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Abstract

Early modern humans interbred with archaic humans. To explore this phenomenon, we
develop a Malthusian growth model with hybridization in human evolution. Our hunting-
gathering Malthusian economy features two initial human populations. We derive population
dynamics and find that the more fertile population survives whereas the less fertile one
eventually becomes extinct. During this natural-selection process, a hybrid human population
emerges and survives in the long run. This finding explains why modern humans still carry
DNA from archaic humans. A higher hybridization rate reduces long-run population size but
raises long-run output per capita for the surviving populations in this Malthusian economy.
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1 Introduction

Homo sapiens emerged on this planet about 300,000 years ago. During most of this time, early
modern humans not only shared this planet with archaic humans but also interbred with them.
A prominent example of an archaic human species that interbred with early modern humans is
Homo neanderthalensis, commonly known as the Neanderthals.1 As a result of this hybridization
in human evolution, most modern humans still carry some proportion of Neanderthal-derived
DNA; for example, Prufer et al. (2017) report estimates of 2.3-2.6% of Neanderthal-derived DNA
in East Asians and 1.8-2.4% in Western Eurasians.2

Given the importance of interbreeding between archaic and modern humans, what are its
economic implications? To explore this question, this study develops a Malthusian growth model
with different human species and provides a novel economic analysis on interbreeding between
human species. In our Malthusian economy, there are initially two human populations (e.g., early
modern humans and the Neanderthals), which engage in food production in the form of hunting-
gathering. We analytically derive the population dynamics in this Malthusian economy. In the
long run, the more fertile human population survives, whereas the less fertile one becomes extinct,
capturing the Neanderthal extinction. During this process of natural selection, a hybrid human
population emerges and survives in the long run if it continues to interbreed with the initial
human population that survives. This finding may help explain why modern humans still carry
Neanderthal DNA.3

An increase in the hybridization rate reduces the long-run population size but raises the long-
run levels of food output per capita for both surviving populations. At the steady state, the
hybrid population as a share of the total human population is increasing in the hybridization
rate and the Malthusian potential of the hybrid population (which is increasing in its hunting-
gathering productivity and degree of fertility preference but decreasing in the fertility cost). If the
Malthusian potential of the hybrid human population is suffi ciently high, it may even dominate
the population as the only surviving human species, capturing the possibility that all modern
humans are hybrid descendents of archaic and early modern humans.
This study relates to the literature on evolutionary growth theory, which explores natural se-

lection in the Malthusian growth model. A seminal study in this literature is Galor and Moav
(2002), who consider how natural selection and the quality-quantity tradeoff of children deter-
mine the endogenous transition of an economy from stagnation to growth. Subsequent studies in
this influential literature include Lagerlof (2007), Galor and Michalopoulos (2012), Collins et al.
(2014), Dalgaard and Strulik (2015), Galor and Ozak (2016) and Galor and Klemp (2019).4 This
study relates most closely to Chu (2023), who explores the Neanderthal extinction in a similar
Malthusian economy.5 The present study generalizes the analysis in Chu (2023) by introducing
the interbreeding of human species to the model. Another recent study by Chu (2024) explores

1Another example is the Denisovans, who also interbred with early modern humans; see Krause et al. (2010).
2An earlier scientific consensus is that only non-Africans carry Neanderthal DNA, but recent evidence suggests

that Africans may also carry Neanderthal DNA of up to 0.3%; see Price (2020).
3Modern humans with Neanderthal DNA can be viewed as descendents of the hybrid population in our model,

whereas those without Neanderthal DNA are non-hybrid descendents of the initial Homo sapiens population.
4See Ashraf and Galor (2018) for a survey of this literature.
5See also Horan et al. (2005) for an economic model of two interacting human species with different degrees

of biological effi ciency, in which extinction occurs to the species with a lower degree of biological effi ciency unless
trade is present and offsets these biological deficiencies.
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the causes and consequences of human brain evolution also in the Malthusian growth model.6

This study also relates to the evolutionary biology literature on population genetics. A seminal
model of population genetics is the Wright-Fisher model of genetic drift developed by Fisher
(1922, 1930) and Wright (1931).7 Subsequent studies extend the Wright-Fisher model with a
fixed population size to capture interbreeding of human species; see for example, Neves and Serva
(2012) and Serva (2015). We take a different approach in this study by using a microfounded
Malthusian growth model with endogenous population growth to explore the economic implications
of interbreeding between archaic and early modern humans.

