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Summary

In this paper, I argue that in situations of complex network dependence, the traditional and widely

used Hausman-style instrumental variable estimation may not be valid for causal identification. This is

the case for inter-regional migration networks when evaluating place-based labor market policies, and

for correlated unobserved consumer tastes in the product and geographic space in demand estimation.

I build an economic model for these two cases, respectively, to derive the estimating equation and to

shed light on the fallacy—omitted variable bias and the resulting violation of exclusion restriction—

of the traditional econometric framework. I then build an alternative econometric framework and

propose a new approach to estimation that exploits higher-order network neighbors and, then, I

establish its desirable properties. I conduct Monte Carlo simulations and two empirical analyses that

each correspond to the two economic models to validate this new approach of estimation.
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1 Introduction

Instrumental variable estimation is widely used to evaluate causal effects. Hausman-style instruments, first

brought up in Hausman, Leonard, and Zona (1994), have been a popular choice for identification in the fields of

industrial organization and spatial economics (Nevo, 2001; Lanoie et al., 2011; Crawford and Yurukoglu, 2012;

Houde, 2012; and Azar, Berry, and Marinescu, 2022). The idea of Hausman-style instruments is to exploit

cross-sectional dependence of some plausibly exogenous characteristics, and construct a (weighted) average to

serve as the instrument for the endogenous variable. For example, in Azar, Berry, and Marinescu (2022), the

authors use the labor market conditions of other cities (geographical neighbors) as instruments of the wage

of the focal city. In Nevo (2001), the author uses the prices of other cities (also geographical neighbors) as

instruments of the price of the focal city.1

However, this approach is questionable when we take into account more complicated network linkages.

For example, when estimating the effects of various factors on local labor market outcomes as in Azar, Berry,

and Marinescu (2022), migration flows among different localities, or inter-regional migration networks, are a

mechanism at play that leads to complex cross-sectional or network dependence. Exploiting a Hausman-style

instrument that does not correctly take it into consideration may lead to biases in the estimation. Another

example is demand estimation, as in the seminal work of Berry (1994) and Nevo (2001), in which the correlation

of unobserved factors of consumer tastes in different localities of the geographical or product space2 may cause

unaccounted cross-sectional or network dependence that may also lead to biases in the estimation.

In this paper, I reevaluate and redesign instrumental variable estimation, using Hausman-style instruments

as a case in point, from the perspective of networks or cross-sectional dependence. I first lay out two economic

models, one on regional labor markets and migration networks, and the other on consumer demand in the

product space, to motivate and illustrate the idea of unaccounted network dependence and derive the estimating

framework. Next, I construct the econometric model based on the previous economic models, which illustrates

the idea of how network dependence introduces an omitted variable bias and, thus, leads to an inconsistent and

biased estimator. I then propose an appropriate approach to estimation to account for this issue. The idea

of this new estimator is to employ the characteristics of higher-order network neighbors as the instruments,

similar to that in Bramoullé, Djebbari, and Fortin (2009).3 The intuition is that under complicated and

often unknown network dependence, more distant higher-order neighbors are more likely to satisfy exclusion

restrictions. The asymptotic properties of the new estimator can then be established in a standard way. Next,

I conduct Monte Carlo simulations to validate the new estimation approach. Finally, I conduct two sets of

empirical analyses to compare the traditional and the newly proposed Hausman IV estimation. I first estimate

the effects of infrastructure on the regional labor market, which corresponds to the case of migration networks.

I then estimate the demand equation for the US airline market, which corresponds to the case of correlated

consumer tastes in the product space.4 In particular, I propose that when the detailed data-generating process

is unknown, researchers should take a data-driven approach to use different orders of neighbors as instruments

for robustness checks and evaluate whether results are stable. In fact, the results may become stable when the

order of neighbors becomes large, which also implies that the newly proposed Hausman-style IV estimation can

1I provide a formal construction of the instrument in Section 2.
2Product space is defined as the relationship of complementarity and substitution between different products. For

example, an air ticket from New York to Los Angeles is a substitute for an air ticket for transferring the route from New
York to Los Angeles via Orlando. These two tickets can be seen as neighbors in the product space.

3Bramoullé, Djebbari, and Fortin (2009) uses higher-order neighbors as instruments to estimate endogenous peer
effects. My paper is similar to it since we both exploit the plausibly exogenous variations of higher-order neighbors.

4Note that in the case of the airline market, the product space is also associated with the geographical space, since a
ticket is always associated with geographical locations.
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avoid biases due to cross-sectional network dependence.5

The remainder of this paper proceeds as follows. Section 2 lays out two economic models to shed light on

the estimating equation and the correct econometric framework. Section 3 constructs the econometric model.

Section 4 introduces the new approach to Hausman IV estimation. Section 5 conducts a series of Monte Carlo

simulations. Section 6 conducts two sets of empirical analyses. Finally, Section 7 concludes.

2 Economic Models

2.1 A Model of Inter-regional Migration Networks

The model herein is an adapted version of Caliendo, Dvorkin, and Parro (2019). There are N localities,

indexed by i = 1, 2, ..., N . There is a mass of Li of households in location i who provide a unit of labor

inelastically. Assume that in each location, the households can only migrate to a subset of other locations,

denoted by N(i). Such locations can be regarded as the network neighbors of i. The pattern of inter-regional

migration corresponds to the structure of the migration network. The preference takes a log form, in which

U(Ci) = Ai log(Ci), where Ci is the consumption, and Ai is the preference shifter or the amenities of location

i, including the level of infrastructure that is endogenously determined by government policies. The migration

choice problem is formulated as follows:

vi = Ai logCi + max
j∈N(i)

(vj − τi,j + νjϵj), (1)

where vi is the value function, or the utility of residing in location i, τi,j = τj,i ≥ 0 is the (symmetric) migration

cost, νj is an exogenous preference shifter of j, and ϵj is the idiosyncratic shock. Assume that ϵ is i.i.d. and

distributed type-I extreme value with zero mean, and let Vi = E(vi) denote the expected utility, let µj,i be the

fraction of households that relocate from j to i, we have that

Vi = Ai logCi + µi log(
∑

j∈N(i)

exp(Vj − τi,j)
1/νj ). (2)

and

µj,i =
exp(Vi − τi,j)

