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Abstract

This paper proposes a new approach to numerically solving a wide class of heterogeneous
agent models in continuous time using adaptive sparse grids. I combine the sparse finite
difference method with the sparse finite volume method to solve the Hamilton-Jacobian-
Bellman equation and Kolmogorov Forward equation, respectively. My algorithm auto-
matically adapts grids and adds local resolutions in regions of the state space where both
the value function and the distribution approximation errors remains large. I demon-
strate the power of my approach in applications feature high-dimensional state spaces,
occasionally binding constraints, lifecycle and overlapping generations.
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1 Introduction
Heterogeneous agent models, namely Hamilton-Jacobian-Bellman (HJB) and Kolmogorov For-
ward (KF) equation system, are widely used in economic applications. In the Mean Field Games
(MFG) literature in mathematics, the system of coupled HJB and KF equations is known as the
“backward-forward MFG system.” Their numerical implementation usually employs uniform
grids, which suffer from the curse of dimensionality. Adaptive sparse grids help overcome this
challenge by refining the grid to best suit the underlying economic model, placing grid knots
where increased resolution is valuable and removing them elsewhere. There are cases in which
we want to use an adaptive sparse grid. For example, this is the case if the function does not
fulfill the required smoothness conditions or the function is flat in most parts of the domain
but has some steep regions in other parts. Most heterogeneous agent applications in economics
have such features.

In this paper, I propose a new approach to solving heterogeneous agent models in contin-
uous time using adaptive sparse grids. My starting point is two negative results: Firstly, in
continuous time, solving heterogeneous agent models is based on the solution of differential
equations, HJB and KF. Existing adaptive sparse grid methods are only able to solve the HJB
equation on the sparse grid, but not at the same time the KF equation. This incompatibility
is due to different properties between the differential operator of HJB and the integration op-
erator of KF. Using solely finite difference method (Achdou et al., 2021) works perfectly with
regular (non-)uniform grids, but fails in the adaptive sparse grid. Secondly, grid adaptation
merely based on the value function is sometimes inefficient (Ruttscheidt, 2018). In most cases
of economic applications, we are interested in both policy decisions of households and their
associated distribution in heterogeneous agent models. They are a coupled system: the HJB
equation implicitly depends on the distribution solved in the KF equation through prices, while
the latter is formed by policy functions solved in HJB.

To tackle these issues, I structure the grid space into two compatible and interactive sys-
tems through their shared hierarchical approximation space. Such that we can solve the HJB
by a sparse finite difference method (FDM) and the KF equation by a sparse finite volume
method (FVM). FVM helps preserving the mass of distributions in the adaptive sparse grid
by design and is thus more suitable for handling the dynamics of distribution. I develop a
new general equilibrium iteration algorithm—based on the combination of FDM and FVM—to
solve heterogeneous agent problems and further speed up the computation of high dimensional
economics models. The power of the algorithm is greater than the sum of its parts (FDM or
FVM). The common hierarchical structure of the grid points used by FDM and FVM are cen-
tral to my approach. Not only does the hierarchization give measures of local approximation
error of VFI, but also it allows the projection of policy decisions approximated by FDM to the
points used in describing the evolution of the distribution by FVM. The latter then determines
the evolution of prices being taken as the input in the HJB equation. This interdependence
of the HJB-KF equations promotes better grid refinement for the MFG system: Refining the
grid points used by solving the KF equation provides accuracy gain for refining those used by
solving the dynamic programming HJB equation, and vice verse.
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The paper explores grids and their cell structure, which discretizes the state space of different
economic applications. In higher dimensions, uniform grids, featuring regularly spaced nodes,
suffer from the curse of dimensionality, as the number of grid points associated with the full
tensor product grows exponentially. Sparse grids aim to remove grid points through judging
the value of each point in terms of its marginal contribution to the accuracy of approximations.
Adaptive sparse grids utilize details of a specific economic problem to locally refine the grid,
placing more points where the economic application features non-linearity. For solving the
policy and value functions associated with the dynamic optimization problem—the analogue of
the Bellman equation in discrete time, Schaab and T.Zhang (2022) develop a sparse FDM to
interpolate the value function onto non-uniform adaptive grid points. I extend their algorithm,
making it also possible to solve the distribution KF function on the adaptive sparse grid. To
achieve this goal, I fit the FVM well into the same hierarchical space of FDM, such that we are
able to solve heterogeneous agent models entirely on the adaptive sparse grid.

FVM, as the name of finite volume method suggests, tracks the volume change between
histograms instead of the difference between points. It is widely used in the mathematics/en-
gineering literature and is introduced to economics by Ahn (2019). It preserves mass and
positivity of integration. FVM can be considered as a continuous time version of (Young,
2010)’s method, being widely used in discrete time heterogeneous agent models. Different from
FDM and Young’s method, FVM does not rely on interpolations to compute the dynamics
from the given (approximate) distribution to the resulting (approximate) distribution consis-
tent with individual behaviors. FVM takes advantage of the grid cell structure and accounts
for flows between cells. It is this feature that makes FVM able to preserve mass and positiv-
ity in transition dynamics of the distribution on the adaptive sparse grid. Thanks to the cell
structure, it is intuitive to consider boundary conditions and endogenous flows of distributions.
The overlapping generation (OLG) model is a good example of this. See Section 5.2 for more
details.

