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Abstract

This paper develops a theoretical model of cyberwarfare between

nations, focusing on the factors that determine the severity and out-

comes of cyber conflicts. We introduce a two-country model where na-

tions invest in offensive or defensive cyber capabilities across networked

systems. We show that resource expenditure intensifies when players’

effective values are similar, which can help explain the rise of cyberwar-

fare. We explore the implications of network structures, showing how

larger attack surfaces worsen outcomes for defenders. Additionally, we

investigate the impact of private cyber defence provision, and find that

centralized policies may either improve or exacerbate cyber conflict.
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1 Introduction

Cyberwarfare involving nation states is commonly described as “the next fron-

tier for warfare,” one in which countries are continuously engaged in defending

their information systems while also attacking rival nations. The U.S., for ex-

ample, has in recent years come under numerous notable attacks, including

the 2015 Chinese attack on the Office of Personnel Management and the 2016

Russian attack on the Democratic National Committee. The U.S. is also en-

gaged in offensive operations, with the joint operations with Israel sabotaging

Iran’s nuclear program in 2010 being one of the first salient examples of cy-

berattacks by nation states. Cyberattacks can also have substantial effects on

civilian populations beyond the exposure of information as in the 2015 Rus-

sian attack on the Ukrainian power grid that led to power outages affecting

over 200,000 people.1 This new mode of warfare raises many questions: What

determines the severity of cyberwarfare? How are outcomes affected by im-

proved offensive or defensive capacities or by the nature of network structures?

What are the consequences of the private vs. public provision of cyberdefence

investment?

In this paper, we study these questions by developing a theoretical model

of cyberwarfare between nation states. We emphasize the development of

a framework that is tractable but rich enough to capture a range of different

scenarios and one that distinctively models cyberwarfare as opposed to broader

war or competitive resource expenditure. To this end, we construct a two-

country model where each country can attack or defend a number of systems.

These systems are arranged in networked groups, where access to one system

can provide access to additional systems. The Attacker and Defender both

make investments that determine the probability of infiltrating a particular set

of systems. We model the investment process as similar to an all-pay auction,

where the Attacker is able to enter a system if it makes a larger investment

1There have been many subsequent Russian cyberattacks against Ukraine related to the
Russo-Ukrainian War, especially in 2022. These are well documented in Przetacznik [2022].
However, the 2015 attack has been the largest successful attack against the Ukrainian power
grid.
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than the Defender. Having entered a particular system in a network, the

Attacker can then access other systems that are connected downstream.

Our model sheds light on several factors that determine the severity of

cyberwarfare. As in other all-pay auction contexts, resource expenditure is

most severe when the “effective values” of the two players are closer to each

other. The effective value depends on the loss (for the Defender) or benefit

(for the Attacker) from infiltration, the player’s marginal cost of infiltration,

and also on network features. Our model provides a natural explanation for

the rise in cyberwarfare. If the Defender is the higher value player – which we

argue is a reasonable assumption for some of the highest stakes cyberwarfare –

greater progress in Attacking vs. Defending ability will lead to convergence of

valuation and therefore more intensive conflict. This account is also broadly

consistent with the fact that smaller and technologically less advanced coun-

tries have found it worthwhile to engage in cyberwarfare with larger countries

such as the US.

An extension of our model introduces both an immediate benefit at infiltra-

tion – capturing the benefit from immediate information acquisition – and ad-

ditional benefit when the Attacker is able to remain in the system longer-term.

The latter captures both the benefit of receiving updated information as well

as any potential option value benefits (e.g. shutting off critical infrastructure

in case of a future conflict). However, the Attacker does not reap long-term

benefits if they are exposed and eliminated from the systems. The Defender

incurs corresponding short- and long-term losses from being infiltrated. This

extension allows for a distinction between a more “patient” long-term infiltra-

tion vs. a “major” attack that seeks to extract benefit immediately at a greater

risk of exposure. As expected, a patient infiltration is more likely when the

Attacker’s short-run benefits are low relatively to its long-run benefit. More

surprisingly, we find that the Defender may actually be better off in a major

attack equilibrium than in a more patient long-term infiltration equilibrium.

Hence, a conflict with a patient nation state could be worse for the Defender

than an attack from a more noticeably destructive adversary.

Our analysis emphasizes the role of network structure in determining cyber-
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warfare outcomes. We highlight the role of the size of the “attack surface” or

equivalently, the number of “attack vectors” available to the Attacker. When

the Attacker is able to attack a network through many channels, this effec-

tively implies a relatively lower Attacker cost vs. Defender cost and will hurt

the Defender. It will also amplify the intensity of conflict in the case where

the Defender is higher value. The increasing importance of digital connection

between websites, platforms and service providers is likely to be a factor that

amplifies the size of attack surfaces and therefore worsen cyberwarfare. We

also find that “star” network structures, where a single central system gives

access to peripheral systems that are not directly connected to each other,

tend to be beneficial for the Defender. This is because such structures allow

the systems to be interlinked in a way that tends to minimize the size of the

attack surface.

We also address an externality problem that is especially common in liberal

democracies with powerful private sectors. Private entities may be in charge of

the cyberdefences of their own systems, which in turn provide access to other

downstream networks. This type of setup is often relevant in practice, with

a prominent case being the 2021 hack of Microsoft Exchange Server, which

provides services to many downstream networks. We examine a variation on

our model where the defensive investments are made by private entities that

consider losses to their own systems but not other interlinked systems. We find

two possible outcomes in this externality version of the model. The first – and

more expected outcome – is that private provision leads to an underinvestment

in cyber defence that hurts Defenders collectively relative to a centralized

provision. This outcome takes place when the Defender is the higher effective

value player. This outcome would provide support for policies that impose

requirements or standards on private entities, or possibly promise retaliation

when private entities are attacked. Examples of such policy initiatives in

the U.S. are measures designed to impose national standards on information

sharing by companies, such as the Cybersecurity Information Sharing Act of

2015.

A second – and more surprising – possibility is that public provision may
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actually lead to an overprovision of cyber investment. This is likely when the

Attacker is the higher value player or there are many attack vectors. In this

case, the presence of a centralized Defender invites a stronger investment from

the Attacker and the ensuing negative sum competition means the Defender

ends up spending more resources without much corresponding improvement in

actual defence. This result would suggest that centralized regulation should

ideally be imposed only in situations where the systems in question have very

high associated losses and there are relatively few attack vectors, and may be

unnecessary or harmful if applied too broadly, including to systems that have

less severe systematic losses associated to the Defender.

Finally, the star network is especially sensitive to the externality problem.

The Defender’s advantage from the star network vanishes as the externality

becomes more extreme. The advantage of a star network relies on the entity

controlling the central system internalizing the benefits to mount a vigorous

defence. When this is not the case, the effect of the externality is similar in

some respects to an increase in the number of attack vectors.

Broadly, our work contributes to an existing theoretical literature study-

ing warfare within an economic framework – a literature that goes back to

Haavelmo [1954] and Schelling [1960] – by developing a theory of cyberwar-

fare.2 Much of the emphasis in this literature is on the factors that make

wars more or less likely to take place (e.g. Powell [1993], Yared [2010], Ace-

moglu et al. [2012], and Acemoglu and Wolitzky [2014]). Cyberwarfare is very

different from “regular” warfare in this respect since it is continuous and un-

ceasing, and there is no meaningful alternation between states of peace and

war. Hence, in analyzing cyberwarfare, our emphasis shifts to a more contin-

uous notion of “severity” rather than discrete questions about the presence or

absence of conflict.

Our work is also connected to the existing literature on network defence.

Relative to this literature, we ask distinct questions about the causes and

consequences of more or less severe cyberwarfare – questions that are more

analogous to those asked in the economics of conflict referenced above. That

2See Garfinkel and Skaperdas [2007] for a review of the conflict literature.
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said, our analysis draws on and contributes to the network defence literature.

