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Abstract

Objective: Previous literature on optimal savings relies on specific utility and production
technology functional forms which might not be able to produce robust results as different util-
ity/production functions may lead to dramatically different or opposing results. This paper
derives an optimal savings policy based on parameters (such as slopes of demand and supply
curves) which can be empirically estimated and provides a unique and robust result irrespective
of shape and form of individual utilities/production functions. Furthermore, existing literature
does not consider welfare loss when savings market is adjusting to final equilibrium after a
shock while deriving an optimal savings policy. In addition to that, number of savers (all public
and private saving entities, including households, firms, etc.,) and saving rate are vital para-
meters for savings in an economy, and while deriving an optimal savings policy, it is necessary
to take into consideration these parameters to ensure that quantum of savings due to interest
rate movement gets adjusted in target time duration, without which there may be additional
effi ciency loss than that envisioned while deriving an optimal savings policy for an economy.
Methods: This research project designs a dynamical model for savings market and extends
that to a three-dimensional savings system in an economy by taking into consideration number
of savers, saving rate, and interest rate; and based on that derives an optimal comprehensive
savings policy while accounting for effi ciency losses when savings market, saving rate, and num-
ber of savers are adjusting to final equilibrium, in addition to the welfare loss on account of
equilibrium shift. Results: Without consideration of welfare loss/gain while savings market
is adjusting after implementation of a savings policy, welfare picture remains incomplete, and
the optimal savings policy based on partial welfare cannot be considered as optimal in true
sense. Traditionally, welfare of only producer and consumer is taken into consideration without
accounting for welfare of production factors. An expression of effi ciency loss/gain as a result of
savings policy based on welfare including those of production factors has been presented and
optimal savings policies have been derived by minimizing effi ciency losses and presented as a
final result in the form of mathematical expressions. This paper demonstrates that both sup-
ply and demand shocks operate through a common channel, i.e., inventory of funds in savings
market as both kinds of shock affect inventory of funds and hence can be categorized just as
an inventory shock. Conclusion: For optimal welfare gains, practitioners/policy makers must
estimate theoretically derived optimal savings policies based on the dynamic model developed
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in this paper and presented in the form of mathematical expressions from real world relevant
data for implementation. (JEL E21, G10, G18)
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1 Introduction

The national savings rate is the gross domestic product saved rather than consumed in an economy.

It is the difference between the income and consumption of a country as a percentage of total income,

and serves as an indicator of a nation’s economic health because it provides information on saving

trends which is a source of investment in a country. Savings by households serve as a borrowing

source for the public sector to provide infrastructure and other public works for a nation, and also

provide investment for the private sector. Savings are important not just at the individual

level, rather they contribute to national savings as well, making economic recovery

faster at national level when personal savings rate is high. With a higher saving level,

consumers can more easily absorb the excessive spending shocks without having to rely too much

on loans. Also, a higher saving rate implies that the consumers are able to allocate a substantial

portion of their income to savings after paying for their living expenses. The ability of consumers

to cope with their financial hardships is a positive sign for recovery of an economy.

However, savings are fraught with a lot of risk too. A government intervention can produce negative

effects for savers; stimulus spending and inflation can both work against savers. A government

typically finances an economic stimulus package to people through additional sovereign debt which

is a liability on future generations. In a way, this implies that savers have to bail out non-savers

at certain point in time. If government prints money for a federal stimulus, it could lead to higher

inflation, which acts as a killer for savings. Each dollar loses its purchasing power with inflation.

The value of currency is the amount of goods and services which can be bought with one unit

of money, i.e., purchasing power, and with a high inflation rate, purchasing power of currency

decreases. Although, government spending by borrowing also increases savings demand, and may

result in a higher return for savers, however, the main point to emphasize is the risk of reduced

welfare fraught with savings more than a certain level in an economy.

When personal savings are high, there is less need for governmental intervention in event of shocks.

There is a risk involved in saving, but at the same time savings are vital for an economy, so there

has to be an optimal level of savings. A lot of previous research sheds light on optimal level of

savings using various macroeconomic models, however, previous literature on optimal savings relies

on specific utility and production technology functional forms which might not be able to produce

robust results as different utility/production functions may lead to dramatically different or oppos-

ing results. This paper derives an optimal savings policy based on parameters (such as slopes of

demand and supply curves) which can be empirically estimated and provides a unique and robust

result irrespective of shape and form of individual utilities/production functions. Furthermore,

existing literature does not consider welfare loss when savings market is adjusting to final equilib-

rium after a shock while deriving an optimal savings policy. In addition to that, number of savers
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(all public and private saving entities, including households, firms, etc.,) and saving rate are vital

parameters for savings in an economy, and while deriving an optimal savings policy, it is necessary

to take into consideration these parameters to ensure that quantum of savings due to interest rate

movement gets adjusted in target time duration, without which there may be additional effi ciency

loss than that envisioned while deriving an optimal savings policy for an economy. This research

project designs a dynamical model for savings market and extends that to a three-dimensional

savings system in an economy by taking into consideration number of savers, saving rate, and in-

terest rate; and based on that derives an optimal comprehensive savings policy while accounting

for effi ciency losses when savings market, saving rate, and number of savers are adjusting to final

equilibrium, in addition to the welfare loss on account of equilibrium shift. Without consideration

of welfare loss/gain while savings market is adjusting after implementation of a savings policy, wel-

fare picture remains incomplete, and the optimal savings policy based on partial welfare cannot be

considered as optimal in true sense. Traditionally, welfare of only producer and consumer is taken

into consideration without accounting for welfare of production factors. An expression of effi ciency

loss/gain as a result of savings policy based on welfare including those of production factors has

been presented. Finally, this paper demonstrates that both supply and demand shocks operate

through a common channel, i.e., inventory of funds in graph B in figure 1 (cumulative number of

savers in graph A) in savings market as both kinds of shock affect inventory of funds and hence

can be categorized just as an inventory shock.

A lot of research has already been done on savings and their relationship with other macroeconomic

variables. Sato and Davis (1971) is an attempt to study optimal savings policy in a world where

the growth rate of labor responds to economic factors. Menezes and Auten (1978) extends the

theory of interest by Irving Fisher (income risk increases current saving) by showing that the effect

of income risk on the marginal rate of time preference is both a necessary and suffi cient condition

to characterize how income risk affects savings. With the help of a simple two-country version of

the Solow steady-state model, Quibria (1986) shows that even without the presence of any visi-

ble market distortion, free mobility of capital is not necessarily beneficial for the capital-importing

country. Deaton (1989) develops a model of households which cannot borrow but which accumulate

assets over the long term, and have on average very small asset holdings. In Kimball (1989), the

theory of precautionary saving is shown to be isomorphic to the Arrow-Pratt theory of risk aversion,

making possible the application of a large body of knowledge about risk aversion to precaution-

ary saving, and more generally, to the theory of optimal choice under risk. Chakravarty (1990)

explains optimal savings and their significance. Carroll, Hall and Zeldes (1992) presents evidence

that consumer pessimism about unemployment explains a substantial part of weakness in con-

sumption. Gylfason (1993) have presented a simple model of optimal saving, interest rates, and

economic growth. Thaler (1994) argues that it is important to incorporate more of the psychology
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of saving into economic theories. Arrow, Dasgupta and Mäler (2003) discusses the genuine savings

criterion and the value of population. Bloom, Canning and Graham (2003) shows that increases

in life expectancy lead to higher savings rates at every age, even when retirement is endogenous.

Choi, Laibson, Madrian and Metrick (2003) provides a model of savings choices taking into account

the costs which vary over time. Osili (2007) is an attempt to present a disaggregated view of

international remittance flows using a matched sample of international migrants and their origin

families. Benartzi and Thaler (2007) investigates both the heuristics and the biases that emerge

in the area of retirement savings. Bodie, Treussard and Willen (2008) presents a theory of op-

timal life-cycle saving and investing by examining employees decisions regarding joining

savings plans, contributions toward savings and investment. Bo, Kuo and Junlu (2013)

investigates the relationship among savings rates, inflation rates and money policy parameters

through an overlapping-generation model including a money supply reaction rule that is compat-

ible with China’s transitional reforming period. Baiardi, Magnani and Menegatti (2020) reviews

recent developments in the literature analyzing precautionary saving. Brandstedt (2021) situates

John Rawls’just savings principle in a discussion about how much a nation-state should save. Ma

and Toda (2021) considers an income fluctuation problem with homothetic preferences and general

shocks and prove that consumption functions are asymptotically linear, with an exact analytical

characterization of asymptotic marginal propensities to consume.

A three-dimensional (in contrast with a traditional two-dimensional (price-quantity) market) dy-

namical savings market model has been developed to depict paths of interest rate, and saving

rate, and to quantify welfare loss/social damage on those paths after an exogenous shock. The

model also provides expressions for final equilibriums. The methodology presented in this paper is

based on and a further extension of Nawaz (2017), Nawaz (2019)a, Nawaz (2019)b, Nawaz (2020),

Nawaz (2021), and Nawaz (2022) to a three-dimensional market. This paper extends their method-

ology to a savings market to derive an optimal level of savings, interest rate, number of savers and

saving rate. The results suggest that optimal policies are complex expressions which depend on

various parameters, i.e., slopes of demand, supply, inventory (of funds), number of savers versus

saving rate curves, and initial values of interest rate, inventory of funds, saving rate, number of

savers, target revenue/cost, target increase/decrease in savings, etc., hence, all parameters need to

be empirically estimated to have optimal savings policies. Expressions for paths of interest and

saving rate depict how interest and saving paths change as one of the parameters varies while others

stay put, which also determines how optimal savings policies vary as one of the paramaters gets

changed while others stay the same.

We design a three-dimensional dynamical savings market (figure 1) and based on that derive optimal

dynamical policies to keep savings at a level which minimize welfare loss and social damage. A

set of optimal savings policies comprise of an optimal policy each for panels A and B in figure
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1. A two-dimensional (traditional price-quantity market) dynamical savings market model has

been developed for graph/panel B, based on which an optimal dynamical policy for quantity of

savings and interest rate minimizing effi ciency loss (supply/consumption of funds lost) on way to

equilibrium plus that in equilibrium (total effi ciency loss as compared to traditional dead-weight loss

in final/post-policy equilibrium) subject to savings policy implementation cost constraint faced by

government has been designed. Panel B policy decides constraint for an optimal dynamical policy

for panel A, i.e., a change in savings per unit time. Theory regarding panel A has been devised

and a dynamical model has been developed for an optimal policy regarding number

of savers and saving rate. Optimality of policy is in the sense of minimizing social damage

(excessive/fewer than optimal number of savers) on way to equilibrium plus that in equilibrium

subject to change in quantity of savings per unit time (a constraint set by panel B policy). When

a policy for panel A comes into play, number of savers and saving rate do not jump to final/post-

policy equilibrium, and rather adopt a path with pairs of number of savers and saving rate to final

equilibrium where economy’s demand and supply (both public and private) of number of savers

become equal.

In nature both panels, i.e., A and B and equilibria thereof occur simultaneously. A certain number

of savers exist in an economy who save at a certain rate which forms the upward sloping supply (both

private and public) curve for savers; with rectangular areas in plane A (formed by perpendiculars

drawn from points on supply curve to x and y-axes) corresponding to horizontal coordinates or

abscissas on supply curve in panel B. As government faces a cost constraint to be satisfied, it

is natural to start deriving a policy for panel B (interest rate or quantity of funds chosen by

government), which determines the constraint (change in quantity of savings per unit time) for

optimal policy in panel A (saving rate or number of savers chosen by government), and then derive

panel A policy. For panel B, existing literature does not account for welfare losses/gains on way to

final equilibrium as well as those in final equilibrium in savings market to derive an optimal savings

policy. When a savings policy comes into play, government’s cost as supplier of funds jumps to

pre-policy cost plus per unit funds cost incurred due to savings policy affects supply of funds in

savings market and pushes it out of equilibrium. Savings market adjusts to final equilibrium and

mechanism for adjustment is based on premise that there is no coordination between economic

agents in savings market when it goes out of equilibium (after savings policy comes into play) at

existing interest rate. For design of an optimal savings policy, there must be a consideration of

minimizing social damage both during adjustment of number of savers and saving rate as well as

in final equilibrium.

The basis of this research is a model for a perfectly competitive market of savings,

where the quantity of savings and their price, i.e., the interest rate are presented

in the traditional quantity-price picture of a market as shown in panel B. Panel A
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determines the x-axis of panel B, i.e., the quantity of savings in an economy which

depends on number of savers and their savings rate. The area in panel A determines

the x-axis values on panel B.

The remainder of this paper is organized as follows: In section 2, a model for panel B has

been developed. In section 3, solution of the model regarding an expansionary savings

policy has been presented. In section 4, an optimal dynamical expansionary savings

policy has been derived for panel B. Section 5 provides a solution of the model for

a contractionary savings policy. In section 6, an optimal dynamical contractionary

savings policy has been derived for panel B. Section 7 presents a dynamical savings

model regarding panel A, through joining individual components of panel A. In section

8, solution to model A with a savings policy has been provided. In section 9, an optimal

dynamical savings policy has been derived for panel A. Section 10 concludes the paper

by presenting summary of findings. Detailed mathematical steps regarding derivations

in the main text have been provided in the appendix.

2 Materials and Methods

2.1 The Model-Panel B

The model has a perfectly competitive market of savings in equilibrium, implying the initial con-

ditions of model are equilibrium values. In the market, there are five market agents, i.e.,

the household as a supplier of savings, the public sector/government as a supplier of savings,

consumer of savings (a producer/firm in need of money for investment), a financial intermedi-

ary/broker/commercial bank between suppliers and consumer, and government for exercising sav-

ings policy. Government influences interest rate through exercising savings policy, however, takes

the interest rate as given in the role of a savings supplier. Household as savings supplier also takes

the interest rate as given. As a result of an exogenous shock in savings market, interest rate can-

not adjust on its own to lead savings market to final equilibrium. Financial broker as middleman

varies interest rate in self-interest to lead market to attain final equilibrium after making interest

rate follow a dynamic path. When final equilibrium arrives, it is in benefit of broker not to vary

interest rate further. Suppliers of savings supply to financial broker/middleman, who maintains

stock/inventory of savings (stock/inventory of savings can lie with a commercial bank or suppliers,

which does not matter for mathematical treatment of inventory of funds as far as the financial

broker has information regarding quantity of funds to be dealt with) and supplies it further to

consumer (the producer/firm who borrows money from financial broker) at market interest rate.

Suppliers of savings maximize their utility/benefit; financial broker maximizes profit as a differ-

ence of revenue earned through lending money to borrower/consumer, and cost of keeping savings
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subject to constraints; consumer/producer/firm maximizes profit.

Mechanism of interest rate adjustment has the following explanation: When a shocks hits savings

market, and puts it out of equilibrium, economic agents have no coordination regarding their

economic decisions at existing interest rate. Following example illustrates savings market working:

Consider a savings market in equilibrium, where the broker/commercial bank has an equilibrium

quantity of stock of savings. An exogenous supply expansion shock happens to market, and increases

inventory of savings/funds as savings output produced by producers no more equals demand by

consumers at existing interest rate. In new equilibrium a higher quantity of savings and lower

interest rate will result. Equilibrium in savings market has been defined as given below:

(i) Suppliers of savings maximize their utility/benefit; consumer/producer/firm maximizes profit;

and broker/commercial bank maximizes profit as a difference of revenue earned through lending

money to borrower/consumer, and cost of keeping money subject to respective economic constraints.

