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Abstract

We propose a portfolio construction method that accounts for the regime-dependent
behavior of stocks, thereby impacting their expected returns. Using a hidden Markov
model (HMM) and a regime-weighted least-squares approach, we estimate forward-
looking regime-conditional factors. These factors help build large-scale stock portfolios
for systematic investment management, considering financial market regimes. In histor-
ical simulations, our framework achieves superior risk-adjusted performance compared
to passive portfolios in both relative and absolute management settings.
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I Introduction

The contribution of this article is two-fold. First, we propose a regime-weighted least-

squares method to estimate conditional regime-aware factor loadings based on the Hidden

Markov Model (HMM) to obtain forward-looking factor loadings for a sizable universe of

stocks. Projecting the risk model and expected returns from a factor model is not novel in

the context of portfolio construction, however, incorporating market regime dynamics into

the projection is absent in both the literature and practical applications. Second, we use

these conditional factor loadings to construct large-scale stock portfolios that can be used

to systematically manage investments in a regime-aware manner. We extend the existing

literature on regime-aware portfolio construction by presenting a framework that addresses

the computational and mathematical challenges associated with training and implementing

such allocation frameworks in practice. We expect these results to be particularly interest-

ing for market participants such as stock-focused hedge funds, who manage portfolios with

hundreds or even thousands of stocks.

The economy is a complex system characterized by cyclical fluctuations, commonly

known as the business cycle. These fluctuations significantly impact financial markets due

to their inherent interconnectedness. For instance, during recessions, expansionary mone-

tary policy and reduced investor risk appetite influence the behavior of financial assets like

stocks and bonds. Market regimes, driven by the business cycle, have attracted significant

research interest due to their potential implications for forecasting, investing, and risk man-

agement. In this article, we introduce a portfolio construction methodology that incorpo-

rates the regime-dependent behavior of stocks and its impact on their expected returns. The

methodology proposed in this paper can be used to systematically manage large-scale stock

portfolios while accounting for the impact of these financial market regimes. Our framework

should be particularly interesting for quantitative asset managers and hedge funds alike, as

these market participants tend to hold hundreds and potentially thousands of stocks within
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their portfolios. We incorporate market regime dynamics into portfolio choice by fitting a

multivariate HMM to a parsimonious set of statistically relevant factors. Leveraging the

state transition and emission probabilities, we estimate regime-dependent factor loadings

for each stock in the investable universe, enabling us to project the regime-dependent joint

distribution of factors back into stock-space. In a rich historical sample of several thou-

sands of companies traded in the US, our framework is able to provide better risk-adjusted

performance than passively held portfolios when implemented in both relative (against a

benchmark) and absolute portfolio management settings.

The academic literature has extensively explored the different applications of regime-

switching models in finance. These applications include, but are not limited to, interest rate

and yield curve modeling (see, e.g., Ang and Bekaert 2002b, Bansal and Zhou 2002, Dai

et al. 2007), regime changes in US monetary policy and other macro variables (see, e.g.,

Owyang and Ramey 2004, Hamilton 2005, Sims and Zha 2006, Hamilton 2010 Baele et al.

2015), option pricing (see, e.g., Chan 2014, Siu 2014), asset pricing, and portfolio choice. An

in-depth review of their use cases and applications can be found in Ang and Timmermann

(2012) and Mamon and Elliott (2014).

Within a regime-switching framework, Yang (2023) investigates the impact of busi-

ness cycle-driven regime shifts on asset prices and return predictability. Using annual U.S.

consumption data from 1929 to 2018, the author identifies two distinct regimes: a persistent

low volatility, high growth regime, and a less persistent high volatility, low growth regime

associated with deep recessions. The author develops a regime-switching asset pricing model

with regime-dependent risk aversion and finds that regime-shift risk is a dominant factor

in asset prices, especially during economic expansions. The model successfully explains key

regime-dependent asset market phenomena, including the increased predictability of stock

returns during recessions.