1/νi∑
h∈N(i) exp(Vh − τh,j)1/νh

. (3)

The proofs and derivations are relegated to Appendix A. By simple algebra, we have that for j1, j2 ∈ N(i),

log(
µj1,i

µj2,i
) =

1

νj1
(Vj1 − τi,j1)−

1

νj2
(Vj2 − τi,j2). (4)

Let the labor supply in equilibrium in i be denoted as µi, given equation (4), we can express µi as a

(non-parametric) function of variables Ai, νi and all network neighbors6:

µi =
∑

j∈N(i)

µj,i = f(Ai, νi, ei), (5)

where ei is a (non-parametric) function of network neighbors

5In the two examples of Section 6, the results are stable when the order exceeds 2.
6Due to the nonlinearity in equation (4), the network neighbors’ term cannot be perfectly canceled out under general

conditions when calculating log
∑

j∈N(i) µj,i, which is the labor supply in i, logµi
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ei = g(Aj1 , νj1 , τi,j1 , ..., AjK , νjK , τi,jK ), j1, ..., jK ∈ N(i). (6)

We may be interested in estimating the effects of place-based labor market policies, or ∂f
∂Ai

, in which Ai may

be endogenously determined. To estimate (a linear approximation of) equation (5), one may use a Hausman-

style instrument,
∑

j∈N(i) wijνj , where wij is the weight, but this is invalid and produces a biased estimate

because cov(ei,
∑

j∈N(i) wijAj) or cov(ei,
∑

j∈N(i) wijνj) is not zero. This corresponds to the discussion in the

next section.

2.2 A Model of Correlated Consumer Tastes in Product Space

This model is an adapted version of Berry (1994). Assume that there are N products that a generic

consumer i considers to purchase, indexed as j = 1, 2, ..., N . We further restrict that a neighborhood N(j) of

j is a closer substitute of j that may exhibit the network structure of the product space. The full model is

relegated to Appendix A, and we start from the mean utility of product j, which is

δj = xjβ1 +
∑

k∈N(j)

wjkzkβ2 − αpj + ξj , (7)

where xj is the observed characteristics of j, and
∑

k∈N(j) wjkzk is the weighted average of the other observed

characteristics of j’s network neighbors in the product space.7 For example, in the case of airline networks,

the demand for the route “New York—Los Angeles” is affected by the characteristics of “New York—Orlando”

because passengers from New York can transfer in Orlando to finally arrive in Los Angeles. Another example is

Berry, Gandhi, and Haile (2013), in which some “connected substitutes” may be subject to correlated demand

shocks, which in turn justifies the inclusion of
∑

k∈N(j) wjkzk.

Therefore,
∑

k∈N(j) wjkzk enters equation (7) for at least two reasons. First, consumer tastes across

different products in the product space are correlated. The change in characteristics of other products may

also change the consumer’s evaluation of the focal product. Second, the quality or other product characteristics

are endogenously determined and change over time, which in turn affects consumer tastes. For example, when

there is a large traffic flow in the airport of New York due to a surge of passengers from Orlando to New York,

ticket holders of the flight New York-Los Angeles are subject to traffic congestion, and, their utility may be

compromised.

In addition, the neighbors can also be defined in a geographical space, as in Nevo (2001), and the variations

of geographically neighboring observations driven by migration and traffic flows may matter for the estimation

of demand. pj is the endogenously determined price, and ξj is an i.i.d. shock. Given the standard logistic

setting as in the demand estimation literature, we have the following estimating equation

log(sj)− log(s0) = xjβ1 +
∑

k∈N(j)

wjkzkβ2 − αpj + ξj , (8)

where sj is the market share of j, and s0 is the market share of the outside option. To deal with the endogeneity

of the price pj , one may consider using a Hausman-style instrument
∑

k∈N(j) wjkωk, where ωk constitutes

exogenous variations. However, given equation (8), it is likely that cov(
∑

k∈N(j) wjkωk,
∑

k∈N(j) wjkzk) ̸= 0

and β2 ̸= 0, thus resulting in a biased estimator. This corresponds to the discussion in the next section.

7Here I make a specific restriction on how network neighbors may affect δj . There are other parametric and even
non-parametric modeling choices. In general, the equation can be written as δj = xjβ1 + fj({zk}k∈N(j), β2)− αpj + ξj ,
where fj(·) is an arbitrary function.
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3 Econometric Model

In the data set, there are N agents, indexed by i = 1, 2, 3, ..., N . The network structure among the agents

is denoted as an N × N matrix W (N),8 and is fixed, pre-determined, and can be observed by all agents and

econometricians. Each entry in W (N), wij , is a weakly positive real number that describes the strength of the

connection between agents i and j. The sum of each row is normalized to 1, or
∑

j wij = 1. By convention,

wii = 0 for all i = 1, 2, ..., N . It is also associated with the concept of spatial weights in the spatial econometric

models. N(i) denotes the set of neighbors of agent i. For all j ∈ N(i), wij > 0. In the Hausman-style

instrumental variable estimation, generic second-stage and first-stage equations are, respectively, the following:

Yi = Xiβ1 + Ziβ2 + ui, Xi = α
∑

j∈N(i),j ̸=i

wjiZj + vi, (9)

where Yi is the outcome variable of interest, Xi is a vector of (predicted) endogenous regressors, Zi is a vector

of exogenous regressors, and ui and vi are error terms. 9
∑

j∈N(i),j ̸=i wjiZj is the Hausman-style instrumental

variable. When taking a simple arithmetic average, we have wji =
1

|N(i)| for all j, where |N(i)| is the cardinality
of N(i). β1 is the parameter of interest. We assume that E(ui) = E(vi) = E(Ziui) = E(

∑
j∈N(i),j ̸=i wjiZjvi) =

0. Given the standard econometrics textbook materials, we have the following lemma:

Lemma 1. In equation (9), the Hausman-style instrumental variable estimation produces a consistent estimator

if and only if cov(
∑

j∈N(i),j ̸=i wjiZj , Xi) ̸= 0 and cov(
∑

j∈N(i),j ̸=i wjiZj , vi) = cov(
∑

j∈N(i),j ̸=i wjiZj , ui) = 0.

