valorem royalties are within their permissible bounds.

3.1 Acceptability constraint: relative gain in operational profit from a license

When there are k licensees under a licensing policy with unit royalty r and ad valorem royalty v, the

Cournot oligopoly game Cn(k, δ) (see Section 2.4) is played in stage 3 of Γ where δ = δ(r, v) given

in (7). In this game any non-licensee has marginal cost c and its payoff is simply its operational

Cournot profit φn(k, δ). Any licensee, having marginal cost c − δ, has operational Cournot profit

φ
n
(k, δ). Note that the unit royalty is already included in δ. By (8), taking into account its ad

valorem royalty payment, a licensee keeps fraction 1 − v of its operational Cournot profit and in

addition pays its upfront fee (say f). So the payoff of a licensee is (1− v)φ
n
(k, δ)− f.

Surplus from acquiring a license To determine the surplus of a firm from acquiring a

license, first suppose there are k ≤ n − 1 licensees. If a licensee chooses to not have a license, it

12Note that v has to be constrained so that the fee f̂(v, δ) is non-negative; however, we solve the unconstrained
problem to show that the fee is positive under the unique optimal policy.
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would obtain13 either φn(k − 1, δ) or φn(k, δ). Since φn(k − 1, δ) ≥ φn(k, δ) (Lemma 1(vi)(b)), the

maximum upfront fee f that can be obtained from a licensee in this case is where the payoff with

a license equals the payoff without a license:

(1− v)φ
n
(k, δ)− f = φn(k, δ)⇒ f = (1− v)φ

n
(k, δ)− φn(k, δ) (9)

When all firms have licenses (that is, k = n), by refusing to have a license, a firm lowers the number

of licensees by one and obtains φn(n− 1, δ). So for k = n, the maximum upfront fee f that can be

obtained from a licensee is where

(1− v)φ
n
(n, δ)− f = φn(n− 1, δ)⇒ f = (1− v)φ

n
(n, δ)− φn(n− 1, δ) (10)

Using (9) and (10), denote

fn(k, v, δ) :=

{
(1− v)φ

n
(k, δ)− φn(k, δ) if k = 1, . . . , n− 1

(1− v)φ
n
(n, δ)− φn(n− 1, δ) if k = n

(11)

When there are k licensees with unit royalty r and ad valorem royalty v, fn(k, v, δ) in (11) presents

the surplus from acquiring a license (where δ = δ(r, v) given in (7)). There are two possibilities.

(i) fn(k, v, δ) ≥ 0: In this case, there is non-negative surplus from acquiring a license, so it

is worthwhile to have a license. The innovator can extract this surplus from each licensee

through an upfront fee that is collected using an auction, possibly with a minimum bid (see

Lemma 3).

(ii) fn(k, v, δ) < 0: In this case, the surplus from acquiring a license is negative, so it is not worth-

while for a firm to have a license, rendering the corresponding licensing policy unacceptable.

The conclusions of (i)-(ii) above lead us to the acceptability constraint for a licensing policy, which

is simply the requirement that the surplus from acquiring a license is non-negative: fn(k, v, δ) ≥ 0.

Relative gains in operational profits Consider the function γn(k, δ) below, which presents

the relative gains in operational Cournot profits from a license.

γn(k, δ) :=

{
[φ
n
(k, δ)− φn(k, δ)]/φ

n
(k, δ) if k = 1, . . . , n− 1

[φ
n
(n, δ)− φn(n− 1, δ)]/φ

n
(n, δ) if k = n

(12)

Observe from (11) and (12) that

fn(k, v, δ) ≥ 0⇔ v ≤ γn(k, δ) and fn(k, v, δ) = 0⇔ v = γn(k, δ) (13)

13If the number of firms willing to buy licenses does not exceed the number of licenses offered, any firm that has a
license can lower the number of licensees by one if it chooses to not have a license. On the other hand, if the number
of firms willing to buy licenses is more than the number of licenses offered, the number of licensees does not alter
when one firm refuses to have a license.
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This means a license is acceptable if and only if the ad valorem royalty fraction v does not exceed

the relative gain in the operational profit from a license. The next lemma summarizes the basic

properties of these functions.

Lemma 2 Properties (i)(a)-(b) and (ii)(a) hold under either [A1-A3] or [A1-A2, A4-A5], while

property (ii)(b) holds only under [A1-A2, A4-A5].

(i) For k = 1, . . . , n− 1:

(a) γn(k, 0) = 0 and γn(k, δ) = 1 for δ ≥ θ/k.

(b) For 0 < δ < θ/k, γn(k, δ) is increasing in δ and 0 < γn(k, δ) < 1.

(ii) For k = n:

(a) γn(n, 0) = 0 and γn(n, δ) = 1 for δ ≥ θ/(n− 1).

(b) For 0 < δ < θ/(n− 1), γn(n, δ) is increasing in δ and 0 < γn(n, δ) < 1.

Proof Parts (i)(a), (ii)(a) are immediate from (12) by noting that φ
n
(k, 0) = φn(k, 0) for 1 ≤ k ≤

n− 1, φ
n
(n, 0) = φn(n− 1, 0) (Lemma 1(vi)) and for 1 ≤ k ≤ n− 1, δ ≥ θ/k: φn(k, δ) = 0 (Lemma

1(ii)(b)). See the Appendix for the proofs of (i)(b), (ii)(b).

Figures 2(a), 2(b) depict γn(k, δ), γn(n, δ) as functions of δ. The monotonicity of these functions

follow by Lemma 2. For linear demand, these are also concave functions of δ, as shown in Figures

2(a), 2(b).

3.2 Acceptability versus feasibility constraints

To determine optimal licensing policies, together with acceptability constraints we need to look at

feasibility constraints of ad valorem and unit royalties. The feasibility constraints are determined

by the bounds of r and v: both are non-negative, r is bounded above by ε and v by 1. By Remark

4, for any δ, the maximum ad valorem royalty v for which δ(r, v) given in (7) equals δ is

v̄(δ) = (ε− δ)/(c− δ) (14)

As shown in Figure 1, when δ(r, v) = δ, then v = v̄(δ)⇔ r = 0 (the ad valorem royalty is maximum

if and only if the per unit royalty is at its minimum level zero). Note that (i) v̄(δ) is decreasing

and concave in δ, (ii) v̄(ε) = 0, v̄(0) = ε/c < 1, so 0 < v̄(δ) < 1 for δ ∈ [0, ε).

For k = 1, . . . , n and δ ∈ [0, ε], the acceptability constraint is v ≤ γn(k, δ) and the feasibility

constraint is v ≤ v̄(δ). Thus, for any k, δ, the ad valorem royalty v is both acceptable and feasible

if and only if:

v ≤ min{γn(k, δ), v̄(δ)} (15)

Let θ̂(k) = min{ε, θ/k} for k = 1, . . . , n − 1 and θ̂(n) = min{ε, θ/(n − 1)}. If θ̂(k) = ε, then

v̄(θ̂(k)) = v̄(ε) = 0 < γn(k, ε) = γn(k, θ̂(k)); otherwise v̄(θ̂(k)) < 1 = γn(k, θ̂(k)). In either case
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v̄(θ̂(k)) < γn(k, θ̂(k)). Also note that v̄(0) = ε/c > 0 = γn(k, 0). Since v̄(δ) is decreasing and

γn(k, δ) is increasing for δ ∈ [0, θ̂(k)], ∃ a unique δ̂n(k) ∈ (0, θ̂(k)) such that

γn(k, δ) T v̄(δ)⇔ δ T δ̂n(k) (16)

The threshold δ̂n(k) is identified in Figure 3(a)-(d).

In Figures 3(a)-3(d), given any k, the set of all acceptable and feasible combinations of (δ, v) is

given by the region OAB. Any (δ, v) on the horizontal line OB has v = 0 (no ad valorem royalty).

For any (δ, v) on OA, the acceptability constraint binds: v = γn(k, δ) (the maximum acceptable v

for that δ), so a licensee is left with no surplus, implying that in this case the combination of per

unit and ad valorem and royalties collects the entire surplus and upfront fees are not needed. For

any (δ, v) on AB, the feasibility constraint binds: v = v̄(δ) (the maximum feasible v for that δ), so

the per unit royalty r is zero. Any point in the interior of OAB has: (i) v > 0 (positive ad valorem

royalty), (ii) v < v(δ) (positive unit royalty) and (iii) v < γn(k, δ) (positive surplus from acquiring

a licensee, which can be collected through upfront fees, see Lemma 3).

Note that a policy (k, r, v) is both acceptable and feasible if and only if (15) holds, where

δ = δ(r, v) given in (7). The next lemma shows that for any such (k, r, v), there exists an SPNE of

the subsequent subgame in which: (i) the desired number k of licenses are sold and (ii) I collects

the maximum possible upfront fee fn(k, v, δ) (given in (11)) from each licensee, thus extracting the

entire surplus of acquiring a license.

Lemma 3 Let k ∈ {1, . . . , n}, r ≥ 0, v ∈ [0, 1) and δ = δ(r, v) given in (7). Consider a three part

tariff (k, r, v), in which I announces to auction off k licenses with unit royalty r and ad valorem

royalty v (additionaly, for k = n, specifying the minimum bid f̂ = fn(n, v, δ) given in (11)). Suppose

this policy is both acceptable and feasible, that is, (15) holds. The subgame Γ(k, r, v) that follows

this announcement has the following properties.

(i) For 1 ≤ k ≤ n − 1, there exists an SPNE of Γ(k, r, v) in which the highest bid is fn(k, v, δ),

the highest bid is placed by at least k + 1 firms and k of them are chosen at random to be

licensees.

(ii) For k = n, there exists an SPNE of Γ(n, r, v) in which all firms place the specified minimum

bid fn(n, v, δ) and all of them become licensees.

Proof Note from (13) that when (15) holds: fn(k, v, δ) ≥ 0. Thus, there is non-negative surplus

from acquiring a license. Using this, the result follows by noting that at the outcomes described in

(i)-(ii), there is no gainful unilateral deviation for any firm.

Remark 5 Lemma 3 shows that for any acceptable and feasible (k, r, v), when k licenses are

offered with unit royalty r and ad valorem royalty v, there is an SPNE of Γ(k, r, v) with k licensees

where I can collect the maximum possible upfront fee. It should be noted that this SPNE is not

necessarily unique. Denote γn = [φ
n
(1, δ) − φn(0, δ)]/φ

n
(1, δ). For a linear demand, γn < γn(k, δ)
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for 1 ≤ k ≤ n−1 and δ > 0. Unless the ad valorem royalty is sufficiently smaller than the acceptable

threshold (specifically, v < γn), Γ(k, r, v) has an SPNE in which no firm buys a license.

4 Optimal licensing policies

Denote by T the set of all three part tariffs (k, r, v) where:

(i) k ∈ {1, . . . , n}, r ≥ 0, v ∈ [0, 1);

(ii) (k, r, v) is both acceptable and feasible;

(iii) There exists an SPNE of Γ(k, r, v) in which the number of licensees is k and each licensee

pays the maximum possible upfront fee fn(k, v, δ) given in (11) as its winning bid to acquire

its license (where δ = δ(r, v) given in (7)).

Note by Lemma 3 that T is non-empty.

Definition 1 Suppose for every (k, r, v) ∈ T, the SPNE of Γ(k, r, v) described in Lemma 3 is played.

We say (k∗, r∗, v∗) is an optimal three part tariff if (a) (k∗, r∗, v∗) ∈ T and (b) over all (k, r, v) ∈ T,
the payoff of the innovator is maximized at (k∗, r∗, v∗).

To determine optimal licensing policies, first let 1 ≤ k ≤ n−1. Consider any (k, r, v) ∈ T, where

as before δ = δ(r, v) given in (7). Under the SPNE outcome of Lemma 3, there are k licensees, each

paying the upfront fee fn(k, v, δ). From each licensee, I obtains:14 (i) per unit royalty payments

rqn(k, δ), (ii) ad valorem fraction v of its revenue pn(k, δ)qn(k, δ) and (iii) upfront fee fn(k, v, δ)

given in (11). Hence the payoff of I is

Πn(k, r, v, δ)FRV = krqn(k, δ) + kvpn(k, δ)qn(k, δ) + kfn(k, δ)

= krqn(k, δ) + kvpn(k, δ)qn(k, δ) + k(1− v)[pn(k, δ)− (c− δ)]qn(k, δ)− kφn(k, δ)

Noting that (1− v)(c− δ) = c− ε+ r (by (7)), using the industry quantity Qn(k, δ) = kqn(k, δ) +

(n− k)qn(k, δ) and the function G(p) from (3), we have

Πn(k, r, v, δ)FRV = Πn(k, δ)FRV = G(pn(k, δ))− nφn(k, δ)− ε(n− k)qn(k, δ) (17)

Observe that the payoff above is a function of δ and does not separately depend on r, v.

Next consider k = n and (n, r, v) ∈ T, where δ = δ(r, v) given in (7). Under the SPNE outcome

of Lemma 3, there are n licensees, each paying the upfront fee fn(n, v, δ) given in (11). Hence the

payoff of I is

Πn(n, r, v, δ)FRV = nrqn(n, δ) + nvpn(n, δ)qn(n, δ) + nfn(n, v, δ)

14Recall from Lemma 1 that pn(k, δ) denote the Cournot price and qn(k, δ), qn(k, δ) the Cournot quantity of a
licensee, non-licensee for the Cournot oligopoly game Cn(k, δ).

16



= nrqn(n, δ) + nvpn(n, δ)qn(n, δ) + n(1− v)[pn(n, δ)− (c− δ)]qn(n, δ)− nφn(n− 1, δ)

As before, using (1− v)(c− δ) = c− ε+ r (by (7)), the industry quantity Qn(n, δ) = nqn(n, δ) and

the function G(p) from (3), we have

Πn(n, r, v, δ)FRV = Πn(n, δ)FRV = G(pn(n, δ))− nφn(n− 1, δ) (18)

Like (17), the payoff above is a function of only δ.

The problem of finding optimal policies for I reduces to15 choosing k ∈ {1, . . . , n} and δ ∈ [0, ε]

to maximize Πn(k, δ)FRV . Since for any k, the functions in (17)-(18) are continuous and bounded

in δ, this problem has a solution.

4.1 From three to two part tariffs

For any δ ∈ [0, ε], we say a combination of per unit and ad valorem royalties (r, v) supports δ if

δ(r, v) given in (7) equals δ, that is, if [ε− (r+ cv)]/(1− v) = δ. Denote by S(δ) the set of all (r, v)

that supports δ:

S(δ) := {(r, v)|r ≥ 0, v ∈ [0, 1), δ(r, v) = δ} (19)

Note that any δ ∈ [0, ε) can be supported by a continuum of combinations of (r, v) (see Figure 1).

For k ∈ {1, . . . , n} and δ ∈ [0, ε], denote by Sn(k, δ) the subset of S(δ) that contains only those

(r, v) for which the three part tariff (k, r, v) is both acceptable and feasible. Using (15):

Sn(k, δ) := {(r, v)|(r, v) ∈ S(δ), v ≤ min{v̄(δ), γn(k, δ)}} (20)

To identify the set Sn(k, δ), consider any δ ∈ (0, ε). As an illustration, one such δ is presented

as point D in Figure 3(a). As shown in Figure 3(a), the vertical line from D meets the curve

OAB at point C (for any point outside OAB, either acceptability or feasibility will be violated).

The line CD presents the set Sn(k, δ). Observe that δ stays the same across all points on the line

CD. For two different points (δ, v1), (δ, v2) on CD, setting δ(r1, v1) = δ, δ(r2, v2) = δ gives us the

corresponding (r1, v1), (r2, v2) ∈ Sn(k, δ).

For any k, the payoffs in (17)-(18) are functions of only δ and do not separately depend on r, v.

This means for any δ ∈ (0, ε), all (r, v) ∈ Sn(k, δ) are payoff-equivalent for the innovator. Thus, for

the δ located at point D of Figure 3(a), all policies on the line CD give the same payoff to I.

To better understand the payoff-equivalence, observe that all points on the line CD are below

the curve γn(k, δ), but different points have different distances from the curve γn(k, δ). This means

all policies on CD result in positive surplus from acquiring a license, but different policies on CD,

having different v, give different surpluses fn(k, v, δ). The policies are payoff-equivalent because for

15Note that an outsider innovator obtains zero payoff by not offering any license (that is, by choosing k = 0).
Offering licenses to one or more firms with a sufficiently small positive unit royalty or upfront fee makes the licensing
offer acceptable and feasible, yielding positive payoff for the innovator. This shows that choosing k = 0 cannot be
optimal.
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each such policy, the innovator is able to collect the corresponding surplus through upfront fees

using an auction (see Lemma 3).

Also by Figure 3(a), the line CD always contains its boundary point D, where v = 0. Thus,

the set Sn(k, δ) of (20) always contains a point (r, 0) (note from (15) that both acceptability and

feasibility constraints always hold for v = 0). Setting δ(r, 0) = δ gives us r = ε − δ. Therefore for

any δ ∈ (0, ε), there exists r = ε − δ > 0 such that: (i) (r, 0) supports δ and (ii) the three part

tariff (k, r, 0) is both acceptable and feasible. This means any δ ∈ (0, ε) can be supported by an

acceptable and feasible (k, r, 0), which is effectively a two part tariff consisting of a per unit royalty

and upfront fee. These observations are more specifically spelled out in the next proposition.

Proposition 2 (Relation between three part and two part tariffs) For any k ∈ {1, . . . , n},
the set Sn(k, δ) is non-empty for every δ ∈ [0, ε] and it has the following properties.

(I) Sn(k, 0) is the singleton set {(ε, 0)} and Sn(k, ε) is the singleton set {(0, 0)}. That is, the only

acceptable and feasible three part tariff that supports δ = 0 is the pure per unit royalty r = ε

and the only acceptable and feasible three part tariff that supports δ = ε is the pure upfront

fee policy with fee fn(k, 0, ε) (given in (11)).

(II) For every 0 < δ < ε, the set Sn(k, δ) is a continuum and it always contains a point (r, v)

where r = ε− δ > 0 and v = 0 (such a point lies on the line OB in Figures 3(a)-(d)). That

is, there is a continuum of acceptable and feasible combinations of (r, v) that support δ and

there always exists a two part tariff consisting of a positive per unit royalty and upfront fee

but no ad valorem royalties that supports δ.

(III) For every 0 < δ < ε, the set Sn(k, δ) also contains other points (r, v) where r > 0, v > 0

and the acceptability constraint is not binding (such a point lies in the interior of OAB in

Figures 3(a)-(d)). That is, there is a continuum of acceptable and feasible combinations of

(r, v) that support δ for which both kinds of royalties as well as the upfront fee is positive.

(IV) If 0 < δ < δ̂n(k), then Sn(k, δ) contains a point (r, v) where r > 0 and v = γn(k, δ) > 0

(such a point lies on curve OA in Figures 3(a)-(d)). That is, Sn(k, δ) contains a two part

royalty policy with positive per unit and ad valorem royalties (but no upfront fees) that binds

the acceptability constraint.

(V) If δ̂n(k) < δ < ε, then Sn(k, δ) contains a point (r, v) where r = 0 and v = v̄(δ) > 0 (such

a point lies on curve AB in Figures 3(a)-(d)). That is, Sn(k, δ) contains a two part tariff

with a positive ad valorem royalty and upfront fee (but no per unit royalties) that binds the

feasibility constraint.

Proof By using (20), the results follow from Figures 3(a)-(d) and the preceeding discussion.
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4.2 Optimal policies under general demand

Using Proposition 2, we are now in a position to state some general properties of optimal licensing

policies.

Proposition 3 Consider an outside innovator of a nondrastic innovation of magnitude ε who

licenses its innovation using three part tariffs to firms in a Cournot oligopoly described in Section 2

and suppose the number of firms is at least three. The optimal licensing policies have the following

properties.

(I) The maximum possible licensing revenue can be always attained by a policy that uses at most

two of the three components and there always exists an optimal policy that uses no ad valorem

royalty.

(II) There always exists an optimal policy in which the number of licenses offered is either n− 1

or n. Moreover, for 1 ≤ k ≤ n−2, if (k, δ) is part of an optimal policy in which k licenses are

offered, then δ = θ/k, the post-innovation Cournot price equals c and the innovator obtains

G(c) = εQ(c), where G(p) is given in (3).

(III) The following hold if ε > θ/(n− 1) (relatively significant innovations):

(i) Under any optimal policy, the innovator obtains at least G(c).

(ii) Under any optimal policy, the post-innovation Cournot price is at least c and the post-

innovation price falls below its pre-innovation level.

(iii) It is not optimal to set a pure per unit royalty or a pure upfront fee.

(iv) There always exists an optimal policy that is a two part tariff consisting of a positive per

unit royalty and upfront fee, but no ad valorem royalty. There also exist other optimal

policies that are three part tariffs whose all components (upfront fees, per unit and ad

valorem royalties) are positive.

Proof (I) By (17)-(18), the payoff function of the innovator is continuous and bounded, so there

exists a policy that gives the maximum possible licensing revenue under three part tariffs. Consider

an optimal policy and suppose the effective magnitude of the innovation under that policy is

δ ∈ [0, ε]. By Proposition 2(I), the unique acceptable and feasible policy supporting δ = 0 is a pure

per unit royalty and that supporting δ = ε is a pure upfront fee, so for each of these two polar cases

the corresponding policy uses only one of the three components. For any δ ∈ (0, ε), by Proposition

2(II), there always exists an acceptable and feasible two part tariff consisting of a positive per unit

royalty and upfront fee that supports δ, completing the proof of (I).

See the Appendix for the proofs of (II)-(III).

Some of the conclusions of Proposition 3 (e.g., existence of optimal policies with n − 1 or n

licensees, the lower bound G(c)) were obtained in Sen and Tauman (2018) for two part tariffs with

per unit royalties and upfront fees.
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Proposition 3 shows that there always exists an optimal policy that uses no ad valorem royalty.

This does not imply that there never exists an optimal policy with an ad valorem royalty. As we

demonstrate in Proposition 4 with linear demand, for significant innovations, a two part tariff with

ad valorem royalty and upfront fee is optimal. Such a policy can be also optimal for intermediate

innovations under certain parameric configurations.