Incorporating market regime dynamics into asset allocation and portfolio construction
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has garnered significant interest from both academics and practitioners due to the poten-

tial for improved financial outcomes through a deeper understanding of regime dynamics in

tradable assets. Ang and Bekaert (2002a) demonstrate the benefits of international diversi-

fication in the presence of regime changes, with a two-state Markov chain framework that

dynamically allocates to US, UK, and German equity indices. Guidolin and Timmermann

(2007) explore the implications of market regimes in the joint returns distribution of stocks

and bonds. Employing a four-state framework with two transitory states (crash and recov-

ery) and two persistent states (slow growth and bull), the authors find that optimal portfolio

weights vary significantly across regimes, suggesting the potential benefits of regime-aware al-

location. Bulla et al. (2011) fit a two-state HMM framework on 40 years of returns data from

major markets across the United States, Japan and Germany. Their out-of-sample results

conclude that an asset allocation strategy based on an HMM can outperform a buy-and-hold

strategy. Kritzman et al. (2012) fit a HMM to four economic variables (equity turbulence,

currency turbulence, inflation, and economic growth) and used the results to classify obser-

vations in their historical sample into two regimes. The study demonstrates that a dynamic

strategy, which adjusts asset class allocations within a portfolio based on regime changes, is

significantly more effective than static alternatives. Sheikh and Sun (2012) develop a regime-

based approach to rebalance a portfolio of five asset classes based on a four-state switching

model. Nystrup et al. (2015) proposes a regime-based asset allocation methodology built on

a two-state (high- and low-volatility regimes) HMM that allocates between broad stock and

bond indices, showing that their approach is able to deliver higher risk-adjusted performance

than static strategies. Nystrup et al. (2019) study the use of model predictive control, in

combination with forecasts from a multivariate HMM with two regimes and time-varying pa-

rameters, to dynamically manage a portfolio that is allocated across multiple asset classes.

The author argues that their methodology can limit portfolio losses by adjusting the risk

aversion parameter based on realized drawdowns. Kelliher et al. (2022) introduces a novel

risk-parity approach based on a five-state HMM, fitted on four macroeconomic factors, which
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dynamically balances risk across a set of asset classes. The authors argue that their approach

can deliver more consistent risk contributions and persistent outperformance, compared to

traditional static allocations.

Despite the potential advantages of regime-aware portfolio construction, the estima-

tion of unobservable regime-switching processes presents challenges. The biggest among these

challenges is the so-called curse of dimensionality highlighted in Filardo (1998). This issue

arises because the number of parameters to estimate exponentially increases with the number

of hidden states and variables used in the system. For this reason, the previously mentioned

studies on regime-aware investing tend to focus on a rather limited set of investable assets,

comprising broad indices and asset class-related ETFs. However, these applications have

limited practical relevance for market participants, such as stock-focused hedge funds, who

manage portfolios with hundreds or even thousands of stocks, as the computational burden

of training these models on such large datasets is often prohibitive. However, the low-rank

nature of the equity data could allow us instead to select a parsimonious set of k factors and

train a regime switching model on this reduced set, rather than over the entire investable

universe. Consequently, the return and covariance estimates coming from the HMM trained

on the set of k factors can then be projected from factor space back into stock space through

a vector of regime-aware factor loadings. These factor loadings contain the sensitivity of each

of the n stocks in the investable universe to the k factors, in each of the m hidden states

of the process. Projecting risk models and expected returns from a factor model with the

intention of addressing the curse of dimensionality in portfolio construction is not novel (see,

e.g., Perold 1984 and Jacobs et al. 2005). However, incorporating market regime dynamics

into the projection is absent in both the literature and practical applications.

We present a systematic sector rotation strategy, commonly implemented by port-

folio managers in the financial industry, that systematically allocates to large universe of

thousands of stocks, based on the current and expected market regimes identified by our
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model. In a 20-year long historical simulation, our framework is able to systematically man-

age a large-scale investable universe that encompasses nearly the entirety of the U.S. stock

market. The empirical results indicate that our methodology is capable of providing higher

risk-adjusted returns compared to passively held portfolios, at different levels of tracking

error budget commonly used by active portfolio managers in the investment industry. Both

our framework and its empirical results expand on the current state of the literature by

providing a way of implementing regime modeling in the context of a large-scale portfolio,

working around the curse of dimensionality, and allowing its implementation in a real-world

setting.

The remainder of the paper is organized as follows. In Section II, we describe our

dataset and analyze the relationship between the business cycle and the behavior of the stock

performance. In Section III, we discuss the concepts behind the Hidden Markov models,

which will be the backbone of our methodology, and we outline the regime-weighted least-

squares methodology we propose to arrive at the stock-level return and variance estimates.