When there is (first-order) network dependence that is unaccounted for, we have

ui = γX
∑

j∈N(i),j ̸=i

wji(Xj − E(Xj)) + γZ
∑

j∈N(i),j ̸=i

wji(Zj − E(Zj)) + ei, (10)

where
∑

j∈N(i),j ̸=i wji(Xj − E(Xj)) and
∑

j∈N(i),j ̸=i wji(Zj − E(Zj)) are a first-order weighted sum of neigh-

bors’ variables and both capture network or cross-section dependence that is omitted in the second-stage re-

gression. These two terms correspond to ei (equation (5)) in the case of inter-regional migration networks

and to
∑

k∈N(j) wjkzk in the case of correlated consumer tastes (equation (8)). I add the constant terms∑
j∈N(i),j ̸=i wji(−E(Xj)) and

∑
j∈N(i),j ̸=i wji(−E(Zj)) to make sure that E(ui) = E(ei) = 0. To formulate

the above equations in the matrix form, we have

Y = Xβ1 + Zβ2 + u,X = WZ+ v, (11)

and

u = a+ γXWX+ γZWZ+ e. (12)

The existence of the constant term, a, is to make the mean of u and e zero. u corresponds to ei in equation

(5) and to
∑

k∈N(j) wjkzkβ2+ξj in equation (7). Here, the Hausman-style instrument fails because the standard

exogeneity condition may not be satisfied, i.e., cov(u,WZ) = E(Z′Wu) ̸= 0. Instead, we have

E(Z′Wu) =E(Z′W(γXWX+ γZWZ+ e)) = γXE(Z′W2X) + γZE(Z′W2Z) ̸= 0. (13)

8For the ease of exposition, we use the matrix form W instead of W (N) below, when there is no confusion.
9Note that Xi and Zi can both be i.i.d. vectors that do not exhibit cross-sectional or network dependence. Under

this assumption, we still get an invalid Hausman-IV estimation.
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Under network or cross-sectional dependence, we generically have that E(Z′W2X), E(Z′W2Z) ̸= 0. If

γX , γZ ̸= 0 and ||γXE(Z′W2X)|| ≠ γZ ||E(Z′W2Z)||, we have that cov(u,WZ) ̸= 0. This is a source of omitted

variable bias. Note that equation (12) is only a special case in which only the first-order neighbors enter the

equation. By Lemma 1, the traditional Hausman-style instrumental variable estimation yields an inconsistent

estimator. For a general case, we have

u = a+

KX∑
p=1

γX
p WpX+

KZ∑
q=1

γZ
q W

qZ+ e, (14)

where up to KXth-order of X and KZth-order of Z are accounted for.10 In the exposition below, we consider

this general case. This is a standard omitted variable bias model.

4 New Estimation Approach: High-order Neighbors as IV

4.1 New Approach

I first establish the following lemma regarding the covariance of high-order network neighbors. It is used

for establishing the validity of the newly proposed Hausman IV.

Lemma 2. For two i.i.d. random vectors, X = (X1, ..., XN ) and Z = (Z1, ..., ZN ), and a well-defined N ×N

network weight matrix W whose all entries are weakly positive, if cov(X,Z) = 0, then for any positive integers

p and q, cov(WpX,WqZ) = 0; if cov(X,Z) ̸= 0, then for any positive integers p and q, cov(WpX,WqZ) ̸= 0.

The proof is obvious using the fact that the two vectors are i.i.d. and all entries of the weight matrix are

weakly positive. Recall that the econometric model consists of equations (11) and (14). Rearranging yields

Y = a+Xβ1 + Zβ2 +

KX∑
p=1

γX
p WpX+

KZ∑
q=1

γZ
q W

qZ+ e. (15)

Note that in this equation, there areKX+1 endogenous regressors, since generically, cov(X, e), cov(WpX, e) ̸=
0, for p = 1, 2, ...,KX . However, at the same time, cov(Z, e), cov(WqZ, e) = 0, for q = 1, 2, ..., 2max{KX +

KZ}. Moreover, we have that cov(v,WqZ) = 0 and cov(WpX,WqZ) ̸= 0. Therefore, we propose a new

Hausman-style instrumental variable estimator, in which VZ = (Wmax{KZ ,KX}+1Z, ...,Wmax{KZ ,KX}+KX

Z)

serves as the instrument for VX = (X,WX, ...,WKX

X),11 and, in the second-stage regression equation (15),

(WZ, ...,WKZ

Z) is is added as a vector of additional control variables. Note that the instrument starts from

the max{KZ ,KX}+ 1th-order neighbors to satisfy the exclusion restriction. Even higher-order neighbors of Z

can be included as the instruments since they satisfy exclusion restrictions. I provide the formal definition of

the estimator in Appendix B.

Given the above equations, the new approach to the estimation is as follows. In the first step, include

high-order neighbors of Z, up to KZth order, as the control variables. In the second step, use the high-order

neighbors of Z, VZ , as the instruments for the vector of endogenous regressors, VX , and conduct the ordinary

instrumental variable estimation. This procedure is also similar to that in Bramoullé, Djebbari, and Fortin

(2009), where higher-order neighbors’ exogenous characteristics are also used to estimate the parameter, which

10Here KX and KZ are two scalars that can be the same or different.
11If we use more instrumental variables, the estimation will be more efficient, but there will be a larger small-sample

bias. We leave the choice of the optimal number of IVs to future research.
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is the peer effect in that case. The intuition of the new approach is that under complicated and often unknown

network dependence, more distant higher-order neighbors are more likely to satisfy exclusion restrictions. Using

standard arguments (including Lemma 1) and under some standard regularity conditions, we have that such a

new estimator produces an asymptotic consistent and normal estimator of the true parameter, β1. Due to space

limitations, I relegate the discussion to Appendix B. Here we only provide a lemma on the consistency. Using

this lemma and Lemma 2, we can establish that the new Hausman IV estimator is consistent.

Lemma 3. In equation (15), the Hausman-style instrumental variable estimation produces a consistent esti-

mator if and only if cov(Z, e) = cov(WZ, e) = ... = cov(WKX

Z, e) = 0, and cov(VZ ,VX) ̸= 0.