(ii) Amount of savings produced by producer equals the amount consumed by consumer, and size

of funds inventory stays put during market equilibrium.

Conditions for equilibrium existence for a linear dynamical system, i.e., a necessary

and suffi cient condition for stability, based on Routh—Hurwitz stability criterion have

been presented in Section 3. As it happens in a perfectly competitive savings market, fi-

nancial intermediary/commercial bank who lends funds to consumer at market rate is a

price-taker when market is in equilibrium. In absence of equilibrium, financial intermediary

has an incentive to change interest rate on dynamic adjustment path until market attains final

equilibrium and financial intermediary is again a price-taker. Government implements a savings

policy, as a result of which market loses state of equilibrium, and interest rate adjusts to drift

market toward final equilibrium. Adjustment of savings market is based on endogenous decisions

taken by economic agents in self-interest, i.e., household, the public sector/government, the con-

sumer of savings, and the financial intermediary. Suppose a producer of savings (household who

saves) provides funds to financial broker/intermediary who supplies to consumer, i.e., a producer

who uses funds for investment purposes, and savings market is in equilibrium. After government

introduces and implements a savings policy, i.e., increases savings supply due to which interest

rate goes down, some of the supply will not be borrowed by the consumers by the end of the time

period in which the policy was exercised. If producers of savings and financial intermediary could

have changed savings and market interest rate respectively without a delay, they would choose the

quantity and interest rate maximizing their profit and clearing the savings market without a waste

of savings had they been aware of exact pattern regarding demand of savings after implementation

of savings policy by government. However, this information is not known to them, and commercial

bank/financial intermediary reduces interest rate according to their best guess about post-policy

demand of savings observing the increase in size of inventory of funds, which drives market closer
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to final post-policy equilibrium. After an interest rate reduction, producer decreases production of

savings than before. If during next time period, commercial bank/financial intermediary continues

with same size of funds inventory and interest rate, final equilibrium has been attained, however,

if there is still a need for a variation in size of inventory, the financial broker will vary interest

rate further to drift market toward final equilibrium. After some welfare loss, savings market will

eventually attain final equilibrium. Welfare loss due to savings policy comprises of unutilized funds

during time of adjustment of market. In final equilibrium there might be some loss in comparison

with the initial equilibrium, so total welfare loss comprises of that during adjustment as well as in

final equilibrium.

To derive mathematical results, objectives of market agents subject to their constraints are

considered and maximized by taking first order derivatives. In order to get a complete picture of

market, expressions reflecting actions of individual agents are simultaneously solved. We

assume that final equilibrium after implementation of policy is not too off the initial equilibrium,

which implies linearity of supply and demand curves is a reasonable assumption to make. Figure 1

depicts linearization as apparently a reasonable approximation for moving market equi-

librium from point a to b, however, if market moves from point a to c, linearization does not

seem to work, and a non-linear dynamical system must be designed to cater this scenario, which

does not fall in the ambit of scope of this research.

2.1.1 Financial Intermediary/Broker/Commercial Bank

Financial intermediary/broker/commercial bank buys/rents money from suppliers to sell/lend to

consumer of savings for earning profit. Financial intermediary holds an inventory of funds as

quantity of funds bought and sold are unequal at various points in time. An inventory exists

between supply and demand of money reflecting their difference in savings market. The level of

inventory stays the same if supply and demand rates do not change, and a change in

inventory implies that there is either a change in supply, demand or both at a different

rate.

Figure 3 illustrates a connection between funds’inventory, production, demand (of savings) and

interest rate. When supply/production curve for savings shifts to right whereas demand stays put,

inventory in market increases at initial interest rate which reduces in final equilibrium. In the same

manner, when demand shifts to right whereas production stays the same, inventory goes down at

initial interest rate which rises to lead to final equilibrium. This reflects there exists an inverse

relationship between a change in inventory of funds and a change in interest rate ceteris baribus. If

both production and demand shift such that that there is no variation in inventoy, interest rate will

also stay put. Both supply and demand shocks operate through a common channel, i.e., inventory

of funds in savings market as both kind of shocks affect inventory and hence can be categorized
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just as an inventory shock. Above discussion concludes an interest rate change is negatively related

to a change in funds inventory. Mechanism which brings this result is as follows: Suppose there

is a savings market where financial intermediaries hold inventory of funds at some cost and lend

money to consumers. Cost of holding a funds inventory is positively related to its size, i.e., more

funds are more costly to hold. If demand and supply rates are equal in absence of an exogenous

shock, savings market is in equilibrium and interest rate stays the same.

Suppose a savings policy brings down the marginal cost of savings and households increase supply of

savings, whereas demand does not change. As supply is no longer equal to demand, difference will

get accumulated as an inventory of funds held by financial institutions. In order to lend additional

funds to borrowers, financial institutions would be willing to decrease interest rate which could

bring demand of funds up following demand schedule. Interest rate will eventually decrease to

new marginal cost as savings market is perfectly competitive, however, how market adjusts to final

equilibrium is contingent upon response of financial broker to change in funds inventory. After

shock, marginal cost of production has gone down, however, financial broker’s marginal cost

for holding an extra unit of funds has increased. This phenomenon is consistent with profit

maximization behavior of financial broker and producer. To illustrare mathematically, let us take

a look at financial broker’s profit maximization problem as follows:

One Time Period Problem Short-term problem of financial intermediary/broker/commercial

bank implies that financial broker is not doing dynamic optimization and his/her objective is

short-term. For discrete time, it can be considered as an objective just for one time period without

looking at future times for the sake of an intuitive explanation and to prepare reader for a much

more complex dynamic problem presented in next section. Financial intermediary’s

objective function is as given below:

Π = rq(r)− ςB(mB(r, eB)), (1)

where

Π = profit,

r = market interest rate,

q(r) = quantity of funds sold (selling is in fact lending) at interest rate r,

mB = inventory (quantity of funds financial intermediary holds),

eB = other factors which influence inventory of funds other than market interest rate including

financial broker’s purchase price of funds from producer,

ςB(mB(r, eB)) = cost of holding funds increasing in inventory.

Taking derivative of eq. (1) with respect to interest rate, we obtain:
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rq′(r) + q(r)− ς ′B(mB(r, eB))m′B1(r, eB) = 0. (2)

For financial intermediary/broker/commercial bank, there is an incentive to change interest rate

only during adjustment of savings market. During equilibrium, financial broker will incur losses

by changing interest rate to a value other than marginal cost. Supply does not equal demand

during savings market adjustment and market drifts toward final equilibrium, this is why a change

in interest rate during adjustment time which brings market closer to final equilibrium is in line

with market forces. Financial intermediary loses business by changing interest rate during market

equilibrium (which is not the case on the adjustment path) and commercial bank faces a demand

which is infinitely elastic as shown below:

rq′(r) + q(r) = ς ′B(mB(r, eB))m′B1(r, eB),

r

[
1 +

1

demand elasticity

]
= ς ′B(mB(r, eB))

m′B1(r, eB)

q′(r)
.

For an infinitely elastic demand, interest rate equals marginal cost in the above expression where

the expression on the right is the marginal cost. Suppose a supply shock happens, which

reduces marginal cost of production of funds, i.e., marginal cost of saving by households, and supply

curve shifts downward. Supply is no longer equal to demand at interest rate in initial equilibrium

when competitive market gets out of steady state. Eventually, interest rate decreases and brings

the final equilibrium, however, there is no jump in interest rate, rather financial broker continues

to charge an interest rate higher than the new marginal cost until there is a realization on his

part through an accumulation of inventory of funds that the market supply is higher than before

and the changed profit maximizing condition requires him to lower the interest rate. Similarly, a

reverse supply shock eventually brings the interest rate up. In this scenario, financial intermediary

continues to charge an interest rate lower than the new marginal cost until there is a realization on

his part through a depletion of inventory of funds that the market supply is lower than before and

the profit maximizing condition in the changed scenario requires him to increase the interest rate.

In later case, consumer is the beneficiary during market adjustment period who will reap gains

until interest rate is increased by financial broker. In equilibrium, market interest rate is equal to

the sum of marginal costs of production and that of holding funds by the middleman in absence of

a policy intervention, which implies neither the financial intermediary reaps an economic rent not

does the consumer when there is an equilibrium in the competitive market.

In a mathematical context, suppose a supply shock happens, while demand does not change due

to which the production marginal cost of funds decreases and supply increases. The finan-

cial intermediary’s marginal cost for holding an extra unit i.e., ς ′B(mB(r, eB))
m′B1(r,eB)

q′(r) is higher
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at existing market interest rate on account of the term ς ′B(mB(r, eB)) which is higher, i.e., the

middleman has a higher cost for holding unutilized funds after supply shock. The other term,

i.e., ς ′B(mB(r, eB)) has not yet changed as the interest rate is the same as before. This is under

the assumption that the financial intermediary’s purchase rate has not changed due to producer

being a price-taker during adjustment period of market as well and only charges a fraction of the

market interest rate to financial intermediary. An analog in discrete time is that financial broker

maximizes profit in each time period while not taking into account future time periods, taking the

purchase interest rate as given and just choosing the interest rate for lending. On current

interest rate, financial broker faces the following inequality:

∂Π

∂r
= rq′(r) + q(r)− ς ′B(mB(r, eB))m′B1(r, eB) < 0, (3)

so to hold an extra unit of funds in inventory, financial intermediary must decrease interest rate

after supply shock to satisfy profit maximization condition. Short-term gains accrued from a

reduced marginal cost will be reaped by producer of funds, as the marginal cost of production

has reduced but market interest rate is the same as before until changed by financial intermediary.

A plot of profit maximizing pairs of inventory of funds and respective market interest rate is a

downward sloping inventory curve with interest rate on y-axis and inventory on x-axis.

Dynamic Problem For dynamic problem, present discounted value of future stream

of profits of the financial intermediary are maximized, with zero time value being as

given below:

V (0) =
∞∫
0

[rq(r)− ςB(mB(r, eB))] e−σtdt, (4)

σ, r(t), and mB(t) are discount rate, control variable, and state variable respectively. Maximization

problem in mathematical notation is depicted below:

Max
{r(t)}

V (0) =
∞∫
0

[rq(r)− ςB(mB(r, eB))] e−σtdt,

subject to the constraints that
.

mB(t) = m′B1(r(t), eB(r(t), zB))
.
r(t)+m′B2(r(t), eB(r(t), zB))e′B1(r(t), zB)

.
r(t) (state equation,which

describes the change in state variable with time; with zB as exogenous factors),

mB(0) = mBs (initial condition),

mB(t) ≥ 0 (non-negativity constraint on state variable),

mB(∞) free (terminal condition).

Following is the expression for current-value Hamiltonian:
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H̃ = r(t)q(r(t))−ςB(mB(r(t), eB(r(t), zB)))+µB(t)
.
r(t)

[
m′B1(r(t), eB(r(t), zB)) +m′B2(r(t), eB(r(t), zB))∗

e′B1(r(t), zB)

]
.

(5)

Conditions for maximization are as given below:

(i) r∗(t) maximizes H̃ for all t: ∂H̃
∂r = 0,

(ii)
.
µB − σµB = − ∂H̃

∂mB
,

(iii)
.

mB
∗

= ∂H̃
∂µB

(this just gives back the state equation),

(iv) lim
t→∞

µB(t)mB(t)e−σt = 0 (the transversality condition).

Conditions (i) and (ii) are as follows:

∂H̃

∂r
= 0, (6)

and

.
µB − σµB = − ∂H̃

∂mB
= ς ′B(mB(r(t), eB(r(t), zB))). (7)

In equilibrium,
.
r(t) = 0, substituting which in the expression for ∂H̃

∂r , it becomes the

following (see appendix):

r(t)

[
1 +

1

demand elasticity

]
= ς ′B(mB(r(t), eB(r(t), zB)))

{
m′B1(r(t), eB(r(t), zB))

q′(r(t))
+
m′B2(r(t), eB(r(t), zB))e′B1(r(t), zB)

q′(r(t))

}
,

which implies that interest rate is equal to the marginal cost when demand is infinitely elastic.

Marginal cost, i.e., the right hand side expression in the above equation is not the same as that

in a myopic problem due to the reason that in dynamic consideration financial intermediary also

considers impact of market interest rate on his purchase interest rate charged by producers. If

a positive supply shock happens, the marginal cost of having another unit of funds in inventory

is higher for financial intermediary as ς ′B(mB(r(t), eB(r(t), zB))) term is higher at that point in

time at existing interest rate. The term m′B1(r(t),eB(r(t),zB))
q′(r(t)) +

m′B2(r(t),eB(r(t),zB))e
′
B1(r(t),zB)

q′(r(t)) has not

changed yet as the interest rate is still the same as before. The financial intermediary faces following

inequality at contemporary interest rate:

∂H̃

∂r
< 0.

Financial intermediary must reduce interest rate in order to add another unit of funds in inventory

for dynamic optimization condition to be satisfied. This depicts that a negative relationship exists

between inventory and interest rate. Demand and supply concepts are unified through inventory;
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if their rates are equal, there is a state of equilibrium in market; whereas if a finite difference

occurs between their rates, and the other agents do not react to that change, interest rate will get

continuously changed by financial broker until the saturation of market takes place. This behavior

of market can be expressed as follows:

Interest rate change ∝ change in market inventory of funds.

R = interest rate change.

MB = mB −mBs = change in inventory of funds in the market,

mB = inventory of funds at time t,

mBs = inventory of funds in steady state equilibrium.

Input − output =
dmB

dt
=
d(mB −mBs)

dt
=
dMB

dt
,

or MB =
∫

(input − output) dt.

Interest rate change ∝
∫

(supply rate − demand rate) dt, or

R = −Km

∫
(supply rate − demand rate) dt,

whereKm is a constant for proportionality. The sign (negative) reflects when (supply rate − demand rate)

is positive, R is negative, i.e., interest rate decreases. Above expression can also be written as:

∫
(supply rate − demand rate) dt = − R

Km
, or

∫
(wBi − wB0) dt = − R

Km
, (8)

wBi = supply rate,

wB0 = demand rate,

Km = dimensional constant.

When t = 0, supply rate = demand rate, and eq. (8) changes into the following expression:

∫
(wBis − wB0s) dt = 0. (9)

Subscript s denotes a value in a steady state equilibrium and R = 0 in steady state. Subtracting

eq. (9) from (8), we obtain:

∫
(wBi − wBis) dt−

∫
(wB0 − wB0s) dt = − R

Km
, or
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∫
(WBi −WB0) dt = − R

Km
, (10)

where wBi − wBis = WBi = change in supply rate,

wB0 − wB0s = WB0 = change in demand rate.

R, WBi and WB0 are deviation variables, i.e., deviation from steady state equilibrium and have

zero initial values. Eq. (10) can also be expressed as:

R = −Km

∫
WBdt = −KmMB, (11)

where WB = WBi−WB0. If R receives an input other than an inventory change, that can

get added to eq. (11) as shown below:

R = −Km

∫
WBdt+ EB = −KmMB + EB. (11a)

Inventory of funds can also undergo an exogenous shock in addition to feedback effect of interest

rate.

