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Abstract

A quantization procedure for the Yang-Mills equations for the Minkowski space RY® is carried
out in such a way that field maps satisfying Wightman axioms of Constructive Quantum Field The-
ory can be obtained. Moreover, by removing the infrared and ultraviolet cutoffs, the spectrum of
the corresponding (non-local) QCD Hamilton operator is proven to be positive and bounded away
from zero, except for the case of the vacuum state, which has vanishing energy level. The whole
construction is invariant for all gauge transformations preserving the Coulomb gauge. As expected
from QED, if the coupling constant converges to zero, then so does the mass gap. This is the case

for the running coupling constant leading to asymptotic freedom.
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1 Introduction

Yang-Mills fields, which are also called gauge fields, are used in modern physics to describe physical
fields that play the role of carriers of an interaction (cf. [EoMO02]). Thus, the electromagnetic field
in electrodynamics, the field of vector bosons, carriers of the weak interaction in the Weinberg-Salam
theory of electrically weak interactions, and finally, the gluon field, the carrier of the strong interaction,
are described by Yang-Mills fields. The gravitational field can also be interpreted as a Yang-Mills field
(see [DP75]).



The idea of a connection as a field was first developed by H. Weyl (1917), who also attempted to
describe the electromagnetic field in terms of a connection. In 1954, C.N. Yang and R.L. Mills (cf.
[ |) suggested that the space of intrinsic degrees of freedom of elementary particles (for example,
the isotropic space describing the two degrees of freedom of a nucleon that correspond to its two pure
states, proton and neutron) depends on the points of space-time, and the intrinsic spaces corresponding

to different points are not canonically isomorphic.

In geometrical terms, the suggestion of Yang and Mills was that the space of intrinsic degrees of
freedom is a vector bundle over space-time that does not have a canonical trivialization, and physical
fields are described by cross-sections of this bundle. To describe the differential evolution equation of
a field, one has to define a connection in the bundle, that is, a trivialization of the bundle along the
curves in the base. Such a connection with a fixed holonomy group describes a physical field, usually
called a Yang-Mills field. The equations for a free Yang-Mills field can be deduced from a variational

principle. They are a natural non-linear generalization of Maxwell’s equations (cf.| D-

Field theory does not give the complete picture. Since the early part of the 20th century, it has been
understood that the description of nature at the subatomic scale requires quantum mechanics, where
classical observables correspond to typically non commuting self-adjoint operators on a Hilbert space,
and classic notions as “the trajectory of a particle” do not apply. Since fields interact with particles, it
became clear by the late 1920s that an internally coherent account of nature must incorporate quantum
concepts for fields as well as for particles. Under this approach components of fields at different points

in space-time become non-commuting operators.

The most important Quantum Field Theories describing elementary particle physics are gauge the-
ories formulated in terms of a principal fibre bundle over the Minkowskian space-time with particular

choices of the structure group. They are depicted in Table 1.

As shown in | |, in order for Quantum Chromodynamics to completely explain the observed

world of strong interactions, the theory must imply:

e Mass gap: There must exist some positive constant n such that the excitation of the vacuum
state has energy at least 1. This would explain why the nuclear force is strong but short-ranged,
by providing the mathematical evidence that the corresponding exchange particle, the gluon, has

non vanishing rest mass.

e Quark confinement: The physical particle states corresponding to proton, neutron and pion

must be SU(3)-invariant. This would explain why individual quarks are never observed.

e Chiral symmetry breaking: In the limit for vanishing quark-bare masses the vacuum is in-



Gauge Theory

Fundamental Forces \ Structure Group

(Glashow-Salam-Weinberg)

and weak force

Quantum Electrodynamics Electromagnetism U(1)
(QED)
Electroweak Theory Electromagnetism SU(2) x U(1)

Quantum Chromodynamics

(QCD)

Strong force
and electromagnetism

SU(3)

Standard Model

Strong, weak forces
and electromagnetism

SU(3) x SU(2) x U(1)

Theory (GUT4)

and electromagnetism

Georgi-Glashow Grand Strong, weak forces SU(5)
Unified Theory (GUT1) and electromagnetism
Fritzsch-Georgi-Minkowski Strong, weak forces SO(10)
Grand Unified Theory (GUT2) | and electromagnetism

Grand Unified Strong, weak forces SU(8)
Theory (GUT3) and electromagnetism

Grand Unified Strong, weak forces 0(16)

Table 1: Gauge Theories

variant under a certain subgroup of the full symmetry group acting on the quark fields. This is

required in order to account for the “current algebra” theory of soft pions.

The Seventh CMI-Millenium prize problem is the following conjecture.

Conjecture 1. For any compact simple Lie group G there exists a non-trivial Yang-Mills theory on
the Minkowskian R!3, whose quantization satisfies Wightman axiomatic properties of Constructive

Quantum Field Theory and has a mass gap n > 0.

The conjecture is explained in | | and commented in | | and in [ |. To our knowledge

this conjecture is unproved.

The first rigorous program of study of this problem is the one by Balaban (| I, [ I, [ I,

[ I I |, [BasT], [Basg], | |, [Bas9] and | D

defines a sequence of block-spin transformations for the pure Yang-Mills theory in a finite volume on

This program

the lattice, a toroidal FEuclidean space-time, and shows that, as the lattice spacing tends to 0 and
these transformations are iterated many times, the resulting effective action on the unit lattice remains
bounded. From this result the existence of an ultraviolet limit for gauge invariant observables such as
“smoothed Wilson loops” should follow, at least through a compactness argument using a subsequence
of approximations; but the limit is not necessarily unique. From this point of view, one must verify
the existence of an ultraviolet limit of appropriate expectations of gauge-invariant observables as the

lattice spacing tends to zero (ultraviolet cutoff removal) and the volume tends to infinity (infrared cutoff



removal). This program is applied for the ®3 model by Dimock in the very readable | I, [ ],
[Di14].

Magnen, Rivasseau and Sénéor provide in | | the basis for a rigorous construction of the
Schwinger functions of the pure SU(2) Yang-Mills field theory in four dimensions (in the trivial topo-
logical sector) with a fixed infrared cutoff and removed ultraviolet cutoff, in a regularized axial gauge.
They check the validity of the construction by showing that Slavnov identities (which express infinites-
imal gauge invariance) do hold non-perturbatively. They do not analyze the spectral properties of the

Hamilton operator.

Very recently, regularity structures have been successfully by Chandra-Chevyrev-Hairer-Shen (|
to obtain a stochastic quantization of Yang—Mills—Higgs in 3D. Previously, regularity structures, which
had been pioneered by Hairer in | |, have been applied by Gubinelli-Hofmanova (| |) to ex-
tend a stochastic quantization of the Euclidean ®4 quantum field theory from the torus 7% to R3. It

would be interesting to see this approach applied to the Yang-Mills problem in (3 + 1)D.

The main contributions of this paper are:

e the construction of a rigorous quantum Yang-Mills theory over the whole Minkowski space satis-

fying the Osterwalder-Schrader axioms of Constructive Quantum Field Theory,

e the proof that the quantum hamiltonian for QCD has a spectral gap.

This paper is organized as follows. Section 2 presents the classical Yang-Mills equations and their
Hamiltonian formulation for the Minkowskian R!3. Section 3 depicts the axioms of Constructive
Quantum Field Theory and may be skipped by the acquainted reader. In Sections 4 the Yang-Mills
Equations are quantized, the Osterwalder-Schrader and hence the Wightman axioms are verified, and
the existence of a positive mass gap proven. More in detail, the construction of the Yang-Mills Quantum
Field Theory in 3 + 1 spacetime dimensions and the proof that the corresponding Hamiton operator
possesses a spectral gap is done by passing to the corresponding Euclidean QFT and progresses through

the following steps:

1. Impose an infrared and an ultraviolet cutoff.

2. Construct a background “quasi-free” QFT as the solution to an SDE via the Fokker-Planck equa-
tion using the part of the Euclidean action of the form —A + B - V. In contrast to the free QFT

this part contains a non local term.

3. Use the Feynman-Kaé¢-Nelson formula to add in the interaction.



4. Remove the infrared cutoff and prove the Osterwalder-Schrader axioms for any fixed ultraviolet

cutoff

5. Remove the ultraviolet cutoff and prove the Osterwalder-Schrader axioms for the limit of the

ultraviolet cutoff parameter tending to infinity
6. Verify the gauge invariance.

7. Show the existence of the mass gap.

Even more in detail, by verifying the Osterwalder-Schrader axioms and the reconstruction theorem
for quantum mechanics, the QFT Hamiltonian for the continuum theory, constructed via quantization
of the classical Hamiltonian, is proved to be a selfadjoint operator on the Hilbert Space of L2-Hida
distributions. The Hamilton operator is non-local and the proof of its selfadjointness for a particular
probability measure requires the construction of the infinitesimal generator of a stochastic process taking
values in a L?-space over the physical space, and the extension of the Feynman-Kaé-Nelson formula for

the L2-Hida distributions.

The QFT Hamiltonian has a continuous spectrum, which can be expressed as the direct limit of
the continuous spectrum of another selfadjoint operator, the QFT Hamiltonian with ultraviolet cutoff,
when the cutoff parameter tends to infinity. For both operators strictly positive lower bounds of the
spectra can be inferred. These depend on the bare coupling constant for both Hamiltonians and on the
cutoff magnitude for the Hamiltonian with cutoff. The gap for the cutoff case “survives” then in the
continuum limit for a strictly positive bare coupling constant. As expected from QED, if the coupling

constant converges to zero, then so does the mass gap.

We remark, that, due to our particular choice of the ultraviolet cutoff differing substantially from
the one chosen by Magnen-Rivasseau-Sénéor in | ], we do not observe divergences arising for the
ultraviolet cutoff parameter tending to infinity, and, hence, no dependence of the bare coupling constant
on the cutoff parameter and no renormalization have to be introduced in our basic construction at this
stage. Note that in the ®} model renormalization is needed, but concerns other parameters than the
bare coupling constant (see | I, [ | and | |). Later, in order to obtain asymptotic freedom
we will study the running of the coupling constant with respect to the energy scale, showing that the
running mass gap vanishes in the asymptotic freedom limit, because the running coupling constant

does, too.

The whole construction is proved to be invariant for those gauge transforms which preserve the

Coulomb gauge. Section 5 concludes.



2  Yang-Mills Connections

2.1 Definitions, Existence and Uniqueness
A Yang-Mills connection is a connection in a principal fibre bundle over a (pseudo-)Riemannian manifold
whose curvature satisfies the harmonicity condition, i.e. the Yang-Mills equation.

Definition 2.1 (Yang-Mills Connection). Let P be a principal G-fibre bundle over a pseudorie-
mannian m-dimensional manifold (M, h), and let V be the vector bundle associated with P and R,
induced by the representation p : G — GL(RX), where K := dim(G). A connection on the principal
fibre bundle P is a Lie-algebra g valued 1-form w on P, such that the following properties hold:

(i) Let A € g and A* the vector field on P defined by

A% = jt (pexp(tA)). 1)

Then, w(4}) = A.
(ii) For g € G let

Ad, : G — G,h— Ady(h) := Ly o Ry-1(h) = ghg™!

adg: g — 9,4 — Ady(4) := pr (gexp(tA)g™)
t:=0

be the adjoint isomorphism and the adjoint representation, respectively.

Then, Rjw = adg-1w.

The connection w on P defines a connection V for the vector bundle V', i.e. an operator acting on
the space of cross sections of V. The vector bundle connection V can be extended to an operator

d:T(N'(M)RV) — DA’ (M) R V), by the formula
d¥(n®v) :=dp®v + (—1)’n® V. (3)
The operator 6V : (AP (M) Q V) — T(AP(M) ® V), defined as the formal adjoint to d, is equal to
5V = (=1)PH! % dVx, (4)

where * denotes the Hodge-star operator on the pseudoriemannian manifold M.

A connection w in a principal fibre bundle P is called a Yang-Mills field if the curvature F' :=



dw + w A w, considered as a 2-form with values in the Lie algebra g, satisfies the Yang-Mills equations
SVF =0, (5)

or, equivalently,

§VRY =0, (6)

where RV(X,Y) := VxVy — VyVx — Vix,y] denotes the curvature of the vector bundle V, and is a

2-form with values in V.

Remark 2.1 (Local Representations of Connections on Vector and Principle Fibre Bundles).
The local section ¢ : U € M — P is defines the local representation of the connection given on the
open U ¢ M by A :=woo : U — g a Liealgebra g valued 1-form on U, the fields A4;(z) :=
Ax)e; = Zszl A;? (z)tx, define by means of the tangential map T,.p : g — L£(CX) of the representation
p: G — GL(CX), with fields of endomorphisms T.pAy, ..., T.pA,, € L(V,) for the bundle V. Given a
basis of the Lie-algebra g denoted by {t1,...,tx}, the endomorphisms {w, := Tep.ts}s—1,. k in L(CK)

have matrix representations with respect to a local basis {vs(z)}s=1

geaey

i denoted by [wg](y, (2)}- Since
p is a representation, T.p has maximal rank and the endomorphisms are linearly independent. Given
a local basis {e;(z)};=1,..m for z € U < M, the Christoffel symbols of the connection V are locally

defined by the equation

K
Ve,va = >, T vp, (7)
r=1

holding true on U, and they ,satisfy the equalities

K
[ = 25 [wali45. (8)
a=1
Given a local vector field v = Zﬁil ffvs in V| and a local vector field e in TM |y, the connection V

has a local representation

Vev =) (df°(e).vs + fw(e).vs), (9)

D=

s=1

where w is an element of T*U|y &) L(V|y), i.e. an endomorphism valued 1—form satisfying

K
w(e;)vs = Z % sop. (10)
r=1



Remark 2.2. The curvature 2-form reads in local coordinates as

K M K K
1 a
F= Y > FFitedw A du; = 3 > (ajAf—a,»Af— > q’j,bAiAg> tidx; Adxy, (11)

1<i<j<M k=1 ij=1k=1 a,b=1

where C' = [C’gyb]%b’c:lw,;{ are the structure constants of the Lie-algebra g corresponding to the basis

{t1,...,tx}, which means that for any a,b
K
[tasts] = > CE pte. (12)
c=1

The existence and uniqueness of solutions of the Yang-Mills equations in the Minkowski space have
been first established by Segal (cf. | | and | ), who proves that the corresponding Cauchy
problem encoding initial regular data has always a unique local and global regular solution. He proves
as well that the temporal gauge (Ap = 0) chosen to express the solution does not affect generality,
because any solution of the Yang-Mills equation can be carried to one satisfying the temporal gauge.
This subject has been undergoing intensive research, improving the original results. For example in
[ ] and in | ] the Yang-Mills-Higgs equations, which generalize (5) and are non linear PDEs
of order two, have been reformulated in the temporal gauge as a non-linear PDE of order one, satisfying
a constraint equation. This PDE can be written as an integral equation solving (always and uniquely,
locally and globally) the Cauchy data problem with improved regularity results. Existence, uniqueness
and regularity of the Yang-Mills-Higgs equations under the MIT Bag boundary conditions have been

investigated in | | and | |

2.2 Hamiltonian Formulation for the Minkowski Space

The Hamilton function describes the dynamics of a physical system in classical mechanics by means
of Hamilton’s equations. Therefore, we have to reformulate the Yang-Mills equations in Hamiltonian
mechanical terms. We focus our attention on the Minskowski R* with the pseudoriemannian structure
of special relativity h = d2° ® dz° — dz' @ daz' — d2? ® dz? — da® ® dz®. The coordinate z° represents

the time ¢, while 2!, 22, 23 are the space coordinates.

We introduce Einstein’s summation notation, and adopt the convention that indices for coordinate
variables from the greek alphabet vary over {0,1,2,3}, and those from the latin alphabet vary over

the space indices {1,2,3}. For a generic field F' = [F),],—0,1,2,3 let F := [F;];—1,2,3 denote the “space”



component. The color indices lie in {1,..., K}. Let

+1 (m is even)
et =4 1 (ris odd) "

0 (two indices are equal),

and any other choice of lower and upper indices, be the Levi-Civita symbol, defined by mean of the

) 1 2 31\
permutation w := in &3.

a b ¢

Remark 2.3. If the Lie-group G is simple, then the Lie-Algebra is simple, and the structure constants

can be written as

Cab = 9ap: (14)
for a positive constant g called (bare) coupling constant, (see f.i. | | Chapter 15, Appendix A). The
components of the curvature then read

1 a
Fp, = 5(5#153 — 0 AL — gen B ALAL). (15)

We will consider only simple Lie groups. As we will see, it is essential for the existence of a mass gap
for the group G to be non-abelian.

The number C5(G) is defined as

K
5k’lCZ(G) = Z sg,bgfz,bv (16)

a,b=1
which is the quadratic Casimir operator in the adjoint representation of the Lie algebra of G.
We need to introduce an appropriate gauge for the connections we are considering.

Definition 2.2 (Coulomb Gauge). A connection A over the Minkowski space satisfies the Coulomb
gauge if and only if
;A7 =0 (17)

foralla=1,..., K.

Definition 2.3 (Transverse Projector). Let F be the Fourier transform on functions in L?(R? R).