Our work specifically relates to two strands of this literature.3 Our analysis

of public vs. private provision of cyberdefence relates to past work on ex-

ternalities in network defence, which builds on Kunreuther and Heal [2003]

and Varian [2004]. Much of this work emphasizes the possibility of reduced

defensive investment due to the positive externalities from investment – an

outcome that is also possible in our framework. Acemoglu et al. [2016] use a

Stackelberg “Defender first” model to show that a negative externality that

leads to overinvestment is also possible because private Defenders may have

an incentive to divert Attackers towards other Defenders. In our analysis of

the simultaneous-move game – which would capture the Attacker’s uncertainty

about the Defender’s choices – we uncover a novel point related to over- and

under-investment: under certain conditions, public provision can lead to over-

provision of defensive investments because the presence of public provision that

internalizes the network externalities can induce more aggressive behavior on

part of the Attacker.

Our work also touches on themes that arise in the study of optimal defensive

network structure. Goyal and Vigier [2014] study optimal network structure

with a common defender and find that a star network is optimal under a wide

range of circumstances. Although we define a star network somewhat differ-

ently – as a directed network with links only pointing from the center to the

periphery – our results are also favorable towards a star network structure.

However, our equilibrium is significantly different, and our reasons pertain

to limiting the effective number of attack vectors. For related reasons, we

show that the star structure is especially sensitive to the network externality

problem. Insufficient defence of the central system is an especially exploitable

vulnerability, akin to having more attack vectors. This latter mechanism is

distinct from the tradeoffs identified in Cerdeiro et al. [2017] – who study

optimal network design with private defenders – which are rooted in the pres-

3Fedele and Roner [2022] provide a recent review of this literature in economics. We
focus our discussion here on the most connected portions of this literature. See also Roy
et al. [2010] or Merrick et al. [2016] for a review of some of the related literature in computer
science and information security studies, which is more engineering focused.
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ence of Stackelberg-type negative externalities as in Acemoglu et al. [2016], in

addition to the positive externalities.

Finally, we believe that our analysis of the case where there are both short-

and long-run benefits and losses to the Attacker and Defender is new to the

literature. The resulting tradeoff between a major immediate attack vs. a

more patient long-term infiltration is an important aspect of cyberconflict,

especially as it pertains to nation states.

The paper proceeds as follows: Section 2 introduces our model, Section 3

analyzes the cluster network structure, Section 4 examines the star network

and compares it to the cluster. Section 5 analyzes externality problems that

arise when private entities control defensive choices, and systems are organized

in either a cluster or star network. Finally, Section 6 concludes.

2 Model

In the general model, there is a set N = {1, . . . , n} of systems partitioned

into a set of m groups M = {N1, . . . , Nm}, where ni ≡ |Ni|. A group is

a set of systems that shares a single method of the Attacker gaining access.

In the cybersecurity vernacular, this is a set of systems sharing the same

single “attack vector.” These attack vectors are the ways of directly gaining

access to a system. Though we assume that there is only one direct attack

vector per system (i.e., the set of groups is a partition), our results would

not significantly change if there were multiple attack vectors per system (i.e.,

groups can overlap).

Initially, the Attacker and Defender simultaneously choose investments

ai ≥ 0 and di ≥ 0, respectively, for each group i = 1, . . . ,m. If ai > di, the

Attacker succeeds in gaining access to every system in group Ni. If ai < di, the

Attacker fails to gain access to any systems in Ni. If ai = di > 0, the Attacker

succeeds with probability 1
2
. If ai = di = 0, then the tie-breaking rule must

be equilibrium dependent; we will specify the tie-breaking rule in each special

case we analyze. The marginal costs of investment are cA and cD. Thus, this

first stage of the game is similar to an all-pay auction (per group of systems).
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At the end of the first stage, let I ⊆ N refer to the initial set of systems that

the Attacker has access to.

After gaining access to an initial set of systems, it becomes easier and less

costly to attack related systems. This creates an additional indirect way of

gaining access to systems. The systems are networked according to directed

graph G = (N,E) (N is the set of vertices and E is the set of edges), where

(i, j) ∈ E if and only if there is a link from System i to System j, where i 6= j.

The network defines which secondary systems may be attacked immediately

with probability 1 and at zero cost by virtue of successfully infiltrating another

system. If i ∈ I and j /∈ I, but (i, j) ∈ E, then the Attacker may also gain

access to j for free. In principle, one could then use j’s links to gain access

to a third system k, but this is not relevant in the network types in this

paper. C = {C1, . . . , C|C|} is the set of all components of G. In our context, a

component is a maximal weakly connected subgraph. That is, if you replace

the directed links with undirected links, a component is a largest possible

subgraph that has a path between any two of its systems. We use C(i) ∈ C
to refer to the component containing System i and CV to the set of systems

in component C. We assume that each group is a subset of a component: for

all Ni, there exists C ∈ C such that Ni ⊆ CV . In other words, systems in

different components are unrelated enough that somewhat distinct methods

are needed to directly infiltrate each. For example, although phishing attacks

can be used to gain login credentials to access either system, the systems do

not have any known users in common, so distinct phishing attacks must be

used for each system.

The Attacker reaps a benefit of Bi if it is able to attack System i and

the Defender incurs losses of Li. In the baseline version of the model, the

Attacker always has an incentive to attack all systems it gains access to. In

Section 3.3, we examine an extension where the Attacker may choose to limit

the number of systems it attacks. This implies a final set of attacked systems

F , which includes all systems in I and also all systems with links coming from

systems in I. F determines the players’ payoffs. The Attacker’s payoff is∑
i∈F Bi − cA

∑m
j=1 aj, and the Defender’s payoff is −

∑
i∈F Li − cD

∑m
j=1 dj.
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We note here two comparisons of our model with papers in the exist-

ing literature on network defence. First, our model is a simultaneous-move

game, in line with much of the literature but in contrast to the defender-first

Stackelberg-type games in Acemoglu et al. [2016] and Cerdeiro et al. [2017].

The simultaneous-move game captures the fact that the Attacker is unlikely to

have perfect information about the Defender’s investment choices, especially

given the long history of nations keeping their capabilities secret. Second, by

studying a two-player game, we abstract here from the multiple attribution

problem emphasized in Baliga et al. [2020].

The timeline of the game is as follows: The Attacker and Defender si-

multaneously choose their investments ai, di for each group. Then, Nature

determines the systems I the Attacker initially gains access to according to

these investments, which indirectly determines the final set of attacked sys-

tems F . Finally, players receive their payoffs. We focus on the perfect Bayesian

equilibria of this game.

For each equilibrium in this paper, it is useful to think of one player as

being the high value player (denoted H) and the other player as being the low

value player (denoted L). For example, in the case where the Attacker is the

high value player, and the Defender is the low value player, we replace all A

subscripts with H and all D subscripts with L. This allows us to describe the

equilibrium more concisely. The high value player is determined not by a näıve

comparison of Bi’s and Li’s, but rather on a comparison between two “effective

values” w∗A and w∗D which will depend on the network structure. This lets us

define a useful class of equilibria:

Definition 1

A strategy profile has the all-pay auction form if for some effective values

w∗A and w∗D, the following hold:

1. If w∗A < w∗D, then H = D. If w∗A > w∗D, then H = A.

2. With probability pL =
w∗
H−w

∗
L

w∗
H

, the low value player does not invest in any

system.
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All equilibria in this paper have the all-pay auction form. The interesting

distinctions lie in the determinants of w∗A and w∗D, the distributions determin-

ing which systems are invested in, and the investment distributions.

3 Cluster Network

Suppose that G is a cluster graph (i.e. each component is a complete graph,

which we call a “cluster”).4. To simplify and focus attention on the network

structure, we also assume that systems are otherwise identical: for all pairs of

systems i, j, Bi = Bj = B,Li = Lj = L. Of particular interest are the total

benefits and losses for a Cluster j: B∗j ≡ njB and L∗j ≡ njL (where we will

drop the j when it is clear from the context). Let Mj be the set of indices

of groups of systems in Cluster j: Mj = {i ∈ {1, . . . ,m}|Ni ⊆ CV
j }. Let

mj = |Mj|. This mj is the number of distinct methods (i.e., attack vectors) by

which the Attacker may gain access to the entire cluster (or as many systems

as they desire). We call the resulting game the “cluster graph game.”

We now provide a formal collection of results in Proposition 2, which will

be followed by a proof and then a discussion of implications.

