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Abstract

Sports betting markets can be considered strongly efficient if expected returns on all possible
bets on an event are equal. If this form of efficiency holds, then there is a direct mapping from
betting odds into probabilities of outcomes of sporting events. We compare two regression-based
methods for testing this form of efficiency that have been used in previous research: One that
uses normalized probabilities as the explanatory variable for event outcomes and one that uses
the inverse of the decimal odds. We show that the normalized probability method produces good
tests of the null hypothesis of strong market efficiency but that the inverse odds method does not,
with results biased against finding favorite-longshot bias. We illustrate this finding using large
datasets of bets and outcomes for tennis and soccer and also with realistic simulations.

Keywords: Betting Markets, Market Efficiency, Favorite-Longshot Bias

JEL Classification: G14, L83, Z20, Z21

*tadgh.hegarty@ucd.ie.
†karl.whelan@ucd.ie.



2

1. Introduction

Betting on sports is growing rapidly around the world due to mobile internet technology and legal

changes such as the 2018 US Supreme Court abolition of the federal prohibition on sports betting. To

understand betting markets, we need a model of how prices in these markets are set. One potential

model is that betting odds are similar to prices set in efficient financial markets, defined by Fama

(1970) as prices that reflect all available public information. In a betting context, this would imply

that bettors cannot use publicly available information to make higher expected returns betting on one

outcome in a contest instead of another. If this property holds, expected rates of return on all bets in

a contest are equal, which Thaler and Ziemba (1988) termed “strong-form betting market efficiency”.

Whether strong-form betting market efficiency holds matters not just for betting market partici-

pants but also for the use of information from betting odds by researchers to assess the probabilities

of outcomes from sporting events. If this form of efficiency holds, then there is a direct mapping

from betting odds into probabilities. These odds can then be used in quantitative analysis of sport-

ing events to create proxies for which team is more likely to win or for the amount of uncertainty

about the outcomes (for example, Forrest and Simmons, 2002 and Paul, Weinbach, Borgesi and Wil-

son, 2009).

In this paper, we consider two different econometric tests of strong-form betting market efficiency.

One of the methods was originally presented by Pope and Peel (1989) and has also been used recently

by Angelini and De Angelis (2019) and Elaad, Reade and Singleton (2020). It regresses the outcome

of bets (one if the bet is successful and zero otherwise) on the inverse of the decimal odds for the

bet, where decimal odds of D imply the bettor gets a payment of D from a one unit bet, inclusive of

the original stake. The inverse of the odds is used in these regressions as a proxy for the probability

of the bet being successful. However, because bookmakers earn a gross profit margin, the sum of

the inverse decimal odds on bets on an event is greater than one, meaning inverse odds cannot

be interpreted as probabilities. For this reason, the second method, used for example by Forrest

and Simmons (2005, 2008), Strumbelj and Sikonja (2010) and Hegarty and Whelan (2023), regresses

outcomes on “normalized probabilities” that re-scale the inverse odds to sum to one.

We show that normalized probabilities are not just a convenient way to estimate probabilities.

Under the conditions required for strong-form efficiency (bookmakers having unbiased estimates of

the underlying probabilities and using them to set odds so they believe all bets on a contest have

equal expected returns), normalized probabilities are unbiased estimates of the true probabilities.

This means econometric specifications regressing outcome dummies on normalized probabilities

provide a correct test of the null hypothesis of strong-form market efficiency and, conversely, that

the inverse odds method does not. We show that the inverse odds method is biased towards accept-

ing the null hypothesis of market efficiency even if the betting market features a favorite-longshot

bias inefficiency so that returns on favorites are greater than returns on longshots.
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The paper is structured as follows. Section 2 discusses definitions of betting market efficiency.

Section 3 describes the link between betting odds under strong efficiency and the expected outcomes

of sporting events and derives results on properties of the two econometric tests of market efficiency.

Section 4 illustrates our results using data from online fixed-odds betting on soccer and tennis. Sec-

tion 5 presents simulation-based evidence. We simulate two types of data generating processes. In

the first, the market is efficient and the expected return to each bet on an event is the same and in the

second, the bookmaker sets odds to have a favorite-longshot bias. We show normalized probability

regressions will tend to provide the correct answers while the inverse odds regressions do not.