2 A Malthusian model with human interbreeding

The Malthusian growth model is based on the seminal work of Malthus (1798).8 In this section,
we extend the canonical Malthusian growth model in Ashraf and Galor (2011) to consider two
human populations as in Chu (2023) but incorporate the novel element of interbreeding that gives
rise to a hybrid human population. There are two initial groups of humans,9 who engage in
hunting-gathering within a fixed area of land Z. These two initial species of humans are indexed
by superscript i ∈ {a, s}. The human species s denotes Homo sapiens, whereas the human species
a refers to an archaic human species, such as the Neanderthals. The hybrid human species that
emerges as a result of interbreeding is indexed by superscript h.

2.1 Fertility and interbreeding

At time 0, there are N i
0 agents in each human group i ∈ {a, s}. Each agent lives for two periods,

and each adult agent of group i at time t has the following utility function:

uit = (1− γi) ln cit + γi lnnit, (1)

in which the parameter γi ∈ (0, 1) determines human group i’s preference for fertility, nit is the
number of children per adult agent in this group, and cit is the agent’s consumption level. The
resource constraint faced by each adult agent in group i is given by

cit + ρinit = yit, (2)

where the parameter ρi > 0 determines human group i’s fertility cost and yit is the per capita
level of food production in this group. We substitute (2) into (1) to derive the utility-maximizing
fertility rate nit of group i as

nit =
γi

ρi
yit (3)

and consumption as cit = (1− γi)yit.
6See also Chu and Xu (2024) on the Malthusian transition from the Neolithic Revolution to the Industrial

Revolution and Chu et al. (2024) on the Malthusian transition from political fragmentation to unification.
7See Ishida and Rosales (2020) for a review on the intellectual origins of the Wright-Fisher model.
8See Ehrlich and Lui (1997) for a review on the intellectual origins of the Malthusian model.
9We consider m ≥ 2 initial human groups in Appendix A, and our results remain robust.
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The number of adult agents in group i at the beginning of time t is N i
t . Each adult agent,

who remains in group i, has nit children; however, a share σ
i ∈ (0, 1) of the N i

t adult agents leaves
group i and engages in interbreeding with the other human population group j.10 Therefore, the
law of motion for the adult population size of group i is

N i
t+1 = nit(1− σi)N i

t = (1− σi)γ
i

ρi
yitN

i
t , (4)

where the second equality uses (3). Then, the growth rate of N i
t at time t is

∆N i
t

N i
t

= (1− σi)γ
i

ρi
yit − 1, (5)

which will be referred to as the population growth rate of group i.
At the beginning of time 0, the population size of the hybrid group is zero. However, σsN s

0 +
σaNa

0 agents from the two initial groups join the hybrid group h and give birth to n
h
0(σ

sN s
0 +σaNa

0 )
hybrid children.11 We assume that all agents joining or being born in the hybrid group h have the
same preference uht = (1− γh) ln cht + γh lnnht . As a result, the fertility rate of the hybrid group h
at time t is

nht =
γh

ρh
yht . (6)

Then, the law of motion for the adult population size of the hybrid group at time t is

Nh
t+1 = nht

(
Nh
t + σsN s

t + σaNa
t

)
=
γh

ρh
yht
(
Nh
t + σsN s

t + σaNa
t

)
, (7)

and its population growth rate at time t is

∆Nh
t

Nh
t

=
γh

ρh
yht

(
1 +

σsN s
t + σaNa

t

Nh
t

)
− 1. (8)

2.2 Hunting-gathering

Each agent in group i ∈ {s, a, h} receives yit units of food output from hunting-gathering given by

yit = θi(li)α
(
Z

Nt

)1−α
, (9)

where the parameter θi > 0 determines hunting-gathering productivity, the parameter li > 0
denotes hunting-gathering labor with intensity α ∈ (0, 1), the parameter Z > 0 is the total
amount of land, and Nt = N s

t + Na
t + Nh

t is the total population size at time t. Therefore, Z/Nt

is the amount of land per capita at time t.