The literature has sometimes suggested to impose an “antitrust constraint” on licensing policies

that requires the post-licensing prices to not exceed the price without licensing (see, e.g., Niu 2013,

Fan et al. 2018b; see Niu 2014 for other policy interventions). Such a constraint ensures that

licensing does not lower consumer surplus. For an outside innovator, in the absence of licensing the

price is simply the pre-innovation Cournot price. Proposition 3 shows that for relatively signficant

innovations, the post-licensing Cournot price is lower than its pre-innovation level, so for these

innovations, optimal three part tariffs improve consumer surplus without any external constraint.

4.3 Optimal policies under linear demand

To completely characterize optimal three part tariffs, we consider a linear demand curve given by

p(Q) = max{a−Q, 0} where a > c > 0 (21)

Note that in this case θ = c/η(c) = a − c. So a cost-reducing innovation of magnitude ε is drastic

if ε ≥ a− c and nondrastic if ε < a− c. Also note from (3) that in this case G(c) = ε(a− c).
In a Cournot oligopoly under demand (21), optimal two part tariffs with combinations of per

unit royalties and upfront fees are characterized in Sen and Tauman (2007). In terms of our

framework, a two part tariff with a per unit royalty and an upfront fee is simply a three part tariff

with v = 0. Recall that any such two part tariff corresponds to a point on the horizontal line OB

in Figure 3(a)-(d). Taking v = 0 in (7), δ(r, 0) = δ ⇔ δ = ε − r. This shows that payoffs of I

under two part tariffs with per unit royalties and upfront fees are again functions of δ given by

(17)-(18), but in this case there is a one-to-one relation between δ and r (specifically, δ = ε − r),
so the multiplicity we face for three part tariffs disappears.

Because as functions of δ, the payoffs that I seeks to maximize are same, we can apply the

results of Sen and Tauman (2007) as follows: identify optimal (k, δ) from their results and then

determine the set of all acceptable and feasible combinations of r, v that supports that (k, δ). This

set is simply Sn(k, δ) given in (20). By Proposition 2(II), whenever 0 < δ < ε, the set Sn(k, δ) is a

continuum.

Consider again the illustration in Figure 3(a), where a certain δ ∈ (0, ε) is identified as point

D. The line CD presents the set Sn(k, δ). While this general conclusion holds for any δ ∈ (0, ε),

to precisely identify Sn(k, δ), we need to know the location of δ in relation to the threshold δ̂n(k)

(see Figures 3(a)-(d)). If δ < δ̂n(k), the line CD meets the curve OA at C (in that case C would

correspond to a two part royalty policy) while if δ > δ̂n(k), the line CD meets the curve AB at

point C (so C would correspond to a two part tariff with an ad valorem royalty and an upfront
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fee). The next proposition makes this comparison of optimal δ with δ̂n(k) to precisely identify the

set of all optimal three part tariffs.

Remark 6 It is assumed in Sen and Tauman (2007, p.167) that “. . . whenever the innovator is

indifferent between two licensing policies, it chooses the one where the number of licensees is

higher”. Under this simplifying assumption, the number of licenses sold is at least n− 1, because

there always exists an optimal policy with n − 1 or n licenses (Proposition 3(II)). We relax this

assumption and determine all optimal three part tariffs by noting that for n ≥ 3: (i) if there is any

optimal policy in which less than n− 1 licenses are offered, I must obtain G(c) under that policy

(Proposition 3(II)) and (ii) under linear demand, the payoff of I at any optimal policy is always

at least G(c) (see Proposition 3(a), ibid., p.172). By (i) and (ii), under any optimal policy with

n − 1 or n licenses, if I obtains more than G(c), there is no optimal policy with less than n − 1

licenses, but if I obtains exactly G(c), it is possible to have other optimal policies with less than

n− 1 licenses (see Proposition 4(II)).

For n ≥ 2, define the function δ∗n : {n− 1, n} → R+ as

δ∗n(k) :=

{
(θ + 2ε)/2(n− 1) if k = n− 1

[(n− 1)θ + (n+ 1)ε]/2(n2 − n+ 1) if k = n
(22)

Define the functions

z(n) := [n3 − n+
√

(n+ 1)(n2 − n+ 1)(n3 − 6n2 + 5n− 4)]/(2n2 − n+ 1),

u(n) := (n+ 1)(1 +
√
n2 − n+ 1)2/n(n− 1)2 (23)

Proposition 4 In a Cournot oligopoly under linear demand (21) with an outside innovator of

a nondrastic innovation of magnitude ε who uses three part tariffs, for any n ≥ 4, the optimal

licensing policies have the following general properties.

(A) Under any optimal policy, the innovator obtains at least G(c) = ε(a− c) and the post-licensing

Cournot price is lower than the price without licensing.

(B) A pure per unit royalty is never optimal. A pure ad valorem royalty is never optimal for generic

magnitudes of a, c, ε.

(C) For insignificant innovations, it is optimal to use a pure upfront fee.

(D) For significant or intermediate innovations:

(i) There always exists an optimal policy that is a two part tariff with a positive per unit

royalty and upfront fee;

(ii) There is a continuum of other optimal policies whose all three components (per unit

royalty, ad valorem royalty, upfront fee) are positive;
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(iii) A two part tariff with ad valorem royalty and upfront fee or a two part royalty with

per unit and ad valorem royalties may be optimal depending on the magnitude of the

innovation and the demand intercept.

Specific properties of the optimal policies are as follows, where the functions z(n), u(n) are given

in (33), with θ/(2n− 4) < θ/z(n) < θ/5 and θ/2 < θ/u(n) < θ for n ≥ 7.

(I) (Insignificant innovations) If ε < θ/(2n − 4), the unique optimal policy is to sell n − 1

or n licenses using a pure upfront fee, the Cournot price is higher than c and the innovator

obtains more than G(c).

(II) (Significant innovations) If [n = 4, 5, 6 and ε > θ/2] or [n ≥ 7 and ε > θ/u(n)], there

is a continuum of optimal licensing policies. Under any optimal policy the Cournot price

equals c and the innovator obtains G(c). The set of all optimal policies is ∪n−1k=2S
n(k, θ/k).

For k ∈ {2, . . . , n− 1}, under any optimal policy in Sn(k, θ/k) (presented by the line DE in

Figure 4(a)):

(i) The license is sold to k firms, the effective magnitude of the innovation is θ/k and a

k-firm natural oligopoly is created with k licensees, with all non-licensees dropping out

of the market. Each licensee pays (1− v)φ
n
(k, θ/k) as upfront fee and obtains zero net

payoff.

(ii) There exists an optimal policy that is a two part tariff consisting of a positive per unit

royalty and upfront fee (the point E in Figure 4(a)).

(iii) There also exists an optimal policy that is a two part tariff consisting of a positive ad

valorem royalty and upfront fee (the point D in Figure 4(a)).

(iv) There is a continuum of other optimal policies that are three part tariffs with all com-

ponents positive (points on the line DE excluding points D,E in Figure 4(a)).

(III) (Intermediate innovations) If n ≥ 7 and θ/z(n) < ε < θ/u(n), there is a continuum of

optimal licensing policies. Under any optimal policy, the license is sold to all n firms and

the effective magnitude of the innovation is δ∗n(n) given in (22). The Cournot price is higher

than c and the innovator obtains more than G(c). Specifically:

(i) There exists an optimal policy that is a two part tariff consisting of a positive per unit

royalty and upfront fee (the points E1 in Figure 4(b), E2 in Figure 4(c) with k = n).

(ii) There are also optimal policies that are three part tariffs with all components positive

(points on the lines D1E1, D2E2 excluding points D1, E1, D2, E2 in Figures 4(b), 4(c)

with k = n).

(iii) There are functions 2 < κ(n) < 3 and κ(n) > 5 such that
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(a) If a < κ(n)c (the demand intercept is relatively small), then δ∗n(n) > δ̂n(n) and the

set of all optimal policies is Sn(n, δ∗n(n)), given by D1E1 in Figure 4(b) with k = n.

In this case there exists an optimal policy that is a two part tariff consisting of a

positive ad valorem royalty and upfront fee (the point D1 in Figure 4(b)).

(b) If a > κ(n)c (the demand intercept is relatively large), then δ∗n(n) < δ̂n(n) and the

set of all optimal policies is Sn(n, δ∗n(n)), given by D2E2 in Figure 4(c) with k = n.

In this case there exists an optimal policy that is a two part royalty having positive

ad valorem and unit royalties but no upfront fees (the point D2 in Figure 4(c)).

(c) If κ(n)c < a < κ(n)c (the demand intercept is of intermediate size), ∃ ε(n) ∈
(θ/z(n), θ/u(n)) such that if ε < ε(n), the conclusion is the same as (a) and if

ε > ε(n), the conclusion is the same as (b).

(IV) (Intermediate innovations) If [n = 4, 5 and θ/(2n − 4) < ε < θ/2] or [n ≥ 6 and

θ/(2n − 4) < ε < θ/z(n)] there is a continuum of optimal licensing policies. Under any

optimal policy, the license is sold to n−1 firms and the effective magnitude of the innovation

is δ∗n(n − 1) given in (22). The Cournot price is higher than c and the innovator obtains

more than G(c). Specifically:

(i) There exists an optimal policy that is a two part tariff consisting of a positive per unit

royalty and upfront fee (the points E1 in Figure 4(b), E2 in Figure 4(c) with k = n−1).

(ii) There are also optimal policies that are three part tariffs with all components positive

(points on the lines D1E1, D2E2 excluding points D1, E1, D2, E2 in Figures 4(b), 4(c)

with k = n− 1).

(iii) There is a function κ(n) ≥ 3 such that

(a) If a < κ(n)c (the demand intercept is relatively small), then δ∗n(n− 1) > δ̂n(n− 1)

and the set of all optimal policies is Sn(n− 1, δ∗n(n− 1)), given by D1E1 in Figure

4(b) with k = n − 1. In this case there exists an optimal policy that is a two part

tariff consisting of a positive ad valorem royalty and upfront fee (the point D1 in

Figure 4(b)).

(b) If a > κ(n)c (the demand intercept is relatively large), ∃ ε(n) in the relevant domain

of ε such that if ε < ε(n), the conclusion is the same as (a). If ε > ε(n), then

δ∗n(n− 1) < δ̂n(n− 1), the set of all optimal policies is Sn(n− 1, δ∗n(n− 1)) (given

by D2E2 in Figure 4(c) with k = n − 1) and there exists an optimal policy that is

a two part royalty having positive ad valorem and unit royalties but no upfront fees

(the point D2 in Figure 4(c)).

(V) (Limiting results) For n ≥ 7, θ/(2n − 4), θ/z(n) are decreasing and θ/u(n) is increasing

in n, with limn→∞ θ/(2n − 4) = limn→∞ θ/z(n) = 0, limn→∞θ/u(n) = θ. Moreover κ(n)

is decreasing and κ(n) is increasing in n, with limn→∞κ(n)c = 2c, limn→∞κ(n)c = ∞.
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Consequently for every a, c, ε where a > c > ε and 0 < ε < θ, ∃ n̄(a, c, ε) such that for all

n > n̄(a, c, ε):

(i) There is a continuum of optimal licensing policies. Under any optimal policy, the license

is sold to all n firms, the effective magnitude of the innovation is δ∗n(n) given in (22),

the Cournot price is higher than c and the innovator obtains more than G(c).

(ii) There exists an optimal policy that is a two part tariff consisting of a positive per unit

royalty and upfront fee. There also exists a continuum of other optimal policies that

are three part tariffs with all components positive.

(iii) If a < 2c, there exists an optimal policy that is a two part tariff consisting of a positive

ad valorem royalty and upfront fee.

(iv) If a > 2c, then c < θ and ∃ ε̂ ∈ (0, c) (specifically, ε̂ ≡ [2
√
a2 − 3ac+ 3c2−(2a−3c)]θ/c)

such that if ε < ε̂, there exists an optimal policy that is a two part tariff consisting of a

positive ad valorem royalty and upfront fee and if ε > ε̂, there exists an optimal policy

that is a two part royalty having positive ad valorem and unit royalties but no upfront

fees.

Proof We present the proofs of general properties (A)-(D) and specific properties (I)-(II). Proofs

of the remaining parts are given in the Appendix. Note from (7) that under two part tariffs with

per unit royalties and fees, when the per unit royalty is r, the effective magnitude of the innovation

is δ = δ(r, 0) = ε− r.
Property (A) follows from Proposition 3(a) (p.172) of Sen and Tauman (2007). From Table A.5

(ibid., p.183) we note that for n ≥ 4, the effective magnitude δ of the innovation is positive under

any optimal policy and so by Proposition 2(I), a pure unit royalty is never optimal. Note from

Figures (3)(a)-(d) that the only point in the acceptable and feasible region OAB that corresponds

to a pure ad valorem royalty is the point A, so such a policy can be optimal if and only if optimal

δ exactly equals δ̂n(k), which is never the case for generic magnitudes of a, c, ε, which proves (B).

Again from Table A.5 (ibid., p.183), for insignificant innovations, it is optimal to set a pure

upfront fee, which proves (C). For intermediate and significant innovations, it is optimal to set

δ ∈ (0, ε) and (D) follows by Proposition 2(II)-(V).

For (I), note from Table A.5 (ibid., p.183) that for n ≥ 4 and ε < θ/(2n − 4), it is optimal to

sell n − 1 or n licenses with unit royalty r = 0, so the optimal δ is δ = ε. The unique acceptable

and feasible three part tariff that supports δ = ε is a pure upfront fee (Proposition 2(I)). Moreover

the innovator obtains more than G(c) under such a policy, so there is no optimal policy with less

than n− 1 licenses (see Remark 6).

For (II), note from Table A.5 (ibid., p.183) that for ε > θ/u(n), it is optimal to sell n − 1

licenses with δ = θ/(n − 1) and I obtains G(c). Noting that 1 < u(n) < 2 for n ≥ 7, when

ε > θ/u(n), we have ε > θ/2. Thus ε > θ/k for k ≥ 2. Since δ ∈ [0, ε], for 2 ≤ k ≤ n − 1, it is

possible to offer three part tariffs with k licenses and δ = θ/k (the innovation being nondrastic,

24



we have ε < θ, so it is not possible to offer k = 1 and δ = θ). By Lemma 1(ii)(b), for any such

policy, the post-innovation Cournot price equals c and by (17), I obtains G(c). Thus, in addition

to (k = n − 1, δ = θ/(n − 1)), (k, δ) is also part of an optimal three part tariff for 2 ≤ k ≤ n − 2

and δ = θ/k. Since the set of all acceptable and feasible combinations of r, v that supports (k, θ/k)

is Sn(k, θ/k) given in (20), the set of all optimal three part tariffs is ∪n−1k=2S
n(k, θ/k). Part (II)(i)

follows from (11) by noting that φn(k, θ/k) = 0. Noting that ε > θ/k > δ̂n(k), parts (II)(ii)-(iii)

follow by Proposition 2((II),(III),(V)).

The next proposition shows that for relatively small sizes of industry (n = 2, 3), the conclusions

for insignificant and intermediate innovations are qualitatively similar to Proposition 4. See Table

1 for the complete presentation of optimal three part tariffs for an outside innovator under linear

demand for all n ≥ 2.

Proposition 5 In a Cournot oligopoly under linear demand (21) with an outside innovator of a

nondrastic innovation of magnitude ε who uses three part tariffs, for n = 2, 3, the optimal licensing

policies have the following properties, where n− 1 < t(n) < 2n− 1.

(I) Under any optimal policy, the innovator obtains at least G(c) for n = 3 and lower than G(c)

for n = 2.

(II) If ε < θ/(2n− 1), the unique optimal policy is to sell n licenses using a pure upfront fee. If

[n = 2 and ε > t(2)] or [n = 3 and ε ∈ (θ/t(3), θ/2)], the unique optimal policy is to sell

n− 1 licenses using a pure upfront fee.

(III) If n = 3 and ε > θ/2, there is a continuum of optimal licensing policies. Under any optimal

policy, the license is sold to 2 firms, the effective magnitude of the innovation equals θ/2, the

Cournot price equals c and a natural duopoly is created with the sole non-licensee dropping

out of the market. The set of all optimal policies is Sn(2, θ/2) and the same conclusion as

(II)(i)-(iv) of Proposition 4 holds with k = 2.

(IV) If θ/(2n− 1) < ε < θ/t(n), there is a continuum of optimal policies. For any optimal policy,

the innovation is licensed to all n firms and the effective magnitude of the innovation is

δ∗n(n) given in (22) and the same conclusion as (III)(i)-(ii) of Proposition 4 holds. There

exists κ̂(n) > 2 such that:

(i) If a < κ̂(n)c, the conclusion is the same as in Proposition 4(III)(iii)(a).

(ii) If a > κ̂(n)c, ∃ ε(n) ∈ (θ/(2n − 1), θ/t(n)) such that if ε < ε(n), the conclusion is the

same as in Proposition 4(III)(iii)(a) and if ε > ε(n), the conclusion is the same as in

Proposition 4(III)(iii)(b).

Proof See the Appendix.

A general finding of Propositions 4,5 is that for intermediate innovations, a two part tariff with

an ad valorem royalty and upfront fee is optimal when the demand intercept a is relatively small.
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To see the intuition of this result, we note that for fixed n, c, ε and k = n − 1, n, the relative gain

in profit γn(k, δ) is decreasing in demand intercept a. Since v̄(δ) does not involve a, by (16) it

follows that the threshold δ̂n(k) is increasing in a. This is illustrated in Figure 5, where a fall in the

demand intercept from a to a0 < a results in a shift of γn(k, δ) to γn0 (k, δ) > γn(k, δ). The curve

γn0 (k, δ) meets v̄(δ) at δ̂n0 (k) < δ̂n(k). As a result a larger interval (δ̂n0 (k), ε) of δ can support two

part tariffs with ad valorem royalties and upfront fees. As shown in Figure 5, such two part tariffs

are given by AB under demand intercept a and A0B under demand intercept a0 < a.

4.4 An incumbent innovator in a Cournot duopoly

The main driving force for the analysis of three part tariffs with an outside innovator is that for

any r, v, the outcome at the Cournot stage is completely determined by δ(r, v) given in (7) and

the Cournot price and quantities do not separately depend on r, v. This is not the case when the

innovator is one of the incumbent firms, because the quantity of an incumbent innovator affects

the price, which in turn affects the revenue from ad valorem royalty.

To illustrate this point, consider a Cournot duopoly with two firms 1, 2 under demand p(Q) =

max{a − Q, 0}, where Q = q1 + q2. Initially both firms have the same constant marginal cost c,

where 0 < c < a. Firm 1 has a cost-reducing innovation of magnitude ε that reduces the marginal

cost from c to c− ε (0 < ε < c). The innovation is nondrastic: ε < a− c.
If firm 1 licenses the innovation16 to firm 2 using a three part tariff with unit royalty r ∈ [0, ε],

ad valorem royalty v ∈ [0, 1) and17 upfront fee f ≥ 0, the payoff of firm 2 at the Cournot stage is

π2 = (1− v)p(Q)q2 − (c− ε)q2 − rq2 − f = (1− v)[p(Q)− (c− δ)]q2 − f (24)

where δ = δ(r, v) given in (7). Thus, at the Cournot stage firm 2 solves the same problem as a

firm that has marginal cost c − δ. The payoff of firm 1 at the Cournot stage is the sum of: (i) its

operating profit, (ii) the revenue from ad valorem royalty, (iii) the revenue from unit royalty and

(iv) the fee f, which is

π1 = [p(Q)q1 − (c− ε)q1] + vp(Q)q2 + rq2 + f (25)

The revenue from unit royalty rq2 is not affected by q1. However, q1 affects the price p(Q), which in

turn affects the ad valorem royalty revenue vp(Q)q2. For this reason, unlike the case of an outside

innovator, in this case the (unique) Cournot price and quantities are functions of both v and δ.

Let p(v, δ) be the Cournot price, qi(v, δ) the Cournot quantity of firm i and Q(v, δ) = q1(v, δ) +

q2(v, δ) (see Lemma L3 of the Appendix for their expressions). Let φi(v, δ) be the operating Cournot

16If firm 1 licenses a nondrastic innovation with r = ε, v = 0, f = 0 (a pure per unit royalty policy), the effective
marginal cost of firm 2 is c− ε+ r = c− ε+ ε = c, which is the same as not licensing. This ensures that firm 1 has
the same operating Cournot profit as not licensing, but in addition it obtains a positive royalty revenue. This shows
that for a nondrastic innovation, licensing is superior to not licensing for firm 1.

17Since the innovation is nondrastic, firm 2 earns a positive profit without a license. Any licensing policy with
v = 1 gives a zero or negative payoff to firm 2, so such a policy will not be acceptable. For this reason we restrict
v < 1. See also Remark 2.
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profit of firm i, that is,

φ1(v, δ) = [p(v, δ)− (c− ε)]q1(v, δ) and φ2(v, δ) = [p(v, δ)− (c− δ)]q2(v, δ)

Also denote ψ(v, δ) := (1− v)φ2(v, δ). Using these in (59)-(60), the payoffs of firms are

π2 = (1− v)φ2(v, δ)− f = ψ(v, δ)− f and π1 = φ1(v, δ) + vp(v, δ)q2(v, δ) + rq2(v, δ) + f (26)

Since the innovation is nondrastic, without a license firm 2 obtains a positive profit φ, so a policy

is acceptable if and only if π2 = ψ(v, δ)− f ≥ φ. Thus, for a policy (v, δ), the maximum upfront fee

that can be obtained from firm 2 is f̄(v, δ) = ψ(v, δ)− φ which presents the surplus from a license.

A policy is acceptable to firm 2 if and only if this surplus is non-negative.

The problem of firm 1 For any acceptable and feasible (v, δ), taking f = f̄(v, δ) in (61), the

payoff of firm 1 is π1 = φ1(v, δ) + [p(v, δ)− (1− v)(c− δ) + r]q2(v, δ)− φ. As δ = δ(r, v) (given in

(7)), we have (1− v)(c− δ) = c− ε+ r, so that π1 = G(p(v, δ))− φ where G(p) = [p− (c− ε)]Q(p)

is the monopolist’s profit at price p under marginal cost c− ε.
Note that pM (ε) = (a+ c− ε)/2 is the monopoly price under marginal cost c− ε. For δ ∈ [0, ε]

and v ∈ [0, 1), the Cournot price p(v, δ) is increasing in v, decreasing in δ and limv↑1 p(v, 0) = pM (ε)

(see Lemma L3, Appendix), so p(v, δ) < pM (ε). As G(p) is increasing for p < pM (ε), the payoff of

firm 1 is increasing in p(v, δ), so the payoff is maximum at policies where p(v, δ) is maximum.