2. Defining Market Efficiency in Betting

Thaler and Ziemba (1988) defined two forms of betting market efficiency: A strong and weak form.

Weak form: This is the property that no bets should have positive expected value. There has been a

large literature attempting to discover pricing anomalies big enough to allow bettors to earn profits.

However, even if profitable strategies can be discovered in a particular data sample, it is less clear

that these strategies work out of sample, either because the evidence for a strategy’s profitability

reflected random sampling variability or because bookmakers adapt their business models to stop

losing money due to these strategies. A recent comprehensive analysis of potential profit-generating

opportunities in betting on European soccer by Winekelmann, Ötting, Deutscher and Makarawicz

(2023) summarized its findings as follows: “most inefficiencies leading to profitable opportunities to bettors
are short-lived and do not occur persistently over time or systematically across leagues.” So, on balance, we

think the evidence points towards betting markets generally satisfying this weak form of efficiency.

Testing this version of efficiency is not the main focus of our paper but we will briefly return later to

whether the evidence we present on betting markets suggests violations of weak-form efficiency.

Stronger form: Thaler and Ziemba framed this form of efficiency in terms of pari-mutuel betting as

“All bets should have expected values equal to (1–t) times the amount bet” where t is the track take from

pari-mutuel operators. The vast majority of modern betting now takes the form of fixed-odds betting

where bookmakers offer customers odds and, once agreed, that customer’s odds do not change after

other bettors place subsequent bets. In this context, Thaler and Ziemba’s strong form of efficiency

can be framed as simply “all bets on the same event placed at the same time should have the same

expected rate of return.” As noted above, this form of efficiency fits well with the traditional Fama-

style definition of financial market efficiency because it implies it is not possible to use publicly

available information to improve your return by picking one team in a contest over another.

Our focus will be on testing this stronger form of efficiency for online fixed-odds betting markets.
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One could define an even stronger form of efficiency which requires the return on all bets across differ-
ent events at the same time to have the same returns. However, it is well known that this property does

not hold. It is widely documented, for example, that bookmakers’ margins are lower for English Pre-

mier League bets than for the top soccer leagues in other countries (Winkelmann et al, 2023) and that

margins increase for lower divisions of the soccer club “pyramid.” Similarly, Lyócsaa and Fedorko

(2014) report that margins are lower for Grand Slam tennis tournaments than for other tournaments

and also that margins decline as tournaments progress to their later stages. There are many possible

explanations for these patterns, such as lower research costs for bookmakers for higher-profile events

or more intense competition among bookmakers for popular events. We will note just that this form

of efficiency does not hold and it is not the form we are testing.

3. Regression-Based Tests of Market Efficiency

Consider a series of sporting events, indexed by i, each with K possible mutually-exclusive out-

comes. The K outcome dummies Yij that equal one if event j occurs and zero otherwise have the

property that

Yij =

1 with probability Pij

0 with probability 1 − Pij
(1)

where
∑K

j=1 Pij = 1. The expected values of the outcome variables are given by E (Yij) = Pij . If the

probabilities were observable, then the outcomes could be described by a linear probability model of

the form

Yij = Pij + νij (2)

where
∑K

j=1 νij = 0 and the νij are uncorrelated across the events indexed by i.

We assume that bookmakers formulate unbiased estimates of the underlying probabilities

PBij = Pij + ψij (3)

where
∑K

j=1 ψij = 0 and the ψij are uncorrelated across the events indexed by i. This means the

outcome variable can also be described by the linear probability model

Yij = PBij + εij (4)

where εij = νij + ψij .

Bookmakers are assumed to use their probability estimates to formulate decimal odds Oij on

outcome j in event i, meaning a one unit bet returnsOij (inclusive of the original stake) if the bet wins

and zero otherwise. In general, bettors and researchers do not observe the bookmaker’s assumed
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probabilities PBij . However, under the assumption of strong-form market efficiency, the bookmaker

sets the odds so that they believe all bets on the same event have an equal expected rate of return,

and this means their probability estimates can be calculated.