The transverse projector T': L?(R3,R3) — L?(R?,R?) is defined as

(ro)ei= 5 (|- 22| 7). (18)

pl?

10



and the vector field v decomposes into a sum of a transversal (v-) and a longitudinal (v!) component:

v; = v + ol v = (Tw);, vz“ = v; — (Tw);. (19)

7

Remark 2.4. The Coulomb gauge condition for the space part of a connection A is equivalent to the
vanishing of its longitudinal component:

A?H (t, ) =0 (20)

foralli =1,2,3,alla =1,... K and any t € R. The time part Ay of the connection A vanishes by

definition of Coulomb gauge.

Proposition 2.1. For a simple Lie-group as structure group let A be a connection over the Minkowskian
R? satisfying the Coulomb gauge, and assume that A%(t,-) € C*(R3,R) n L*(R?,R) for alli =1,2,3,
alla=1,...K and any t € R. The operator L on the real Hilbert space L?>(R3,RX) defined as

L =L(A;z) = [L%Y(A;2)] := [6“P AR’ 4+ ge®eb A¢ (¢, 2)0)] (21)

is essentially self adjoint and elliptic for any time parameter t € R. Its spectrum lies on the real line,
and decomposes into discrete specy(L) and continuous spectrum spec.(L). If 0 is an eigenvalue, then it

has finite multiplicity, i.e. ker(L) is always finite dimensional .

The modified Green’s function G = G(A;z,y) = [G**(A;x,y)] € S'(R3, REXK) for the operator L

is the distributional solution to the equation
N
L@ (A;2)GP (A, y) = 695(x —y) — X v (Aso)en(Asy), (22)
n=1

where {1, (A; )}, is an o.n. L?-basis of N-dimensional ker(L). In equation (22) x is seen as variable,
while y is considered as a parameter. This modified Green’s function can be written as a Riemann-

Stielties integral: For any ¢ € S(R?, RX) n L?(R3, RK)

3B (23)

GlAiz. (o) = |

where (E)\)aer 18 the resolution of the identity corresponding to L.

Remark 2.5. In | | and | ] the modified Green’s function is constructed assuming that the

operator L has a discrete spectral resolution (¢, (A;-), \p)nso0 as

GAmy) = Y] S vn(Aso)l(Am). (24)

niA,#£0 7T

11



In particular, we have the symmetry property
G(A;z,y)" = G(Asy,2) (25)

for all z,y, A for which the expression is well defined. Since the discontinuity points of the spectral
resolution (Ey)xer are the eigenvalues, i. e. the elements of specy(L) (cf. | |, Chapter 9), the

solution (23) extends (24) to the general case.

Proof of Proposition 2.1. Aslong as the connection satisfies the Coulomb gauge condition, the operator
L is symmetric and essentially selfadjoint on the appropriate domain, as a direct computation involving
integration by parts can show. As its leading symbol is elliptic, the operator L is elliptic and restricted
to [~ £, +%]3, under the Dirichlet boundary conditions it has a discrete spectral resolution (cf. | ],
Chapter 1.11.3). Every eigenvalue has finite multiplicity. The dimension of the eigenspaces is an integer-
valued, continuous, and hence constant function of R. For R — +o0 the discrete Dirichlet spectrum of L
on [—g, +§]3 clusters in the spectrum of L on R?, which decomposes into a discrete and a continuous
spectrum. Therefore, the eigenvalues must have finite multiplicity and, in particular, ker(L) is finite
dimensional.

Equation (23) gives the modified Green’s function as it can be verified by the following computation,

which holds true for any ¢ € S(R?, R¥) n L2(R?, R¥):

LA)G(As () = L[ SdBxg)e) = | SLdEre)e) =
O+
- | dBo@ - | dBRE) = 00) P = (20)

N
= 6(z = )(p) — D, Un(A;2)0](A;)(9).
n=1
O

The existence of eigenvalues of L depends on the additive perturbation to the Laplacian given by
ge® P A¢ (t, 2)dg. For example, if g = 0 or A = 0, the operator L has no eigenvalues and spec(L) =
spec.(L) =] — 00,0]. In general, the spectrum depends on the choice of the connection A. In | ]
and in | | special cases comprising pure gauges and Wu-Yang monopoles are computed explicitly. We
are interested in a reformulation of the general solution (23), where the dependence on the connection

becomes explicit. Inspired by | | we find

Proposition 2.2. For a simple Lie-group as structure group, if we assume that the coupling constant

g <1, then a Green’s function K = K(A;z,y) = [K“*(A;x,y)] for the operator L in Proposition 2.1,

12



that is, a distributional solution to the equation
L@ (A;2) K" (As2,y) = 6“96(x — y), (27)

is given by the convergent series in S'(R3, RFE*K)

bd 1 1
Kb"d A — ) e1,b,d dS Ael a
(Ajz,y) dr|z — y| e R? “ drla —ug| " (1) dr|uy — y| *
1 1 1
-3 2 _e1,b,s1 sl,eg,dJ‘ d3 Aet i f dS Aez az
g c RS “ 4| —uq| K (1) RS 12 dmluy —ug| " (u2) 4mlug — y

1
+ -1 n—1 + 1 ngel,b,slgsl,ez,SQ . Es,,,_l,en,d d3 A61 .
(=1)" " (n )g s U1747T|x “un| (u1)

. 1 1 1
-0 dBug—— A°? Oi... Buy——- A (u,)0 [ ————
k JRs 2 47|ug — usg| (u2)0) JRa u A7 |ty —1 — Uy v (n) (47r|un — y> +

+ ...

Note that x is the variable and y a parameter.

Proof. The series (28) converges because of the integrability of the connection A and the fact that g < 1.
Recall that —— e L!

lz—yl loc

(R3) = §'(R3) for any fixed y € R3. We now check that it represents a Green’s
function for L:

L(A; ) KYY(A;z,y) = 6296(x — y) + liril Rest,,, (29)
n—+0o0
where, after having evaluated a “telescopic sum”, the remainder part reads

Rest,, =(—1)"_1(n + 1)gn+1561,b781551,ez782 o 8371717571,7(18@)07}7142(1:) J d3u1_7xk
R3 dr|x — up |3

1 1 1
) BPug—— . APy ——— A% | ——— .
k RS u247r\u1 — ug| JRa Y A7 |ty —1 — Uy 1" (un) <47run — y|>

Because of the integrability of the connection, there exists a constant C' > 0 such that for any ¢ €

S(R*R)

At (ua)
(30)

Restn ()| < Cg" @l 2msmy =0 (n — +0), (31)
and the proposition follows. O

Remark 2.6. For the Minkowskian R* the assumption of a (dimensionless) bare coupling constant
g < 1 is well posed: for the Yang-Mills theory one is basically allowed to choose any value g > 0 by
appropriate rescaling of the energy scale (see | ). Moreover, we will later have to analyze the

case where g — 07.

13



Corollary 2.3. Under the same assumptions as Proposition 2.2 the distribution

—_

G(A;z,y) = %(K(A;x,y) + KA y)) =5 Y, (Un(As2)l(Ay) + Ua (A 9)0l(As2))  (32)
n:A,=0

is a symmetric modified Green’s function for the operator L.

After this preparation we can turn to the Hamiltonian formulation of Yang-Mills’ equations, following
the results in | | and [ ], which just need to be adapted for the generic case that L has a mixture

of discrete and continuous spectral resolution. Note that
SR?, R**F) c L*(R?, R**F d’z) « S'(R?, RF*F) (33)

is a rigged Hilbert space and L a selfadjoint operator with a complete set of generalized eigenvectors

(cf. Appendix A).

Theorem 2.4. . For a simple Lie group as structure group and for canonical variables satisfying the

Coulomb gauge condition, the Yang-Mills equations for the Minkowskian R* can be written as Hamilton

equations
ol
@ = —A(AE)
(34)
dA ol
& = twEAE

for the following choices:

e Position variable: A = [A¢(t,z)]a=1,...,
i=1,2,3

s K, whose entries are termed chromoelectric fields,

.....

e Momentum variable: E = [E{(t,2)]q=1

e Hamilton function: defined as a function of A and E as

H=H(AE):= %JRg d3x (Ef(t,:lﬁ)2 + B (t, )% + fot,2))Af(t,x) + 2p°(t, 2) AS (¢, a:)) , (35)

where B = [BY], whose entries are termed chromomagnetic fields, is the matriz valued-function

defined as

1 .
B = S0 01 - s + 0 AL ) )

and p = [p*(t, z)], termed charge density, is the vector valued function defined as
p* = gsa’b’cEfAf, (37)
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and where

fetx) = — JRB Py G (Asz,y)p°(ty) = —G*P(Asz, ) (p°(t, )

Aj(t.0)i= | PyG N Ain )AL () = G (Asn )AL ()
R3
for the modified Green’s function G(A;x,y) for the operator L(A;x).

We consider position A and momentum variable E as elements of S(R?, CKX*3) depending on the time

parameter t, so that the RHSs of equations (38) are well defined distributions applied to test functions.

Remark 2.7. As shown in | | the ambiguities discussed by Gribov in | | concerning the gauge
fixing (see also [5178] and [ ]) can be traced precisely to the existence of zero eigenfunctions of the
operator L.

Corollary 2.5. The Hamilton function (35) for the Yang-Mills equations can be written as

H=H;+Hi+V, (39)
where
1 3 a 2
Hy=-| d’zE}(tx)
2 Jrs
2 2
Hyp = ij >z [ d3y ;GO (A; x,y)em A (e, y)E,ﬁ(t,y)] (40)
1 j a a a,b,c c a a a,b,c c
V=g | A @A, — 0AT gt ALAT) (2,5 — 2 + g A A 1,2,

Proof. The expressions for the functions H; and V are obtained by a straightforward calculation. For
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the function Hy; some more work is needed. Inserting (38) in the last addendum of (35) we obtain

La da (ifﬂ(t"’%f“(w) - Pc(t,a?)Ag(t,x)) _

1
= J d*z [2 (— d*y G"”b(A;x,y)pb(uy)) A <— d*y G“”’(A;w,y)p”(t,y)) +
R3 R3 R3

+ pe(t, )f IyGl (A y)j

d?’yAGl”d(A;y,y)pd(t,y)] =
R3

J i J d?’J d*y 1(G“’b(A;:c,y)pb(lﬁ,y)AG“’d(A;~’U,9)Pd(tv§)>+
R3 R3 R3 2
[1
=J cmf dSyJ d*y 5(Ga’b(A;:uy)AG“’d(A;%Q)Pb(tvy)ﬂd(t’g))+
R3 R3 R3 L
— G*(Asy, ) AG (A2, 7" (ty)p (1)) =

1
5| | | aglace il 6 A s )] -
R3 R3 R3

1 2
- ff d%[ d3y 0,G"" (A, y)p(t,y) |
2 R3 R3

where in the last transformation formula we have utilized integration by parts in the variables x1, xs, z3,
and the fact that G(A;z,y) = G(A;y,x). Inserting expression (37) for the charge density completes
the proof. O

3 Axioms of Constructive Quantum Field Theory

3.1 Wightman Axioms

In 1956 Wightman first stated the axioms needed for CQFT in his seminal work | |, which remained
not very widely spread in the scientific community till 1964, when the first edition of | | appeared.
We will list the axioms in the slight refinement of | | and | |

Definition 3.1 (Wightman Axioms). A scalar (respectively vectorial-spinorial) quantum field theory
consists of a separable Hilbert space £, whose elements are called states, a unitary representation U of
the Poincaré group P in &, an operator valued distribution ® (respectively ®1,...,®,4) on S(R?*) with
values in the unbounded operators of £, and a dense subspace D < & such that the following properties

hold:

(W1) Relativistic invariance of states: The representation U : P — U(E) is strongly continuous.

(W2) Spectral condition: Let Py, Pi, P>, P3 be the infinitesimal generators of the one-parameter
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groups t — U(te,,I) for p = 0,1,2,3. The operators Py and P§ — P} — Pj — Pj are positive.
This is equivalent to the spectral measure E. on R?* corresponding to the restricted representation

R* 5 a — U(a, I) having support in the positive light cone (cf. | |, Chapter IX.8).

(W3) Existence and uniqueness of the vacuum: There exists a unique state Qy € D < £ such

that U(a, I)Qq = Qq for all a € R*.

(W4) Invariant domains for fields: The maps ® : S(R*) — O(€), and, respectively ®y,...,®, :
S(R*) — O(€), from the Schwartz space of test functions to (possibly) unbounded selfadjoint

operators on the Hilbert space, satisfy following properties

(a) For all ¢ € S(R*) and all field maps, the domain of definitions D(®(p)), D(®(p)*), and
respectively D(®;(¢)), D(P;(¢)*), all contain D and the restrictions of all operators to D

agree.
(b) ®(¢)(D) c D, and, respectively ®;(p)(D) < D.
(c) For any ¢ € D fixed, the maps ¢ — ®(p)1, and, respectively ¢ — ®;(¢)1, are linear.

(W5) Regularity of fields: For all ¢q,19 € D, the map ¢ — (¢1, ®(p)12), and, respectively the
maps ¢ — (1, ®;(p)1h2), are tempered distributions, i.e. elements of &'(R?).

(W6) Poincaré invariance: For all (a,A) € P, ¢ € S(R?), and ¢ € D, the inclusion U(a, A)D < D
must hold and

(Scalar field case): The following equation must hold for all A € O(1, 3)
Ula, A)®(0)U(a, A) ™ = @((a, A)p)p. (42)

(Vectorial /Spinorial field case): There exists a representation of SL(2,C) on C¢ denoted
by p, and satisfying p(—I) = I or p(I) = I, such that for all A € SO*(1,3) and ® :=
[®1,..., 04"

Ula, M)®()U(a, A) ™" = p(s™ ' (A)@((a, M), (43)

where s denotes the spinor map s : SL(2,C) — SO (1,3) defined as below. The vector
spaces of Hermitian matrices $) in C? and R* are isomorphically mapped by
X:R'— 9

R e A F (44)
= (202, 22, 2%) — X(x) := .

a2t +ix?2 20—
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The group SL(2, C) acts on $) by

SL(2,C) x$H — H (45)
5
(P,X)— P.X := PXP*.

The spinor map is defined as

s:SL(2,C) — SO™(1,3)
(46)
P s(P): x> s(P)x:= X '(PX(z)P*).

(W7) Microscopic causality or local commutativity: Let ¢, x € S(R*), whose supports are space-

like separated, i.e. ¢(x)x(y) = 0, if x — y is not in the positive light cone. Then,

(Scalar field case): The images of the test functions by the map field must commute

[@(0), 2(X)] = 0. (47)
(Vectorial/Spinorial field case): For any field maps j,i = 1,...,d either the commutations
[2;(0), 2i(x)] =0, [®] (), ®i(x)] =0, (48)
or the anticommutations
[2;(0), 2:()]+ =0,  [2](p), i(X)]+ =0 (49)
hold.
(W38) Cyclicity of the vacuum:
(Scalar field case): The set
Do := {®(¢1) - () | 9 € S(RY), 1 € No} (50)

is dense in £.

(Vectorial/Spinorial field case): The set
Dy = {U(p1) - U(pn)|p; € S(RY), W e {Py,...,0q,®F,..., 5}, neNg}  (51)

is dense in £.
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3.2 Gaussian Random Processes

The Hilbert spaces utilized in quantum field theory are realized as L? spaces over the tempered dis-

tributions, the latter seen as probability space. This construction turns out to be isomorphic to that

of the Fock space. We follow chapter 1 of | |, chapter 5 of | | and appendix A.4 of | |-
For a general overview see Kuo ([ |), and the framework for functional integration developed by
Cartier/DeWitt-Morette as in | I, 1 | and | |. Although Feynman’s integral can be pro-

vided a rigorous foundation by mean of functional integration, we prefer to use the Feynman-Kac

approach, since we will be working with Euclidean fields.

Let (92,4, 1) be a probability space, and M(Q, A) := {f : Q@ — R| f measurable} the algebra of
random variables. A random variable f on (2 has a probability distribution function ps(U) := u(f~*(U))

defined on the measurable sets U of R, and a characteristic function

5(6) 1= | "y (a), (52)

defined as the Fourier inverse transform of the probability density ps := u’f. A real valued random
variable f has mean 0 and variance ¢ > 0 if and only if Sy (t) = e~ 5. A well known result (see f.i.

[ |) is the following

Theorem 3.1 (Bochner). A function S : R — C is the characteristic function of a random variable

f:Q — R if and only if the following conditions are satisfied:

(i) S(0) = 1.
(i) t — S(t) is continuous.

(i1i) {t;}i=1,.n € R, {2i}iz1, ncC= szzl 2Z;S(t; —t;) = 0.

The construction of Bochner’s theorem can be lifted to generating functionals of random variables over

the space of tempered distributions.

Definition 3.2. A random process indexed by a real vector space V' is a linear map ® : V.— M(Q, A).

It is termed Gaussian random process if

(i) ®(v) is a Gaussian random variable for all v € V.