2.1.2 Suppliers

There are various suppliers of funds. The dynamic problem of two important suppliers, i.e., the

households, and the public sector/government has been discussed below:

Household The household as a supplier of funds has an objective of maximizing the present

discounted value of series of utilities for all future times, and at time zero present value can be

written:

V (0) =
∞∫
0

U(x(t))e−ρtdt, (12)

ρ and x(t) are discount rate and control variable respectively. Maximization problem has the

following form:

Max
{x(t)}

V (0) =
∞∫
0

U(x(t))e−ρtdt,

subject to following constraints
.
a(t) = r(t)a(t) +w(t)−p(t)x(t) (state equation, which describes the change in state variable

with time). a(t) is a state variable representing quantum of asset holdings; and w(t)

(time path of wage) and p(t) (time path of price of consumption x (t)) are exogenous.
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a(0) = as (initial condition),

a(t) ≥ 0 (non-negativity constraint on state variable), and

a(∞) free (terminal condition).

Current-value Hamiltonian is expressed as follows:

H̃ = U(x(t)) + µp(t) [r (t) a (t) + w (t)− p (t)x (t)] . (13)

The maximizing conditions can be written as:

(i) x∗(t) maximizes H̃ for all t: ∂H̃
∂x = 0,

(ii)
.
µp − ρµp = −∂H̃

∂a ,

(iii)
.
a
∗

= ∂H̃
∂µp

(this just gives back the state equation), and

(iv) lim
t→∞

µp(t)a(t)e−ρt = 0 (the transversality condition).

Conditions (i) and (ii) can be written as:

∂H̃

∂x
= U ′(x (t))− µp(t)p(t) = 0, (14)

and

.
µp − ρµp = −∂H̃

∂a
= −µp(t)r(t). (15)

In a scenario where interest rate r(t) rises, the above condition has the following form:

.
µp − ρµp + µp(t)r(t) > 0.

After interest rate rises, the household’s asset holdings must go up and hence the supply of funds

in order to satisfy dynamic optimization conditions. Let r = market interest rate, cp = a feasible

reference price for assets (for example, an asset yield including savings cost, and profits

for household and financial intermediary). cp is a reference point for the household’s decision

making, i.e., whether the supply of money should be increased or not as interest rate increases. It

is a parameter which can either remain fixed for the time being or vary with time, such as the cost

of savings can change or remain fixed depending on the exogenous economic conditions.

Wmp = Change in funds supply by households/public due to change in interest rate,

Household’s incentive to supply more funds is the difference between r and cp, i.e., (r− cp). There-
fore,

Wmp ∝ α(r − cp), or
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αr is the interest rate the household gets from financial intermediaries, with α < 1. We can write

the above expression as:

Wmp = Ksp(r − cp). (16)

In a steady state equilbrium, Wmp = 0, or

0 = Ksp(rs − cps). (17)

Ksp is the constant of proportionality. rs and cps are steady state equilibrium values.

Subtracting eq. (17) from (16), we obtain:

Wmp = Ksp [(r − rs)− (cp − cps)] = −Ksp (Cp −R) = −Kspεp. (18)

Wmp, Cp and R are deviation variables.

Public Sector/Government Public sector/government maximizes present discounted value of

series of all future net benefits, and zero time value is shown below:

V (0) =
∞∫
0

[Zc (r(t))− ςc(h (r(t)))] e−rctdt. (19)

Zc (r(t)) is the benefit for society, a function decreasing in interest rate; a lower interest

rate implies a higher benefit. ςc(h (r(t))) is the public sector cost; a higher interest rate

implies a higher cost. A plot of cost against interest rate is a concave downward curve,

i.e., decreasing in slope.

rc and r(t) are discount rate and control variable, and h(t) is supply of public savings and a state

variable. Maximization problem is as given below:

Max
{r(t)}

V (0) =
∞∫
0

[Zc (r(t))− ςc(h (r(t)))] e−rctdt,

subject to following constraints:
.
h(t) = h′(r (t))

.
r(t) (state equation, which describes the change in state variable with time),

h(0) = hs (initial condition),

h(t) ≥ 0 (non-negativity constraint on state variable), and

h(∞) free (terminal condition).

Current-value Hamiltonian is expressed as follows:

H̃ = Zc (r(t))− ςc(h (r(t))) + µc(t)h
′(r (t))

.
r(t). (20)

Conditions for maximization are as given below:
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(i) r∗(t) maximizes H̃ for all t: ∂H̃
∂r = 0,

(ii)
.
µc − rcµc = −∂H̃

∂h ,

(iii)
.
h
∗

= ∂H̃
∂µc

(this just gives back the state equation), and

(iv) lim
t→∞

µc(t)h(t)e−rct = 0 (the transversality condition).

Conditions (i) and (ii) can be expressed as follows:

∂H̃

∂r
= Z ′c (r(t))− ς ′c(h (r (t))) h′ (r (t)) + µc(t) h

′′
(r (t))

.
r (t) = 0. (21)

and

.
µc − rcµc = −∂H̃

∂h
= ς ′c(h (r (t))). (22)

If the interest rate rises, the term ς ′c(h (r (t))) decreases, making public sector/government

face the following expression:

.
µc − rcµc − ς ′c(h (r (t))) > 0.

This implies that the funds supply by public sector/government should increase as interest rate

rises to satisfy condition of dynamic optimization. If funds supply change is proportional to a

change in interest rate, then following the logic for the household case, we can write:

Wmc = −Ksc (Cc −R) . (23)

2.1.3 Consumer

A consumer of funds, e.g., a firm needing funds for investment purposes with an objective

of maximization of present discounted value of series of future profits where zero time

value can be expressed as:

V (0) =
∞∫
0

[p(t)F (K (t) , L (t))− w(t)L (t)− r(t)I(t)] e−%tdt, (24)

p(t) is firm’s output price; %, L(t) (labor), and I(t) (level of investment) are discount rate, and

control variables respectively; and K(t) is state variable. Consumer’s maximization problem is as

follows:

Max
{L(t),I(t)}

V (0) =
∞∫
0

[p(t)F (K (t) , L (t))− w(t)L (t)− r(t)I(t)] e−%tdt,

subject to following constraints:
.
K(t) = I(t) − δK(t) (state equation, which describes the change in state variable with

time),
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K(0) = K0 (initial condition),

K(t) ≥ 0 (non-negativity constraint on state variable), and

K(∞) free (terminal condition).

Current-value Hamiltonian is given below:

H̃ = p(t)F (K (t) , L (t))− w(t)L (t)− r(t)I(t) + µf (t) [I(t)− δK(t)] . (25)

Maximizing conditions can be written as:

(i) L∗(t) and I∗(t) maximize H̃ for all t: ∂H̃
∂L = 0 and ∂H̃

∂I = 0,

(ii)
.
µf − %µf = −∂H̃

∂K ,

(iii)
.
K
∗

= ∂H̃
∂µf

(this just gives back the state equation),

(iv) lim
t→∞

µf (t)K(t)e−%t = 0 (the transversality condition).

Conditions (i) and (ii) can be written as:

∂H̃

∂L
= p(t)F ′2 (K (t) , L (t))− w(t) = 0, (26)

∂H̃

∂I
= −r(t) + µf (t) = 0, (27)

and

.
µf − %µf = −∂H̃

∂K
= −

[
p(t)F ′1 (K (t) , L (t))− δµf (t)

]
. (28)

If r(t) rises (with level of investment the same as before), the firm faces the following:

−r(t) + µf (t) < 0.

After a rise in interest rate, consumer of funds must decrease level of investment to satisfy the

dynamic optimization condition. Suppose change in demand of funds is proportional to interest

rate change, i.e., R, then this change can be written as follows:

Change in money demand ∝ R, or

Wd = −KdR. (29)

Wd is change in funds demand due to a change in interest rate, i.e., R. This shows that when R is

positive, Wd is negative.
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2.2 Solution of the Model with an Expansionary Savings Policy

Expressions from eqs. (11a), (18), (23) and (29) respectively are as follows:

dR(t)

dt
= −KmWB(t),

Wd(t) = −KdR(t),

Wmp = −Ksp (Cp −R) ,

Wmc = −Ksc (Cc −R) ,

and

WB(t) = Wm(t)−Wd(t),

in the absence of an exogenous demand/supply shock. Wm(t) is the total funds supply

including the supply from the public sector, households and firms, etc., and can be expressed as

a sum of two sources of funds supply, i.e., the public sector, and the private sector (households,

firms, etc.) as follows:

Wm(t) = −Ksp [Cp(t)−R(t)]−Ksc [Cc(t)−R(t)] . (30)

Subscripts p and c denote private and public sector respectively. After combining

above expressions, the following differential equation results:

dR(t)

dt
= −Km [Wm(t)−Wd(t)]

= −Km [−Ksp {Cp(t)−R(t)} −Ksc {Cc(t)−R(t)}+KdR(t)]

= −Km [−KspCp(t)−KscCc(t) + (Ksp +Ksc +Kd)R(t)] .

Rearranging above expression gives:

dR(t)

dt
+Km(Ksp +Ksc +Kd)R(t) = Km [KspCp(t) +KscCc(t)] . (31)

Routh-Hurwitz stability criterion, to ensure stability of above differential equation requires

Km(Ksp + Ksc + Kd) > 0; and as Km,Ksp,Ksc, and Kd are all positive, the stability crite-

rion holds. This ensures that savings market settles at a new equilibrium for every adjustment

mechanism once it gets out of initial equilibrium.

In savings market in comparison with a goods market, public sector has the role of government as

well as that of a producer of funds. When government reduces interest rate on funds for investors
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but not for depositors, public sector’s supply curve shifts downward, and it incurs a cost in the

role of government. We need to keep the role of public sector as producer separate from its role

as government for clarity of what is exactly happening in savings/funds market when government

exercises a savings policy. Suppose a change in the cost of public sector as a result of reducing

interest rate on funds for investors is B, whereas the cost of private sector’s supply of funds remains

the same, the above equation can be expressed as:

dR(t)

dt
+Km(Ksp +Ksc +Kd)R(t) = −KmKscB. (32)

The solution is given by the following expression:

R(t) = − KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t. (33)

R(0) = 0 (initial condition), and R(∞) = − KscB
(Ksp+Ksc+Kd)

(final value). As a result of a savings

policy, interest rate dynamics depends on parameters Ksp,Ksc,Kd, Km and B.

2.3 A Dynamic Optimal Expansionary Savings Policy-Panel B

Depending upon whether the savings policy is expansionary or contractionary, there could either

be effi ciency gains or losses in the equilibrium (post policy) as compared to the one which

existed before policy. However, these are not the only effi ciency gains or losses, as some

effi ciency is lost during transient/adjustment to the final equilibrium. When savings

policy is implemented, savings supply either expands or contracts, whereas at the initial

interest rate, demand is still is the same as before, hence as a result of the policy,

savings market gets out of equilibrium. Interest rate starts adjusting to equalize

supply and demand to lead to new savings market equilibrium. Final equilibrium

interest rate is a function of elasticities of supply and demand. As illustrated in the

previous section, change in total supply as a result of a savings policy is as given below:

Wm(0) = −Ksp [Cp(0)−R(0)]−Ksc [Cc(0)−R(0)] = KscB, (34)

as R(0) = 0.

Due to savings policy, supply of savings either goes up or down by KscB. As demand is the same

as before, therefore, the inventory of savings also changes by KscB, in the direction of the change

in supply. Savings market is out of equilibrium with market forces in action pushing

savings market to post policy final equilibrium through an interest rate adjustment.

As interest rate changes, demand and supply of funds also change through feedback. If the savings

inventory goes up, it reflects supply is greater than demand and vice versa. If supply and
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demand are equal with savings market in equilibrium, there is no effi ciency loss. For

an out of equilibrium market, either supply and/or consumption of savings/funds is getting

wasted at that point in time implying that total effi ciency loss during market adjustment is sum

of gaps in supply and demand at all points in time. After accounting for a loss in effi ciency in

post-policy equilibrium in comparison with initial quilibrium (if any), total effi ciency loss for

an expansionary and contractionary savings policy respectively can be expressed as:

EL (expansionary) =

0∫
−∞

Wm(∞)dt+

∞∫
0

[Wm(t)−Wd(t)] dt

=

0∫
−∞

Wm(∞)dt+MB(t). (35)

EL (contractionary) =

∣∣∣∣∣∣
∞∫
t

Wm(∞)dt+

t∫
0

Wd(t)dt+MB(t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t∫
0

Wd(t)dt+

∞∫
t

Wd(∞)dt+MB(t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∫
0

Wd(t)dt+

∞∫
0

[Wm(t)−Wd(t)] dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∫
0

Wm(t)dt

∣∣∣∣∣∣ . (36)

With Expansionary Savings Policy Cost Constraint:

According to eq. (30), change in funds supply due to a market interest rate change is as

given below:

Wm(t) = −Ksp [Cp(t)−R(t)]−Ksc [Cc(t)−R(t)] .

The part of supply coming from public sector is −Ksc [Cc(t)−R(t)] , and may be written as follows:

Wmc(t) = −Ksc [Cc(t)−R(t)] ,

wnmc(t)− wimc(0) = −Ksc [Cc(t)−R(t)] ,

where wimc(0) is the initial funds supply from the public sector, and wnmc(t) is the supply after

savings policy. Wmc(t) = wnmc(t)−wimc(0), which reflects deviation from initial value. Cost

to exercise savings policy is as given below:
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SPC = B [wimc(0) +Ksc {B +R(t)}] . (37)

For an optimal policy, effi ciency loss needs to be minimized subject to the cost con-

straint as follows:

min
B

EL s.t. SPC ≤ GB.

GB is savings policy cost to the government. Control variable is savings policy B, and

constraint is binding at t = 0. We can express Lagrangian for above problem as follows:

L =

0∫
−∞

Wm(∞)dt+MB(t) + λ [GB −B [wimc(0) +Ksc {B +R(t)}]]

=

0∫
−∞

[
KscB −

Ksc(Ksp +Ksc)B

(Ksp +Ksc +Kd)

]
dt

− 1

Km

[
− KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t −KmKscB

]
+ λ

[
GB −B

[
wimc(0) +Ksc

{
B − KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

}]]

=

0∫
−∞

KscKdB

(Ksp +Ksc +Kd)
dt− 1

Km

[
− KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t −KmKscB

]

+ λ

[
GB −B

[
wimc(0) +Ksc

{
B − KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

}]]
.

First order derivative with respect to B leads to the following:

B = −

λwimc(0)−

 0∫
−∞

KscKd
(Ksp+Ksc+Kd)

dt− 1
Km

[
− Ksc
(Ksp+Ksc+Kd)

+ Ksc
(Ksp+Ksc+Kd)

e−[Km(Ksp+Ksc+Kd)]t −KmKsc

]
2λKsc

[
1− Ksc

(Ksp+Ksc+Kd)
+ Ksc

(Ksp+Ksc+Kd)
e−[Km(Ksp+Ksc+Kd)]t

] .

(38)

First order derivative with respect to λ is shown below:

GB −B
[
wimc(0) +Ksc

{
B − KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

}]
= 0.

(39)

Putting eq. (38) into (39), we get:
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λ =
JB√

w2imc(0) + 4QBGB

.

where QB = Ksc

[
1− Ksc

(Ksp +Ksc +Kd)
+

Ksc

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

]
,

JB =

0∫
−∞

KscKd

(Ksp +Ksc +Kd)
dt− 1

Km

[
− Ksc

(Ksp +Ksc +Kd)
+

Ksc

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t −KmKsc

]
.