To see this, note that the payout on a one unit bet on outcome j is

πij =

Oij if Yij = 1

0 if Yij = 0
(5)

The bookmaker’s expected value of this payout is

E (πij) = OijE (Yij) = OijP
B
ij (6)

Market efficiency implies that the bookmaker’s expected payouts on all unit bets on event i equal a

common value less than one, which we denote as µi

OijP
B
ij = µi < 1 i = 1, 2, ...,K (7)

This assumption provides a link between the odds and the bookmaker’s probability estimates of the

form

PBij =
µi
Oij

(8)

The requirement that the probabilities sum to one implies the following

K∑
j=1

µi
Oij

= 1 (9)

which can be re-expressed as

µi =
1∑K

j=1
1
Oij

(10)

This expected payout is the inverse of the traditional “overround” calculation (the sum of the inverse

odds) that bettors use to assess the extent of the bookmaker’s margin for a game. With µi calculated,

the bookmaker’s probabilities can now be directly computed as

PBij =
µi
Oij

=
1∑K

j=1
1
Oij

1

Oij
= PNij (11)

where PNij denotes the standard “normalized” probabilities which re-scale the inverses of the deci-

mal odds to sum to one. This normalization approach is widely used as a convenient way to estimate

probabilities but what seems to be less commonly understood is that, under the specific assumption

of strong-form betting market efficiency, the normalized probabilities equal the bookmaker’s proba-
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bilities.

From equation 4, this means we can formulate a test of the null hypothesis of strong-form market

efficiency using a regression with normalized probabilities as the explanatory variable

Yij = α+ βPNij + εij (12)

and testing α = 0 and β = 1.1 This is, of course, an example of the classic Mincer-Zarnowitz regres-

sion (1969) for evaluating the accuracy of forecasts. A finding of β > 1 implies returns for favorites

exceed returns for longshots while β < 1 implies the opposite. Alternatively, one can run the regres-

sion

Yij − PNij = α+ γPNij + εij (13)

and test α = γ = 0.

In contrast, Pope and Peel (1989) and others have tested efficiency with the following regression

Yij = α+ β

(
1

Oij

)
+ εij (14)

This approach has been explained as follows. Pope and Peel assumed that bookmakers’ margins

implied an additive constant term such that

1

Oij
= Pij + κij (15)

where the term κij is due to the bookmaker’s margin and is drawn from a random distribution with

mean κ̄. Then the specification in equation 14 can be understood as

Yij = α+ βκ̄+ βPij + β (κij − κ̄) (16)

This specification features the average additive margin as part of the intercept and a zero-mean resid-

ual term, β (κij − κ̄). The test of strong-form market efficiency becomes just a test of β = 1, i.e.

whether the coefficient on inverse odds in the regression given by equation 14 equals one.

A problem with this approach is that the null hypothesis of strong-form market efficiency implies

the link between true probabilities and inverse odds is the multiplicative relationship shown in equa-

tion 11 rather than additive relationship in equation 15. This means that, under the null, the inverse

odds are a multiple (greater than one) of the true probability, so using them in regressions to explain

1Linear probability models can be objected to because they can predict probabilities outside the [0, 1] interval but,
in this case, the null hypothesis is that the expected value of Yij increases one for one with PNij and not the nonlinear
relationships implied by Logit/Probit models. Also, any predicted value that lay outside the [0, 1] interval would itself
result from a violation of the null hypothesis. However, we find similar results to those reported here in relation to the
statistical significance of coefficients when we use these alternatives.
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Yij will produce values of β that are downward biased.

More formally, the regression using inverse odds is related to the true specification under the null

hypothesis as follows

Yij = α+ βPij + εij

= α+ β

(
1

Oij

)
+ β

(
Pij −

1

Oij

)
+ εij

= α+ β

(
1

Oij

)
+ β

(
1 − 1

µi

)
Pij + εij (17)

Because
(

1 − 1
µi

)
< 0, there is a negative correlation between the dependent variable 1

Oij
and the

βPij

(
1 − 1

µi

)
element of the error term, resulting in downward-biased estimates of β. Since favorite-

longshot bias implies β > 1, these tests are biased away from finding this bias and towards finding

the opposite. Similarly, if efficiency is tested with a regression of the form

Yij −
1

Oij
= α+ γ

(
1

Oij

)
+ εij (18)

and a test of γ = 0, the procedure is biased towards finding a negative γ.

4. Evidence

Here, we describe the data we use for outcomes and odds for professional soccer and tennis matches.

We introduce the data and then provide results for the two regression techniques that we discussed.