I demonstrate the power of my approach in the context of typical applications, showing that
adaptive sparse grids substantially outperform uniform and even regular sparse grids. Many
economic applications feature occasionally binding constraints such as borrowing and collateral
constraints. When being constrained, households’ behavior often becomes highly sensitive to
(non-linear in) changes in fundamentals. Adaptive sparse grid methods excel in placing grid
points in the region of the state space where these constraints bind. I illustrate this in Section 4
and Section 5.1. Dynamic general equilibrium models with rich heterogeneity are notoriously
challenging to solve, since the high-dimensional cross-sectional distribution becomes part of
the state space. In Section 5.1, I globally solve a variant of the Krusell et al. (1998) model
with a 14-dimensional representation. Despite the large state space, my algorithm requires less
than 4 minutes on a personal computer. Many important economic problems feature finite
horizons, e.g. lifecycle and OLG models. Solving these models accurately often requires high
grid resolution near the born, retirement and death. I show in Section 5.2 that a lifecycle
portfolio choice problem requires substantial localized resolution to accurately characterize
households’ behavior near these periods. As people in different part of their lifecycle have
different wealth levels, the refinement on the wealth dimension differs in their age. The same
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accuracy can be achieved using only 14% of the grid points required by the uniform grid for
the OLG model.
Related Literature. In a groundbreaking work, Achdou et al. (2021) uses the finite difference
methods to solve both HJB and KF on the uniform grid in the continuous time. They also
provide a workaround for mass preservation on the non-uniform regular grid (Figure 1(b)),
but it is no longer the FDM and the patch does not have a theoretical foundation. Ahn
(2017), Ruttscheidt (2018) and Schaab and T.Zhang (2022) propose similar sparse FDM to
consistently solve the HJB equation on adaptive grids, but the KF equation still has to be
solved on the uniform-spaced grid. Ahn (2019) introduces the FVM to economics from the
mathematics/engineering literature to solve the KF equation on the adaptive sparse grid. The
applications in his paper, however, restrict to solving the KF equation in the partial equilibrium
and do not solve the HJB equation. Pflüger and Franzelin (2018) develop a method to preserve
the density function value range by extending the original sparse grid used in HJB with a
minimal extension set. The size of the extension set, however, differs among applications and
could be almost as large as the corresponding full grid. With the combination of FDM and
FVM, my approach not only preserves the original sparsity of FDM grid, but also manages to
compute the KF equation on an adaptively sparse grid. While my approach uses two set of
sparse grid points for computing the HJB and KF equations, respectively, those grids share a
same hierarchical space. Hence, the projection between these two sets of grids is straightforward
and of little computational cost, but rather facilitates the refinement of the coupled HJB-KF
system. I know of no other papers that have yet employed this useful combination.

The idea of this paper is implicitly related to recent progress of the Master equation in the
Mean Field Games literature (Bilal, 2023; Cardaliaguet et al., 2019). It consists of a single
Bellman equation that describes the entire movement of a system of interacting agents. This
Master Equation includes as state variables households’ idiosyncratic states and the distribution
of all other households of the economy. Based on this theoretical result, I consider whether
it is better to refine the grid in the complete system of both the HJB and KF equations,
rather than solely the dynamic programming of the value function. My approach builds on
Schaab and T.Zhang (2022)’s sparse FDM to solve the dynamic programming problem of high
dimensional models and extends their VFI algorithm to one that allows adaptively refined
KF equation rather than regular dense grid. Why can’t we simply use sparse FDM also for
solving the KF equation? The key reason is that the KF equation describes the movement
of the distribution, which is a measurement. A measurement is not simply a function in the
sense that measurements have to preserve mass and positivity. Once we start dealing with
non-uniform spaced grid (Figure 8(b) and 8(c)), FDM fails in preservation. FVM thus comes
to rescue. It has been around for decades in the math/engineer literature on discretization of
partial differential equations.

The rest of this paper proceeds as follows. Section 2 introduces hierarchical basis functions
and shows how to construct sparse grid for the HJB equation. Section 3 presents the FVM grid
and intuition of preserving the mass when approximating the distribution. Section 4 presents
a general equilibrium iteration algorithm on adaptive sparse grids with a Huggett economy.
Section 5 presents more economic applications to demonstrate the power of my approach.
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Finally, Section 6 discusses and concludes.

2 Hierarchical Spaces and Value Function Adaptation
Sparse grids emerge as finding the most efficient grid structure for approximating a given class
of functions to represent the solution of an economic model. For ease of exposition, I start by
studying the one-dimensional case. The goal is to approximate f : Ω → R on some grid G ⊂ Ω

that discretizes the domain. Denoting by l the level and i the index, a grid knot is constructed
as the numeric value xl,i = i ·2−l. Grid G is a collection of J such grid points and is represented
as a J × d matrix. The local mesh size is hl = 2−l. At a given level l, the maximum active
index is 2l − 1. Intuitively, an efficient grid can achieve a desired accuracy in approximating
f with a relatively few grid points, and the value of a single grid point is then its marginal
contribution to this approximation accuracy. Next, I present a basis function representation to
interpolate the approximation of f onto points in the domain Ω that are not members of G.
After formally developing the interpolation structure, we can systematically remove grid points
whose marginal contribution is low and add them where the local function approximation error
remains large.

Let us focus on the linear interpolation with piecewise linear hat functions φ′s as basis
functions.