In the above analysis, we assume that the parameters KX and KZ are known. However, it is the case

if we have a model that explicitly dictates so, but in many cases, it is not. For feasibility, we could set these

parameters flexibly and use a data-driven approach to check how the estimates vary correspondingly. The

reason is that, in principle, choosing a high KX and KZ leads to less efficient estimation, but an estimator that

is more likely to be unbiased and consistent. Therefore, this is a bias-efficiency tradeoff. We can use some tests

to address this issue proposed below.

4.2 Some Tests

In this section, we discuss some relevant statistical tests, including (1) Weak IV tests, (2) Hausman

specification tests, and (3) Overidentification tests. I employ these tests in the Monte Carlo simulations and

empirical analyses. These tests are needed to evaluate the validity of the new approach of Hausman-style IV

estimation. A valid Hausman-IV estimation should satisfy the following three conditions: (1) reject the null of

the weak IV test; (2) does not reject the null of the Hausman specification test, where the alternative model is

the one that exploits higher-order neighbors; and (3) does not reject the null of the overidentification test. I

propose the detailed tests as follows.

4.2.1 Weak IV Tests

We first discuss the test of weak instruments, following a multiple endogenous regressors framework in

Sanderson and Windmeijer (2016). We follow the same weak-IV asymptotics and employ the conditional F-test

similar to that of Cragg and Donald (1993). We need a sufficiently large F-statistic to reject the null that

instruments are weak. In the Monte-Carlo simulations and the empirical analysis below, we exploit the same

weak-IV test as in Sanderson and Windmeijer (2016). The technical details can be found in Section 4.3 of

Sanderson and Windmeijer (2016), I omit the discussion here to avoid repetition.12

4.2.2 Hausman Specification Tests

Finally, we can conduct a Hausman-style specification test (Hausman, 1978) to compare these two econo-

metric models—the traditional model and the new proposed model—and the associated approach to estimation.

We can also use this Hausman test to choose between two models with different KX and KZ . The null hy-

pothesis is that the model with a smaller KX and KZ yields more efficient estimates, and both models yield

consistent estimates. The alternative hypothesis is that only the model with a larger KX and KZ yields

consistent estimates.

12The authors also provided STATA codes for the statistical tests on the journal website.
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4.2.3 Overidentification Tests

Since it is possible that the number of instruments is larger than the number of the endogenous variables,

we can employ the classical Sargan-Hansen overidentification test (Sargan, 1958; Hansen, 1982). It is also called

the J-test in practice. The J-statistic J follows χm, where m is the number of additional instruments used for

estimation. We need a small J to avoid rejecting the null hypothesis that the model is not overidentified.

5 Monte Carlo Simulations

In this section, I conduct three sets of Monte Carlo simulations. I first set that X and Z are scalar, and

β1 = 0.5, β2 = 0.3. For Model 1, I consider first-order neighbors in equation (14). For Model 2, I consider

second-order neighbors for X and first-order neighbors for Z. For Model 3, I consider first-order neighbors for

X and second-order neighbors for Z. Regardless of the order of neighbors, I set γX
k = γZ

k = 0.2 for all k. I also

assume that e and v distributed i.i.d. normally with zero mean and variance 0.1. Simulations are repeated for

10000 times.

I vary the sample size by N = 50, 100, 200, 500, 1000, and generate the data according to equations (11)

and (14). For each sample size, I randomly generate the same matrix of network neighbors, W, and then

fix it for each simulation. I conduct the traditional Hausman-style estimation and the new Hausman-style

estimation and report the results in Table 1. For all sample sizes and all models, the traditional approach

produces a sizable bias at a magnitude of 0.1 (20% of the true value), while the new approach produces a

much smaller finite-sample bias (3% of the true value). Hausman specification tests always reject the null that

both estimators are consistent.13 The new approach outperforms the traditional one when we take into account

network dependence. Moreover, using the new approach, I calculate the probability associated with different

critical values and report the results in Table 2. The results suggest that the estimator is indeed asymptotically

normal.

Next, I consider the choice of orders KX and KZ . I first discuss the consequences of misspecifying these

orders. I fix the sample size to N = 200, and try different KX and KZ in the true model and in the actually-

specified estimation. I report the results in Table 3. If we over-specifyKX andKZ , there will not be a significant

bias. But if we under-specify KX and KZ , there will be a significant bias. Next, I discuss the choice of the

number of instruments. It is a well-established result in the literature that incorporating more instruments

may lead to more efficient estimation but a larger finite-sample bias. I also report the results in Table 3.

Including more IVs than necessary slightly increases the bias. Though not reported, the standard deviations of

including more IVs are smaller. The Monte Carlo results are consistent with the theoretical arguments in the

literature. Finally, I conduct a series of weak-IV tests using the method of Sanderson and Windmeijer (2016).

The p-values associated with the F-statistics are all 0.000 when the model is correctly specified as using the

new Hausman-style estimation.

6 Empirical Analysis

In this section, I conduct two sets of empirical analyses to further validate the new approach of Hausman

IV estimation. The first analysis is to estimate the effects of infrastructure on city labor markets in China,

which corresponds to the case of migration networks. The second analysis is the demand estimation in the

13The p-values, though not reported in the associated tables, are all 0.000.
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US airline market, which corresponds to the case of correlated consumer tastes in the product market. The

summary statistics of the data used in these analyses are presented in Table 4.

6.1 Effects of Infrastructure on Labor Market

I first estimate the effects of infrastructure on city labor markets in China. This will help us understand

the effects of the place-based policy of infrastructure improvement on the labor market. The data source is the

China City Statistics Yearbooks for 1999-2018. The dependent variable is the share of the labor force in a city

for the primary, secondary, and tertiary industries. The main endogenous variable of interest is a measure of

the level of infrastructure: log per capita road area in a certain city. I use two sets of instrumental variables

separately: the log distance to the nearest railroad interacted with linear year trends, and the log distance to

the province capital. Neighbors are defined as cities within a 250-kilometer radius. The estimating equations

for the new approach of Hausman IV estimation are as follows:

LaborShareit = α1 log(Roadit) + α2W log(Roadit) + β log(Distancei)× Y eart + λi + λt + uit, (16)

where LaborShareit is the labor share in city i and year t, log(Roadit) is the per capita road area, log(Distancei)

is the log distance to the nearest railroad or the province capital, λi is the city fixed effects, λt is the year fixed

effects, and uit is the error term. The first-stage equations are as follows:

log(Roadit) = γ1W log(Distancei)× Y eart + γ1W
2 log(Distancei)× Y eart + λi + λt + v1,it,

W log(Roadit) = δ1W log(Distancei)× Y eart + δ1W
2 log(Distancei)× Y eart + λi + λt + v2,it,

(17)

whereW log(Distancei) is the first-order network neighbors’ simple arithmetic average distance, andW 2 log(Distancei)

is the second-order network neighbors’ simple arithmetic average distance, and W log(Roadit) is the first-order

network neighbors’ simple arithmetic average road area.