10We follow Neves and Serva (2012) to assume that "at each generation a number α of randomly extracted
individuals from subpopulation 1 migrates to subpopulation 2". Our difference is that they join a hybrid population.
11The number of agents joining the hybrid group h from the two groups i ∈ {a, s} do not have to be equal, as

one agent can mate with multiple agents.
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2.3 Population dynamics and hybridization in human evolution

Substituting (9) into (3) and (6) yields the rate of fertility in group i ∈ {s, a, h} as

nit =
γi

ρi
θi(li)α

(
Z

Nt

)1−α
= Ωi

(
Z

Nt

)1−α
, (10)

where we define the composite parameter Ωi ≡ γiθi(li)α/ρi as the Malthusian potential of group i.
It is useful to note that this Malthusian-potential parameter Ωi is increasing in hunting-gathering
productivity θi, labor supply li and fertility preference γi but decreasing in fertility cost ρi. We
substitute (10) into (4) to derive the population dynamics of group i ∈ {s, a} as

N i
t+1 = (1− σi)Ωi

(
Z

Nt

)1−α
N i
t . (11)

Similarly, we substitute (10) into (7) to derive the population dynamics of the hybrid group h as

Nh
t+1 = Ωh

(
Z

Nt

)1−α
Nh
t

(
1 + σi

N i
t

Nh
t

+ σj
N j
t

Nh
t

)
. (12)

Combining (11) and (12) yields the relative population size between group i ∈ {s, a} and the
hybrid group h as

N i
t+1

Nh
t+1

=
(1− σi)Ωi/Ωh

1 + σi
N i
t

Nh
t

+ σj
Nj
t

Nh
t

N i
t

Nh
t

. (13)

If we define xit ≡ N i
t/N

h
t for i ∈ {s, a}, then (13) simplifies to

xit+1 =
(1− σi)Ωi/Ωh

1 + σixit + σjxjt
xit. (14)

From (14), the growth rate of xit is given by

∆xit
xit

=
(1− σi)Ωi/Ωh

1 + σixit + σjxjt
− 1. (15)

At the steady state, the ∆xit = 0 locus can be expressed as

∆xit = 0⇒ xi =
1

σi

[
(1− σi)Ωi

Ωh
− 1− σjxj

]
. (16)

Similarly, the ∆xjt = 0 locus can be expressed as

∆xjt = 0⇒ xi =
1

σi

[
(1− σj)Ωj

Ωh
− 1− σjxj

]
. (17)

Then, we plot the phase diagram for the dynamics of xit in (15)-(17) for i ∈ {s, a} and assume
(1− σs)Ωs > (1− σa)Ωa. We first consider the case (1− σs)Ωs > Ωh as our benchmark scenario.
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Figure 1: Phase diagram

Figure 1 shows that xat → 0, implying the extinction of archaic humans, and xst → xs > 0,
implying the survival of early modern humans.12 Given the parameter assumption (1−σs)Ωs > Ωh,
the steady-state value of xst is given by

xs =
(1− σs)Ωs − Ωh

σsΩh
. (18)

Equation (18) then implies that the steady-state population ratio Nh/N s is given by13

Nh

N s
=

σsΩh

(1− σs)Ωs − Ωh
, (19)

which is increasing in the hybridization rate σs and the hybrid human group’s Malthusian potential
Ωh but decreasing in early modern humans’Malthusian potential Ωs. The hybrid population
survives despite its lower Malthusian potential due to its continued hybridization with early modern
humans. From (11), the steady-state level of total population is given by

N = N s +Nh = [(1− σs)Ωs]1/(1−α)Z, (20)

which is increasing in land supply Z and early modern humans’Malthusian potential Ωs but
decreasing in their hybridization rate σs. Although the long-run level of populationN is decreasing
in the hybridization rate due to the hybrid population h having a lower Malthusian potential than
early modern humans (i.e., Ωs > (1− σs)Ωs > Ωh), the long-run levels of food output per capita
for both early modern humans s and the hybrid population h are increasing in the hybridization
rate σs due to the Malthusian mechanism. To see this, substituting (20) into (9) yields

yi =
θi(li)α

(1− σs)Ωs
(21)

and ∂yi/∂σs > 0 for i ∈ {s, h}. We summarize the above results in Proposition 1.

12See also Chu (2023) for a similar result. The novelty here is on the emergence of a hybrid population.
13Here, we assume that early modern humans continue to interbreed with the hybrid population after the archaic

humans become extinct.
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Proposition 1 Given (1 − σs)Ωs > max{Ωh, (1 − σa)Ωa}, archaic humans (group a) eventually
become extinct, whereas early modern humans (group s) and hybrid humans (group h) survive in
the long run. The steady-state total population size N is decreasing in the hybridization rate σs,
whereas the steady-state levels of food output per capita for both early modern humans s and hybrid
humans h are increasing in the hybridization rate σs.