λ is positive, as when GB increases, minimum effi ciency loss also increases. From eq.

(38):

B = −λwimc(0)− JB
2λQB

. (40)

Substituting λ in above equation, following expression for B results:

B = −
wimc(0)−

√
w2imc(0) + 4QBGB

2QB
. (41)

Second order minimization condition has been checked in appendix. Suppose money

available with government to be spent as savings policy cost is $1000. Initial value of

the public sector’s funds supply is $100 to financial broker, and values of all parameters,

i.e., Km, Ksp, Ksc and Kd is equal to one. Substituting these values in eq. (41), gives:

B = −100−
√

10000 + 4000

2
= 9.161,

where QB = 1 − 0.333 + 0.333e−3t, and at t = 0, QB = 1. Savings policy cost is SPC =

B [wimc(0) +QBB] = 1000. Therefore the optimal savings policy is that the government

decreases interest rate on savings such that for each unit of savings, the government

only bears a cost of $9.161 per unit.

2.4 Solution of the Model with a Contractionary Savings Policy

Expressions from eqs. (11a), (18), (23) and (29) respectively are as follows:

dR(t)

dt
= −KmWB(t),

Wd(t) = −KdR(t),

Wmp = −Ksp (Cp −R) ,

Wmc = −Ksc (Cc −R) ,
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and

WB(t) = Wm(t)−Wd(t),

in the absence of an exogenous demand/supply shock. Wm(t) is the total funds supply

including the supply from public sector, households and firms, etc., and can be expressed as a sum

of two sources of supply, i.e., public sector; and private sector (households, firms, etc.) as follows:

Wm(t) = −Ksp [Cp(t)−R(t)]−Ksc [Cc(t)−R(t)] , (42)

Subscripts p and c denote private and public sector respectively. After combining

above expressions, the following differential equation results:

dR(t)

dt
= −Km [Wm(t)−Wd(t)]

= −Km [−Ksp {Cp(t)−R(t)} −Ksc {Cc(t)−R(t)}+KdR(t)]

= −Km [−KspCp(t)−KscCc(t) + (Ksp +Ksc +Kd)R(t)] .

Rearranging the above expression gives:

dR(t)

dt
+Km(Ksp +Ksc +Kd)R(t) = Km [KspCp(t) +KscCc(t)] . (43)

When government increases interest rate (market interest rate which the investor pays) on savings,

the public sector’s supply curve shifts to left, and it gets some revenue in the role of government.

Suppose a change in the cost of public sector as a supplier as a result of increasing interest rate on

savings is B, whereas the cost of private supply of funds remains the same, the above equation can

be written as:

dR(t)

dt
+Km(Ksp +Ksc +Kd)R(t) = KmKscB. (44)

The solution is given by the following expression:

R(t) =
KscB

(Ksp +Ksc +Kd)
− KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t. (45)

R(0) = 0 (initial condition), and R(∞) = KscB
(Ksp+Ksc+Kd)

(final value).

2.5 A Dynamic Optimal Contractionary Savings Policy-Panel B

Eq. (11a) states the following:

R(t) = −KmMB + EB.
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Value of EB (for contractionary savings policy) can be determined through substituting

the initial conditions as follows:

R(0) = −KmMB(0) + EB,

0 = KmKscB + EB,

EB = −KmKscB.

Putting above expression in eq. (11a), the following equation results:

R(t) = −KmMB(t)−KmKscB, or

MB(t) = − 1

Km
[R(t) +KmKscB] . (46)

With Contractionary Savings Policy Revenue Constraint:

According to eq. (30), change in funds supply due to a market interest rate change is as

given below:

Wm(t) = −Ksp [Cp(t)−R(t)]−Ksc [Cc(t)−R(t)] .

The part of the supply coming from the public sector is −Ksc [Cc(t)−R(t)] , and can be written

as follows:

Wmc(t) = −Ksc [Cc(t)−R(t)] ,

wnmc(t)− wimc(0) = −Ksc [Cc(t)−R(t)] ,

where wimc(0) is the initial funds supply from the public sector, and wnmc(t) is the supply after

savings policy. Wmc(t) = wnmc(t) − wimc(0), which reflects deviation from initial value.

Revenue received by government as a result of a contractionary savings policy can be expressed as:

SPR = B [wimc(0)−Ksc {B −R(t)}] . (47)

For an optimal policy, effi ciency loss needs to be minimized subject to the constraint

as follows:

min
T
EL s.t. SPR ≥ GBR.

GBR is the government revenue as a result of exercising the savings policy. Control variable is

savings policy B, and constraint is binding at t = 0. We can express Lagrangian for above

problem as follows:
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L = −
∞∫
0

[Ksp {Cp(t)−R(t)}+Ksc {Cc(t)−R(t)}] dt+ λ [GBR −B [wimc(0)−Ksc {B −R(t)}]]

=

∞∫
0

[
−KscB +

Ksc(Ksp +Ksc)B

(Ksp +Ksc +Kd)
− Ksc(Ksp +Ksc)B

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

]
dt

+ λ

[
GBR −B

[
wimc(0)−Ksc

{
B − KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

}]]
.

Taking first order condition with respect to B, the following expression is obtained:

B =

λwimc(0)−
∞∫
0

[
−Ksc +

Ksc(Ksp+Ksc)
(Ksp+Ksc+Kd)

− Ksc(Ksp+Ksc)
(Ksp+Ksc+Kd)

e−[Km(Ksp+Ksc+Kd)]t
]
dt

2λKsc

[
1− Ksc

(Ksp+Ksc+Kd)
+ Ksc

(Ksp+Ksc+Kd)
e−[Km(Ksp+Ksc+Kd)]t

] . (48)

First order derivative with respect to λ is as given below:

GBR−B
[
wimc(0)−Ksc

{
B − KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

}]
= 0.

(49)

Putting eq. (48) into (49), we obtain:

λ =
JB√

w2imc(0)− 4QBGBR

,

where QB = Ksc

[
1− Ksc

(Ksp +Ksc +Kd)
+

Ksc

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

]
,

JB =

∞∫
0

[
−Ksc +

Ksc(Ksp +Ksc)

(Ksp +Ksc +Kd)
− Ksc(Ksp +Ksc)

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

]
dt.

or

{
w2imc(0)− 4QBGBR

}
λ2 − J2B = 0.

λ is positive, as when GBR increases, minimum effi ciency loss also increases. From eq.

(48):

B =
λwimc(0)− JB

2λQB
. (50)

Substituting λ in above equation, following expression for B results:
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B =
wimc(0)−

√
w2imc(0)− 4QBGBR

2QB
. (51)

Second order condition for minimization has been shown in appendix.

2.6 The Model-Panel A

Please refer to panel A in figure 1, where number of savers per unit time are plotted along x-

axis, and saving rate, i.e., quantum of savings per saver is plotted along y-axis. For number of

savers, i.e., from public and private sector against each saving rate, supply curve is

an upward sloping curve, Higher savings Higher savings by existing savers are due to

some incentive, which also ecourages new savers. Demand curve based on public and

private demand regarding number of savers in economy against each saving rate is a

downward sloping curve. Demand for number of savers is low for a higher savings

rate, and hence a negative relationship. The point where both curves cross is the

equilibrium point. When demand is greater than supply, saving rate will increase

to bring number of savers in equilibrium. Similarly, in case supply is greater than

demand, saving rate will go down until number of savers equalize on both curves and

brings equilibrium.

Suppose number of savers are in equilibrium, i.e., the number on supply cruve equals

that on demand curve. Following economic agents (infintely-lived) are modeled: public

and private sector as demander for savers in economy, savers (a representative agent

—or a unit mass of—) save money and make supplies to financial intermediary, and

public and private sector as supplier of savers in economy against each saving rate.

Mechanism regarding adjustment of saving rate has a basis of lack of coordination

among agents after a shock/shift in demand/supply curve, as economic agents lack

information on new demand and supply trends prevailing after shock. Suppose number

of savers are in equilibrium, and due to an external shock, demand shifts to the right.

The position of equilibrium is lost as now the demand of savers is greater than supply

at the saving rate before shock. Due to a higher demand, saving rate will be increased

by existing savers, and also new savers will enter saving industry. This will result in

a higher number of savers and saving rate in final equilibrium. Equilibrium regarding

number of savers has been defined as given below:

(i) Savers maximize profit, public and private sector maximizes utility in the role of having a certain

demand for savings, and the public sector maximizes net benefit of public service for society, subject

to their respective constraints mentioned in Section 7.
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(ii) Number of savers supplied equals that demanded in economy and saving rate stays

put during market equilibrium.

Conditions for equilibrium existence for a linear dynamical system, i.e., a necessary

and suffi cient condition for stability, based on Routh—Hurwitz stability criterion have

been presented in Section 8. Public and private sector take saving rate as given.

In absence of equilibrium, saver has an incentive to change saving rate on dynamic

adjustment path until final equilibrium arrives. Government implements a savings

policy (to increase or decrease number of savers), as a result of which market loses state

of equilibrium, and saving rate adjusts to bring final equilibrium. Final equilibrium is

achieved after number of savers and saving rate adjust to final values. Adjustment is

based on endogenous decisions taken by economic agents in self-interest. Some social

damage happens during adjustment process, which is defined as the sum of too many or too

few savers before the new equilibrium arrives. Final equilibrium is more effi cient than the

initial one.

To derive mathematical results, objectives of market agents subject to their con-

straints are considered and maximized by taking first order derivatives. In order to

get a complete picture of market, expressions reflecting actions of individual agents

are simultaneously solved. We assume that final equilibrium after implementation

of policy is not too off the initial equilibrium, which implies linearity of supply and

demand curves is a reasonable assumption to make.

2.6.1 Saver

A saver saves money rather than consuming a part of it and deposits that in a financial institution

which could be further supplied to consumer of funds. When demand of savers equals

supply, there is an equilibrium regarding number of savers and saving rate. When

either a supply or a demand shock happens, there is a change in number of savers.

The link among supply (entry), demand, and cumulative number of savers is described

as follows: When savers’demand in economy shifts to right while supply stays put,

cumulative number of savers is lower than demand at contemporary saving rate, saving

rate increases until supply equals demand in final equilibrium. If supply of savers

shifts to right while demand remains the same, cumulative number of savers goes up

at existing saving rate,down to equalize demand and supply to bring final equilibrium.

Above explanation implies that there is a negative relationship between number of

savers and saving rate. In Figure 4, horizontal axis reflects the rate of supply and

demand both by private and public sectors, and not cumulative number of savers.

Demand and supply rates are flow variables, whereas cumulative number of savers in
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economy is a stock variable.

Following mechansim explains adjustment of number of savers and savings in economy:

Suppose there is an equilibrium number of savers and saving rate. If marginal cost of

saving goes down, and supply curve regarding number of savers shifts to the right due

to entry of new savers in saving industry, saving rate decreases, and savers’demand

goes up due to feedback of a lower saving rate. Adjustment of saving rate and number

of savers is contingent upon how savers respond to the shock, and the shock’s direction

and magnitude. Saver’s choice is depicted mathematically by taking into consideration

saver’s profit maximization as given below:

Short Run Problem Short-term problem of saver implies that saver is not doing

dynamic optimization and his/her objective is short-term. For discrete time, it can be

considered as an objective just for one time period without looking at future times for

the sake of an intuitive explanation and to prepare reader for a much more complex

dynamic problem presented in next section. Saver’s objective function is as given

below:

Θ = Uc(c)− ςA(mA(c, eA)), (52)

where

Θ = net benefit of saver,

Uc(c) = benefit of the saver by saving,

c = quantum of savings per saver (saving rate in a dynamic setting),

mA = total number of savers in economy,

eA = other factors which affect the total number of savers,

ςA(mA(c, eA)) = cost as a function of total number of savers in economy (increasing in number of

savers).

Taking derivative of Θ with respect to c, we obtain:

U ′c(c)− ς ′A(mA(c, eA))m′A1(c, eA) = 0. (53)

Suppose a supply shock happens, such as a reduced saving cost, and supply shifts to

the right, while demand does not change. New savers in economy will enter saving

industry leading number of savers get out of equilibrium. With more savers, the term

ς ′A(mA(c, eA)) is higher at existing value of c. As the term, m′A1(c, eA) is a function of c, which

has not changed yet, therefore, m′A1(c, eA) is the same as before, and the saver faces the following

inequality as a modified profit maximization condition:
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∂Θ

∂c
= U ′c(c)− ς ′A(mA(c, eA))m′A1(c, eA) < 0, (54)

therefore, for maximizing profit, saver will reduce the saving rate after supply shock.

A plot of profit maximizing pairs of number of savers and respective saving rate is a

downward sloping cumulative number of savers curve, with saving rate on y-axis and

number of savers on x-axis.

Dynamic Problem For dynamic problem, present discounted value of future stream

of profits of saver are maximized, with zero time value being as given below:

V (0) =
∞∫
0

[Uc(c)− ςA(mA(c, eA))] e−$tdt, (55)

$, c(t), and mA(t) are discount rate, control variable, and state variable respectively.

Maximization problem in mathematical notation is depicted below:

Max
{c(t)}

V (0) =
∞∫
0

[Uc(c)− ςA(mA(c, eA))] e−$tdt,

subject to the following constraints:
.
mA(t) = m

′
A1(c(t), eA(c(t), zA))

.
c(t)+m

′
A2(c(t), eA(c(t), zA)) e

′
A1(c(t), zA)

.
c(t) (state equation,which

describes the change in state variable with time; with zA as exogenous factors),

mA(0) = mAs (initial condition),

mA(t) ≥ 0 (non-negativity constraint on state variable),

mA(∞) free (terminal condition).

Following is the expression for current-value Hamiltonian:

H̃ = Uc(c(t))−ςA(mA(c(t), eA(c(t), zA)))+µA(t)
.
c(t)

[
m′A1(c(t), eA(c(t), zA)) +m′A2(c(t), eA(c(t), zA))∗

e′A1(c(t), zA)

]
.

(56)

Conditions for maximization are as given below:

(i) c∗(t) maximizes H̃ for all t: ∂H̃
∂c = 0,

(ii)
.
µA −$µA = − ∂H̃

∂mA
,

(iii)
.
mA
∗

= ∂H̃
∂µA

(this just gives back the state equation),

(iv) lim
t→∞

µA(t)mA(t)e−$t = 0 (the transversality condition).

(i) and (ii) conditions are as follows:
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∂H̃

∂c
= U ′c(c(t))− ς ′A(mA(c(t), eA(c(t), zA)))

{
m′A1(c(t), eA(c(t), zA)) +m′A2(c(t), eA(c(t), zA))∗

e′A1(c(t), zA)

}

+ µA(t)
.
c(t) ∗

 m
′′
A11(c(t), eA(c(t), zA)) +m

′′
A12(c(t), eA(c(t), zA))e′A1(c(t), zA)+

m
′′
A21(c(t), eA(c(t), zA))e′A1(c(t), zA) +m′′A22(c(t), eA(c(t), zA))e′2A1(c(t), zA)+

m′A2(c(t), eA(c(t), zA))e
′′
11(c(t), zA)


= 0. (57)

and

.
µA −$µA = − ∂H̃

∂mA
= ς ′A(mA(c(t), eA(c(t), zA))). (58)

In equilibrium,
.
c(t) = 0 ,substituting which in the expression for ∂H̃

∂c , it becomes the

following:

U ′c(c(t))− ς ′A(mA(c(t), eA(c(t), zA)))

{
m′A1(c(t), eA(c(t), zA)) +m′A2(c(t), eA(c(t), zA))∗

e′A1(c(t), zA)

}
= 0.