φl,i(x) = φ

(
x− ihl

hl

)
, where φ(x) =

1− |x| for x ∈ [−1, 1]

0 otherwise
(1)

The subscript (l, i) indicates that the hat function is centered around the grid point xl,i. Denote
a collection of basis functions with a nodal index set of level l as {φl,i(x)|i ∈ Ilandx ∈ Ω}, where
Il = {i ∈ N |1 ≤ i ≤ 2l − 1}. We call the span of this set of basis functions the nodal basis.
Figure 1 (a) displays the hat functions {φl,i(x)} for level 3, where the grid point x3,2 takes the
value x3,2 = i ·2−l = 2 ·2−3 = 0.25. The associated hat function φ3,2(x) is centered on X = 0.25

and has symmetric support over x ∈ [x3,2 − 2−l, x3,2 + 2−l] = [0.125, 0.375]. Each knot xl,i in
grid G is therefore associated with a hat function φl,i(x) that is centered on it.

With these basis functions, we can conveniently express the piecewise linear interpolation
fl (blue line in Fig. 1) by the nodal basis on grid G of level l.

f(x) ≈ fl(x) =
∑
i∈l

αl,iφl,i(x) (2)

The function value of f is approximated by fl the sum of basis functions with coefficients
αl,i = f(xl,i). We can formalize the resulting approximation error as the distance f and fl

according to some norm ‖·‖. Equation (2) is referred to as the nodal representation of the
piecewise linear interpolant fl.

The basis of hat functions implicitly induces an approximation space of piecewise linear
functions,

Vl = span {φl,i(x)|i ∈ Il and x ∈ Ω} , where l < ∞,Vl ⊂ V . (3)
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Figure 1: Nodal basis functions

Approximating f ∈ V with its piecewise linear interpolant fl ∈ Vl incurs approximation error.
For any given l < ∞, the approximation space Vl is finite-dimensional, where the original
function space V is infinite-dimensional. Crucially, associating the vector of function values
αl,i = f(xl,i) with piecewise basis hat functions φl,i(x)’s enables us to characterize the distance
between f and fl in the underlying space V , which formalized the approximation accuracy of
grid G.

Figure 2: Hierarchical basis functions

Despite of its convenience of describing linear interpolations, the nodal basis is not able
to characterize the marginal contribution of a grid point to the overall accuracy of function
approximation. In order to develop an efficient procedure to systematically add grid points
with large contributions and remove others, we have to consider the hierarchical basis. It
restructures the basis hat functions by hierarchical orders and combines them to span the same
approximation space of the nodal basis.

Definition 1. (Hierarchical Basis / Hierarchical Spaces) The hierarchical basis of level
l comprises the set of piecewise linear hat functions{

φk,i(x)|k ≤ l, i ∈ IHl and x ∈ Ω
}

(4)
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where IHl = {i ∈ N |1 ≤ i ≤ 2l − 1 and i odd} is the hierarchical index set. The hierarchical
space of level l is defined as

Wl = span
{
φl,i(x)| i ∈ IHl and x ∈ Ω

}
. (5)

Figure 2 illustrates the construction of the hierarchical basis. At level l = 1, the hierarchical
space W1 is the span of the level 1 hat function φ1,1(x). At level l = 2, basis functions active
in hierarchical space W2 are those with odd indices, i.e., φ2,1(x) and φ2,3(x). At level l = 3,
the hierarchical space W3 is spanned by the basis functions of odd indices, namely {φ3,i(x)} for
i ∈ IH3 = {1, 3, 5, 7}. The approximation space of the hierarchical basis of level l = 3 is spanned
by the hierarchical basis functions of all lower levels by taking the union of the hierarchical
spaces Wk for k = 1, 2, 3:

Vl = ⊕k≤lWk. (6)

Notice that the nodal and hierarchical bases span the same function space Vl. Any function
is the span of the nodal basis is also in the span of the hierarchical basis. Further, both sets of
basis functions induce the same approximation space of piecewise linear interpolants.

fl(x) =
∑
i∈Il

αl,iφl,i(x)︸ ︷︷ ︸
nodal representation

=
∑
k≤l

∑
i∈IHk

αH
k,iφk,i(x)︸ ︷︷ ︸

hierarchical representation

(7)

In comparison to the nodal spaces, the hierarchical spaces Wl are disjoint, so the hierarchical
basis functions are invariant to the underlying grid structure. For example, if we start with
a grid G of level l = 3 and remove one of the nodes associated with the highest level 3, the
remaining hierarchical basis functions would not be affected. This guarantees stability of the
procedure of adding and removing grid points.

Hierarchical surpluses, αH
k,i’s, directly measure the contribution of basis functions to the local

function approximation. αH
k,i tells us how much a grid point xl,i contributes to the accuracy

residually, relative to the interpolant in the absence of this grid point. Adaptive grid refinement
relies on the hierarchical surpluses as measure of residual local approximation error. Let us
illustrate the grid adaptation procedure by Figure 3.

Panels (a) to (d) of Figure 3 present four successive steps of grid adaptation. In each panel,
εkeep and εadd are the adaptation thresholds plotted as horizontal lines. Panel (a) depicts the
hierarchical basis function of level 1, φ1,1(x), centered on the grid point x1,1 = 0.5, whose
hierarchical surplus αH

1,1 is f(0.5). Since it is larger than the threshold εadd, we adapt the grid
around knot x1,1 by adding its children x2,1 = 0.25 and x2,3 = 0.75 of level 2 in panel (b). Their
associated surpluses αH

2,1 and αH
2,3 are obtained by taking the difference between the function

values f(x2,i) (the dashed blue line) and the interpolant φ1,1(x2,i) (the solid blue) in panel (a).
In panel (b), we can see that the hierarchical basis functions of level 2 are added and both αH

2,1

and αH
2,3 are larger than εadd in absolute value. So we keep adding their children knots in panel

(c) and obtain smaller surpluses as levels get higher. In particular, αH
3,1 and αH

3,3 are larger
than εkeep, but smaller than εadd. We therefore keep these two knots without further refining.
The hierarchical surpluses αH

3,5 and αH
3,7, on the other hand, are smaller the εkeep in absolute
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Figure 3: Local grid adaptation

value, suggesting that the associated knots can be dropped. We end up with panel (d) and the
procedure converges.

