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Two Dynamic Models of Distributive and Financial Endogenous Cycles 

 

John Cajas Guijarro1 

 

Abstract 

This paper proposes two theoretical dynamic models (Models A and B) to analyze the 

interaction between distributive and financial cycles in capitalist economies. Model A 

assumes investment equals savings at the aggregate level but assumes a delay between 

capitalists saving their income and distributing it to firms for reinvestment, leading to credit 

demand from a rentier class. Model B extends and modifies Model A by representing 

capitalist incentives to invest through an investment function and accounting for the dynamic 

effect of non-zero excess demand. Analytical proofs for the existence of limit cycles in both 

models are provided using Hopf bifurcation theorems for four-dimensional and five-

dimensional dynamical systems, and numerical simulations identify stable and limit cycles, 

unstable cycles, damped oscillations, and multiple relevant patterns. The results suggest that 

the stability of cycles is significantly influenced by the distribution of bargaining power 

between workers and capitalists, as well as the behavior of the central bank and the rentier 

class. Furthermore, the paper suggests two methods to identify financing regimes within 

capitalist cycles and concludes by providing insights for future analytical and empirical 

research. 
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1. Introduction 

The study of economic fluctuations in capitalism is complex due to the simultaneous 

interaction of multiple factors. One such example is the interaction between distributive 

cycles resulting from the struggle between a profit-seeking capitalist class and a working 

class focused on reducing labor exploitation, and financial cycles that may emerge from the 

dynamics associated with debt used to finance investment, along with potential movements 

of the interest rate depending on the dynamics of debt and inflation. These cycles are not 

isolated but instead interact with each other during the process of capitalist reproduction. One 

approach to studying this interaction is through the combination of insights from the Marxian 

model of distributive cycles proposed by Goodwin (1967) and financial components inspired 

by the works of Minsky (1976, 1986). This combination can be constructed by representing 

distributive and financial patterns using high-dimensional dynamical systems. Several 

attempts to study the interaction between distributive and financial cycles from this 

perspective have been made, including the works of Keen (1995, 2009), Graselli and Costa 

Lima (2012), Sordi and Vercelli (2014), Stockhammer and Michell (2017), Rammelt (2019), 

among others.2 

This paper aims to contribute to this discussion about the interaction between distributive and 

financial cycles by formulating two theoretical dynamical models. The first model (Model 

A) represents an economy without excess demand, where investment equals savings at the 

macroeconomic level. However, we assume that there is a time delay between the moment 

capitalists receive and save their income and the moment they distribute it to firms for 

reinvesting. As a result, capitalist firms require debt to sustain their cash flows during 

economic activities, leading them to demand credit from a rentier class that borrows money 

and receives an interest rate. Model A also incorporates a central bank that aims to control 

inflation by applying a monetary policy that can adjust the general level of interest rates. We 

obtain a four-dimensional dynamical system from this model, analytically prove the 

existence of stable limit cycles by applying the Hopf bifurcation theorem (Appendix 1), and 

use numerical simulations to identify some relevant patterns generated by the parameters of 

the model that influence the stability and volatility of cycles.  

The second model (Model B) extends and modifies the formulation of Model A by 

incorporating excess demand and the inequality between investment and savings. Model B 

assumes that capitalist incentives to invest can be represented through an investment 

function, while a capacity utilization rate adjusts due to the existence of excess demand. In 

this framework, firms require debt not only to sustain their cash flows during their economic 

activity but also to finance their investment beyond the limits of capitalist savings. Model B 

includes a central bank that adjusts the interest rate, as well as the reaction of the rentier class 

to an increasing leverage ratio. From this model, we obtain a five-dimensional dynamical 

system and illustrate the existence of stable cycles using numerical simulations. Additionally, 

we analytically prove the existence of limit cycles for a simplified version of the model by 

 
2 For a literature review of Goodwin-Minsky models, as well as other Minsky models, see Nikolaidi and 

Stockhammer (2018). 



applying the Hopf bifurcation theorem (Appendix 3). From numerical simulations of Model 

B, we identify relevant patterns associated with the stability of cycles and propose a 

preliminary approach to identifying hedge, speculative, and Ponzi financing regimes within 

the cycles. 

The paper is structured as follows. Section 2 presents the formulation of Model A, explains 

the construction of the four-dimensional dynamical system, demonstrates the existence of 

limit cycles (based on the mathematical demonstration presented in Appendix 1), and 

discusses relevant patterns associated with its stability. Section 3 extends Model A to Model 

B, allowing the existence of excess demand and an investment function. We explain the 

construction of the five-dimensional dynamical system and illustrate the existence of 

potentially stable cycles and other relevant patterns within the model using numerical 

simulations (and referencing the mathematical demonstration presented in Appendix 3). 

Section 3 also introduces a preliminary approach for identifying financing regimes within the 

cycles generated by Model B. Finally, Section 4 concludes the paper.  

2. Model A: Cycles without Excess Demand 

 

2.1.Formulation of Model A 

In this section, we present the formulation of Model A, which is based on the assumption of 

a closed economy without government that includes three social classes (capitalists, workers, 

and rentiers) and a central bank. The economy produces a single good that can be used for 

either consumption or investment. Additionally, we assume that the total capital stock 

consists of only fixed capital that does not depreciate. In line with Kalecki (1971) and Dutt 

(1987), we propose that firms determine the price level 𝑝 by adding a markup factor 𝑧 to their 

primer costs, which only include the wage bill, as indicated by the behavioral price equation 

below: 

𝑝 = (1 + 𝑧) (
𝑤

𝑞
)     (1) 

Where 𝑤 is the average money wage rate paid to workers and 𝑞 is the labor productivity rate, 

which is defined as the ratio between real output 𝑄 and the level of employment 𝐿: 

𝑞 =
𝑄

𝐿
     (2) 

In this model, we assume that the economy has already reached its macroeconomic 

equilibrium, with the magnitude of aggregate real savings 𝑆 being equal to the magnitude of 

aggregate real investment 𝐼. We also assume that capitalists are the only social group that 

saves their income, which is equivalent to the aggregate net profit Π earned from their firms. 

These assumptions can be represented by the following equation: 

𝑆 =
Π

𝑝
= 𝐼 = 𝑔𝐾     (3) 



Where Π/𝑝 is the real net profit, 𝐾 is the aggregate stock of fixed capital and 𝑔 is its growth 

rate. While the aggregate level of investment is equal to that of savings, our model assumes 

that there is a time lag between the moment when capitalists receive their income and save 

it, and when they distribute it to firms for reinvestment. Consequently, capitalist firms need 

to obtain new credit to maintain their cash flows during economic activities. This could mean 

that individual firms may require new credit to hire labor, rent capital, and start production 

before capitalists decide to return profits to firms. Thus, this time lag leads firms to seek 

credit from a rentier class that borrows money and charges an interest rate.3 We assume that 

firms pay an interest rate to a rentier class that provides credit and uses all of its income for 

consumption. These assumptions imply that the aggregate net profit Π that capitalists receive 

from their firms equals the difference between production income and cost associated with 

wages and interest payments on debt, as indicated by: 

Π = 𝑝𝑄 − 𝑤𝐿 − 𝜏𝑝𝐷     (4) 

Where 𝜏 is the nominal interest rate and 𝐷 is the total stock of real debt measured in terms of 

the price level 𝑝. Given this definition of Π, we can represent the net profit rate 𝑟 as: 

𝑟 =
Π

𝑝𝐾
     (5) 

Similarly, we can define the capital-output ratio as: 

𝜎 =
𝐾

𝑄
     (6) 

Here we assume 𝜎 is constant and depends on technological factors. Also, we define the 

leverage ratio 𝑓 as the ratio between the stock of debt and the stock of fixed capital: 

𝑓 =
𝐷

𝐾
     (7) 

If we assume that workers and rentiers use all their income for consumption while firms 

invest, then we can define the real aggregate excess demand 𝐸𝐷 as: 

𝐸𝐷 = (
𝑤

𝑝
)𝐿 + 𝜏𝐷 + 𝐼 − 𝑄     (8) 

Where 𝑤/𝑝 is the real wage rate. Substituting (3) and (4) into (8) verifies that 𝐸𝐷 = 0, that 

is, there is no excess demand. This assumption, as well as the equality between investment 

and savings, will change in Model B.  

 
3 We follow Meirelles and Lima (2006) in assuming that the rentier class is a price maker in the loan market, 

meaning that the supply of credit is demand driven at a given interest rate.   



At this point, it is possible to obtain some relevant deductions.4 For instance, by rearranging 

the terms of equation (1), we can express the real wage rate as: 

𝑤

𝑝
=

𝑞

1 + 𝑧
     (9) 

Similarly, combining (2), (4) to (7), and (9) gives an expression for the net profit rate: 

𝑟 = (
1

𝜎
) (

𝑧

1 + 𝑧
) − 𝜏𝑓     (10) 

As firms invest, they adjust the labor employed in production. In this sense, we define the 

employment rate 𝑙 as: 

𝑙 =
𝐿

𝑁
= (

1

𝑞𝜎
) (

𝐾

𝑁
)     (11) 

Where 𝑁 is the labor supply. Taking logarithms and time derivatives of (11) gives: 

𝑙̇

𝑙
= 𝑔 −

𝑞̇

𝑞
−

𝑁̇

𝑁
     (12) 

Where 𝑔 = 𝐾̇/𝐾.5 We assume that both labor productivity and labor supply have constant 

rates of growth respectively defined by: 

𝑞̇

𝑞
= 𝜃, 0 ≤ 𝜃 < 1     (13) 

𝑁̇

𝑁
= 𝑛, 0 ≤ 𝑛 < 1     (14) 

Substituting (3), (10), (13), and (14) into (12) gives a dynamic equation for the employment 

rate 𝑙: 

𝑙̇

𝑙
= −(𝜃 + 𝑛) + (

1

𝜎
) (

𝑧

1 + 𝑧
) − 𝜏𝑓     (15) 

As suggested by Goodwin (1967) in the context of distributive cycles, and by Stockhammer 

and Michell (2017) in the context of cyclical models with financial instability, changes in the 

bargaining power of the working class occur as the employment rate adjusts, exerting a 

significant influence on economic and financial cycles (reserve army effect from a Marxian 

perspective). To incorporate these insights into the model, we use a formulation close to 

Desai (1973) by assuming that the growth rate of the money wage depends on the 

employment rate and the inflation rate: 

 
4 A notebook in Wolfram Mathematica containing all mathematical deductions and numerical simulations 

presented in this paper is available as supplemental online material. Interested readers can access the notebook 

to verify the calculations and simulations. For further details or questions, please contact the author. 
5 For any variable 𝑥, 𝑥̇ = 𝑑𝑥/𝑑𝑡 represents its time derivative, and 𝑥̇/𝑥 represents its growth rate. 