Section IV reports a useful application of our regime-aware framework to build large-scale

stock portfolios. Section V concludes.

II Stock Performance Across the Business Cycle

II.A. Sourcing and Data Preparation

We work with a US-centric dataset, due to the size of this market, the number of

companies listed, its high liquidity, and data availability. The historical performance of our

investable universe is made up of US-based common stocks and is sourced from the return

files of the Center for Research in Security Prices (CRSP) database. We select all securities

identified as common stock (share codes 10 or 11) listed on the NYSE, AMEX, and NASDAQ

(exchange codes 1, 2, 3, 31, 32, and 33). For each of these stocks, we collect daily returns
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Figure 1: Reprentativeness of the training and validation samples

Figure 1 plots the number of stocks contained in each of the samples used in this study,
and how much coverage, in terms of total market capitalization, they represent. In order to
analyze the regime-dependent behavior of the US equity market, we collect a comprehensive
dataset of stocks by combining the Center for Research in Security Prices (CRSP) database
and COMPUSTAT data bases. The complete dataset comprises every stock available in these
databases, while the investable universe is defined as a subset of stocks that meet data availability
criteria. Despite the slightly fewer stocks contained in the investable universe, it is still of the stock
market, covering more than 90% of the bread US stock market, in terms of market capitalization,
at any point in time. The historical sample is divded into a training sample (from July 31, 1963
to December 31, 2002), which is only used for estimation purposes, and a validation sample (from
January 1, 2003 to December 31, 2022), which is used in the empirical out-of-sample exercise
presented in this study.

1970 1980 1990 2000 2010 2020
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94%

Total Market Capitalization Covered by the Validation Sample

Complete Dataset Investable Universe

starting in July 1963, and ending in December 2022. We adjust these returns in the case of

stock delisting in the same way as described in Shumway (1997), also explained in Bali et al.

(2016). From these returns, we subtract the risk-free rate from Kenneth French’s website

to compute the excess returns. In addition, for each of the stocks in the universe, we also

collect time series of daily closing prices (field PRC), number of shares outstanding (field

SHROUT), to calculate each stock’s market capitalization. Finally, we obtain the Global

Industry Classification Standard (GICS) codes from COMPUSTAT, and link them to our

return dataset.
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We separate the long historical sample into two subsamples; a training sample that

starts on July 31, 1963 and ends on December 31, 2002, and a validation sample that starts

on January 1, 2003 and ends on December 31, 2022. The number of companies, and the

total market capitalization covered by both samples is visualized in Figure 1. The training

sample will be used to train and determine the parameterization of the HMM, while the

validation sample will be used for the historical portfolio simulation. In terms of size, the

complete dataset ranges from 1,965 to 7,513 stocks, averaging 4,180 during the training

sample and 4,877 during the validation sample. For the purpose of the empirical exercise

to be described below, we subset complete dataset based on data availability in order to

arrive at our investable universe. We define the investable universe on a given date as every

stock in the dataset with valid returns, market capitalization, and industry classification

entries on that particular day. On top of this, we filter out stocks with 5 or fewer years of

historical data, so we can work with enough degrees of freedom to fit our framework. This

leaves us with an investable universe with an average of 3,175 stocks during the validation

sample window, ranging from 2,684 to 3,913 companies, covering more than 90% of the total

capitalization of the US stock market at each point in time, and averaging nearly 93% of

market capitalization coverage during the validation sample. Finally, we downsample the

return frequency of our stock dataset from daily to weekly. For the purpose of our exercise,

we think that weekly frequency is optimal, as this avoids the intricacies of daily frequency

data, such as a large number of outliers and high negative autocorrelation, while still leaving

enough us observations to fit the large number of parameters to be estimated. Additionally,

we sample the returns on Wednesdays to avoid the so-called day-of-the-week effect that may

occur on days such as Fridays and Mondays.