Suppose a positive shock shifts supply to the right, then at current saving rate, the number of

savers is higher, and the same is the case with the term ς ′A(mA(c(t), eA(c(t), zA))). The term mul-

tiplying ς ′A(mA(c(t), eA(c(t), zA))), i.e., m′A1(c(t), eA(c(t), zA)) +m′A2(c(t), eA(c(t), zA))e′A1(c(t), zA)

is a function of saving rate which has not changed as yet. Therefore, saver faces following

inequality after shock:

∂H̃

∂c
< 0.

Saver must reduce saving rate for maximizing net benefits in dynamic context after

supply shock. This depicts that a negative relationship exists between cumulative

number of savers and saving rate. If demand and supply rates are equal, there is a

state of equilibrium in market; whereas if a finite difference occurs between their rates,

and the other agents do not react to that change, saving rate will get continuously

changed by saver until the saturation of market takes place. This behavior of market

can be expressed as follows:
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Saving rate change ∝ change in number of savers.

C = Saving rate change.

MA = mA −mAs = change in number of savers,

mA = number of savers at time t,

mAs = number of savers in steady state equilibrium.

Input − output =
dmA

dt
=
d(mA −mAs)

dt
=
dMA

dt
,

or MA =
∫

(input − output) dt.

Saving rate change ∝
∫

(inflow/supply rate − required/demand rate) dt, or

C = −Kc

∫
(inflow/supply rate − required/demand rate) dt,

where Kc is a constant for proportionality. Inflow/supply and required/demand rates are

inflow of new entrants and demand of number of savers in saving industry respectively. The

sign (negative) reflects when (inflow/supply rate − required/demand rate) is positive, C is

negative, i.e., saving rate decreases. Above expression can also be written as:

∫
(inflow/supply rate − required/demand rate) dt = − C

Kc
, or

∫
(wAi − wA0) dt = − C

Kc
, (59)

wAi = inflow/supply rate,

wA0 = required/demand rate,

Kc = dimensional constant.

When t = 0, supply rate = demand rate, and eq. (59) changes into the following

expression:

∫
(wAis − wA0s) dt = 0. (60)

Subscript s denotes a value in a steady state equilibrium and C = 0 in steady state.

Subtracting eq. (60) from (59), we obtain:

∫
(wAi − wAis) dt−

∫
(wA0 − wA0s) dt = − C

Kc
, or

31



∫
(WAi −WA0) dt = − C

Kc
, (61)

where wAi − wAis = WAi = change in inflow/supply rate,

wA0 − wA0s = WA0 = change in required/demand rate.

C, WAi andWA0 are deviation variables, i.e., deviation from steady state equilibrium and have zero

initial values. Eq. (61) can also be expressed as:

C = −Kc

∫
WAdt = −KcMA, (62)

where WB = WA = WAi −WA0. If C receives an input other than a change in cumulative

number of savers, that can get added to eq. (62) as shown below:

C = −Kc

∫
WAdt+ EA = −KcMA + EA. (62a)

There is an impact on MA due to saving rate’s feedback, however, an exogenous input

can also have an impact just like C.

2.6.2 Suppliers

Private Sector Both private and public sectors have a role of supplier and demander

of savers in economy, however, we present just one of their roles in this section. Sum

of both private and public demand and supply constitute toal demand and supply

respectively. Here, we present private sector’s role as a supplier of savers. Private

sector maximizes present discounted value of series of all future net benefits, and zero

time value is shown below:

V (0) =
∞∫
0

[Upr (npr)− ςpr(c (npr))] e
−rprtdt. (63)

Upr (npr) is the benefit for society, a function increasing in number of savers; a higher

number of savers implies a higher benefit. ςpr(c (npr)) is the private sector cost; a

higher saving rate implies a higher cost. A plot of cost against saving rate is a concave

downward curve, i.e., decreasing in slope.

rpr and npr(t) are discount rate and control variable, and c(t) is a state variable. Max-

imization problem is as given below:

Max
{npr(t)}

V (0) =
∞∫
0

[Upr (npr)− ςpr(c (npr))] e
−rprtdt,
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subject to the following constraints:
.
c(t) = c′(npr (t))

.
npr (t) (state equation, which describes the change in state variable with

time),

c(0) = cs (initial condition),

c(t) ≥ 0 (non-negativity constraint on state variable),

c(∞) free (terminal condition).

Current-value Hamiltonian is given below:

H̃ = Upr (npr(t))− ςpr(c (npr (t))) + µ(t) c′(npr (t))
.
npr (t) . (64)

Maximizing conditions can be expressed as follows:

(i) npr
∗(t) maximizes H̃ for all t: ∂H̃

∂npr
= 0,

(ii)
.
µpr − rprµpr = −∂H̃

∂c ,

(iii)
.
c
∗

= ∂H̃
∂µpr

(this just gives back the state equation),

(iv) lim
t→∞

µpr(t)c(t)e
−rprt = 0 (the transversality condition).

(i) and (ii) are given below:

∂H̃

∂npr
= U ′pr (npr(t))− ς ′pr(c (npr (t))) c′ (npr (t)) + µpr(t) c

′′
(npr (t))

.
npr (t) = 0, (65)

and

.
µpr − rprµpr = −∂H̃

∂c
= ς ′pr(c (npr (t))). (66)

During equilibrium,
.
npr (t) = 0, and we can express ∂H̃

∂npr
as follows:

U ′pr (npr(t))− ς ′pr(c (npr (t))) c′ (npr (t)) = 0.

If the saving rate rises, the term ς ′pr(c (npr (t))) decreases, making private sector face the

following expression:

∂H̃

∂npr
> 0.

To satisfy condition of dynamic optimization, private sector will increase supply of

number of savers. For a linear supply curve (or with linearization around steady state

as a reasonable assumption), change in number of savers is proportional to saving rate,

and we have the following expression:

Wpr(t) = KprC(t), (67)
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Wpr(t) is deviation variable, i.e., a change in number of savers relative to initial equilib-

rium value, having a zero initial value. Introducing a dead time element due to delay

between change in saving rate and change in number of savers supplied, following

expression results:

Wpr(t) = KprC(t− τd1). (68)

Public Sector/Government In this section, we present public sector’s role as a de-

mander of savers. Public sector maximizes present discounted value of series of all

future net benefits, and zero time value is shown below:

V (0) =
∞∫
0

[Upu (npu)− ςpu(c (npu))] e−rputdt, (69)

Upu (npu) is the benefit for society, a function increasing in number of savers; a higher

number of savers implies a higher benefit. ςpu(c (npu)) is the public sector cost; a higher

saving rate implies a higher cost. A plot of cost against saving rate is a concave

downward curve, i.e., decreasing in slope.

rpu and npu(t) are discount rate and control variable, and c(t) is a state variable. Max-

imization problem is as given below:

Max
{npu(t)}

V (0) =
∞∫
0

[Upu (npu)− ςpu(c (npu))] e−rputdt,

subject to the following constraints:
.
c(t) = c′(npu (t))

.
npu (t) (state equation, which describes the change in state variable with

time),

c(0) = cs (initial condition),

c(t) ≥ 0 (non-negativity constraint on state variable),

c(∞) free (terminal condition).

The current-value Hamiltonian for this case is

H̃ = Upu (npu(t))− ςpu(c (npu (t))) + µpu(t) c′(npu (t))
.
npu (t) . (70)

Maximizing conditions can be expressed as follows:

(i) npu
∗(t) maximizes H̃ for all t: ∂H̃

∂npu
= 0,

(ii)
.
µpu − rpuµpu = −∂H̃

∂c ,

(iii)
.
c
∗

= ∂H̃
∂µpu

(this just gives back the state equation),

(iv) lim
t→∞

µpu(t)c(t)e−rput = 0 (the transversality condition).

(i) and (ii) are given below:
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∂H̃

∂npu
= U ′pu (npu(t))− ς ′pu(c (npu (t))) c′ (npu (t)) + µpu(t) c

′′
(npu (t))

.
npu (t) = 0. (71)

and

.
µpu − rpuµpu = −∂H̃

∂c
= ς ′pu(c (npu (t))). (72)

During equilibrium,
.
npu (t) = 0, and we can express ∂H̃

∂npu
as follows:

U ′pu (npu(t))− ς ′pu(c (npu (t))) c′ (npu (t)) = 0.

If the saving rate rises, the term ς ′pu(c (npu (t))) increases, making public sector face the

following expression:

∂H̃

∂npu
< 0.

To satisfy condition of dynamic optimization, public sector will decrease demand of

savers. For a linear demand curve (or with linearization around steady state as a

reasonable assumption), change in number of savers is proportional to saving rate,

and we have the following expression:

Wpu(t) = Kpu [ε (t)− C(t)] = −Kpuη(t), (73)

where ε (t) = e − es; e is a saving rate as a reference point for comparison with the

market saving rate by public sector for decision making. Wpu(t) is deviation variable, i.e., a

change in number of savers relative to initial equilibrium value, having a zero initial

value. Introducing a dead time element due to delay between change in saving rate

and change in number of savers demanded, following expression results:

Wpu(t) = −Kpuη(t− τd2). (74)

2.7 Solution of the Model with a Saving Policy

The model has been solved for τd1 = τd2 = 0. Eq. (62a), (67), and (73) are reproduced as

follows:
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dC

dt
= −KcWA(t),

Wpr(t) = KprC(t),

Wpu(t) = Kpu [ε (t)− C(t)] ,

WA(t) = W1(t)−Wpu(t),

= D(t) +Wpr(t)−Wpu(t).

where D(t) = WAi(t)−WA0(t).

When there is no exogenous shock regarding number of savers or saving rate, D(t) = 0.

Panel A’s policy must be in synchronization with that of panel B, i.e., both policies

must be having a direction to achieve one objective, i.e., either an overall increase

or decrease in savings in economy. This section presents an example of an optimal

policy regarding panel A for a shift in the demand curve, however, to achieve a certain

objective, both policies must be aligned. Suppose government shifts demand of savings

upward through adopting a policy, i.e.,

Wpu(t) = Kpu [A− C(t)] ,

where A is the size of the policy. This implies that

dC(t)

dt
= −Kc [Wpr(s)−Wpu(t)]

= −Kc [KprC (t)−KpuA+KpuC(t)]

= −Kc [−KpuA+ (Kpr +Kpu)C(t)] .

After rearranging, we obtain the following expression:

dC(t)

dt
+Kc(Kpr +Kpu)C(t) = KcKpuA. (75)

Routh-Hurwitz stability criterion, to ensure stability of above differential equation

requires Kc(Kpr+Kpu) > 0; and as Kc, Kpr and Kpu are all positive, the stability criterion

holds. This ensures that, away from a given initial equilibrium, every adjustment

mechanism will lead to another equilibrium.

The differential equation’s characteristic function is as given below:

x+Kc(Kpr +Kpu) = 0,

which has a single root as given below:
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x = −Kc(Kpr +Kpu).

The complementary solution can be written as

Cc(t) = C2e
−[Kc(Kpr+Kpu)]t.

The particular solution can be expressed as follows:

Cp(t) = C1.

The solution is as given below:

C(t) = C1 + C2e
−[Kc(Kpr+Kpu)]t. (76)

After substitution of above expression into the differential equation, we obtain the following

expression:

−Kc(Kpr+Kpu)C2e
−[Kc(Kpr+Kpu)]t+Kc(Kpr+Kpu)C1+Kc(Kpr+Kpu)C2e

−[Kc(Kpr+Kpu)]t = KcKpuA,

C1 =
KpuA

Kpr +Kpu
.

After substituting the initial conditions and value of C1 in eq. (76), the following expression results:

C(0) =
KpuA

Kpr +Kpu
+ C2 = A,

C2 = A− KpuA

Kpr +Kpu

=
KprA

Kpr +Kpu
.

Plugging in the values of C1 and C2 in eq. (76) yields:

C(t) =
KpuA

Kpr +Kpu
+

KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t. (77)

C(0) = 0 (the initial condition), and C(∞) =
KprA

Kpr+Kpu
(final value). A change in saving rate,

i.e., C(t) is a function of size of policy A, and parameters, Kc, Kpu, and Kpr.
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2.8 A Dynamic Optimal Savings Policy-Panel A

Equilibrium before adoption of policy can be improved upon as a result of an appro-

priate savings policy. However, these are not the only effi ciency gains or losses, as

some effi ciency is lost during transient/adjustment to the final equilibrium. Effi ciency

loss is minimized to derive an optimal policy. When savings policy is implemented,

supply of savers either expands or contracts, whereas at the initial saving rate, de-

mand is still is the same as before, hence as a result of the policy, savers market gets

out of equilibrium. Saving rate starts adjusting to equalize supply and demand to

lead to new savers market equilibrium. Final equilibrium saving rate is a function

of elasticities of supply and demand. Social damage is an excessive/short number of

savers, i.e., the difference between supply and demand. Total social damage in terms

of number of savers is the sum of that during adjustment of the savers market and

the one in initial equilibrium as given below:

SD = MA(t) +

0∫
−∞

Wpr(∞)dt. (78)

From eq. (73), a change in number of savers due to implementation of savings policy is given below:

Wpu(t) = Kpu [A− C(t)] ,

or wnpu(t)− wipu(0) = Kpu [A− C(t)] ,

where wipu(0) is number of savers in initial equilibrium, and wnpu(t) is the supply after savings

policy. Wpu(t) = wnpu(t) − wipu(0), which reflects deviation from initial value. A change in

quantity of savings per unit time is as given below:

IQS = A [wipu(0) +Kpu {A− C(t)}] . (79)

For an optimal policy, effi ciency loss needs to be minimized subject to an increase in quan-

tity of savings per unit time being greater than or equal toGA
(
change in quantity of savings/funds per unit time = dMB

dt

)
and can be expressed as follows:

min
A
SD s.t. IQS ≥ GA

(
=
dMB

dt

)
.

Control variable is savings policy A (an initial upward jump in the saving rate chosen by

government to shift the demand curve), and constraint is binding at t = 0. We can express

Lagrangian for above problem as follows:
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L = MA(t) +

0∫
−∞

Wpr(∞)dt+ λ [GA −A [wipu(0) +Kpu {A− C(t)}]] .

Expression from eq. (62a), is given below:

C(t) = −KcMA + EA.

Through putting initial conditions, value of EA can be determined as follows:

C(0) = −KcMA(0) + EA,

A = −KcKprC(0) + EA,

EA = A [1 +KcKpr] .

This implies that

MA(t) = − 1

Kc
[C(t)−A {1 +KcKpr}] .

This changes the Lagrangian to the following expression:

L = − 1

Kc
[C(t)−A {1 +KcKpr}] +

0∫
−∞

Wpr(∞)dt+ λ [GA −A [wipu(0) +Kpu {A− C(t)}]]

= − 1

Kc

[{
KpuA

Kpr +Kpu
+

KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
−A {1 +KcKpr}

]

+

0∫
−∞

Wpr(∞)dt+ λ

[
GA −A

[
wipu(0) +Kpu

{
A− KpuA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}]]
.