(ii) {®(v)|v € V} is full, i.e. A is the smallest o-algebra for which this is a family of measurable

functions.
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Theorem 3.2. Let H be a real Hilbert space. Up to isomorphism there exists exactly one Gaussian

random process indexed by H such that

— 1
(@), w)) 2 = | B = (00 (53)
Proof. See Theorem 1.9 (page 20) in | | or Lemma 5.4 (page 258) and Proposition 5.6 (page 260)
in | |. O

Given a real Hilbert space there are different but isomorphic models for the probability space
(92, A, 1) admitting a Gaussian process. We choose the tempered distributions S’'(RY) as model space.
Remark that any fixed test function f € S(RY) and variable ® € S'(R”), the expression ®(f) defines

a random variable over S'(R”"). As in appendix A.6 of | | Bochner’s theorem generalizes to

Theorem 3.3 (Milnos). Let S : S(RY) — C be a function. There exists a probability measure
satisfying
st = [ et aue), (54)
S’ (RN)

for all f € S(RYN), if and only if
(i) S(0) =1.
(ii) f > S(f) is continuous in the S(RN) — C topology.

(iii) {fi}i=1,... € SRN), {2i}iz1,.nc C= ZZj:l z2)S(fi = ;) 2 0.

Remark 3.1. The o-algebra A is generated by the cylinder sets in S’(R”), i.e. subsets of the tempered

distribution space of the form

{2eSRY) [ (B(f1),...®(fa) €U}, (55)

where U is a fixed Borel set in R", and fi,..., f, fixed test functions in S(R") for a n € Nj.

Remark 3.2. Minlos’s theorem holds true for topological vector spaces, stating that a cylindrical

measure on the dual of a nuclear space is a Radon measure if its Fourier transform is continuous, see

([5e73])-

We utilize Minlos’ theorem to define Gaussian measures on the tempered distributions. Let ¢ be a

positive semidefinite quadratic form on S(RY). Applying Theorem 3.3 to the functional S(f) :=
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e~ 2°(/f) we can construct a measure y on S'(RY) such that
J ) (@) = el D) (56)
S/(RYN)
Therefore, ®(f) is a Gaussian random variable with variance c(f, f), because for all t € R

J 1) dyu(®) = e~ 7D (57)
S'(RN)

holds true. If H is a real Hilbert space such that the embedding S — #H is continuous and dense,
then the inner product in H restricts to a positive definite bilinear form on S, which can be written as

c(f,9) = (Cf,g)y for all f,ge S for a positive definite operator C' on H with domain of definition S.

Definition 3.3 (Gaussian measures). A measure g on S'(R”Y) defined by Milnos’s theorem satisfying
J () dpu(@) = e=3(CLDn, (58)
S/(RN)

where C' is a positive semidefinite operator C' on H with domain of definition S, termed covariance

operator, is called Gaussian.

The operation of derivation can be defined for functionals of random variables as well.

Definition 3.4 (Functional Derivative). Let F' € L?*(S'(RY),u). Its functional directional

derivative in the direction T € S'(R”) is defined as Gateaux derivative as

OF d
—(®).T:= —| F(®+¢€T). 59
55 (@) de|_ @ +eD) (59)
The special case T = §(- — z) for z € R arises often and is thus given a special notation

O p@)— %(@).5(- — ). (60)

3.2.1 Fock Space

To extend a quantum mechanical model accounting for a fixed number of particles to one accounting

for an arbitrary number, the following procedure is required.

Definition 3.5 (Second Quantization). Let H be the Hilbert space whose unit sphere corresponds
to the possible pure quantum states of the system with a fixed number of particles. The Fock space
F(H) = ®F_ H™ where, H® := C and H™ := H® --- ® H (n times tensor product) is the

vector space representing the states of a quantum system with a variable number of particles. The
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vector Qg := (1,0...) € F(H) is called the vacuum vector. Given 1 € F(H), we write (™) for
the orthogonal projection of 1) onto H(™). The set F, consisting of those 1 such that ¢(") = 0 for all
sufficiently large n is a dense subspace of the Fock space, called the space of finite particles. The

symmetrization and anti-symmetrization operators

1
Sn(1® - ®@1hy) 1= ] 2 Yo(1) @+ @ Ts(n)

T oeGn

1
Ap(1 ® - @1y,) 1= o Z (_l)sgn(a)wa(l) ® ®0s(n)

oceG™

(61)

extend by linearity to H(™ and are projections. The state space for n fermions is defined as ’H((ln) =

A, (H™) and that for n bosons as H" =5, (H™). The Fermionic Fock space is defined as

0

FuH) = P HD, (62)
n=0
and the Bosonic Fock space as
o0]
Fo(H) = P HM. (63)
n=0

A unitary operator U : H — H can be uniquely extended to a unitary operator T'(U) : F(H) — F(H)

as

F(U)|H(n) = ()?)U (64)
j=1

A selfadjoint operator A on H with dense subspace D(A) < H can be uniquely extended to a selfadjoint

operator dI'(A) on F(H) as closure of the essentialy selfadjoint operator

j=1 j

where

D(dI(A)) := {w e Fy

w(") € ()72) D(A) for each n} . (66)

Jj=1

The operator dI'(A) is called the second quantization of A.

It is easy to prove that the spectrum of the second quantization can be inferred from the spectrum

of the first.

Proposition 3.4. Let A be a selfadjoint operator with a discrete spectral resolution, i.e. Ap; = A\jp;,

where {\;}i=0 € R and {¢;};j>0 is a 0.n.B in H. Then, dT'(A)|yw has a discrete spectral resolution
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given by

n

dl'(A) [y i, @+ ® i, = (Z /\i]) i @ ®wi, (i 20,1<j<n). (67)

j=1
If A is a selfadjoint operator with continuous spectrum spec.(A), then dT(A)|ym) has a continuous

spectrum given by

spec, (dI'(A)|ym ) = { Z Aj

Jj=1

Aj € spec.(A) for1 <j < n} . (68)

Definition 3.6 (Segal Quantization). Let f € H be fixed. For vectors in H(™ of the form 1 =
V1 @Yy ® - - @Y, we define a map b= (f) : H™ — H=D by

b= (Fin:=(f1)2® - @y, (69)

The expression b~ (f) extends by linearity to a bounded operator on F(H). The operator N := dI'(I)
is termed number operator and

a”(f) = VN +1b7(f) (70)

is called the annihilation operator on F3(#). Its adjoint, a~(f)* is called the creation operator.

Finally, the real linear (but not complex linear) operator

Bs(f) = % (a=(f) +a=(1)*) (71)

is termed Segal field operator, and the map

g :H — O(F(H))
= @s(f)

(72)

the Segal quantization over H.

Theorem 3.5. Let H be a complex Hilbert space and ®g the corresponding Segal quantization. Then:

(a) For each f € H the operator ®s(f) is essentially selfadjoint on Fy.

(b) The vacuum Qg is in the domain of all finite products ®s(f1)Ps(f2) ... Ps(fn) and the linear span
of {Ps(f1)Ps(f2) ... Ps(fn)Q0 | fi € H,n =0} is dense in Fs(H).
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(¢) For each g€ Fy and f,ge H

5(f)2s(9)Y — ()Y = elm(f, )0
exp (105(f + 9)) = exp (5 Im(f,9) ) exp (105 (£)) exp (105 (9))

(d) If fn — f in H, then:

D5(fn) = ®s(f)

exp (195 (fn)) — exp (1Ps(f))

(74)

(e) For every unitary operator U on H, T(U) : D(®s(f)) — D(Ps(Uf)) and for v € D(Ps(Uf)) and
forall feH

PU)2s(HNU) ™ = Ds(Uf)y. (75)

Proof. See Theorem X.41 in | | O

3.2.2 Wick Products and Wiener-It6-Segal Isomorphism

Definition 3.7 (Wick Products of Random Variables). Let (€2, .4, 1) be a probability space and
f : Q2 — R a random variable with finite moments. Then, for n € Ny, the random variable : f™ :,

termed nth Wick power of f is defined recursively by

2 (76)

R S e B[ £m]
af.f. n:f : and E*[: f":]=0 forn>1.

Let fi,..., fr : @ = R be random variables with finite moments. The Wick product : f"* ... f;'"* :is

defined recursively in n = nq + -+ - + ng by

Y=,
0 . N1 Nk fT fnifl ni . and E,u[ n1 nk ] -0 for n> 1 (77)
6fi' 1 e JE t it ST B A H ST A = 1.

Definition 3.8 (Wick Products of Segal Fields). Let H be a Hilbert space, and for any f € H
let ®5(f) be the Segal field on the bosonic Fock space Fg(H). Then, for f, f1,..., fr € H the Wick
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product : ®5(f1)... Ps(fx) : is defined recursively by

1 @s(f) = @s(f),
k k Lk (78)
c®s(f) H Ps(f;) == Ps(f): H ®s(fi) =5 Z(f’ ) [ [@s(f) -

i#j
Proposition 3.6 (Wiener-Ité-Segal Isomorphism). If the probability measure u on S'(RY) is
Gaussian, then the space F4(H) is isomorphic to L*(S'(RN),du) and the isomorphism Oy : Fs(H) —
L2(S'(RN),dp), termed Wiener-Ité-Segal isomorphism, satisfies the following properties:
(i) Ow o = 1,
(ii) OwHS = L2(S'(RY), dp),
(iii) Ow D (f)05-® = B(f) for all ® € S'(RV) and f e S(RV),

where Qg = (1,0,0,...) € Fo(H) and L2(S'(RN),du) is the closure of all linear combinations of Wick

products of random variables over S'(RN) up to order n.

Proof. See Proposition 5.7 in | | O

3.3 Osterwalder-Schrader Axioms

Osterwalder and Schrader (see | I, [ ]) utilized the Wick rotation technique to pass from
the Minkowskian to the Euclidean space and formulate axioms equivalent to Wightman in terms of
Euclidean Green functions. In | | they defined free Bose and Fermi fields and proved a Feynman-

Kag¢ formula for boson-fermion models.

The dynamics of the quantized system satisfying Wightman axioms is given by the Schrédinger,
or, equivalently by the heat equation, where an H unbounded, selfadjoint Hamilton operator H on
a physical Hilbert space ‘H appears. The Hamilton operator can be extracted from the Osterwalder-
Schrader axioms and ideally coincides with an operator obtained by a quantization procedure of the

Hamiltonfunction in the classical description of the physical system.
Following chapter 6 of | | we introduce the

Definition 3.9 (Osterwalder-Schrader Axioms). The primitive of a quantum field model is a Borel

probability measure dp on S'(RY), whose inverse Fourier transform gives the generating functional

S| e Do), (79)
S'(RN)

25



where f € S(RY). Formally, we write ®(f) = gy (z)f(2)d" .

(OS0) Analyticity: The functional S(f) is entire analytic. For every finite set of test functions

f;i e S(RY), j =1,...,n and complex numbers z := (21, 22, ..., 2,) € C", the function

28 (Z ijj) (30)

is entire on C".

(0S1) Regularity: For some p € [1,2], some constant ¢ and for all f € S(RV)

15(f)] < e Wleram HIL @) (81)

(0S2) Euclidean Invariance: The functional S(f) is invariant under Euclidean symmetries E of

R”. This means that for any translation, rotation and reflection, for all f € S(RY)

S(Ef) =5(f), (82)
where Ef(z) := f(E~!(z)).
(0S3) Reflection Positivity: Let
L= {1/}‘ (D) = i c;e®U) ;e C f; e SRN),j = 1,...,n} (83)
j=1

be the algebra of exponential functionals on tempered distributions and
n
Ly = {w‘ V(@) = Y eje®) ¢j e C, fj e S(RY),supp(f;) < {(t,x) e RV | > 0}} (84)
j=1

the subalgebra of exponential functionals whose defining functions are supported in the positive

time half space. Euclidean transforms E on R" act on S’'(R") via
(EY)(®) := p(E®) and E®(f) := ®(E[), (85)

forally e £, ® e S'(RY), fe S(RY).

We assume that the time reflection

(t,z) — 0(t,x) := (—t,x) (86)
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Path space S'(RM)

Configuration space S’ (RN
Measure on path space du
Measure on configuration space dv = dplt.—o

Path space for quantum operators | £ := L?(S"(RY), dp)

Physical Hilbert space H =~ L*(S' (RN, dv)

Table 2: Quantum field theory from Osterwalder-Schrader axioms

satisfies

f 0% (®) (D) dp(®) > 0. (87)
S'(RN)
forall We L.

(0OS4) Ergodicity: The Euclidean time translation subgroup {7T'(¢)}:>0 acts ergodically on the mea-
sure space (S'(RY),dp), i.e.

lim + J T(s)U(®)T(s) " ds = L,(RN)\I/@)du((I)), (88)

for all U e LY(S"(RY), du).

From the Osterwalder-Schrader axioms we can reconstruct quantum field theory as described by the
Wightman axioms and derive the quantum mechanical dynamics. Table 2 depicts the formal scheme
of this construction. The proper definition of the quantum mechanical Hilbert space relies on the
reflection positivity axiom. The exponential functionals £ are dense in & := L%(S'(R”Y),du). Let &,
be the closure of £, in &£, termed as positive time subspace of £, and define the bilinear form on
Er x &y

bW, ) = L/(Rm ()T (D)du(P). (89)
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By (0S3) the bilinear form b is positive semidefinite. Let
N = {yp e & |b(T,T) = 0} (90)

the subspace of vectors for which the bilinear form degenerates, and define the quantum mechanical
Hilbert space as
H = S+/N, (91)

with hermitian scalar product defined by (89) independently of the representative of the equivalence
class. We denote the canonical embedding of the positive time subspace unto the quantum mechanical

Hilbert space as

Ay —>H (02)
U U* = U 4+ N,
and transfer operators S acting on £, to operators S* acting on H by
SAU” = (SU)”, (93)
which is well defined for all ¥ € &£, if
S:D(S)nE > & and S:D(S) NN - N. (94)

Theorem 3.7 (Reconstruction of quantum mechanics). If the probability measure pn on S'(R™N) satisfies
the reflection and time translation invariance axiom (0S2), and the reflection positivity aziom (0S3),

then for all t = 0 the time translation T'(t) satisfies (94) and
T(t)* = tH, (95)

where H = H* > 0 is a (possibly unbounded) selfadjoint operator on H with ground state Qg := 1*, i.e.
HQy =0.

Proof. See Theorem 6.13 in | | O

The reflection positivity axiom is not easy to verify. The following proposition provides a useful criterion.

Proposition 3.8. The probability measure . on S'(RYN) satisfies the reflection positivity axiom (0S3)
if and only if the matriz M := [S(0(f;) — f;)] has positive eigenvalues for all choices of (fi)i=1,..n €
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S(RYN) with support in the time positive half space.
Proof. See Corollary 3.4.4 in | ] O

Gaussian measures play a prominent role in quantum field theory, because they originate free fields.

Definition 3.10. A linear operator C defined on RY satisfies the reflection positivity property if and
only if
(efv Cf)LQ(RN,de) = 0, (96)

for all f € RY supported at positive times.

Theorem 3.9. A Gaussian measure on the space of tempered distributions satisfies reflection positivity

if and only if its covariance operator does.

Proof. See Theorem 6.22 in | | O

1

Proposition 3.10. The covariance operator C := (—Ag~ +m?) ™! is reflection positive for all m? > 0.

Proof. See Proposition 6.2.5 in | ] O

Finally, we highlight the equivalence of the Osterwalder-Schrader axioms with Wightman’s ones.

Theorem 3.11. Wightman’s axioms (W1)-(W8) are equivalent to Osterwalder-Scharder azioms (0S0)-
(054).

Proof. See Theorem I1.12 and Theorem II1.13 in | | or Theorem 6.1.5 and Chapter 19 in | |. O

4 Quantization of Yang-Mills Equations and Positive Mass Gap

There are several methods of designing a quantum theory for non-Abelian gauge fields. The Hamilto-
nian formulation is the approach used in the original work by Yang-Mills (| ]), which was later
abandoned in favour of an alternative method based on Feynman path integrals (| ). When it
became clear that the Faddeev-Popov method must be incomplete beyond perturbation theory, Hamil-
tonian formulation enjoyed a partial renaissance. More recent, didactically accessible, examples of the

Hamiltonian approach in the physical literature can be found in | |

In the first section of this chapter we construct a quantized Yang-Mills theory in dimension 3+1 and
in the second we compute spectral lower bounds for the Hamilton operator. In the third we summarize

our findings and prove the main result, Theorem 4.26.
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4.1 Quantization

In the Yang-Mills 3 + 1 dimensional set up, in order to account for functionals on transversal fields
as required by the Coulomb gauge, we introduce the configuration space & (R*, CX*3) and the path
space &' (R3, CK*3). These are the duals in the sense of nuclear spaces of the test functions satisfying

the transversal condition:

L7 (R?,CM3 d%z) .= {A e L*(R?, C"9 dz)| Al = 0},
S (R3, CK*3) .= S(R3, CK*3) n L2 (R, CE "3, d3x) (97)
SL(R*, CH*¥) = {fe SR*, CH3)| f(t,-) e LT (R?, C*3 d%z) for all t e R}

Note that we do not need to bother about the time component of the connection, because it vanishes

in the Coulomb gauge. The tempered distributions are defined

SL(R?, CF*3) = {A: S (R?, CF*3) — CF*3 linear and continuous} (98)
98
S| (R, CH%) = {A: 8 (R?, CF**) — C*? linear and continuous},

and A € 8| (R*, CE*3) is called regular if there exists a = a(t,z) € L2 _(R*, CX*3) such that for all
f e SL(R4, CK><3)

A(f) = j & (¢, 2)alt, 2) £ (t, ), (99)

R4

where the dot denotes the pointwise multiplication.