Before concluding, we also discuss the other case Ωh > max{(1 − σs)Ωs, (1 − σa)Ωa} as an
alternative scenario. In this case, the population growth rate of the hybrid group h from (8) is

∆Nh
t

Nh
t

= Ωh

(
Z

Nt

)1−α(
1 +

σiN i
t + σjN j

t

Nh
t

)
− 1, (22)

whereas the population growth rate of human group i ∈ {s, a} from (5) is

∆N i
t

N i
t

= (1− σi)Ωi

(
Z

Nt

)1−α
− 1. (23)

Equations (22) and (23) show that ∆Nh
t /N

h
t > ∆N i

t/N
i
t even when N

i
t = N j

t = 0 given Ωh >
max{(1−σs)Ωs, (1−σa)Ωa}. Therefore, it must be the case that the hybrid population dominates
the entire human population in the long run such that14

Nh
t → N = (Ωh)1/(1−α)Z, (24)

which is increasing in the supply of land Z and hybrid humans’Malthusian potential Ωh. Finally,
the long-run level of food output per capita for the hybrid population h is given by

yh =
θh(lh)α

Ωh
=
ρh

γh
, (25)

which depends on fertility preference γh and cost ρh. We summarize the results in Proposition 2.

Proposition 2 Given Ωh > max{(1 − σs)Ωs, (1 − σa)Ωa}, both early modern humans (group s)
and archaic humans (group a) eventually become extinct, whereas hybrid humans (group h) survive
in the long run. The steady-state population size is given in (24), whereas the steady-state level of
food output per capita is given in (25).

3 Conclusion

In this study, we have developed a Malthusian growth-theoretic framework to explore interbreeding
between archaic and early modern humans. We have analytically derived population dynamics
and shown that the archaic human group becomes extinct whereas the group of early modern
humans survives. More importantly, a hybrid human group emerges and also survives in the
human population due to the continued hybridization with early modern humans. This finding
may help explain the fact that modern humans still carry some Neanderthal-derived DNA.

14In this case, the vertical intercepts of both ∆xst = 0 and ∆xat = 0 loci in Figure 1 would be below zero, implying
that {xst , xat } → 0.
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Appendix A

In this appendix, we consider an arbitrary numberm ≥ 2 of initial human groups i ∈ {1, ...,m},
along with the subsequent emergence of a hybrid human group h. The rest of the model is the
same as before. In this case, the relative population size between group i ∈ {1, ...,m} and the
hybrid group h in (13) becomes

N i
t+1

Nh
t+1

=
(1− σi)Ωi/Ωh

1 +
∑m

j=1 σ
j N

j
t

Nh
t

N i
t

Nh
t

. (A1)

Defining xit ≡ N i
t/N

h
t for i ∈ {1, ...,m} as before yields

xit+1 =
(1− σi)Ωi/Ωh

1 +
∑m

j=1 σ
jxjt

xit. (A2)

Then, the growth rate of xit is given by

∆xit
xit

=
(1− σi)Ωi/Ωh

1 +
∑m

j=1 σ
jxjt
− 1, (A3)

which shows that the human group i with the largest (1− σi)Ωi > (1− σj)Ωj for all j 6= i would
have the highest growth rate ∆xit/x

i
t at all time t. Therefore, as ∆xit/x

i
t → 0, the growth rates

of all other groups j 6= i would become negative (i.e., ∆xjt/x
j
t < 0), implying that xjt → 0 for all

j 6= i. In this case, the initial human group i with the largest (1− σi)Ωi survives in the long run,
and so does the hybrid human group h. Let’s use s to denote the surviving initial human group.
In this case, the steady-state value xs is the same as (18), and the steady-state population ratio
Nh/N s is the same as (19), which implicitly assumes (1− σs)Ωs > Ωh.
Suppose Ωh > (1−σi)Ωi for all i ∈ {1, ...,m} instead. Then, we compare (23) with the modified

version of (22) given by

∆Nh
t

Nh
t

= Ωh

(
Z

Nt

)1−α(
1 +

m∑
i=1

σiN i
t

Nh
t

)
− 1, (A4)

which shows that ∆Nh
t /N

h
t > ∆N i

t/N
i
t even when N

i
t = 0 for all i ∈ {1, ...,m}. In this case, the

hybrid human group h dominates the entire human population in the long run, as before; i.e.,
Nh
t → N = (Ωh)1/(1−α)Z.
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