First order derivative with respect to A leads to the following:

A =
λwipu(0)− 1

Kc

[{
−Kpu

Kpr+Kpu
− Kpr

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t

}
+ {1 +KcKpr}

]
−2λKpu

{
1− Kpu

Kpr+Kpu
− Kpr

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t

} . (80)

Similarly, first order derivative with respect to λ is shown below:

GA −A
[
wipu(0) +Kpu

{
A− KpuA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}]
= 0. (81)

Putting eq. (80) into (81), we obtain:
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λ =
JA√

w2ipu(0)− 4QAGA
.

λ is positive, as when GA increases, social damage also increases.

QA = −Kpu

{
1− Kpu

Kpr +Kpu
− Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
,

JA =
1

Kc

[{
−Kpu

Kpr +Kpu
− Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
+ {1 +KcKpr}

]
.

Eq. (80) can also be written as

A =
λwipu(0)− JA

2λQA
. (82)

After substituting value of λ in above equation, the following expression results:

A =
wipu(0)−

√
w2ipu(0)− 4QAGA

2QA
. (83)

A is an expression for a policy regarding an optimal number of savers in a dynamical setting.

Second order minimization condition has been checked in appendix. By substituting

parameters’values based on empirical data in eq. (83), an optimal number of savers in

the economy can be determined. Both policies B, and A together vide equations (41)

and (83) determine the optimal quantum of savings in the economy with an optimal

number of savers given the constraints.

3 Results

Without consideration of welfare loss/gain while savings market is adjusting after implementation

of a savings policy, welfare picture remains incomplete, and the optimal savings policy based on

partial welfare cannot be considered as optimal in true sense. Traditionally, welfare of only producer

and consumer is taken into consideration without accounting for welfare of production factors. An

expression of effi ciency loss/gain as a result of savings policy based on welfare including those of

production factors has been presented and optimal savings policies have been derived by minimizing

effi ciency losses and presented as a final result in the form of mathematical expressions, i.e., (41),

or (51) and (83). This paper demonstrates that both supply and demand shocks operate through a

common channel, i.e., inventory of funds in savings market as both kinds of shock affect inventory

of funds and hence can be categorized just as an inventory shock.
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4 Discussion

For an optimal level of savings in an economy, it is important for the government

to adopt appropriate policies, i.e., the quantity of savings, and interest rate; and

to ensure that there are number of savers and their saving rate consistent with the

optimal quantity determined in the policy designed for an optimal quantity and the

corresponding interest rate, government needs to adopt a policy to have the right

number of savers and the corresponding saving rate in the economy, otherwise, there

will be extra effi ciency losses due to lack of coordination between government and

the number of savers. This is why we have derived two sets of optimal policies to be

adopted by the government to ensure the least effi ciency loss for achieving an optimal

level of savings in an economy given the constraints.

Practical implications for the policy makers are to estimate policies A, and B given by expressions

(41), or (51) and (83) on the basis of data. As all parameters in the optimal policies expressions

can be empirically estimated with the help of data, policy makers can formulate and implement

optimal policies regarding quantity of savings, interest rate, number of savers and saving rate in

the economy.

5 Conclusion

When a dynamically optimal expansionary/contractionary savings policy is adopted

by the government for panel B, by shifting supply curve downward/upward, savings

market goes out of equilibrium, with a presemption that it was in equilibrium before the implemen-

tation of the policy. Quantity of savings/funds and interest rate adjust over time and the savings

market eventually attains the final equilibrium. Post-policy equilibrium is more effi cient in

comparison with the pre-policy equilibrium, however, during market adjustment to

the final equilibrium, there are some extra effi ciency losses. Eqs (41) and (51) present

dynamically optimal expansionary and contractionary savings policies as a result of minimizing

effi ciency losses during market adjustment to final equilibrium. The expressions involve

supply of savings/funds, demand, and inventory curves’slopes and initial pre-policy savings/funds

quantity.

We develop a savings production model involving number of savers and saving rate which depends

on parameters Kc, Kpr, Kpu, τd1 and τd2 to derive a dynamically optimal policy for panel

A. The model has the ability to predict adjustment path and post-policy equilibrium

after a supply/demand or production (of savings) rate shock. Figure 4 depicts how a shift in the

supply, demand or both curves determines the saving rate and the number of savers in society. An

optimal policy which minimizes social damage in terms of inadequate number of savers in initial
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equilibrium as well as on dynamic adjustment path (when number of savers is not in equilibrium)

subject to a certain increase in quantity of savings per unit time can be derived on a case by case

basis (which shifts either the supply, demand or both curves). Area under the demand curve is the

social benefit in terms of quantity of savings per unit time. Eq. (83) presents the expression for

the optimal production (of savings) policy depending on parameters wipu(0), GA, Kc, Kpr, Kpu,

τd1 and τd2.

6 Appendix:

6.1 Dynamic Problem of Financial Intermediary/Broker/Commercial Bank

For dynamic problem, present discounted value of future stream of profits of the
financial intermediary are maximized, with zero time value being as given below:

V (0) =
∞∫
0

[rq(r)− ςB(mB(r, eB))] e−σtdt, (84)

σ, r(t), and mB(t) are discount rate, control variable, and state variable respectively. Maximization
problem in mathematical notation is depicted below:

Max
{r(t)}

V (0) =
∞∫
0

[rq(r)− ςB(mB(r, eB))] e−σtdt,

subject to the constraints that
.

mB(t) = m′B1(r(t), eB(r(t), zB))
.
r(t)+m′B2(r(t), eB(r(t), zB))e′B1(r(t), zB)

.
r(t) (state equation,which

describes the change in state variable with time; with zB as exogenous factors),
mB(0) = mBs (initial condition),
mB(t) ≥ 0 (non-negativity constraint on state variable),
mB(∞) free (terminal condition).
Following is the expression for current-value Hamiltonian:

H̃ = r(t)q(r(t))−ςB(mB(r(t), eB(r(t), zB)))+µB(t)
.
r(t)

[
m′B1(r(t), eB(r(t), zB)) +m′B2(r(t), eB(r(t), zB))∗

e′B1(r(t), zB)

]
.

(85)
Conditions for maximization are as given below:
(i) r∗(t) maximizes H̃ for all t: ∂H̃

∂r = 0,

(ii)
.
µB − σµB = − ∂H̃

∂mB
,

(iii)
.

mB
∗

= ∂H̃
∂µB

(this just gives back the state equation),
(iv) lim

t→∞
µB(t)mB(t)e−σt = 0 (the transversality condition).

Conditions (i) and (ii) are as follows:
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∂H̃

∂r
= q(r(t)) + r(t)q′(r(t))− ς ′B(mB(r(t), eB(r(t), zB)))

{
m′B1(r(t), eB(r(t), zB)) +m′B2(r(t), eB(r(t), zB))∗

e′B1(r(t), zB)

}

+ µB(t)
.
r(t) ∗

 m′′B11(r(t), eB(r(t), zB)) +m′′B12(r(t), eB(r(t), zB))e′B1(r(t), zB)+
m′′B21(r(t), eB(r(t), zB))e′B1(r(t), zB) +m′′B22(r(t), eB(r(t), zB))e′2B1(r(t), zB)+

m′B2(r(t), eB(r(t), zB))e′′B11(r(t), zB)


= 0, (86)

and

.
µB − σµB = − ∂H̃

∂mB
= ς ′B(mB(r(t), eB(r(t), zB))). (87)

In equilibrium,
.
r(t) = 0, substituting which in the expression for ∂H̃

∂r , it becomes the
following:

q(r(t)) + r(t)q′(r(t))− ς ′B(mB(r(t), eB(r(t), zB)))

{
m′B1(r(t), eB(r(t), zB)) +m′B2(r(t), eB(r(t), zB))∗

e′B1(r(t), zB)

}
= 0,

r(t)q′(r(t)) + q(r(t)) = ς ′B(mB(r(t), eB(r(t), zB)))

{
m′B1(r(t), eB(r(t), zB)) +m′B2(r(t), eB(r(t), zB))∗

e′B1(r(t), zB)

}
r(t)

[
1 +

1

demand elasticity

]
= ς ′B(mB(r(t), eB(r(t), zB)))

{
m′B1(r(t), eB(r(t), zB))

q′(r(t))
+
m′B2(r(t), eB(r(t), zB))e′B1(r(t), zB)

q′(r(t))

}
,

which implies that interest rate is equal to the marginal cost when demand is infinitely elastic.
Marginal cost, i.e., the right hand side expression in the above equation is not the same as that
in a myopic problem due to the reason that in dynamic consideration financial intermediary also
considers impact of market interest rate on his purchase interest rate charged by producers. If
a positive supply shock happens, the marginal cost of having another unit of funds in inventory
is higher for financial intermediary as ς ′B(mB(r(t), eB(r(t), zB))) term is higher at that point in

time at existing interest rate. The term m′B1(r(t),eB(r(t),zB))
q′(r(t)) +

m′B2(r(t),eB(r(t),zB))e
′
B1(r(t),zB)

q′(r(t)) has not
changed yet as the interest rate is still the same as before. The financial intermediary faces following
inequality at contemporary interest rate:

∂H̃

∂r
= q(r(t)) + r(t)q′(r(t))− ς ′B(mB(r(t), eB(r(t), zB)))

{
m′B1(r(t), eB(r(t), zB)) +m′B2(r(t), eB(r(t), zB))∗

e′B1(r(t), zB)

}

+ µB(t)
.
r(t) ∗

 m′′B11(r(t), eB(r(t), zB)) +m′′B12(r(t), eB(r(t), zB))e′B1(r(t), zB)+
m′′B21(r(t), eB(r(t), zB))e′B1(r(t), zB) +m′′B22(r(t), eB(r(t), zB))e′2B1(r(t), zB)+

m′B2(r(t), eB(r(t), zB))e′′B11(r(t), zB)


< 0.
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Financial intermediary must reduce interest rate in order to add another unit of funds in inventory
for dynamic optimization condition to be satisfied. This depicts that a negative relationship exists
between inventory and interest rate. Demand and supply concepts are unified through inventory;
if their rates are equal, there is a state of equilibrium in market; whereas if a finite difference
occurs between their rates, and the other agents do not react to that change, interest rate will get
continuously changed by financial broker until the saturation of market takes place. This behavior
of market can be expressed as follows:

Interest rate change ∝ change in market inventory of funds.
R = interest rate change.

MB = mB −mBs = change in inventory of funds in the market,

mB = inventory of funds at time t,

mBs = inventory of funds in steady state equilibrium.

Input − output =
dmB

dt
=
d(mB −mBs)

dt
=
dMB

dt
,

or MB =
∫

(input − output) dt.
Interest rate change ∝

∫
(supply rate − demand rate) dt, or

R = −Km

∫
(supply rate − demand rate) dt,

whereKm is a constant for proportionality. The sign (negative) reflects when (supply rate − demand rate)

is positive, R is negative, i.e., interest rate decreases. Above expression can also be written as:

∫
(supply rate − demand rate) dt = − R

Km
, or

∫
(wBi − wB0) dt = − R

Km
, (88)

wBi = supply rate,

wB0 = demand rate,

Km = dimensional constant.

When t = 0, supply rate = demand rate, and eq. (88) changes into the following expression:∫
(wBis − wB0s) dt = 0. (89)

Subscript s denotes a value in a steady state equilibrium and R = 0 in steady state. Subtracting
eq. (89) from (88), we obtain:

∫
(wBi − wBis) dt−

∫
(wB0 − wB0s) dt = − R

Km
, or

∫
(WBi −WB0) dt = − R

Km
, (90)
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where wBi − wBis = WBi = change in supply rate,

wB0 − wB0s = WB0 = change in demand rate.

R, WBi and WB0 are deviation variables, i.e., deviation from steady state equilibrium and have
zero initial values. Eq. (90) can also be expressed as:

R = −Km

∫
WBdt = −KmMB, (91)

where WB = WBi−WB0. If R receives an input other than an inventory change, that can
get added to eq. (91) as shown below:

R = −Km

∫
WBdt+ EB = −KmMB + EB. (91a)

Funds inventory can also undergo an exogenous shock in addition to feedback effect of interest rate.

6.2 Solution of the Model with an Expansionary Savings Policy

Expressions from eqs. (11a), (18), (23) and (29) respectively are as follows:

dR(t)

dt
= −KmWB(t),

Wd(t) = −KdR(t),

Wmp = −Ksp (Cp −R) ,

Wmc = −Ksc (Cc −R) ,

and

WB(t) = Wm(t)−Wd(t),

in the absence of an exogenous demand/supply shock. Wm(t) is the total funds supply
including the supply from the public sector, households and firms, etc., and can be expressed as
a sum of two sources of funds supply, i.e., the public sector, and the private sector (households,
firms, etc.) as follows:

Wm(t) = −Ksp [Cp(t)−R(t)]−Ksc [Cc(t)−R(t)] . (92)

Subscripts p and c denote private and public sector respectively. After combining
above expressions, the following differential equation results:

dR(t)

dt
= −Km [Wm(t)−Wd(t)]

= −Km [−Ksp {Cp(t)−R(t)} −Ksc {Cc(t)−R(t)}+KdR(t)]

= −Km [−KspCp(t)−KscCc(t) + (Ksp +Ksc +Kd)R(t)] .
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Rearranging the above expression gives:

dR(t)

dt
+Km(Ksp +Ksc +Kd)R(t) = Km [KspCp(t) +KscCc(t)] . (93)

Routh-Hurwitz stability criterion, to ensure stability of above differential equation requires
Km(Ksp + Ksc + Kd) > 0; and as Km,Ksp,Ksc, and Kd are all positive, the stability criterion
holds. This ensures that, away from a given initial equilibrium, every adjustment mechanism will
lead to another equilibrium.
In the savings market in comparison with a goods market, the public sector has the role of the
government as well as that of a producer of funds. When government reduces the interest rate on
funds for investors but not for depositors, the public sector’s supply curve shifts downward, and
it incurs a cost in the role of the government. We need to keep the role of the public sector as
a producer separate from its role as government for clarity of what is exactly happening in the
savings/funds market when the government exercises a policy. Suppose the change in the cost of
public sector as a result of reducing the interest rate on funds for investors is B, whereas the cost
of private sector’s supply of funds remains the same, the above equation can be written as:

dR(t)

dt
+Km(Ksp +Ksc +Kd)R(t) = −KmKscB. (94)

The solution is given by the following expression:

R(t) = − KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t. (95)

R(0) = 0 (the initial condition), and R(∞) = − KscB
(Ksp+Ksc+Kd)

(final value). In response to a policy,
the interest rate dynamics depends on the parameters Ksp,Ksc,Kd, Km and B.

6.3 A Dynamic Optimal Expansionary Savings Policy-Panel B

Depending upon whether the savings policy is expansionary or contractionary, there could either
be effi ciency gains or losses in the equilibrium (post policy) as compared to the one which
existed before policy. However, these are not the only effi ciency gains or losses, as some
effi ciency is lost during transient/adjustment to the final equilibrium. When savings
policy is implemented, savings supply either expands or contracts, whereas at the initial
interest rate, demand is still is the same as before, hence as a result of the policy,
savings market gets out of equilibrium. Interest rate starts adjusting to equalize
supply and demand to lead to new savings market equilibrium. Final equilibrium
interest rate is a function of elasticities of supply and demand. As illustrated in the
previous section, change in total supply as a result of a savings policy is as given below:

Wm(0) = −Ksp [Cp(0)−R(0)]−Ksc [Cc(0)−R(0)] = KscB, (96)

as R(0) = 0.