3.1 Main Cluster Result

To sharpen the analogy to all-pay auctions, we first redefine the players’ values

so that the marginal cost is 1 (as in an auction where the investments are

dollars). The Attacker’s value for Cluster j is v∗A = B∗
cA

, and the Defender’s

value is v∗D = L∗
cD

. By dividing each payoff by the player’s marginal cost, the

payoffs now have the form “total value − total investment.” For the case of

ai = di = 0 (where i is in Cluster j), we break the tie in favor of the Attacker

if and only if mjv
∗
A > v∗D.

Proposition 1

There exists a perfect Bayesian equilibrium of the cluster graph game where

4Our results in this section would continue to hold under a generalization where each
component is a strongly connected subgraph. We simply make the complete graph assump-
tion for expositional simplicity.
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for every Cluster j, strategies have the all-pay auction form and the following

hold:

1. w∗A = v∗A, w
∗
D =

v∗D
mj

2. Conditional on investing at all, the Attacker invests in exactly one group

i, where i is chosen uniformly.

3. Conditional on investing at all, the Defender invests i.i.d. in all groups.

4. Each player, conditional on investing in Group i, chooses an investment

level distributed U [0, w∗L].

Proof. First, note that the players’ payoffs may be separated into terms for

each cluster, where each cluster’s payoff does not interact with choices regard-

ing other clusters. Therefore, strategies may be independent across clusters,

and we need consider only cluster-specific payoffs.

First, suppose that w∗D > w∗A. Assuming that the Defender uses inde-

pendent uniform distributions with upper bounds ui, the Attacker’s payoff in

Cluster j is 1−
∏
i∈Mj

(
1− ai

ui

)njB − cA ∑
i∈Mj

ai

The derivative of this with respect to any ai is

∏
k∈Mj\{i}

(
1− ak

uk

)
njB
ui
− cA

The Attacker is indifferent conditional on ak = 0, ∀k ∈ Mj \ {i} if and only if

ui =
njB
cA

= w∗A. Then, the Attacker strictly prefers ai = 0 whenever ak > 0 for

any k 6= i.

Let pA be the probability that the Attacker invests in none of the groups

in Cluster j. Now, assuming that the Attacker only ever invests in one group

in the cluster, that this group is chosen uniformly, and that conditional on

investing, the Attacker uses the same uniform distribution as the Defender
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(the same ui), the Defender’s expected payoff in Cluster j is

−(1− pA)

 1

mj

∑
i∈Mj

(
1− di

ui

)njL − cD
∑
i∈Mj

di

The derivative with respect to any di is (1− pA)
njL
mjui
− cD. Indifference is then

equivalent to pA =
w∗
D−w

∗
A

w∗
D
∈ [0, 1]. Thus, the Attacker and Defender are both

best responding, and this is an equilibrium.

Now, suppose that w∗A > w∗D. We now have pA = 0, so the Defender is

indifferent if
njL
mjui

= cD, so ui =
v∗D
mj

= w∗D. Given that pD is the probability

that the Defender invests in none of the groups in Cluster j, the Attacker’s

expected payoff ispD + (1− pD)

1−
∏
i∈Mj

(
1− ai

ui

)njB − cA
∑
i∈Mj

ai

The derivative with respect to any ai is

(1− pD)
∏

k∈Mj\{i}

(
1− ak

uk

)
njB
ui
− cA

Conditional on ak = 0,∀k 6= i, the Attacker is indifferent if

(1− pD)
njB
ui

= cA ⇔ pD =
w∗A − w∗D

w∗A

Whenever ak > 0 for some k 6= i, then the Attacker strictly prefers ai = 0.

Also, note that the Defender cannot benefit from deviating from zero in-

vestment to some small positive investment(s), even though the Attacker will

invest 0 in some groups and wins ties. After such a deviation, they will still

almost surely fail to prevent the Attacker from infiltrating some group in the

cluster. Since infiltration of any single group leads to the same final outcome,

there is no benefit from such a deviation. That is, there is no discontinuity at

zero investment for the Defender.
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3.2 Discussion of Proposition 1

Proposition 1 shows that the Attacker in equilibrium will attack at most a

single system, though the identity of the system is randomized. When the

Attacker is the lower value player, it may not attack any system. The Defender,

in general will defend all systems, though it may defend no system with positive

probability when it is the low value player.

We see here that although there is only one way of directly attacking a

system, there are additionally mj − 1 indirect ways. Therefore, the overall

equilibrium strategies for each system depend on mj. In cybersecurity termi-

nology, each system has an “attack surface” (set of all attack vectors) of size

mj. This larger attack surface gives the Attacker an advantage: They need

only attack via one attack vector at a time, randomizing which one they attack,

but the Defender must simultaneously defend all attack vectors. This multi-

plier allows the Attacker to effectively outspend the Defender more cheaply.

The players’ payoffs are as follows:

Attacker High Value (v∗A − 1
mj
v∗D)cA

Low Value 0
Defender High Value −mjv

∗
AcD

Low Value −v∗DcD

As in other auction theory contexts, our results from Proposition 1 require

thinking separately about the case where the Defender is the higher value

player and where the Attacker is the higher value player, where the Attacker’s

value is multiplied by the number of attack vectors. A natural example for the

Defender being the higher value player may be when the cluster in question has

few attack vectors and corresponds to critical infrastructure. In this case, the

potential losses to the Defender may be extremely large relative to the benefits

for the Attacker. This would especially be the case if the Attacker in question

is more interested in information gathering but not in a major escalation of

hostilities. The case where the Defender is the higher value player is likely

to capture many of the most prominent cases of cyberattacks, especially ones

that are of broad public salience.
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An example of the opposite case (i.e. the Attacker being higher value)

could be one where the cluster contains a massive amount of useful information

for the Attacker but where the information is not extremely sensitive for the

Defender and so is not excessively damaging. We consider several implications

of Proposition 1 taking both of these cases into account. The Attacker could

also be considered higher value if the systems involve critical infrastructure

but there are also many attack vectors (i.e., they are too well connected to

other systems).

There are two natural metrics capturing the nature of cyberwarfare in this

context. The first is the intensity of conflict, i.e. the amount of investment by

both the Attacker and the Defender. This reflects the total resources being

devoted to cyber conflict. Second, we are also interested in the welfare effect of

cyberwarfare. The overall welfare effect can be somewhat difficult to interpret

in this context because the Attacker’s welfare obviously includes the benefit

it derives from attacking systems, which we might see as a less “legitimate”

benefit on societal grounds, at least in many potential scenarios.

A major question of interest in connection to cyberwarfare in practice is

the consequence of improvements in defensive vs. offensive cyberwarfare capa-

bilities. From a policy perspective, it is often suggested that countries should

prioritize improvements in their defensive rather than offensive capabilities. A

natural expectation might be that offensive improvements will lead to more

severe cyberwarfare whereas defensive improvements will reduce the intensity

of conflict. Our results imply that this is indeed the case when the Defender is

the higher value player. In this case, the offensive improvements – captured by

lower cA (implying higher w∗A) cause both sides to invest more. Improvements

in defensive capability – lower cD – make the Attacker less likely to invest.

The case where the Defender is higher value than the Attacker is probably

a natural assumption for some of the highest stakes cyberwarfare applications

(e.g. critical infrastructure, highly classified state secrets). In these cases,

faster improvements in offensive vs. defensive capabilities globally would pro-

vide a natural explanation for the rise of cyber conflict over time in the context

of our model. This account would also explain why smaller and less technolog-
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ically advanced countries are able to engage more aggressively in cyberconflict

with countries such as the U.S., i.e. improvements in offensive relative to de-

fensive capabilities would bring the effective valuations of Attackers closer to

Defenders’ valuations.

These patterns are reversed in the case where the Attacker is the higher

value player. An improvement in defensive capability now causes more in-

vestment by both the Attacker and the Defender. Improvement in offensive

capabilities reduce the investment by the Defender. As w∗L rises, the upper

bound of the investment range rises, increasing both players’ expected in-

vestments. When the Attacker is the higher value player, improvements in

offensive capabilities (or worsening of defensive capabilities) actually reduce

the intensity of conflict. The key intuition for the outcomes in both the higher

value Attacker and higher value Defender cases is that cyberwarfare is most

intense when the values of the Attacker and Defender are closer to each other.