By leveraging the hierarchical basis transformations, the HJB equation can be solved con-
sistently on adaptive sparse grids using FDM. I skip formal derivation of the sparse FDM and
refer to Schaab and T.Zhang (2022) for the interested.

3 Distribution Approximation and Cell Structure
The above approximation and grid adaptation procedure is widely used in solving the stochastic
dynamic programming problem, but is not suited to approximating distributions. Although
interpolation approximation is used as the standard method (Achdou et al., 2021) to compute
the distribution on the regular grid, it has some limitations in the context of sparse grid. A
core problem of the representation of high-dimensional functions on sparse grids is that they
do not maintain the range of function values. The interpolation of a strictly positive function,
e.g. probability density functions, can lead to negative function values of the interpolant.

Being incapable of preserving mass and ensuring positive density restricts the interpolation
approximation and FDM from solving the KF equation. So, we need to configure a different
grid adaptation scheme for computing the distribution. And I show that the FVM scheme
and the FDM scheme are nested in a common approximation space. Such that value/policy
approximations can be inherited by the FVM cell scheme as inputs for computing the KF
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equation.

3.1 Intuition

To get some intuition of connections between cells in the FVM scheme, consider the simplest
wealth dynamics of a household

dx = s(x)dt (8)

where s(x) is the saving function of household. The diagram of the behavior is given in Figure
4. Those cells with boundaries x1, ..., xn+1 are discretization of the domain of wealth x, each
of which corresponds to an approximation of a certain distribution bar. Denote the mass of
households in a given cell, [xi, xi+1], by Gi:

Gi =

∫ xi+1

xi

g(x)dx (9)

where g(x) is the density function. Assume that s > 0 for the cell under consideration. Over
the time step of ∆t, households will save s∆t and end with xprev + s∆t amount of wealth.
Households will then move from the ith cell to the (i+1)th cell (red arrows in the figure) if and
only if they were in the range of [xi+1−s∆t, xi+1] (shaded green in the figure). Letting gi denote
the density of the ith cell (height of the cell in figure), a total of gi · s∆t of households will move
from the ith to the (i + 1)th cell. gi ≈ Gi

xi+1−xi
under the assumption of uniform distribution

within the cell. The dynamics ends up with

Gi+1,t+∆t = Gi+1,t +
Gi,t

xi+1 − xi

s(xi+1)∆t

Gi,t+∆t = Gi,t −
Gi,t

xi+1 − xi

s(xi+1)∆t.

xi xi + 1 xi + 2

s ⋅ Δt

Gi
xi + 1 − xi

≈ gi

s ⋅ Δt

Figure 4: Diagram between histograms
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As households flow from cell i to cell i+1, the total mass of households is naturally preserved.
The positivity is also preserved, since the flow out of cell i is non-zero only if Gi,t is positive.
This is not guaranteed under the finite difference method, as it does not keep track of the volume
(mass) of grid cells. For higher dimension, each cell has more than two flowing directions. FVM
records and keeps the neighbor structure of the grid so that one can compute the flows between
cells through edges of cells. This is the most difficult part of the implementation. Figure 5
shows two top views of cell neighbor structure with directional edges for 2D cells.

3.2 Cell Structure

From the above simplest example, we can tell a different grid usage of the FVM scheme from
the interpolation scheme. In order to preserve the mass and positivity of distribution, FVM’s
protagonist is the cell constructed by grids rather than simply focusing on grid points. FVM
does not use hierarchical surpluses for grid refinement, but relies on the hierarchical structure
to inherit policy function approximations from the FDM scheme. Cell adaptation of FVM
scheme relies on the histogram volume that locates on the cell and saving flows across cells
(more details in Section 4).

(a) Regular Cell

Gi,jEi,j,1

Ei,j,2

Ei,j,3

Ei,j,4

(b) Cell with Adapted Neighbors

Gi,jEi,j,1

Ei,j,2

Ei,j,3

Ei,j,4

Ei,j,5Ei,j,6

Cross

Node

Edge

Figure 5: Neighbor structure of 2D cells

Taking one cell from a two-dimensional grid, the flows from the discretized cell are visualized
in Fig. 5. There are three types of grid points in a cell. Black cross points construct each cell
and are used to maintain cells’ structure. Blue node points locate at the center of each cell
and approximates the value of the state variable of each cell. Yellow edge points are at the
center of cell edges. They approximate the flow rate (e.g. savings) across cells. Only node and
edge points are used in the computation of the KF equation. Cross points are bones of cells
maintaining cell structure in cell split (refinement) and update hierarchical structure.