4.1. Data

We use two datasets made available by gambling expert Joseph Buchdahl. From www.football-

data.co.uk, we obtain outcomes and average closing odds on home wins, away wins and draws

across a wide range of bookmakers for 84,230 European professional soccer matches, spanning the

2011/12 to 2021/22 seasons for 22 European soccer leagues (listed in the appendix). From www.tennis-

data.co.uk, we have outcomes and average closing odds for 55,988 professional men’s and women’s

tennis matches on the ATP and WTA tours between 2011 and 2022.2

These datasets also report the maximum available odds on contests, which have been used by

some researchers to assess whether there are profitable betting opportunities. We use average rather

than maximum odds for two reasons. First, our main focus is on testing the strong-form efficiency

assumption of equal returns across different bets in the same contest and, for this purpose, average

2We excluded 16 matches from the original dataset because the reported odds had an overround below 1, meaning a
bettor could lock in a certain win by taking both bets. These were likely mis-reported.
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rather than maximum odds are going to be more reflective of the returns that bettors are getting

from their stakes. Second, it is not clear that maximum odds data are actually useful for assessing

real-world betting strategies. Maximum odds will often tend to be “loss leaders” posted with the

intention of attracting new customers. They usually come with restrictions on how much money can

be placed. In addition, those who choose to regularly place bets at the best available odds will run

the risk of being cut off by retail bookmakers.3

We divided all possible bets (252,690 on soccer and 111,976 on tennis) into deciles according to

their decimal odds. The charts in Figure 1 show average payouts for a unit bet for each decile of odds.

The data clearly suggest that these betting markets do not satisfy strong-form efficiency. Average

payouts decline as the odds rise, dropping off particularly for the upper deciles of odds. This pattern

of low average payouts for longshot bets is somewhat larger for tennis than for soccer. Standard t

tests for differences of means across these deciles strongly reject the hypotheses of the mean payouts

for the lower deciles of odds being the same as for the higher deciles.

The failure of the strong efficiency assumption implied by the favorite-longshot bias described

Figure 1 does not, however, provide evidence against weak efficiency for these markets. Average

payouts per unit bet for all deciles are below one, indicating that on average bets in all deciles lose

money. This result still holds if we divide the data into smaller quantiles. While average payouts rise

as odds fall, the average payout per unit bet for even the lowest one percent of odds is 0.997 for the

soccer data and 0.985 for the tennis data.
3Bookmakers’ practices of customer profiling and stake restrictions are documented by Davies (2022a, 2022b).
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Figure 1: Average payout rates for bets by deciles of the decimal odds (1 = lowest odds, 10 = highest
odds)

(a) Soccer

(b) Tennis
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4.2. Regressions

Table 1 reports estimation of equation 13 (for normalized probabilities) and equation 18 (for inverse

odds) for both the soccer and tennis datasets. Dummy variables that equal one with a probability

P have a variance of P (1 − P ), implying the error terms will feature heteroskedasticity. We follow

Pope and Peel (1989) in using Weighted Least Squares (WLS) for estimation with the variances ap-

proximated by the Pij(1 − Pij) where Pij is the relevant probability proxy used in the regression

(either normalized probabilities or inverse odds). Because each match shows up multiple times in

the regressions and there are correlations between the errors for outcomes of individual matches (i.e.

the εij terms are correlated for each specific value of i), we cluster standard errors at the match level.

The results confirm our theoretical prediction about how these two estimators should behave.

The normalized probability test firmly rejects the hypothesis of market efficiency for both datasets

with positive and significant estimates of γ̂. In contrast, the inverse odds method does not reject the

hypothesis of efficiency for the soccer market and produces a much weaker rejection for the tennis

data, with the estimated γ̂ still fairly close to zero. Based on the raw evidence in Figure 1 illustrating

favorite-longshot bias in both our datasets, we think the normalized probability method delivers the

correct answer and the inverse odds method is less able to detect the true pattern in the data.

As with the informal approach of charting average returns in Figure 1, while the favorite-longshot

bias reported in these regressions implies strong-form efficiency does not hold, it does not provide

any evidence against weak form efficiency. Recalling that the expected return on a one unit bet is

E (πij) = OijE (Yij), one can calculated predicted values of Yij from the regression model in equation

12 and multiply by the odds to obtain an expected payout. The standard errors for the predicted

values of Yij can also be used to construct confidence intervals for the expected payout.