The welfare effects of changes in offensive and defensive capability track

closely the investment effects. When the Defender is higher value, total wel-

fare improves when defensive capability improves and worsens when offensive

capability improvements. In both cases, this is driven by decreases or increases

in wasteful conflict investments. Conversely, in the Attacker high value case,

total welfare improves when offensive capability improves or when defensive

capability worsens.

3.3 Extension with Short vs. Long-Run Benefits and

Losses

We now consider an extension where the Attacker does not necessarily choose

to attack each system in a cluster even though it has gained access. In practice,

an Attacker may face a tradeoff between immediately maximizing its short-

term benefit by attacking a system vs. maintaining a more patient long-term

presence that allows greater benefit to be reaped over time. The Attacker

now makes a non-trivial choice about the final number of systems to attack

in Cluster j, which we denote fj. In the baseline version of the model, this

14



choice would be trivial, i.e. fj = |CV
j |. For this extension, we specifically

assume Cluster j immediately gives the Attacker guaranteed short run benefit

fjb and the Defender immediately suffers losses fj`, where b ≥ 0 and ` ≥ 0.

These represent actions that may be taken immediately on attacking a system,

such as stealing data that already resides there. Note that we have assumed

here equal benefits and losses for each system. Based on short-run benefits

alone, there is no reason to attack less than the entire cluster.

After the Attacker has chosen fj and reaped the short run benefits, there

is a passive detection process that may lead to the discovery of the Attacker in

a system. For example, IT staff may notice system usage at unusual times of

day and investigate. For each attacked system i ∈ F , there is an independent

probability q ∈ (0, 1) that the Attacker’s presence will be discovered in that

system. Being discovered in System i also reveals the Attacker’s presence in

any other system in the same component C(i). This prevents the Attacker

from reaping any of the long-run benefits of remaining in the systems in C(i).

If the Attacker is not discovered in any system in Cluster j, then they

reap additional benefits fjB and the Defender incurs additional losses fjL,

where B ≥ 0 and L ≥ 0. These could represent the effect of the Attacker

maintaining a long term presence in the systems, such as passive intelligence

gathering or the option value of being able to damage the functioning of the

systems should the need arise. To ensure that all systems are desirable to

attack and defend in isolation, we assume that b+B > 0 and `+L > 0. If on

the other hand the Attacker is discovered in one system in a cluster through

the passive monitoring process, the Defender can infer their presence in other

systems in that cluster. Therefore, if the Attacker is discovered in any system

in a cluster, they will be quickly eliminated from that entire cluster and there

will be no long-run gains or losses within that cluster.

For any number fj of attacked systems in Cluster j, the probability that

the Attacker is not discovered in Cluster j is (1 − q)fj .5 If the Attacker is

5Note that the Attacker only puts themselves at risk for detection by actually attacking a
system and not by merely gaining access to it. Therefore, fj could be less than the number
of intitally infiltrated systems in Cluster j.
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not discovered in Cluster j, then the Attacker gets Cluster j payoff fj(b+B)

(ignoring investment costs), and the Defender gets Cluster j payoff −fj(`+L).

If the Attacker is detected in Cluster j, these payoffs are instead just fjb and

fj`, respectively.

The timeline of the game is now as follows: The Attacker and Defender

simultaneously choose their investments ai, di for each group. Then, Nature

determines the systems I the Attacker initially gains access to according to

these investments. The Attacker observes this initial set of systems and then

chooses a final set of systems F to attack (implying fj for each j). Finally,

Nature determines whether the Attacker is discovered in each cluster accord-

ing to probability q, and then payoffs are realized. We focus on the perfect

Bayesian equilibria of this game.

For expositional simplicity, we also adopt an approximation of the model

where fj may be any real number in the interval [0, |CV
j |]. The probability of

not being discovered still has the same form (1− q)fj , and the payoff functions

are otherwise unchanged.6 This is not an essential assumption, but when fj

would optimally not be an integer, the rounding conditions would be quite

complicated and not very insightful.

Under these assumptions, Proposition 1 still holds as long as we slightly

redefine the expected benefits and losses: The Attacker’s Cluster j expected

payoff (excluding investment costs) is B∗j ≡ [b + (1 − q)f∗jB]f ∗j , and the De-

fender’s Cluster j expected payoff is L∗j ≡ [` + (1− q)f∗j L]f ∗j , where f ∗j is the

equilibrium choice of fj. Now, the only difference is the decision about the

number of systems attacked in equilibrium f ∗j , the main results for which are

provided in Proposition 2. We call this game the extended cluster graph game.

Let σA ≡ b
B

be the Attacker’s short-run/long-run benefit ratio. We use

W (·) to refer to the principal branch of the Lambert W (product logarithm)

function, which is always an increasing function in the relevant domain. In

Proposition 2, e always refers to Euler’s number, which appears because of the

6We could obtain essentially identical results without this continuous approximation if
we specified the model with a continuum of systems within each cluster. However, thinking
about linkages between systems in such a model is much less intuitive and does not provide
additional insight.
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exponential form of the “no detection” probability (1− q)fj .

Proposition 2

In every perfect Bayesian equilibrium of the extended cluster graph game and

for each Cluster j, then conditional on successfully gaining access to a system

in the cluster (I ∩ CV
j 6= ∅), the equilibrium number of systems attacked, f ∗j ,

satisfies the following:

1. If σA ≥ 1
e2

, then f ∗j = |CV
j |, i.e., “attack all.”

2. Otherwise,

(a) If
[
W (−σAe)−2

ln(1−q) − |CV
j |
]
σA−

[
eW (−σAe)−1

ln(1−q) + (1− q)|CVj ||CV
j |
]
< 0, then

f ∗j = |CV
j |.

(b) If
[
W (−σAe)−2

ln(1−q) − |CV
j |
]
σA−

[
eW (−σAe)−1

ln(1−q) + (1− q)|CVj ||CV
j |
]
> 0, then

f ∗j = W (−σAe)−1
ln(1−q) .

Proof. See Appendix A.1.

With this modification to the model, another potential determinant of

conflict intensity is the probability of detection, q. A lower q means that more

patient long-term infiltration is more feasible whereas a very high value for q

means that the Attack is unlikely to persist beyond the initial infiltration. It is

straightforward to show that both B∗j and L∗j shrink when q rises (in all cases

of Proposition 2). The same is then true of w∗A and w∗D when applying this

to Proposition 1. The result is smaller investment sizes. The impact on the

extensive margin (probability of investment) is ambiguous, as it will interact

with the number of attack vectors. In both the high value and low value cases,

the Defender’s payoff rises. The Attacker is neither better nor worse off in

their low value case. The effect is ambiguous in their high value case, as both

their benefits and costs decrease, and this also interacts with the number of

attack vectors.

In addition to the levels of investment and welfare outcomes, we can now

think about the number of systems infiltrated, f ∗j , which depends on various

factors. First, note that there is a potential for both a continuous change (if
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it is the interior solution) and a discontinuous change (if it switches to the

“attack all” solution). If every system in the cluster is attacked, we call it a

“major attack,” and otherwise it is called a “minor attack.” The size of the

attack increases as the Attacker’s short run/long run benefit ratio σA increases:

Corollary 1

In the perfect Bayesian equilibrium of the extended cluster graph game de-

scribed in Proposition 2, for every Cluster j, f ∗j is a weakly increasing func-

tion of σA, and it is strictly increasing in the parameter range that results in

a minor attack.

Proof. See Appendix A.2.

A large σA Attacker, such as a cyber criminal or hacktivist, will tend to

attack more systems. Their attitude is “get in, steal/wreck what we can, and

get out.” A nation state primarily interested in the option value of destroying

an enemy’s critical systems would have a small σA and tend to attack fewer

systems. This is likely in nations preparing for possible war. However, if the

nations are already at war, immediate damage may be more valuable (high

σA), leading the Attacker to attack more systems. The effect for a nation state

primarily interested in intelligence gathering is more ambiguous, and depends

on how much intelligence is obtainable immediately versus over time.

Second, there is a non-monotonic relationship between cluster size and

major attacks:

Corollary 2

In the perfect Bayesian equilibrium of the extended cluster graph game de-

scribed in Proposition 2, there exists a cutoff size N such that any Cluster j

of size |CV
j | may have a minor attack if any only if W (−σAe)−1

ln(1−q) ≤ |CV
j | ≤ N .