Acceptable and feasible policies Note that ψ(v, δ) is decreasing in v and increasing in δ

(see Lemma L3, Appendix). As ψ(0, 0) = φ, ψ(0, δ) > φ for δ > 0 and limv↑1 ψ(v, δ) = 0 < φ for

all δ, for every δ ∈ [0, ε], ∃ a unique γ(δ) such that a policy is acceptable (that is, ψ(v, δ) ≥ φ) if

and only if v ≤ γ(δ). Note that γ(0) = 0 and γ(δ) is increasing.

Recall that for any δ ∈ [0, ε], the maximum feasible v for that δ is given by v̄(δ) = (ε−δ)/(c−δ)
(see Figure 1). Noting that v̄(δ) is decreasing in δ with v̄(0) = ε/c > γ(0) = 0 and v̄(ε) = 0 < γ(ε),

∃ δA ∈ (0, ε) such that min{γ(δ), v̄(δ)} = γ(δ) if δ ≤ δ̂ (given by the curve OA in Figure 6) and

min{γ(δ), v̄(δ)} = v̄(δ) if δ > δ̂ (given by the curve AB in Figure 6). The set of all acceptable and

feasible (v, δ) is {(v, δ)|0 ≤ δ ≤ ε, 0 ≤ v ≤ min{γ(δ), v̄(δ)}}, which is given by the region OAB

in Figure 6. The problem of firm 1 is to find (v, δ) in OAB where the Cournot price p(v, δ) is

maximum.

The modified problem under an antitrust constraint Following the upward pricing pres-

sure (UPP) principle of merger policy (see, e.g., Farrell and Shapiro, 2010), it is sometimes suggested

in the literature that licensing agreements should be subject to an “antitrust constraint” which re-

quires that the post-licensing price must not exceed the price without licensing (see, e.g., Niu 2013;

Fan et al. 2018b). The modified problem of firm 1 under this constraint will be to find those (v, δ)

that give the maximum Cournot price in the subset of OAB where the post-licensing Cournot

price does not exceed the price without licensing. The next propostion identifies optimal three part

tariffs for both problems: one without the antitrust constraint and the modified problem with the

constraint.
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Proposition 6 Consider a Cournot duopoly with two firms 1, 2 under linear demand (21) where

firm 1 has a nondrastic innovation.

(I) When there is no constraint on post-licensing prices, the unique optimal three part tariff is

the pure ad valorem royalty policy with v = v̄(δA), given by the point A in Figure 6. Among

all points in OAB (the set of all acceptable and feasible policies), the point A results in the

maximum possible Cournot price.

(II) When there is an antitrust constraint that the post-licensing price must not exceed the price

without licensing, there is a continumm of payoff-equivalent optimal three part tariffs, repre-

sented by the curve OE in Figure 6. Under all of these policies, the Cournot price equals the

price without licensing. In particular:

(i) The point O corresponds to the pure per unit royalty policy r = ε.

(ii) The point E corresponds to a two part tariff that has positive ad valorem royalty v =

v̄(δE) and positive upfront fee, but no per unit royalty.

(iii) All other optimal policies (given by points on OE excluding O and E) are three part

tariffs whose all three components (per unit, ad valorem royalties and upfront fees) are

positive.

Proof (I) The payoff of firm 1, π1 = G(p(v, δ)) − φ, is increasing in the Cournot price p(v, δ), so

the payoff is maximum at policies where the Cournot price is maximum. Since p(v, δ) is increasing

in v, for any δ, the payoff of firm 1 is maximum when v is maximum. Thus any optimal (v, δ) must

be on the curve OA for δ ≤ δA and on the curve AB for δ > δA in Figure 6.

Since the curve AB (which represents v = v̄(δ)) is decreasing, for any point on AB other than

A, δ is higher and v is lower compared to A. Because p(v, δ) is increasing in v and decreasing in

δ, the price at A is higher than the price at any other point on AB. This shows that any optimal

(v, δ) must be on the curve OA.

For any (v, δ) on OA: v = γ(δ). As γ(δ) is increasing, there is an increasing function h(v) such

that v = γ(δ) ⇔ δ = h(v) (see the Appendix for details). For any v on the line OD in Figure 6,

h(v) is given by OA and the corresponding Cournot price is p(v, δ) = p(v, h(v)), which is increasing

in v (see the Appendix for the proof). This shows that over all points on OA, the Cournot price is

maximum at point A, so the unique optimal three part tariff is given by A.

At point A: v = γ(δA) (zero surplus from the license, so the upfront fee is zero) as well as

v = v̄(δA) (maximum feasible ad valorem royalty, so the unit royalty is zero). This shows that the

unique optimal three part tariff A is a pure ad valorem royalty policy.

(II) Noting that (v = 0, δ = 0) results in the same Cournot price as in the case of no licensing,

when there is no licensing, the price is p(0, 0) (the price at the point O in Figure 6). The antitrust

constraint requires to choose acceptable and feasible policies for which p(v, δ) ≤ p(0, 0).

Recall that any point on OA other than O has a price higher than p(0, 0). So the price at A is

higher than p(0, 0). The price at B, p(0, ε), is lower than p(0, 0). As prices on the curve AB increase
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as we move from B to A, there exists a point E on AB at which the price equals p(0, 0), so that

prices are higher than p(0, 0) on the part AE and lower than p(0, 0) on the part EB. The point

E is identified in Figure 6 and the corresponding δ is denoted by δE . For any point in the region

FEB other than E, the price is lower than p(0, 0).

For any δ ∈ (0, δE), the maximum v that makes (v, δ) both acceptable and feasible lies on OAE;

it lies on OA if δ ≤ δA and on AE if δA < δ < δE . For any v on OAE, we have (v, δ) = (m(δ), δ)

where m(δ) = min{v̄(δ), γ(δ)}. As the price at any point on OAE (excluding O) is higher than

p(0, 0), for any δ ∈ (0, δE): p(0, δ) < p(0, 0) < p(m(δ), δ). So there is a unique v̂(δ) ∈ (0,m(δ))

such that p(v, δ) T p(0, 0) ⇔ v T v̂(δ). As p(v, δ) is increasing in v and decreasing in δ, v̂(δ) is

increasing in δ. The function v̂(δ) is presented by the curve OE in Figure 6 (with v̂(0) = 0 and

v̂(δE) coinciding with point E).

The region OEB is the set of all acceptable and feasible (v, δ) for which the post-licensing

Cournot price p(v, δ) does not exceed p(0, 0). For any point on OE, p(v, δ) = p(0, 0), whereas for

any other point in the region OEB, p(v, δ) < p(0, 0). Since the payoff of firm 1 is maximum when

p(v, δ) is maximum, the set of all optimal policies is the continuum given by the curve OE where the

price exactly equals p(0, 0). For any such policy, firm 2 obtains φ and firm 1 obtains G(p(0, 0))−φ.
At O: v = 0 = γ(0) (no ad valorem royalty and zero surplus from the license, so no upfront

fee as well). As δ = 0 at O, by (7), setting δ(r, v) = 0 and v = 0 gives r = ε, proving (i). At E:

v > 0 (positive ad valorem royalty), v = v̄(δE) (maximum feasible v, so the unit royalty is zero)

and v < γ(δE) (positive surplus from the license, so positive upfront fee), which is a two part tariff

with ad valorem royalty and upfront fee, proving (ii).

For any point on OE excluding O and E: v > 0 (positive ad valorem royalty), v < v̄(δ) (less

than maximum feasible v, so the unit royalty is positive) and v < γ(δ) (positive surplus from the

license, so positive upfront fee), so all three components are positive, proving (iii).

In the setting of this section, that is, in a Cournot duopoly with linear demand, symmetric initial

constant marginal costs and an incumbent innovator who has a nondrastic cost-reducing innovation

that lowers the marginal costs of both firms by the same magnitude, pure per unit royalties are

superior to pure upfront fees (Wang, 1998) and they are also optimal among all combinations of

unit royalties and upfront fees (Sen and Tauman, 2007), where the unique optimal policy is to set

per unit royalty r = ε, implying that the post-licensing Cournot price equals the price without

licensing.

In this setting, San Mart́ın and Saracho (2010) find pure ad valorem royalties to be superior to

pure per unit royalties. However, in the presence of the antitrust constraint that the post-licensing

Cournot price must not exceed the price without licensing, under two part tariffs with fees and

one kind of royalties, Fan et al. (2018b) show that offering per unit royalties with fees are equally

profitable to ad valorem royalties plus fees. Since the unique optimal policy among combinations

of unit royalties and fees is the pure unit royalty r = ε, it follows that this policy gives the same

payoff as any optimal combination of ad valorem royalty and fee.

Proposition 6 qualifies the findings above by showing that when there is no constraint on post-
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licensing prices, a pure ad valorem royalty is the unique optimal policy among all three part tariffs.

When post-licensing prices are constrained to not exceed the price without licensing, there is a

continumm of optimal three part tariffs, all of which give the same price as the no licensing level.

In particular, the pure unit royalty r = ε is an optimal policy, there is another optimal policy that

is a two part tariff consisting of an ad valorem royalty and fee and the rest of the optimal policies

are three part tariffs whose all three components are positive.

5 Concluding remarks

This paper studies patent licensing for an outside innovator in a Cournot oligopoly who uses three

part tariffs consisting of upfront fees, per unit and ad valorem royalties. Our analysis shows that the

maximum possible licensing revenue under three part tariffs can be always attained by policies that

use at most two components. This provides an explanation of why licensing contracts in practice

more frequently use one or at most two components.

Our analysis is restricted to linear contracts and non-negative royalties. Many licensing con-

tracts in real life are indeed simple and linear in nature (see, e.g., Macho-Stadler et al. 1996).

However, it should be noted that more general royalties, non-linear or dynamic contracts can

increase the licensing revenue and in some cases may even enable an innovator to extract the maxi-

mum industry profit from the licensees (see, e.g., Sen 2002, Liao and Sen 2005, Erutku and Richelle

2007, Fan et al. 2018c).

The analysis of three part tariffs for an incumbent innovator in a duopoly establishes two

contrasts with the outsider case: (i) the market outcomes separately depend on per unit and ad

valorem royalties and (ii) the constraint that the post-licensing price must not exceed the price

without licensing can alter licensing policies and lower the price.

This paper presents a parsimonious model to theoretically study the implications of incorpo-

rating both kinds of royalties together with fees. Our analysis is carried out under constant unit

costs of production where the innovation reduces the unit cost of any firm by the same magnitude.

Our results provide a useful foundation to study alternative configurations such as scale economies,

asymmetric reduction of costs across firms and informational asymmetry.

Acknowledgements

We are grateful to the anonymous reviewers, an anonymous associate editor and the editor Nicholas

Yannelis for helpful comments and suggestions. Parts of the revision of the paper was carried out

when Sen was visiting the Institute of Development Studies Kolkata (IDSK), whose warm hospitality

is gratefully acknowledged.

30



Appendix

The Appendix is organized as follows. We begin with some intermediary lemmas in Section 5.1.

The proof of Observation 1 presented in Section 5.2. The proof of the results for the monopoly is

presented in Section 5.3. The proof of parts (v)-(vi) of Lemma 1 is presented in Section 5.4. The

proof of Lemma 2 is presented in Section 5.5. Section 5.6 presents the proof of parts (II) and (III)

of Proposition 3. Section 5.7 presents the proof of parts (III)-(V) of Proposition 4, with Section

5.7.1 presenting the proof of part (III), Section 5.7.2 presenting part (IV) and Section 5.7.3 part

(V). Section 5.7.4 presents the proof of results for the regions (in particular, specific regions when

n = 6) not covered in Proposition 4. Section 5.8 presents the proof of Proposition 5 (the results

for n = 2, 3). Section 5.9 presents the results for the case of an incumbent innovator in a Cournot

duopoly and in particular, presents the detailed proof of Proposition 6 in Section 5.9.1.

5.1 Some intermediary lemmas

It is useful to recall the set of alternative sufficient conditions for the Cournot oligopoly. It is

assumed that either [A1-A3] or [A1-A2, A4-A5] hold, where:

(A1) The price function or the inverse demand function p(Q): R++ → R+ is non-increasing

and ∃ Q > 0 such that p(Q) is decreasing and twice continuously differentiable for Q ∈ (0, Q).

(A2) p ≡ limQ↓0 p(Q) > c, limQ↓0 p
′(Q)Q + p − c > 0 and ∃ 0 < Qc < Qc−ε < Q such that

p(Qc) = c > p(Qc−ε) = c− ε > p(Q).

(A3) p(Q) is log-concave for Q ∈ (0, Q).

(A4) For p ∈ (0, p), the price elasticity η(p) := −pQ′(p)/Q(p) is non-decreasing.

(A5) For Q ∈ (0, Q), the revenue function γ(Q) := p(Q)Q is strictly concave, that is, γ′′(Q) =

2p′(Q) +Qp′′(Q) < 0.

Also note that (A3) implies (A4).

For δ ∈ [0, c), let

ψδ(Q) := [p(Q)− (c− δ)]/[−p′(Q)] (27)

Lemma L1 If assumptions [A1-A3] hold and p(Q) > c− δ, then the function ψδ(Q) given in (27)

is decreasing in Q.

Proof Note from (27) that

ψ′δ(Q) = −1 + [p(Q)− (c− δ)]p′′(Q)/[p′(Q)]2

Since p(Q) > c − δ, we note that ψ′δ(Q) < 0 if p′′(Q) ≤ 0. So let p′′(Q) > 0. Since c − δ > 0, in

that case ψ′δ(Q) < −1 + p(Q)p′′(Q)/[p′(Q)]2. Since p(Q) is log concave (Assumption A3), we have

p(Q)p′′(Q) ≤ [p′(Q)]2, implying that −1 + p(Q)p′′(Q)/[p′(Q)]2 ≤ 0 and hence ψ′δ(Q) < 0, proving

the assertion.
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The next result does not depend on the assumptions above. This is a general result that holds

under either [A1-A3] or [A1-A2, A4-A5].

Lemma L2 Let

βδ(p) := 1− (p− c)2/[p− (c− δ)]2 (28)

If p > c, then βδ(p) is decreasing in p for any δ > 0.

Proof Immediate by taking derivative with respect to p.

5.2 Proof of Observation 1

For k = 1, . . . , n, recall that the function Hk : (0, p) → R given in (2): Hk(p) := p[1 − 1/kη(p)].

Since Assumption (A3) implies Assumption (A4), under either [A1-A3] or [A1-A2, A4-A5], (A4)

holds, that is, the function η(p) is non-decreasing for p ∈ (0, p). Thus, η(p) ≥ η(p̃) for p > p̃ and

η(p) ≤ η(p̃) for p < p̃, so that [1−1/kη(p)] ≥ [1−1/kη(p̃)] for p > p̃ and [1−1/kη(p)] ≤ [1−1/kη(p̃)]

for p < p̃. Then by (2): Hk(p)/p ≥ Hk(p̃)/p̃ for p > p̃ and Hk(p)/p ≤ Hk(p̃)/p̃ for p < p̃.

For p, p̃ ∈ (0, p), p/p̃ > 1 for p > p̃ and p/p̃ < 1 for p < p̃. Thus, if Hk(p̃) > 0, we have

pHk(p̃)/p̃ > Hk(p̃) for p > p̃ and pHk(p̃)/p̃ < Hk(p̃) for p < p̃. Using these inequalities with the

inequalities of the last paragraph, for p > p̃: Hk(p) = pHk(p)/p ≥ pHk(p̃)/p̃ > Hk(p̃) and for

p < p̃: Hk(p) = pHk(p)/p ≤ pHk(p̃)/p̃ < Hk(p̃). This completes the proof of the observation.

5.3 Proof of the results for monopoly

The monopoly problem Let ε ∈ (0, c) and δ ∈ [0, ε]. Consider a monopolist M who has marginal

cost c− δ. The profit function of M as function of Q is πδ(Q) = [p(Q)− (c− δ)]Q. By assumption

(A2), limQ↓0 p(Q) ≡ p > c. Thus, there is a small positive Q for which p(Q) > c ≥ c − δ and

πδ(Q) > 0. This shows that the maximized value of the monopolist’s profit must be positive and

any Q that gives a negative or zero profit cannot be optimal. In particular, Q = 0 (for demand

functions where p(0) is well defined) is not optimal.

By assumptions (A1) and (A2), p(Q) is non-increasing and ∃ Qc−ε ∈ (0, Q) such that p(Qc−ε) =

c − ε ≤ c − δ. Thus πδ(Q) ≤ 0 for Q ≥ Qc−ε. So it is sufficient to consider Q < Qc−ε. By

assumption (A1), p(Q) is decreasing for Q ∈ (0, Qc−ε). Noting that limQ↓0 p(Q) ≡ p > c ≥ c − δ
and p(Qc−ε) = c− ε < c− δ, it follows that ∃ Qc−δ ∈ (0, Qc−ε) such that p(Q) T c− δ ⇔ Q S Qc−δ

and so πδ(Q) ≤ 0 for Q ≥ Qc−δ. Thus, for all δ ∈ [0, ε], it is sufficient to consider Q < Qc−δ.

By assumption (A1), for Q ∈ (0, Qc−δ) ⊆ (0, Qc−ε), p(Q) is decreasing and twice continuously

differentiable. Note that π′δ(Q) = p′(Q)Q+p(Q)−(c−δ). By assumption (A2): p ≡ limQ↓0 p(Q) > c

and limQ↓0 p
′(Q)Q+p− c > 0, implying that limQ↓0 π

′
δ(Q) = limQ↓0 p

′(Q)Q+p− (c− δ) > 0. Thus,

πδ(Q) is increasing for small positive values of Q. Next observe that π′δ(Q
c−δ) = p′(Qc−δ)Qc−δ < 0.

This shows that πδ(Q) is decreasing at Q = Qc−δ.

First suppose assumptions [A1-A2,A4-A5] hold. Then for Q ∈ (0, Q), the revenue function

p(Q)Q is strictly concave and so is the profit function πδ(Q). As πδ(Q) is increasing for small positive
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values of Q and decreasing at Q = Qc−δ, it follows that πδ(Q) attains a unique maximum over

Q ∈ (0, Qc−δ), denoted by QM (δ) (the monopoly quantity under marginal cost c−δ) and it satisfies

the first order condition π′δ(QM (δ)) = 0. Also note that πδ(Q) is increasing for Q ∈ (0, QM (δ)),

decreasing for Q ∈ (QM (δ), Qc−δ) and πδ(Q) ≤ 0 for Q ≥ Qc−δ.
Note that the profit of the monopolist as function of p is Gδ(p) = [p−(c−δ)]Q(p) (for δ = ε, this

function is G(p) given in (3)). Denoting pM (δ) ≡ p(QM (δ)), it follows that the unique maximum

of Gδ(p) is attained at p = pM (δ). As QM (δ) ∈ (0, Qc−δ), we have pM (δ) ∈ (c − δ, p). As p(Q) is

decreasing for Q ∈ (0, Q), it follows that Gδ(p) is increasing for p ∈ (c − δ, pM (δ)), decreasing for

p ∈ (pM (δ), p), Gδ(p) ≤ 0 for p ∈ [0, c− δ] and if p is finite, then Gδ(p) = 0 for p ≥ p.
Next suppose assumptions [A1-A3] hold. Then p(Q) is log-concave. Noting that p > c − δ for

Q ∈ (0, Qc−δ), we can apply the conclusion of Lemma L1. We note that for Q ∈ (0, Qc−δ): π′δ(Q) T

0⇔ Q S ψδ(Q) where ψδ(Q) is given in (27). Note that as function of Q, f(Q) = Q is increasing

and ψδ(Q) is decreasing (by Lemma L1). As limQ↓0 ψδ(Q) = [p− (c− δ)]/[− limQ↓0 p
′(Q)] > 0 and

limQ↑Qc−δ ψδ(Q) = 0 < Qc−δ, it follows that ∃ a unique Q ∈ (0, Qc−δ) where Q = ψδ(Q). Denote

this Q by QM (δ) (monopoly quantity under marginal cost c− δ). This shows that π′δ(QM (δ)) = 0,

πδ(Q) is increasing for Q ∈ (0, QM (δ)), decreasing for Q ∈ (QM (δ), Qc−δ) and its unique maximum

is attained at Q = QM (δ). Denoting pM (δ) = p(QM (δ)), similar conclusions hold when when we

look at the profit of the monopolist as a function of p.

Recall that the elasticity at price p is η(p) = −pQ′(p)/Q(p). Note that

G′δ(p) = [p− (c− δ)]Q′(p) +Q(p) = Q′(p)[{p− (c− δ)} − p/η(p)]

= Q′(p)[p{1− 1/η(p)} − (c− δ)] = Q′(p)[H1(p)− (c− δ)]

where Hk(p) is given in (2). As Q′(p) < 0: G′δ(p) = 0 ⇔ H1(p) = c − δ. Since pM (δ) satisfies

G′δ(pM (δ)) = 0, we have H1(pM (δ)) = c− δ. In particular, when δ = ε, we have H1(pM (ε)) = c− ε.
Comparative statics Let δ1, δ2 ∈ [0, ε] such that δ1 < δ2. The quantity QM (δ1) satisfies the

first order condition π′δ1(QM (δ1)) = 0, so that p′(QM (δ1)) + p(QM (δ1))− (c− δ1) = 0. As δ1 < δ2,

we have Qc−δ1 < Qc−δ2 . Since QM (δ1) ∈ (0, Qc−δ1), we have QM (δ1) ∈ (0, Qc−δ2).

Note that π′δ2(QM (δ1)) = p′(QM (δ1))+p(QM (δ1))−(c−δ2) > p′(QM (δ1))+p(QM (δ1))−(c−δ1) =

0. Thus, π′δ2(QM (δ1)) > 0. This shows that πδ2(Q) is increasing at Q = QM (δ1), implying that

QM (δ1) < QM (δ2). Thus QM (δ) is increasing in δ and so pM (δ) is decreasing in δ.