Proposition 1. (Common Hierarchical Approximation Space for Two Adaptation
Schemes) In a MFG system (paired HJB-KF equations), the function interpolation scheme
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and the finite volume scheme can be constructed and adapted within a common hierarchical
approximation space.

let lmax = max{lv, ld}. lv and ld are the largest level used in approximations of the value
function and the distribtion, respectively. Their adaptation schemes are nested in a common
approximation space, defined as

Vlmax = ⊕k≤lmaxWk, (10)

where
Wk = span

{
φk,i(x)| i ∈ IHk and x ∈ Ω

}
(11)

and IHk = {i ∈ N |1 ≤ i ≤ 2k − 1 and i odd} is the hierarchical index set.

Consequently, the policy solutions of solving HJB by FDM can be easily inherited to the
cell structure scheme used by FVM to solve the KF distribution. The combination of FDM and
FVM solves heterogeneous agent problems and speed up the computation of high dimensional
economics models. The common hierarchical structure of the grid points used by FDM and
FVM are central to my approach. The hierarchical structure allows the projection of policy de-
cisions approximated by FDM to the points used in describing the evolution of the distribution
by FVM. The latter then determines the evolution of prices being taken as the input in the HJB
equation. This interdependence of the HJB-KF equations promotes better grid refinement for
the MFG system: Refining the grid points used by solving the KF equation provides accuracy
gain for refining those used by solving the dynamic programming HJB equation, and vice verse.

4 Algorithm Illustration in a Simple Huggett Economy
FVM combined with FDM allows us to compute aggregate dynamics (captured by KF) consis-
tent with individual behaviors (by HJB) on the non-uniform grid. In this section, I will show
how to use this approach to solve a simple Huggett economy.

ρv1(x) = max
c

u(c) + v′1(x)(z1 + rx− c) + λ1(v2(x)− v1(x)) (12)

ρv2(x) = max
c

u(c) + v′2(x)(z2 + rx− c) + λ2(v1(x)− v2(x)) (13)

dg1
dt

= − d

dx
[s1(x)g1(x)]− λ1g1(x) + λ2g2(x) (14)

dg2
dt

= − d

dx
[s2(x)g2(x)]− λ2g2(x) + λ1g1(x) (15)

1 =

∫ ∞

x

g1(x)dx+

∫ ∞

x

g2(x)dx (16)

0 =

∫ ∞

x

x · g1(x)dx+

∫ ∞

x

x · g2(x)dx =: S(r) (17)

HJB equations can be solved using FDM by Schaab and T.Zhang (2022)’s method. Check out
their very detailed explanation. Here I will focus on the KF equation solved by FVM and then
show how to integrate it to FDM.
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4.1 Upwind Scheme of Finite Volume Method

FVM discretizes gj(x) with the mass in each discretization cell. Given {xi}i∈1,2,...,n+1 as the cell
boundaries, the distribution is approximated by the vector

−→
G = [G1,j G2,j ... Gn,j G1,−j G2,−j ... Gn,−j]

′

where Gi,j is the mass in the cell [xi, xi+1] given by

Gi,j =

∫ xi+1

xi

gj(x)dx (18)

Dynamics of the
−→
G is then

dGi,j

dt
=

∫ xi+1

xi

dg

dt
dx

=

∫ xi+1

xi

[
− d

dx
(sj(x) · gj(x))− λjgj + λ−jg−j

]
dx

= −(sj(x) · gj(x))|xi+1
xi

− λj

∫ xi+1

xi

gj(x)dx+ λ−j

∫ xi+1

xi

g−j(x)dx

= −sj(xi+1) · gj(xi+1) + sj(xi) · gj(xi)− λjGi,j + λ−jGi,−j

(19)

To finish the discretization, sj · gj and dgj
dx

need to be approximated in terms of Gi,j’s, xi’s. The
most natural one would be

gj(x) ≈
Gi,j

xi+1 − xi

, ∀x ∈ [xi, xi+1]

As the size of the cell decreases, the approximation error will decrease.
Following the upwind scheme of choosing the gj(x) from the direction of the flow, we put

above approximation together and the final discretization equation is

dGi,j

dt
=− sj(xi+1)

−

xi+2 − xi+1

Gi+1,j −
sj(xi+1)

+

xi+1 − xi

Gi,j

+
sj(xi)

−

xi+1 − xi

Gi,j −
sj(xi)

+

xi − xi−1

Gi−1,j

− λjGi,j + λ−jGi,−j

(20)

For any number x, the notation x+ means the positive part of x, i.e. x+ = max{x, 0}
and analogously x− = min{x, 0}. The expression is linear in

−→
G and can be written in matrix

notation as
d
−→
G

dt
= A

−→
G (21)
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where A is the matrix representation of eq. (20)

A =



y1,1 z1,1 0 . . . 0 λ2 0 0 . . . 0

x2,1 y2,1 z2,1 0 . . . 0 λ2 0 0 . . .

0 x3,1 y3,1 z3,1 0 . . . 0 λ2 0 0
... . . . . . . . . . . . . . . . . . . . . . . . . ...
0

. . . . . . xI,1 yI,1 0 0 0 0 λ2

λ1 0 0 0 0 y1,2 z1,2 0 0 0

0 λ1 0 0 0 x2,2 y2,2 z2,2 0 0

0 0 λ1 0 0 0 x3,2 y3,2 z3,2 0

0 0
. . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . 0 λ2 0 . . . 0 xI,2 yI,2



(22)

xi,j =
sj(xi)

+

xi − xi−1

, yi,j = −sj(xi+1)
+

xi+1 − xi

+
sj(xi)

−

xi+1 − xi

− λj, zi,j = − sj(xi+1)
−

xi+2 − xi+1

The linearity of Equation (21) allows one to leverage the numerical linear algebra. The
steady state distribution is obtained by solving A

−→
G = 0, which has a very fast solution

method. If a program constructs the matrix A, one can compute the dynamics of the dis-
tribution through simple matrix operations. Working with matrix operations vastly simplifies
the implementation compared to problem-specific interpolations especially for lifecycle/OLG
models (see Section 5.2).