II.B. Distinguishing Defensive from Cyclical Stocks

Fundamentally, the behavior of the business cycle significantly influences the stock

market, as corporate earnings are closely tied to consumer spending within the economy.
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During periods of economic growth, consumers are likely to spend more freely, using their

stable and increasing disposable income on items like technology, luxury goods, and recre-

ational activities. Conversely, when consumers perceive their future earnings as uncertain,

they may cut back on non-essential purchases, preserving their disposable income for vital

needs such as food and healthcare. Consequently, certain sectors of the stock market are an-

ticipated to outperform during tough economic times (known as defensive sectors), whereas

others prosper when economic conditions are positive (referred to as cyclical sectors).

Let us analyze our dataset to identify indications of regime-dependent behavior within

the US stock market. Should such patterns exist, we anticipate observing the previously

mentioned tug-of-war dynamic between the cyclical and defensive stock sectors. Prior to

initiating this analysis, it is imperative to categorize the companies in our sample as either

cyclical or defensive. Notably, there is no consensus regarding the number of constituents or

the composition of these categories across various financial services firms and market prac-

titioners. Nonetheless, a majority of these actors agree that Consumer Staples, Healthcare,

and Utilities can be deemed defensive sectors, while Consumer discretionary, Financials, and

Materials can be considered cyclical sectors. We classify the stocks that are part of our in-

vestable universe into these two groups of sectors using the GICS codes from COMPUSTAT.

To differentiate periods of strong economic growth marked by high consumer spend-

ing, from periods of economic downturn characterized by reduced consumer expenditure, we

utilize the US business cycle dates published by the Business Cycle Dating Committee of

the National Bureau of Economic Research (NBER). The NBER compiles a timeline of US

business cycles, pinpointing the dates of peaks and troughs that together distinguish eco-

nomic expansions from recessions. A peak is identified as the month when various economic

indicators reach their maximum, which is then followed by a noticeable drop in economic

activity. Conversely, a trough is noted as the month when economic activity hits its lowest,

right before it begins to steadily recover. A recession is defined as the interval from a peak
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to its following trough, the lowest point. The phase between a trough and the next peak is

considered an economic expansion. Typically, the economy is in a state of expansion, with

recessions usually short-lived, lasting between 2 (COVID-19 pandemic) and 18 (global finan-

cial crisis) months, and averaging 11 months, considering the periods from the beginning of

our training sample, until the end of our validation sample.

To assess whether there is differentiated performance of the cylical and defensive sec-

tors in recession and expansion periods, we look at Figure 2. The two panels in the figure

show the empirical cumulative density function of the monthly performance of cyclical and

defensive stocks in excess of the overall market return, during the expansionary (left) and

recessionary (right) months, as defined by the NBER. In economic expansion, the perfor-

mance of both groups of sectors seems to be visually indistinguishable from each other.

However, this changes when the economy is in recession; defensive stocks outperform their

counterparts. This is further confirmed by a one-sided Kolmogorov–Smirnov test, which

finds statistical evidence of the outperformance of defensive stocks over cyclical stocks, dur-

ing economic recessions with a 95% confidence interval. The results are in line with economic

rationale, as companies within a defensive sector, such as the Consumer Staples sector, for

example, provide goods and services that are likely to be resilient to economic contractions

because they are deemed essential, such as food and beverages, household products, and

clothing. On the other hand, companies in a cyclical sector such as Materials derive their

profits from activities such as manufacturing and construction, which are mainly driven by

the aggregate level of consumption and interest rates. Consequently, companies in cyclical

sectors tend to suffer the most when the economy enters a contractionary state. The cycli-

cality in the performance of stocks and the uncertainty surrounding this process is commonly

referred to as market regimes.

At times, the business cycle and the market regimes do not necessarily concur, as

stock prices tend to incorporate expectations of the future state of the economy rather than
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Figure 2: Sector performance in economic expansions and recessions (1963-2022)

Figure 2 plots the cumulative empirical densities corresponding to the performance of the
defensive and cyclical sectors during economic expansions and recessions. Defensive sectors are
expected to be resilient to economic downturns and include Consumer Staples, Healthcare, and
Utilities. On the other hand, cyclical sectors are expected to thrive in expansionary economic
regimes and suffer in turbulent market environments, and include sectors such as Consumer
discretionary, Financials, and Materials. Using the monthly recession indicator published by the
NBER, we separated our long historical sample into periods of economic expansion (left-hand side
panel) and economic contraction (right-hand side panel). It becomes apparent that performance of
the defensive and cyclical sectors has differed during economic recessions, favoring the former over
the latter. This difference is also statistically significant, from a one-sided Kolmogorov–Smirnov
test point of view, with a 95% confidence interval, evidencing that some stocks, can provide partial
downside protection during economic downturns.
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the current one. For this reason, we can consider other variables more closely linked to

the market regime, such as the Chicago Board Options Exchange CBOE Martket Volatility