Denote by φM (δ) the monopoly profit (the maximized value of the monopolist’s profit) under

marginal cost c− δ, that is, φM (δ) := πδ(QM (δ)). Let δ1, δ2 ∈ [0, ε] such that δ1 < δ2. Noting that

for any Q > 0, πδ1(Q) = [p(Q) − (c − δ1)]Q < πδ2(Q) = [p(Q) − (c − δ2)]Q, we have φM (δ1) =

πδ1(QM (δ1)) < πδ2(QM (δ1)). As QM (δ2) is the unique maximizer of πδ2(Q) and QM (δ1) < QM (δ2),

we have πδ2(QM (δ1)) < πδ2(QM (δ2)) = φM (δ2). Thus φM (δ1) < φM (δ2), proving that φM (δ) is

increasing in δ.
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5.4 Proof of parts (v)-(vi) of Lemma 1

As mentioned in the main text, when either [A1-A3] or [A1-A2, A4-A5] hold, by applying the first

and second order conditions of profit functions, it follows that Cn(k, δ) has a unique equilibrium

and parts (i)-(iii) hold. Part (iv) follows from parts (ii) and (iii) by applying Observation 1. In

what follows, we show that (v) and (vi)(a)-(b) hold under either [A1-A3] or [A1-A2, A4-A5] and

(vi)(c) holds under [A1-A2, A4-A5].

Proof of part (v): Suppose either [A1-A3] or [A1-A2, A4-A5] hold.

Case 1 1 ≤ k ≤ n− 1: Let δ, δ̂ ∈ [0, ε] and δ̂ > δ.

If δ < θ/k ≤ δ̂, then by parts (ii)(a)-(b) of Lemma 1, pn(k, δ̂) ≤ c and c < pn(k, δ). Hence

pn(k, δ̂) < pn(k, δ) in this case.

If δ < δ̂ < θ/k, by part (ii)(a) of Lemma 1: Hn(pn(k, δ)) = c−kδ/n, Hn(pn(k, δ̂)) = c−kδ̂/n and

pn(k, δ), pn(k, δ̂) ∈ (c, p) ⊂ (0, p), where Hn(p) is given in (2). Noting that c− kδ/n > c− kδ̂/n >
c− ε > 0, by Observation 1, we conclude that pn(k, δ̂) < pn(k, δ).

Finally if θ/k ≤ δ < δ̂, by part (ii)(b) of Lemma 1: Hk(pn(k, δ)) = c− δ, Hk(pn(k, δ̂)) = c− δ̂
and pn(k, δ), pn(k, δ̂) ∈ (0, p). Noting that c− δ > c− δ̂ ≥ c− ε > 0, by Observation 1, we conclude

that pn(k, δ̂) < pn(k, δ). This proves the first statement of part (v) for 1 ≤ k ≤ n− 1.

Case 2 k = n: Let δ, δ̂ ∈ [0, ε] and δ̂ > δ. By part (iii) of Lemma 1: Hn(pn(n, δ)) = c − δ,
Hn(pn(n, δ̂)) = c− δ̂ and pn(n, δ), pn(n, δ̂) ∈ (c− δ, p) ⊂ (0, p), where Hn(p) is given in (2). Noting

that c− δ > c− δ̂ ≥ c− ε > 0, by Observation 1, we conclude that pn(n, δ̂) < pn(n, δ). This proves

the first statement of part (v) for k = n.

To prove the second statement of part (v), let 1 ≤ k ≤ n − 1. First note from part (ii)(b)

of Lemma 1 that φn(k, δ) = 0 for δ ≥ θ/k. Also note from part (ii)(a) of Lemma 1 that for any

δ < θ/k, φn(k, δ) > 0 = φn(k, θ/k). To complete the proof, it remains to show that φn(k, δ) is

decreasing for δ < θ/k.

If [A1-A2, A4-A5] hold, then along the same lines as the proof of Lemma A.2 of Sen and Tauman

(2018, p.44),18 it follows that φn(k, δ) is decreasing for δ < θ/k.

Next suppose [A1-A3] hold. By part (ii)(a) of Lemma 1, for δ < θ/k, any non-licensee firm

produces a positive Cournot quantity. The profit function of any non-licensee firm j is p(Q)qj−cqj .
Thus, the quantity qj of any non-licensee firm j satisfies the following first order condition: qj =

[p(Q)−c]/[−p′(Q)], so that qj = ψ0(Q) (where ψδ(Q) is given in (27)). Thus qn(k, δ) = ψ0(Q
n(k, δ))

(where Qn(k, δ) = kqn(k, δ) + (n− k)qn(k, δ) is the equilibrium industry quantity of Cn(k, δ)).

Let δ, δ̂ ∈ [0, θ/k) and δ̂ > δ. Then by part (ii)(a) and the first statement of part (v) of Lemma 1:

c < pn(k, δ̂) < pn(k, δ). Thus Qn(k, δ̂) > Qn(k, δ) and by Lemma L1, ψ0(Q
n(k, δ̂)) < ψ0(Q

n(k, δ)),

implying that qn(k, δ̂) < qn(k, δ). Thus φn(k, δ̂) = [pn(k, δ̂) − c]qn(k, δ̂) < φn(k, δ) = [pn(k, δ) −
c]qn(k, δ), completing the proof of part (v).

Proof of part (vi): The first statement of (vi) is immediate, so consider δ ∈ (0, ε]. We show that

18Sen, D., Tauman, Y. (2018) Patent licensing in a Cournot oligopoly: General results. Mathematical Social
Sciences 96, 37-48.
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(vi)(a)-(b) hold under both [A1-A3] and [A1-A2, A4-A5], while (vi)(c) holds under [A1-A2, A4-A5].

Proof of part (vi)(a) Suppose either [A1-A3] or [A1-A2, A4-A5] hold.

Case 1 k = 1: By part (i) of Lemma 1, pn(k − 1, δ) = pn(0, δ) > c.

If δ ≥ θ, then by part (ii)(b) of Lemma 1, pn(k, δ) = pn(1, δ) ≤ c. Hence pn(1, δ) < pn(0, δ) in

this case.

If 0 < δ < θ, then by parts (i) and (ii)(a) of Lemma 1: Hn(pn(0, δ)) = c, Hn(pn(1, δ)) = c− δ/n
and pn(0, δ), pn(1, δ) ∈ (c, p) ⊂ (0, p), where Hn(p) is given in (2). Since c > c − δ/n > c − ε > 0,

by Observation 1, it follows that pn(1, δ) < pn(0, δ).

Case 2 2 ≤ k ≤ n: First suppose 0 < δ < θ/k, so δ < θ/(k− 1). Then by part (ii)(a) of Lemma

1 (for k ≤ n− 1) and part (iii) of Lemma 1 (for k = n): Hn(pn(k, δ)) = c− kδ/n. By part (ii)(a) of

Lemma 1: Hn(pn(k − 1, δ)) = c − (k − 1)δ/n. Moreover, pn(k, δ), pn(k − 1, δ) ∈ (c, p) ⊂ (0, p). As

c− (k − 1)δ/n > c− kδ/n ≥ c− ε > 0, by Observation 1, we have pn(k, δ) < pn(k − 1, δ).

Next suppose θ/k ≤ δ < θ/(k− 1). In this case by part (ii)(a) of Lemma 1: pn(k− 1, δ) > c. By

part (ii)(b) of Lemma 1 (for k ≤ n− 1) and part (iii) of Lemma 1 (for k = n): pn(k, δ) ≤ c. Hence

pn(k, δ) < pn(k − 1, δ).

Finally suppose δ ≥ θ/(k − 1), so that δ > θ(k). In this case by part (ii)(b) of Lemma 1 (for

k ≤ n− 1) and part (iii) of Lemma 1 (for k = n): Hk(pn(k, δ)) = c− δ. By part (ii)(b) of Lemma

1: Hk−1(pn(k − 1, δ)) = c − δ. Moreover, pn(k, δ), pn(k − 1, δ) ∈ (0, p). Note from (2) that for

p ∈ (0, p), the elasticity function η(p) is positive and Hk(p) > Hk−1(p) for any k ≥ 2. Hence

Hk(pn(k− 1, δ)) > Hk−1(pn(k− 1, δ)). Since Hk−1(pn(k− 1, δ)) = Hk(pn(k, δ)) (both equal c− δ),
we conclude that Hk(pn(k − 1, δ)) > Hk(pn(k, δ)) = c − δ > 0. Then by Observation 1, it follows

that pn(k − 1, δ) > pn(k, δ). This completes the proof of part (vi)(a).

Proof of part (vi)(b)

First we prove that for any δ > 0: φn(k−1, δ) ≥ φn(k, δ) for 1 ≤ k ≤ n−1. Under [A1-A2,

A4-A5], the result follows from Lemma 2, p.488, Kamien et al. (1992).19 In what follows, we prove

the result under [A1-A3].

Case 1 k = 1: In this case, k− 1 = 0. Note from part (i) of Lemma 1 that when the number of

licensees is zero, all firms are non-licensess and all of them obtain positive Cournot profit so that

φn(0, δ) > 0.

If δ ≥ θ, then by part (ii)(b) of Lemma 1, φn(1, δ) = 0. So φn(1, δ) < φn(0, δ) in this case.

If δ < θ, then by part (ii)(a) of Lemma 1, all n− 1 non-licensee firms produce positive Cournot

quantities. From the first order condition of any non-licensee firm, we have qn(1, δ) = ψ0((Q
n(1, δ))

(where ψδ(Q) is given by (27)). When the number of licensees is zero, all firms are non-licensees

and the first order condition of any firm gives qn(0, δ) = ψ0((Q
n(0, δ)). By part (vi)(a) of Lemma

1: pn(0, δ) > pn(1, δ), implying Qn(0, δ) < Qn(1, δ), so by Lemma L1: qn(0, δ) > qn(1, δ). Since

pn(0, δ) > pn(1, δ) > c and qn(0, δ) > qn(1, δ), we have φn(0, δ) = [pn(0, δ)− c]qn(0, δ) > φn(1, δ) =

19Kamien, M.I., Oren, S.S., Tauman, Y. (1992) Optimal licensing of cost-reducing innovation. Journal of Mathe-
matical Economics 21, 483-508.
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[pn(1, δ)− c]qn(1, δ).

Case 2 2 ≤ k ≤ n−1: First suppose δ ≥ θ/(k−1). Then δ > θ/k and by part (ii)(b) of Lemma

1: φn(k − 1, δ) = φn(k, δ) = 0.

Next suppose θ/k ≤ δ < θ/(k − 1). Then by parts (ii)(a)-(b) of Lemma 1: φn(k, δ) = 0 and

φn(k − 1, δ) > 0. Hence φn(k − 1, δ) < φn(k, δ).

Finally suppose 0 < δ < θ/k. Then δ < θ/(k−1). In this case by part (ii)(a) of Lemma 1: when

there are k or k− 1 licensees, all non-licensee firms produce positive Cournot quantities. From the

first order condition of any non-licensee firm, we have qn(m, δ) = ψ0((Q
n(m, δ)) for m = k − 1, k

(where ψδ(Q) is given by (27)). By part (vi)(a) of Lemma 1: pn(k − 1, δ) > pn(k, δ), implying

Qn(k − 1, δ) < Qn(k, δ), so by Lemma L1, qn(k − 1, δ) > qn(k, δ). Since pn(k − 1, δ) > pn(k, δ) > c

and qn(k − 1, δ) > qn(k, δ), we have φn(k − 1, δ) = [pn(k − 1, δ) − c]qn(k − 1, δ) > φn(k, δ) =

[pn(k, δ)− c]qn(k, δ).

Now we prove that for any δ > 0: φ
n
(k, δ) > φn(k, δ) for 1 ≤ k ≤ n− 1. In what follows,

it shown that this result holds under either [A1-A3] or [A1-A2, A4-A5].

First consider δ ≥ θ/k. Then by part (ii)(b) of Lemma 1: φ
n
(k, δ) > 0 = φn(k, δ).

Next consider 0 < δ < θ/k. Then all firms (licensees as well as non-licensees) produce positive

Cournot quantities. The profit function of any licensee firm i is p(Q)qi − (c− δ)qi and its quantity

qi satisfies the first order condition: qi = [p(Q) − (c − δ)]/[−p′(Q)]. The profit function of any

non-licensee firm j is p(Q)qj − cqj and its quantity qj satisfies the first order condition: qj =

[p(Q) − c]/[−p′(Q)]. Using the function ψδ(Q) from (27), we have qi = ψδ(Q) and qj = ψ0(Q).

Thus, qn(k, δ) = ψδ(Q
n(k, δ)) and qn(k, δ) = ψ0(Q

n(k, δ)).

As p′ < 0 and δ > 0, by (27), we have ψδ(Q) > ψ0(Q), so that ψδ(Q
n(k, δ)) > ψ0(Q

n(k, δ)).

This implies qn(k, δ) > qn(k, δ). Thus φ
n
(k, δ) = [pn(k, δ)− (c−δ)]qn(k, δ) > [pn(k, δ)−c]qn(k, δ) >

φn(k, δ) = [pn(k, δ)− c]qn(k, δ).

Proof of part (vi)(c) We prove φ
n
(n, δ) > φn(n− 1, δ) for δ > 0 when [A1-A2, A4-A5] hold.

First note that if δ ≥ θ/(n − 1), then by part (ii)(b) of Lemma 1, φn(n − 1, δ) = 0 and the

inequality clearly holds.

Next consider 0 < δ < θ/(n− 1) and let δ̃ be such that nδ̃ = (n− 1)δ (since δ < θ/(n− 1), we

have δ̃ = (n− 1)δ/n < θ/n; also note that δ̃ < δ). Then applying the result of part (iv) of Lemma

1, we have pn(n− 1, δ) = pn(n, δ̃) and so Qn(n− 1, δ) = Qn(n, δ̃). Hence

φ
n
(n, δ̃) = [pn(n, δ̃)− (c− δ̃)]Qn(n, δ̃)/n = [pn(n− 1, δ)− (c− δ̃)]Qn(n− 1, δ)/n (29)

Note that Qn(n − 1, δ) = (n − 1)qn(n − 1, δ) + qn(n − 1, δ). In the proof of the last paragraph of

part (vi)(b), we have shown that under either [A1-A3] or [A1-A2, A4-A5], qn(k, δ) > qn(k, δ) for

1 ≤ k ≤ n− 1, so in particular qn(n− 1, δ) > qn(n− 1, δ). Therefore Qn(n− 1, δ)/n > qn(n− 1, δ).

As δ̃ > 0, from (29) we have

φ
n
(n, δ̃) > [pn(n− 1, δ)− c]qn(n− 1, δ) = φn(n− 1, δ)
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When [A1-A2, A4-A5] hold, for any 1 ≤ k ≤ n, the Cournot profit of a licensee φ
n
(k, δ) is increasing

in δ (see, Lemma A.2, Sen and Tauman 2018, p.44). Using this result, noting that δ > δ̃, we have

φ
n
(n, δ) > φ

n
(n, δ̃). Because φ

n
(n, δ̃) > φn(n− 1, δ), it follows that φ

n
(n, δ) > φn(n− 1, δ).

5.5 Proof Lemma 2

As mentioned in the main text, parts (i)(a), (ii)(a) are immediate from (12) by noting that

φ
n
(k, 0) = φn(k, 0) for 1 ≤ k ≤ n − 1, φ

n
(n, 0) = φn(n − 1, 0) (part (vi), Lemma 1) and for

1 ≤ k ≤ n − 1, δ ≥ θ/k: φn(k, δ) = 0 (part (ii)(b), Lemma 1). In what follows, we show that

property (i)(b) holds under either [A1-A3] or [A1-A2, A4-A5] and property (ii)(b) holds under

[A1-A2, A4-A5].

Proof of (i)(b) Suppose either [A1-A3] or [A1-A2, A4-A5] hold. Let 1 ≤ k ≤ n − 1. Note that

φ
n
(k, δ) > φn(k, δ) > 0 for 0 < δ < θ/k (parts (ii)(a), (iv)(b) of Lemma 1). Then from (12), it

follows that 0 < γn(k, δ) < 1 for 0 < δ < θ/k.

To complete the proof of (i)(b), it remains to show that when 1 ≤ k ≤ n − 1, γn(k, δ) is

increasing for 0 < δ < θ/k. Let 1 ≤ k ≤ n − 1 and δ ∈ (0, θ/k). Then by part (ii)(a) of Lemma

1, all firms produce positive Cournot quantities and the quantities of both a licensee and a non-

licensee are obtained from first order conditions. In this case the quantity qi of any licensee firm

i is given by qi = [p(Q) − (c − δ)]/[−p′(Q)] and the quantity qj of any non-licensee firm j is

given by qj = [p(Q) − c]/[−p′(Q)]. Thus the equilibrium profit of any licensee firm i is πi =

[p(Q)−(c−δ)]qi = [p(Q)−(c−δ)]2/[−p′(Q)] and that of any non-licensee firm j is πj = [p(Q)−c]qj =

[p(Q)− c]2/[−p′(Q)]. So the ratio πj/πi equals [p(Q)− c]2/[p(Q)− (c− δ)]2. Therefore

φn(k, δ)/φ
n
(k, δ) = [pn(k, δ)− c]2/[pn(k, δ)− (c− δ)]2

Hence

γn(k, δ) = [φ
n
(k, δ)− φn(k, δ)]/φ

n
(k, δ) = βδ(p

n(k, δ))

where the function βδ(p) is given in (28). Note that

dβδ(p
n(k, δ))/dδ = [∂βδ(p)/∂p][∂p

n(k, δ)/∂δ]p=pn(k,δ) + [∂βδ(p)/∂δ]p=pn(k,δ) (30)

Since βδ(p) is decreasing in p (Lemma L2) and pn(k, δ) is decreasing in δ (part (v), Lemma 1), the

first term on the right side of (30) is positive. Note from (28) that βδ(p) is increasing in δ for any

p > c− δ, so the second term of (30) is also positive. This shows that βδ(p
n(k, δ)) is increasing in

δ and therefore γn(k, δ) is increasing in δ. This completes the proof of (i)(b).

Proof of (ii)(b) Suppose [A1-A2, A4-A5] hold and let k = n. Observe that under [A1-A2, A4-A5],

φ
n
(n, δ) > φn(n − 1, δ) > 0 for 0 < δ < θ/(n − 1) (parts (ii)(a), (vi)(c) of Lemma 1). Then from

(12), it follows that 0 < γn(n, δ) < 1 for 0 < δ < θ/(n− 1).

It remains to show that γn(n, δ) is increasing in δ for 0 < δ < θ/(n−1). Under [A1-A2, A4-A5],

φn(n− 1, δ) is decreasing in δ for δ ∈ (0, θ/(n− 1)) (by part (v) of Lemma 1). By Lemma A.2, Sen
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and Tauman (2018, p.44), under [A1-A2, A4-A5]: φ
n
(n, δ) is increasing in δ. From these results,

using (12) it follows that γn(n, δ) is increasing for 0 < δ < θ/(n− 1).

5.6 Proof of parts (II)-(III) of Proposition 3

The conclusions of Proposition 2 will be useful for the proof of Proposition 3. The proof of part

(I) is given in the main text. Here we prove parts (II) and (III). First note from Proposition 2(I)-

(II) that for any k ∈ {1, . . . , n} and δ ∈ [0, ε], the set Sn(k, δ) given in (20) is non-empty (more

specifically, Sn(k, 0), Sn(k, ε) are both singleton sets and Sn(k, δ) is a continuum for 0 < δ < ε).

This implies that for every k ∈ {1, . . . , n} and δ ∈ [0, ε], there is always at least one acceptable and

feasible policy that supports (k, δ).

To determine optimal licensing policies for I, we choose k ∈ {1, . . . , n} and δ ∈ [0, ε] to maximize

Πn(k, δ)FRV given in (17),(18). For any solution (k∗, δ∗) to this maximization problem, the set of

all optimal licensing policies corresponding to this solution is the set of all acceptable and feasible

(k∗, r, v) that supports (k∗, δ∗), which is the set {(k∗, r, v)|(r, v) ∈ Sn(k∗, δ∗)}, where Sn(k, δ) is

given in (20).

To prove the results, first we show that it is never optimal for I to choose either (i) (k, δ) with

δ > θ/k and 1 ≤ k ≤ n− 1 or (ii) (n, δ) with δ > θ/(n− 1).

Note that δ ∈ [0, ε]. For 1 ≤ k ≤ n − 1, if ε ≤ θ/k, it is not even feasible to choose (k, δ) with

δ > θ/k. Similarly, if ε ≤ θ/(n − 1), it is not even feasible to choose (n, δ) with δ > θ/(n − 1).

So clearly policies satisfying (i) or (ii) above are not optimal in these cases. In what follows, we

show that such policies are not optimal in cases where it is feasible to offer these policies, so for

1 ≤ k ≤ n − 1, we show that any (k, δ) with δ > θ/k is not optimal when ε > θ/k and any (n, δ)

with δ > θ/(n− 1) is not optimal when ε > θ/(n− 1).

By part (ii)(b) of Lemma 1, when there are k licensees with 1 ≤ k ≤ n − 1 and δ ≥ θ/k, the

Cournot quantity and profit of any non-licensee is zero. Using this in (17)-(18), the payoff of I is

G(pn(k, δ)) if either (i) 1 ≤ k ≤ n − 1 and δ > θ/k or (ii) k = n and δ > θ/(n − 1) (note that if

δ > θ/(n− 1), we also have δ > θ/n).

Recall that pM (ε) denotes the monopoly price under marginal cost c− ε. Since the innovation

is nondrastic, we have c < pM (ε). Note by (3) that G(p) (the monopolist’s profit at price p under

marginal cost c− ε) is increasing for p ≤ c. As pn(k, δ) < c for δ > θ/k (parts (ii)(b),(iii), Lemma

1), for either (i) 1 ≤ k ≤ n − 1 and δ > θ/k or (ii) k = n and δ > θ/(n − 1) (and thus δ > θ/n),

we have G(pn(k, δ)) < G(c) = G(pn(k, θ/k)), showing that (k, θ/k) gives a strictly higher payoff20

than (k, δ). This proves the assertion that it is never optimal for I to choose either (i) (k, δ) with

δ > θ/k and 1 ≤ k ≤ n− 1 or (ii) (n, δ) with δ > θ/(n− 1).

In view of the assertion in the last paragraph, it is sufficient to consider (k, δ) with δ ≤ θ/k for

1 ≤ k ≤ n− 1 and (n, δ) with δ ≤ θ/(n− 1).

20Note that when ε > θ/k, it is feasible to offer a policy (k, θ/k), because for such a policy, δ = θ/k < ε. As
0 < θ/k < ε, by Proposition 2(II), Sn(k, θ/k) is a continuum, so in particular there is at least one acceptable and
feasible policy that supports (k, θ/k).
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Proof of part (II) Since n ≥ 3, we have n−2 ≥ 1. To prove part (II) of Proposition 3, consider any

(k, δ) with 1 ≤ k ≤ n− 2 and δ ≤ θ/k. Consider another policy (n− 1, δ̃) such that kδ = (n− 1)δ̃.