I report the results in Table 5. For Panel A, I employ an OLS estimation with no instruments. For Panel

B, the instruments in columns (1) through (3) are first-order neighbors of log distance to the railroad; The

instruments in columns (4) through (6) are first-order neighbors of log distance to the province capital. For

Panel C, the instruments in columns (1) through (3) are first- and second-order neighbors of log distance to

the railroad; The instruments in columns (4) through (6) are first- and second-order neighbors of log distance

to the province capital. The coefficients on the main parameter of interest are much different across different

settings in Panels A through C. For example, the coefficient in column (2) in Panel C is nearly twice as much in

magnitude as that in Panel B. The Hausman specification test for each pair of settings yields a p-value of 0.000.

Thus, the traditional way of Hausman IV may produce a significant bias. However, if I increase KX and KZ as

in Panels D and E, the results remain quite quantitatively stable, and the p-value of the Hausman specification

test is larger than 0.1. Therefore, for the case of evaluating the effects of transportation infrastructure on the

labor market, it is sufficient to use the new estimation approach with KX = KZ = 1. The p-values of the

weak-IV test associated with Panels B through D are all smaller than 0.01, rejecting the null that the IVs are

weak. Thus, Panels D and E illustrate a data-driven approach to choosing an appropriate order of neighbors.
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6.2 Demand Estimation in Airline Market

Next, I conduct a demand estimation using data from the US airline market. The data source is the Airline

Origin and Destination Survey (DB1B).14 A product corresponds to a market between a specific airport pair (of

different airlines). The product space of the airline market exhibits the property of network dependence since

passengers can transfer and take more than one route to travel between places. Each observation corresponds

to an airline market, which is an airport pair at a certain time. The dependent variable is the log market share,

constructed as in equation (8). The main endogenous dependent variable is the log price, which is the average

of the product of the year-quarter. The instrument is the log distance of the air route between an airport pair

for a certain airline company interacting with linear year-quarter time trends. Neighbors are defined as airline

markets that share an origin or a destination airport.15 The estimating equations for the new approach of

Hausman IV estimation are as follows:

log(MarketShareijat) = α log(pijat) + β1W ×OnTimeRatioijat + β2 log(Distanceija)×Quartert

+ λij + λa + λt + λi ×Quartert + λj ×Quartert + λa ×Quartert + uit,
(18)

where log(MarketShareijat) is the market share in market ij, airline a, and year-quarter t, log(pijat) is the

price, W ∗OnTimeRatioijat is the first-order neighbors of the on-time ratio, log(Distancei) is the log distance

of the market, λij is the market fixed effects, λa is the airline company fixed effects, λt is the year-quarter fixed

effects, and uit is the error term. The first-stage equations are as follows:

log(pijat) = γ1W log(Distanceija)×Quartert + γ2W
2 log(Distanceija)×Quartert + FEijat + v1,it,

W ×OnTimeRatioijat = γ1W log(Distanceija)×Quartert + γ2W
2 log(Distanceija)×Quartert + FEijat + v1,it,

(19)

whereW log(Distancei) is the first-order network neighbors’ simple arithmetic average distance, andW 2 log(Distancei)

is the second-order network neighbors’ simple arithmetic average distance. FEijat is the abbreviation of various

fixed effects and time trends, the same as in the first-stage regression equation.

I report the results in Table 6. In column (1), I conduct the OLS estimation. In column (2), I conduct the

old Hausman IV estimation, in which the instrument is the first-order neighbor of the log distance of the airport

pair. In column (3), I conduct the new Hausman IV estimation, in which the instruments are the first-order

and second-order neighbors of the airport pair. Again, the coefficients on the main parameter of interest are

much different across different settings. For example, the coefficient in column (2) is nearly twice as much in

magnitude as that in column (3). The Hausman specification test for each pair of settings yields a p-value of

0.000. Thus, again, the traditional way of Hausman IV may produce a significant bias. In column (4), I use

a model with KX = KZ = 2, and the results are not much different from those in column (3). The Hausman

specification test also yields a p-value larger than 0.1. The weak-IV tests for columns (2) through (4) all yield

a p-value less than 0.01, and the overidentification test for column (4) yields a p-value larger than 0.1. Thus,

there is no weak IV and overidentification issue.

Some lessons can be learned from these two empirical analyses. First, it is indeed possible that cross-

sectional dependence in the geographical space or the product space is unaccounted for, leading to biases in the

traditional Hausman-style IV estimation. Second, in practice, we do not know a priori the order of unaccounted

14https://www.transtats.bts.gov/DatabaseInfo.asp?QO_VQ=EFI&Yv0x=D
15In this case, neighbors are associated with both the product space and the geographical space.
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network dependence. Thus, we can try a data-driven approach to increase the order of neighbors used as IV to

check whether the estimates vary with the order. From the two analyses above, the results become stable when

the order of neighbors as used in IV is higher.

7 Conclusion

In this paper, I argue that when complex network dependence is an important mechanism at play, the

traditional and widely used Hausman-style instrumental variable estimation in the industrial organization and

trade literature may not be valid for causal identification. This is the case for migration networks in evaluating

place-based labor market policies, and for correlated unobserved consumer tastes in the product space in demand

estimation. However, the existing literature is almost silent about this source of bias and consistently uses it in

econometric exercises.

To address this issue, I first build an economic model for the two cases of inter-regional migration networks

and correlated consumer tastes in the product space, respectively, to shed light on the econometric framework.