𝑤̇

𝑤
= −𝛾 + 𝜌𝑙 + 𝜂 (

𝑝̇

𝑝
) , 0 < 𝜌, 𝛾, 𝜂 < 1     (16) 

Where 𝛾 represents an autonomous tendency of the money wage to fall while 𝜌 and 𝜂 

respectively collect the effect on the money wage associated with the employment rate and 

inflation. These parameters can be interpreted as proxies for capturing the distribution of the 

bargaining power between workers and capitalists in determining the growth rate of the 

money wage. Thus, a decrease (increase) in 𝜌 or 𝜂, or an increase (decrease) in 𝛾, would 

indicate an enhanced (weakened) bargaining power for capitalists relative to the working 

class. As a result, the wage rate deaccelerates (accelerates) and capitalists achieve a higher 

(lower) labor exploitation.6 

Regarding inflation, we adopt the approach proposed by Dutt (1987), whereby firms adjust 

the price level when the actual markup 𝑧 they achieve in the economy differs from their 

desired markup 𝜁. The desired markup reflects the capitalist perceived degree of monopoly 

power and bargaining power relative to the working class. Thus, when the actual markup 

deviates from the desired markup, firms adjust the price level to maintain their profit margins. 

This idea is formalized through the following behavioral equation: 

𝑝̇

𝑝
= ℎ(𝜁 − 𝑧), ℎ > 0     (17) 

Where ℎ accounts for the inflationary tendency generated by the reaction of capitalist firms 

to their perceived ‘markup gap’ defined by the term (𝜁 − 𝑧).  

Now, if we take logarithms and time derivatives of (1), we get: 

𝑝̇

𝑝
=

𝑧̇

1 + 𝑧
+

𝑤̇

𝑤
−

𝑞̇

𝑞
     (18) 

Substituting (13), (16), and (17) into (18) gives a dynamic equation for the actual markup 𝑧: 

𝑧̇

1 + 𝑧
= 𝛾 + 𝜃 + ℎ(1 − 𝜂)(𝜁 − 𝑧) − 𝜌𝑙    (19) 

Concerning the dynamics of debt, we draw on the work of Keen (1995) and Meirelles and 

Lima (2006) to analyze the cash flows of capitalist firms. This analysis indicates the need to 

balance the sources of funds with their uses. In other words, the sum of net profits and new 

borrowing should be equal to the funds employed for investment and debt service (interest 

payments). This cash flow identity can be expressed in real terms as follows: 

Π

𝑝
+ 𝐷̇ = 𝑔𝐾 + τ𝐷     (20) 

 
6 For similar interpretations within the context of Marxian models of endogenous cycles, see Cajas Guijarro 

and Vera (2022) and Cajas Guijarro (2023). 



Substituting (3) into (20) gives 𝐷̇ = τ𝐷, that is, the growth rate of the stock of debt is equal 

to τ. Therefore, in the context where investment equals savings, the aggregate level of the 

new borrowing undertaken by firms is ultimately equivalent to the interest payments 

associated with credit extended by the rentier class, which serves to support the cash flows 

of firms during the time lag between the receipt of profits by capitalists and their subsequent 

distribution to firms for reinvestment.  

Now, if we note that taking logarithms and time derivatives of equation (7) gives: 

𝑓̇

𝑓
=

𝐷̇

𝐷
− 𝑔     (21) 

Then, by substituting (2), (3), (5), (7), (10), and (20) into (21), we get a dynamic equation for 

the leverage ratio 𝑓: 

𝑓̇

𝑓
= 𝜏(𝑓 + 1) − (

1

𝜎
) (

𝑧

1 + 𝑧
)     (22) 

Finally, we include the existence of a central bank that operates intending to achieve a 

specific inflation rate 𝜋𝑜. To attain this inflation-targeting objective, the central bank has the 

authority to adjust the general level of interest rates through monetary policy that affects the 

decisions of the rentier class. For the sake of simplicity, we express this concept using a 

simplified behavioral equation: 

𝜏̇ = 𝑚 (
𝑝̇

𝑝
− 𝜋𝑜) , 𝑚 > 0     (23) 

Where 𝑚 represents the reaction of the central bank to the gap between the actual inflation 

rate and its inflation target (‘inflation gap’). Thus, substituting (20) into (26) results in a 

dynamic equation for the interest rate 𝜏: 

𝜏̇ = 𝑚[ℎ(𝜁 − 𝑧) − 𝜋𝑜]     (24) 

Equations (15), (19), (22), and (24) represent a four-dimensional dynamical system for the 

state variables 𝑙, 𝑧, 𝑓, and 𝜏. This system is hereby referred to as Model A. 

2.2.Equilibrium, stability, cycles, and relevant patterns 

In the steady state 𝑙̇ = 𝑧̇ = 𝑓̇ = 𝜏̇ = 0, Model A has one non-trivial equilibrium point 

(𝑙∗, 𝑧∗, 𝑓∗, 𝜏∗) defined by: 

𝑙∗ =
𝛾 + 𝜃 + 𝜋𝑜(1 − 𝜂)

𝜌
     (25) 

𝑧∗ =
ℎ𝜁 − 𝜋𝑜

ℎ
     (26) 

𝑓∗ =
ℎ𝜁 − 𝜋𝑜

𝜎(𝜃 + 𝑛)(ℎ + ℎ𝜁 − 𝜋𝑜)
− 1     (27) 



𝜏∗ = 𝜃 + 𝑛     (28) 

This equilibrium point (𝑙∗, 𝑧∗, 𝑓∗, 𝜏∗) is positive when: 

ℎ >
𝜋𝑜

𝜁
, 𝜃 + 𝑛 <

ℎ𝜁 − 𝜋𝑜

𝜎(ℎ + ℎ𝜁 − 𝜋𝑜)
     (29) 

Appendix 1 proves that, if 𝛾, 𝜎, and ℎ are sufficiently high, and 𝜃, 𝑛 are sufficiently low, 

then the equilibrium point (𝑙∗, 𝑧∗, 𝑓∗, 𝜏∗) of Model A is locally asymptotically stable when: 

𝑚 < 𝑚𝐻𝐵 =
(𝜃 + 𝑛)𝐻4[𝐻5 − 𝐻4(𝜃 + 𝑛)]

𝜎𝐻1
2𝐻2𝐻3

     (30) 

Where: 

𝐻1 = ℎ + ℎ𝜁 − 𝜋𝑜 ,   𝐻2 = ℎ𝜁 − 𝜋𝑜 − 𝜎(𝜃 + 𝑛)(ℎ + ℎ𝜁 − 𝜋𝑜),   𝐻3 = 𝛾 + 𝜃 + 𝜋𝑜(1 − 𝜂) 

𝐻4 = 𝜎𝐻1
2(1 − 𝜂) − 𝐻2, 𝐻5 = ℎ𝐻3 − 𝐻1𝐻2(1 − 𝜂) 

Additionally, Appendix 1 applies the Hopf bifurcation theorem for four-dimensional 

dynamical systems to prove that Model A exhibits limit cycles near its positive equilibrium 

point when 𝑚 is close to the critical value 𝑚𝐻𝐵, as defined in expression (30). Figure 1 

illustrates the presence of these limit cycles when 𝑚 ≈ 𝑚𝐻𝐵. These limit cycles can be 

interpreted as arising from a combination of distributive cycles, which involve clockwise 

oscillations in the phase plane of the employment rate 𝑙 and the actual markup 𝑧,7 and 

financial cycles, which involve clockwise oscillations in the phase plane of the leverage ratio 

𝑓 and the interest rate 𝜏. Furthermore, Figure 2 indicates that these cycles increase their 

amplitude and display heightened volatility as the central bank reacts more strongly to its 

perceived ‘inflation gap’ (𝑚 ≈ 𝑚𝐻𝐵 + 𝜀), while Figure 3 portrays the existence of damped 

oscillations with decreasing volatility when the central bank exhibits a weaker reaction (𝑚 ≈

𝑚𝐻𝐵 − 𝜀).8 In other words, these findings suggest that when the central bank endeavors to 

manage inflation by adjusting the interest rate, it has the potential to exacerbate (reduce) the 

volatility of cycles when the magnitude of its reaction surpasses (goes below) the critical 

value 𝑚𝐻𝐵. 

  

  

 
7 This observed pattern closely aligns with the distributive struggle elucidated by Goodwin (1967), albeit with 

the distinction that in this paper, we use the markup as a state variable instead of the wage share.  
8 Appendix 2 presents two-dimensional parametric plots that describe the effect of multiple values of 𝑚 on 

simulated trajectories of Model A. 



Figure 1. Simulation of Model A with limit cycles at critical value (𝑚 ≈ 𝑚𝐻𝐵) 

1A. Time series 

 

1B. Two-dimensional parametric plots 

 

Note: Simulation of Model A with parameter values ℎ = 1, 𝜂 = 0.5, 𝜎 = 2.725, 𝜃 =

0.016, 𝑛 = 0.016, 𝜋𝑜 = 0.02, 𝜁 = 0.15, 𝛾 = 0.227, 𝜌 = 0.28,𝑚 = 𝑚𝐻𝐵 ≈ 0.35634 and 

initial conditions 𝑙0 = 0.88, 𝑧0 = 0.1, 𝑓0 = 0.2, 𝜏0 = 0.028. Equilibrium point: 𝑙∗ =

0.9035, 𝑧∗ = 0.13, 𝑓∗ = 0.31931, 𝜏∗ = 0.032.   