4.2 Connections between Two Schemes of Grid Points

Since FVM has an extra task—preserving mass and positivity, it maintain a cell structure during
grid refinement. Given Proposition 1, we can simply project policy functions solved by FDM to
the FVM cell grid points and solve the KF equation accordingly. The projection is very efficient
and is a key step to ensure the mapping between individual behaviors and aggregation. This
mapping is guaranteed by the consistent hierarchical approximation structure of two schemes.
Although there is a possibility that we can extend the grid points used by FDM to preserve
the density value range (Pflüger and Franzelin, 2018), the size of the extension set, however,
differs among applications and could be almost as large as, no longer sparse at all, a full grid.
In contrast, my approach, although employs two adaptation schemes, has little efficiency lost,
while retains the advantage of both grid structure.

Figure 6 presents the saving functions and their projections to different grid knots. The first
sub-figure is the scatter solution of saving functions from the HJB equation. The second and
third one are projections of the solution of HJB to cell midpoints and edge midpoints used in
computing the KF equation by the FVM scheme. The successful projection can be visualized
by the superposition. It shows the successful mapping of policies between grid schemes within
a common hierarchical approximation space. For the simple Huggett model I consider, cell
midpoints and edge midpoints are degenerated on the same x axis. For higher dimension
models, e.g. the 2D case in Figure 5, edges are used to locate the flow direction between cells.
Edge midpoints are knots to approximate the function values within certain edge, capturing
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the flow rate at the edge. The rate of increase of the mass of a given cell is determined by the
direction and flow rate at the edge boundary multiplied by the size of the edge.
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(a) Saving functions on VFI grid Gvfi
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(b) Projection to cell nodes on Gkf
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Figure 6: Saving policy functions of the Huggett model

4.3 Adaptive Refinement Criteria and Algorithm of General Equi-
librium Iteration

Leveraging the combination of FDM and FVM, I present a KF augmented general equilibrium
iteration algorithm on the adaptive sparse grid space. The algorithm is facilitated by an outer
fixed point, in which the algorithm automatically adapts the FDM grid to increase (decrease)
resolution where the numerical approximation error in the value function remains large (small),
while refine the FVM grid to split cells adaptively based on an error metric of the uniformity
assumption of distribution within the cell. My proposed algorithm to solve general equilibrium
heterogeneous agent problems is summarized in Algorithm 1.

For the FDM procedure, reasonable knots are added according to the hierarchical surpluses
of the value function (see Section 2). Figure 6 presents that high resolution is added to the
non-linear region of saving policy curves, where households are near their borrowing limits and
are likely to be constrained. The strategy of FVM refinement is to leverage the cell structure
and to split cells where distribution mass and saving flow (drift) are high. The refinement
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metric is given by

metric ≈ Gi,j · drift
(
xi + xi+1

2

)
(23)

This metric is intuitive. If the drift is small, the uniformity assumption is accurate. otherwise,
If the mass of the cell is small, the expected gain from splitting the cell is small. Thus, the cell
should be split only when both the fraction of the cell and the drift are large.
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(a) Adaptive iteration = 2
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Figure 7: Wealth Distributions of the Huggett model

Figure 7 shows the solution of distributions in the Huggett model and its adaptation pro-
cedure. Grid cells are split in the steep region of the distribution. These refined cells lie in
roughly the same region where saving functions are adapted frequently, implying that a large
amount of distribution mass consists of constrained households. In Section 5.1, we will see a
different situation where the majority of households do not locate at the constrained region.
My approach is flexible enough to handle it.
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Algorithm 1: VFI and KF Iteration on FDM-FVM Sparse Grids
1 Choose level indices lVFI, lKF for the HJB and the KF equations respectively and

construct associated regular sparse grid GVFI
0 , GKF

0

2 Construct hierarchization operator H0 and projection matrix BH0

3 Construct sparse finite difference FD operators on GVFI
0 and sparse finite volume FV

operator on GKF
0

4 Initialize guess for interest rate r

5 for i ≥ 0 do
; /*the most outer loop is for adaptation*/

6 Initialize guess for the value function V 0 on GVFI
0

7 for k ≥ 0 do
; /*this loop is for general equilibrium*/

8 for n ≥ 0 do
9 Compute the transition matrix of the HJB equation AD(k,n) using sparse FD

operators
10 Solve linear system for V k,n+1

11 Continue if |V k,n+1 − V k,n| > εVFI

12 end
13 Project the policy function on GVFI

i to GKF
i

14 Compute the transition matrix of the KF equation AV(k) using sparse FV
operators

15 Solve linear system for distribution approximation gk+1

16 Compute the aggregate asset using projections of policies on GKF
i and gk+1

17 Update interest rate r and continue if the asset market does not clear
18 end
19 Compute hierarchical surplus αi,H = H iV i

20 Compute adaptation metrics metric ≈ gi · drift
21 If FDM adaptation criterion met, adapt grid and update to GVFI

i+1

22 If FVM adaptation criterion met, split cells and update to GKF
i+1

23 Reconstruct H i+1 and projection matrix BH i+1

24 Reconstruct sparse FD operators on GVFI
i+1 and the FV operator on GKF

i+1

25 end
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4.4 Combined Sparse Grid
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Figure 8: Different types of grids

Figure 8 presents four typical types of 2D grids used by both FDM and FVM. We have so
far discussed how to transform uniformly-spaced regular grid (Fig. 8(a)) to the adaptive sparse
grid (Fig. 8(c)). The non-uniform regular grid (Fig. 8(b)) is widely used in the quantitative
heterogeneous agent literature. When the range of asset holdings is so large, say, 0− 2000, we
often use log-spaced or log-square-spaced grids. This works well in practice, since empirically a
large amount of households hold wealth close to the zero point, while a few wealthy households
lie in the tail region of the wealth distribution.