Proof. See Appendix A.3

For small clusters, the size of the cluster is a binding constraint. When that

constraint relaxes enough, the Attacker may settle into an interior number of

systems. However, the short run gains from infiltrating all systems eventually
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becomes so large that it is worth mostly sacrificing the long run gains to

maximize the short run gains. This shows that the number of systems attacked

is a weakly increasing function of the cluster size, as shown in Figure 1. First,

the number of systems attacked increases, as the cluster size is binding. Then,

it remains constant at the local maximum. Finally, it jumps up to the “attack

all” corner solution and proceeds to increase more from there.

Figure 1: The Attacker’s optimal number of systems to attack in a cluster
(vertical axis) for each cluster size (horizontal axis).

Finally, we compare both investment magnitude and Defender welfare be-

tween major attacks and minor attacks:

Corollary 3

Consider any very small parameter change that causes the equilibrium to change

from a minor attack to a major attack in Cluster j (so the Attacker’s second

stage payoff is nearly unchanged). Then,

1. If σA < σD, then w∗D jumps upward. If the Defender was initially the

low value player, then the Defender’s payoff drops and both players tend

to invest more (otherwise there is almost no change).

2. If σA > σD, then w∗D jumps downward. If the Defender was initially the
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low value player, then the Defender’s payoff rises and both players tend

to invest less (otherwise there is almost no change).

The proof of Corollary 3 is trivial. The Defender’s condition for preferring

the minor attack to the major attack in Cluster j is the exact opposite of the

Attacker’s condition, but with b and B replaced with ` and L. Therefore, if

the Attacker is nearly indifferent, the Defender’s preference is strict if and only

if σA 6= σD.

Part 1 of Corollary 3 is fairly obvious, but Part 2 is rather surprising: the

Defender may prefer for the Attacker to attack more systems. When σA > σD,

the Defender cares more about the long run, relative to the Attacker. Thus,

when the Attacker decides they are willing to put their long-run benefits at

risk by infiltrating all systems, this benefits the Defender, because detection

will be more likely, preventing the long-run losses. If the Defender is a patient

actor like a nation state, and the Attacker is an organization that is less likely

to persist long into the future, like a terrorist organization, then the Defender

might actually benefit from major attacks. Combining Corollary 2 with Corol-

lary 3 suggests that this type of Defender may benefit from connecting more

systems together in the same cluster, even though it enables more indirect

attacks from the Attacker.

4 Star Network

Section 3 studied a setting where each system is symmetric in terms of its

position in the network. In this section, we assume that systems are organized

into a star network, with a single central system that provides access to all

peripheral systems. This model is especially relevant when there is a single,

centralized service used by many other systems. A good example of this type

of attack is the 2015 attack on the U.S. Office of Personnel Management, which

gave the attackers sensitive data on millions of government employees, poten-

tially creating vulnerabilities at other government agencies. In this model,

System 1 is a central system, and Systems 2, . . . , n are peripheral systems.

The set of edges is then E = {(1, i)|i ∈ {2, . . . , n}}.
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We assume that there are n groups: Ni = {i} for all i ∈ {1, 2, . . . , n}.
That is, every system may be targeted independently from one another. For

simplicity, we assume that the central system has no intrinsic value, and all

of the peripheral systems have the same positive values: B1 = L1 = 0, and

Bi = B,Li = L for all i ≥ 2.

The players’ per system value/cost ratios are vA = B
cA

and vD = L
cD

. In the

ai = di = 0 case, the Attacker wins the tie if and only if 2vA > vD. Although

we model only one star, we expect the results would be the same if there were

multiple stars, on a star by star basis (as we found to be true on a cluster

by cluster basis in the previous section). We call the resulting game the “star

graph game.” We omit the proof of the following proposition, because it is

essentially a special case of Proposition 5 in Section 5.

Proposition 3

There exists a perfect Bayesian equilibrium of the star graph game with the

all-pay auction form, where the following hold:

1. Conditional on any I, the Attacker always infiltrates the maximum set of

peripheral systems: 1 ∈ I ⇒ (N \ {1}) ⊆ F and 1 /∈ I ⇒ (I \ {1}) ⊆ F

2. w∗A = (n− 1)vA, w
∗
D = 1

2
(n− 1)vD

3. Conditional on investing at all, the Attacker invests in only the central

system or only the peripheral systems (each case with equal probabilities),

in the latter case investing i.i.d. in all peripheral systems.

4. Conditional on investing at all, the Defender invests in all systems, in-

dependently across systems.

5. Each player, conditional on investing in the central system, chooses an

investment level distributed U [0, w∗L]. Conditional on investing in a pe-

ripheral system, their investment level is distributed U [0,
w∗
L

n−1 ].
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4.1 Discussion of Proposition 3

All-Pay Auction Logic As with the cluster results, in both cases (Parts

(2a) and (2b)), there is a low value player (L) and a high value player (H),

determined by the inequality w∗A = (n − 1)vA ≶ 1
2
(n − 1)vD = w∗D. Raising

vL or decreasing vH causes an increase in investment on the extensive margin

(reducing the probability of no investment by L). Investment increases on the

intensive margin (increasing the upper bounds of the supports of the invest-

ment distributions) may be caused by an increase in vL or, in the case of the

central system, an increase in the number of peripheral systems.

There is always higher expected investment (for each player) in the central

system compared with each individual peripheral system. However, the aggre-

gate expected investment in the periphery equals the expected investment in

the central system. This is because there is nothing inherently more costly or

less effective about infiltrating the peripheral systems directly. If the Defender

made it more costly to infiltrate peripheral systems directly (via high invest-

ments there), then the Attacker would respond by only attacking the central

system, and the Defender would not be best responding (wasting investments

on the ignored periphery).

The payoffs in the star example are as follows:

Attacker High Value (n− 1)(vA − 1
2
vD)cA

Low Value 0
Defender High Value −(n− 1)2vAcD

Low Value −(n− 1)vDcD

First, note that the Defender never benefits from an increase in their value

(vD), whereas the Attacker may benefit from an increase in theirs (vA). For the

Defender, an increase in vD has two possible effects: larger potential losses and

greater competitiveness in bidding. In the Defender high value case, these are

exactly countervailing, so increasing vD has no payoff effect. In the Defender

low value case, there is no value to the greater competitiveness, since the

Defender is still indifferent between investing and giving up. However, the

Attacker benefits from an increase in vA in the high value case, because this
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corresponds to larger potential benefits, not losses. On the other hand, both

players find that increases in the other player’s value have a neutral or negative

effect on payoffs, because that other player is increasing their investments.

Both players find that increases in their own costs cause a reduction in

payoff, but only in their high value case. In the low value case, they are still

held indifferent between investing and giving up, and the payoff at which they

give up has nothing to do with their own costs (which are zero).

Comparison with the Cluster Results Perhaps the most interesting dis-

tinction between the star results and the cluster results from Section 3 is that

the star is effectively a special case of the cluster. Consider the following payoff

table for the analogous cluster, which has n− 1 systems:

Attacker High Value (n− 1)(vA − 1
mj
vD)cA

Low Value 0
Defender High Value −(n− 1)mjvAcD

Low Value −(n− 1)vDcD

The payoffs in the star are the same as the payoffs in the cluster when

there are two attack vectors (mj = 2). This is not immediately obvious, since

there are n groups in the star example, not 2. However, attacking a peripheral

system directly only yields 1
n−1 of the value of the whole star. The Attacker

would need to attack all n− 1 peripheral systems directly to achieve the same

effect as attacking the central system. So for attacking the star as a whole,

there are effectively only two attack vectors: attacking the central system or

attacking peripheral systems directly. Alternatively, one could look at it from

the perspective of any single peripheral system. The single system has two

attack vectors: being attacked directly or indirectly via the central system.

In conclusion, it is a mistake to think of the Attacker’s advantage in terms

of only the aggregate number of attack vectors when these different attacks

achieve different results. The cluster had a special symmetry property, causing

all attacks to achieve the same result.

These results illustrate the benefit of a star system from the Defender’s
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perspective. Compared to other network structures, the star effectively limits

the number of attack vectors while still interlinking the systems. It thereby

effectively minimizes the size of the attack surface. As discussed already in

the relation to the cluster results, a smaller attack surface allows the Defender

to expend less defensive investment.