 Figure 2. Simulation of Model A with unstable cycles above the critical value (𝑚 ≈

𝑚𝐻𝐵 + 𝜀) 

2A. Time series 

 

2B. Two-dimensional parametric plots 

 

Note: Simulation of Model A with parameter values ℎ = 1, 𝜂 = 0.5, 𝜎 = 2.725, 𝜃 =

0.016, 𝑛 = 0.016, 𝜋𝑜 = 0.02, 𝜁 = 0.15, 𝛾 = 0.227, 𝜌 = 0.28,𝑚 = 𝑚𝐻𝐵 + 𝜀 ≈ 0.35634 +

0.01 and initial conditions 𝑙0 = 0.88, 𝑧0 = 0.1, 𝑓0 = 0.2, 𝜏0 = 0.028. Equilibrium point: 

𝑙∗ = 0.9035, 𝑧∗ = 0.13, 𝑓∗ = 0.31931, 𝜏∗ = 0.032.  



Figure 3. Simulation of Model A with damped oscillations below the critical value 

(𝑚 ≈ 𝑚𝐻𝐵 − 𝜀) 

3A. Time series 

 

3B. Two-dimensional parametric plots 

 

Note: Simulation of Model A with parameter values ℎ = 1, 𝜂 = 0.5, 𝜎 = 2.725, 𝜃 =

0.016, 𝑛 = 0.016, 𝜋𝑜 = 0.02, 𝜁 = 0.15, 𝛾 = 0.227, 𝜌 = 0.28,𝑚 = 𝑚𝐻𝐵 − 𝜀 ≈ 0.35634 −

0.05 and initial conditions 𝑙0 = 0.88, 𝑧0 = 0.1, 𝑓0 = 0.2, 𝜏0 = 0.028. Equilibrium point: 

𝑙∗ = 0.9035, 𝑧∗ = 0.13, 𝑓∗ = 0.31931, 𝜏∗ = 0.032.  



Based on the definition of 𝑚𝐻𝐵 in equation (30), we can estimate how different parameters 

impact the range of values within which the central bank can effectively address its perceived 

‘inflation gap’ without exacerbating the volatility of cycles. In this sense, Figure 4 presents 

numerical estimations of the critical value 𝑚𝐻𝐵 as a function of each parameter of Model A, 

while holding other factors constant. The figure illustrates that the ability of the central bank 

to control inflation is less restricted (𝑚𝐻𝐵 increases) when there is a higher capital-output 

ratio (𝜎), higher growth rates of labor productivity (𝜃) and supply (𝑛), a higher target inflation 

rate for the central bank (𝜋𝑜), and a higher autonomous tendency of the money wage to fall 

(𝛾). Conversely, the ability of the central bank to control inflation is more limited (𝑚𝐻𝐵 falls) 

when firms increase their desired markup (𝜁) or their reaction to the perceived ‘markup gap’ 

(ℎ), or when inflation has a greater effect on the money wage (𝜂). Additionally, the effect of 

the employment rate on the money wage (𝜌) does not affect 𝑚𝐻𝐵. 

Figure 4. Relationship between critical value 𝑚𝐻𝐵 and Model A parameters 

 

Note: Each plot shows the estimated relationship between the critical value 𝑚𝐻𝐵 and a 

specific parameter of Model A, while keeping all other parameter values fixed at those listed 

in the caption of Figure 1. The selected parameter is varied to ensure that 𝑚𝐻𝐵 remains 

positive.  

These results provide important insights into the relationship between the distribution of 

bargaining power between capitalists and workers and the ability of the central bank to 

control inflation by adjusting the interest rate. Here, we can remember that an increase in 𝛾 

or a decrease in 𝜂 implies a situation where capitalists have a relatively stronger bargaining 

power compared to workers, enabling them to slow down the wage rate and intensify labor 

exploitation. Under such circumstances, the central bank can more easily combat inflation 



without exacerbating distributive and financial cycles, as reflected in a higher value of 𝑚𝐻𝐵 

as shown in Figure 4. This finding suggests a possible convergence between the objectives 

of the capitalist class and the central bank, both aimed at reducing the bargaining power of 

the working class to maintain stability in capitalist cycles. However, the results presented in 

Figure 4 also highlight potential contradictions between the capitalist objective of achieving 

a target markup and the goal of the central bank of adjusting the interest rate to control 

inflation, as the critical value 𝑚𝐻𝐵 falls when 𝜁 or ℎ increases. 

In summary, the analysis of Model A indicates that the stability of distributive and financial 

cycles is closely linked to the balance of power between capitalists and workers. The interest 

of the central bank in achieving economic stability appears to align with the broader objective 

of the capitalist class to sustain and increase labor exploitation by reducing the bargaining 

power of workers. Nevertheless, this convergence is complex and not always consistent due 

to the inflationary pressures generated by the capitalist pursuit of profitability, which can 

conflict with the stabilization objective of the central bank. 

After analyzing how interactions between workers, capitalists, and the central bank may 

influence distributive and financial cycles, we can now consider the potential impact of the 

rentier class. Similar to Keen (1995) and Charles (2008), we assume that an increasing 

leverage ratio could incentivize the rentier class to raise the interest rate. Building upon this 

observation, we propose a modification to the dynamical equation of the interest rate that 

takes into account both the influence of the central bank and the influence of the rentier class. 

To keep the equation simple, we use the following form: 

𝜏̇ = 𝑚 (
𝑝̇

𝑝
− 𝜋𝑜) + 𝜆 (

𝑓̇

𝑓
) , 𝑚 > 0, 𝜆 > 0     (31) 

Where 𝜆 represents the reaction of the rentier class to an increasing leverage ratio.9 

Substituting (22) into (31) gives a new simplified dynamic equation for the interest rate: 

𝜏̇ = 𝑚[ℎ(𝜁 − 𝑧) − 𝜋𝑜] + 𝜆 [𝜏(𝑓 + 1) − (
1

𝜎
) (

𝑧

1 + 𝑧
)]     (32) 

Thus, we propose a modified Model A, defined by equations (15), (19), (22), and (32). 

Although this modified model has the same equilibrium point as its original version, it 

presents an additional layer of complexity in the dynamical system. For instance, in equation 

(32) the term 𝜆 introduces the possibility of unstable dynamics in the interest rate 𝜏 when the 

leverage rate 𝑓 is high enough to satisfy the following condition: 

𝑓 > (
1

𝜎𝜏
) (

𝑧

1 + 𝑧
) − 1     (33) 

Indeed, numerical simulations of the modified Model A reveal that, as the reaction of the 

rentier class to an increasing leverage ratio emerges and becomes more prominent (higher 𝜆), 

 
9 In their original formulations, Keen (1995) and Charles (2008) assume that the interest rate is a linear function 

of either the debt-output ratio or the debt-capital ratio, respectively.  



the limit cycles previously identified in the original version of the model when 𝑚 ≈ 𝑚𝐻𝐵 

exhibit increased amplitude and volatility, as illustrated in Figure 5.10 The results suggest that 

the objective of the rentier class to gain a higher interest rate when the leverage ratio increases 

tends to exacerbate the volatility of cycles, thereby creating a potential contradiction with the 

stabilizing objective of the central bank.  

Figure 5. Simulations of modified Model A for 𝑚 ≈ 𝑚𝐻𝐵 and increasing 𝜆  

 

Black: 𝜆 = 0. Gray: 𝜆 = 0.003. Note: Simulation of modified Model A with parameter 

values ℎ = 1, 𝜂 = 0.5, 𝜎 = 2.725, 𝜃 = 0.016, 𝑛 = 0.016, 𝜋𝑜 = 0.02, 𝜁 = 0.15, 𝛾 =

0.227, 𝜌 = 0.28,𝑚 = 𝑚𝐻𝐵 ≈ 0.35634 and initial conditions 𝑙0 = 0.88, 𝑧0 = 0.1, 𝑓0 =

0.2, 𝜏0 = 0.028. Equilibrium point: 𝑙∗ = 0.9035, 𝑧∗ = 0.13, 𝑓∗ = 0.31931, 𝜏∗ = 0.032. For 

a detailed illustration of the effect of an increasing 𝜆 on distributive and financial cycles, see 

Appendix 3. 

  

 
10 Appendix 3 presents two-dimensional parametric plots that illustrate the impact of varying values of 𝜆 on 

simulated trajectories of the modified model A. 



3. Model B: Cycles with Excess Demand  

 

3.1.From Model A to Model B: Investment and capacity utilization 

In Model A, we have assumed that investment equals savings and, therefore, firms require 

new borrowing only to sustain their cash flows during their economic activity due to a time 

delay between the moment capitalists obtain their profits and save them, and the moment 

they distribute them to firms for reinvestment. However, it is also possible that firms use new 

borrowing to finance and expand their investment activities beyond the limits of capitalist 

savings. As indicated by Sordi and Vercelli (2014), in such a situation, the goods market will 

present a disequilibrium state, resulting in a non-zero excess demand. In this section, we 

present a new model, named Model B, which modifies Model A to include the possibility of 

financing investment through debt and the existence of a non-zero excess demand. We 

present Model B in a similar order as we did with Model A. Thus, we retain the assumption 

that firms use markup pricing, where the price level 𝑝 is still defined by equation (1), while 

labor productivity 𝑞 is still given by equation (2). Following Dutt (1988, 1990), we replace 

equation (3) by assuming that firms define their growth rate of fixed capital 𝑔 through the 

following investment function: 

𝑔 = 𝛼 + 𝛽𝑟 + 𝜒𝑢, 0 < 𝛼 < 1, 0 ≤ 𝛽 < 1     (34) 

In this investment function, 𝛼 is the autonomous component of investment (animal spirit 

effect), 𝛽 reflects the capitalist motivation to invest in response to a given net profit rate 𝑟 

(profitability effect), and 𝜒 represents the capitalist motivation to invest in response to a given 

rate of capacity utilization 𝑢 (demand effect). Building upon Keen (1995) and Grasselli and 

Costa Lima (2012), we assume that capitalist firms finance a fraction of their investment 

through debt beyond the limits of savings, thereby modifying the previous assumption of 

savings and investment equality in Model A. Consequently, the growth rate of capital defined 

by equation (34) does not need to ensure the balance between 𝑆 and 𝐼.  