By part (iv) of Lemma 1, pn(k, δ) = pn(n− 1, δ̃).

If δ = θ/k, then δ̃ = θ/(n − 1) and by Lemma 1(ii)(b): pn(k, δ) = pn(n − 1, δ̃) = c, any

non-licensee produces zero and obtains zero profit under both (k, δ) and (n− 1, δ̃).

If δ < θ/k, then δ̃ < θ/(n− 1), so by Lemma 1(ii)(a): pn(k, δ) = pn(n− 1, δ̃) > c. Under either

(k, δ) or (n−1, δ̃), the Cournot quantity of any non-licensee firm j is positive and it satisfies the first

order condition: qj = [p(Q)− c]/[−p′(Q)]. Since pn(k, δ) = pn(n−1, δ̃) and Qn(k, δ) = Qn(n−1, δ̃),

we conclude that the Cournot quantity and profit of any non-licensee stay the same under (k, δ)

and (n− 1, δ̃).

Thus for any δ ≤ θ/k, we have qn(k, δ) = qn(n− 1, δ̃) and φn(k, δ) = φn(n− 1, δ̃). Using this in

(17): ΠFRV (n− 1, δ̃)−ΠFRV (k, δ) = (n− 1− k)qn(k, δ) ≥ 0. This shows that for any policy with

1 ≤ k ≤ n − 2, there exists a policy with k = n − 1 which gives the same or higher payoff. Hence

there always exists an optimal policy with k = n− 1 or k = n. This completes the proof of the first

statement of part (II).

To prove the second statement of part (II), if (k, δ) is part of an optimal policy for 1 ≤ k ≤ n−2,

then we must have δ ≤ θ/k and ΠFRV (n−1, δ̃) = ΠFRV (k, δ) where kδ = (n−1)δ̃. Note from the last

paragraph that ΠFRV (n− 1, δ̃) = ΠFRV (k, δ) ⇔ (n− 1− k)qn(k, δ) = 0. Since k ≤ n− 2 < n− 1,

(n − 1 − k)qn(k, δ) = 0 ⇔ qn(k, δ) = 0. As δ ≤ θ/k, we note that qn(k, δ) = 0 ⇔ δ = θ/k.

When δ = θ/k, by Lemma 1(ii)(b): pn(k, δ) = c, qn(k, δ) = 0, φn(k, δ) = 0 and by (17), we have

ΠFRV (k, δ) = G(c). Taking p = c in (3), we have G(c) = εQ(c).

Proof of part (III) Let ε > θ/(n− 1).

Proof of (III)(i) Since ε > θ/(n − 1), for any policy with δ = θ/(n − 1), we have 0 < δ < ε.

Taking k = n−1 and δ = θ/(n−1) in Proposition 2(II), the set Sn(n−1, θ/(n−1)) is a continuum

(where S(k, δ) is given in (20)). Thus, in particular, there is at least one acceptable and feasible

policy with k = n− 1 and δ = θ/(n− 1).

Consider any policy with k = n−1, δ = θ/(n−1). By Lemma 1(ii)(b), pn(n−1, θ/(n−1)) = c,

qn(n−1, θ/(n−1)) = 0. Using this in (17), we have ΠFRV (n−1, θ/(n−1)) = G(c). This shows that

there exist policies at which I can obtain G(c). Taking p = c in (3), we note that G(c) = εQ(c).

Because I obtains G(c) under some policies, it must obtain at least G(c) under any optimal policy.

This completes the proof of (III)(i).

Proof of the first statement of (III)(ii) that under any optimal policy, the post-

innovation Cournot price is at least c: Since the innovation is nondrastic, we have c < pM (ε).

Note that the function G(p) (given in (3)) is increasing for p < pM (ε). Hence G(p) < G(c) for

p < c. Note from (17) and (18) that for any (k, δ), the payoff of I is bounded above by G(pn(k, δ)).

If pn(k, δ) < c, I would obtain G(pn(k, δ)) < G(c). Since I obtains at least G(c) under any optimal

policy (by part (III)(i)), under any optimal policy the resulting Cournot price must be at least c.

Proof of (III)(iii) Note that for a pure unit royalty policy: v = 0. Using this in (7), we have

δ(r, 0) = ε− r. Thus a pure unit royalty policy has δ = ε− r, so that r = ε− δ.
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First consider a pure unit royalty policy with (k, δ) such that δ ≥ θ/k. In this case, by parts

(ii)(b) and (iii) of Lemma 1, pn(k, δ) ≤ c, all non-licensees drop out of the market and the payoff

of I is its revenue from unit royalty rkqn(k, δ) = (ε− δ)kqn(k, δ) = (ε− δ)Qn(k, δ) (where Qn(k, δ)

is the equilibrium industry quantity of Cn(k, δ)). Note that

(ε− δ)Qn(k, δ) < (ε− δ)Qn(k, δ) + kφ
n
(k, δ)

= (ε− δ)Qn(k, δ) + [pn(k, δ)− (c− δ)]Qn(k, δ) = G(pn(k, δ))

where G(p) is given in (3). Since pn(k, δ) ≤ c, we have G(pn(k, δ)) ≤ G(c), so the revenue from

unit royalty in this case is less than G(c). By part (III)(i) this proposition, such a policy cannot be

optimal.

Next consider a pure unit royalty policy with (k, δ) such that δ < θ/k. In this case, by parts

(ii)(a) and (iii) of Lemma 1, pn(k, δ) > c, so the equilibrium industry output Qn(k, δ) is less than

Q(c). The payoff of I is its revenue from unit royalty rkqn(k, δ) = (ε− δ)kqn(k, δ) ≤ (ε− δ)Qn(k, δ)

< (ε− δ)Q(c) ≤ εQ(c) = G(c) and again by part (III)(i), such a policy cannot be optimal.

To show that a pure upfront policy is not optimal, first observe that for any pure upfront fee

policy, we have both r = 0 and v = 0. Using this in (7), we have δ(0, 0) = ε. Thus a pure upfront

fee policy has δ = ε. It is given that n ≥ 3 and ε > θ/(n − 1). Since the innovation is nondrastic,

we have ε < θ. Thus θ/(n − 1) < ε < θ. For any ε ∈ (θ/(n − 1), θ), ∃ 2 ≤ m ≤ n − 1 such that

θ/m ≤ ε < θ/(m− 1).

For k ≥ m and δ = ε, we have δ = ε ≥ θ/m ≥ θ/k. Then by Lemma 1(ii)(b) and (iii), the

resulting Cournot price pn(k, ε) is lower than c, all non-licensees drop out of the market and by

(17), I obtains G(pn(k, ε)) < G(c). By part (III)(i), such a policy cannot be optimal.

For any policy with k ≤ m− 1 (so that k < n− 1) and δ = ε, we have δ = ε < θ/(m− 1) ≤ θ/k.
Consider (n−1, δ̃) such that (n−1)δ̃ = kδ = kε. By Lemma 1(iv), pn(k, ε) = pn(n−1, δ̃). Moreover

(as shown in the proof of part (II)), qn(k, ε) = qn(n− 1, δ̃) and φn(k, ε) = φn(n− 1, δ̃). Using these

in (17), we have ΠFRV (n− 1, δ̃)−ΠFRV (k, ε) = (n− 1− k)qn(k, ε) > 0 (since k < n− 1, we have

n−1−k > 0 and since ε < θ/(m−1) ≤ θ/k, by Lemma 1(ii)(a), we have qn(k, ε) > 0). This shows

that any policy with k ≤ m− 1 and δ = ε also cannot be optimal. This proves that a pure upfront

fee policy is not optimal.

Proof of the second statement of (III)(ii) that under any optimal policy, the post-

innovation Cournot price falls below its pre-innovation level: Note from part (i) of Propo-

sition 2 that the only feasible and acceptable three part tariff that supports δ = 0 is the pure per

unit royalty r = ε. We have shown in part (III)(iii) that it is not optimal to set a pure per unit

royalty. Thus, if (k, δ) is part of an optimal policy, we must have δ > 0. We have shown before

in the proof of the first statement of (III)(ii) that for any such optimal policy, pn(k, δ) ≥ c. Then

by Lemma 1(ii)(a), Hn(pn(k, δ)) = c − kδ/n > 0, where Hn(p) is given in21 (2). All firms have

21By Lemma 1(ii), pn(k, δ) < c if and only if δ < θ/k and in that case Hn(pn(k, δ)) = c − kδ/n. To see that this
holds also when pn(k, δ) = c, note that pn(k, δ) = c if and only if δ = θ/k. In that case c − kδ/n = c − θ/n. Since
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marginal cost c = c − 0 in the pre-innovation case. Taking δ = 0, the Cournot oligopoly Cn(n, 0)

corresponds to the pre-innovation scenario. By Lemma 1(iii), the pre-innovation Cournot price

satisfies Hn(pn(n, 0)) = c > 0. Since we must have δ > 0 for any optimal policy, c − kδ/n < c.

Thus, Hn(pn(k, δ)) < Hn(pn(n, 0)). Then by Observation 1, it follows that pn(k, δ) < pn(n, 0). This

completes the proof of the assertion.

Proof of (III)(iv) Note from Proposition 2(I) that the only acceptable and feasible policy

that supports δ = 0 is a pure royalty policy r = ε and the only acceptable and feasible policy that

supports δ = ε is a pure upfront fee. We have shown that a pure royalty or a pure upfront fee is

not optimal. Thus, any optimal policy must have 0 < δ < ε.

Consider any (k∗, δ∗) that constitutes an optimal policy. Then we must have 0 < δ∗ < ε. Then

by Proposition 2(II), Sn(k∗, δ∗) (given in (20)) always contains a two part tariff consisting of a

positive per unit royalty and upfront fee but no ad valorem royalty. Moreover, by Proposition

2(III), there always exist points in Sn(k∗, δ∗) (there is a continuum of such points) that correspond

to three part tariffs whose all components (unit royalty, ad valorem royalty and upfront fee) are

positive. This completes the proof of part (III)(iv).

5.7 Proof of parts (III)-(V) of Proposition 4

5.7.1 Proof of part (III) of Proposition 4

Recall that for linear demand p(Q) = max{a − Q, 0}, we have θ = a − c. By Table A.5 (p.183)

of Sen and Tauman (2007),22 for n ≥ 7, ∃ u(n) < v(n) such that when ε ∈ (θ/v(n), θ/u(n)), the

unique optimal two part tariff with per unit royalty and upfront fee has k = n and r = ρ̄0(n) where

ρ̄0(n) := (n− 1)[(2n− 1)ε− θ]/2(n2 − n+ 1) (31)

Since we denote ad valorem royalties by v, to avoid notational confusion, we denote the function

v(n) of Sen and Tauman by z(n). Thus, by Table A.5 of Sen and Tauman, we have

z(n) := [n3 − n+
√

(n+ 1)(n2 − n+ 1)(n3 − 6n2 + 5n− 4)]/(2n2 − n+ 1) (32)

We also note that (ibid., p.183)

u(n) := (n+ 1)(1 +
√
n2 − n+ 1)2/n(n− 1)2 (33)

For n ≥ 7 and ε ∈ (θ/z(n), θ/u(n)), the unique optimal two part tariff with per unit royalty and

upfront fee has k = n and r = ρ̄0(n). Note from (22) that

δ∗n(n) := [(n− 1)θ + (n+ 1)ε]/2(n2 − n+ 1) = ε− ρ̄0(n) (34)

θ = c/η(c), from (2) we have Hn(c) = c − θ/n. Thus Hn(pn(k, δ)) = Hn(c) = c − θ/n = c − kδ/n, so the equality
Hn(pn(k, δ)) = c− kδ/n also holds when pn(k, δ) = c.

22Sen, D., Tauman, Y. (2007) General licensing schemes for a cost-reducing innovation. Games and Economic
Behavior 59, 163-186.
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Therefore in this case, any optimal (k, δ) for a three part tariff has k = n and δ = δ∗n(n). The set of

all optimal licensing policies in this case is the set of all (r, v) that supports δ∗n(n) for which (n, r, v)

is both acceptable and feasible. This set is Sn(n, δ∗n(n)), where Sn(k, δ) is given in (20).

Proof of (III)(i)-(ii) Noting that δ∗n(n) ∈ (0, ε), parts (III)(i)-(ii) follows by Proposition

2(II)-(III).

Proof of (III)(iii) Taking k = n in parts (IV)-(V) of Proposition 2, we note that if δ∗n(n) <

δ̂n(n), then Sn(n, δ∗n(n)) contains a policy that is a two part royalty with positive per unit and

ad valorem royalties but no upfront fee. On the other hand, if δ∗n(n) > δ̂n(n), then Sn(n, δ∗n(n))

contains a policy that is a two part tariff with a positive ad valorem royalty and fee but no per unit

royalty.

To prove this part, we need to find out when δ∗n(n) < δ̂n(n) and when δ∗n(n) > δ̂n(n). Regarding

δ̂n(n), recall that (see Figures 3(c), 3(d))

γn(n, δ) T v̄(δ)⇔ δ T δ̂n(n) (35)

where γn(n, δ) is given in (12) and v̄(δ) is given in (??). From (35), we note that

δ∗n(n) T δ̂n(n)⇔ γn(n, δ∗n(n)) T v̄(δ∗n(n)) (36)

From (36) if δ∗n(n) < δ̂n(n), then γn(n, δ∗n(n)) < v̄(δ∗n(n)) and the maximum v that can support

δ∗n(n) is v = γn(n, δ∗n(n)) (as shown in Figure 4(b)). On the other hand, if δ∗n(n) > δ̂n(n), then

γn(n, δ∗n(n)) > v̄(δ∗n(n)) and the maximum v that can support δ∗n(n) is v = v̄(δ∗n(n)) (as shown in

Figure 4(c)).

Recall that θ ≡ a− c. Taking δ = δ∗n(n) from (34) in (??), we have

v̄(δ∗n(n)) = (n− 1)[(2n− 1)ε− θ]/[(n− 1)(2nc− a) + (n+ 1)(c− ε)] (37)

Since z(n) < 2n− 1 for n ≥ 7 and ε ∈ (θ/z(n), θ/u(n)), we have ε > θ/(2n− 1), so (2n− 1)ε > θ.

Thus the numerator of v̄(δ∗n(n)) is positive. Moreover, since c > ε and (2n − 1)ε > θ = a − c, we

have (2n− 1)c > a− c so that 2nc > a and the denominator of v̄(δ∗n(n)) is also positive.

Note that under the linear demand p(Q) = max{a− p, 0}, for δ = δ∗n(n), the Cournot profits of

a licensee when k = n and that of a non-licensee when k = n− 1 are given as follows:

φ
n
(n, δ∗n(n)) = [θ + δ∗n(n)]2/(n+ 1)2 and φn(n− 1, δ∗n(n)) = [θ − (n− 1)δ∗n(n)]2/(n+ 1)2 (38)

Taking δ = δ∗n(n) from (34) in (12) and using (38) we have

γn(n, δ∗n(n)) = n[(n−1)θ+(n+1)ε][(3n2−n+2)θ−(n2−n−2)ε]/[(2n2−n+1)θ+(n+1)ε]2 (39)
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From (37) and (39), we note that

v̄(δ∗n(n)) T γn(δ∗n(n))⇔ τn(ε) T 0 (40)

where

τn(ε) := −(n3 − 3n2 + n− 1)(n+ 1)2ε3

+(n+ 1)[(9n4 − 10n3 + 16n2 − 10n+ 3)a+ (2n5 − 13n4 + 10n3 − 14n2 + 6n− 3)c]ε2

+θ[(n− 1)(8n5 − 7n4 + 16n3 − 8n2 + 6n− 3)a− (12n6 − 11n5 + 23n4 − 20n3 + 18n2 − 9n+ 3)c]ε

− (n− 1)θ2[(n2 + 1)2a+ (2n2 − n+ 1)(3n3 − 3n2 + 3n− 1)c] (41)

From (36) and (40), we note that

δ∗n(n) S δ̂n(n)⇔ τn(ε) T 0 (42)

Note that for n ≥ 7, τn(ε) given in (41) is a cubic function of ε and its coefficient of ε3 is negative.

So the third order derivative of τn(ε) with respect to ε is negative, which implies that τ ′′n(ε) (the

second order derivative of τn(ε) with respect to ε) is decreasing in ε.

Denoting ν0(n) :=
√
n2 − n+ 1, using (33) and (41), we note that for n ≥ 7, τ ′′n(θ/u(n)) =

2ν0(n)[α(n)a+ β(n)c]/[1 + ν0(n)]2, where

α(n) := 9n4 − 10n3 + 16n2 − 10n+ 3 + ν0(n)(3n4 + n3 + 8n2 − 7n+ 3),

β(n) := 2n5 − 13n4 + 10n3 − 14n2 + 6n− 3 + ν0(n)(n5 − 5n4 − 8n2 + 3n− 3)

Since αn, βn are both positive, we have τ ′′n(θ/u(n)) > 0, implying that τ ′′n(ε) > 0 for all ε ∈
(θ/z(n), θ/u(n)). Thus for n ≥ 7, τ ′n(ε) (the derivative of τn(ε) with respect to ε) is increasing in ε

for all ε ∈ (θ/z(n), θ/u(n)).

Since c > ε and ε > θ/z(n) = (a − c)/z(n), we have c > a/[z(n) + 1]. For n ≥ 7, we observe

that there exist functions 1/[z(n) + 1] < t(n) < t(n) < 1 such that23

(I) If a/[z(n)+1] < c < t(n)a, then τ ′n(θ/z(n)) > 0 and hence τ ′n(ε) > 0 for all ε ∈ (θ/z(n), θ/u(n)).

In this case τn(ε) is increasing in ε for all ε ∈ (θ/z(n), θ/u(n)).

(II) If t(n)a < c < t(n)a, then τ ′n(θ/z(n)) < 0 and τ ′n(θ/u(n)) > 0. So ∃ ε0(n) ∈ (θ/z(n), θ/u(n))

such that τn(ε) is decreasing in ε for ε ∈ (θ/z(n), ε0(n)) and it is increasing in ε for ε ∈ (ε0(n), θ/u(n)).

23For n ≥ 7, the functions t(n), t(n) are given by t(n) := t1(n)/t2(n) and t(n) := t1(n)/t2(n) where

ν1(n) :=
√

(n+ 1)(n2 − n+ 1)(n3 − 6n2 + 5n− 4),

t1(n) := 2ν1(n)(n2+1)(8n4−15n3+25n2−13n+3)+16n9−78n8+196n7−305n6+356n5−271n4+182n3−81n2+42n−9,

t2(n) := 2ν1(n)(12n6−15n5+35n4−28n3+26n2−9n+3)+(12n6−15n5+23n4−20n3+14n2−9n+3)(2n3−6n2+5n−3),

t1(n) := (n− 1)[2ν0(n)(n2 + n+ 1)(4n3 − 3n2 + 6n− 3) + 2n7 + 14n5 − 6n4 + 17n3 − 6n2 + 9n− 6],

t2(n) := ν0(n)(10n6 + 4n5 + 14n4 − 8n3 + 18n2 − 12n+ 6) + 2n8 + 2n7 + 14n6 − 8n5 + 27n4 − 23n3 + 27n2 − 15n+ 6.
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(III) If t(n)a < c < a, then τ ′n(θ/u(n)) < 0. So τn(ε) is decreasing in ε for all ε ∈ (θ/z(n), θ/u(n)).

We next observe that for n ≥ 7, there exist functions 1/[z(n) + 1] < λ(n) < λ(n) < 1 such

that24

(A) If a/[z(n) + 1] < c < λ(n)a, then both τn(θ/z(n)), τn(θ/u(n)) are positive.

(B) If λ(n)a < c < λ(n)a, then τn(θ/z(n)) < 0 and τn(θ/u(n)) > 0.

(C) If λ(n)a < c < a, then both τn(θ/z(n)), τn(θ/u(n)) are negative.

Noting that λ(n) < t(n) from (I)-(III) and (A)-(C), we conclude the following for n ≥ 7.

(1) If a/[z(n) + 1] < c < t(n)a, then τn(ε) is increasing in ε for all ε ∈ (θ/z(n), θ/u(n)). Noting

that (1/[z(n) + 1], t(n)) = (1/[z(n) + 1], λ(n)] ∪ (λ(n), λ(n)] ∪ (λ(n), t(n)), we have the following.

(a) If a/[z(n) + 1] < c < λ(n)a, then τn(θ/z(n)) > 0, so τn(ε) > 0 for all ε ∈ (θ/z(n), θ/u(n)). By

(42), δ∗n(n) < δ̂n(n) for all ε ∈ (θ/z(n), θ/u(n)).

(b) If λ(n)a < c < λ(n)a, then τn(θ/z(n)) < 0 < τn(θ/u(n)), so ∃ ε(n) ∈ (θ/z(n), θ/u(n)) such that

τn(ε) < 0 for ε ∈ (θ/z(n), ε(n)) and τn(ε) > 0 for ε ∈ (ε(n), θ/u(n)). By (42), δ∗n(n) > δ̂n(n)

for ε ∈ (θ/z(n), ε(n)) and δ∗n(n) < δ̂n(n) for ε ∈ (ε(n), θ/u(n)).

(c) If λ(n)a < c < t(n)a, then τn(θ/u(n)) < 0, so τn(ε) < 0 for all ε ∈ (θ/z(n), θ/u(n)). By (42),

δ∗n(n) > δ̂n(n) for all ε ∈ (θ/z(n), θ/u(n)).

Again noting that λ(n) < t(n), when c > t(n)a, we have c > λ(n)(a). In this case both

τn(θ/z(n)), τn(θ/u(n)) are negative and the following hold.

(2) If t(n)a < c < t(n)a, then ∃ ε0(n) ∈ (θ/z(n), θ/u(n)) such that τn(ε) is decreasing in ε for

ε ∈ (θ/z(n), ε0(n)) and it is increasing in ε for ε ∈ (ε0(n), θ/u(n)). Since both τn(θ/z(n)), τn(θ/u(n))

are negative, in this case τn(ε) < 0 for all ε ∈ (θ/z(n), θ/u(n)). By (42), δ∗n(n) > δ̂n(n) for all

ε ∈ (θ/z(n), θ/u(n)).

(3) If t(n)a < c < a, then τn(ε) is decreasing in ε for all ε ∈ (θ/z(n), θ/u(n)). Since τn(θ/z(n)) < 0,

in this case τn(ε) < 0 for all ε ∈ (θ/z(n), θ/u(n)). By (42), δ∗n(n) > δ̂n(n) for all ε ∈ (θ/z(n), θ/u(n)).