Due to savings policy, supply of savings either goes up or down by KscB. As demand is the same
as before, therefore, the inventory of savings also changes by KscB, in the direction of the change
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in supply. Savings market is out of equilibrium with market forces in action pushing
savings market to post policy final equilibrium through an interest rate adjustment.
As interest rate changes, demand and supply of funds also change through feedback. If the savings
inventory goes up, it reflects supply is greater than demand and vice versa. If supply and
demand are equal with savings market in equilibrium, there is no effi ciency loss. For
an out of equilibrium market, either supply and/or consumption of savings/funds is getting
wasted at that point in time implying that total effi ciency loss during market adjustment is sum
of gaps in supply and demand at all points in time. After accounting for a loss in effi ciency in
post-policy equilibrium in comparison with initial quilibrium (if any), total effi ciency loss for
an expansionary and contractionary savings policy respectively can be expressed as:

EL (expansionary) =

0∫
−∞

Wm(∞)dt+

∞∫
0

[Wm(t)−Wd(t)] dt

=

0∫
−∞

Wm(∞)dt+MB(t). (97)

EL (contractionary) =

∣∣∣∣∣∣
∞∫
t

Wm(∞)dt+

t∫
0

Wd(t)dt+MB(t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
t∫
0

Wd(t)dt+

∞∫
t

Wd(∞)dt+MB(t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∫
0

Wd(t)dt+

∞∫
0

[Wm(t)−Wd(t)] dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∫
0

Wm(t)dt

∣∣∣∣∣∣ . (98)

Eq. (91a) states the following:

R(t) = −KmMB(t) + EB.

Through putting initial conditions, value of EB can be determined (for expansionary savings
policy) as follows:

R(0) = −KmMB(0) + EB,

0 = −KmKscB + EB,

EB = KmKscB.
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Putting above expression in eq. (91a), the following equation results:

R(t) = −KmMB(t) +KmKscB, or

MB(t) = − 1

Km
[R(t)−KmKscB] .

With Expansionary Savings Policy Cost Constraint:
According to eq. (30), change in funds supply due to a market interest rate change is as
given below:

Wm(t) = −Ksp [Cp(t)−R(t)]−Ksc [Cc(t)−R(t)] .

The part of supply coming from public sector is −Ksc [Cc(t)−R(t)] , and may be written as follows:

Wmc(t) = −Ksc [Cc(t)−R(t)] ,

wnmc(t)− wimc(0) = −Ksc [Cc(t)−R(t)] ,

where wimc(0) is the initial funds supply from the public sector, and wnmc(t) is the supply after
savings policy. Wmc(t) = wnmc(t)−wimc(0), which reflects deviation from initial value. Cost
to exercise savings policy is as given below:

SPC = B [wimc(0) +Ksc {B +R(t)}] . (99)

For an optimal policy, effi ciency loss needs to be minimized subject to the cost con-
straint as follows:

min
B

EL s.t. SPC ≤ GB.

GB is savings policy cost to the government. Control variable is savings policy B, and
constraint is binding at t = 0. We can express Lagrangian for above problem as follows:
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L =

0∫
−∞

Wm(∞)dt+MB(t) + λ [GB −B [wimc(0) +Ksc {B +R(t)}]]

=

0∫
−∞

[
KscB −

Ksc(Ksp +Ksc)B

(Ksp +Ksc +Kd)

]
dt

− 1

Km

[
− KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t −KmKscB

]
+ λ

[
GB −B

[
wimc(0) +Ksc

{
B − KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

}]]

=

0∫
−∞

KscKdB

(Ksp +Ksc +Kd)
dt− 1

Km

[
− KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t −KmKscB

]

+ λ

[
GB −B

[
wimc(0) +Ksc

{
B − KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

}]]
.

First order derivative with respect to B leads to the following:

0∫
−∞

KscKd

(Ksp +Ksc +Kd)
dt− 1

Km

[
− Ksc

(Ksp +Ksc +Kd)
+

Ksc

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t −KmKsc

]

− λ
[
wimc(0) +Ksc

{
B − KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

}]

−λBKsc

[
1− Ksc

(Ksp +Ksc +Kd)
+

Ksc

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

]
= 0.

Rearranging this, we get:

0∫
−∞

KscKd

(Ksp +Ksc +Kd)
dt− 1

Km

[
− Ksc

(Ksp +Ksc +Kd)
+

Ksc

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t −KmKsc

]

− 2λBKsc

[
1− Ksc

(Ksp +Ksc +Kd)
+

Ksc

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

]

= λwimc(0),

or
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B = −

λwimc(0)−

 0∫
−∞

KscKd
(Ksp+Ksc+Kd)

dt− 1
Km

[
− Ksc
(Ksp+Ksc+Kd)

+ Ksc
(Ksp+Ksc+Kd)

e−[Km(Ksp+Ksc+Kd)]t −KmKsc

]
2λKsc

[
1− Ksc

(Ksp+Ksc+Kd)
+ Ksc

(Ksp+Ksc+Kd)
e−[Km(Ksp+Ksc+Kd)]t

] .

(100)
First order derivative with respect to λ is shown below:

GB −B
[
wimc(0) +Ksc

{
B − KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

}]
= 0.

(101)
Putting eq. (100) into (101), we get:

GB =

−wimc(0).

λwimc(0)−

 0∫
−∞

KscKd
(Ksp+Ksc+Kd)

dt− 1
Km

[
− Ksc
(Ksp+Ksc+Kd)

+ Ksc
(Ksp+Ksc+Kd)

e−[Km(Ksp+Ksc+Kd)]t −KmKsc

]
2λKsc

[
1− Ksc

(Ksp+Ksc+Kd)
+ Ksc

(Ksp+Ksc+Kd)
e−[Km(Ksp+Ksc+Kd)]t

]
+Ksc

{
1− Ksc

(Ksp +Ksc +Kd)
+

Ksc

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

}

∗


−

λwimc(0)−

 0∫
−∞

KscKd
(Ksp+Ksc+Kd)

dt− 1
Km

[
− Ksc
(Ksp+Ksc+Kd)

+ Ksc
(Ksp+Ksc+Kd)

e−[Km(Ksp+Ksc+Kd)]t −KmKsc

]
2λKsc

[
1− Ksc

(Ksp+Ksc+Kd)
+ Ksc

(Ksp+Ksc+Kd)
e−[Km(Ksp+Ksc+Kd)]t

]


2

,

or 4λ2QBGB = −2λ2w2imc(0) + 2λwimc(0)JB + λ2w2imc(0) + J2B − 2λwimc(0)JB,

where QB = Ksc

[
1− Ksc

(Ksp +Ksc +Kd)
+

Ksc

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

]
,

JB =

0∫
−∞

KscKd

(Ksp +Ksc +Kd)
dt− 1

Km

[
− Ksc

(Ksp +Ksc +Kd)
+

Ksc

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t −KmKsc

]
.

or
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{
w2imc(0) + 4QBGB

}
λ2 − J2B = 0.

λ =
JB√

w2imc(0) + 4QBGB

.

λ is positive, as when GB increases, minimum effi ciency loss also increases. From eq.
(100):

B = −λwimc(0)− JB
2λQB

. (102)

Substituting λ in above equation, following expression for B results:

B = −
wimc(0)JB√

w2imc(0)+4QBGB
− JB

2QBJB√
w2imc(0)+4QBGB

,

B = −
wimc(0)−

√
w2imc(0) + 4QBGB

2QB
. (103)

For checking second order minimization condition, Lagrangian can be expressed as
given below:

L = JBB + λ [GB −B (wime(0) +QBB)] .

Expression for Bordered Hessian matrix of the Lagrange function is as given below:

BH =

[
0 wimc(0) + 2QBB

wimc(0) + 2QBB
−2QBJB√

w2imc(0)+4QBGB

]
.

As − (wimc(0) + 2QBB)2 < 0, i.e., the determinant of above matrix, effi ciency loss is
minimized.

6.4 Solution of the Model with a Contractionary Savings Policy

Expressions from eqs. (11a), (18), (23) and (29) respectively are as follows:

dR(t)

dt
= −KmWB(t),

Wd(t) = −KdR(t),

Wmp = −Ksp (Cp −R) ,

Wmc = −Ksc (Cc −R) ,

and
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WB(t) = Wm(t)−Wd(t),

in the absence of an exogenous demand/supply shock. Wm(t) is the total funds supply
including the supply from public sector, households and firms, etc., and can be expressed as a sum
of two sources of supply, i.e., public sector; and private sector (households, firms, etc.) as follows:

Wm(t) = −Ksp [Cp(t)−R(t)]−Ksc [Cc(t)−R(t)] , (104)

Subscripts p and c denote private and public sector respectively. After combining
above expressions, the following differential equation results:

dR(t)

dt
= −Km [Wm(t)−Wd(t)]

= −Km [−Ksp {Cp(t)−R(t)} −Ksc {Cc(t)−R(t)}+KdR(t)]

= −Km [−KspCp(t)−KscCc(t) + (Ksp +Ksc +Kd)R(t)] .

Rearranging the above expression gives:

dR(t)

dt
+Km(Ksp +Ksc +Kd)R(t) = Km [KspCp(t) +KscCc(t)] . (105)

When government increases interest rate (market interest rate which the investor pays) on savings,
the public sector’s supply curve shifts to left, and it gets some revenue in the role of government.
Suppose a change in the cost of public sector as a supplier as a result of increasing interest rate on
savings is B, whereas the cost of private supply of funds remains the same, the above equation can
be written as:

dR(t)

dt
+Km(Ksp +Ksc +Kd)R(t) = KmKscB. (106)

The solution is given by the following expression:

R(t) =
KscB

(Ksp +Ksc +Kd)
− KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t. (107)

R(0) = 0 (initial condition), and R(∞) = KscB
(Ksp+Ksc+Kd)

(final value).

6.5 A Dynamic Optimal Contractionary Savings Policy-Panel B

Eq. (11a) states the following:

R(t) = −KmMB + EB.

Value of EB (for contractionary savings policy) can be determined through imposing
the initial conditions as follows:
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R(0) = −KmMB(0) + EB,

0 = KmKscB + EB,

EB = −KmKscB.

Putting above expression in eq. (11a), the following equation results:

R(t) = −KmMB(t)−KmKscB, or

MB(t) = − 1

Km
[R(t) +KmKscB] . (108)

With Contractionary Savings Policy Revenue Constraint:
According to eq. (30), change in funds supply due to a market interest rate change is as
given below:

Wm(t) = −Ksp [Cp(t)−R(t)]−Ksc [Cc(t)−R(t)] .

The part of the supply coming from the public sector is −Ksc [Cc(t)−R(t)] , and can be written
as follows:

Wmc(t) = −Ksc [Cc(t)−R(t)] ,

wnmc(t)− wimc(0) = −Ksc [Cc(t)−R(t)] ,

where wimc(0) is the initial funds supply from the public sector, and wnmc(t) is the supply after
savings policy. Wmc(t) = wnmc(t) − wimc(0), which reflects deviation from initial value.
Revenue received by government as a result of a contractionary savings policy can be expressed as:

SPR = B [wimc(0)−Ksc {B −R(t)}] . (109)

For an optimal policy, effi ciency loss needs to be minimized subject to the constraint
as follows:

min
T
EL s.t. SPR ≥ GBR.

GBR is the government revenue as a result of exercising the savings policy. Control variable is
savings policy B, and constraint is binding at t = 0. We can express Lagrangian for above
problem as follows:

L = −
∞∫
0

[Ksp {Cp(t)−R(t)}+Ksc {Cc(t)−R(t)}] dt+ λ [GBR −B [wimc(0)−Ksc {B −R(t)}]]

=

∞∫
0

[
−KscB +

Ksc(Ksp +Ksc)B

(Ksp +Ksc +Kd)
− Ksc(Ksp +Ksc)B

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

]
dt

+ λ

[
GBR −B

[
wimc(0)−Ksc

{
B − KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

}]]
.
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Taking first order condition with respect to B, the following expression is obtained:

∞∫
0

[
−Ksc +

Ksc(Ksp +Ksc)

(Ksp +Ksc +Kd)
− Ksc(Ksp +Ksc)

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

]
dt

− λ
[
wimc(0)−Ksc

{
B − KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

}]

+λBKsc

[
1− Ksc

(Ksp +Ksc +Kd)
+

Ksc

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

]
= 0.

Rearranging this, we get:

∞∫
0

[
−Ksc +

Ksc(Ksp +Ksc)

(Ksp +Ksc +Kd)
− Ksc(Ksp +Ksc)

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

]
dt

+ 2λBKsc

[
1− Ksc

(Ksp +Ksc +Kd)
+

Ksc

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

]

= λwimc(0),

or

B =

λwimc(0)−
∞∫
0

[
−Ksc +

Ksc(Ksp+Ksc)
(Ksp+Ksc+Kd)

− Ksc(Ksp+Ksc)
(Ksp+Ksc+Kd)

e−[Km(Ksp+Ksc+Kd)]t
]
dt

2λKsc

[
1− Ksc

(Ksp+Ksc+Kd)
+ Ksc

(Ksp+Ksc+Kd)
e−[Km(Ksp+Ksc+Kd)]t

] . (110)

First order derivative with respect to λ is as given below:

GBR−B
[
wimc(0)−Ksc

{
B − KscB

(Ksp +Ksc +Kd)
+

KscB

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

}]
= 0.

(111)
Putting eq. (110) into (111), we obtain:
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GBR = wimc(0).

λwimc(0)−
∞∫
0

[
−Ksc +

Ksc(Ksp+Ksc)
(Ksp+Ksc+Kd)

− Ksc(Ksp+Ksc)
(Ksp+Ksc+Kd)

e−[Km(Ksp+Ksc+Kd)]t
]
dt

2λKsc

[
1− Ksc

(Ksp+Ksc+Kd)
+ Ksc

(Ksp+Ksc+Kd)
e−[Km(Ksp+Ksc+Kd)]t

]
−Ksc

{
1− Ksc

(Ksp +Ksc +Kd)
+

Ksc

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

}

∗


λwimc(0)−

∞∫
0

[
−Ksc +

Ksc(Ksp+Ksc)
(Ksp+Ksc+Kd)

− Ksc(Ksp+Ksc)
(Ksp+Ksc+Kd)

e−[Km(Ksp+Ksc+Kd)]t
]
dt

2λKsc

[
1− Ksc

(Ksp+Ksc+Kd)
+ Ksc

(Ksp+Ksc+Kd)
e−[Km(Ksp+Ksc+Kd)]t

]


2

,

or 4λ2QBGBR = 2λ2w2imc(0)− 2λwimc(0)JB − λ2w2imc(0)− J2B + 2λwimc(0)JB,

where QB = Ksc

[
1− Ksc

(Ksp +Ksc +Kd)
+

Ksc

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

]
,

JB =

∞∫
0

[
−Ksc +

Ksc(Ksp +Ksc)

(Ksp +Ksc +Kd)
− Ksc(Ksp +Ksc)

(Ksp +Ksc +Kd)
e−[Km(Ksp+Ksc+Kd)]t

]
dt.

or {
w2imc(0)− 4QBGBR

}
λ2 − J2B = 0.

λ =
JB√

w2imc(0)− 4QBGBR

.