Concerning the aggregate net profit Π and the net profit rate 𝑟, they are still defined by 

equations (4) and (5), respectively. In contrast, following Dutt (1990), to represent the 

economic effect of the excess demand associated with the discrepancy between savings and 

investment, we replace equation (6) by defining the capacity utilization rate 𝑢 through the 

following ratio:  

𝑢 =
𝑄

𝐾
     (35) 

Where 𝑢 will become a new state variable that will adjust when the goods market is not in 

equilibrium. Regarding the leverage ratio 𝑓 and the real excess demand 𝐸𝐷, they are defined 

by equations (7) and (8), respectively. Additionally, the real wage rate 𝑤/𝑝 remains the same 

and still verifies equation (9). To obtain the equation for the profit rate, we substitute 

equations (2), (4), (7), (9), and (35) into (5), which yields: 

𝑟 =
𝑢𝑧

1 + 𝑧
− 𝑓𝜏     (36) 



This expression closely resembles equation (10), but replaces the inverse of the capital-output 

ratio 𝜎 with the capacity utilization rate 𝑢. Similarly, by substituting 𝑢 for the inverse of 𝜎 in 

equation (11), we obtain the following expression for the employment rate 𝑙: 

𝑙 =
𝐿

𝑁
= (

𝑢

𝑞
) (

𝐾

𝑁
)     (37) 

Taking logarithms and time derivatives of (37) gives: 

𝑙̇

𝑙
=

𝑢̇

𝑢
+ 𝑔 −

𝑞̇

𝑞
−

𝑁̇

𝑁
     (38) 

In equation (38), we observe that the dynamics of the growth rate of 𝑙 must take into account 

the growth rate of 𝑢, as 𝑢 is a new state variable that will vary over time depending on the 

dynamics of the goods market. Following Dávila-Fernández and Sordi (2019), we assume 

that capacity utilization has a positive effect on the growth rate of productivity due to 

learning-by-doing processes that generate economies of scale in the usage of fixed capital 

and multiple spillover effects. These processes are induced by the economic expansion 

represented by a higher capacity utilization rate, in line with the Kaldor-Verdoorn effect 

(Verdoorn 1949, Kaldor 1966). This pattern is captured through the following expression: 

𝑞̇

𝑞
= 𝜃0 + 𝜃1𝑢, 0 < 𝜃0 < 1, 0 < 𝜃1 < 1     (39) 

Where 𝜃0 accounts for an autonomous tendency of productivity to grow and 𝜃1 is the 

influence of the rate of capacity utilization on the acceleration of productivity. Concerning 

the growth rate of labor supply, we keep the assumption that it is equal to an exogenous 

constant, as specified in equation (14).11 Using equations (14), (34), (36), (38), and (39), we 

derive a new version of the dynamic equation for the employment rate 𝑙, which now includes 

the effect of capacity utilization: 

𝑙̇

𝑙
= 𝛼 − (𝜃0 + 𝑛) + 𝑢 (

𝑧𝛽

1 + 𝑧
+ 𝜒 − 𝜃1) − 𝛽𝑓𝜏 +

𝑢̇

𝑢
     (40) 

We retain equations (16), (17), and (18) from Model A to describe the behavior of the growth 

rates of the money wage 𝑤, the price level 𝑝, and their impact on the markup 𝑧. By 

substituting equations (16), (17), and (39) into (18), we obtain a new dynamic equation for 

the markup 𝑧:  

𝑧̇

1 + 𝑧
= 𝛾 + 𝜃0 + 𝜃1𝑢 + ℎ(1 − 𝜂)(𝜁 − 𝑧) − 𝜌𝑙     (41) 

As mentioned before, in contrast to Model A, in Model B we do not assume that investment 

equals savings. Instead, we introduce the capitalist motivations described in the investment 

function defined by equation (34). Nevertheless, we retain the cash flow identity defined in 

 
11 An alternative approach to modeling labor supply is to endogenize it based on the growth rate of capital, as 

suggested by Harris (1983). 



equation (20) to derive debt dynamics. By combining this cash flow identity with expressions 

(2), (5), (7), (21), (34), and (36), we derive a new dynamic equation for the leverage ratio 𝑓: 

𝑓̇

𝑓
= 𝜏[2 − 𝛽(1 − 𝑓)] −

𝑢𝑧 − (1 − 𝑓){𝑢[𝜒 + (𝛽 + 𝜒)𝑧] + 𝛼(1 + 𝑧)}

𝑓(1 + 𝑧)
     (42) 

In terms of the interest rate, we adopt the dynamic equation (31), which takes into account 

both the response of the central bank to its perceived “inflation gap” and the response of the 

rentier class to changes in the leverage ratio. By substituting equations (17) and (42) into 

(31), we obtain a revised dynamic equation for the interest rate 𝜏: 

𝜏̇ = 𝑚[ℎ(𝜁 − 𝑧) − 𝜋𝑜]

+ 𝜆 {𝜏[2 − 𝛽(1 − 𝑓)] −
𝑢𝑧 − (1 − 𝑓){𝑢[𝜒 + (𝛽 + 𝜒)𝑧] + 𝛼(1 + 𝑧)}

𝑓(1 + 𝑧)
} (43) 

The inequality between investment and savings implies the existence of excess demand in 

the goods market. As highlighted by Sordi and Vercelli (2014), it is crucial to take into 

account the dynamic effect of this excess demand on economic activity. Similar to Dutt 

(1988), we assume that the capacity utilization rate 𝑢 increases (decreases) in response to a 

positive (negative) excess demand. We operationalize this assumption through the following 

behavioral equation: 

𝑢̇

𝑢
= 𝜙 (

𝐸𝐷

𝐾
) , 𝜙 > 0     (44) 

Where 𝜙 represents the speed at which the growth rate of capacity utilization adjusts to 

excess demand, measured as a proportion of the stock of capital for mathematical 

convenience. Substituting expressions (1), (2), (7), (8), (34), (35), and (36) into (44) results 

in a dynamic equation for the capacity utilization rate 𝑢: 

𝑢̇

𝑢
= 𝜙 {𝛼 + 𝑢 [𝜒 −

𝑧(1 − 𝛽)

1 + 𝑧
] + (1 − 𝛽)𝑓𝜏}     (45) 

Finally, by substituting (45) into (40) we can rewrite the dynamic equation for 𝑙 as: 

𝑙̇

𝑙
= 𝛼(1 + 𝜙) − (𝜃0 + 𝑛) + 𝑢 {𝜒(1 + 𝜙) − 𝜃1 −

𝑧[𝜙(1 − 𝛽) − 𝛽]

1 + 𝑧
}

+ [𝜙(1 − 𝛽) − 𝛽]𝑓𝜏     (46) 

Equations (41), (42), (43), (45), and (46) form a five-dimensional dynamical system that 

describes the state variables 𝑙, 𝑧, 𝑓, 𝜏, and 𝑢. We refer to this system as Model B, which 

distinguishes it from Model A due to its ability to allow for investment to be partially 

financed through debt, by accounting for the inequality between investment and savings. 

Additionally, Model B takes into account the adjustment of capacity utilization as a response 

to excess demand in the goods market. 

3.2.Equilibrium, cycles, and relevant patterns 



In the steady state 𝑙̇ = 𝑧̇ = 𝑓̇ = 𝜏̇ = 𝑢̇ = 0, Model B has one non-trivial equilibrium point 

given by: 

𝑙∗ =
𝜃1{𝛼 − (1 − 𝛽)[𝑛 − 𝛾 − 𝜋𝑜(1 − 𝜂)]} − [𝛾 + 𝜃0 + 𝜋𝑜(1 − 𝜂)]𝜒

𝜌[(1 − 𝛽)𝜃1 − 𝜒]
     (47) 

𝑧∗ =
ℎ𝜁 − 𝜋𝑜

ℎ
     (48) 

𝑓 =
(ℎ𝜁 − 𝜋𝑜)[𝛼 − (𝑛 + 𝜃0)(1 − 𝛽)]

(ℎ + ℎ𝜁 − 𝜋𝑜)[𝛼𝜃1 − (𝑛 + 𝜃0)𝜒]
− 1     (49) 

𝜏∗ =
𝛼𝜃1 − (𝑛 + 𝜃0)𝜒

(1 − 𝛽)𝜃1 − 𝜒
     (50) 

𝑢∗ =
𝛼 − (𝑛 + 𝜃0)(1 − 𝛽)

(1 − 𝛽)𝜃1 − 𝜒
     (51) 

This equilibrium point (𝑙∗, 𝑧∗, 𝑓∗, 𝜏∗, 𝑢∗) has positive values when: 

𝜃1 <
(ℎ𝜁 − 𝜋𝑜)[𝛼 − (𝑛 + 𝜃0)(1 − 𝛽)] + (𝑛 + 𝜃0)(ℎ + ℎ𝜁 − 𝜋𝑜)𝜒

𝛼(ℎ + ℎ𝜁 − 𝜋𝑜)
     (52) 

𝜒 < 𝜃1(1 − 𝛽)     (53) 

𝛼 >
(𝑛 + 𝜃0)𝜒

𝜃1
     (54) 

𝛼 > (1 − 𝛽)(𝑛 + 𝜃0)     (55) 

𝛼 > (1 − 𝛽)[𝑛 − 𝛾 + 𝜋𝑜(1 − 𝜂)] +
[𝛾 + 𝜃0 + 𝜋𝑜(1 − 𝜂)]𝜒

𝜃1
     (56) 

Appendix 4 proves the local stability of the non-trivial equilibrium point and applies the Hopf 

bifurcation theorem for five-dimensional dynamical systems to prove the existence of limit 

cycles for a simplified version of Model B. Based on these preliminary results, we suggest 

that the complete Model B tends to generate stable cycles when the value of 𝑚 is close to a 

potential critical value 𝑚∗. Figure 6 illustrates this tendency, while Figure 7 reveals the 

existence of unstable cycles for larger values of 𝑚, and Figure 8 shows damped oscillations 

for lower values of 𝑚. These findings suggest that Model B can produce similar qualitative 

outcomes to Model A, indicating that a stronger adjustment in the interest rate by the central 

bank in response to its perceived ‘inflation gap’ could exacerbate the volatility of distributive 

and financial cycles. 