Index (VIX), which is usually deemed as a gauge for investor fear. Figure 3 shows the

empirical joint distribution of the spread between the monthly return of the defensive and

cyclical sectors, and the level VIX. In concordance with the case of economic recessions

and expansions, the return difference between the defensive and cyclical sectors is centered

around zero when the short-term implied volatility, measured by the VIX, is within its

interquartile range (13.8 - 23.5). However, in times when the level of market uncertainty has
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Figure 3: Defensive-minus-cyclical return spread and VIX levels (1990-2022)

Figure 3 displays the joint empirical distribution of defensive-minus-cyclical monthly return
spread and VIX levels, using data from 1990 (close to the beginning of the VIX time series) to
2022 (end of our validation sample). Taking a closer look of the joint empirical distribution of
defensive-minus-cyclical historical monthly return spread and VIX levels over the last thirty years.
In periods where the stock market overall volatility is close to typical levels, the difference between
the performance of defensive and cyclical is both centered around 0% and symmetrical, However,
conditional to turbulent periods of high market volatility, the return spread distribution shifts
towards the positive side, as a result of the protection provided by defensive stocks.
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spiked beyond the 75th percentile, the mean returns differential between the defensive and

cyclical sectors progressively moves toward positive values with the level of VIX, exhibiting

the protection provided by defensive sectors in periods of extreme market volatility.

The main conclusion from the inspection of our dataset is two-fold. First,there seems

to be a cyclicality in the performance of stocks that could be linked to the business cycle,

which is commonly referred to as market regimes. Second, identifying and modeling market

regimes, together with understanding the conditional performance of stocks in each of these
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regimes, could be beneficial for investment managers, as defensive stocks tend to outperform

cyclical stocks in dire market environments.

In the next section, we propose a portfolio construction framework that takes into

account the regime-dependent behavior of stock prices by modeling and describing the dy-

namics of the market regimes driving the joint distribution of stock returns.

III The Regime-Conditional Distribution of Stock Re-

turns

III.A. Hidden Markov Models

The distribution of some stochastic processes, such as the performance of a particular

financial asset, might not be properly described by a single probability distribution but

rather by a combination of densities. Consider the case of stocks, whose returns distribution

is known to be empirically left-skewed and characterized by excess kurtosis. Furthermore,

and just for the sake of illustration, let us assume that the equity market alternates between

market regimes over time. Historically, the large losses that have caused the fat left tail in

the empirical distribution of stock returns have occurred primarily in consecutive periods

of market turmoil, commonly known as bear markets, which are also related to the well-

documented volatility clustering phenomenon. In contrast, markets also go through stable

growth regimes usually characterized by low stock volatility and positive returns, colloquially

dubbed bull markets. It would be fair to assume, in this illustration, that the distribution of

stock returns is not driven by a single density, but rather by two: a Gaussian distribution

for bull market regimes with positive mean return and low variability, and another one for

bear market regimes, located to the left of the previous distribution with significantly higher

volatility.
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Representing and modeling an overall population distribution as a combination of m

densities is known as a mixture model. Bouguila et al. (2022) argues that Hidden Markov

Models (HMM) can be considered an extension of mixture models along the temporal axis,

which are capable of modeling and incorporating space-time features. Formally, HMMs

are double-stochastic discrete processes within the family of generative machine learning

algorithms. They can be trained in both supervised and unsupervised manners to model

the dynamics of a hidden stochastic process s. Although s is not directly observable, it can

be inferred through a set of visible stochastic variables Z emitted by the hidden process.

In the stock market, regimes such as turbulent bear markets and bull markets markets are

not directly observable or measurable by investors. However, most portfolio managers can

make an educated guess of the regime the market is currently going through, by observing

the behavior of traditional asset such as equities and bonds, and place bets and construct

portfolios based on their observations.