λ is positive, as when GBR increases, minimum effi ciency loss also increases. From eq.
(110):

B =
λwimc(0)− JB

2λQB
. (112)

Substituting λ in above equation, following expression for B results:

B =

wimc(0)JB√
w2imc(0)−4QBGBR

− JB
2QBJB√

w2imc(0)−4QBGBR

,

B =
wimc(0)−

√
w2imc(0)− 4QBGBR

2QB
. (113)

For checking second order minimization condition, Lagrangian can be expressed as
given below:
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L = JBB + λ [GBR −B (wimc(0)−QBB)] .

Expression for Bordered Hessian matrix of the Lagrange function is as given below:

BH =

[
0 wimc(0)− 2QBB

wimc(0)− 2QBB
2QBJB√

w2imc(0)−4QBGB

]
.

As − (wimc(0)− 2QBB)2 < 0, i.e., the determinant of above matrix, effi ciency loss is
minimized.

6.6 A Dynamic Optimal Savings Policy-Panel A

Equilibrium before adoption of policy can be improved upon as a result of an appro-
priate savings policy. However, these are not the only effi ciency gains or losses, as
some effi ciency is lost during transient/adjustment to the final equilibrium. Effi ciency
loss is minimized to derive an optimal policy. When savings policy is implemented,
supply of savers either expands or contracts, whereas at the initial saving rate, de-
mand is still is the same as before, hence as a result of the policy, savers market gets
out of equilibrium. Saving rate starts adjusting to equalize supply and demand to
lead to new savers market equilibrium. Final equilibrium saving rate is a function
of elasticities of supply and demand. Social damage is an excessive/short number of
savers, i.e., the difference between supply and demand. Total social damage in terms
of number of savers is the sum of that during adjustment of the savers market and
the one in initial equilibrium as given below:

SD = MA(t) +

0∫
−∞

Wpr(∞)dt. (114)

From eq. (73), a change in number of savers due to implementation of savings policy is given below:

Wpu(t) = Kpu [A− C(t)] ,

or wnpu(t)− wipu(0) = Kpu [A− C(t)] ,

where wipu(0) is number of savers in initial equilibrium, and wnpu(t) is the supply after savings
policy. Wpu(t) = wnpu(t) − wipu(0), which reflects deviation from initial value. A change in
quantity of savings per unit time is as given below:

IQS =
dMB

dt
= A [wipu(0) +Kpu {A− C(t)}] . (115)

For an optimal policy, effi ciency loss needs to be minimized subject to an increase in quan-
tity of savings per unit time being greater than or equal toGA

(
change in quantity of savings/funds per unit time = dMB

dt

)
and can be expressed as follows:
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min
A
SD s.t. IQS ≥ GA.

If we want to minimize the social damage subject to the constraint that an increase in quantity of

savings per unit time is greater than or equal toGA
(
change in quantity of savings/funds per unit time = dMB

dt

)
in a given time period, our problem is as follows:

min
A
SD s.t. IQS ≥ GA

(
=
dMB

dt

)
.

Control variable is savings policy A (an initial upward jump in the saving rate chosen by
government to shift the demand curve), and constraint is binding at t = 0. We can express
Lagrangian for above problem as follows:

L = MA(t) +

0∫
−∞

Wpr(∞)dt+ λ [GA −A [wipu(0) +Kpu {A− C(t)}]] .

Expression from eq. (62a), is given below:

C(t) = −KcMA + EA.

Through putting initial conditions, value of EA can be determined as follows:

C(0) = −KcMA(0) + EA,

A = −KcKprC(0) + EA,

EA = A [1 +KcKpr] .

This implies that

MA(t) = − 1

Kc
[C(t)−A {1 +KcKpr}] .

This changes the Lagrangian to the following expression:

L = − 1

Kc
[C(t)−A {1 +KcKpr}] +

0∫
−∞

Wpr(∞)dt+ λ [GA −A [wipu(0) +Kpu {A− C(t)}]]

= − 1

Kc

[{
KpuA

Kpr +Kpu
+

KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
−A {1 +KcKpr}

]

+

0∫
−∞

Wpr(∞)dt+ λ

[
GA −A

[
wipu(0) +Kpu

{
A− KpuA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}]]
.

First order derivative with respect to A leads to the following:
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− 1

Kc

[{
Kpu

Kpr +Kpu
+

Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
− {1 +KcKpr}

]
− λ

[
wipu(0) +Kpu

{
A− KpuA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}]
− λAKpu

{
1− Kpu

Kpr +Kpu
− Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
,

which implies that

− 1

Kc

[{
Kpu

Kpr +Kpu
+

Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
− {1 +KcKpr}

]
− 2λAKpu

{
1− Kpu

Kpr +Kpu
− Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}

= λwipu(0).

or

A =
λwipu(0)− 1

Kc

[{
−Kpu

Kpr+Kpu
− Kpr

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t

}
+ {1 +KcKpr}

]
−2λKpu

{
1− Kpu

Kpr+Kpu
− Kpr

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t

} . (116)

Similarly, first order derivative with respect to λ is shown below:

GA −A
[
wipu(0) +Kpu

{
A− KpuA

Kpr +Kpu
− KprA

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}]
= 0. (117)

Putting eq. (116) into (117), we obtain:

GA = wipu(0).
λwipu(0)− 1

Kc

[{
−Kpu

Kpr+Kpu
− Kpr

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t

}
+ {1 +KcKpr}

]
−2λKpu

{
1− Kpu

Kpr+Kpu
− Kpr

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t

}
+Kpu

{
1− Kpu

Kpr +Kpu
− Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}

∗

λwipu(0)− 1
Kc

[{
−Kpu

Kpr+Kpu
− Kpr

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t

}
+ {1 +KcKpr}

]
−2λKpu

{
1− Kpu

Kpr+Kpu
− Kpr

Kpr+Kpu
e−[Kc(Kpr+Kpu)]t

}
2 .

or 4λ2QAGA = 2λ2w2ipu(0)− 2λwipu(0)JA − λ2w2ipu(0)− J2A + 2λwipu(0)JA,

where QA = −Kpu

{
1− Kpu

Kpr +Kpu
− Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
,

JA =
1

Kc

[{
−Kpu

Kpr +Kpu
− Kpr

Kpr +Kpu
e−[Kc(Kpr+Kpu)]t

}
+ {1 +KcKpr}

]
.
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This implies that {
w2ipu(0)− 4QAGA

}
λ2 − J2A = 0,

λ =
JA√

w2ipu(0)− 4QAGA
.

λ is positive, as when GA increases, social damage also increases.
Eq. (116) can also be written as

A =
λwipu(0)− JA

2λQA
. (118)

After substituting value of λ in above equation, the following expression results:

A =

wipu(0)JA√
w2ipu(0)−4QAGA

− JA

2QAJA√
w2ipu(0)−4QAGA

,

A =
wipu(0)−

√
w2ipu(0)− 4QAGA

2QA
. (119)

For checking second order minimization condition, Lagrangian can be expressed as
given below:

L = JAA+

0∫
−∞

Wpr(∞)dt+ λ [GA −A [wipu(0)−QAA]] .

Expression for Bordered Hessian matrix of the Lagrange function is as given below:

BH =

 0 wipu(0)− 2QAA

wipu(0)− 2QAA
2QAJA√

w2ipu(0)−4QAGA

 .
As − (wipu(0)− 2QAA)2 < 0, i.e., the determinant of above matrix, effi ciency loss is
minimized.

7 General Solution of Model-Panel A

Input and output blocks of agents are joined together to form a dynamic savings model in figure
5. To solve differential equations, Laplace transform can be used as a convenient tool, as a result
of which figure 5 has been transformed to figure 6. In figure 6 (part A), transfer function relating
C(s) to W1(s) has been evaluated as follows: Assuming ε(s) = 0, for blocks in A, we have following
equations relating outputs with their respective inputs:
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C(s) = −Kc

s
.W (s),

Wpu(s) = −Kpue
−sτd2C(s),

WB(s) = W1(s)−Wpu(s).

Solving above equations simultaneously, we obtain:

C(s) = −Kc

s
[W1(s)−Wpu(s)] ,

C(s) = −Kc

s

[
W1(s) +Kpue

−sτd2C(s)
]
,

C(s)

[
1 +

KcKpue
−sτd2

s

]
= −Kc

s
W1(s),

C(s)

W1(s)
=

−Kc

s+KcKpue−sτd2
.

Part A in figure 6 gets reduced to one block using above expression. Now shiftingW0(s) in backward
direction leads to figure 7, from which overall transfer function for D(s) can be evaluated as follows:

C(s) =
−Kc

s+KcKpue−sτd2
[D(s) +Wpr(s)] ,

where D(s) = Wi(s)−W0(s),

Wpr(s) = Kpre
−sτd1C(s).

C(s) can be solved in terms of D(s) as follows:

C(s) =
−Kc

s+KcKpue−sτd2
[D(s) +Wpr(s)] ,

C(s) =
−Kc

s+KcKpue−sτd2

[
D(s) +Kpre

−sτd1C(s)
]
,

C(s)

[
1 +

KcKpre
−sτd1

s+KcKpue−sτd2

]
=

−Kc

s+KcKpue−sτd2
D(s),

C(s)

D(s)
=

−Kc
s+KcKpue−sτd2

1 +
KcKpre−sτd1

s+KcKpue−sτd2

,

C(s)

D(s)
=

−Kc

s+KcKpue−sτd2 +KcKpre−sτd1
. (120)

Saving rate depends on structural parameters, i.e., Kc, Kpu, Kpr, τd1 and τd2, which are all positive.
Solution and inversion of eq. (120) into time domain can provide useful results and conclusions.
Following approximation can be made if inversion of eq. (120) is to be done by partial fractions:
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e−τs ≈ 1− τs. (121)

Second better approximation is:

e−τs ≈ 1− (τ/2)s

1 + (τ/2)s
. (122)

A better approximation than both above is as follows:

e−τs ≈ 1− τs/2 + τ2s2/12

1 + τs/2 + τ2s2/12
. (123)

There is a trade off between approximations of eq. (122) and (123) in terms of simplicity and
accuracy. If D(t) gets a step input, i.e., A, an exogenous shift in either supply or demand (of
number of savers), then after Laplace transform

D(s) =
A

s
.

Applying final value theorem of Laplace transform leads to the following expression:

C(∞) =
−A

Kpu +Kpr
, (124)

C(∞) = C(t) |t=∞ .

Eq. (122) is rearranged as follows:

e−τs ≈ 2− τs
2 + τs

.

Plugging in above approximation in eq. (120) leads to the following expression:

C(s)

D(s)
=

−Kc

s+KcKpu

(
2−sτd2
2+sτd2

)
+KcKpr

(
2−sτd1
2+sτd1

) ,
C(s)

D(s)
=

−Kc (2 + sτd1) (2 + sτd2)

s (2 + sτd1) (2 + sτd2) +KcKpu (2 + sτd1) (2− sτd2) +KcKpr (2− sτd1) (2 + sτd2)
,

=
−Kc

{
τd1τd2s

2 + 2 (τd1 + τd2) s+ 4
}[

τd1τd2s
3 + 2 (τd1 + τd2) s

2 + 4s+KcKpu

{
−τd1τd2s2 + 2 (τd1 − τd2) s+ 4

}
+KcKpr

{
−τd1τd2s2 + 2 (τd2 − τd1) s+ 4

} ] ,

=
−Kc

{
τd1τd2s

2 + 2 (τd1 + τd2) s+ 4
}[

τd1τd2s
3 + [2 (τd1 + τd2)−KcKpuτd1τd2 −KcKprτd1τd2] s

2+
[2KcKpu (τd1 − τd2) + 2KcKpr (τd2 − τd1) + 4] s+ 4KcKpu + 4KcKpr

] .
Denominator of above expression is as given below:
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as3 + bs2 + cs+ d,

where

a = τd1τd2,

b = 2 (τd1 + τd2)−Kcτd1τd2(Kpu +Kpr),

c = 2 [Kc (τd1 − τd2) (Kpu −Kpr) + 2] ,

d = 4Kc(Kpu +Kpr).

This implies that

C(s)

D(s)
=
−Kc

{
as2 + 2 (τd1 + τd2) s+ 4

}
as3 + bs2 + cs+ d

. (125)

The roots of denominator (given below) of eq. (125) depict the qualitative response of saving rate.

as3 + bs2 + cs+ d = 0. (126)

τd1 and τd2 and have dimensions of time; dimensions of other parameters are given below:

Dimensions of Kc = (Dimensions of C)/(time×Dimensions of WA)

=
Quantity of new savings

time×No. of new savers
Dimensions of Kpu = (Dimensions of Wpu)/(Dimensions of C)

=
No. of new savers required by government

Quantity of new savings
,

Dimensions of Kpr = (Dimensions of Wpr)/(Dimensions of C)

=
No. of new savers due to private sector response

Quantity of new savings
.

Therefore KcKpu and KcKpr have dimensions of 1/time, which implies that a has dimensions of
time2; b has dimensions of time; c is dimensionless and d has dimensions of 1/time. It can be seen
that eq. (126) is dimensionally consistent (as s has dimensions of 1/time).
Method to Solve eq. (125):
Suppose D gets a step input of magnitude A, then

D(s) =
A

s
. (127)

Substituting above in eq. (125), gives the following:

C(s) =
−AKc

{
as2 + 2 (τd1 + τd2) s+ 4

}
s(as3 + bs2 + cs+ d)

. (128)
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For solution of above equation, structural parameters, i.e., Kc, Kpr, Kpu, τd1 and τd2 need to be
empirically estimated, on the basis of which values of a, b, c and d are calculated. Find roots of
eq. (126) to invert eq. (128) to time function of C through partial fractions and Laplace transform
table. Applying Final Value Theorem of Laplace transform on eq. (128), following final value is
obtained:

C(∞) = −AKc ×
4

d
. (129)

Putting value of d = 4Kc(Kpu +Kpr), in above expression, we obtain:

C(∞) =
−A

Kpu +Kpr
. (130)

C(∞) from eq. (128) is the same as that from eq. (120). Similarly applying the Initial Value
Theorem of Laplace transform on eq. (128), we obtain the following initial value:

C(0) = 0. (131)

Qualitative nature of solution C(t) depends on location of roots of the denominator of C(s) in the
complex plane. Several roots are located in figure 8, and Table 1 provides the form of the terms in
the expression for C(t) corresponding to those roots. X1, X2, . . . ., Y 1, Y 2, . . . .. are all positive.
A dynamically optimal policy minimizing social damage in terms of inadequate number
of savers in pre-policy equilibrium, and also the social loss during adjustment of the
savers market to final equilibrium involves a shift of either supply, demand or both
curves subject to a certain increase in quantity of savings per unit time, and can be derived on a
case by case basis. In equilibrium, the area under the demand curve is the social benefit in terms
of quantity of savings per unit time. Eq. (83) presents the expression for the optimal supply of
savers policy depending on parameters wipu(0), GA, Kc, Kpr, Kpu, τd1 and τd2.
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Figure 1: Theoretical concept of savings model.
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Figure 2: When is linearity a reasonable assumption?
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Figure 3: Movement of interest rate with stock/inventory of funds.
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Figure 4: Theoretical concept of savings model in panel A.
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Figure 5: A theoretical dynamic savings model in panel A.

Figure 6: Savings model in panel A after Laplace Transform.
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Figure 7: Savings model after solution of block A in Figure 6.
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Figure 8: Location of roots in a complex plane corresponding to table 1.
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