For the soccer data, using the estimated regression with normalized probabilities, we find that

only 343 bets out of 252,690 (0.14% of the sample) have predicted payouts on unit bets that are

greater than one, implying an expected profit. And, of these, only 14 bets (0.01% of the sample)

have 95% confidence intervals for predicted returns in which all values exceed one. Using the same

method for the tennis data, the same exercise reveals 94 bets out of 111,976 (0.08% of the sample)

have predicted payouts above one but none have 95% confidence intervals for predicted returns in

which all values exceed one. If we instead use the inverse-odds regressions, equation 14, to construct

predicted payouts, none of the predicted payouts exceed one.4 From this we can conclude that while

bets on favorites lose less money than bets on longshots, betting on even extreme favorites is not a

profit-making strategy.

4While the inverse-odds regressions produce biased estimates of β, the dependent variable being of the form
PN
ij

µi
rather

than PNij means they can still produce noisy but unbiased forecasts of Yi provided the µi terms are randomly distributed
across the events indexed by i.
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Table 1: Testing market efficiency with normalized probabilities and inverse odds
(Estimation of equations 13 and 18. Estimated via weighted least squares regression. Standard

errors in brackets)

Normalized Probabilities Inverse Odds

Dependent Variable: Yij − PNij Yij − 1
Oij

Explanatory Variable: PNij
1
Oij

A. Soccer Data

α̂ -0.025 -0.026

(0.0024) (0.024)

γ̂ 0.075*** 0.009

(0.007) (0.007)

F test of α = γ = 0 106.5*** 1.85

N 252,690 252,690

B. Tennis Data

α̂ -0.033 -0.036**

(0.003) (0.003)

γ̂ 0.066*** 0.0166**

(0.006) (0.006)

F test of α = γ = 0 186.61*** 8.39**

N 111,976 111,976
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5. Simulation Evidence

Here, we provide some additional evidence for the properties of the two methods by simulating

cases in which the data generating process features an efficient betting market and cases in which

it features a favorite-longshot bias pattern. Because we know “the truth” in these cases, we can see

how well the two methods do in reflecting this truth in their estimates.

We create four simulated datasets, two calibrated to match features of our soccer data set and

two calibrated against the tennis data. For each sport, our first simulated dataset is based on the

assumption that betting markets are efficient. It takes a set of simulated probabilities P̃ij and assumes

that bookmakers set decimal odds as

Õij =
µi

P̃ij
(19)

where µi is a match-specific expected payout that applies to all bets in a match. The second simulated

dataset assumes that bookmakers set odds as

Õij =
µij

P̃ij
(20)

where µij is a bet-specific expected payout that depends positively on Pij . In other words, the book-

maker sets odds to have a favorite-longshot bias pattern with higher returns for favorites.

The simulations are calibrated to match features of our two datasets as follows.

1. We construct a set of outcome probabilities for a number of matches matching the number

in our datasets. Specifically, we use the normalized probabilities from our two datasets to

construct a sample of model probabilities, P̃ij for each data set. We set the probabilities for

simulated match i by randomly drawing from individual matches in the dataset using boot-

strapping with replacement (e.g. if the bootstrapped random number is 254, then we use the

normalized probabilities from match number 254 for the ith simulated match).

2. For each simulated match, we construct two sets of odds as described above. For the case where

the market is efficient, we set µi using the formula in equation 10 for the corresponding match

used to create the probabilities. For the case where there is favorite-longshot bias, we set µij
by sorting the normalized probabilities into deciles and then setting the bet-specific expected

payout µij equal to the average payoff for bets in the decile that the relevant P̃ij is in.

3. Finally, for each simulated match, we generate random numbers between zero and one to get

simulated match outcomes consistent with the specified probabilities. For example, for soc-

cer, we divided [0, 1] into three ordered subsets of size corresponding to the three simulated

probabilities to determine the ex ante chance of a home win, away win and draw.