  



Figure 6. Simulation of Model B with stable cycles at a potential critical value (𝑚 =

𝑚∗) 

6A. Time series 

 

6B. Two-dimensional parametric plots 

 

Note: Simulation of Model B with parameter values ℎ = 1, 𝜂 = 0.5, 𝜃0 = 0.016, 𝜃1 =

0.01625, 𝑛 = 0.016, 𝜋𝑜 = 0.02, 𝜁 = 0.15, 𝛾 = 0.227, 𝜌 = 0.28,𝑚 = 𝑚∗ = 0.1, 𝛼 =

0.017, 𝛽 = 0.5, 𝜒 = 0.0065, 𝜆 = 0.003, 𝜙 = 0.2 and initial conditions 𝑙0 = 0.92, 𝑧0 =

0.1, 𝑓0 = 0.7, 𝜏0 = 0.035, 𝑢0 = 0.6. Equilibrium point: 𝑙∗ = 0.9392, 𝑧∗ = 0.13, 𝑓∗ =
0.6856, 𝜏∗ = 0.042, 𝑢∗ = 0.6153.  



Figure 7. Simulation of Model B with unstable cycles above a potential critical value 

(𝑚 = 𝑚∗ + 𝜀) 

7A. Time series 

 

7B. Two-dimensional parametric plots 

 

Note: Simulation of Model B with parameter values ℎ = 1, 𝜂 = 0.5, 𝜃0 = 0.016, 𝜃1 =

0.01625, 𝑛 = 0.016, 𝜋𝑜 = 0.02, 𝜁 = 0.15, 𝛾 = 0.227, 𝜌 = 0.28,𝑚 = 𝑚∗ + 𝜀 = 0.1 +

0.0025, 𝛼 = 0.017, 𝛽 = 0.5, 𝜒 = 0.0065, 𝜆 = 0.003, 𝜙 = 0.2 and initial conditions 𝑙0 =

0.92, 𝑧0 = 0.1, 𝑓0 = 0.7, 𝜏0 = 0.035, 𝑢0 = 0.6. Equilibrium point: 𝑙∗ = 0.9392, 𝑧∗ =
0.13, 𝑓∗ = 0.6856, 𝜏∗ = 0.042, 𝑢∗ = 0.6153.  



Figure 8. Simulation of Model B with damped oscillations below a potential critical 

value (𝑚 = 𝑚∗ − 𝜀) 

8A. Time series 

 

8B. Two-dimensional parametric plots 

 

Note: Simulation of Model B with parameter values ℎ = 1, 𝜂 = 0.5, 𝜃0 = 0.016, 𝜃1 =

0.01625, 𝑛 = 0.016, 𝜋𝑜 = 0.02, 𝜁 = 0.15, 𝛾 = 0.227, 𝜌 = 0.28,𝑚 = 𝑚∗ − 𝜀 = 0.1 −

0.0025, 𝛼 = 0.017, 𝛽 = 0.5, 𝜒 = 0.0065, 𝜆 = 0.003, 𝜙 = 0.2 and initial conditions 𝑙0 =

0.92, 𝑧0 = 0.1, 𝑓0 = 0.7, 𝜏0 = 0.035, 𝑢0 = 0.6. Equilibrium point: 𝑙∗ = 0.9392, 𝑧∗ =
0.13, 𝑓∗ = 0.6856, 𝜏∗ = 0.042, 𝑢∗ = 0.6153. 



Regarding the effects of parameter changes in the dynamics of Model B, numerical 

simulations presented in Figure 9 suggest that cycles become less volatile when the central 

bank has a higher target inflation rate (𝜋𝑜), when capitalists have stronger incentives to invest 

(represented by higher parameters 𝛼, 𝛽, 𝜒), and when there is a higher autonomous tendency 

of the money wage to fall (𝛾). Conversely, cycles become more volatile when firms increase 

their desired markup (𝜁) or their reaction to the perceived ‘markup gap’ (ℎ), when there is a 

higher growth rate of labor supply (𝑛), when labor productivity has a higher exogenous 

tendency to grow (𝜃0) or a higher tendency to grow for a given capacity utilization rate (𝜃1), 

when there is a stronger effect of the employment rate on the money wage (𝜌), when the 

rentier class has a more significant reaction to a higher leverage ratio (𝜆), when the capacity 

utilization rate is more sensitive to excess demand (𝜙), and when the central bank implements 

a stronger adjustment in response to its perceived ‘inflation gap’ (𝑚).  

In the particular case of the parameters representing the multiple incentives of capitalist firms 

to invest (𝛼, 𝛽, 𝜒), it is worth noting that the simulations presented in Figure 9 suggest that 

these parameters can reduce the volatility of cycles, but they also may lead to an increasing 

leverage ration and interest rate over the long run. This pattern may indicate a tendency 

toward a ‘debt crisis’ when investment is financed through debt and is too high, leading to a 

never-ending pattern of new borrowing to sustain capital accumulation. However, this 

interpretation is preliminary and requires a more in-depth analytical investigation of Model 

B and its sensitivity to different specifications of the investment function. Concerning the 

parameters representing the distribution of bargaining power between workers and capitalists 

(𝛾, 𝜌, 𝜂), our findings seem to reinforce the intuition identified in Model A: a weakened 

working class appears to be beneficial for the general stability of distributive and financial 

cycles. But, again, a more comprehensive analytical discussion of Model B is needed to 

generalize these results. 

 

 

 

 

 

 

 

 

 

 

 



Figure 9. Simulation of financial cycles with changes in selected parameters (Model B) 

 

Note: The first plot depicts the simulation of Model B with parameter values ℎ = 1, 𝜂 =

0.5, 𝜃0 = 0.016, 𝜃1 = 0.01625, 𝑛 = 0.016, 𝜋𝑜 = 0.02, 𝜁 = 0.15, 𝛾 = 0.227, 𝜌 =

0.28,𝑚 = 𝑚∗ = 0.1, 𝛼 = 0.017, 𝛽 = 0.5, 𝜒 = 0.0065, 𝜆 = 0.003, 𝜙 = 0.2 and initial 

conditions 𝑙0 = 0.92, 𝑧0 = 0.1, 𝑓0 = 0.7, 𝜏0 = 0.035, 𝑢0 = 0.6. The subsequent plots use 

these values as a baseline while varying the parameter indicated in their respective titles. 

 

 

 

 



3.3.Identifying financing regimes within cycles: A preliminary proposal  

Following Meireles and Lima (2006), in Model B we can identify three distinct financing 

regimes, based on the taxonomy proposed by Minsky (1982) and the formalization presented 

by Foley (2003). These are the hedge financing regime when 𝐷̇ ≤ 0, the speculative regime 

when 0 < 𝐷̇ < 𝑔𝐾, and the Ponzi regime when 𝐷̇ ≥ 𝑔𝐾. To analyze these regimes, we can 

define two auxiliar variables: 

𝜓 =
𝐷̇

𝐷
     (57) 

𝜔 =
𝑔

𝑓
=

𝐾̇

𝐷
     (58) 

Thus, the financing regimes mentioned by Meireles and Lima (2006) can be rewritten as: 

𝐻𝑒𝑑𝑔𝑒:     𝜓 ≤ 0 

𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑣𝑒:      0 < 𝜓 < 𝜔 

𝑃𝑜𝑛𝑧𝑖:     𝜓 ≥ 𝜔 

By substituting equations (2), (5), (7), (20), (34), and (36) into (57) and (58), we get: 

𝜓 =
(1 + 𝑧)[𝛼 + (2 − 𝛽)𝑓𝜏] − 𝑢[(1 − 𝛽 − 𝜒)𝑧 − 𝜒]

𝑓(1 + 𝑧)
     (59) 

𝜔 =
𝑢[𝜒 + (𝛽 + 𝜒)𝑧] + (1 + 𝑧)(𝛼 − 𝛽𝑓𝜏)

𝑓(1 + 𝑧)
     (60) 

Equations (59) and (60) can be used in combination with simulated values of the state 

variables 𝑧, 𝑓, 𝜏, and 𝑢 to identify financing regimes within economic cycles. To this end, 

we propose analyzing the counterclockwise trajectories of Model B that are generated within 

the plane formed by the auxiliary variables 𝜓 (growth rate of the stock of debt) and 𝜔 

(investment expressed as a proportion of the stock of debt). Figure 10 provides an example 

of this identification process using the simulation of unstable cycles. Specifically, we identify 

a hedge financing regime when the trajectories fall below the horizontal axis (𝜓 < 0), a 

speculative regime when the trajectory lies above the horizontal axis but below the 45-degree 

line (0 < 𝜓 < 𝜔), and a Ponzi regime when the trajectory is above the 45-degree line (𝜓 ≥

𝜔). The analytical exploration of the relationships between each financing regime and the 

other cycles identified in Model B is left for future research. 