24 For n ≥ 7, the functions λ(n), λ(n) are given by λ(n) := λ1(n)/λ2(n) and λ(n) := λ1(n)/λ2(n), where

ν2(n) :=
√
n3 − 6n2 + 5n− 4,

λ1(n) := ν0(n)(28n9 − 122n8 + 265n7 − 393n6 + 437n5 − 355n4 + 251n3 − 127n2 + 59n− 11)+
√
n+ 1ν2(n)(n2 − n+ 1)(29n6 − 44n5 + 69n4 − 52n3 + 43n2 − 16n+ 3)−

√
n+ 1[ν2(n)]3(n− 1)(n4 + 2n2 + 1),

λ2(n) := ν0(n)(24n10 − 96n9 + 68n8 + 67n7 − 377n6 + 557n5 − 581n4 + 389n3 − 195n2 + 59n− 11)+
√
n+ 1ν2(n)[ν0(n)]2(18n7 + 21n6 − 46n5 + 87n4 − 64n3 + 41n2 − 12n+ 3)+

√
n+ 1[ν2(n)]3(n− 1)(6n5 − 9n4 + 12n3 − 8n2 + 4n− 1),

λ1(n) := 4ν0(n)(n8 − 2n7 + 8n6 − 15n5 + 9n4 − 18n3 − 2n2 − 9n− 4)+

6[ν0(n)]2(n+ 1)(n4 − 2n3 − 2n− 1) + 2(8n8 − 23n7 + 38n6 − 52n5 + 33n4 − 33n3 + 2n2 − 8n− 5),

λ2(n) := 4ν0(n)(2n8 − 2n7 + 22n6 − 15n5 + 26n4 − 2n3 − 2n2 + 7n− 4)+

2[ν0(n)]2(n+ 1)(8n5 − 5n4 + 12n3 − 6n2 + 6n− 3) + 2(12n8 − 23n7 + 64n6 − 58n5 + 53n4 − 7n3 − 8n2 + 12n− 5).
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As noted before, since ε > θ/z(n) = (a− c)/z(n) and c > ε, we have c > a/[z(n) + 1]. Denote

1/λ(n) ≡ κ(n) and 1/λ(n) ≡ κ(n). Observe that κ(n) < κ(n).

From (1)(c), (2) and (3), for a < c/λ(n) = κ(n)c, we have δ∗n(n) > δ̂n(n) (see Figure 4(c) with

k = n). We have seen by Proposition 2(II) that Sn(n, δ∗n(n)) is a continuum (shown by D1E1 in

Figure 4(b) with k = n). By Proposition 2(V), Sn(n, δ∗n(n)) contains a policy that is two part tariff

with positive ad valorem royalty and upfront fee but no per unit royalty (shown by the point D1

in Figure 4(b)). This completes the proof of part (III)(iii)(a) of Proposition 4.

From (1)(a), for a > c/λ(n) = κ(n)c, we have δ∗n(n) < δ̂n(n) (see Figure 4(c)). We have seen by

Proposition 2(II) that Sn(n, δ∗n(n)) is a continuum (shown by D2E2 in Figure 4(c) with k = n). By

Proposition 2(IV), Sn(n, δ∗n(n)) contains a policy that is two part royalty with positive per unit and

ad valorem royalties but no upfront fees (shown by the point D2 in Figure 4(c)). This completes

the proof of part (III)(iii)(b) of Proposition 4.

From (1)(b), for c/λ(n) = κ(n)c < a < c/λ(n) = κ(n)c, ∃ ε(n) ∈ (θ/z(n), θ/u(n)) such that

δ∗n(n) > δ̂n(n) for ε ∈ (θ/z(n), ε(n)) and δ∗n(n) < δ̂n(n) for ε ∈ (ε(n), θ/u(n)). Thus, for ε < ε(n),

we have the same conclusion as part (III)(iii)(a) of Proposition 4 and for ε > ε(n), we have the

same conclusion as part (III)(iii)(b) of Proposition 4. This completes the proof of part (III)(iii)(c)

of Proposition 4.

5.7.2 Proof of part (IV) of Proposition 4

Recall that for linear demand p(Q) = max{a−Q, 0}, we have θ ≡ a−c. By Table A.5 (p.183) of Sen

and Tauman (2007) for [n = 4, 5 and ε ∈ (θ/(2n− 4), θ/2)] or [n ≥ 6 and ε ∈ (θ/(2n− 4), θ/z(n))],

the unique optimal two part tariff25 with per unit royalty and upfront fee has k = n − 1 and

r = ρ̃0(n) where

ρ̃0(n) := [2(n− 2)ε− θ]/2(n− 1) (43)

Note from (22) that

δ∗n(n− 1) := (θ + 2ε)/2(n− 1) = ε− ρ̃0(n) (44)

Therefore in this case, any optimal (k, δ) for a three part tariff has k = n − 1 and δ = δ∗n(n − 1).

The set of all optimal licensing policies in this case is the set of all (r, v) that supports δ∗n(n−1) for

which (n− 1, r, v) is both acceptable and feasible. This set is Sn(n− 1, δ∗n(n− 1)), where Sn(k, δ)

is given in (20).

Proof of (IV)(i)-(ii) Noting that for ε ∈ (θ/(2n−4), θ/z(n)), we have δ∗n(n−1) ∈ (0, ε), parts

(IV)(i)-(ii) follows by Proposition 2(II)-(III).

Proof of (IV)(iii) Taking k = n − 1 in parts (IV)-(V) of Proposition 2, we note that if

δ∗n(n − 1) < δ̂n(n − 1), then Sn(n − 1, δ∗n(n − 1)) contains a policy that is a two part royalty with

positive per unit and ad valorem royalties but no upfront fee. On the other hand, if δ∗n(n − 1) >

25The function z(n) is given in (32). As mentioned before, z(n) is denoted by v(n) in Table A.5 (p.183) of Sen and
Tauman (2007). We use a different notation to avoid confusion with v, which we use for ad valorem royalty. Also
note that (ibid., p.183): f0(n) = 2n− 4 and d1 = (210 +

√
5642)/67 = z(6). Thus, for n = 6, (θ/(2n− 4), θ/z(n)) =

(θ/8, θ/d1).
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δ̂n(n − 1), then Sn(n − 1, δ∗n(n − 1)) contains a policy that is a two part tariff with a positive ad

valorem royalty and fee but no per unit royalty.

To prove this part, we need to find out when δ∗n(n − 1) < δ̂n(n) and when δ∗n(n − 1) > δ̂n(n).

Regarding δ̂n(n), recall that (see Figures 3(a), 3(b))

γn(n− 1, δ) T v̄(δ)⇔ δ T δ̂n(n− 1) (45)

where γn(n− 1, δ) is given in (12) and v̄(δ) is given in (??). From (35), we note that

δ∗n(n− 1) T δ̂n(n− 1)⇔ γn(n− 1, δ∗n(n− 1)) T v̄(δ∗n(n− 1)) (46)

From (46), if δ∗n(n − 1) < δ̂n(n − 1), then γn(n − 1, δ∗n(n − 1)) < v̄(δ∗n(n − 1)) and the maximum

v that can support δ∗n(n − 1) is v = γn(n − 1, δ∗n(n − 1)) (as shown in Figure 4(b)). On the other

hand, if δ∗n(n− 1) > δ̂n(n− 1), then γn(n− 1, δ∗n(n− 1)) < v̄(δ∗n(n− 1)) and the maximum v that

can support δ∗n(n− 1) is v = v̄(δ∗n(n− 1)) (as shown in Figure 4(c)).

Recall that θ ≡ a− c. Taking δ = δ∗n(n− 1) from (44) in (??) we have

v̄(δ∗n(n− 1)) = [(2n− 4)ε− θ]/[(2n− 3)c− a+ 2(c− ε)] (47)

Since ε > θ/(2n− 4), the numerator of v̄(δ∗n(n− 1)) is positive. Sonce c > ε and ε > θ/(2n− 4) =

(a− c)/(2n−4), we have c > (a− c)/(2n−4), so (2n−3)c > a and the denominator of v̄(δ∗n(n−1))

is also positive.

Note that under the linear demand p(Q) = max{a−p, 0}, for δ = δ∗n(n−1), the Cournot profits

of a licensee and a non-licensee when k = n− 1 are given as follows.

φ
n
(n− 1, δ∗n(n− 1)) = [θ + 2δ∗n(n− 1)]2/(n+ 1)2,

φn(n− 1, δ∗n(n− 1)) = [θ − (n− 1)δ∗n(n− 1)]2/(n+ 1)2 (48)

Taking δ = δ∗n(n− 1) from (44) in (12) and using (48) we have

γn(n− 1, δ∗n(n− 1)) = (n+ 1)(θ + 2ε)[(3n− 1)θ − 2(n− 3)ε]/4(nθ + 2ε)2 (49)

From (47) and (49), we note that

v̄(δ∗n(n− 1)) T γn(δ∗n(n− 1))⇔ hn(ε) T 0 (50)

where

hn(ε) := −8(n− 5)ε3 + (8cn2 + 36an− 52cn− 4a− 20c)ε2+

2θ(4an2 − 8cn2 + an− 9cn− a− 3c)ε− θ2(6cn2 + an+ 3cn− a− c) (51)
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From (46) and (50), we note that

δ∗n(n− 1) S δ̂n(n− 1)⇔ hn(ε) T 0 (52)

Observe from (51) that for all n ≥ 4:

hn(θ/(2n− 4)) = −θ2(n+ 1)(3n− 5)(n− 1)2[(2n− 3)c− a]/(n− 2)3 < 0 (53)

The negative sign of hn(θ/(2n−4)) follows by noting that c > ε and ε > θ/(2n−4) = (a−c)/(2n−4)

and thus c > a/(2n− 3). Next observe that hn(θ/2) = 4θ2(n+ 1)2(a− 3c). Thus

hn(θ/2) T 0⇔ c S a/3 (54)

Proof for n = 5: For n = 5, we have 2n−4 = 6, so the relevant region is ε ∈ (θ/6, θ/2). Taking

n = 5 in (51), we have

h5(ε) = 16(11a− 5c)ε2 + 16θ(13a− 31c)ε− 4θ2(a+ 41c)

Note that h5(ε) is a u-shaped quadratic function in ε. Since h5(θ/6) < 0 (by (53)), from (54) we

conclude that for n = 5: (1) if c > a/3, then h5(ε) < 0 for all ε < (θ/6, θ/2) and (2) if c < a/3, then

∃ ε(5) ∈ (θ/6, θ/2) such that h5(ε) < 0 for ε ∈ (θ/6, ε(5)) and h5(ε) > 0 for ε ∈ (ε(5), θ/2). Thus

if a < 3c, then δ∗5(4) > δ̂5(4) for all ε ∈ (θ/6, θ/2) and if a > 3c, then ∃ ε(5) ∈ (θ/6, θ/2) such that

δ∗5(4) > δ̂5(4) for ε < ε(5) and δ∗5(4) < δ̂5(4) for ε > ε(5). Using these conclusions taking κ(5) = 3,

together with the conclusions of Proposition 2(IV)-(V) completes the proof of the result for n = 5.

Proof for n = 4: For n = 4, we have 2n − 4 = 4, so the region under consideration is

ε ∈ (θ/4, θ/2). Taking n = 4 in (51), we have

h4(ε) = 8ε3 + 20(7a− 5c)ε2 + 2θ(67a− 167c)ε− θ2(3a+ 107c)

Note that h4(ε) is a cubic function in ε and its coefficient of ε3 is positive. Thus, the third derivative

of h4(ε) is positive, implying that its second derivative h′′4(ε) is increasing. Noting that h′′4(θ/4)

= 4(73a − 53c) > 0 (since a > c), we conclude that h′′4(ε) > 0 and so h′4(ε) is increasing for all

ε ∈ (θ/4, θ/2).

Since c > ε and ε > θ/4 = (a− c)/4, we have c > a/5. We note that

h′4(θ/4) = 3θ(137a− 257c)/2 and h′4(θ/2) = 40θ(7a− 11c)

Thus, ∃ 1/5 < w(4) < w(4) < 1 (specifically, w(4) ≡ 137/257, w(4) ≡ 7/11) such that

(I) If a/5 < c < w(4)a, then h′4(θ/4) > 0 and hence h′4(ε) > 0 for all ε ∈ (θ/4, θ/2). In this case

hn(ε) is increasing in ε for all ε ∈ (θ/4, θ/2).

(II) If w(4)a < c < w(4)a, then h′4(θ/4) < 0 and h′4(θ/2) > 0. In this case ∃ ε̃(4) ∈ (θ/4, θ/2) such
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that h4(ε) is decreasing in ε for ε ∈ (θ/4, ε̃(4)) and it is increasing in ε for ε ∈ (ε̃(4), θ/2).

(III) If w(4)a < c < a, then h′4(θ/2) < 0 and hence h4(ε) is decreasing in ε for all ε ∈ (θ/4, θ/2).

Noting that 1/3 < w(4), by (53), (54) and (I)-(III) above, we conclude:

(1) If a/5 < c < w(4)a, then h4(ε) is increasing in ε for all ε ∈ (θ/4, θ/2). Noting that (1/5, w(4)) =

(1/5, 1/3] ∪ (1/3, w(4)), we have the following.

(a) If a/5 < c < a/3, then h4(θ/4) < 0 < h4(θ/2), so ∃ ε(4) ∈ (θ/4, θ/2) such that h4(ε) < 0 for

ε ∈ (θ/4, ε(4)) and h4(ε) > 0 for ε ∈ (ε(4), θ/2). By (52), δ∗4(3) > δ̂4(3) for ε ∈ (θ/4, ε(4)) and

δ∗4(3) < δ̂4(3) for ε ∈ (ε(4), θ/2).

(b) If a/3 < c < w(4)a, then h4(θ/2) < 0, so h4(ε) < 0 for all ε ∈ (θ/4, θ/2) and so δ∗4(3) > δ̂4(3)

for all ε ∈ (θ/4, θ/2).

(2) If w(4)a < c < w(4)a, then ∃ ε̃(4) ∈ (θ/4, θ/2) such that h4(ε) is decreasing in ε for ε ∈
(θ/4, ε̃(4)) and it is increasing in ε for ε ∈ (ε̃(4), θ/2). Since both h4(θ/4), h4(θ/2) are negative, in

this case hn(ε) < 0 for all ε ∈ (θ/4, θ/2) and so δ∗4(3) > δ̂4(3) for all ε ∈ (θ/4, θ/2).

(3) If w(4)a < c < a, then h4(ε) is decreasing in ε for all ε ∈ (θ/4, θ/2). Since h4(θ/4) < 0, in this

case h4(ε) < 0 for all ε ∈ (θ/4, θ/2) and so δ∗4(3) > δ̂4(3) for all ε ∈ (θ/4, θ/2).

From (1)(a)(b), (2)-(3), we conclude that for n = 4, if a < 3c, then δ∗4(3) > δ̂4(3) for all

ε ∈ (θ/4, θ/2) and if a > 3c, then ∃ ε(4) ∈ (θ/4, θ/2) such that δ∗4(3) > δ̂4(3) for ε < ε(4) and

δ∗4(3) < δ̂4(3) for ε > ε(4). Using these conclusions with κ(4) = 3, together with the conclusions of

Proposition 2(IV)-(V) completes the proof of the result for n = 4.

Proof for n ≥ 6: For n ≥ 6, hn(ε) given in (51) is a cubic function of ε and its coefficient of ε3

is negative. So the third order derivative of hn(ε) with respect to ε is negative, which implies that

h′′n(ε) (the second order derivative of hn(ε) with respect to ε) is decreasing in ε for n ≥ 6.

For n ≥ 6, the region under consideration is ε ∈ (θ/(2n − 4), θ/z(n)). Denote ν1(n) :=√
(n+ 1)(n2 − n+ 1)(n3 − 6n2 + 5n− 4). Note that h′′n(θ/z(n)) = 8[α̃(n)a+β̃(n)c]/[n3−n+ν1(n)]

where

α̃(n) := 9n4 − 13n3 + 57n2 − 35n+ 30 + ν1(n)(9n− 1),

β̃(n) := 2n5 − 13n4 + 5n3 − 53n2 + 41n− 30 + ν1(n)(2n2 − 13n− 5)

Noting that ν1(n), α̃(n), β̃(n) are all positive for n ≥ 7, we have h′′n(θ/z(n)) > 0. Therefore

h′′n(ε) > 0 for and so h′n(ε) is increasing in ε for all ε ∈ (θ/(2n− 4), θ/z(n)).

Since c > ε and ε > θ/(2n − 4) = (a − c)/(2n − 4), we have c > a/(2n − 3). We observe that

there exist functions 1/(2n− 3) < w(n) < w(n) < 1 such that26

26For n ≥ 6, the functions w(n), w(n) are as follows.

w(n) := (4n3 − 11n2 + 18n− 15)/(8n3 − 19n2 + 14n− 7) and w(n) := w1(n)/w2(n), where

w1(n) := 8n8 − 22n7 + 76n6 − 95n5 + 230n4 − 242n3 + 278n2 − 137n+ 64+

ν1(n)(8n5 + 2n4 + 62n3 − 46n2 + 42n− 4)
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(I) If a/(2n−3) < c < w(n)a, then h′n(θ/(2n−4)) > 0, so h′n(ε) > 0 for all ε ∈ (θ/(2n−4), θ/z(n)).

In this case hn(ε) is increasing in ε for all ε ∈ (θ/(2n− 4), θ/z(n)).

(II) If w(n)a < c < w(n)a, then h′n(θ/(2n− 4)) < 0 < h′n(θ/z(n)). So ∃ ε̃(n) ∈ (θ/(2n− 4), θ/z(n))

such that hn(ε) is decreasing in ε for ε ∈ (θ/(2n − 4), ε̃(n)) and it is increasing in ε for ε ∈
(ε̃(n), θ/z(n)).

(III) If w(n)a < c < a, h′n(θ/z(n)) < 0. So hn(ε) is decreasing in ε for all ε ∈ (θ/(2n− 4), θ/z(n)).

By (53), hn(θ/(2n− 4)) < 0. For hn(θ/z(n)), we note that ∃ 1/(2n− 3) < λ(n) < 1 such that27

(A) If a/(2n− 3) < c < λ(n)a, then hn(θ/z(n)) > 0.

(B) If λ(n)a < c < a, then hn(θ/z(n)) < 0.

Noting that λ(n) < w(n), from (I)-(III) and (A)-(B), we conclude:

(1) If a/(2n− 3) < c < w(n)a, then hn(ε) is increasing in ε for all ε ∈ (θ/(2n− 4), θ/z(n)). Noting

that (1/(2n− 3), w(n)) = (1/(2n− 3), λ(n)] ∪ (λ(n), w(n)), we have the following.

(a) If a/(2n−3) < c < λ(n)a, then hn(θ/(2n−4)) < 0 < hn(z(n)), so so ∃ ε(n) ∈ (θ/(2n−4), θ/z(n))

such that hn(ε) < 0 for ε ∈ (θ/(2n − 4), ε(n)) and hn(ε) > 0 for ε ∈ (ε(n), θ/z(n)). By (52),

δ∗n(n− 1) > δ̂n(n) for ε < ε(n) and δ∗n(n− 1) < δ̂n(n) for ε > ε(n).

(b) If λ(n)a < c < w(n)(a), then hn(θ/z(n)) < 0, so hn(ε) < 0 for all ε ∈ (θ/(2n− 4), θ/z(n)). By

(52), δ∗n(n− 1) > δ̂n(n) for all ε ∈ (θ/(2n− 4), θ/z(n)).

(2) If w(n)a < c < w(n)a, then ∃ ε̃(n) ∈ (θ/(2n−4), θ/z(n)) such that hn(ε) is decreasing in ε for ε ∈
(θ/z(n), ε̃(n)) and it is increasing in ε for ε ∈ (ε̃(n), θ/z(n)). Since both hn(θ/(2n− 4)), hn(θ/z(n))

are negative, in this case hn(ε) < 0 for all ε ∈ (θ/(2n− 4), θ/z(n)). By (52), δ∗n(n− 1) > δ̂n(n) for

all ε ∈ (θ/(2n− 4), θ/z(n)).

(3) If w(n)a < c < a, then hn(ε) is decreasing in ε for all ε ∈ (θ/(2n−4), θ/z(n)).As hn(θ/(2n−3)) <

0, in this case hn(ε) < 0 for all ε ∈ (θ/(2n − 4), θ/z(n)). By (52), δ∗n(n − 1) > δ̂n(n) for all

ε ∈ (θ/(2n− 4), θ/z(n)).

Denote κ(n) := 1/λ(n). From (1)(a)(b), (2)-(3), we conclude that for n ≥ 6, if a < κ(n)c,

then δ∗n(n − 1) > δ̂n(n − 1) for all ε ∈ (θ/(2n − 4), θ/z(n)) and if a > κ(n)c, then ∃ ε(n) ∈
(θ/(2n − 4), θ/z(n)) such that δ∗n(n − 1) > δ̂n(n − 1) for ε < ε(n) and δ∗n(n − 1) < δ̂n(n − 1) for

w2(n) := 16n8 − 46n7 + 88n6 − 67n5 + 150n4 − 274n3 + 290n2 − 173n+ 48+

2ν1(n)(8n5 + n4 + 51n3 − 19n2 + 13n+ 10)

27For n ≥ 6, the function λ(n) is given by λ(n) := λ1(n)/λ2(n) where

λ1(n) := (n2 − n+ 2)(28n8 − 54n7 + 83n6 − 97n5 + 154n4 − 144n3 + 127n2 − 57n+ 24)−

(n− 1)[ν1(n)]3 + ν1(n)(29n7 − 5n6 + 122n5 − 150n4 + 185n3 − 97n2 + 48n− 4),

λ2(n) := 24n11 − 32n10 − 188n9 + 335n8 − 434n7 + 167n6 − 306n5 + 445n4 − 646n3 + 413n2 − 178n+ 16+

[ν1(n)]3(6n2 + 3n− 1) + ν1(n)(18n8 + 73n7 − 31n6 + 178n5 − 160n4 + 197n3 − 39n2 + 20).
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ε > ε(n). Using this together with the conclusions of Proposition 2(IV)-(V) complete the proof of

the result for n ≥ 6.