5 Private Defence Investments

In many nations – especially liberal democracies – cybersecurity decisions are

not made by a central planner, who internalizes all the costs and losses for

all systems, but rather by private stakeholders in individual systems. There

have been several cyberattacks on private systems (e.g., Sony Pictures hack,

WannaCry, NotPetya, and the 2021 Microsoft Exchange hack). This has been

cited as a cybersecurity vulnerability of liberal democracies. As David Sanger

notes about the Obama administration’s reasoning on cyberdefence in corpo-

rate America, “Clearly, the government could not protect against every cyber-

attack, just as it could not protect against every car theft or house burglary,”

(pg. 146 of Sanger [2019]). Here, we formalize this in a variant of our model

as a positive externality of cybersecurity that upstream firms have on down-

stream firms. This type of situation is perhaps best exemplified by the 2021

attack on Microsoft Exchange Servers, which though nominally an attack on

Microsoft, gave Attackers access to the systems of many other organizations,

a plurality of them U.S. based (“Victims of Microsoft hack” 2021).

There is only one difference between the baseline model and the model

used in this section: there is more than one Defender. Let Ki be the set of

systems controlled by Defender i. Defender i chooses only dj for each j ∈ Ki

and has payoff depending only on systems in Ki:

−
∑
K⊆Ki

[
Pr(K = F ∩Ki)

∑
j∈K

`j

]
−
∑
j∈Ki

cDdj

We examine in turn both the cluster and star network structures in this private
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defender setup.

For this section only, we assume that the Defenders may correlate their

investment choices based the outcomes of a signal (public to the Defenders,

not observed by the Attacker). That is, we allow for correlated equilibrium

(Aumann [1974]) as a slight generalization of Nash equilibrium. In the cluster

case, this helps smooth out discontinuities in the Defenders’ payoff functions

at zero investment. It also allows us to focus on the role of externalities in

isolation, as the correlated strategies will rule out any loss to the Defenders

due to a failure to coordinate. Since the correlating signal will be a simple

“invest/do not invest” signal observed only by the Defenders, we omit the

details of the signal and treat the Defenders as if they were one player, but with

different payoff functions for different investments. Treating the Defenders as

one player also allows us to describe the equilibria as having the all-pay auction

form.

5.1 Cluster

In this section, we use the same assumptions as in Section 3. However, each

group has a separate Defender, indexed as 1, . . . ,m, so Ki = Ni. We also

assume that each Defender is identical, so |Ni| = n
m

is the same for all i. We

focus on the case of a single cluster. The Attacker’s second stage decision is

unchanged, so f ∗ is as before. The individual Defender’s value is then 1
m
L∗
cD

=
1
m
v∗D; given the Attacker’s uniform randomization over which f ∗ systems to

attack, the Defenders split the loss equally in expectation. In the ai = di = 0

case, the Attacker wins the tie if and only if v∗A >
1
m2v

∗
D.

Proposition 4

There exists a correlated equilibrium of the cluster graph game with private in-

vestments where the strategies have the all-pay auction form, and the following

hold:

1. w∗A = v∗A and w∗D = 1
m2v

∗
D

2. The equilibrium is otherwise equivalent to that in Proposition 1.
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Proof. See Appendix A.4.

Discussion of Proposition 4 We can collect the players’ payoffs for the

cluster network under the private defence assumption as follows:

Attacker High Value (v∗A − 1
m2v

∗
D)cA

Low Value 0
Defenders High Value −mm+1

2
v∗AcD

Low Value −v∗DcD +
v∗D
m2v∗A

m−1
2

v∗D
m
cD

We see that the externality is made more severe by increasing m, as each

Defender has a smaller share of the overall value of the cluster. However,

this also increases the number of attack vectors, spreading the Defender’s in-

vestments across more groups while not shrinking aggregate investment. This

effect already appears in the public cluster example, which had Attacker high

value payoff of (v∗A − 1
m
v∗D)cA. The Attacker’s benefit from the externality in

particular comes from a reduction in the aggregate investment, m 1
m2v

∗
D = 1

m
v∗D.

This benefit increases as m increases. Since m > 1, the Defender in their high

value case is worse off due to the externality (the public cluster payoff is

−mv∗AcD). This difference does get worse as m rises (more severe externality).

Surprisingly, the Defenders are actually better off due to the externality in

their low value case. The corresponding public cluster payoff of −v∗DcD equals

only the first term of the Defender’s low value payoff, the second term being

positive. Although the externality causes the Defenders to invest less than

their best response if they acted as one, they actually benefit from this in the

form of lower costs. The Attacker responds to the less vigorous defence by

reducing their own offensive investments, so the Defenders do not necessarily

suffer much from increased probability of loss. This beneficial effect is limited

to the Defenders’ low value case, because the low value determines equilibrium

investment sizes. This beneficial effect also mostly shrinks as m rises, because

the probability of investment falls (
v∗D
m2v∗A

↓), meaning investment sizes matter

less.
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From a policy perspective, these results imply that measures that encour-

age private defenders to internalize network externalities (e.g. regulations,

common standards) may not always be beneficial. They would be beneficial

when the Defenders are relatively high value, e.g. perhaps when the systems in

question are critical infrastructure or otherwise of deep importance. However,

when dealing with systems that are relatively low stakes from the Defender’s

perspective or having many attack vectors, such policies may increase costs

without meaningful improvement in security. Hence, these results suggest

that a more targeted attempt to deal with the externality problem could be

preferable to an excessively broad policy measure.

5.2 Star

Here, we maintain almost the same assumptions as in Section 4. However,

there are now multiple Defenders. The central system Defender (Defender

1) controls the first k ≥ 1 systems (the central system and k − 1 of the

peripheral systems). There are n − k other Defenders, each controlling just

one peripheral system. We index these other Defenders as k + 1 through n.

This allows the central Defender to have some value (as the k = 1 case is

trivial) while maintaining tractability. Let ρ ≡ k−1
n−1 be Defender 1’s share

of the peripheral systems. Also, let φ ≡ ρ
1+ρ

(which is a strictly increasing

function of ρ). Note that φ ∈
[
0, 1

2

]
. Both ρ and φ are measures of the central

Defender’s internalization of the benefits of defence.

Proposition 5

There exists a correlated equilibrium of the star graph game with private in-

vestments that has the all-pay auction form, where the following hold:

1. w∗A = (n− 1)vA, w
∗
D = φ(n− 1)vD

2. Conditional on investing at all, the Attacker invests in only the central

system (probability 1− φ) or only the peripheral systems (probability φ).

3. The equilibrium is otherwise equivalent to that in Proposition 3.
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Proof. Consider the case where vA < φvD. The Attacker’s expected payoff is

the following:

a1
u1

(n− 1)vA +
u1 − a1
u1

n∑
i=2

ai
ui
vA − a1 −

n∑
i=2

ai

The partial derivative with respect to a1 is

(n− 1)vA
u1

− 1

u1

n∑
i=2

ai
ui
vA − 1

Given a2 = . . . = an = 0, indifference for a1 is achieved when u1 = (n−1)vA =

w∗A. Then, ak > 0 for any k ≥ 2 implies that the Attacker strictly prefers

a1 = 0. The partial derivative with respect to any ai for i ≥ 2 is u1−a1
u1

vA
ui
− 1.

Conditional on a1 = 0, indifference is achieved when ui = vA =
w∗
A

n−1 . Moreover,

if a1 > 0, the Attacker’s payoff is maximized when ai = 0.

Let pCA denote the Attacker’s probability of investing in the central system

(conditional on investing at all). Defender 1’s expected payoff is the following:

−(1− pA)
k∑
j=2

[
(1− pCA)

(
1− dj

uj

)
+ pCA

(
1− d1

u1

)]
cDvD − cD

k∑
j=1

dj

Their indifference conditions are

(1− pA)pCA(k − 1)
vD
u1

= 1, (1− pA)(1− pCA)
vD
uj

= 1, ∀j ∈ {2, . . . , k}

Combining these two indifference equations and substituting for uj yields

pCA(k − 1)
vD
u1

= (1− pCA)
vD
uj
⇔ pCA =

1

1 + ρ
= 1− φ

Then, plugging into the d1 indifference equation and solving for pA:

(1− pA)
1

1 + ρ
(k − 1)

vD
u1

= 1⇔ pA =
φvD − vA
φvD
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Note that Defender i’s expected payoff when i ≥ k + 1 has the same form

as each term j = 2, . . . , k of Defender 1’s payoff, so these Defenders are also

indifferent.