 

 

 

 



Figure 10. Identification of financing regimes within simulated cycles (Model B) 

 

Note: Simulation of Model B with parameter values ℎ = 1, 𝜂 = 0.5, 𝜃0 = 0.016, 𝜃1 =

0.01625, 𝑛 = 0.016, 𝜋𝑜 = 0.02, 𝜁 = 0.15, 𝛾 = 0.227, 𝜌 = 0.28,𝑚 = 𝑚∗ = 0.1, 𝛼 =

0.017, 𝛽 = 0.5, 𝜒 = 0.0065, 𝜆 = 0.0035, 𝜙 = 0.2 and initial conditions 𝑙0 = 0.92, 𝑧0 =

0.1, 𝑓0 = 0.7, 𝜏0 = 0.035, 𝑢0 = 0.6.  

Finally, an alternative approach to identifying financing regimes can be suggested by 

analyzing the dynamics of the interest rate. To elaborate, by substituting (59) and (60) into 

the respective regime definitions and solving for the interest rate, we obtain: 

𝐻𝑒𝑑𝑔𝑒:     𝜏 ≤ 𝜏𝐻 

𝑆𝑝𝑒𝑐𝑢𝑙𝑎𝑡𝑖𝑣𝑒:      𝜏𝐻 < 𝜏 < 𝜏𝑃 

𝑃𝑜𝑛𝑧𝑖:     𝜏 ≥ 𝜏𝑃 

Where the bounds 𝜏𝐻 and 𝜏𝑃 that distinguish each financing regime are given by: 

𝜏𝐻 =
𝑢[(1 − 𝛽 − 𝜒)𝑧 − 𝜒] − 𝛼(1 + 𝑧)

𝑓(2 − 𝛽)(1 + 𝑧)
     (61) 

𝜏𝑃 =
𝑢𝑧

2𝑓(1 + 𝑧)
     (62) 

In the steady state 𝑙̇ = 𝑧̇ = 𝑓̇ = 𝜏̇ = 𝑢̇ = 0, these bounds are equal to: 

𝜏𝐻∗ =
(1 − 𝛽)[𝛼𝜃1 − (𝑛 + 𝜃0)𝜒]

(2 − 𝛽)[(1 − 𝛽)𝜃1 − 𝜒]
     (63) 



𝜏𝑃∗

=
(ℎ𝜁 − 𝜋𝑜)[𝛼𝜃1 − (𝑛 + 𝜃0)𝜒][𝛼 − (1 − 𝛽)(𝑛 + 𝜃0)]

2[(1 − 𝛽)𝜃1 − 𝜒]{(ℎ𝜁 − 𝜋𝑜)[𝛼(1 − 𝜃1) − (𝑛 + 𝜃0)(1 − 𝛽 − 𝜒)] − ℎ[𝛼𝜃1 − (𝑛 + 𝜃0)𝜒]}
     (64) 

Although the dynamics of 𝜏𝐻 and 𝜏𝑃 in Model B are complex, numerical simulations suggest 

that these bounds also exhibit cyclical trajectories around their ‘equilibrium values’ 𝜏𝐻∗ and 

𝜏𝑃∗. Figure 11 illustrates the simulation results for the dynamics of the actual interest rate 𝜏 

and the bounds 𝜏𝐻 and 𝜏𝑃, with changes in selected parameters and using the case of stable 

cycles as a baseline. Although it is challenging to draw definitive conclusions from these 

simulations, at least they suggest that the same parameters that increase the volatility of 

cycles (as shown in Figure 9) also tend to increase the likelihood that the economy will fall 

into the Ponzi financing regime, where the actual interest rate 𝜏 exceeds the upper bound 𝜏𝐻. 

Conversely, parameters that reduce the volatility of cycles tend to make the economy less 

prone to the Ponzi financing regime. Notable, the parameters capturing the capitalist 

incentive to invest (𝛼, 𝛽, 𝜒) tend to lower cycle volatility but also push the interest rate above 

the upper bound 𝜏𝐻 and increase the probability of the economy falling into a Ponzi financing 

regime. In contrast, the parameters associated with the distribution of bargaining power 

between workers and capitalists (𝛾, 𝜌, 𝜂) suggest that a weaker working class tends to reduce 

the likelihood of the economy falling into a Ponzi regime. The simulations also show that the 

economy rarely reaches a hedge financing regime, and when it does, it is usually a result of 

unstable cycles that also are more likely to fall into Ponzi regimes. However, as mentioned 

before, it is crucial to note that these results are preliminary and require a more detailed 

analytical discussion before being generalized. 

Figure 11. Dynamics of the interest rate with changes in selected parameters (Model 

B) 



 

Black: lower bound 𝜏𝐻 and upper bound 𝜏𝑃. Gray: actual interest rate 𝜏. Note: The first plot 

depicts the simulation of Model B with parameter values ℎ = 1, 𝜂 = 0.5, 𝜃0 = 0.016, 𝜃1 =

0.01625, 𝑛 = 0.016, 𝜋𝑜 = 0.02, 𝜁 = 0.15, 𝛾 = 0.227, 𝜌 = 0.28,𝑚 = 𝑚∗ = 0.1, 𝛼 =

0.017, 𝛽 = 0.5, 𝜒 = 0.0065, 𝜆 = 0.003, 𝜙 = 0.2 and initial conditions 𝑙0 = 0.92, 𝑧0 =

0.1, 𝑓0 = 0.7, 𝜏0 = 0.035, 𝑢0 = 0.6. The subsequent plots use these values as a baseline 

while varying the parameter indicated in their respective titles. 

 

4. Conclusion 

This paper has proposed two theoretical models (Models A and B) to examine the interaction 

between distributive and financial cycles in capitalist economies. Model A assumes an 

economy without excess demand but with a time delay between capitalists saving their 

income and distributing it to firms for reinvestment. This delay leads to firms needing debt 

to sustain their cash flows, resulting in credit demand from a rentier class that borrows money 

and receives an interest rate. Model A also includes a central bank that adjusts the interest 

rate to control inflation, and an extended version of the model considers the reaction of the 

rentier class to changes in the leverage ratio. Model B extends and modifies Model A by 

representing capitalist incentives to invest through an investment function, while a capacity 

utilization rate adjusts due to the existence of excess demand. In Model B, firms require debt 

not only to sustain their cash flows but also to finance their investment beyond the limits of 

savings.  

Analytical proofs for the existence of limit cycles are provided in both models. Specifically, 

we show the existence of limit cycles in the complete four-dimensional dynamical system 



associated with Model A (Appendix 1) and the existence of limit cycles in a simplified five-

dimensional dynamical system associated with Model B (Appendix 4). We also identify 

cyclical dynamics from numerical simulations of these models, including stable and limit 

cycles, unstable cycles, and damped oscillations, as well as several relevant patterns. 

For instance, our analysis suggests that the distribution of bargaining power between workers 

and capitalists plays a crucial role in determining the stability of distributive and financial 

cycles. Specifically, we found that a weakened working class can lead to more stable cycles, 

reduce the risk of a debt crisis and the emergence of Ponzi financing regimes, and facilitate 

the objective of the central bank of controlling inflation without exacerbating the volatility 

of cycles. Thus, the interest of the central bank in achieving stability appears to align with 

the broader objective of the capitalist class to sustain and increase labor exploitation by 

reducing the bargaining power of workers. Nevertheless, this convergence is complex and 

not always consistent due to the inflationary pressures generated by the capitalist pursuit of 

profitability. Additionally, our simulations indicate that the various incentives of capitalist 

firms to invest (animal spirit effect, profitability effect, demand effect), can reduce the cycle 

volatility, but may lead to an increasing leverage ratio and interest rate over the long run, 

implying a potential tendency toward a debt crisis. Furthermore, we observe that when the 

rentier class has a stronger reaction to an increasing leverage ratio, it can also exacerbate 

cycle volatility. 

We also propose two methods to identify financing regimes within capitalist cycles. The first 

method examines the counterclockwise trajectories of Model B within the plane formed by 

the auxiliary variables 𝜓 (growth rate of the stock of debt) and 𝜔 (investment expressed as a 

proportion of the stock of debt). The second method focuses on the dynamics of the interest 

rate, including the estimation of lower and upper bounds that differentiate each financing 

regime. Through numerical simulations, we have found that both methods may be useful to 

identify hedge, speculative, and Ponzi financing regimes in Model B. 

Finally, this paper provides insights for future investigations. One potential avenue for future 

research is to further examine the dynamics of Model B, particularly concerning the 

properties of its non-trivial equilibrium point, the analytical identification of critical values 

that may generate limit cycles, and the behavior of the interest rate bounds that distinguish 

each financing regime. Building on the mathematical proof presented in Appendix 4, future 

studies could delve deeper into these aspects to enhance our understanding of distributive 

and financial cycles in the case of non-zero excess demand. Another area for exploration is 

the empirical testing of the counterclockwise cycles and the empirical identification of 

financing regimes in the plane defined by the auxiliary variables 𝜓 and 𝜔 for various 

capitalist economies. By contrasting the identified regimes with historical periods of financial 

crises, it may be possible to assess the correlation between the two and establish the relevance 

of the approach presented in this work. Thus, we hope that the paper will contribute to the 

ongoing debate on the sources of macroeconomic instability associated with the complexity 

inherent in capitalist economies and their multiple contradictions. 
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Appendix 1. Stability and Hopf bifurcation in Model A 

Linearizing the dynamical system defined by (15), (19), (22), and (24) near its non-trivial 

equilibrium point (𝑙∗, 𝑧∗, 𝑓∗, 𝜏∗) gives the following Jacobian matrix 𝐽: 

𝐽 =

[
 
 
 
 
 