With the help of the economic models, I argue that network dependence, in theory, and the resulting omitted

variable bias, in practice, can be a mechanism at play. Next, I establish an econometric model, and I show that

not correctly accounting for such network dependence leads to biases and propose a new approach of estimation

that exploits higher-order network neighbors. Finally, I conduct Monte Carlo simulations and empirical analyses

to validate this new approach of estimation.
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Table 1: Monte Carlo simulations

Model 1

Traditional Hausman-style estimation New Hausman-style estimation

N Estimate of β1 Bias Estimate of β1 Bias

50 0.592 0.092 0.517 0.017
100 0.593 0.093 0.516 0.016
200 0.598 0.098 0.522 0.022
500 0.612 0.112 0.523 0.023
1000 0.584 0.084 0.516 0.016

Model 2

Traditional Hausman-style estimation New Hausman-style estimation

N Estimate of β1 Bias Estimate of β1 Bias

50 0.611 0.111 0.523 0.023
100 0.584 0.084 0.523 0.023
200 0.595 0.095 0.518 0.018
500 0.614 0.114 0.516 0.016
1000 0.589 0.089 0.518 0.018

Model 3

Traditional Hausman-style estimation New Hausman-style estimation

N Estimate of β1 Bias Estimate of β1 Bias

50 0.582 0.082 0.524 0.024
100 0.590 0.090 0.520 0.020
200 0.582 0.082 0.523 0.023
500 0.595 0.095 0.517 0.017
1000 0.583 0.083 0.521 0.021
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Table 2: Monte Carlo simulations: Asymptotic distribution

N Prob(|zβ1 | < 1.645) Prob(|zβ1 | < 1.96) Prob(|zβ1 | < 2.33) Prob(|zβ1 | < 2.575)

Model 1

50 0.8653 0.9768 0.9702 0.9860
100 0.9117 0.9304 0.9832 0.9866
200 0.8732 0.9489 0.9785 0.9907
500 0.8642 0.9433 0.9784 0.9906
1000 0.9225 0.9449 0.9871 0.9926

Model 2

50 0.9128 0.9419 0.9806 0.9878
100 0.9063 0.9418 0.9762 0.9921
200 0.9063 0.9358 0.9715 0.9899
500 0.8839 0.9680 0.9883 0.9885
1000 0.9200 0.9691 0.9851 0.9884

Model 3

50 0.9263 0.9590 0.9872 0.9929
100 0.8804 0.9511 0.9747 0.9918
200 0.8994 0.9563 0.9873 0.9882
500 0.9141 0.9592 0.9720 0.9858
1000 0.8869 0.9491 0.9850 0.9880
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Table 3: More Monte Carlo Analysis

True KX True KZ Actually specified KX Actually specified KZ Number of IVs Estimate of β1 Bias

2 2 2 2 4 0.503 0.003
2 2 1 2 4 0.532 0.032
2 2 2 1 4 0.525 0.025
2 2 2 0 4 0.528 0.028
2 2 3 2 4 0.502 0.002
2 2 2 3 4 0.504 0.004
2 2 2 2 5 0.504 0.004
2 2 2 2 6 0.504 0.004
2 2 2 2 7 0.505 0.005
2 2 2 2 8 0.505 0.005
3 3 3 3 5 0.502 0.002
3 3 2 3 5 0.517 0.017
3 3 1 3 5 0.52 0.020
3 3 3 2 5 0.522 0.022
3 3 3 1 5 0.524 0.024
3 3 2 2 5 0.527 0.027
3 3 1 2 5 0.531 0.031
3 3 2 1 5 0.534 0.034
3 3 1 1 5 0.533 0.033
3 3 3 3 6 0.502 0.002
3 3 3 3 7 0.503 0.003
3 3 3 3 8 0.503 0.003
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Table 4: Summary statistics

Variable Obs Mean Std. Dev. Min Max

Panel A: City Labor Market in China

Primary share 5,985 3.781 7.730 0.01 95.580
Secondary share 6,022 40.654 14.986 1.403 97.375
Tertiary share 6,018 52.560 14.790 3.281 94.269

log per capita road area 4,563 2.043 0.668 -3.912 6.093
log distance to railroad 4,911 2.148 1.398 0 6.644

log distance to province capital 4,911 4.947 0.586 2.664 6.164

Panel B: US airline market

log market share 444,779 -2.305 0.231 -3.455 -1.365
log price 444,779 5.449 0.283 -1.470 9.426

On-time rate 444,439 0.949 0.039 0.459 1
log market distance 444,788 7.164 0.661 2.398 8.912
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Online Appendix

Appendix A Details of the Economic Models

A.1 Proofs in the Model of Migration Networks

The migration choice problem is formulated as follows:

vi = Ai logCi + max
j∈N(i)

(vj − τi,j + νjϵj), (A1)

We assume that the idiosyncratic preference shock ϵ is i.i.d. and is a realization of a Type-I Extreme Value

distribution with zero mean. The c.d.f of ϵ is F (ϵ) = exp(− exp(−ϵ − ē)), where ē is the Euler constant. The

p.d.f. is f(ϵ) = ∂F
∂ϵ . We are trying to solve for

Φi = E[ max
j∈N(i)

(E(vj)− τi,j + νjϵj)]. (A2)

Let ϵ̄i,j = ((vi − vj)− (τi,h − τj,h))/µi, we have

Φi =
∑

j∈N(i)

∫ ∞

−∞
(Vj − τi,j + νjϵj)f(ϵj)

∏
h̸=j,h∈N(i)

F (ϵ̄j,h + ϵj)dϵj . (A3)

Defining λi = log(
∑

j∈N(i) exp(−ϵ̄i,j)) and considering the change of variables ξi = ē+ ϵi, we get

Φi =
∑

j∈N(i)

∫ ∞

−∞
(Vj − τi,j + νj(ϵj − ē)) exp(−ξj − exp(−(−ξj − λj)))dξj . (A4)

We conduct an additional change of variables: let yi = ξi − λi, we have

Φi =
∑

j∈N(i)

exp(−λi)(Vj − τi,j + νj(λj − ē) +

∫ ∞

−∞
µjyj exp(−yj − exp(−yj))dyj . (A5)

Using the definition of Euler constant, ē, we have

Φi =
∑

j∈N(i)

exp(−λj)(Vj − τi,j + νjλj). (A6)

Plug into λ, we have

Φi = νi(log
∑

j∈N(i)

exp(Vj − τi,j)
1/νj ). (A7)

Therefore, we have equation (2). Define µj,i as the fraction of households that relocate from j to i, that is,

the probability that the expected utility of moving to i is higher than the expected utility in any other location,

we have that

µj,i = Prob(Vi − τi,j + νjϵj ≥ max
k∈N(j)

Vk − τk,j + νkϵk). (A8)

Given our assumptions on the idiosyncratic preference shock, we obtain

µj,i =

∫ ∞

−∞
f(ϵi)

∏
h̸=i,h∈N(j)

F ((Vi − Vh)− (τi,j − τh,j) + ϵi)dϵi. (A9)
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From the above derivations, and using the definitions above, we have that

µj,i = exp(−λi)

∫ ∞

−∞
exp(−yi − exp(−yi))dyi. (A10)

Solving for this integral, we have equation (3).