Now, consider the case where vA > φvD. We use pD to denote the proba-

bility that the Defenders do not invest at all. In this case, pA = 0 but either

pD > 0. The Attacker’s payoff is the following:[
pD + (1− pD)

a1
u1

]
(n− 1)vA + (1− pD)

[
1− a1

u1

] n∑
i=2

ai
ui
vA −

n∑
j=1

aj

The partial derivative with respect to a1 is the following:

(1− pD)
(n− 1)vA

u1
− (1− pD)

n∑
i=2

ai
ui

vA
u1
− 1

When ai = 0 for all i ≥ 2, indifference is equivalent to (1 − pD) (n−1)vA
u1

= 1.

The partial derivative with respect to ai for i ≥ 2 is (1− pD)
[
1− a1

u1

]
vA
ui
− 1.

When a1 = 0, the indifference condition is (1− pD)vA
ui

= 1.

The central Defender’s payoff is the following:

−
k∑
j=2

[
(1− pCA)

(
1− dj

uj

)
+ pCA

(
1− d1

u1

)]
vD −

k∑
j=1

dj

The indifference conditions are

pCA
(k − 1)vD

u1
= 1, (1− pCA)

vD
ui

= 1,∀i ∈ {2, . . . , k}

The other Defenders j for j ≥ k+ 1 have payoffs analogous to any single term

i = 2, . . . k of the central Defender’s payoff, so they are also made indifferent

when uj = ui.

This gives us four indifference conditions and four unknowns: pD, p
C
A, u1,

and ui. The unique solution is pD = vA−φvD
vA

, pCA = 1
1+ρ

= 1−φ, u1 = (n−1)φvD,

ui = φvD, which is exactly as described in the Proposition. Also, note that

Defender 1 has no payoff discontinuity at zero investment, because if they
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deviate to very small, positive investments, the Attacker will still almost surely

succeed in attacking all k − 1 of their valuable systems.

Discussion of Proposition 5 Comparing Proposition 5 to the public star

result Proposition 3, there is only one major difference: 1
2
vD has been replaced

with φvD, which is a lower value. As promised, the public star is a special

case of the private star, where ρ = 1 (so k = n and φ = 1
2
). The private

investment game favors the Attacker, compared to the public investment game.

First of all, the condition where the Attacker is “high value” (vA > φvD) is

more likely to hold. Second, in this case the Defenders invest less, which

also benefits the Attacker. φ is a measure of the extent to which Defender 1

internalizes the benefits of their investment in the central system. When φ is

nearly 1
2
, we have close to the public investment star. When φ is near 0, there

is a large externality. Defender 1 invests less in the central system, making

all Defenders’ peripheral investments less valuable, and so these decrease as

well. All Defenders effectively have a lower value when the externality is more

extreme. Moreover, the Attacker wants to invest in the easy to attack central

system, so they do this with probability 1− φ > 1
2
, which is more than in the

public case.

The Attacker’s and aggregate Defenders’ payoffs are given in the table

below:

Attacker High Value (n− 1)(vA − φvD)cA
Low Value 0

Defenders High Value −(n− 1)2vAcD − (n− k) 1
2ρ
vAcD

Low Value −(n− 1)2φvDcD − (n− k)(1− φ)
[
1− 1

2
φvD
vA

]
vDcD

As expected, the Attacker’s payoff rises in the private case relative to the

public case, as φ < 1
2
. The externality causes the central Defender to be less

inclined to invest, so all players’ equilibrium investments fall. In the Defender’s

high value case, we see that they are worse off relative to the public model.

The second term −(n− k) 1
2ρ
vAcD reflects the lower payoffs of Defenders k+ 1

through n as they may be attacked via the central system even when they
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invest the maximum. As the externality gets worse (ρ gets smaller), this extra

loss is even larger.

Surprisingly, the low value Defenders are not worse off due to the exter-

nality. The second term −(n − k)(1 − φ)
[
1− 1

2
φvD
vA

]
vDcD is again the loss

to Defenders k + 1 through n since they may be attacked even when in-

vesting the maximum. However, this maximum investment (the first term

−(n− 1)2φvDcD) is now lower than in the public model. In all models consid-

ered in this paper, the equilibrium investment magnitudes (i.e., the severity of

the cyber war) are determined by the value of the lower value player(s). The

Defenders’ externality effectively reduces their value, making the conflict less

competitive and reducing the costs of cyber defence in equilibrium.

In fact, rewriting the Defenders’ payoff in a form more similar to the public

case yields −(n−1)vDcD+(n−1)1−ρ
ρ

1
2
φ2 vD

vA
vDcD. This exceeds the Defender’s

payoff in the public case (which is just the first term). The second term is a

non-monotonic function of ρ, initially equal to 0, then rising, then falling, and

finally hitting 0 again when ρ = 1 (i.e. no externality). Intuitively, when ρ = 0,

all Defenders simply give up, since they know the central Defender will invest

nothing. Therefore, there are no investment costs to save. Then, as ρ rises,

the Defenders are becoming able to deter the Attacker (even sometimes if they

invest nothing), so they must benefit. However, the Attacker is responding to

this by becoming more likely to target the periphery, thereby becoming less

predictable. This reduces the marginal benefit of the increase in ρ. Meanwhile,

the competition is becoming more intense and investment costs rise.

A notable distinction between the public star and the private star is that

the public star functioned as though there were two attack vectors to the entire

star. Although in principle the central system counts for more than a typical

attack vector, when the Defender internalizes all of the benefits of defending

the center, they defend it that much more aggressively, so it still only effec-

tively counts as one attack vector in equilibrium. However, this is no longer

the case with the externality. The central Defender is not investing enough,

and this exposes more of the latent vulnerability of having a central system

that connects to all other systems. In some respects, this functions as if the
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network had more attack vectors. Specifically, since φ takes the place of 1
2

in

the equilibrium cases and investment sizes, there are effectively 1
φ

= 1 + 1
ρ

at-

tack vectors. As the externality becomes more significant (ρ becomes smaller),

the effective number of attack vectors becomes larger. However, this analogy

to attack vectors is imperfect. Adding more attack vectors also adds to the

number of types of defensive investments required, so even though investment

sizes shrink, the Defender does not benefit. However, making the external-

ity larger shrinks the investment sizes and does not increase the number of

investment types, which may benefit the Defender.

5.3 Discussion

There are several observations common to both the cluster and star networks

with private investments. The externality resulting from private investments

makes the Attacker high value, Defender low value case more likely. In this

case, the externality reduces investments of both players on both the intensive

(how much to invest) and extensive (invest vs. not invest) margins. This

benefits the Attacker, because they may reduce their investment costs without

reducing their success probabilities. Surprisingly, it benefits the Defender as

well. Being unable to collectively best respond reduces the intensity of the

conflict in a way that benefits both parties. In the Attacker low value, Defender

high value case, the Attacker is no better off (they are still indifferent about

even attempting a cyber attack), and the Defender is worse off. In this case, the

externality does not reduce the intensity of the conflict, because the externality

reduces the Defenders’ individual values, but only the low value player’s (the

Attacker’s) value determines the investment sizes.

There is one primary qualitative difference between the results on the pri-

vate cluster and private star. As shown in Proposition 1 and Proposition 3,

the star is better for the Defender than the cluster (in all but one case). This

is because the star effectively has fewer attack vectors. The Attacker is espe-

cially inclined to target the central system, but the Defender responds to this

in equilibrium and defends it to the point that the center and periphery are
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targeted equally often in equilibrium. However, the Defender will only do this

if they fully internalize the benefits of defending the center. In the private in-

vestments case, the central Defender is not investing enough, and the Attacker

is targeting the center more than half the time. The common central system

becomes more of a liability as a result of the externality. As the externality

becomes more extreme, the advantages of the star vanish.

6 Conclusion

Cyberwarfare between nation states has become increasingly common in recent

years. We address several important questions that this phenomena raises.