My approach works on non-uniform regular grid, too. I call it the combined adaptive grid
(Fig. 8(d)). When facing large range of asset values, one can simply start with log-spaced or
log-square-spaced grids, and continue refining grids with my method. This works best if one
has prior knowledge of how the asset distributes across the range, such that we start with an
already sparse grid and refine grids faster.

5 Use Cases and Applications
In this section, I demonstrate the power of adaptive sparse grids methods with two heterogeneous-
agent applications in macroeconomics: a Krusell-Smith economy and an overlapping generation
model.
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5.1 Krusell Smith Model

I start with a variant of Krusell et al. (1998) model. There is a continuum of households with
preferences over consumption, given by

E0

∫ ∞

0

e−ρtu(ct)dt, (24)

where ρ is a common discount rate and ct the rate of consumption. Households face both
uninsurable idiosyncratic risk in the form of unemployment spells and aggregate risk. Insur-
ance markets are incomplete but households can trade capital, which they rent to firms. A
household’s budget constraint is given by

k̇ = (rkt − δ)kt + (1− τ)wtzt − ct (25)

subject to the short-sale constraint kt ≤ 0, where rkt − δ is the rental rate of capital net of
depreciation, τ is labor income tax. I assume that zt follows a two-sate Poisson process.

A representative and perfectly competitive firm uses capital and labor to produce the final
consumption good according to the aggregate production function

Yt = eZtKα
t N

1−α
t , (26)

where Zt is the aggregate TFP, and Kt and Nt denote the aggregate caption stock and labor. α
denotes the income state of capital. Under perfect competition, factor prices are simply given
by rkt = α Yt

Kt
and wt = (1− α) Yt

Nt
.

On the household side, I calibrate ρ = 0.05 and assume isoelastic preferences with u(c) =
1

1−γ
c1−γ and coefficient of relative risk aversion γ = 2. Households face uninsurable earnings risk

encoded in the two-state Markov process zt ∈ {zE, zU}. I model zt using a Poisson process with
arrival rates λ(z). For simplicity, I set zE = 1.2 and zU = 0.8, as well as λ(zE) = λ(zU) = 1/3.
For aggregate TFP risk, I set θ = 0.05 and σ = 0.007. On the production side, I calibrate a
capital share of α = 0.33 and set the rate capital depreciation to δ = 0.05.
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Figure 9: Demand and Supply Curves

Let us first look at the steady state with a stationary distribution. Figure 9 presents the
capital market clearing using demand and supply curves. The capital demand curve is derived
from the representative firm side, while the capital supply is the aggregates of heterogeneous
households’ cumulative savings. We can see that the supply curve is quite steep around where
equilibrium lies around, i.e. interest rate elasticity near the region of intercept (clearing) is high.
The aggregate asset supply rises sharply where the interest rate is close to the equilibrium. This
can cause trouble in that we need good approximations around where it matters. However,
merely refining the value function does not give useful insights of this region (the red region
of Fig. 9), since the aggregation of capital supply relies more on the capital distribution. The
adaptation process of the value function cannot target directly on it.
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Figure 10: Adaptation of Krusell-Smith Steady State

The distribution adaptation, however, does capture this key region by computing the metric
sj(k) · gj(k). This metric is intuitive. When the saving drift and the mass of the cell are large,
the agents who lie in this region are important for capital aggregation and therefore to this
economy. This insight cannot be obtained by solely adapting the value function. Figure 10
presents the general equilibrium adaptation. From Fig. 10(a)-(d), it is clear that the resolution
of distributions is increasing during grid refinement in the region of high elasticity of interest
rate (the interval between the two red dash lines). This guarantees the accuracy we need for
approximating the steady state.

Figure 11 presents the numerical solution of the Krusell-Smith model. I initialize the econ-
omy at the stationary equilibrium without uncertainty at time t = 0 and simulate the economy
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under a sequence of aggregate TFP shocks. The blue line corresponds to the time series of ag-
gregate capital, denoted Ksim

t . The yellow line, on the other hand, plots an unconditional and
out-of-sample time-0 forecast by households, denoted K lom

t . I compute the Den Haan (2010)
metric of the solution, which is defined as εDH

K = 100×maxt log{K lom
t −Ksim

t }. We can interpret
εDH
K as the largest percentage error in an unconditional forecast of capital given the realized

draw of shocks {Zt}. If εDH
K is small, households’ beliefs are consistent with the true law of

motion of the economy, which is a required condition for a rational expectations equilibrium.
With almost the same size of grid points, my approach achieves a lower εDH

K compared to the
standard sparse grid method.
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Figure 11: Results of Krusell Smith Simulations

5.2 Life-Cycle and Overlapping Generations

This section explains how to solve a finite-horizon life-cycle model in general equilibrium (that
forms overlapping generations). Such models (e.g. Huggett (1996)) are typically solved by
explicitly iterating over time or age dimension, which involves solving partial differential equa-
tions for every discretized time point. This often becomes the most computationally intensive
step of the algorithm.