At time t, the hidden underlying stochastic process can assume any of the market

regimes in s ∈ (1, 2, . . . ,m). When the process is in state s, a set of observations is emitted

by the hidden process (in our case, the stock returns), drawn from the corresponding state-

dependent distribution. The hidden process evolves over time in an equally spaced sequence,

forming a first-order discrete-time Markov chain (DTMC). A process is said to be a DTMC

if it satisfies the so-called Markovian property :

P (st+1 | st, st−1, . . . , s0) = P (st+1 | st)

where the future state of the underlying stochastic process (i.e., the market regimes in our

case) depends only on its current state. The collection of the probabilities of transitioning

from and to every state in s is organized and stored in the so-called one-step transition
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matrix Π ∈ Rm×m,

Π =



π11 π12 . . . π1m

π21 π22 . . . π2m

...
. . .

...

πm1 πm2 . . . πmm


m×m

where P (st+1 = j | st = i) = πij. HMMs can be trained on various component den-

sities, both discrete and continuous. Given our focus on modeling stock returns, we assume

that our model combines a finite collection of m Gaussian densities. In the case of contin-

uous return distributions, the component densities overlap, meaning that a single observed

realized return zt could have been emitted by more than one, and potentially each of the m

market regimes. The likelihood od a particular observation zt being emitted by each of the m

states is stored in γt ∈ R1×m, where 1Tγt = 1. In a multivariate framework of k observable

variables, the collection of probabilities that a particular realization (row) in Z ∈ RT×k was

emitted when the system was in a given state of s are stored in the corresponding row of

the emission probabilities matrix Γ ∈ RT×m

Γ =



γ{1},t−T γ{2},t−T . . . γ{m},t−T

...
...

. . .
...

γ{1},t−1 γ{2},t−1 . . . γ{m},t−1

γ{1},t γ{2},t . . . γ{m},t


T×m

(1)

where γ{s}t is the probability that the observations (z1,t, z2,t, . . . zk,t) were generated

by state s ∈ (1, 2, . . . ,m) at time t. Figure 4 offers a graphical representation of an HMM

process. The hidden layer of the process, the market regimes in our case, evolves over time

following Π. At each time t, the dominant market regime emits the set of observations zt

(e.g., security returns), with probabilities described in γt.
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Figure 4: Graphical Representation for Hidden Markov Models

Figure 4 provides a graphical abstraction of a Hidden Markov Model (HMM) that models
hidden market regimes and observable asset returns. In a HMM, an unobservable stochastic
process st evolves through time following a Markov chain, assuming any of the market regimes in
s ∈ (1, 2, . . . ,m). At time t, the hidden variable st (i.e., the market regime) emits a realization
of an observable process zt (e.g., stock returns) with emission probability γ. HMMs are partic-
ularly useful to describe the dynamics between unobservable market regimes, and the episodic
performance of financial assets.

Hidden Market Regime : s0 · · · st−1 st st+1

Observable Returns : z0 · · · zt−1 zt zt+1

Π

γ

Π

γ

Π

γ

Π

γ

III.B. Regime-Weighted Least Squares

Real-world portfolios often contain a large number of securities. Unfortunately, train-

ing an HMM on a large set of stocks as observable variables presents major complications,

as the number of parameters to estimate quickly explodes as the dimensionality of s and Z

increases. The low-rank structure of stock return data allows us to select a parsimonious

set of k factors and fit the regime-switching model on this reduced set, mitigating the curse

of dimensionality associated with modeling the entire investable universe. After fitting the

model to the k factors, these regime-dependent estimates can be projected back into stock-

space through regime-aware factor loadings. These loadings represent the sensitivity of each

of the n stocks in the investable universe to the k factors, in each of the m hidden states of

the process.

Consider an investable universe of n stocks (where n is large) whose returns can be

explained by a set of k factors (where k is considerably smaller than n). We also assume that

16



the dynamics of these k factors can be characterized by a finite set of m market regimes that

evolve in time following a DTMC. Given Ft, let x ∈ RT×1 be the T most recent historical

returns of a given stock in the investable universe of size n; Z ∈ RT×k be the sequences of T

historical returns for each of the k factors:

Z =



z1,t−T z2,t−T . . . zk,t−T

...
...