5.7.3 Proof of part (V) of Proposition 4

Consider n ≥ 7. Note that (2n − 4) is increasing in n and limn→∞(2n − 4) = ∞. From (32) and

(33), we note that z(n) is increasing in n, with limn→∞ z(n) =∞ and u(n) is decreasing in n with

limn→∞ u(n) = 1. Thus, for any a, c, ε, where a > c > ε and 0 < ε < θ ≡ a− c, we have:

(i) θ/(2n− 4) is decreasing in n and limn→∞ θ/(2n− 4) = 0.

(ii) θ/z(n) is decreasing in n and limn→∞ θ/z(n) = 0.

(iii) θ/u(n) is increasing in n and limn→∞ θ/u(n) = θ.

Thus for any a, c, ε with 0 < ε < θ, ∃ n̂(a, c, ε) such that for all n ≥ n̂(a, c, ε), we have

θ ∈ (θ/z(n), θ/u(n)), so part (III) of Proposition 4 is applicable. We note that κ(n) is decreasing

in n, with limn→∞ κ(n) = 2 and limn→∞ κ(n) =∞. See footnote 24. Thus limn→∞ κ(n)c = 2c and

limn→∞ κ(n)c = ∞. This implies that if a < 2c, then a < κ(n)c for all n and part (III)(iii)(a) of

Proposition 4 applies.

Consider a > 2c. Then ∃ ñ(a, c, ε) > n̂(a, c, ε) such that for all n ≥ ñ(a, c, ε), we have a ∈
(κ(n)c, κ(n)c) and part (III)(iii)(c) of Proposition 4 applies. Note that in this case optimal δ = δ∗n(n)

given in (34). From (37) and (39), we note that

lim
n→∞

v̄(δ∗n(n)) = ε/c and lim
n→∞

γn(n, δ∗n(n)) = (θ + ε)(3θ − ε)/4θ2

We note that limn→∞[v̄(δ∗n(n))−γn(n, δ∗n(n))] = ψ(ε)/4cθ2 where ψ(ε) := cε2 +2θ(2a−3c)ε−3cθ2.

Since a > 2c, we have θ = a− c > c. As 0 < ε < θ and also ε < c, the relevant region for ε in this

case is ε ∈ (0, c). Note that ψ(ε) is a u-shaped quadratic function in ε with ψ(0) = −3cθ2 < 0 and

ψ(c) = c(a− 2c)2 > 0. So ∃ ε̂ ∈ (0, c) such that ψ(ε) < 0 if ε < ε̂ and ψ(ε) > 0 if ε > ε̂. Specifically,

ε̂ ≡ [2
√
a2 − 3ac+ 3c2 − (2a− 3c)]θ/c.

Thus, for a > 2c, if ε ∈ (0, ε̂), then we have limn→∞ v̄(δ∗n(n)) < limn→∞ γ
n(n, δ∗n(n)). In this

case ∃ n̄(a, c, ε) > ñ(a, c, ε) such that for all n > n̄(a, c, ε), v̄(δ∗n(n)) < γn(n, δ∗n(n)), which by (36)

implies δ∗n(n) > δ̂n(n) and the conclusion is the same as in part (III)(iii)(a) of Proposition 4.

On the other hand, for a > 2c, if ε ∈ (ε̂, c), then we have limn→∞ v̄(δ∗n(n)) > limn→∞ γ
n(n, δ∗n(n)).

In this case ∃ n̄(a, c, ε) > ñ(a, c, ε) such that for all n > n̄(a, c, ε), v̄(δ∗n(n)) > γn(n, δ∗n(n)), which

by (36) implies δ∗n(n) < δ̂n(n) and the conclusion is the same as in part (III)(iii)(b) of Proposition

4.

5.7.4 Optimal policies for the remaining regions for n = 6

The innovation is nondrastic, so ε ∈ (0, θ) where θ = a − c. We look at generic magnitudes of the

innovation, so only open intervals are considered.

For n = 4, 5, from parts (I),(II),(IV) of Proposition 4, the regions considered are: ε < θ/(2n−4),

ε > θ/2 and ε ∈ (θ/(2n− 4), θ/2), thus we have ε ∈ (0, θ/(2n− 4)) ∪ (θ/(2n− 4), θ/2) ∪ (θ/2, θ).
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For n ≥ 7, from parts (I)-(IV) of Proposition 4, the regions considered are: ε < θ/(2n − 4),

ε > θ/u(n), ε ∈ (θ/z(n), θ/u(n)) and ε ∈ (θ/(2n − 4), θ/z(n)), thus we have ε ∈ (0, θ/(2n − 4)) ∪
(θ/(2n− 4), θ/z(n)) ∪ (θ/z(n), θ/u(n)) ∪ (θ/u(n), θ).

For n = 6, from parts (I),(II),(IV) of Proposition 4, the regions considered are: ε < θ/(2n− 4),

ε > θ/2 and ε ∈ (θ/(2n−4), θ/z(n)), thus we have ε ∈ (0, θ/(2n−4))∪(θ/(2n−4), θ/z(n))∪(θ/2, θ).

Thus for n ≥ 4, the only case that is left is n = 6 and ε ∈ (θ/z(n), θ/2).

Let us consider the case n = 6 and ε ∈ (θ/z(n), θ/2), that is, ε ∈ (θ/z(6), θ/2), where z(n)

is given by (32). As mentioned before, in Table A.5 (p.183) of Sen and Tauman (2007): (i)

the function z(n) is denoted by v(n), (ii) z(6) = (210 +
√

5642)/67 is denoted by d1 and (iii)

d2 ≡ (210−
√

5642)/67. We denote d2 by d, that is, d ≡ (210−
√

5642)/67. Note that 2 < d2 = d <

d1 = z(6), so that θ/z(6) < θ/d < θ/2. It is shown (ibid., p.183) that for n = 6 and ε ∈ (θ/z(6), θ/2):

(i) If n = 6 and ε ∈ (θ/z(6), θ/d), the unique optimal two part tariff with per unit royalty and

upfront fee has k = 6 and r = ρ̄0(6), where ρ̄0(n) is given in (31). Therefore in this case, any

optimal (k, δ) for a three part tariff has k = 6 and δ = δ∗6(6) = ε− ρ̄0(6), where δ∗n(n) is given

in (34). The set of all optimal licensing policies in this case is the set of all (r, v) that supports

δ∗6(6) for which (6, r, v) is both acceptable and feasible. This set is S6(6, δ∗6(6)), where Sn(k, δ)

is given in (20).

(ii) If n = 6 and ε ∈ (θ/d, θ/2), the unique optimal two part tariff with per unit royalty and

upfront fee has k = 5 and r = ρ̃0(6), where ρ̃0(6) is given in (43). In this case, any optimal

(k, δ) for a three part tariff has k = 5 and δ = δ∗6(5) = ε− ρ̃0(6), where δ∗n(n− 1) is given in

(44). The set of all optimal licensing policies in this case is the set of all (r, v) that supports

δ∗6(5) for which (5, r, v) is both acceptable and feasible. This set is S6(5, δ∗6(5)), where Sn(k, δ)

is given in (20).

Case 1: n = 6 and ε ∈ (θ/z(6), θ/d): In this case we need to find out when δ∗6(6) < δ̂6(6) and

when δ∗6(6) > δ̂6(6). Taking n = 6 in (42), it follows that

δ∗6(6) S δ̂6(6)⇔ τ6(ε) T 0 (55)

Taking n = 6 in (41), we have

τ6(ε) = −5537ε3 + 7(10023a+ 393c)ε2 + θ(281685a− 500421c)ε− 5θ2(1369a+ 37319c)

Note that τ ′′6 (ε) = 140322a+ 5502c−33222ε. Since a > c > ε, we have τ ′′6 (ε) > 0 for all ε < c. Thus

τ ′6(ε) is increasing in ε for all ε ∈ (θ/z(6), θ/d).

Since c > ε and ε > θ/z(6) = (a − c)/z(6), we have c > a/[z(6) + 1]. Noting that z(6) =

(210 +
√

5642)/67 and d = (210 −
√

5642)/67, we observe that there are 1/[z(6) + 1] < t(6) <

t(6) < 1 (specifically, t(6) ≡ k0/(k1 +k2
√
k3) and t(6) ≡ k0/(k1−k2

√
k3), where k0 ≡ 84707737321,

k1 ≡ 127452786185, k2 ≡ 93987936 and k3 ≡ 5642) such that:
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(I) If a/[z(6) + 1] < c < t(6)a, then τ ′6(θ/z(6)) > 0 and hence τ ′6(ε) > 0 for all ε ∈ (θ/z(6), θ/d). In

this case τ6(ε) is increasing in ε for all ε ∈ (θ/z(6), θ/d).

(II) If t(6)a < c < t(6)a, then τ ′6(θ/z(6)) < 0 and τ ′6(θ/d) > 0. In this case ∃ ε0(6) ∈ (θ/z(6), θ/d)

such that τ6(ε) is decreasing in ε for ε ∈ (θ/z(6), ε0(6)) and it is increasing in ε for ε ∈ (ε0(6), θ/d).

(III) If t(6)a < c < a, then τ ′6(θ/d) < 0 and hence τ6(ε) is decreasing in ε for all ε ∈ (θ/z(6), θ/d).

Next we observe that there exist 1/[z(6) + 1] < λ(6) < λ(6) < 1 (specifically, λ(6) ≡ k4/(k5 +

k6
√
k3) and λ(6) ≡ k4/(k5 − k6

√
k3), where k4 ≡ 1224822676307, k5 ≡ 4722314968307, k5 ≡

15617527536) such that

(A) If a/[z(6) + 1] < c < λa, then both τ6(θ/z(6)), τ6(θ/d) are positive.

(B) If λa < c < λa, then τ6(θ/z(6)) < 0 and τ6(θ/d) > 0.

(C) If λa < c < a, then both τ6(θ/z(6)), τ6(θ/d) are negative.

Noting that λ(6) < t(6), from (I)-(III) and (A)-(C), we conclude that:

(1) If a/[z(6) + 1] < c < t(6)a, then τ6(ε) is increasing in ε for all ε ∈ (θ/z(6), θ/d). Noting that

(1/[z(6) + 1], t(6)) = (1/[z(n) + 1], λ(6)] ∪ (λ(6), λ(6)] ∪ (λ(6), t(6)), we have:

(a) If a/[z(6) + 1] < c < λ(6)a, then τ6(θ/z(6)) > 0, so τ6(ε) > 0 for all ε ∈ (θ/z(6), θ/d). By (55),

δ∗6(6) < δ̂6(6) for all ε ∈ (θ/z(6), θ/d).

(b) If λ(6)a < c < λ(6)a, then τ6(θ/z(6)) < 0 < τ6(θ/d), so ∃ ε(6) ∈ (θ/z(6), θ/d) such that

τ6(ε) < 0 for ε ∈ (θ/z(6), ε(6)) and τ6(ε) > 0 for ε ∈ (ε(6), θ/d). By (55), δ∗6(6) > δ̂6(6) for

ε ∈ (θ/z(6), ε(6)) and δ∗6(6) < δ̂6(6) for ε ∈ (ε(6), θ/d).

(c) If λ(6)a < c < t(6)a, then τ6(θ/d) < 0, so τ6(ε) < 0 for all ε ∈ (θ/z(6), θ/d). By (42),

δ∗6(6) > δ̂6(6) for all ε ∈ (θ/z(6), θ/d).

Again noting that λ(6) < t(6), when c > t(6)a, we have c > λ(6)(a), so both τ6(θ/z(6)), τ6(θ/d)

are negative and the following holds.

(2) If t(6)a < c < t(6)a, then ∃ ε0(6) ∈ (θ/z(6), θ/d) such that τ6(ε) is decreasing in ε for ε ∈
(θ/z(6), ε0(6)) and it is increasing in ε for ε ∈ (ε0(6), θ/d). Since both τ6(θ/z(6)), τ6(θ/d) are

negative, in this case τ6(ε) < 0 for all ε ∈ (θ/z(6), θ/d). By (55), δ∗6(6) > δ̂6(6) for all ε ∈
(θ/z(6), θ/d).

(3) If t(6)a < c < a, then τ6(ε) is decreasing in ε for all ε ∈ (θ/z(6), θ/d). Since τ6(θ/z(6)) < 0, in

this case τ6(ε) < 0 for all ε ∈ (θ/z(6), θ/d). By (55), δ∗6(6) > δ̂6(6) for all ε ∈ (θ/z(6), θ/d).

Recall that since ε > θ/z(6) = (a − c)/z(6) and c > ε, we have c > a/[z(6) + 1]. Denote

1/λ(6) ≡ κ(6) and 1/λ(6) ≡ κ(6). Observe that κ(6) < κ(6).

From (1)(c), (2) and (3) above, for a < c/λ(6) = κ(6)c, we have δ∗6(6) > δ̂6(6). From (1)(b)

above, for c/λ(6) = κ(6)c < a < c/λ(6) = κ(6)c, ∃ ε(6) ∈ (θ/z(6), θ/d) such that δ∗6(6) > δ̂6(6)

for ε ∈ (θ/z(6), ε(6)). By Proposition 2(V), it follows that if [a < κ(6)c] or [κ(6)c < a < κ(6)c

and ε < ε(6)], then S6(6, δ∗6(6)) contains a policy that is a two part tariff with positive ad valorem

royalty and upfront fee but no per unit royalty.
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From (1)(a) above, for a > c/λ(6) = κ(6)c, we have δ∗6(6) < δ̂6(6). From (1)(b) above, for

c/λ(6) = κ(6)c < a < c/λ(6) = κ(6)c, ∃ ε(6) ∈ (θ/z(6), θ/d) such that δ∗6(6) < δ̂6(6) for ε ∈
(ε(6), θ/d). By Proposition 2(IV), it follows that if [a > κ(6)c] or [κ(6)c < a < κ(6)c and ε > ε(6)],

then S6(6, δ∗6(6)) contains a policy that is a two part royalty with positive per unit and ad valorem

royalties but no upfront fees.

Case 2: n = 6 and ε ∈ (θ/d, θ/2) : In this case we need to find out when δ∗6(5) < δ̂6(5) and when

δ∗6(5) > δ̂6(5). Taking n = 6 in (52), it follows that

δ∗6(5) S δ̂6(5)⇔ h6(ε) T 0 (56)

Taking n = 6 in (51), we have

h6(ε) = −8ε3 + 4(53a− 11c)ε2 + 2θ(149a− 345c)ε− θ2(5a+ 233c)

Note that h′′6(ε) = 8(53a− 11c− 6ε) > 0 (since a > c > ε). Thus, h′6(ε) is increasing in ε.

Since c > ε and ε > θ/d = (a − c)/d, we have c > a/(d + 1). Note from (54) that h6(θ/2) T 0

⇔ c S a/3. We observe that h6(θ/d) T 0 ⇔ c S λ̂a where λ̂ ≡ 352069391969/(1443487450539 −
5093934202

√
5642). Noting that 1/(d+ 1) < λ̂ < 1/3, we conclude that:

(A) If a/(d+ 1) < c < λ̂a, then h6(θ/d), h6(θ/2) are both positive.

(B) If λ̂a < c < a/3, then h6(θ/d) < 0 < h6(θ/2).

(C) If a/3 < c < a, then h6(θ/d), h6(θ/2). are both negative.

We next observe that h′6(θ/2) = 56θ(9a − 13c), so that that h′6(θ/2) T 0 ⇔ c S 9a/13. We

observe that h′6(θ/d) T 0⇔ c S ŵa where ŵ ≡ 4102392233/(6641139661− 9341612
√

5642). Noting

that 1/(d+ 1) < ŵ < 9/13, we conclude that:

(I) If a/(d+ 1) < c < ŵa, then h′6(θ/d) > 0, so h′6(ε) > 0 for all ε ∈ (θ/d, θ/2).

(II) If ŵa < c < 9a/13, then h′6(θ/d) < 0 < h′6(θ/2), so ∃ ε∗ ∈ (θ/d, θ/2) such that h′6(ε) < 0 for

ε ∈ (θ/d, ε∗) and h′6(ε) > 0 for ε ∈ (ε∗, θ/2).

(III) If 9a/13λ̃ < c < a, then h′6(θ/2) < 0, so h′6(ε) < 0 for all ε ∈ (θ/d, θ/2).

Noting that 1/3 < ŵ, from (A)-(C) and (I)-(III), we conclude:

(1) If a/(d+1) < c < λ̃a, then h6(θ/d) > 0 and h6(ε) is increasing for all ε ∈ (θ/d, θ/2), so h6(ε) > 0

for all ε ∈ (θ/d, θ/2).

(2) If λ̃a < c < a/3, then h6(θ/d) < 0 < h6(θ/2) and h6(ε) is increasing for all ε ∈ (θ/d, θ/2). So ∃
ε̃ ∈ (θ/d, θ/2) such that h6(ε) < 0 for ε ∈ (θ/d, ε̃) and h6(ε) > 0 for ε ∈ (ε̃, θ/2).

(3) If a/3 < c < ŵa, then h6(θ/2) < 0 and h6(ε) is increasing for all ε ∈ (θ/d, θ/2), so h6(ε) < 0

for all ε ∈ (θ/d, θ/2).

(4) If ŵa < c < 9a/13, then h6(θ/d), h6(θ/2) are both negative and ∃ ε̃ ∈ (θ/d, θ/2) such that

h6(ε) is decreasing in ε for ε ∈ (θ/d, ε̃) and increasing in ε for ε ∈ (ε̃, θ/2). In this case h6(ε) < 0

for all ε ∈ (θ/d, θ/2).
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(5) If 9a/13λ̃ < c < a, then h6(θ/d) < 0 and h6(ε) is decreasing in ε for all ε ∈ (θ/d, θ/2). In this

case h6(ε) < 0 for all ε ∈ (θ/d, θ/2).

Denoting κ̃ = 1/λ̃, from (1), we conclude that if a > κ̃c, then h6(ε) > 0 and hence δ∗6(5) < δ̂6(5)

for all ε ∈ (θ/d, θ/2). By Proposition 2(IV), in this case there is an optimal policy that is a two

part royalty.

From (3)-(5), if a < 3c, then h6(ε) < 0 and hence δ∗6(5) > δ̂6(5) for all ε ∈ (θ/d, θ/2). By

Proposition 2(V), in this case there is an optimal policy that is a two part tariff consiting of an ad

valorem royalty and upfront fee.

From (2), if λ̃a < c < a/3, that is, if 3c < a < κ̃c, then ∃ ε̃ ∈ (θ/d, θ/2) such that h6(ε) < 0 and

δ∗6(5) > δ̂6(5) for ε < ε̃ and h6(ε) > 0 and δ∗6(5) < δ̂6(5)for ε > ε̃.

5.8 Proof of Proposition 5

For n = 2, 3, the function t(n) is defined as

t(2) := 3(
√

2− 1) and t(3) := (8 + 2
√

7)/3 (57)

We note thar n− 1 < t(n) < 2n− 1 = 3 for n = 2, 3.

(I) Part (I) follows from Proposition 3(a) (p.172) and Proposition 4(b) (p.173) of Sen and

Tauman (2007, p.172).

(II) Note that 2n − 1 = 3 for n = 2 and 2n − 1 = 5 for n = 3. Noting from (57) that

t(2) = t ≡ 3(
√

2− 1) and t(3) = d0 ≡ (8 + 2
√

7)/3 and using these in Table A.5 (p.183) of Sen and

Tauman (2007), part (II) follows.

(III) If n = 3 and ε > θ/2, from Table A.5 (p.183) of Sen and Tauman (2007) it follows that

any optimal three part tariff has k = 2 and δ = θ/2. Noting that θ/2 > δ̂3(2) (see Figure 3(a)),

part (III) follows by parts (II), (III) and (V) of Proposition 2.

(IV) Using t(n) from (57) for n = 2, 3 in Table A.5 (p.183) of Sen and Tauman (2007), it follows

that for n = 2, 3, if θ/(2n − 1) < ε < θ/t(n), then any optimal three part tariff has k = n and

δ = δ∗n(n) ∈ (0, ε) (given in (34)). Then we know from Proposition 2(II) that the set of all optimal

policies Sn(n, δ∗n(n)) is a continuum, where Sn(k, δ) is given in (20).

Applying the same reasoning as in the proof of part (III)(iii) of Proposition 4, taking n = 2 and

n = 3 in (42), we conclude that

for n = 2, 3: δ∗n(n) S δ̂n(n)⇔ τn(ε) T 0 (58)

where τn(ε) is given in (41). Taking n = 2, 3 in (41), we have

τ2(ε) = 27ε3 + 333(a− c)ε2 + 3(a− c)(83a− 227c)ε− (25a+ 119c)(a− c)2

τ3(ε) = 8[−4ε3 + 4(72a− 51c)ε2 + 6(a− c)(73a− 157c)ε− (25a+ 248c)(a− c)2]
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Since ε > θ/(2n − 1) and c > ε, we have c > a/2n. Noting that for n = 2, 3, τ ′′n(ε) > 0 for all

0 < ε < c < a, it follows that τ ′n(ε) is increasing in ε. Denoting ρ(2) ≡ 10/19, ρ(3) ≡ 47/87,

note that for n = 2, 3: if a/2n < c < ρ(n)a, then τ ′n(θ/(2n − 1)) > 0 and hence τ ′n(ε) > 0 for all

ε > θ/(2n− 1). Thus for all ε > θ/(2n− 1), τn(ε) is increasing in ε when a/2n < c < ρ(n)a.

Note that we have θ/(2n − 1) < ε < θ/t(n) (where t(n) is given in (57)). We observe that

τn(θ/(2n − 1)) < 0. Regarding τn(θ/t(n)), we observe that ∃ λ(n) ∈ (1/2n, ρ(n)) (specifically

λ(2) ≡ 2689/(2185 + 2664
√

2) and λ(3) ≡ 22513/(81313 + 14556
√

7)) such that τn(θ/t(n)) T 0 iff

c S λ(n)a. Thus, if a/2n < c < λ(n)a, then τn(θ/t(n)) > 0. Since τn(ε) is increasing in ε when c ∈
(a/2n, λ(n)a) ⊂ (a/2n, ρ(n)a), we conclude that when a/2n < c < λ(n)a, ∃ ε(n) ∈ (θ/2n, θ/t(n))

such that:

(1) If θ/(2n− 1) < ε < ε(n), then τn(ε) < 0 and by (58), we have δ∗n(n) > δ̂n(n).

(2) If ε(n) < ε < θ/t(n), then τn(ε) > 0 and by (58), we have δ∗n(n) < δ̂n(n).

Take κ̂(n) := 1/λ(n), part (IV)(ii) (the case a > κ̂(n)c or equivalently c < λ(n)a) of Proposition

?? follows by (1)-(2) above by using the conclusions of parts (IV) and (V) of Proposition 2.