 
 0

ℎ2𝐻3

𝐻12𝜌𝜎
−

(𝐻1 − ℎ − 𝐻2)𝐻3

𝐻1𝜌𝜎
−

𝐻2𝐻3

(𝐻1 − ℎ − 𝐻2)𝜌

−
𝐻1𝜌

ℎ
−𝐻1(1 − 𝜂) 0 0

0 −
ℎ2𝐻2

𝐻1
2(𝐻1 − ℎ − 𝐻2)𝜎

𝐻2

𝐻1𝜎

(𝐻1 − ℎ)𝐻2

(𝐻1 − ℎ − 𝐻2)
2

0 −ℎ𝑚 0 0 ]
 
 
 
 
 
 
 

 

Where: 

𝐻1 = ℎ + ℎ𝜁 − 𝜋𝑜 ,   𝐻2 = ℎ𝜁 − 𝜋𝑜 − 𝜎(𝜃 + 𝑛)(ℎ + ℎ𝜁 − 𝜋𝑜),   𝐻3 = 𝛾 + 𝜃 + 𝜋𝑜(1 − 𝜂) 

The characteristic equation of 𝐽 is given by 𝜆4 + 𝑏1𝜆
3 + 𝑏2𝜆

2 + 𝑏3𝜆 + 𝑏4 = 0, where 𝜆 

represents the eigenvalues of 𝐽. A necessary and sufficient condition for the local stability of 

the model is that all the eigenvalues 𝜆 have negative real components. According to the 

Routh-Hurwitz criteria, this stability condition is met if the coefficients 𝑏1, 𝑏2, 𝑏3, 𝑏4 are 

positive and if 𝑦 = 𝑏1𝑏2𝑏3 − 𝑏1
2𝑏4 − 𝑏3

2 > 0. 

Concerning the coefficients 𝑏1, 𝑏2, 𝑏3, 𝑏4, they depend on the trace Τ, the determinant Δ, and 

the minors of the matrix 𝐽, as indicated by the following equations: 

𝑏1 = −Τ =
𝐻4

𝜎𝐻1
 

𝑏2 = |
𝐽11 𝐽12

𝐽21 𝐽22
| + |

𝐽11 𝐽13

𝐽31 𝐽33
| + |

𝐽11 𝐽14

𝐽41 𝐽44
| + |

𝐽22 𝐽23

𝐽32 𝐽33
| + |

𝐽22 𝐽24

𝐽42 𝐽44
| + |

𝐽33 𝐽34

𝐽43 𝐽44
| 

𝑏2 =
𝐻5

𝜌𝜎𝐻1
 

𝑏3 = − |
𝐽11 𝐽12 𝐽13

𝐽21 𝐽22 𝐽23

𝐽31 𝐽32 𝐽33

| − |
𝐽11 𝐽12 𝐽14

𝐽21 𝐽22 𝐽24

𝐽41 𝐽42 𝐽44

| − |
𝐽11 𝐽13 𝐽14

𝐽31 𝐽33 𝐽34

𝐽41 𝐽43 𝐽44

| − |
𝐽22 𝐽23 𝐽24

𝐽32 𝐽33 𝐽34

𝐽42 𝐽43 𝐽44

| 

𝑏3 =
𝑚𝐻1𝐻2𝐻3

𝐻1 − ℎ − 𝐻2
 

𝑏4 = Δ =
𝑚𝐻2𝐻3

𝜎
 

Where: 

𝐻4 = 𝜎𝐻1
2(1 − 𝜂) − 𝐻2, 𝐻5 = ℎ𝐻3 − 𝐻1𝐻2(1 − 𝜂) 



Condition (29) that guarantees a positive equilibrium point also verifies that 𝑏3 and 𝑏4 are 

positive. In the case of 𝑏1 and 𝑏2, they are positive if we assume that 𝜎 and ℎ are sufficiently 

high to verify: 

𝜎 >
𝐻2

𝐻1
2(1 − 𝜂)

     →      𝐻4 > 0     (𝐴1) 

ℎ >
𝐻1𝐻2(1 − 𝜂)

𝐻3
     →      𝐻5 > 0     (𝐴2) 

Regarding the term 𝑦 = 𝑏1𝑏2𝑏3 − 𝑏1
2𝑏4 − 𝑏3

2, it is equal to: 

𝑦 =
𝑚𝐻2𝐻3{(𝜃 + 𝑛)𝐻4[𝐻5 − 𝐻4(𝜃 + 𝑛)] − 𝑚𝜎𝐻1

2𝐻2𝐻3}

𝜎3𝐻1
2(𝜃 + 𝑛)2

     (𝐴3) 

For the sake of simplicity, we assume ℎ is sufficiently high to satisfy: 

ℎ >
𝐻1𝐻2(1 − 𝜂) + 𝐻4(𝜃 + 𝑛)

𝐻3
     (𝐴4) 

Where we note that condition (A4) is sufficient to verify condition (A2). Thus, given 

conditions (A1) and (A4), 𝑦 > 0 is verified when 𝑚 is sufficiently low such that: 

𝑚 < 𝑚𝐻𝐵 =
(𝜃 + 𝑛)𝐻4[𝐻5 − 𝐻4(𝜃 + 𝑛)]

𝜎𝐻1
2𝐻2𝐻3

     (𝐴5) 

To summarize, Model A exhibits a positive equilibrium point that is locally asymptotically 

stable when 𝛾, 𝜎, and ℎ are sufficiently high, and 𝜃, 𝑛, and 𝑚 are sufficiently low, satisfying 

conditions (29), (A1), (A4), and (A5).  

Now, to identify the presence of a Hopf bifurcation in Model A, we have to verify two 

conditions (Asada and Yoshida 2003). Firstly, all the coefficients of the characteristic 

equation 𝑏1, 𝑏2, 𝑏3, and 𝑏4 must be positive, something that is confirmed by conditions (29), 

(A1), and (A4). Secondly, if we designate 𝑚 as a bifurcation parameter, we need to prove 

that 𝑦(𝑚𝐻𝐵) = 0 and 
𝑑𝑦

𝑑𝑚
|
𝑚=𝑚𝐻𝐵

≠ 0. In this sense, we can verify that 𝑦(𝑚𝐻𝐵) = 0 by 

substituting (A5) into (A3). Finally, differentiating (A3) with respect to 𝑚 gives: 

𝑑𝑦

𝑑𝑚
=

𝐻2𝐻3{(𝜃 + 𝑛)𝐻4[𝐻5 − 𝐻4(𝜃 + 𝑛)] − 2𝑚𝜎𝐻1
2𝐻2𝐻3}

𝜎3𝐻1
2(𝜃 + 𝑛)2

     (𝐴6) 

And, by substituting (A5) into (A6) we get: 

𝑑𝑦

𝑑𝑚
|
𝑚=𝑚𝐻𝐵

= −
𝐻2𝐻3𝐻4[𝐻5 − 𝐻4(𝜃 + 𝑛)]

𝜎3𝐻1
2(𝜃 + 𝑛)

< 0     (𝐴7) 

Since this derivative is different from zero, we conclude that Model A undergoes a Hopf 

bifurcation, that is, the model generates limit cycles near the non-trivial equilibrium point 

(𝑙∗, 𝑧∗, 𝑓∗, 𝜏∗) in the neighborhood of the critical value 𝑚𝐻𝐵.  



Appendix 2. Simulations of Model A for different values of 𝑚 

 

Note: Simulation of Model A with parameter values ℎ = 1, 𝜂 = 0.5, 𝜎 = 2.725, 𝜃 =

0.016, 𝑛 = 0.016, 𝜋𝑜 = 0.02, 𝜁 = 0.15, 𝛾 = 0.227, 𝜌 = 0.28,𝑚𝐻𝐵 ≈ 0.35634 and initial 

conditions 𝑙0 = 0.88, 𝑧0 = 0.1, 𝑓0 = 0.2, 𝜏0 = 0.028. Equilibrium point: 𝑙∗ = 0.9035, 𝑧∗ =

0.13, 𝑓∗ = 0.31931, 𝜏∗ = 0.032. 



Appendix 3. Simulations of modified Model A with increasing values of 𝜆 

 

Note: Simulation of modified Model A with parameter values ℎ = 1, 𝜂 = 0.5, 𝜎 =

2.725, 𝜃 = 0.016, 𝑛 = 0.016, 𝜋𝑜 = 0.02, 𝜁 = 0.15, 𝛾 = 0.227, 𝜌 = 0.28,𝑚 = 𝑚𝐻𝐵 ≈

0.35634 and initial conditions 𝑙0 = 0.88, 𝑧0 = 0.1, 𝑓0 = 0.2, 𝜏0 = 0.028. Equilibrium point: 

𝑙∗ = 0.9035, 𝑧∗ = 0.13, 𝑓∗ = 0.31931, 𝜏∗ = 0.032. 