We use this method to construct 10,000 simulated datasets of each type. For each of the four
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simulated datasets, we run regressions of the form of equations 13 and 18 and calculate t statistics

testing γ = 0. Table 2 reports median t-statistics for these tests of γ = 0. Figures 2 to 5 display

histograms of the t statistics for each of the four simulated cases: an efficient market calibrated to

the soccer data (Figure 2), a favorite-longshot bias pattern calibrated to the soccer data (Figure 3), an

efficient market calibrated to the tennis data (Figure 4) and a favorite-longshot bias pattern calibrated

to the tennis data (Figure 5).

When the data generating process features our calibration of the favorite-longshot bias, the test

based on normalized probabilities correctly rejects the null hypothesis of market efficiency in all sim-

ulations, with the median t-statistic closely matching the regression results in Table 1. When the

market is efficient, the median t-statistic from the normalized probability method is approximately

zero and these statistics reject the null at conventional Type 1 error rates (see the upper panels of

Figures 2 and 4). In contrast, the inverse odds method nearly always rejects the hypothesis of market

efficiency when it is true, suggesting instead there is a reverse favorite-longshot bias with large nega-

tive median t-statistics. When the data generating process features favorite-longshot bias, its median

t-statistic is not statistically significant, so the tests fail to correctly reject the null hypothesis most of

the time. For the soccer data calibration, this method rejects the null hypothesis of efficiency 13% of

the time and does so for the tennis data 47% of the time (see the lower panels of Figures 3 and 5).

Table 2: Median t-statistics testing H0 : γ = 0 in equations 13 and 18 for 10,000 simulations

Normalized Probabilities Inverse Odds

A. Soccer Data

Data Generating Model: Efficiency -0.013 -11.811

Data Generating Model: Favorite-Longshot Bias 11.382 0.52

B. Tennis Data

Data Generating Model: Efficiency 0.009 -10.99

Data Generating Model: Favorite-Longshot Bias 12.79 1.78
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Figure 2: Distribution of simulated t statistics testing γ = 0 in equation 13 from 10,000 simulations
under the null hypothesis of market efficiency calibrated to the soccer data

(a) Normalized Probabilities

(b) Inverse Odds
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Figure 3: Distribution of simulated t statistics testing γ = 0 in equation 13 from 10,000 simulations
under the null hypothesis of favorite-longshot bias calibrated to the soccer data

(a) Normalized Probabilities

(b) Inverse Odds
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Figure 4: Distribution of simulated t statistics testing γ = 0 in equation 13 from 10,000 simulations
under the null hypothesis of market efficiency calibrated to the tennis data

(a) Normalized Probabilities

(b) Inverse Odds
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Figure 5: Distribution of simulated t statistics testing γ = 0 in equation 13 from 10,000 simulations
under the null hypothesis of favorite-longshot bias calibrated to the tennis data

(a) Normalized Probabilities

(b) Inverse Odds



18

6. Conclusions

Our findings point to three different conclusions that have relevance for the analysis of sports betting

markets and their use as proxies in quantitative studies of sporting events.

First, from a market efficiency perspective, our results suggest that the fixed-odds betting markets

for soccer and tennis that we have examined do not satisfy the strong-form definition of betting

market efficiency which requires the expected return on each outcome in a contest to be the same. The

markets feature a substantial favorite-longshot bias pattern such that expected returns on favorites

are higher than expected returns on longshots. However, this bias does not allow bettors to earn

profits so this pattern does not provide evidence for a failure of weak-form market efficiency.

Second, from the perspective of sports analytics, the failure of strong-form efficiency means bet-

ting odds in these markets cannot be used as unbiased proxies for the win probabilities of contestants

or to construct unbiased mesures of the uncertainty of outcomes.

Third, from a methodological perspective, we have shown that regressions testing strong-form

market efficiency should follow the approach of Forrest and Simmons (2005, 2008) and others and

use normalized probabilities rather than inverse-odds as the explanatory variable when explaining

match outcomes.
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Table 3: Description of the 22 football leagues included in the dataset

Nation Number of Divisions Division(s)

England 5 Premier League, Championship, League 1 & 2, Conference

Scotland 4 Premier League, Championship, League 1 & 2

Germany 2 Bundesliga 1 & 2

Spain 2 La Liga 1 & 2

Italy 2 Serie A & B

France 2 Ligue 1 & 2

Belgium 1 First Division A

Greece 1 Super League Greece 1

Netherlands 1 Eredivisie

Portugal 1 Primeira Liga

Turkey 1 Super Lig