We define the Hilbert space £ := L2(S| (R*, CX*3) du) and the physical Hilbert space as H :=
L*(S (R3,CK*3) dv) for appropriate probability measures p and v.
We introduce the Hamilton operator originated by the quantization of the Hamiltonian formulation
of Yang-Mills equations. This operator is the infinitesimal generator of a time inhomogeneous Itd’s
diffusion, whose probability density solves the heat kernel equation. We construct a probability measure
on the tempered distributions using this Itd’s process as integrator and utilizing the Feynman-Kac
formula. We prove that the necessary Osterwalder-Schrader axioms for the Hamilton operator to be
selfadjoint on the probability space of the time zero tempered distributions are fulfilled. Then, we verify

that the Wightman axioms are satisfied.

When we try to introduce the canonical quantization for the Hamilton function H in (40), we face the
problem for Hy; and V that the classical fields A(¢,x) cannot be directly interpreted as multiplication
operators in L%(S| (R3?, CE*3) dv), because the multiplication of distributions cannot be properly
defined. To circumvent this issue, following the idea expressed f.i. in [ ] (page 257) and applied to

Nelson’s model in | | (page 297) in the case of ultraviolet divergence, we introduce a cutoff test
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function to regularize fields.

Definition 4.1 (Regularization and Ultraviolet Cutoff). Let us consider a test function ¢ €

S(R* RY) such that o, (z) := ¢(t,7) € S(R?, R) satisfies for all ¢

@i(z) > 0 for all z € R3

J pi(r) =1 (100)
R3

supp(p¢) cc R2.

The test function p* € S(R*, R') defined as ¢ (¢, ) := Ap;(Ax) is called mollifier for the ultraviolet
cutoff level A > 0.

Note that for all £ € R in the limit we have S’ —lima ., o p = § € S'(R?, R!') and that A (o} (-—z)15*3)

is a polynomially bounded function in z € R®. By introducing the notation
A(pp (- =) = Alp (- — )1, (101)

Theorem 2.4 can be now quantized as follows.

Proposition 4.1. Let H = H(A, E) be the Hamilton function of the Hamilton equations equivalent to
the Yang-Mills equations as in Theorem 2./ for a simple Lie-group as structure group. Let us consider
a A = 0 and the mollifier function ¢* € S(R* R'). For a probability measure v on S (R3, CK*3)
the canonical quantization of the position variable A, of the momentum variable E and of the Hamilton

function H means the following substitution:

A e C*(R? CH"%) — A(pf(- — ) € O(L*(S)(R?, CF*%), CH3 dv))
1

1 6A(p) (-~ )
HeC®RXE) R) — HN = H (A(%A(- —))

Eec CP(R3 CK*3) — e O(L*(S) (R3,CE*3) K>3 av))

1 4]

MM(@?(._JJ e O(L*(S|(R?,CK*®), C,dv)),

(102)

where O(-) denotes the set of all linear operators over the corresponding underlying vector space. The

cutoff Hamilton operator H™ for the quantized Yang-Mills equations reads

HM = HN + HY + VA9 — VM9, (103)
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Ag _ ¢ e, )z € )
() A) = = [ @] [ @Al e Al )

(VA9T)(A) = JRS Br VMt xz, A)U(A),

1 .
VA9t z, A) = ﬁ#’kff’q [0 AR (P (- = 2)) = kAT (P (- — @)+ ge® AL (@ (- — ) AL (9 (- — )]

[0p A5 (01 (- = 1)) = QAL (9 (- — @) +ge™ A (1 (- — 2)) A0 (- — )]},

%A’g :a real constant which will be chosen later,

(104)

with the domain of definition
D(HM9) := {T e L*(S| (R®, CK*?),C,dv) | H*T € L*(S| (R®,CK*?),C,dv) } . (105)

Note that the time t is considered as a parameter in the expressions (102) and (104).

Remark 4.1. The first dot in 0;G**(A(¢2(- — -)) in the expression for HIAI’g in (104) refers to the
application of the distribution A on the test function i.e. the integration variable if A is regular. The
second is the generic variable sign, since the modified Green function G is a functional of a function in

the first argument, as explained in Proposition 2.1.
Proof of Proposition /.1. It is a straightforward consequence of Corollary 2.5 where we introduce the
quantization specified by (102). O

Remark 4.2. Later, we will prove that Qy € D(H*Y) is the ground state of H*9, which is an

eigenvector for the eigenvalue 0 with simple multiplicity, unique up to multiplication with a constant.

Remark 4.3. The derivative

V(A)= | (A +epp(—2) — s Y(A) (A — +o0) (106)

SAT A=) SAL(1,2)

32



in line with fact that A%(¢(- — 2)) tends to A%(t,x), because S’ — limp ;o (- — ) = 6(- — ) for
all ¢.

Remark 4.4. The operator H f\ tends for A — +00 to the Laplace operator in infinite dimensions for
functionals of the potential fields. The operator V4 is a multiplication operator corresponding to the
fibrewise multiplication with the square of the connection curvature. Both operators H j\ and VA do
not vanish if g = 0 and do not contribute to the existence of a mass gap. The operator H 1{\1 vanishes if

g = 0, fi. when G is an abelian groups, and, as we will see, is responsible for the existence of a mass

gap.

Remark 4.5. In the physical literature (see f.i. | ]) the operator C = C(A;z,y)

C*P(Ajz,y) =~ | d*YG °(A;2,5)AG"(Asy,7) (107)
RS

is termed Coulomb operator and G = G(A;x,y) is also called the Faddeev-Popov operator. Note that

they make sense only after the substitution
A(t, ) = A(pp (- — 2)), (108)
and passing to the limit A — +o0.

A direct computation shows

Proposition 4.2 (Canonical Commutation Relations). The operators Q (x) and P! (x) defined

as

(@) U(A) = Al (g7 (z — )T (A)

. 5 (109)
PE@Y(A) = e VA,

on the appropriate domains, are in O(L*(S (R3, CK*3) dv™9)) for all i,a,z and all measures v™9.

Their commutators satisfy the equations
1
Q7 (=), Q5w =0 [P(2), Pf)] =0 [P(2),Q5(y)] = ~0""3i 30, (110)

foralli,j,a,b,z,y.
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4.2 Construction of a Complete Set of Generalized Eigenvectors

Theorem 4.3. For A > 0 big enough there exists a probability measure v™9 such that H™9 is a
selfadjoint operator on L*(S' (R?,CX*3) C,dv*9) for all real constants VOA’g There exists a ground

state Qé\’g e D(HM9) of HM9 for the eigenvalue O for one choice of the real constant VOA’g:
HMQN9 = 0. (111)

The ground state Qé\’g s an eigenvector with simple multiplicity, and hence it is unique up to multipli-

cation with a constant.

The proof of Theorem 4.3 is an elaborated functional analytic construction of a probability measure

making the Hamilton operator selfadjoint and with a unique ground state.

On a finite dimensional vector space an operator possessing a basis of eigenvectors for real eigenvalues
is selfadjoint only with respect to the scalar product which makes that basis orthonormal. For an infinite
space the situation is similar but more complicated by the presence of generalized eigenvalues which

are not proper eigenvalues, i.e. by the continuous spectrum.

Proposition 4.4. Let vy be the standard Gaussian probability on S| (R3, CX*3). In the notation of
Example A.2

E(L*(SL(R?,C?),C.dwy)) := {p € L*(SL(R?,C**?), C,dw)] ¢l < +o0} (112)
112
E'(L*(S| (R3,CK*3) C,dvy)) : dual space of (S.(R3,CK*3 C,dw)).

Then, we have a rigged Hilbert space
E(L*(S|(R?, CK*3),C,dvy)) = L*(S (R, CH*3),C,dy) = &'(L*(S| (R?,CH*3),C,dvy)) (113)

and the operators HY, H?I’g, VA9 have a complete set of generalized eigenvectors in £ (L*(S' (R3, CK*3),C, dvy))
for real non-negative generalized eigenvalues. The operator H™9 is selfadjoint on L*(S' (R3, CK*3), C, dvy)

with a non negative spectrum for VOA’g sufficiently small and A sufficiently big.

To prove this proposition we need to prove some intermediate Lemmata beforehand.

Lemma 4.5. Let R > 0 be a positive constant and let

N
D= )" fi(A)da, (114)
k=1
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be a first order PDO on RN for given functions fi, fa, ..., fx on RYN. If there exists a diffeomeorphism
B mapping some compact subset of RV (in the "A"-space) to [7% +§]N (in the "B"-space), such that

N
9;(B) := Y. f1(A)da,B; (115)
k=1

are

where k; € Z* for j =1,...,N, provided the integrals in the denominators of (116) exists.

Lemma 4.5 is proved by a direct computation utilizing second order ODE.

Lemma 4.6. Let us assume that for allk =1,..., N

roo dAy, fr(A)™! < 40 (117)

> . (118)

holds uniformly in A. Then, the function B : RN — RN defined as

A _
Bj =o' (Lj U dA;fi7 N (Ar, . Ay L AN) + Kj(Ar, L A1, Ajy, L AR
—o0

where
Aj _ B
Kj(Al;~c~;Aj71;Aj+1;~c~;AN) = _l,glfJ‘ dAjfj_l(Ah...,Aj,...,AN) > —o0
J J—00

1
Aj B N
Lj = [sup lj dAjfjil(Al,...,Aj,...,AN)+Kj(A17...,Aj,l,AjJrh...,AN) ] < +00 (119)
0

A _

O(v) := %f due_“2,
—0

is a diffeomorphism satisfying the assumptions of Lemma 4.5 for any constant R > 0, and the functions

g; read

N
9i(Bj) = /m (Z Lk) ePl. (120)

k=1

Proof. By definition (115), if
fr0a,B; = Cy;(B;) (121)

for a function C}; ; of one variable, then the function g; explicitly depends on the variable B; only. This
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leads to the differential equation
dB; dAy

Cin(Bj) ~ fu(A)

(122)

which is fulfilled if

B D, A 1
i dB; k dA
J J b +Kk‘(A17'"7Ak—17Ak+17"'7AN)7 (123)

—00 CJJC(B]) N —0 fk(A17"'7Ak717Ak7Ak7"'aAN)

where K}, is a function of A not depending on Aj. The choice

Cin(u) = VrLie" (124)
for L; and K defined in (119) leads to the desired result. O
Now we can compute the generalized spectral decomposition of the Hamilton operator H™9.

Proof of Proposition 4./. The rigged Hilberst space statement (113) follows from the Kubo-Takenaka
construction explained in Example A.2. We will construct generalized eigenvectors for real non negative

eigenvalues of H*9 which decomposes as
HA,g — H;\ + H?fg + VAvg — ‘/0‘/\79. (125)
First, we analyze the operator H f\, which can be written as

H} =U'H;U
1 3

H] = -z d J?ARsK (126)
2 Jre

UT(A) = U(A(p] (-~ ))) for A € S| (R, CFP).

Hence it suffices to construct a generalized eigenvector for H; and one follows for HY for the same
generalized eigenvalue. Let € R? and ¢t € R now be fixed. For any R > 0 the Laplace operator A on
[—g, +§]3K under Dirichlet boundary conditions has a discrete spectral resolution (A, ¥k )r=0, where
Ak = —%Z(k +1), and ¢ = Pp(A) € CP([— &, +E]3%,C). We can extend 1, outside the cube by
setting its value to 0, obtaining an approximated eigenvector for the approximated eigenvalue \j, which
is in line with the fact that the Laplacian on L?(R?*¥K, C) has solely a continuous spectrum, which is

] — 00,0]. The functional on S’ (R?, CK*3)

\I,;:ﬁﬂﬁo(

B>
|
=
>
|
s
=
=
|
K
)
<
=
2

(127)
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for zo € R® k€ N and A € R3¥ is a generalized eigenvector in £'(S' (R?, CE*3), duy) for the operator
2

Hj on the rigged Hilbert space L*(S) (R3, CX*3), di) for the generalized eigenvalue %5 (k + 1). By
varying the generalized eigenvector over zg, A, k and R, we obtain a complete set of generalized

eigenvectors for £&'(L?(S] (R3, CEX*3),C,dvy)), because, if for any ® € £(L%(S) (R3, CE*3), C, duvy))

| A (A)B(A)dvo(A) = 0, (125)
S/ (R3,CKx3)

that is
(z — 0)Pr(A)B(A) =0, (129)

which holds true for all zop € R3, A € R*¥ and all k > 0 iff ® = 0. By Corollary A.3 the operator H;
on L%(8' (R3,CE*3), C, duyp) is selfadjoint with non negative spectrum. The same holds true for H#

Next, we analyze the operator H?I’g , which can be written as
Hy =U'HY,U
7 = IT

2 2
Hy - - de d?’yD?(A;x,y)] (130)
2 Jns R

UP(A) = U(A(gr (- —))) for A e S| (R, CF9),

for the operator D = D(A;x,y) defined as

D{(Asz,y) == ;G (A(t,y); z,y)e" Al (t,y) (131)

_ 0
SAS(t,y)

Hence it suffices to construct a generalized eigenvector for HY, and one follows for H;xl’g for the same

generalized eigenvalue. Let g, yo € R? now be fixed. We set
fik (Aswo,yo) = 0GP (A (L, yo); 0, yo)eP L AL (L, yo) (132)
and apply Lemma 4.5 and Lemma 4.6. Assuming that for all indices ¢, k

+00
f dAT, [ (A, y0); 20, yo) " < +00 (133)

—00

uniformly in A, we can find a diffeomeorphism B : R** — R*K in the form of formula (118), such

that for any R > 0 the operator D¢(A(t,yo); o, yo)? on B~ ([—£,+£13K) under Dirichlet boundary
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conditions has a discrete spectral resolution (A{ (w0, yo), ¥f (A (t,40); T0, Y0))s>0, Where

X 2k?CS
M (o) =~ D) (134)

where k; . s € Z* for all indices s € Ng, j € {1,2,3} and ce {1,..., K}, and, by Lemma 4.6 we defined

3 K
a, ac 12
G B 0 y) i (2 S L5 oo ) B (135

k=1c=1

for

AS -1
L (0, 90) = [SUP lf dAS FE (A 20, Y0) " + K0 (A; l‘o,yo)H
S (136)

AC
KEf (A san) = —int [ a5 7 (Aso.0) ™

Note that for any R > 0 the operator D#(A(t, yo); zo,y0) on B~ ([— £, +£]3K) under Dirichlet bound-
ary conditions has a discrete spectral resolution with the same eigenvectors as D (A (t,yo); Zo, yo)? but
other eigenvalues (f (w0, o), ¥f s(A(t,90); T0,Yo))s=0, Where

k2

3 K
CZ S xO’ yo Z Z E a, Cj’c’s ’ (137)
=1 e=1 é dBS g; 7 (BS; 0, y0)

where k; . s € Z* for all indices s € Ny, j € {1,2,3} and ce {1,...,K}.

Since B~} ([— &, +£]3K) 1 R3X for R 1 +00, we can extend ¥ (320, Y0) outside the cube by setting
its value to 0, obtaining an approximated eigenvector for the approximated eigenvalue A{ <(x0,y0) for
the operator Df(A;xo,y0)? on L?*(R**,C), which means that A{ ,(zo,y0) € spec.(D{ (A;xo,0)?). For

fixed i, s and a the functional

W v A (A) = 6(A — A)d(x — 20)d(y — y0)3(F — yo) ¥, (A; 70, y0) (138)

is a generalized eigenvector in £'(S' (R3, CX*3), dyy) for the operator

) 2
Y=L | de f d’y Df (A;w.y) | =
b 2 R3 R3

= —% ng &’z URS d’y D (A;z, y)] Um 4’y D (A;z, y)] "

38



on the rigged Hilbert space L(S) (R*, CK*3), dyy) for the strictly positive generalized eigenvalue

272

3 K a2 J.2
/\ xo,yo 92 Z Z — 2 Ve, 5. (140)
j=1le=1 [S_é dB§ gﬁ}?(B;;x(],yo)*l]

By varying the generalized eigenvector over xg, 9o, A, k and R, we obtain a complete set of generalized

eigenvectors for £&'(L?(S] (R3, CE*3),C,dvy)), because, if for any ® € £(L2(S) (R3, CE*3), C, duvy))

| WA (R)B(A)dun(A) = 0 (14)
S’ (R3,CKx3) ’

that is
6(x — 20)8(y — yo) i (As 2o, y0) = 0, (142)

which holds true for all zg,y0 € R?, A € R3® and all k > 0 iff ® = 0. By Corollary A.3 the operators
Hppon L2(S (R3,CK*®), C, di) is selfadjoint with non negative spectrum. The same holds true for
and thus HY; and HH’g forall A >0

Finally, we analyze the multiplication operator

(VAITY(A) = JRs Bz VMt z, A)U(A),

VAt z, A) = 116€§k PH0AR PR (- = 2)) = 0k AG (01 (- — @)+ ge® P AY (91 (- — 1)) AL (01 (- — 2))]

[0 A0 (- — 2)) — 0g A5 (o (- — ) +ge™ A (o (- — ) A5 (- — 2))]} -
(143)

Let A € L2 (R3,CX*3 d3z) now be fixed.