To prove (IV)(ii), consider a < κ̂(n)c (that is, c > λ(n)a). In this case τn(θ/(2n−1)), τn(θ/t(n))

are both negative. There are following possibilities.

If λ(n)a < c < ρ(n)a, then τn(ε) is increasing and τn(θ/t(n)) < 0. In this case for all ε ∈
(θ/(2n− 1), θ/t(n)), we have τn(ε) < 0 and by (58): δ∗n(n) > δ̂n(n).

If c > ρ(n)a, then ∃ λ̃(n) > ρ(n) (where λ̃(2) ≡ 3689/(9665− 2880
√

2), λ̃(3) ≡ 12289/(19177 +

1212
√

7)) such that:

(A) If ρ(n)a < c < λ̃(n)a, then τ ′n(θ/(2n − 1)) < 0 < τ ′n(θ/t(n)). Since τ ′n(ε) is increasing in ε, in

this case ∃ ε0(n) ∈ (θ/(2n− 1), θ/t(n)) such that τn(ε) is decreasing for ε ∈ (θ/(2n− 1), ε0(n)) and

increasing for ε ∈ (ε0(n), θ/t(n)). Since τn(θ/(2n− 1)) and τn(θ/t(n)) are both negative it follows

that τn(ε) < 0 for all ε ∈ (θ/(2n−1), θ/t(n)). By (58), δ∗n(n) > δ̂n(n) for all ε ∈ (θ/(2n−1), θ/t(n)).

(B) If λ̃(n)a < c < a, then τ ′n(θ/t(n)) < 0. Since τ ′n(ε) is increasing in ε, in this case τ ′n(ε) < 0

for all ε ∈ ((θ/(2n − 1), θ/t(n)). Hence τn(ε) is decreasing for all ε ∈ ((θ/(2n − 1), θ/t(n)). Since

τn(θ/(2n− 1)) < 0, it follows that τn(ε) < 0 for all ε ∈ (θ/(2n− 1), θ/t(n)). By (58), δ∗n(n) > δ̂n(n)

for all ε ∈ (θ/(2n− 1), θ/t(n)).

From (A)-(B) and the paragraph before (A)-(B), it follows that when c > λ(n)a (equivalently,

a < κ̂(n)c), we have δ∗n(n) > δ̂n(n) for all ε ∈ (θ/(2n − 1), θ/t(n)). Using this, part (IV)(i) of

Proposition ?? follows by part (V) of Proposition 2.

5.9 An incumbent innovator in a Cournot duopoly

Consider a Cournot duopoly with two firms 1, 2 under demand p(Q) = max{a − Q, 0}, where

Q = q1 + q2 (the sum of the quantities produced by firms 1, 2). Initially both firms have constant

marginal cost c, where 0 < c < a. Firm 1 has a cost-reducing innovation of magnitude ε (0 < ε < c)

that reduces the marginal cost from c to c− ε. The innovation is nondrastic: ε < a− c.
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Firm 1 licenses the innovation to firm 2 using a three part tariff with per unit royalty r ∈ [0, ε],

ad valorem royalty v ∈ [0, 1) and upfront fee f ≥ 0. The payoff of firm 2 at the Cournot stage is

π2 = (1− v)p(Q)q2 − (c− ε)q2 − rq2 − f = (1− v)[p(Q)− (c− δ)]q2 − f (59)

where δ = δ(r, v) given in (7). Thus, at the Cournot stage firm 2 solves the same problem as a firm

that has marginal cost c−δ. The payoff of firm 1 at the Cournot stage is the sum of (i) the operating

profit of firm 1, (ii) the revenue from ad valorem royalty, (iii) the revenue from unit royalty and

(iv) fee f, which is

π1 = [p(Q)− (c− ε)]q1 + vp(Q)q2 + rq2 + f (60)

Observe that the revenue from unit royalty rq2 is not affected by q1, but q1 affects the price p(Q),

which in turn affects the ad valorem royalty revenue vp(Q)q2. For this reason, the (unique) Cournot

price and quantities are functions of both δ and v.

Lemma L3 Consider the Cournot duopoly with firms 1, 2 where the payoffs are given by (59)-(60).

This duopoly has a unique (Cournot-Nash) equilibrium. Let qi(v, δ) be the Cournot quantity of firm

i for i = 1, 2, p(v, δ) be the Cournot price and Q(v, δ) = q1(v, δ) + q2(v, δ). Then:

(i) q1(v, δ) = [(1 − v)(a − c) + 2ε − (1 + v)δ]/(3 − v), q2(v, δ) = (a − c − ε + 2δ)/(3 − v) and

p(v, δ) = [a+ c− ε+ (1− v)(c− δ)]/(3− v).

(ii) For i = 1, 2, let φi(v, δ) be the operating Cournot profit of firm i, that is,

φ1(v, δ) = [p(v, δ)− (c− ε)]q1(v, δ) and φ2(v, δ) = [p(v, δ)− (c− δ)]q2(v, δ)

Then

φ1(v, δ) = [(1− v)(a− c) + 2ε− (1 + v)δ][a− c− (1− v)δ + (2− v)ε]/(3− v)2

φ2(v, δ) = (a− c− ε+ 2δ)2/(3− v)2

(iii) The Cournot price p(v, δ) is increasing in v and decreasing in δ. Moreover limv↑1 p(v, 0) =

pM (ε), where pM (ε) = (a+ c− ε)/2 (the monopoly price under marginal cost c− ε).

(iv) Let ψ(v, δ) := (1− v)φ2(v, δ). The function ψ(v, δ) is decreasing in v and increasing in δ.

Proof (i) Note that p(Q) = max{a − Q, 0}, where Q = q1 + q2. We solve the problem by taking

p(Q) = a−Q = a− (q1 + q2) and confirm that in equilibrium the total quantity Q does not exceed

a. From (59)-(60), we have

∂π1/∂q1 = a− c+ ε− (1 + v)q2 − 2q1 and ∂π2/∂q2 = (1− v)(a− c+ δ − q1 − 2q2)
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As 1 − v > 0, we have ∂π1/∂q1 T 0 ⇔ q1 S b1(q2) and ∂π2/∂q2 T 0 ⇔ q2 S b2(q1) where

b1(q2) := [a− c+ ε− (1 + v)q2]/2 and b2(q1) := (a− c+ δ − q1)/2. So, the unique best response of

firm 1 to any q2 ≥ 0 is

BR1(q2) =

{
b1(q2) if q2 < (a− c+ ε)/(1 + v)

0 if q2 ≥ (a− c+ ε)/(1 + v)

Similarly the unique best response of firm 2 to any q1 ≥ 0 is

BR2(q1) =

{
b2(q1) if q1 < a− c+ δ

0 if q1 ≥ a− c+ δ

Note that (I) the equation q1 = b1(q2) presents a downward sloping straight line in q2 with intercepts

(a− c+ ε)/2 at the q1-axis and (a− c+ ε)/(1 + v) at the q2-axis and (II) the equation q2 = b2(q1)

presents a downward sloping straight line in q1 with intercepts a−c+δ at the q1-axis and (a−c+δ)/2
at the q2-axis. Since a − c > ε, 0 ≤ δ ≤ ε and 0 ≤ v < 1, we have (a − c + ε)/2 < (a − c + δ)

(q1-intercept of the first line is lower) and (a − c + ε)/(1 + v) > (a − c + d)/2 (q2-intercept of the

first line is higher). This shows that the (unique) point of intersection of the lines q1 = b1(q2)

and q2 = b2(q1) has q1 > 0, q2 > 0. Consequently, the Cournot duopoly has a unique equilibrium.

At the equilibrium, both q1, q2 are positive and they are found by solving the system of equations

q1 = b1(q2), q2 = b2(q1). The unique solution to this system gives q1 = q1(v, δ), q2 = q2(v, δ) of

part (i). Noting that Q(v, δ) = q1(v, δ) + q2(v, δ) = [(2− v)(a− c) + ε+ (1− v)δ]/(3− v), we have

a − Q(v, δ) = [a + c − ε + (1 − v)(c − δ)]/(3 − v) > 0 (since δ ≤ ε < c and v < 1). This confirms

that the industry quantity Q(v, δ) does not exceed a. The Cournot price is obtained by noting that

p(v, δ) = a−Q(v, δ). This completes the proof of part (i).

(ii) Part (ii) follows from part (i) by standard computations.

(iii) The first statement of part (iii) follows by noting that ∂p(v, δ)/∂v = (a−c−ε+2δ)/(3−v)2 >

0 and ∂p(v, δ)/∂δ = −(1−v)/(3−v) < 0. The second statement is immediate by using the expression

of p(v, δ) from part (i).

(iv) Part (iv) follows by noting that ∂ψ(v, δ)/∂v = −(1 + v)(a− c− ε+ 2δ)2/(3− v)3 < 0 and

∂ψ(v, δ)/∂δ = 4(1 + v)(a− c− ε+ 2δ)/(3− v)2 > 0.

5.9.1 Detailed proof of Proposition 6

Proof of part (I) Denoting ψ(v, δ) := (1−v)φ2(v, δ), using (59)-(60) and using the Cournot price

and Cournot profits from Lemma L3, the payoffs of firms at (v, δ) are

π2 = (1− v)φ2(v, δ)− f = ψ(v, δ)− f and π1 = φ1(v, δ) + vp(v, δ)q2(v, δ) + rq2(v, δ) + f (61)

Since the innovation is nondrastic, without a license firm 2 obtains a positive profit φ, so a policy

is acceptable if and only if π2 = ψ(v, δ) − f ≥ φ. Thus, for a policy (v, δ), the maximum upfront
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fee that can be obtained from firm 2 is f̄(v, δ) = ψ(v, δ)− φ. Noting that (1− v)(c− δ) = c− ε+ r

(by (7)), we have f̄(v, δ) = (1− v)p(v, δ)q2(v, δ)− (c− ε+ r)q2(v, δ)−φ. Taking f = f̄(v, δ) in (61),

the payoff of firm 1 is π1 = G(p(v, δ))− φ where G(p) is given in (3).

Note from Lemma L3(iii) that for δ ∈ [0, ε] and v ∈ [0, 1), the Cournot price p(v, δ) is increasing

in v and decreasing in δ. Since limv↑1 p(v, 0) = pM (ε) (the monopoly price under marginal cost

c− ε), we have p(v, δ) < pM (ε) for all v ∈ [0, 1). As G(p) is increasing for p < pM (ε), the payoff of

firm 1 is increasing in p(v, δ). Since p(v, δ) is increasing in v, we conclude that for any δ, the payoff

of firm 1 is maximum when v is maximum. Thus any optimal pair (δ, v) must be on the curve OA

for δ ≤ δA and on the curve AB for δ > δA (see Figure 6).

Next observe that choosing δ > δA cannot be optimal. This is because p(v, δ) is increasing in

v, decreasing in δ and the curve AB (presenting v̄(δ)) is decreasing, so p(v̄(δA), δA) > p(v̄(δ), δ) for

any δ > δA. Therefore any optimal δ must be δ ≤ δA and any optimal (δ, v) pair must lie on curve

OA. For any such (δ, v), we have ψ(v, δ) = (1− v)φ2(v) = φ, so the upfront fee f̄(v, δ) = 0.

Noting that ψ(v, δ) = (1 − v)φ2(v, δ) = (1 − v)(a − c − ε + 2δ)2/(3 − v)2 and φ = ψ(0, 0) =

(a− c− ε)2/9, we have

ψ(v, δ) = φ⇔ δ = h(v) where h(v) := (a− c− ε)[{(3− v)/6
√

1− v} − 1/2]

Note from Figure 6 that for any v ∈ [0, γ(δA)] (any such v is on the line OD on the vertical axis),

h(v) is given by the curve OA. When δ = h(v), the Cournot price is

p(v, h(v)) = (a+ c− ε)/2− {(a− c− ε)
√

1− v}/6

Observe that p(v, h(v)) is increasing in v. This shows that for all (v, h(v)) on the curve OA, the

Cournot price is maximum when v = γ(δA). So the unique optimal three part tariff corresponds to

the point A in Figure 6. Noting that γ(δA) = v̄(δA), at point A we have v = v̄(δA) (the maximum

feasible ad valorem royalty), so the unit royalty r is zero and the unique optimal three part tariff

is a pure ad valorem royalty policy.

Proof of part (II) Noting that (v = 0, δ = 0) results in the same Cournot price as in the

case of no licensing, when there is no licensing, the price is p(0, 0) (the price at the point O in

Figure 6). The antitrust constraint requires to choose acceptable and feasible policies for which

p(v, δ) ≤ p(0, 0).

Recall that any point on OA other than O has a price higher than p(0, 0). So the price at A is

higher than p(0, 0). The price at B, p(0, ε), is lower than p(0, 0). As prices on the curve AB increase

as we move from B to A, there exists a point E on AB at which the price equals p(0, 0), prices are

higher on AE and lower on EB. The point E is identified in Figure 6 and the corresponding δ is

denoted by δE . For any point in the region FEB other than E, the price is lower than p(0, 0).

For any δ ∈ (0, δE), the maximum v that makes (v, δ) acceptable and feasible lies on OA or

on AE, for which (v, δ) = (m(δ), δ) where m(δ) = min{v̄(δ), γ(δ)}. As the price at any point OA

(excluding O) or AE is higher than p(0, 0), for any δ ∈ (0, δE): p(0, δ) < p(0, 0) < p(m(δ), δ). So
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there is a unique v̂(δ) ∈ (0,m(δ)) such that p(v, δ) T p(0, 0) ⇔ v T v̂(δ). As p(v, δ) is increasing

in v and decreasing in δ, v̂(δ) is increasing in δ. The function v̂(δ) is presented by the curve OE in

Figure 6 (v̂(0) = 0 and v̂(δE) coincides with point E).

The region OEB is the set of all acceptable and feasible (v, δ) for which the post-licensing

Cournot price p(v, δ) does not exceed p(0, 0). For any point on OE, p(v, δ) = p(0, 0), whereas for

any other point in the region OEB, p(v, δ) < p(0, 0). Since the payoff of firm 1 is maximum when

p(v, δ) is maximum, the set of all optimal policies is the continuum given by the curve OE where the

price exactly equals p(0, 0). For any such policy, firm 2 obtains φ and firm 1 obtains G(p(0, 0))−φ.
At O: v = 0 = γ(0) (no ad valorem royalty and zero surplus from the license, so no upfront

fee as well). As δ = 0 at O, by (7), setting δ(r, v) = 0 and v = 0 gives r = ε, proving (i). At E:

v > 0 (positive ad valorem royalty), v = v̄(δE) (maximum feasible v, so the unit royalty is zero)

and v < γ(δE) (positive surplus from the license, so positive upfront fee), which is a two part tariff

with ad valorem royalty and upfront fee, proving (ii).

For any point on OE excluding O and E: v > 0 (positive ad valorem royalty), v < v̄(δ) (less

than maximum feasible v, so the unit royalty is positive) and v < γ(δ) (positive surplus from the

license, so positive upfront fee), so all three components are positive, proving (iii).
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Table 1: Optimal three part tariffs and payoffs for an outside innovator under linear demand p(Q) =

max{a −Q, 0} in a Cournot oligopoly with n ≥ 2 firms, initial marginal cost c, magnitude of innovation ε,

where 0 < ε < c < a and ε < θ ≡ a− c (nondrastic innovation)

n = 2, 3: less significant and ε ∈ (0, θ/(2n− 1)) ε ∈ (θ/(2n− 1), θ/t(n))

intermediate innovations

Set of all unique optimal policy: Sn(n, δ∗n(n))

optimal policies pure upfront fee

Licenses k = n k = n

Payoff Πn(n, ε) Πn(n, δ∗n(n))

Two part tariffs FR: such an optimal policy

r > 0, f > 0, v = 0 always exists

Three part tariffs: a continuum of such optimal

r > 0, v > 0, f > 0 policies always exist

Two part tariffs FV: optimal if [a < κ̂(n)c] or

v > 0, f > 0, r = 0 [a > κ̂(n)c and ε < ε(n)]

Two part royalty: optimal if [a > κ̂(n)c

r > 0, v > 0, f = 0 and ε > ε(n)]

n = 2: significant innovations ε ∈ (θ/t(2), θ)

Set of all unique optimal policy:

optimal policies pure upfront fee

Licenses k = 1

Payoff ε(2θ + ε)/3

n = 3: significant innovations ε ∈ (θ/t(3), θ/2) ε ∈ (θ/2, θ)

Set of all unique optimal policy: S3(2, θ/2)

optimal policies pure upfront fee

Licenses k = 2 k = 2

Payoff ε(a− c) ε(a− c)
Two part tariffs FR: such an optimal

r > 0, f > 0, v = 0 policy always exists

Three part tariffs: a continuum of such optimal

r > 0, v > 0, f > 0 policies always exist

Two part tariffs FV: such an optimal

v > 0, f > 0, r = 0 policy always exists

Two part royalty: not optimal

r > 0, v > 0, f = 0

n ≥ 4: less significant innovations ε ∈ (0, θ/`(n)) ε ∈ (θ/`(n), θ/(2n− 4))

Set of all optimal policies unique optimal policy:

pure upfront fee

Licenses k = n k = n− 1

Payoff Πn(n, ε) Πn(n− 1, ε)
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n = 4, 5: intermediate and ε ∈ (θ/(2n− 4), θ/2) ε ∈ (θ/2, θ)

significant innovations

Set of all optimal policies Sn(n− 1, δ∗n(n− 1)) ∪n−1
k=2S

n(k, θ/k)

Licenses k = n− 1 k ∈ {2, . . . , n− 1}
Payoff Πn(n− 1, δ∗n(n− 1)) ε(a− c)
Two part tariffs FR: such an optimal n− 2 such optimal

r > 0, f > 0, v = 0 policy always exists policies always exist

Three part tariffs: a continuum of such optimal

r > 0, v > 0, f > 0 policies always exists

Two part tariffs FV: optimal if [a < 3c] or such an optimal

v > 0, f > 0, r = 0 [a > 3c and ε < ε(n)] policy always exists

Two part royalty: optimal if [a > 3c not optimal

r > 0, v > 0, f = 0 and ε > ε(n)]

n = 6: intermediate and ε ∈ (θ/8, θ/z(6)) ε ∈ (θ/z(6), θ/d) ε ∈ (θ/d, θ/2) ε ∈ (θ/2, θ)

significant innovations

Set of all S6(5, δ∗6(5)) S6(6, δ∗6(6)) S6(5, δ∗6(5)) ∪5
k=2S6(k, θ/k)

optimal policies

Licenses k = 5 k = 6 k = 5 k ∈ {2, 3, 4, 5}
Payoff Π6(5, δ∗6(5)) Π6(6, δ∗6(6)) Π6(5, δ∗6(5)) ε(a− c)
Two part tariffs FR: such an optimal 4 such optimal

r > 0, f > 0, v = 0 policy always exists policies always exist

Three part tariffs a continuum of such

r > 0, v > 0, f > 0 optimal policies

always exists

Two part tariffs FV: optimal if [a < κ(6)c] or optimal if optimal if such an optimal

v > 0, f > 0, r = 0 [a > κ(6)c and ε < ε(6)] [a < κ(6)c] or [a < 3c] or policy always exists

[a ∈ (κ(6)c, κ(6)c) [a ∈ (3c, κ̃c)

and ε < ε(6)] and ε < ε̃]

Two part royalty: optimal if [a > κ(6)c and optimal if optimal if not optimal

r > 0, v > 0, f = 0 ε > ε(6)] [a > κ(6)c] or [a > κ̃c] or

[a ∈ (κ(6)c, κ(6)c) [a ∈ (3c, κ̃c)

and ε > ε(6)] and ε > ε̃]

n ≥ 7: intermediate and ε ∈ (θ/(2n− 4), θ/z(n)) ε ∈ (θ/z(n), θ/u(n)) ε ∈ (θ/u(n), θ)

significant innovations

Set of all optimal Sn(n, δ∗n(n− 1)) Sn(n, δ∗n(n)) ∪n−1
k=2S

n(k, θ/k)

policies

Payoff Πn(n, δ∗n(n− 1)) Πn(n, δ∗n(n)) ε(a− c)
Licenses k = n− 1 k = n k ∈ {2, . . . , n− 1}
Two part tariffs FR: such an optimal policy n− 2 such optimal

r > 0, f > 0, v = 0 always exists policies always exist

Three part tariffs: a continuum of such optimal

r > 0, v > 0, f > 0 policies always exists

Two part tariffs FV: optimal if [a < κ(n)c] or optimal if [a < κ(n)c] or such an optimal policy

v > 0, f > 0, r = 0 [a > κ(n)c and ε < ε(n)] [a ∈ (κ(n)c, κ(n)c) and ε < ε(n)] always exists

Two part royalty: optimal if optimal if [a > κ(n)c] or not optimal

r > 0, v > 0, f = 0 [a > κ(n)c and ε > ε(n)] [a ∈ (κ(n)c, κ(n)c) and ε > ε(n)]
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Notes: (i) Two part tariffs FR: combinations of per unit royalties and upfront fees; (ii) Two

part tariffs FV: combinations of ad valorem revenue royalties and upfront fees.

Effective magnitude of the innovation under optimal policies:

δ∗n(k) :=

{
(θ + 2ε)/2(n− 1) if k = n− 1

[(n− 1)θ + (n+ 1)ε]/2(n2 − n+ 1) if k = n

Payoffs:

Πn(k, ε) = k[{θ + (n− k + 1)ε}2 − {θ − (n− 1)ε}2]/(n+ 1)2 for k = n− 1, n

Πn(n− 1, δ∗n(n− 1)) = [θ2 + 4nθε+ 4ε2]/4(n+ 1)

Πn(n, δ∗n(n)) = n[(n− 1)2θ2 + 2(2n3 + n2 + 1)θε+ (n+ 1)2ε2]/4(n+ 1)2(n2 − n+ 1)

t(n) :=

{
3(
√

2− 1) if n = 2

2(4 +
√

7)/3 if n = 3

`(n) := (n2 + n− 3)/2, d ≡ (210−
√

5642)/67,

z(n) := [n3 − n+
√

(n+ 1)(n2 − n+ 1)(n3 − 6n2 + 5n− 4)]/(2n2 − n+ 1)

u(n) := (n+ 1)(1 +
√
n2 − n+ 1)2/n(n− 1)2
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Figure 1: Effective magnitude of the innovation δ(r, v) 
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