What determines the severity of cyberwarfare outcomes? What is the role

of network structures in either worsening or improving outcomes? What is

the consequence of private provision of defensive capabilities in networks that

link multiple agents? In this paper, we addressed these questions with an

Attacker-Defender game theory model.

We identify several factors that can help explain the determinants of cyber-

warfare and rationalize trends that have been observed in recent decades. We

model cyberwarfare as being similar to an all-pay auction, where the Attacker

is able to infiltrate a system if it invests more than the Defender. As in other

such auction contexts, the intensity of investment on both sides is greatest

when the effective valuations of the two players are close to each other. If the

Defender is the higher value player – which may be true in many applications –

faster improvements in countries’ offensive vs. defensive abilities would drive

an increase in conflict intensity. We also find that network structures that

tend to minimize the number of attack vectors available to an Attacker tends

to be beneficial for the Defender because it allows defensive resources to be

used more efficiently. A star network with a single central system that links

to multiple peripheral systems tends to be beneficial for the Defender because

it limits the number of attack vectors.

We also considered a problem that is common especially in liberal democ-

racies: externalities that arise when private entities are in charge of defending
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their own systems. When systems are interlinked, private entities may not in-

ternalize the benefit of their investment on downstream systems and so there

could be underinvestment in this environment. We find that this is indeed

a possibility, consistent with considerations of positive network externalities.

However, we find that the opposite outcome is also possible: if the Defender is

the low effective value player, public provision may actually lead to overinvest-

ment and reduced welfare for the Defenders as compared to private provision.

This is because public provision can lead the Attacker to invest more intensely

in order to secure infiltration. Taken together, these results imply that policies

that impose more centralized standards or regulations on the private sector

may be especially beneficial for systems with large associated losses for the

Defender but could be unnecessarily costly if applied to less critical systems.
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A Omitted Proofs

A.1 Proof of Proposition 2

Proof. For any final set of attacked systems F , the Attacker’s expected pay-

off (excluding the sunk costs of the first stage) is additively separable across

clusters, where each Cluster j’s term is fjb+(1−q)fjfjB, where fj is the num-

ber of systems attacked in Cluster j. The first derivative is b + (1 − q)fjB +

ln(1 − q)(1 − q)fjfjB. This is always > 0 when fj = 0, so there is incentive

to attack systems. The local maximum, when it exists, solves the first-order

condition b + (1 − q)fjB + ln(1 − q)(1 − q)fjfjB = 0. The local maximum is

fj = W (−σAe)−1
ln(1−q) , where W (·) is the principal branch of the Lambert W (product

logarithm) function. This exists if and only if the argument to the W function

satisfies −σAe ≥ −1
e
⇔ σA ≤ 1

e2
. This corresponds to a local maximum when

the inequality is strict. If it holds with equality, it is an inflection point. If it

is violated, there is no local maximum, and the solution is the corner solution

fj = |CV
j |. This solution for fj (if it exists) is guaranteed to be positive. Also,

note that this solution for fj may exceed |CV
j |, in which case the Attacker

should attack the entire cluster.

Plugging local maximum fj into the expected payoff yields

(
W (−σAe)− 1

ln(1− q)
)b+ (1− q)

W (−σAe)−1

ln(1−q)
W (−σAe)− 1

ln(1− q)
B

=(
W (−σAe)− 2

ln(1− q)
)b− eW (−σAe)−1

ln(1− q)
B

This is larger than the expected payoff of attacking the entire cluster if and

only if

(
W (−σAe)− 2

ln(1− q)
)b− eW (−σAe)−1

ln(1− q)
B − |CV

j |b− (1− q)|CVj ||CV
j |B > 0

⇔
[
(
W (−σAe)− 2

ln(1− q)
)− |CV

j |
]
σA −

[
eW (−σAe)−1

ln(1− q)
+ (1− q)|CVj ||CV

j |
]
> 0,

which is precisely the condition used in the statement of the Proposition.
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A.2 Proof of Corollary 1

Proof. First, note that W (−σAe) is negative and strictly decreasing over the

parameter range where there is an interior solution, so f ∗j = W (−σAe)−1
ln(1−q) . Since

ln(1− q) < 0, f ∗j strictly increases as σA rises.

Now, consider the marginal effect on increasing σA on the LHS of the major

attack condition (in 2.a of the Proposition):[
W (−σAe)− 2

ln(1− q)
− |CV

j |
]

+
−eW ′(−σAe)

ln(1− q)
σA −

−W ′(−σAe)eW (−σAe)

ln(1− q)

=

[
W (−σAe)− 2

ln(1− q)
− |CV

j |
]

+
−e W (−σAe)
−σAe[1+W (−σAe)]

ln(1− q)
σA −

− W (−σAe)
−σAe[1+W (−σAe)]

eW (−σAe)

ln(1− q)

=
W (−σAe)− 1

ln(1− q)
− |CV

j |

Therefore, whenever the cluster size is not a binding constraint on the local

maximum, increasing σA decreases the LHS (more conducive to full infiltra-

tion). When cluster size is a binding constraint, it will still be a binding

constraint after increasing σA (the local maximum increases).

A.3 Proof of Corollary 2

Proof. Let f ∗∗j > W (−σAe)−1
ln(1−q) be the local minimum of the Attacker’s payoff, if

it exists. The marginal effect of increasing cluster size |CV
j | on the LHS on

the major attack condition is −σA − (1 − q)|C
V
j | − ln(1 − q)(1 − q)|C

V
j ||CV

j |.
This is negative whenever |CV

j | > f ∗∗j . Also, note that the LHS of the major

attack condition diverges to −∞ as |CV
j | → ∞. As a result, there is a cutoff

N , where full infiltration is guaranteed if |CV
j | ≤ f ∗j or if |CV

j | ≥ N and that

there is guaranteed to be only partial infiltration of f ∗j systems otherwise.
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A.4 Proof of Proposition 4

Proof. First, suppose that 1
m
v∗D ≥ mv∗A. Assuming that the Defender uses

independent uniform distributions, the Attacker’s payoff is[
1−

∏
i∈M

(
1− ai

ui

)]
B∗ − cA

∑
i∈M

ai

The derivative of this with respect to any ai is

∏
k∈M\{i}

(
1− ak

uk

)
B∗

ui
− cA

The Attacker is indifferent conditional on ak = 0,∀k ∈ M \ {i} if and only if

ui = B∗
cA

= v∗A. Then, the Attacker strictly prefers ai = 0 whenever ak > 0 for

any k 6= i.

Let pA be the probability that the Attacker invests in none of the groups.

Now, assuming that the Attacker only ever invests in one group in the cluster,

that this group is chosen uniformly, and that conditional on investing the

Attacker uses the same uniform distribution as the Defender, Defender i’s

expected payoff is

−(1− pA)

(
1

m

∑
j∈M

(
1− dj

uj

))
cD

1

m
v∗D − cDdi

Indifference with respect to any di is

(1− pA)
cDv

∗
D

m2ui
− cD = 0⇔ pA =

1
m
v∗D −mv∗A

1
m
v∗D

Now, suppose that mv∗A >
1
m
v∗D. Let pD be the probability of X (none of

the Defenders invest). After signal Y , Defender i’s expected payoff is

− 1

m

∑
j∈M

(
1− dj

uj

)
cD

1

m
v∗D − cDdi
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Defender i is indifferent only if
1
m
v∗D

mui
= 1. Therefore, ui =

v∗D
m2 . After

signal X, the Attacker is guaranteed to infiltrate some system based on the tie

breaking rule, so Defender i’s expected payoff is −cD 1
m
v∗D−cDdi, and choosing

di = 0 is the best response. The Attacker’s expected payoff is[
1− (1− pD)

∏
i∈M

(
1− ai

ui

)]
B∗ − cA

∑
i∈M

ai

The derivative with respect to any ai is

(1− pD)
∏

k∈M\{i}

(
1− ak

uk

)
B∗

ui
− cA

Conditional on ak = 0,∀k 6= i, the Attacker is indifferent if (1 − pD)B
∗

ui
= cA.

Substituting in ui yields

(1− pD)
mB∗
1
m
v∗D

= cA ⇔ pD =
mv∗A − 1

m
v∗D

mv∗A

Whenever ak > 0 for some k 6= i, then the Attacker strictly prefers ai = 0.

Therefore, everyone is best responding.
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