1,
VA9t 2, A) — Esﬁ’kef’q {[0;Af(t, x) — 0RAG(t, )+ ge®P AL (L, 2) Af(t, )]
(144)
A
[0St 0) - 2, A3(t,3) +gem VA ) As(t, )]} = BTG ) (A ),

where RV” is the curvature operator associated to the connection A. Any non zero 1) € CL(R3*K Q)
is eigenvector of the multiplication operator on L?(R3%, C) with the non negative real VA9(t, z, A) for

A big enough. The functional
UAT(A) := (A — A)d(z — 20)tk(A), (145)

where (11, ) k>0 is an orthonormal basis of L?(R3% | C) , is a generalized eigenvector in £'(S' (R3, CE*3), dvy)
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for the operator V29 on the rigged Hilbert space L?(S/ (R?, CX*3), dv) for the generalized eigenvalue
VAI(t,x, A). By varying the generalized eigenvector over o € R3, A € R3% and k > 0, we ob-
tain a complete set of generalized eigenvectors for £'(L*(S (R?, CK*3), C,dw)), because, if for any

D € E(L2(S)(R?, CK*3), C, dwy))

| oA (A)B(A)dvo(A) - 0, (146)
S/ (R3,CKx3)

that is
0(x — z0) Y (A;x0) =0, (147)

which holds true for all o € R?, A € R*¥ and all k > 0 iff ® = 0. By Corollary A.3 the operator VA9
on L2(S (R3,CE*3), C, duyp) is selfadjoint with non negative spectrum if A is big enough.

We conclude that H9 is a selfadjoint operator as a sum of selfadjoint operators. For A big enough,
if we choose V9 < inf spec((V29), then the spectrum of H™9 lies in [0, +00[. The proof is concluded.

O

Next, in view of the proof of Theorem 4.3 we consider the commutative version of Theorem 4 in | |

considering the remarks on page 59 therein.

Theorem 4.7. Let Hy be a nonnegative selfadjoint operator on L*(X,C,dv), where (X, A,v) is a

probability space. Assume

(i) exp(—tHy) is a contraction in LP(X, C,dv) norm for allt > 0 and all p € [1,400] and exp(—T Hy)
is a contraction from L?(X,C,dv) to L*(X,C,dv) for some real number T > 0.

(ii) exp(—tHy) is positivity preserving for all t > 0.

(i4i) The null space of Hy, ker(Hy) is spanned by the identity element of the algebra of bounded mea-

surable functions on (X, A).

Let V' be a selfadjoint operator given by the multiplication by some measurable real function v on

L?(X,C,dv). Assume
(iv) ve LF(X,C,dv) for some real number k > 2 and exp(—v) € LP(X,C,dv) is for all p < +c0.
Then:

(a) Ho +V is essentially selfadjoint and its closure H is bounded from below.
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(b) If X = inf spec(H), then A is an eigenvalue of H of multiplicity one and there exists a corresponding

non-negative eigenvector.

Proof of Theorem 4.3. If A big enough and VO’\’g small enough, by Proposition 4.4 the operator H™9
is selfadjoint with non negative spectrum on H := L*(X, C,dvp) for X := S| (R?, CK*3). With the

choice VOA’g := inf spec(H} + H;\I’g + VA9) we obtain
0 = inf spec(H™9), (148)
which, by Theorem 4.7 (b), is a simple eigenvalue for an eigenvector Qg’g . With the choices
Hy:= H*9 and v := 0, (149)

the assumptions of Theorem 4.7 are satisfied, because, being Hj selfadjoint with non-negative spectrum,

we have the spectral representation by of the projection valued measure E : B(R) — L(H) as

+oo
Hyp = J ME(N)g  for ¢ € D(Hy). (150)
0
Therefore, for all ¢t > 0
+00
exp(~tHo)p = [ exp(-~tNdE()
0 (151)

+o0
for ¢ € D(exp(—tHy)) := {(p eH ‘ f |exp(—tA)|2d(E(\)g, p) < +oo}
0
(i) For p = 2 we have for all p € H

| exp(—tHo)p|3, = (exp(—tHo)p, exp(—tHo)y) = (exp(—2tHo)p, ¢) =

+a0 ) (152)
_ j exp(~26N) d(E(\, ¢, 0) < o2
—_—

<1

0

Hence, exp(—tHy) is a contraction on L2

For p € [1, +oo[ we have

p

p +o0
dv < f exp(—tA) dEN)| [elb. (153)
——

J+OO exp(—t\)dE(N)y .

0

| exp(—tHo)pl% = J
X

<1

Hence, exp(—tHp) is a contraction on L? for p € [1, +oo[.
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For p = +00 we have

+00 +o0
J exp(—tA)dE(N)p dl/éj exp(—tA)dE(N)| |¢lw. (154)

| exp(—tHo)pl r= :f sup
X X

0 0
- <1 w,
<1
Hence, exp(—tHp) is a contraction on L.
(ii) Let us write exp(—tHp) as integral operator
expl~tHo)e(o) = | Klz.n)eu)vly) (155)
for an appropriate with integral kernel K = K(x,y). Therefore, for all ¢ € H
. 2
(en(-thee) = [ KpletPawi) - oo (~5H0) o] =0 50
H

This can only be true if K > 0. Hence, for ¢ > 0, (155) shows that exp(—tHp)p > 0, meaning
that exp(—tHyp)yp is positivity preserving.

(iii) Every element of ker(Hy) < £(L*(S' (R?, CE*3), C, dvp)) must be a bounded measurable function

on X, because Hy is an infinite dimensional elliptic operator | ]
(iv) The choice v = 0 satisfies this assumption.
The proof is completed.
O

Remark 4.6. The ground state Qé\’g of H™9 has been constructed in L?(S (R?, CX*3), C,dw),
where v is the standard Gaussian measure. This is NOT the measure for which we will verify the

Osterwalder-Schrader axioms.

4.3 Construction of the Probability Measure under the Ultraviolet and In-
frared Cut Offs and Regularization

To construct appropriate probability measures on &’ (R*, CK*3) we need results about infinitesimal

generators of time inhomogeneous 1t6’ s diffusions.

Proposition 4.8. Let (W;)i>o be a M-dimensional standard P— Brownian motion with respect to the

filtration (At)i=0. Let b: [0, +o[xRN — RY, ¢ : [0, +o[xRY — RN*M be Borel measurable and
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locally bounded functions, satisfying
b(t, z) = b(t,y) g~ + |o(t, ) — o, y)|gwsn < K|z —ylgy (157)

for a positive constant K, meaning Lipschitz-continuity with respect to x uniform in t. The solution of

the SDE
dXt = b(t, Xt)dt + O'(t, Xt)th

(158)
Xo=xp€ f{,N7

is a time inhomogeneous Itd’s diffusion, whose infinitesimal generator is given by the PDO with variable

coefficients

N 02 0
t 33 + b; t a:
Z: 40 grdn, ; oz; (159)

D(L;) := CF RN, RY) c L2(RN, RN, dVz) - L*(RN, RN, dVx),

[\DM—‘

where

a(t,x) := o(t,x)o(t,z)'. (160)

Conversely, if the operator L is elliptic for all t = 0, then for o(t,x) := a%(t,x) and M = N, there
exists an Ito’s diffusion as (158) whose transition density ki(xo,x) is the heat kernel of Ly, i.e. the

solution of
Lu(t,z) = Lyu(t, z)

(161)
u(0,7) = 6(x — z0) € S'(RV,RY).
It follows that the solution of
u(0,z) = f(x) € CF°(RY, RY)
is given by
ult.a0) = ELFCXDIA) = | fahma(oo, 2)aa (163)
R
Proof. See chapters 8.3-8.5 of | | and chapters VII.1-VIL2 | |. O

What is the situation in the infinite dimensional case?

Proposition 4.9. Let F and G be a real separable Hilbert spaces and Lys(G,F) denote the vector
space of all Hilbert-Schmidt operators from G to F. Let (W)= be a standard P— Wiener process with
respect to the filtration (Ay)i=o taking values G and assume that b : [0, +00[xF — F, 0 : [0, +0[x F —
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Lus(G,F) be Borel measurable and locally bounded functions, satisfying

b(t,2) = b(t,9) 5 + lo(t,2) — 0 ()l o) < K |2 — 9l (164)

for a positive constant K, meaning Lipschitz-continuity with respect to x uniform in t. The (strong)

solution of the SDE
dXt = b(t7 Xt)dt + O'(t, Xt)th
Xog=x0€ F

(165)

is a time inhomogeneous Ito’s diffusion. In particular, it satifies the Markov property and thus is a

Markov process.

Proof. Tt is a special case of Theorem 7.4 of | | for identity covariance of the Wiener process and

vanishing linear operator in the drift. The Markov property follows from Theorem 9.8 of | . O

We can now proceed with the construction of a probability measure on S| (R*, CX*3). Inspired
by the treatment of the quantum field associated to a particle in a potential as depicted in chapter 3
of | |, we adapt the ideas therein to the Yang-Mills fields with a cutoff. Using the Feynman-Ka¢
formula, we construct probability measures on £ and H satisfying those Osterwalder-Schrader axioms
implying the reconstruction theorem of quantum mechanics, and thus the selfadjointness and non-
negativity of the cutoff Hamilton operator. However, due to the presence of a non-local term in HI)‘I’g
created by modified green function G, it is not possible, unless g = 0 to realize a fibrewise construction
over every x € R3, and then integrate over x.
If we exclude for the moment the part of the Hamiltonian containing the potential, from Proposition

4.1 formula (104) we can write

A ANg _ 3y 71 — 2
Hy + Hpp” = JRSd { 2 [5,4?(@?(- —x))] ’ (166)
92 a, . 1C) #
£ [ N By ;G (A(p (- — )); w,y)eb dAﬁ(@?('—y))csA;(w?('—y))] }

For any probability P, every time ¢ € R (seen as parameter) let us now consider the operator h on the

Hilbert space L?(L? (R3, CX*3) C, dP) defined as

Hf := d*z h3(z), where
R3

1 s 17 ¢ s 7
h(x) =< —= [] - = [ 3y 6;G* (A (t,-); z,y)em AL (t, y ] .
0( ) { 2 6Ag(t,x) 9 - ( ( ) ) k:( )5Ai(t,y)
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Since

§ 2 = = ;
- = — 1 d3 d37 E(,, E(5 5d5k _ ,
[M?(t’x)] SN g~y —2)v=(y — x)dg AL y) 5AL(E,7)

(168)

where (1=)z=0 = S(R?) is a delta sequence, i.e. &’ — limz_, ;o %= = § € S’'(R?), for which = > 0 for
all 2, and the limit is pointwise on the domain of definition of the operator on the 1. h. s. of (168), we

can express the operator h{(z) as

4]

N +
SAL(t,y)

h“g(x)— Ehlf[ 3d3yb2(‘:7x7yag;A(ta'))
169
1) (169)

SAL(ty) S AL(t, 7)

_ dd = _
+ f Py d’y ap L (B, x,y, 7, 9; Alt, )
R3xR3 ’

)

for appropriate matrix a(=Z, z,y, 7, g; A(t, -)) and vector b(Z, z,y, g; A(t,-)) valued coefficient functions.

The horizontal vector b = [b¢] has entries ordered by the bi-index (d, k). The quadratic matrix a = [ai’g]

has row index (d, k) and column index (d, k). Note that we have written the matrices A(¢,y) and A(t,7)

in their equivalent column vector forms. The limit in (169) holds pointwise on the domain of definition

of h{. Furthermore, equation (169) becomes

5 5 5
g - _ % = CA(t. - = “A(t, - 1
o) = i (U= om0 A 505 )+ (aEn s A g e (T
where
b(E, x, g; A(t,)) = y = [bi(E, 2,1, 9; Alt, )] (171)
and
a(Z2,9;A(t,) =y = [0} (5, 2,9, 0 AL, )]
d ] (172)
GG AL o ) = [ PraE 5.9 Al )
— Iy I bl 5A(t,y) ’;: RS k),k = JdrJdr I b 5A(ki(t,g)
with the notation, for any B € L? (R3, CK*3)
g = [y BB (B) (173

for b1’2 € L2(CK><3, R)

Both b and a are functionals of A and depend on the parameters Z. There exists a go € [0, 1]
(not depending on A!), such that, if the coupling constant g € [0, go[, then the expression a(Z, z, g; A)

represents a positive definite operator valued functional of A = A(t,-) seen as C3%-valued function
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in the separable Hilbert space L?(R3, C3X). By Proposition 4.9, we can construct the diffusion ; =
Q’[t (E, z, g)
dA, = b(E, z, g;A,)dt + a? (2, z, g; Ay )dW,, (174)

where (Wy)>0 is the standard Wiener process adapted to the filtration (A;);>0 in the Hilbert space
L2(R3, C3K). Note that aZ is a Hilbert-Schmidt operator because a is a Hilbert-Schmidt integral opera-
tors. Both b and a? are Lipschitz-continuous with respect to A, because they are Fréchet differentiable
with continuous derivative. The Lipschitz constant does not depend on ¢, because b and a? do not

either.

For fixed z € R? the R*¥-valued process 2;(Z,,g) is a Markov process with stochastic kernel

kt.s(2,,g) such that for all A; € C3% and all measurable B € Aj

P[us(aagvx) €eB |ut(Eag7x) = At] = "it,s(Emgwr;Ath) (175)

Let W1 (A, A’,t,z) be the set of continuous paths A (s, z) in C*¥ which take the values A (—t/2, ) =
A and A(+t/2,2) = A’ at their endpoints such that their transversal component All(s,-) vanishes for
all s. The cylinder sets of W (A, A’,¢,x) have the form

Zi(AA 1 {I},x) = {A(s,w) ‘A eEWL(A At 2), A(—t/2,2) = A, A(+t/2,2) = A, 176)
176
A(tj,x)el;, forall j=1,...,n},

where —t/2 <t; <ty <--- <t, <t/2 and I; are Borel subsets of C3X., On these cylinder sets we can

define the measure given by
UX,IJ&LJ/E(Z) = K/—t/Q,tl <E7 9,%; A7 ')®K't1,t2 (Ea g, .’I?)@ : '®K’tn—1,tn (E? 9, x)®"{tn,+t/2<57 g9,%; -, Al>7 (177)

which is countably additive and has a unique extension to the Borel subsets of W, (A, A’ ¢, x), being

the tensor product of stochastic kernels.

The proof of Proposition 4.4 contains the proof that the operator ho(x) on L2(C3K C) is selfad-
joint, and from Theorem 4.7, h{(z) has a unique ground state that we denote by wy? = wyY(A) €

L?(CK*3 C) . For any R > 0, termed infrared cutoff, the expression

defto .= J d%f
lz|<R [s|<

defines a finite measure on W, (A, A’/ t, ) which pushes forward by means of the inclusion to a finite

dls JR3K o dUZfA’.g/iR wg,g (A) w(ﬂ)ﬁ’g (A) (178)
x

k3
2
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measure £ on S) (R, CK*3) first and to S (R* CK*3) next. Note that from (177) to (178) we
have chosen = = R > 0, which is legitimate, because in our construction they both will tend to infinity.

Therefore, inspired by | |, we can introduce the

Definition 4.2 (Infrared/Ultraviolet Cutoff Measure). With

ZtR’g = J- dfﬁ’g

S/ (R4,CKx3) (179)
I R

dufi,g = — ! 9

Zt 95
which is a probability measure on on &' (R*, CK*3), we can define
+3
zMe = f exp —J dsxj ds VN9 (s,z, A) | | dult?
S/ (R4,CKx3) |z|<R -% (180)

1 *s
dp 9 = St lexp (J dSZJ " ds VA’g(s,x,A)>] dut?
Zt |lz|<R -

t
2
as a probability measure on &/ (R*, CK*3).

A . . . . .
We remark that p; T9 i not gauge invariant and not translation invariant.

4.4 Infrared Cutoff Removal and Reconstruction of a Selfadjoint Hamilto-
nian
Definition 4.3 (Ultraviolet Measure). For any measurable 4 c & (R*, CX*3) let

pi 9 (A) := limsup p 9 (A)
R—+0

(181)
p9(A) = limsup p9(A).
t—>+00
Are ué\’g and p9 measures? The answer is yeas and requires several steps. F.i. in | |, chapter

I1X.10 we can find the proof of

Theorem 4.10 (Vitali-Hahn-Saks). Let (X, B) be a measurable space and (1;) =0 a sequence of prob-
ability measures such that (1 (A));j=0 converges for all measurable A € B. Then, p(A) 1= lim;_, 1o p;(A)
defines a probability on (X, B).