A.2 Full Model of Correlated Consumer Tastes in Product Space

We start by defining the utility function of consumer i: U(xj , ξj , pj , vi, zk), where xj is the observed product

characteristics, ξj is the unobserved product characteristics, pj is the price, zk is other exogenous observed

characteristics of other goods than j used to construct the Hausman-style instrument, vi is the consumer’s

characteristic that is not observed by econometricians. Same as Berry (1994), I focus on a random coefficients

specification of utility, in which the utility uij that consumer i has for product j is

uij = xj β̃1i − αpj +
∑

k∈N(j)

wjkzkβ2 + ξj + ϵij , (A11)

where the (unobserved to econometricians) consumer-specific taste parameters are β̃1i and ϵij . For simplicity,

consider the following decomposition for characteristic h:

β̃1ih = β1h + σhζih, (A12)

where β1h is the mean level of β̃1ih, and ζih is normally distributed with mean zero. Therefore, we have

uij = xjβ1 +
∑

k∈N(j)

wjkzkβ2 − αpj + ξj + νij , (A13)

where νij =
∑

h xjhσhζih + ϵij .

The term νij has mean zero, and captures the effects of random taste parameters. The mean utility level

of product j is thus expressed in equation (7). Assuming that ϵij is i.i.d. distributed with Type-I extreme value

distribution with mean zero, we have the market share equation as follows:

sj(δj) =
exp(δj)∑
k exp(δk)

, (A14)

and the estimating equation (8).
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Appendix Only Available Upon Request

Appendix B Asymptotic Properties

B.1 Consistency

I first discuss the consistency of the new Hausman IV estimator. Since it belongs to the extremum

estimators category, consistency is based on two assumptions: Assumption B1 (Uniform Weak Convergence)

and B2 (Identifiable Uniqueness). These two assumptions are as follows:

Assumption B1. (Assumption U-WCON) sup∆∈D |QN (∆) − Q(∆)| →p 0 for some nonstochastic function

Q(∆).

“U-WCON” stands for uniform weak convergence. Assumption B1 is a high-level assumption for the

asymptotic consistency of an extremum estimator. However, I can show below that such an assumption can

be validated for the new Hausman IV proposed above, in the next subsection. The sample and population

objective function QN (∆) and the Q(∆) function of the Hausman IV is as follows.

QIV
N (∆) = (

1

N

∑
i

(Yi −Xiβ1 − Ziβ2 −
KX∑
p=1

W pXiγ
X
p −

KZ∑
q=1

W qZiγ
Z
q )

′

A′
NAN (

1

N

∑
i

(Yi −Xiβ1 − Ziβ2 −
KX∑
p=1

W pXiγ
X
p −

KZ∑
q=1

W qZiγ
Z
q ))/2,

(B1)

where

AN =
∑
i

Vi(V
′
i Vi)

−1V ′
i , (B2)

where Vi is a vector of instruments (higher-order neighbors’ average exogenous characteristics).

Vi = (Wmax{KX ,KZ}+1Zi, ...,W
max{KX ,KZ}+KX

Zi). (B3)

Then,

QIV (∆) = ||AE((Yi −Xiβ1 − Ziβ2 −
KX∑
p=1

W pXiγ
X
p −

KZ∑
q=1

W qZiγ
Z
q ))||2/2, (B4)

where AN →p A.

The new Hausman IV estimator is then given by:

∆̂IV = argmax
∆

QIV
N (∆). (B5)

In addition, the result of consistency relies on the other assumption (identifiable uniqueness) as follows:

Assumption B2. (Assumption ID1) (1) D0 is compact; (2) Q(∆) is continuous in D; (3) ∆0 uniquely mini-

mizes Q(∆) over ∆ ∈ D.

According to standard econometric textbooks, Assumption U-WCON and ID1 can be verified with the

new Hausman IV estimator. The details of the verification are shown in the next subsection.

20



Thus, we have the following Proposition B1. The proof of the proposition is presented in the next subsec-

tion.

Proposition B1. With Assumption U-WCON and Assumption ID1, the new Hausman IV estimator satisfies

∆̂ →p ∆.

B.2 Asymptotic Normality

The results of asymptotic normality are also based on two assumptions: Assumption B3 (Assumption CF)

and Assumption B4 (Assumption EE2). The Assumption CF is as follows:

Assumption B3. (Assumption CF) (1) ∆0 is in the interior of the parameter space D; (2) QN (∆) is twice

continuously differentiable on some neighborhood D0 ⊆ D of ∆0 with probability one; (3)
√
N ∂QN (∆)

∂∆ →d

N(0,Ω0); (4) sup∆∈D0
||∂

2QN (∆)
∂∆∂∆′ − B(∆)|| →p 0 for some non-stochastic d × d matrix-valued function B(∆)

that is continuous at ∆0 and for which B0 = B(∆0) is non-singular.

Assumption B3 is a high-level assumption for the asymptotic normality of an extremum estimator. How-

ever, we can show below that such an assumption can be validated for each estimator proposed, in the next

subsection.