With the continuous time setup, we can treat age as an exogenous state variable in the grid
just as the income risk. Unlike the standard approach, we do not need to explicitly iterate over
the N points used to discretize the age dimension. This forces a uniform grid of complexity
J ×N . The benefit is instead discretizing all n dimensions jointly on a sparse grid of including
age as another dimension. Adaptive grid refinement then efficiently places grid points in the age
dimension where policy functions feature most non-linearity and distribution functions feature
largest densities.

Although it does not take advantage of the special structure of deterministic aging (i.e., it
is easy to do backward and forward iterations from the end and beginning of life, respectively),
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modeling age in partial differential equations allows us to use implicit and semi-implicit schemes
to speed up the iteration. In practice, the number of iterations required for VFI convergence
under a semi-implicit scheme is small. For the model I show below, VFI convergence requires 7
iterations in n−1 dimensions excluding age and only 10 when adding age as an nth dimension.
The standard approach instead requires explicitly iterating from the boundary N times, where
N is the number of points used to discretize the age dimension.
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Figure 12: Adaptive Sparse Grid Representation of the Value Function

I illustrate the power of adaptive sparse grids for OLG problems in the context of a simple
one-asset life-cycle model. It is similar to the Aiyagari (1994) variant presented in Section 5.1,
except a life cycle. I denote the age of a household by at ∈ [a, ā], explicitly distinguished from
t. While t indexes the flow of time in the economy, age at denotes the age of a particular
household at calendar time t. I interpret a as the start of working life and ā as the time of
death. Households entering the economy at time 0 with a0 = a face finite horizon problem

V0 = E0

∫ ā−a

0

e−(ρ+τ(a))tu(ct)dt (27)

subject to the capital accumulation eq. (25) and the same labor productivity defined in Sec-
tion 5.1. τ(a) is an age-dependent death rate. The law of motion for the new state variable
age is trivially given by

ȧt = 1. (28)

The household consumption and saving policy functions now depend on both calendar time t

and age a separately

ct = ct(a, k, z)

st = st(a, k, z).
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The household’s lifetime value now solves the HJB equation

ρV1(a, k) =max
c

u(c1(a, k)) + ∂kV1(a, k)(wz1 + rk − c)∂aV1(a, k)

+ λ1(V2(a, k)− V1(a, k))

ρV2(a, k) =max
c

u(c2(a, k)) + ∂kV2(a, k)(wz2 + rk − c)∂aV2(a, k)

+ λ2(V1(a, k)− V2(a, k))

implying a first-order condition for consumption given by u′(cj(a, k)) = ∂kVj(a, k). The induced
Fokker-Plank equation is

∂

∂t
g1(a, k) = − ∂

∂k
[s1(a, k)g1(a, k)]−

∂

∂a
g1(a, k)− λ1g1(a, k) + λ2g2(a, k) (29)

∂

∂t
g2(a, k) = − ∂

∂k
[s2(a, k)g2(a, k)]−

∂

∂a
g2(a, k)− λ2g2(a, k) + λ1g1(a, k) (30)

I set a = 25 as the start of working life and ā = 80 as the time of death. The age-dependent
death probabilities τ(a) are set according to those used in Huggett (1996). The two-state
earnings risk Markov chain is the same as in Section 5.1.

In Figure 12, I plot the numerical solution of the stationary household value function for
the low earnings type, V1(a, k). Panel (a) plots the solution on a uniform grid, while panel
(b) exhibits that on an adaptive sparse grid using roughly the same number of grid points. It
is obvious from the comparison how the grid refinement procedure removes grid points from
regions where the value function is approximately linear, while adding them to regions featuring
substantial non-linearity. These regions include the most young age period, the retirement and
the near-death region. It is evident from Fig. 12(a) that a uniform age grid leads to substantially
approximation error in those important regions.
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Figure 13: Adaptive Sparse Grid Representation of Wealth Distributions
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Figure 13 shows how the adaptation procedure works for the wealth distribution. As people
in different parts of their life cycle have different wealth levels, the wealth refinements need to
differ based on their age, and the FVM method tracks the distribution well over the lifetime.
For the lifecycle problem, the refinement metric that performed best is

metric = (r · ki + w · zj − c∗j(a, ki)) ·Gij · (150− a) · (ki+1 − ki)

The notable difference compared to the previous section is the (150− a) term. We weigh more
on approximation of the young for two reasons. One is that the wealth distribution of young
is more concentrated and the density is steeper. Another is that the approximations on young
affect the values of older households. It is clear from the figure that throughout the lifecycle
people save for retirement when they are young, and gradually dissave upon retirement during
aging.

6 Conclusions
In this paper, I propose a new approach to solving heterogeneous agent models in continuous
time leveraging adaptive sparse grids. I develop a FDM-FVM method and a general equilibrium
iteration algorithm that are robust across a broad class of grids. My algorithm automatically
adapts grids and adds local resolutions in regions of the state space where both the value
function and the distribution approximation errors remains large. I demonstrate the power
of my approach in applications feature high-dimensional state spaces, occasionally binding
constraints, lifecycle and overlapping generations.
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