Remark 4.7. In (181) for any A we can always find a sequence R; 1 +00 as j — +o0 such that

u%}g (A) — u™9(A) as j — +oo. But this sequence can a priori depend on A, so that we cannot apply
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immediately the Vitali-Hahn-Saks theorem.

Nevertheless, we have

Proposition 4.11. The expressions ,ué\’g and ™9 in (181) define for all A > 0 big enough, g € [0,1]

small enough and t > 0 probability measures on S (R*, CK*3).

Proof. Let us drop the A and g to ease the notation. We first prove the claim for the case V = 0. We

have

i)
RS

By construction (178) for any measurable A the measure £f*(A) is monotone increasing in R and

uf(4) where ¢ = | agf (152)
S/

bounded from above:

FA) <A <G (UA) <+n (RS, (183)

Therefore, for R < .S

M4 _ &)
T S g )

§1(4) &S _ &(A4) &S
FE(A) €8S T ErE(A) E1(S)
=1 =1
(184)
£ oS
L) < ST
SRS _ pi(a)
£(S")  nfi(4)
—
€]0,1]
and
pit(A) < i (A). (185)

We conclude that for any measurable A and for any sequence R; 1 +o0 as j — +0, the sequence
(,uf 7(A)) =0 is monotone increasing. By Theorem 4.10 p; defines a probability measure on &’. The
proof for u goes analogously, because, by construction, it is the limit of the monotone increasing sequence
(e, )j=0 for t; 1 +00 as j — +c0.

We know consider the general case, when V does not vanish. We have

AR,
A,R,g St g(A
~ MR
t7 79(8/>

+3
ARI(4) = JA lexp <J| | Rd?’xf ds V™MI(s, A))] dpt9(A).
z|< —

, where

(186)
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By construction for any measurable A the measure fé\ g (A) is monotone increasing in R and bounded
from above:

EHI(A) S GVIA) < EMTI(A) < 40 (R<S). (187)
Therefore, for R < S

) g4

§0A) )

PGS EMA) §(S)
§

G A) ghs g A) )
—_———
- - (188)
ff\’R’g(S') A,R,g(A) < 2\7579(5/) uA,S,g(A)
ROV ROV
&S (A
I CONRTALCI OV
—_——
€]0,1]
and
p 9 (A) < pS(A). (189)

We conclude that for any measurable A and for any sequence R; 1 +00 as j — +0, the sequence
(,ué\’R"’g(A))jzo is monotone increasing. By Theorem 4.10 p? defines a probability measure on .
The proof for 9 goes analogously, because, by construction, it is the limit of the monotone increasing
sequence (M?j’g)jgo for t; 1 +o0 as j — +oo.

The proof is completed. O

By Fubini’s theorem for distributions (cf. | ), we can write the measures ui\ 9 and p™9 on

S| (R*, CE*3) as

pid(As, 7)) = 6 (AL @)™ (A(s, )
(190)
phI(A(s, 2)) = oMI(A(,2))rMI (Als, ),

where o (A(-,z)) == pi9(A(,,z)) and pM9(A(-,z)) := p9(A(,z)) are probability measures on
S| (R, CE*3) and v29(A(s, ) := 9 (A(s, ) = p9(A(s, ) is a probability measure on S| (R3,CEx3),

respectively. Remark that 29 does not depend on t by construction.

Theorem 4.12 (Feynman-Kaé&-Nelson Formula). The operator H™9 = Hy + H;\I’g + VA9 has a
domain in the Hilbert space L*(S' (R3,CK*3) du9), has fundamental state Q57 = Q59 (A(s, z)), i.e.
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HA*QQS’g = 0, and satisfies the Feynman-Kac-Nelson formula

A,
(202, Bre a0 ppe=Camen ™ puoe) T <
(191)
[ B A )t (),
S (R*,CKx3)

where the scalar product (-, -)A’g on &' (R, CK*3) is defined as

(T,0)M .= f T(A)O(A)dr I(A), (192)
S’ (R3,CKx3)

the functionals (By, = B(A))r=1,. .~ are in L*(S| (R3, CE*3) C,dv™9), and (sk)k=1... N is a parti-

tion of the interval [v,T] defined as sy := 7 + ki~ for 7= —% and T := +1%.

Proof. We show now that the argument in the proof of Theorem 3.4.1 in | | can be utilized this set
up, Recall from Theorem 4.3 that the operator HA9 has fundamental state Q57 = Q39(A(s, z)), i.e.

HM90Q09 — 0. The state 07 depends neither on A nor on g. Note that s is seen as parameter. By

adapting the proof of Theorem 3.4.1 in [ |, we can write
A,g —(sa—s1)HM9 —(s3—s2)HM9 A,g Mg
(Qov ,Bie 52751 Boe s37s2)H777 L. BNQ(f ) =
| (193)
= lim 301 Bi(A (s, -))dug “ (A).
t—+0 S’ (R4,CKx3)
Since ™9 = limy_ 4o p9, we have
A Ag A.g Ag\ N9
(Qo 9 Ble—(82—81)H Bze—(SB—Sz)H ..... By ’9) =
. K (194)
[ B A Ddut(A)
SL(R4,CKXS)
with the same assumptions as for (193).
[

Remark 4.8. Theorem 4.12 for the FKN formula on 3K-dimensional distributions is consistent with

Theorem 3.4.1 in | | for the FKN formula on 1-dimensional distributions.

Theorem 4.13 (Ultraviolet Measure Properties). There exists a go € [0, 1] not dependent on A,

such that the generating functional

shap) = | AN 4), (195)
Si(R47CK><3)
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for f e S| (R* CK*3) satisfies satisfies the Osterwalder-Schadrer azioms (0S0)-(0S4) and hence the
Wightman azioms (W1)-(W8). Note that SM9(f) and A(f) are K x 3 complex matrices, and that the

exponential is meant componentwise.

Proof.
Without loss of generality we can assume that S*9(f) and A(f) are complex numbers throughout this
proof, because the general proof can be reconstructed by iterating over the components of the complex

K x 3 matrices representing them.

We first prove (0OS2) and (OS3), which will be immediately needed to apply the reconstruction
theorem of quantum mechanics. (OS2): The invariance of the generating functional S*9 under time
translation and time reflection follows directly from the definition of 9 in (181). More exactly,
by (179) the infrared/ultraviolet cutoff measure uf’R’g’O is invariant under the space rotations and
reflections in O(3), and hence the ultraviolet cutoff measure in invariant under all space-time rotations
and reflections, as well as translations.

(0S3): we have to show that the complex matrix M*9 := [Mi[,\j?g], where

MM = SM9(0f; — f)), (196)
is positive definite for all choices of (f;)i=1,...,» = S(R* R), such that supp(f;) < [0, +0[xR?, and
(0f)(s,x) := f(—s,z) denotes the time reflection.
With the choice of functionals By as

the r.h.s. of (191) leads to
lim MY, B(A(sk, ) dp™9 (A) = j exp (<A (0(f;) — f;) di™9(A),  (198)
— 400 S’ (R4,CKx3) S’ (R4,CKx3)

when 7 — —oo and T — +o0. We have approximated the time integration in A(f) by means of a
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Riemann sum for the partition (sg)k—1,.. ~. For the Lh.s of (191) we obtain in the limit

A,g
. _ _ A,g _ _ A,g )
lim (Qg’g,Ble (t2—t1)H Bse (ts—t2)H ...BNQ(/)\’Q) =
N—>+CX)

= (90, exp (o (00) - 1) 2) " -
= (e (A <0<fz->>>Qéﬁg,exp(—zA(fmszoA’g)A’g _

= (GXp(—zA(fmQé’gvexp(—2A<fj>>93’g)w’

(199)

because the supports of f; and f; lie in the time positive half space. Putting (191) with (198) and (199)

together shows that the matrix [M 9] with entries

,J
A,g A,g A,g A,g Asg
M = exp (<14 (6() — £,)) dp™(A) = (exp (1A (£)) 2, exp (A (1)) 249)
Si (R4,CKX3)
(200)
is positive definite for all g € [0, go[, and, by Proposition 3.8 (or Corollary 3.4.4 in | ]), the reflection

positivity axiom (0S3) is fulfilled.
O

We can now prove

Theorem 4.14. There exists a go € [0,1[ not depending on A, such that, if the coupling constant
g € [0, go[, for the probability measure ™9 on S’ (R*, CK*3) the Hamilton operator H™9 is selfadjoint

A,g

for the choice v If the coupling constant g vanishes, both measures p™° and v™° are Gaussian,

otherwise not.

Proof. We know that all the assumptions of Theorem 3.7 are satisfied, because we have already verified

the Osterwalder-Schrader axioms (OS2) ans (OS3). Hence, the time translation operator T'(t) satisfies

Ag _tHM9

T =e , (201)

where HM9 is a selfadjoint operator on the Hilbert space L2 (Si(R3, CKXS),dl/A7g). Note that the
canonical embedding A is defined utilizing the measure ™9, which is highlighted by the superscripts
A and g in the notation A»9. To conclude the proof we have to show that H»9 = HM9. A slight

reformulation of (191) provides the equality

(97, weer™ ap )™ = W (A(0,) ® (A(s, ) du(A), (202)

L/L(Rackxﬁ)

where:
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e the distribution A(s,-) € 8| (R?, CK>*3) depends on the parameter s € R!,
e the functionals ¥, ® € D(H"9) < L3(S) (R?, CK*3), C, dv™9).

We now compute the r.h.s of equation (202) and obtain

U (A(0,) @ (A(s, ) du™?(A) =

JSL(R“,CKXB)

U (A(0,) @ (A(s, ) d(e™ @ vM)(A) =
i(R47CK><3)

= L U (A(0,) @ (A(s, ) dv™I(A(t,)de™ (A(-,2)) =

/ (R4,CKx3)

= J [J U (A(0,-)® (e*SﬁA“"A(O, ,)) dv™9 (AL, _))1 do™I(A(-, ) = (203)
S (RY,CKx3) | JS/ (R3,CKx3)

- <Li(R3’CKX3)‘P(A(0,-))<I> (" A(0,)) duAvg(A)> (L/L(Rlycm)dgA’g(A)) -

=1

J (A) ()2 (A)d (A,

S/ (R3,CKx3)

where we have utilized Fubini’s theorem for distributions (cf. | ]), the fact that the integrand does
not depend on the time ¢, and that SdgA*Q = 1, being o9 a probability measure.

Therefore,

_ . A, —_—
(RN i ) = U (A) e A% P (A)dv™I(A) (204)

JS’L(R“”',CK“)

We now take the derivative — %}s::o on both sides of (204) and obtain

— A7 - _
(2, wH s00)7) . U (A) HA9® (A)dr™9(A). (205)

L/L(Rackxa)

Equation (205) holds for all ¥,® e D(H™9), and we conclude that H»9 = H9. The proof is
completed.

O
We can now verify the remaining Osterwalder-Schrader axioms.

Proof of Theorem 4.13, continuation.
(0S0): Let us consider a finite set of test functions f; € S; (R* CK>*3), j = 1,...,n and complex

numbers z := (21, 22, ..., 2,) € C", the complex partial derivative of S™9 (2?21 zjfj) with respect to

53



z; reads

R PVIE RN VA 2 i) g A
. [S (Zf)] LﬂRacmsﬂA(ﬂ)e ) (206)

Jj=1

By the Cauchy-Schwarz inequality

£l (5)
Jj=1

Since limg_, o+ 9 = M0 the positive constant

2

< J
S’ (R4,CKx3)

AGIPatoa) [ e sty 20
1 s

Ag
KM = ' du (208)
d# ) Lo (S (R#,CK x3))
is bounded, and for all g small enough
L/ R4,CKx3 APl (A) < KAVQJI R4,CKx3 A(Pdu™0(A)
L( ’ ) L( ) ) (209)
f ‘GZA(f)‘Zd,uA’g(A) < KA,gJ |61A(f)|2d,uJA’0(A).
S’ (R4,CKx3) S’ (R*,CKx3)
for all f e S, (R*, CK*3). Being ¥ a Gaussian measure, we obtain
J ezA(f)dMAﬁ(A) _ eié(f’cAf)LQ(RAvCKXS)’ (210)
Si(RAL)CKXl})
where
-1
1 1 _
ch == 1ps — Age +2VA0 —1ps | <= (1ps — Aga) ' = C9, (211)
2, 0K — 2,0k
i=1,2,3 =0 i=1,2,3

because the operator VA0 is non-negative. By developing the exponential function in both sides of

(210) and equating the quadratic term in f, we obtain

|A(f)Pdp™P(A) = (f,CNf) v < (£,C2F) oy =
Js;<R4,CM) FELERE ey (212)
= ”f”%[*l(RachB),

where H~! is the Sobolev space with “differentiability” —1. By comparing all powers of f, we obtain

J AR (A) < exp (|- s o) (215)
Si (R4’CK><3)
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Inserting (212), (213) and (209) into (207) leads to

a n
tl ()
j=1

because all f;’s are in the Schwartz space and a fortiori in the Sobolev space H~!. The analyticity for

2 n

2
< (KA’Q) Hfz’”?{fl(m,ckw) exp ( Z ijj|§il(R4,CK><3)) < 4o, (214)

Jj=1

all z € C" is therefore proved.
(OS1): Since SM9(zf) is analytic for all f € S (R*, CX*3) and all z € C the mean value theorem of

differentiation implies that it exists a 2’ € C, |2/| < |z| such that

SM(f) = $44(0)] < | 5N ) o (215)
\_:,_J dz;
Therefore, utilizing (214) we obtain
[S29(2 )] < 1+ [/ K flL o1 s sy exp ('22'2|f|zl(ﬁ4,cm)) (216)
We choose z :=1
|SMI(f)] < 1+ KN Jla-1ms,cxx3) exp (;|f|%—11(R4,CKX3)> ) (217)
and study the function of the variable o € [0, +o0[
o )
for a given constant L > 0. If L > %, then
alirilwn(a) =0 and O}E& k(a) = 1. (219)

Therefore, for any given K9 > 0 there exists a L»9 > 0 such that for all a € [0, +oo[
1
1+ KM aexp <2a2) < exp(LMa?), (220)
which, utilized with o := | f||g-1(rs,cxxs) and inserted into (217), leads to

[SM(F)] < exp(LYINF |31 ma,orexsy) < exp(LM) fI o (ra orexs)) < (221)

< eXp(LA’g(‘|fHL1(R4chX3) + Hf||%2(R47CK><3)))7
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because | f|z-1 < |f|lgo for all £, and HO(R*, CK*3) = L2(R?*, CK*3).
(OS4): We have to check that the Euclidean time translation subgroup, which by Theorem 4.14 reads
{T(t)}+>0, where T(t)*A’g = e tH"? acts ergodically on the measure space (S| (R, CE>3) du™9), or,

equivalently (see | ], Formula 19.7.1), that it satisfies the cluster property, i.e.

im 1 ' . . B
1 J lJSi(R4)CKx3)¢(A)T( YU (A)dp (A)]d

t—+o0 ¢
0 (222)
- | B(A)M(A) - | W(A)du(A),
SL(RAL’CKX:S) Si(R47CK><3)
for all ®, ¥ e L1(S (R*, CE*3) du™9). In the proof of Theorem 19.7.1 in | | the cluster property

(222) is shown to be equivalent with the uniqueness of the ground state. Hence, we have to show that
Qg’g is an eigenvector of H™9 with multiplicity 1, which follows from Theorem 3.3.2 and 3.3.3 in | I,
because AM9 1= et has a strictly positive kernel, being H*9 = H} + H?I’g + VA9 self-adjoint and

V49 bounded from below by 0 by construction. O

4.5 Ultraviolet Cutoff Removal without Renormalization

Now we remove the regularization given by the ultraviolet cutoff by letting A — +00 and making sure
that the properties (0S2) and (OS3), necessary for the reconstruction theorem of quantum mechanics,

are maintained. Actually, all Osterwalder-Schrader axioms will be preserved.

Definition 4.4 (4D-YM-Measure). For any measurable A = &' (R*, CK*3) let

19 (A) := limsup ™9 (A). (223)

A—+4o0

Is u9 a measure? The answer is yes and requires several steps.

Definition 4.5 (Tightness). Let (X,B(X)) be a measurable topological space. The collection of
probability measures M over X is tight if and only if for every € > 0 there exists a compact K. < X

such that pu(K.) >1—¢cforall pe M.

In fi. | ] we can find the proof of

Theorem 4.15 (Prokhorov). Let X be a separable metric space, and P(X) the collection of all
probability measures defined on X with its Borel o-algebra. A family of probability measures M < P(X)

is tight if and only if M is weakly sequentially compact. i.e. if every sequence (u;)j=0 < M contains a
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subsequence (115, )k=0 weakly converging to a p € M, meaning by this

im B [f] = EX[/] (224)

for all bounded continuous functions f on X.

In spite of the fact that &’ is not metrizable, Theorem 1.6.5 in | | implies
Theorem 4.16 (Fernique). Prokhorov’s theorem holds true for S'.