For the new Hausman IV estimator, the QN (∆), B(∆) function, and the B0, Ω0 matrix is as follows:

QIV
N (∆) = (

1

N

∑
i

(Yi −Xiβ1 − Ziβ2 −
KX∑
p=1

W pXiγ
X
p −

KZ∑
q=1

W qZiγ
Z
q )

′

A′
NAN (

1

N

∑
i

(Yi −Xiβ1 − Ziβ2 −
KX∑
p=1

W pXiγ
X
p −

KZ∑
q=1

W qZiγ
Z
q )/2,

(B6)

where AN is defined in equation (B10) and,

Ω0 = Γ′
0A

′AM0A
′AΓ0, (B7)

M0 = E((Yi−Xiβ1−Ziβ2−
KX∑
p=1

W pXiγ
X
p −

KZ∑
q=1

W qZiγ
Z
q )(Yi−Xiβ1−Ziβ2−

KX∑
p=1

W pXiγ
X
p −

KZ∑
q=1

W qZiγ
Z
q )

′). (B8)

and here Vi is a vector of instruments (higher-order neighbors’ average exogenous characteristics).

Vi = (Wmax{KX ,KZ}+1Zi, ...,W
max{KX ,KZ}+KX

Zi). (B9)

In addition,

AN =
∑
i

Vi(V
′
i Vi)

−1V ′
i , (B10)

and,

Γ0 = E(
∂(Yi −Xiβ1 − Ziβ2 −

∑KX

p=1 W
pXiγ

X
p −

∑KZ

q=1 W
qZiγ

Z
q )

∂∆′ ), (B11)

and,
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B0 = Γ′
0A

′AΓ0. (B12)

The asymptotic normality results are also based on the other assumption, Assumption EE2.

Assumption B4. (Assumption EE2) (1) ∆̂ →p ∆0; (2)
∂Q(∆̂)
∂∆ = op(N

−1/2).

According to standard econometric textbooks, the Assumption CF and EE2 can be verified for the Hausman

IV estimator. The details of the verification are shown in the next subsection. Given these two assumptions,

we can derive Proposition B2. The proof of the proposition is presented in the next subsection.

Proposition B2. Under Assumption CF and Assumption EE2:
√
N(∆̂−∆0) →d N(0, B−1

0 Ω0B
−1
0 ).

B.3 Further Details of Asymptotic Properties

B.3.1 Verifying Assumption B1 and B2

The verification of Assumption B1 can be done by using the weak law of large numbers. To verify As-

sumption B2, for Hausman IV estimator: If A is nonsingular and there exists a unique value ∆0 ∈ D such

that Eh(X,D,∆0) = 0, then ∆0 uniquely minimizes QGMM (∆). If not, then ∆0 is the value that minimizes

QGMM (∆) = ||AE((Yi −Xiβ1 − Ziβ2 −
∑KX

p=1 W
pXiγ

X
p −

∑KZ

q=1 W
qZiγ

Z
q ))||2/2.

B.3.2 Proof of Theorem B1

We first prove the following lemma.

Lemma B1. If Assumption B2 holds, then Assumption B5 (Assumption ID) holds, which is the following.

Assumption B5. (Assumption ID) There exists ∆0 ∈ D such that ∀ϵ, inf∆/∈B(∆0,ϵ)Q(∆)>Q(∆0).

Proof of Lemma B1: By contradiction.

Given Lemma B1, we can prove Theorem B1.

Proof of Theorem B1: By Assumption B5, given any ϵ > 0, ∃δ such that ∆ /∈ B(∆0, ϵ) implies Q(∆)−
Q(∆0) ≥ δ > 0. Thus, Pr(∆̂ /∈ B(∆0, ϵ)) ≤ Pr(Q(∆̂)−Q(∆0) ≥ δ) = Pr(Q(∆̂)−QN (∆0)+QN (∆0)−Q(∆0) ≥
δ) ≤ Pr(Q(∆̂)−QN (∆0) +QN (∆̂) + op(1)−Q(∆0) ≥ δ) ≤ Pr(2 sup∆∈D |Q(∆)−QN (∆) + op(1)| ≥ δ) →p 0.

The second inequality holds because ∆̂ minimizes QN (∆). The convergence to zero holds by Assumption

U-WCON.

B.3.3 Verifying Assumption B3 and B4

To verify Assumption B3(2) for the new Hausman IV estimator, we use the twice continuous differentiability

of the linear functions.

To verify Assumption B3(3) and (4) for the Hausman IV estimator, we use the Central Limit Theorem

and Weak Law of Large Numbers.

To verify Assumption B4, we use the result of Theorem B1.
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B.3.4 Proof of Theorem B2

Before proving Theorem B2, we first establish Lemma B2.

Lemma B2. Suppose (1) ∆̂ →p ∆0, (2) sup∆∈B(∆0,ϵ) |LN (∆) − L(∆)| →p 0 for some stochastic functions

LN (∆), some non-stochastic function L(∆), and some ϵ > 0, and (3) L(∆) is continuous at ∆0. Then,

LN (∆) → L(∆).

Proof of Lemma B2: |LN (∆̂)−L(∆0)| = |LN (∆̂)−L(∆̂)+L(∆̂)−L(∆0)| ≤ |LN (∆̂)−L(∆̂)|+ |L(∆̂)−
L(∆0)| ≤ sup∆∈B(∆0,ϵ) |LN (∆)−L(∆)|+ |L(∆̂)−L(∆0)| →p 0, where the first inequality holds by the triangle

inequality, the second inequality holds with probability 1 because ∆̂ ∈ B(∆0, ϵ) with probability 1 by (1), and

the convergence to zero holds using (1), (2), (3), and the Slutsky’s Theorem.

Proof of Theorem B2: Using CF(2) and EE(2), element-by-element mean value expansions of ∂QN (∆̂)
∂∆

about ∆0 yield

op(N
−1/2) =

∂QN (∆̂)

∂∆
=

∂QN (∆0)

∂∆
+

∂2QN (∆∗)

∂∆∂∆′ (∆̂−∆0), (B13)

where ∆∗ lies between ∆̂ and ∆0 (thus ∆∗ →p ∆0). By Lemma B2, CF(2), CF(4), and EE2(1),

∂2QN (∆∗)

∂∆∂∆′ = B0 + op(1). (B14)

From the above two equations, we have

op(1) =
√
N

∂QN (∆0)

∂∆
+ (B0 + op(1))

√
N(∆̂−∆0). (B15)

Rearranging yields

√
n(∆̂−∆0) = −(B0 + op(1))

−1
√
n
∂QN (∆0)

∂∆
+ op(1) →d N(0, B−1

0 Ω0B
−1
0 ), (B16)

using Assumptions CF(3) and CF(4).
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