Appendix 4. Stability and Hopf bifurcation in a simplified version of Model B 

Assume a simplified situation where 𝜒 = 0, 𝜆 = 0, 𝜂 = 0, 𝑛 = 0, 𝛽 = 0, ℎ = 1, 𝜙 = 1, 𝛾 =

0, 𝜋𝑜 = 0, 𝜁 = 1, 𝜃0 = 0. Under these conditions, Model B simplifies to: 

𝑙̇

𝑙
= 2𝛼 + 𝑢 [

1

1 + 𝑧
− (1 + 𝜃1)] + 𝑓𝜏 

𝑧̇

1 + 𝑧
= 1 − 𝜌𝑙 + 𝜃1𝑢 + 𝑧 

𝑓̇ = 𝛼 −
𝑢𝑧

1 + 𝑧
− 𝑓(𝛼 − 2𝜏) 

𝜏̇ = 𝑚(1 − 𝑧) 

𝑢̇

𝑢
= 𝛼 −

𝑢𝑧

1 + 𝑧
+ 𝑓𝜏 

In the steady state 𝑙̇ = 𝑧̇ = 𝑓̇ = 𝜏̇ = 𝑢̇ = 0, this simplified system has a non-trivial 

equilibrium point (𝑙∗, 𝑧∗, 𝑓∗, 𝜏∗, 𝑢∗) defined by: 

𝑙∗ =
𝛼

𝜌
, 𝑧∗ = 1, 𝑓∗ =

1 − 2𝜃1

2𝜃1
, 𝜏∗ = 𝛼, 𝑢∗ =

𝛼

𝜃1
 

Where we assume 𝜃1 < 1/2 to guarantee that 𝑓∗ > 0. Linearizing the simplified dynamical 

system near its non-trivial equilibrium point gives the following Jacobian matrix 𝐽: 

𝐽 =

[
 
 
 
 
 
 
 
 0 −

𝛼2

4𝜃1𝜌

𝛼2

𝜌

𝛼

𝜌
(

1

2𝜃1
− 1) −

𝛼 + 2𝛼𝜃1

2𝜌
−2𝜌 −2 0 0 2𝜃1

0 −
𝛼

4𝜃1
𝛼

1

𝜃1
− 2 −

1

2
0 −𝑚 0 0 0

0 −
𝛼2

4𝜃1
2

𝛼2

𝜃1

𝛼 − 2𝛼𝜃1

2𝜃1
2 −

𝛼

2𝜃1 ]
 
 
 
 
 
 
 
 

 

The characteristic equation of 𝐽 is 𝜆5 + 𝑏1𝜆
4 + 𝑏2𝜆

3 + 𝑏3𝜆
2 + 𝑏4𝜆 + 𝑏5 = 0 and its 

coefficients 𝑏𝑖 are equal to: 

𝑏1 = 2 +
1

2
𝛼 (

1 − 2𝜃1

𝜃1
) , 𝑏2 = 𝛼 (

1 − 2𝜃1

θ1
) , 𝑏3 =

𝛼3

2𝜃1
 

𝑏4 =
𝑚𝛼2(1 − 2𝜃1)

𝜃1
, 𝑏5 =

𝑚𝛼3(1 − 2𝜃1)

𝜃1
 

From the Routh-Hurwitz criteria, it is known that all the roots of the characteristic equation 

have negative real parts when: 



𝑅1 = 𝑏1 > 0     (𝐴8) 

𝑅2 = 𝑏5 > 0     (𝐴9) 

𝑅3 = 𝑏1𝑏2 − 𝑏3 > 0     (𝐴10) 

𝑅4 = 𝑏3(𝑏1𝑏2 − 𝑏3) − 𝑏1(𝑏1𝑏4 − 𝑏5) > 0     (𝐴11) 

𝑅5 = (𝑏1𝑏2 − 𝑏3)(𝑏3𝑏4 − 𝑏2𝑏5) + (𝑏1𝑏4 − 𝑏5)(𝑏5 − 𝑏1𝑏4) > 0     (𝐴12) 

The assumption that 𝜃1 < 1/2 satisfies the inequalities defined in expressions (A8) and (A9).  

On the other hand, by substituting the values of 𝑏1, 𝑏2, and 𝑏3 into (A10), we get: 

𝑅3 =
𝛼𝐻6

2𝜃1
2  

Where 𝐻6 = 4𝜃1(1 − 2𝜃1) + 𝛼[1 − 4𝜃1(1 − 2𝜃1)] − 𝛼2𝜃1. Thus, inequality (A10) is 

satisfied if 𝛼 falls within the following interval: 

1 − 4(1 − 𝜃1)𝜃1 − √𝐻7

2𝜃1
< 𝛼 <

1 − 4(1 − 𝜃1)𝜃1 + √𝐻7

2𝜃1
     (𝐴13) 

Where 𝐻7 = (1 − 2𝜃1){1 − 2𝜃1[3 − 2𝜃1(7 − 2𝜃1)]}. 

In regard to expression (A11), substituting the coefficients 𝑏𝑖 into it gives: 

𝑅4 =
𝛼4𝐻6 − 𝑚𝛼2(1 − 2𝜃1)[𝛼 − 2(𝛼 − 2)𝜃1][𝛼 − 4(𝛼 − 1)𝜃1]

4𝜃1
3  

If 𝜃1 is sufficiently low to verify that [𝛼 − 2(𝛼 − 2)𝜃1] and [𝛼 − 4(𝛼 − 1)𝜃1] are positive, 

then inequality (A11) is satisfied if 𝑚 is low enough to guarantee: 

𝑚 <
𝛼2𝐻6

(1 − 2𝜃1)[𝛼 − 2(𝛼 − 2)𝜃1][𝛼 − 4(𝛼 − 1)𝜃1]
     (𝐴14) 

Concerning expression (A12), by substituting the coefficients 𝑏𝑖 into it, we obtain: 

𝑅5 =
𝑚𝛼4

4𝜃1
4

(𝐻8 − 𝑚𝐻9) 

Where: 

𝐻8 = (1 − 2𝜃1)(𝛼 − 2 + 4𝜃1){𝛼(1 − 2𝜃1)[𝛼(1 − 2𝜃1) + 4𝜃1] − 𝛼3𝜃1} 

𝐻9 = (1 − 2𝜃1)
2[𝛼(1 − 4𝜃1) + 4𝜃1]

2 

If 𝜃1 is sufficiently low to verify that 𝐻9 is positive, then inequality (A12) is guaranteed if 𝑚 

is sufficiently low to satisfy: 

𝑚 <
𝐻8

𝐻9
     (𝐴15) 



In summary, the simplified version of Model B presented in this Appendix has a non-trivial 

positive equilibrium that is stable if 𝜃1 is sufficiently low, 𝛼 falls within the interval defined 

in (A12), and, in particular, 𝑚 is low enough to satisfy the inequalities presented in (A13) 

and (A14).  

Regarding the identification of a Hopf bifurcation in the simplified model presented in this 

Appendix, we adopt the approach proposed by Douskos and Markellos (2015) for identifying 

Hopf bifurcations in five-dimensional dynamical systems.12 According to this approach, if 

we consider 𝑚 as the bifurcation parameter, we can identify a Hopf bifurcation by checking 

whether there exists a critical value 𝑚𝐻𝐵 that satisfies the following conditions: 

𝑅5(𝑚
𝐻𝐵) = 0,

𝑑𝑅5

𝑑𝑚
|
𝑚=𝑚𝐻𝐵

≠ 0     (𝐴16) 

𝑅6 =
𝑏5 − 𝑏1𝑏4

𝑏3 − 𝑏1𝑏2
> 0, 𝑅7 = 𝑏3 − 𝑏1𝑅6 ≠ 0     (𝐴17) 

The non-trivial critical value that guarantees 𝑅5(𝑚
𝐻𝐵) = 0 is given by: 

𝑚𝐻𝐵 =
𝐻8

𝐻9
     (𝐴18) 

On the other hand, differentiating (A12) with respect to 𝑚 gives: 

𝑑𝑅5

𝑑𝑚
=

𝛼4

4𝜃1
4
(𝐻8 − 2𝑚𝐻9)     (𝐴19) 

Substituting (A18) into (A19) results in: 

𝑑𝑅5

𝑑𝑚
|
𝑚=𝑚𝐻𝐵

= −
𝛼4𝐻10

4𝜃1
4 < 0     (𝐴20) 

Finally, substituting the coefficients 𝑏𝑖 into 𝑅6 and 𝑅7 defined in (A17) gives: 

𝑅6 =
𝑚𝛼(1 − 2𝜃1)[𝛼 − 4(𝛼 − 1)𝜃1]

𝛼 − (𝛼2 + 4𝛼 − 4)𝜃1 + 4(𝛼 − 2)𝜃1
2      (𝐴21) 

𝑅7 =
𝛼3 − 𝑚𝛼(1 − 2𝜃1)[𝛼 − 4(𝛼 − 1)𝜃1][4𝜃1 + 𝛼(1 − 2𝜃1)]

2𝜃1[𝛼 − (𝛼2 + 4𝛼 − 4)𝜃1 + 4(𝛼 − 2)𝜃1
2]

     (𝐴22) 

Substituting (A18) into (A21) and (A22) results in: 

𝑅6(𝑚
𝐻𝐵) =

𝛼2(−2 + 𝛼 + 4𝜃1)

𝛼 − 4(𝛼 − 1)𝜃1
> 0     (𝐴23) 

 
12 For an example of the approach proposed by Douskos and Markellos (2015) being implemented in a five-

dimensional dynamical system, see Al Basir et al. (2018). The procedure followed in this Appendix closely 

follows the approach presented in that example.   



𝑅7(𝑚
𝐻𝐵) =

𝛼2[𝛼 − (𝛼2 + 4𝛼 − 4)𝜃1 + 4(𝛼 − 2)𝜃1
2]

𝜃1[𝛼 − 4(𝛼 − 1)𝜃1]
> 0     (𝐴24) 

Expressions (A20), (A23), and (A24) satisfy the conditions defined in (A16) and (A17), 

indicating the occurrence of a Hopf bifurcation in the simplified version of Model B 

presented in this Appendix. Specifically, the model generates limit cycles near its positive 

non-trivial equilibrium point (𝑙∗, 𝑧∗, 𝑓∗, 𝜏∗, 𝑢∗) in the vicinity of the critical value 𝑚𝐻𝐵. 

Appendix 5 provides time series and two-dimensional parametric plots that illustrate the 

complexity of these limit cycles. 

  



Appendix 5. Simulation of the simplified version of Model B   

Time series 

 

Two-dimensional parametric plots 

 

Note: Simulation of the simplified version of Model B presented in Appendix 4 with 

parameter values 𝜌 = 0.75, 𝜃1 = 0.4, 𝛼 = 0.45,𝑚 = 𝑚𝐻𝐵 ≈ 0.01634 and initial conditions 

𝑙0 = 0.5, 𝑧0 = 0.8, 𝑓0 = 0.2, 𝜏0 = 0.42, 𝑢0 = 1. Equilibrium point: 𝑙∗ = 0.6, 𝑧∗ = 1, 𝑓∗ =

0.25, 𝜏∗ = 0.45, 𝑢∗ = 1.125. 