Proposition 4.17. Let (X, A, P) be a probability space and let Fp : X — [0,+00[ be a family of
uniformly bounded measurable functions indexed by the parameter A = 0. Then, the collection of

probability measures (Ppy)paso over X defined for any measurable A e A

. SA FA(J?)dP

PA(A> = W

(225)
is tight.

Proof. We need to show that, for any ¢ > 0, there exists a compact set K = K. < X such that
Pr(K) > 1 — ¢ for sufficiently large values of A. First, note that since Fj(z) is uniformly bounded,
there exists a constant M > 0 such that Fx(x) < M for all x € X and all A > 0. Then, for any

measurable set A in A, we have

_ SAFAdP < MP(A)

Py(A) = < . 226
A(4) { FadP = FAdP (226)
For any € > 0, we can choose a compact set K = K. such that
P(X\K) <e. (227)
Hence we have
MP(X\K) MP(X\K)
PAK)=1-P\(X\K) 21— —"+—F=1— ———F——. 228
A( ) A( \ ) SXFAdP ASX%dP ( )
Since Fj(x) < M for all z € X and all A > 0, it follows by Lebesgue’s dominated convergence
Fy
li —dP = 22
I 229
and thus
F
J TAdP € [0, 1] for A big enough. (230)
X
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Inserting (230) into (228) leads to

Py(K)>1-— % (231)

Therefore, the family (Py)aso is tight since, for any ¢ > 0, we can find a compact set K = K, ¢ X
such that Py(K) > 1 —¢ for A > max(M, \g). The proof is finished.

O
Putting everything together we obtain
Proposition 4.18. The expression p9 in (223) defines for all g € [0,g0[ for a go small enough a

probability measures on S (R, CK*3).

Proof. By (179) and (181) we have

V=0,R, R,
Z g—f8(4 Ks)dftg
| (R4,CKx
232
dpV=%9 = lim _ R.g 252
. V=0,R,g ’
a2

and by (180) and (181) we have

+3
S'L(R4,CKX3) |z|<R -

t
2

1 +3 _ (233)
A,g : 3 A,g V=0,9
dp™9 = 11I£ ltA’R’g lexp (— J.|$|< d xf_ dsV*™9(s, x, A)) ]1 dp .

t
t—-+0 2

=:Fx(A)

Now, in (233) we have a fraction whose numerator and denominator both depend on A. The denominator
is Zé\ 9 Numerator and denominator depend on t and R, too, but, as we saw in the proof of Proposition
4.11, the limit of the quotient for R,t — +00 is well-defined and finite. By Definition 4.1 and (104)
VA9(t,z,A) is a fourth degree polynomial in A. By (144) the potential VA9(¢, 2, A) = 0 for A big

enough. Therefore,

° %ﬁam converges to a strictly positive constant (depending on A) for A — 400,

denominator

° converges to strictly positive constant for A — +o0o,

numerator

e the quOtient denominator

converges to strictly positive constant (depending on A) for A — +o0

Hence Fp(A) is bounded in A. Since the VA9(¢, 2, A) > 0 for A big enough, the numerator is smaller
than 1 for all A € &) (R*, CX*3) and for A big enough. Therefore F5(A) is bounded in both A and
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A, and the family (Fp)aso is uniformly bounded on S (R*, CK*3). By Proposition 4.17 the family
of probabilities (u™9)rso is tight. By Theorem 4.16 the family (u”9)s>¢ has a weakly convergent

subsequence to a probability, which by (223) is u9. The proof is finished.
O

We studied the original renormalization and ultraviolet cutoff removal techniques for the ¢4 intro-
duced by Glimm-Jaffe (| |) for finite volume and extended by Feldman-Osterwalder (| |) and
Magnen-Sénéor (| ]) for infinite volume and small positive values of the coupling constant using
small cluster expansion methods. Finally the work of Seiler-Simon ([ |) allowed to extend the exis-
tence result any positive value of the coupling constant (this is claimed in | |) even though we could
not find a clear statement in Seiler-Simon’s paper). One notices that the model parameter have been
made ultraviolet cutoff level dependent in order to produce counter terms which eliminate divergences
in the integrals; by mean of an a-priori estimate on the Schwinger functions the Osterwalder-Schrader
axioms are then inferred. Similarly, a renormalization involving the bare coupling constant is needed for
o} in | ] and | ]. With our definition of the ultraviolet measure the situation is different,
because we have no divergences to compensate, and the bare coupling constant g must not be made
dependent on the ultraviolet cutoff level A. Later we will see that the running of the coupling constant

guarantees asymptotic freedom of the Yang-Mills model.

In Magnen-Rivasseau-Sénéor’s construction of a Yang-Mills measure in four dimensions (| D
only the ultraviolet but not the infrared cutoff is removed, while maintaining gauge invariance. In their
construction the ultraviolet cutoff is implemented as a multiplication of the fields on the momentum
space with the regularization of the characteristic function of a domain converging towards R3 as
the cutoff parameter tends to +00. That way they create a divergence which they compensate by
renormalization and running the bare coupling constant to obtain asymptotic freedom as in Chapter
ITL5 of ([ ])- An important difference to our model is that in the present construction the ultraviolet
cutoff is implemented as an application of the fields seen as distributions on the position space to a
delta sequence in R? for fixed time ¢ with respect to the cutoff parameter. This way the problem of
the non-existence of products of tempered distributions is circumvented, and no divergenges appear in
the limit for the cutoff parameter tending to +00. Moreover, once the infrared cutoff in the Magnen-
Rivasseau-Sénéor model is removed, the mass gap is killed, as we will see in Subsection 4.8, because the

limit of the renormalized coupling constant vanishes.

Corollary 4.19 (4D-YM-Measure Properties). There exists a go € [0, 1], such that for all g € [0, go[
the generating functional

s = | AN gt (A), (234)
Si(R4’CK><3)
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for f € S| (R*, CK*3) satisfies the Osterwalder-Schadrer azioms (0S0)-(0S4) and hence the Wightman
axioms (W1)-(W8). Note that S*™9(f) and A(f) are K x 3 complex matrices, and that the exponential

is meant componentwise.

Proof.
Without loss of generality we can assume that S*9(f) and A(f) are complex numbers throughout this
proof, because the general proof can be reconstructed by iterating over the components of the complex

K x 3 matrices representing them.

First we prove that

SMI(f) = 59(f) (A= +o0) (235)

locally uniformly in f € S; (R*, CK*3). We have

s'(h - | A D) dyt (4)
Si(R47CK><3)
A N (230)
shan) - | AN 4o (4),
S’ (R4,CKx3) dug
and hence
2
[5%9(f) = S (A" =
2
du™9
_ J ezA(f) (1_ iu‘g >d'u9(A) <
S| (R4,CKx3) dp,
2 duta |2
gf ezA(f)’ dug(A)J _ o dud(A) < (237)
S’ (R4,CK x3) S’ (R4,CKx3) d/j/g
A,g 2 d/’l’A,g g
< exp2LM ([ fllrma,crxey + 1 F 172 e cxxsy)) ~ g | WA
S/ (R4,CKx3) H
—0 (‘X—hLOO)
As we saw in (220) the constant L*9 is bounded in A if and only if the positive constant
A,
KMo = ' d AZ (238)
dph Lo (S (R*,CKx3))
is bounded in A. By Definition 4.1 and (104) we have
VA9
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By Definitions 4.2 and 4.3 it follows that
1M = 0y(1) (A — +o0) (240)

and hence

KM =0,(1) (A— +x) (241)

as we needed for inequality (237) to prove the f-locally uniform convergence of S™9(f) towards S9(f)

for A — +o0.

The Osterwalder-Schadrer axioms (0S0)-(0S4) for u9 follow now from the proof of Theorem 4.13
because we have proved that the constants occurring in the inequalities for (OS0) (214) and (OS1) (221)
are bounded in A; the invariance (OS2) holds true for p9 because it does for u#+9 for all A > 0; the
reflexion positivity (OS3) holds true because [MZA 7] defined in (200) is positive definite for all A > 0;
the ergodicity property (OS4) is fulfilled, because the cluster property (222) holds true for all A > 0,
and, therefore in the limit for A — 400. The proof is completed.

O

By Fubini’s theorem for distributions (cf. | 1), we can write the measure 9 on 8| (R*, CK*3) as

p(A(s,z)) = o (A 2))v?(Als, 1)), (242)
where o (A(-,z)) := p9(A(-,z)) and v9(A(s,)) := p9(A(s,-)) are probability measures on S (R, CEx3),
and S’ (R?, CK*3), respectively.

Corollary 4.20 (Ultraviolet Cutoff Removal). There exists a gg €]0,1[ such that, if the bare cou-
pling constant g € [0,go[, then, for any choice of the regularizing mollifier, the probability measures
9 and v™9 converge for A — +o0 to the probability measures pf on S| (R* CE*3) and v9 on
S (R3,CE*3). The reqularized Hamiltonian HM9 converges pointwise on a dense domain to a selfad-

joint non negative operator H9 on L*(S' (R3,CE*3) C,dv?). If the coupling constant g vanishes, both

measures u° and v° are Gaussian, otherwise not. The domain of definition is
D(HY) := {¥ e L*(S| (R*,R**?),C,dv%) | HV € L*(S| (R*, R**?),C,dv) } . (243)
Moreover, the operator HY can be decomposed on D(HY) n L?(L? (R3, RE*3),C,dv9) as

HY=H;+H}, +V9 -V, (244)
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where

2 5
HY =L dx [J 3y 0; GV (A(t, y); x,y)e AL (t, y) ——— (245)
=% ] (At ) 40
V= | Bz|RV(t,2)
R3

for A € L2 (R?, CE*3 d3z), where Vi is a real constant which will be chosen later so that the ground
state QY satisfies

HIQY = 0. (246)

Proof. By Corollary 4.19 the 4D-YM-Measure p9 satisfies the Osterwalder-Schrader axioms for g €
[0,g0[. By Theorem 3.7 we can reconstruct a selfadjoint operator HY on L?(S' (R?, CK*3), C,dv9),
and, as in the proof of Theorem 4.14 from (205) it follows that

lim H» = lim H*9 = HY, (247)

A—+0 A—+0

where the pointwise convergence on the projective limit [ Aso D(H A.9) is meant.

For A € L} (R3,CE*3 d3z) and (t,z) € R? fixed we saw in (144) that

lim VAt 2, A) = |RY (t,2))2 (248)
A—+0
pointwise, and thus
lim B VMt z, A) = f a3z |RV" (t,2))2 = V. (249)
A—+ JRs R3

By taking the limit on both side for the equation with (247) with VOA’g chosen as in Theorem 4.3
HM = H} + HYy + VA9 - VM (250)

leads to

HI = Hy+ HY, + VI - VJ = HY, (251)
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with the definitions for A € L? (R?, CK*3 d3x)

(252)

2
HY, : = 9 A >z [J 3y 0;GUP(A(t,y); x,y)em > AL(t, y)
R3 R3

2
2 SAS (¢, y)] '

Hence, HY is selfadjoint, because HY is, and the property (246) of the ground state Qf follows from
Theorem 4.7. The proof is completed.
O

Remark 4.9. Note that H is selfadjoint for all choices of the coupling constant g € [0, go[. As we will
see, the non vanishing of the g-contribution in H is essential for the proof of the existence of a positive

mass gap.

4.6 Gauge Invariance

We want to prove that the construction of the Hamiltonian in Subsection 4.1 is gauge invariant. That for
we show that, if we repeat the construction for a principal fibre bundle subject to a gauge transformation
preserving the Coulomb gauge, we obtain an Hamiltonian which is unitary equivalent with the original

one and has, in particular, the same spectrum.

Definition 4.6 (Gauge Transformation). Let P be a principal fibre bundle over a manifold M
and 7 : P — M be the projection. An automorphism of P is a diffeomorphism f : P — P such that
f(pg) = f(p)gforall g € G, p e P. A gauge transformation of P is an automorphism f : P — P such
that m(p) = 7(f(p)) for all p e P. In other words f induces a well defined diffeomorphism f: M — M

given by f(7(p)) = =(f(p)).

Following section 3.3 of | | we notice that the Lagrangian density on the principal fibre bundle
P on which we define the Yang-Mills connection is a G-invariant functional on the space of 1-jets of
maps from P to the fibre of the vector bundle V' associated with P induced by the representation
p: G — GL(C¥). Hence, the position variable A occurring in the Lagrangian density and its Legendre
transform, the Hamiltonian density takes value in C3*% which is the fibre of the complex vector bundle
V. We want to analyze how the position variable behaves if the principal fibre bundle is subject to a

gauge transformation.

Proposition 4.21. Let f be a gauge transformation of the principal fiber bundle P and w a connection.
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Then, w/ := (f~1)*w is a connection on P. They have the local representation on 7= (U)

Wy = adey-1 0T A+ C*0
P ¢(p) (253)
wl = ade(py-1 o T* AT + C*0,

and

A = ady o (A — ¢*0), (254)
where:

e 7 : P — M is the projection of the principal fibre bundle P onto its base space M,
e U c M is an open subset of the base space,

e p: 1 HU) — UxG is alocal trivialization of 7= (U) < P, that is a G-equivariant diffeomorphism

such that the following diagram commutes

U)—L=Ux G (255)
\Lﬂ' pry
U

This means that y(p) = (7(p),{(p)), where ¢ : =Y (U) — G is a fibrewise diffeomorphism satisfy-
ing ¢(pg) = ((p)g for all g€ G.

e the trivialization map Y(f(p)) = (7(p),C(f(p))) let us define ¢ : 7 (U) — G by ¢(p) :=
C(f(P)C(p)~", whence ¢(p) = d(m(p)) for a well defined function ¢ in virtue of the equivari-
ance of ¥ and f.

o The Maurer-Cartan form is the g-valued 1-form defined by 0g := (Ly-1)y : T,G — T.G = g.

o A and AT are g-valued 1-forms on M introduced in Remark 2.1.

Proof. These are collected results from Proposition 3.3 and Proposition 3.22 in | |

Remark 4.10. For matrix groups equation (254) becomes

Al = A" — dgp! (256)

For the Yang-Mills construction we denote the K x 3 matrices of the local representation of A and

its gauge transformation A’ by A and A/, which is in line with the notation utilized so far for the
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position variable and introduced in Theorem 2.4. To avoid confusion we drop the dependence on the

coupling constant.

Theorem 4.22. Let f be a gauge transform preserving the Coulomb gauge for the Yang-Mills con-
struction and let H™ and H™' be the cutoff Hamilton operators for the quantized Yang-Mills equation,
before and after the gauge transform, as shown in Proposition 102 and Theorem /4.14. Let U be the

operator on L*(S' (R?, CE*3), dv™) induced by the gauge transform as
UT(A) := T(AT). (257)
Then, U is a unitary operator in L?(S' (R3, CK*3) dv*) and H and H/ are unitary equivalent:
HM —uHMUL (258)

Moreover, the same holds true for the operator H and HY, where the cutoff is removed as shown in

Corollary 4.20. The operator U is unitary in L*(S (R3, CK*3),dv) and
Hf =UHU™. (259)

Proof. First, we remark that U maps L?(S' (R3, CK*3), dv) onto itself, because it preserves the Coulomb

gauge. Next, we prove that U is unitary. For all ¥, ® € L2(S' (R3, CK*3) dv?)

UV, Ud) = L/ o T(ANHPANdvA(A) =

dv*(A) = (260)

- f T(A)D(A)
S (R3,R)

= (\I]’ (D)

The change of variable is given by equation (254) which is affine in A because the adjoint representation

is linear in A, which means (ad,)s« = ad, for all g € G. Moreover, since
adg(A) = (Lg)xA(Rg-1)x, (261)
the Jacobi determinant reads

det ((ady)«) = det (ady) = det ((Lg)s1grsr (Ry-1)x) = det (1gsx) = 1. (262)
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Note that the change of variable respects the fibre of the vector bundle V', and hence the change of

variable formula for the integral is the one of finite dimensional analysis.

Next, we prove the unitary equivalence of the Hamilton operators before and after the gauge trans-

form. Their definitions read

o =1 (A“"tA<' D A ->>>

1 5 (263)
HNS —H(Af oM — - )
W= AT )
For appropriate ¥, ® € L*(S' (R?, C**®), dv") we have
(HA?f\I!,QD) _
1 ) _
= HAfSOA_,)‘I/A(I)AdZ/AA_
LﬂR%R) ( e =) 1 0AT (PM (- =) (A)P(A)dv(A)
19 _ oAl (264)
N H{ Al (-~ 7>U1\I/AU1<I>A‘ dv*(A) =
JSQ_(RS,R) < (e ( ) 1 A (M- =) (A) (A) A (
=1
= (H\UT'W,U '),
leading to
HA?f — UHAU*I (265)

on the corresponding domains.
The proof for the Hamilton operators where the cutoffs have been removed are formally the same.

O

We can therefore conclude that the spectrum of the Hamilton operator for the quantized Yang-Mills

problem is gauge invariant.

4.7 Spectral Bounds

We prove now that the Hamilton operator has a mass gap, being the sum of three non negative selfadjoint

operators, one of which has a mass gap and having all the same ground state, the vacuum.
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Proposition 4.23. The spectra of Hy, HY; and V9 are:

spec(Hy) = [0, +o0[
spec(H{;) = {0} [, +%e[, for an >0 (266)

spec(VY) = [0, +00].
Moreover n = O(g>™ D) for any n € Ng, where g is the bare coupling constant.

Now we can compute the lower bound of the spectrum of the Hamilton operator.

Proof of Proposition /.25. The proof mimics the proof of Proposition 4.4. We will construct generalized
eigenvectors to show that the spectra have only a continuous part depicted as in (266). First, we analyze

the operator Hy, which can be seen as

1
HI = —if d3xAA(t’w). (267)
R3

Let z € R3 and ¢t € R now be fixed. For any R > 0 the Laplace operator A on [fg, +§]3K under
Dirichlet boundary conditions has a discrete spectral resolution (A, ¥r)k=0, where A\, = —;—2(/{ + 1),
and 1, = ¢(A) € CP([—£,+5]>K,C). We can extend 1y, outside the cube by setting its value to
0, obtaining an approximated eigenvector for the approximated eigenvalue Mg, which is in line with
the fact that the Laplacian on L?(R?/, C) has solely a continuous spectrum, which is ] — o0,0]. The
functional

TR (A) i= 6(A — A)d(x — o)ty (A) (268)

for 2o € R? k€ N and A € R3K is a generalized eigenvector in £'(S' (R?, CE*3), dv9) for the operator
Hj on the rigged Hilbert space L?(S' (R?, CK*3) dv9) for the generalized eigenvalue 1%22(]“ +1), which,
by Theorem A.2, is an element of the continuous spectrum of the non negative operator H;. By varying
the generalized eigenvalue over k and R, the claim about the spectrum follows.

Next, we analyze the multiplication operator

VI = . d*z|RYV" (t,2)2, (269)

where RV” is the curvature operator associated to the connection A. Let A € L2 (R?, CE>3 d3z) now
be fixed. Any non zero ¢ € CF(R3K, C) is eigenvector of the multiplication with the non negative real

|RvA (t,z)|>. The functional
TAT(A) = §(A — A)d(x — 20)Yr(A) (270)
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where (1)) k>0 is an orthonormal basis of L?(R3K, C) , is a generalized eigenvector in £'(S/ (R?, CK*3), dv9)
for the operator V7 on the rigged Hilbert space L*(S' (R3, CK*3) dv9) for the generalized eigenvalue
V9(t,x0,A), which, by Theorem A.2, is an element of the continuous spectrum of the non negative
operator VY and the claim about its spectrum follows.

Finally, we analyze the operator Hyy, which we can write for any A € L2 (R?, CX*3 d3z) as

2 2
o, = -2 | & f Py Di(A;z,y)| | (271)
2 R3 R3

for the operator D = D(A;x,y) defined as

)

D} (A;z,y) := 2;GV (A(t,y); z,y)e AL (t, y) ———. 272

(A;2,9) (A )i, AL ) s (272)
Let g, 70 € R? now be fixed. We set

fin (Aswo,yo) = ;G (A(t,y0); 0, Yo )" AL (t, yo) (273)

and apply Lemma 4.5 and Lemma 4.6. Assuming that for all indices ¢, k

+00

| g st o <+ (214)
—00

uniformly in A, we can find a diffeomeorphism B : R** — R3*K in the form of formula (118), such
that for any R > 0 the operator D¢(A(t,yo); o, yo)? on B~ ([—£,+£13K) under Dirichlet boundary

conditions has a discrete spectral resolution (A{ (w0, yo), Vi (A (¢, v0); T0, Yo))s>0, Where

21.2

3K ™ kjcs
)\ -T07y0 Z Z +R = 2 (275)
j=lec=1 [Lé dBf gz’jC(BJQ; Zo, yo)fl]

where k; . s € Z* for all indices s € Ny, j € {1,2,3} and ce {1,..., K}, and, by Lemma 4.6 we defined
3 K 2
gz}'l(B_]vlbvyO <Z Z L 3307y0 ) B (276)
k=1c=1

for

—1

A7

L (w0, 90) = [Sip [J dAS [ (Aszo,50) " + KZ}C(A;xoayo)H
—00

A (277)
K2 A san) = —int [ 25 07 (Ao, 0) ™
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Note that for any R > 0 the operator D¢ (A (t, yo); %o, yo) on B~ ([—£, +£]3K) under Dirichlet bound-

ary conditions has a discrete spectral resolution with the same eigenvectors but other eigenvalues
(Cgs(m07y0)7 ﬁs(A(ta yO);x07y0))5207 where
k2

3 K
s (w0, y0) Z Z + — , (278)
j=le=1)_ dBCgZJ (Bj7$07y0) !

ol ol

where k; . s € Z* for all indices s € Ny, j € {1,2,3} and ce {1,...,K}.

Since B_l([—g7 —|—§]3K) 1 R3X for R 1 400, we can extend ¥ (520, y0) outside the cube by setting
its value to 0, obtaining an approximated eigenvector for the approximated eigenvalue A{ <(x0, o) for
the operator D (A;xo,y0)? on L*(R*X, C), which means that A} ,(zo,y0) € spec.(D{(A;zo,0)?). For

fixed 7, s and a the functional

Wrovo A (A) = 6(A — A)d(x — 20)3(y — y0)3(F — yo) ik (A; 20, o) (279)

is a generalized eigenvector in &'(S (R3, CX*3), dv) for the operator

2 2
HiYy = —% ) d*x [ ) d*y D?(A;x,y)] =
SR R (280)

:_if P U d?’yD?(A;z,y)] U d3§D?(A;$v§)]
2 R3 R3 R3

on the rigged Hilbert space L*(S) (R*, CK*3), 1) for the strictly positive generalized eigenvalue

3 K k‘2
AN (zo,90) = 9" D) D —= L 55 (281)
JTVE (513 dBg gl (Bg w0, o) |
2

which, by Theorem A.2, is an element of the continuous spectrum of the operator H{ ;. We still have
to prove to check that A{ <(%0,Y0) is bounded away from 0 uniformly in R. By Proposition 2.2 and

Corollary 2.3, for every n € Ny there is a constant ¢, > 0, bounded in n such that

+§ +00 1
dAS(t, y0)[0:; G (A; bt Ad(t )]t < en 2"f dAS(t . (282
f Gz, ) AL g™ < g™ [ 5000 gy (259
Therefore, inserting (282) into (277) and (278) leads to the spectral lower bound
A5 (2o, o) = Cr g? (283)

for all 2 € 1,2,3, s € Ny and for all n € Ny, for an appropriate constant C,, bounded in n. Since the
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collection of generalized eigenvectors obtained by varying (279) over k,xo, and yo is complete in the
sense of Theorem A.2 (ii), by varying the generalized eigenvalue (281) over k; . s and R, the claim about
the spectrum follows for 7 = O(g?™*1)). The proof is complete.

O

Lemma 4.24. let A and B be two self adjoint operators on the Hilbert space H, such that D(A+ B) is
dense in H, spec(A) < [0, +oo[, spec(B) < {0} U [, +o[ for a n > 0, and 0 is an eigenvalue of finite
multiplicity for the eigenvector Qg for both A and B. Then, spec(A + B) < {0} u [n, 4+, i.e. the

spectral gap of B is maintained.

Proof. The spectral gap of A + B reads

o wasBw L @By
n(A+B) = ¢e<90>32£)(A+B) (1, ) = we<90>32§3(A+B) (¥,9) (284)
= inf v, BY) =n(B)=n>0.
we@oytnD(B) (1, 1)
L]

Counterexample 4.1. Let H; be a non negative selfadjoint operator on the Hilbert space H1, and Hy
a non negative selfadjoint operator on the Hilbert space Hy. Both operators have 0 a simple eigenvalue
for the eigenvectors 1 € H; and 2 € Ha. Moreover let Hy have a spectral gap spec(Hz) < {0}u[n, +00
for a n > 0. Let us define

7‘[ = H1 ®7‘[2
(285)
H:=H ®1+1® Hs.

The operator H is selfadjoint and non negative on the Hilbert space H, and has 0 has eigenvalue. But it
has no spectral gap. The reason is that 0, as an eigenvalue of H; ®1 and 1® H> has infinite multiplicity,

leading to a clustering of elements of spec(H) near 0. Lemma 4.24 cannot be applied.

Corollary 4.25. The spectrum of the Hamiltonian HY contains 0 as a simple eigenvalue for the vacuum
eigenstate, and satisfies

spec(HY) < {0} u [n, +[, for an >0, (286)

and n = O(gQ("‘H)) for any n € Ny, where g is the bare coupling constant. Hence, there is no mass gap

only if g > 0, and, in particular, the group G must be non-abelian.

Proof. By Proposition 4.23 the operators Hy, H{, and V9 are positive semidefinite and so is HY. By

Proposition 4.20 the ground state € is the eigenvector of finite multiplicity for the eigenvalue 0 for
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all these four positive semidefinite operators. By Lemma 4.24 the spectral gap of HY is bounded from
below by the spectral gap of HY,:
n(H?) = n(Hi;) =:n, (287)

and 1 = O(g*>("*1V) for any n € Ny holds true by Proposition 4.20. O

4.8 Running of the Coupling Constant by Renormalization and Asymptotic
Freedom

Till now all of our considerations referred to the bare coupling constant, which we now denote by gqg.
We can repeat the classical and quantum mechanical construction of Section 2 and Section 4 for the
running coupling constant g = g(u), where p is the energy scale, instead of the bare coupling constant
go- To treat the non-trivial behaviour of g(u) we have to renormalize running fields A and constants g
by an appropriate scaling of the bare quantities Ay and go. Following | | Chapter 21.9 we introduce

renormalization constants Zs and Z, and the transform

Ao§ = Z3AS g0 = Zyuy, (288)

and choose the values of the constants as

1
Zg =1 CQ(G)iiﬂ' Zg =1- z%asa (289)

11

15=C2(G), and C3(G) is the quadratic casimir operator in the adjoint represen-

where oy := %, bo 1=
tation of the Lie algebra of the group G. The parameter by is positive. The parameter € will be let to
converge to 0 at the end of the calculation.

Since the bare coupling constant knows nothing about the energy scale p,

dgo

=0 290
o, (290)

which, by mean of (288) leads to the Gellman-Low equation

S - —boai + O(e, o) (e,as — 0), (291)
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dag

where we have defined 3(g) := 2= for ¢ := log(u?). With the choice € := 0 we can easily solve the

Gellman-Low equation and obtain the implicit

1 1 w?
— = by log —, 292
o) oan) 22
where M is an integration constant, which we choose such that lim,,_,/+ (1) = +00, so that
1
i) = ———  (uelM, +oa)), (203)
bo log 17=
which is in line with [ | page 156. Therefore,
li = 0. 294
i g(u) (294)
This phenomenon, termed asymptotic freedom was discovered by Gross and Wilczek (] ], and
independently by Politzer ([ D-
The running mass gap is
(k) = O(g*" (), (295)

for any n € Ny, where

47
9(p) =y | —— (296)
bo log 47=

With Corollaries 4.19, 4.20 and 4.25 we have therefore proved

Theorem 4.26. In the case of a running coupling constant g = g(u) the construction of the 4D-YM-
measure satisfies Wightman azioms (W1)-(W8) and the spectrum of the running Hamilton operator
H contains 0 as simple eigenvalue for the vacuum eigenstate. If g(u) > 0, there exists a constant
n =n(u) > 0 such that spec(HI™) = {0} U [n(n), +o[. Moreover n = O(g*>"*+Y) () for any n € No.
In particular, the group G must be non-abelian. The mass gap tends to 0 if the energy scale becomes

arbitrary large.

Remark 4.11. As an application we see that, once the infrared cutoff in the Magnen-Rivasseau-Sénéor
model is removed, the mass gap is zero, because the limit of the running coupling constant vanishes,

and the Hamiltonian has the same spectral properties as in the case of electrodynamics.
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5 Conclusion

We have quantized Yang-Mills equations for the positive light cone in the Minkowskian R3 obtaining
field maps satisfying Wightman axioms of Constructive Quantum Field Theory. Moreover, the spectrum
of the corresponding Hamilton operator is positive and bounded away from zero except for the case of
the vacuum state which has vanishing energy level. The construction is invariant under gauge transforms

preserving the Coulomb gauge.

A Spectral Theory in Rigged Hilbert Spaces

Rigged Hilbert spaces have been introduced in mathematical physics to utilize Dirac calculus for the
spectral theory of operators appearing in quantum mechanics (see | I, | and | I, D.
Within that framework the role of distributions to provide a rigorous foundation to generalized eigen-
vectors and eigenvalues is highlighted by the Gel’fand-Kostyuchenko-Vilenkin spectral theorems for
unitary and selfadjoint operators (see | I, [ I, [ ] and | | Chapter 12.2.4).

Definition A.1. Let F be a vector space on which are defined two inner products. We say the inner
products are compatible if every sequence in F which is Cauchy with respect to both inner products
and converges to ¢ € F with respect to one inner product also converges to ¢ with respect to the other

inner product.

Definition A.2. A Frechét space F is a countably Hilbert space if its topology can be induced by
a countable system of pairwise compatible inner products ((+, -)x)x=0. Without loss of generality we can

assume that

()0 < (9, 0)1 < (Pyp)2 < ... (297)

for all p € F. We denote by Fj, the completion of F with respect to (-,),.

Proposition A.1. There is a decreasing chain
]:C~--C]:kc]:k,1'~-c]:1c]:o, (298)

where every inclusion is a linear injective continuous operator of morm 1, and an increasing sequence
of dual spaces

FocFiccF cF,c-cF, (299)

where every inclusion is a linear injective continuous operator of norm 1.

For k =1 we denote the embedding Fi, < F; by T/C.
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Remark A.1. Since by Riesz’s Lemma every Hilbert space is isomorphic to its dual, it follows that
for any k,l > 0 Fj is embedded in F; and viceversa, but the two Hilbert spaces are not necessarily

isomorphic.

Definition A.3. A countably Hilbert spaceis nuclear if for every [ € Ny, there exists a k > [ such

that the mapping le : Fr — JF; has the form
o0 0
T () = ), Al o)ty = ), AiF (0, (300)
§=0 §=0

where (¢;)j=0 € Fr , (¥;);=0 < Fi , and (Fj);=0 < Fj, are orthonormal bases and the \;s are positive

numbers such that Z;ozo Aj < 400.

Definition A.4. A rigged Hilbert space H is a nuclear countably Hilbert space equipped with yet

another inner product (-,-) which is continuous in both variables.

Definition A.5. Let A be a linear operator on a locally convex topological vector space F. A linear
functional F' € F' is a generalized eigenvector of A if there exists a scalar A such that F(Ap) = AF(p)
for all p € F. We call A the eigenvalue of the eigenvector F'. In other words, a generalized eigenvector
of A is an eigenvector of the adjoint A’ : ' — F’. We say the set of all generalized eigenvectors (F,),es

of A is complete if F,(p) = 0 for all v € I implies ¢ = 0.

Theorem A.2 (Gel’fand-Kostyuchenko-Vilenkin). A selfadjoint operator A on a rigged Hilbert
space F < H < F', where D(A) < F, has a complete system of orthonormal generalized eigenvectors
with real eigenvalues. The spectrum of A then reads spec(A) = (A,).er, where for all v € I the real
number A\ is either an eigenvalue, i.e. F, € H, or an element of the continuous spectrum, i.e. F, ¢ H.

For every v, € F we have

(1) = fR dE(0)F, (o) Fo ), (301)

for a measure £ on R.

Corollary A.3. If an operator A on a rigged Hilbert space F < H < F', where D(A) < F, has a

complete system of generalized eigenvectors with real eigenvalues, then it is selfadjoint.

Proof. Choose the measure £ such that the r.h.s. of (301) is equal to the scalar product in H. Then, A

is selfadjoint with respect to this scalar product. O

Example A.1 (Schwartz’s Space). The inclusion
SRY) c L2(RN,d"Vz) = S'(RV) (302)
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defines a rigged Hilbert space, as can be seen with the definition of the compatible scalar products

(= X | d¥all+ oo p@ Tt (303)
laf<k “BY
for all k£ € Ny
Example A.2 (Kubo-Takenaka Construction). we follow | | Chapter 4.2. Let vy be the

standard Gaussian probability measure on S'(RY). By Proposition 3.6 every ¢ € L2(S'(R"), dvp) can
be written as

= 0wl(f), (304)
i=0

where f; € H1 := S;(L?(RY,dNx)®7) is an element of the Bosonic Fock space and y, the Wiener-Ito-

Segal isomorphism. For any k € Ny we can define a norm and an associated scalar product as

o0
lelz == > 3l £5l7, (305)
j=0

where | - | is the norm HJ induced by the norm | - |5 in L*(S'(RY), dvp) defined as (303.)

Proposition A.4. Let

E(L*(S'(RN),dw)) = {p € L*(S'(RN),dw)| ||k < +0}

(306)
EN(LA(S'(RN),dwy)) = dual space of (F).
Then, we have a rigged Hilbert space
E(LA(S'(RM),dv)) < L*(S'(RYN),dvy) < E'(L*(S'(RYN), dwy)). (307)
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