. . .
...

z1,t−1 z2,t−1 . . . zk,t−1

z1,t z2,t . . . zk,t


T×k

where zi,t is the realized return of factor i at time t. The approriate parameters used

in the projection of x onto Z will be subject to the dominant regime s ∈ (1, 2, . . . ,m) in

which the system is in:

x =



Zθ{s=1} + ε{s=1}, if s = 1

Zθ{s=2} + ε{s=2}, if s = 2

...

Zθ{s=m} + ε{s=m}, if s = m

(2)

where θ{s} ∈ Rk×1 is the regime-dependent set of factor loadings within the market

regime s, and ε{s} ∈ RT×1 is the vector of residuals of the linear projection of x on Z

within the same regime. By leveraging the emission probabilities in (1) and reorganizing the

elements in (2), we can estimate the regime-dependent factor loadings.

Let:
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D = diag (vec (Γ))mT×mT

M =



Z 0 · · · 0

0 Z · · · 0

...
...

. . . 0

0 0 · · · Z


mT×mk

δ =



x 0 · · · 0

0 x · · · 0

...
...

. . . 0

0 0 · · · x


mT×m

Θ =



θ{s=1} 0 · · · 0

0 θ{s=2} · · · 0

...
...

. . . 0

0 0 · · · θ{s=m}


mk×m

where block diagonal matrixD rearrages Γ so that each block contains the information stored

in the columns of the latter as diagonal entries, bothM and δ are block matrices that store

the historical performance of risk factors and stock returns, respectively, Θ contains the

regime-dependent set of factor loadings θ{s} ∈ Rk×1 corresponding to regime s, previously

introduced in (2), in a block-diagonal way.

We can now obtain the m sets of k regime-aware factor loadings by solving
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argmin
Θ

(δ −MΘ)T D (δ −MΘ) (3)

In the unconstrained case, the first-order condition of (3) yields

∂

∂Θ
δTDδ − 2δTDMΘ+ΘTMTDMΘ = 0

Θ =
(
MTDM

)−1
MTDδ

In the above results, Θ is a mk × m matrix that contains the sets of regime-aware

factor loadings in a block-diagonal way. To simplify the subsequent analysis, we employ a

more compact representation of Θ instead:

Θ̂ = IT
(
MTDM

)−1
MTDδ (4)

where

I =



Ik

Ik
...

Ik


mk×mk

is used to aggregate the results, so that Θ̂ is a k × m matrix that contains the

estimated factor loading of the returns of the stock of interest to the k factors (along the

rows), in each of the m regimes (along the columns):

Θ̂ =

(
θ̂{s=1} θ̂{s=2} . . . θ̂{s=m}

)
k×m
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The results of (4) represent a market regime-weighted least squares (RWLS) estimator,

which serves as the foundation of our methodology for obtaining regime-aware means and

covariances of large-scale stock portfolios.

III.C. From factors to stocks

In a multivariate HMM with Gaussian emissions, the m independent densities are

characterized by different distribution parameters. At time t, the probability distributions

of the k observable factors will be given by

p (zt | Ft) =
m∑
s=1

γ{s},t p
(
z |µ{s},Σ{s}

)
(5)

where γ{s}t is the probability at time t that the observed factor returns zt were emitted by

regime s ∈ (1, 2, . . . ,m), µ{s} ∈ Rk×1 is the vector of expected returns for each of the k

factors in regime s, and Σ{s} ∈ Rk×k their variance-covariance matrix within that regime.

Under (5), the conditional mean µt and covariance Σt of the k observable factors in the

HMM are given by

µt =
m∑
s=1

γ{s}tµ{s}

Σt =
m∑
s=1

γ{s}t
(
Σ{s} + µ{s}µ

T
{s}

)
− µtµ

T
t

(6)

In (6), even though the state-dependent densities corresponding to each of the m

regimes in the system, characterized by µ{s} andΣ{s}, are constant over time, the conditional

joint distribution of the k common factors will evolve driven by the emission probabilities of

the HMM, γ{s}t, which act as mixing weights.

On a given rebalance day, a portfolio manager may seek to estimate the joint return

distribution of stocks in their investable universe, with the next rebalance date as the in-
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vestment horizon. Therefore, it is crucial that the regime-aware factor loadings not only

reflect the most likely current regime but also account for the probability of transitioning

into other regimes during the investment holding period. Let γt be the most recent emission

probabilities given Ft (i.e., the last row of Γ as of the rebalance date), and let us assume

that the next portfolio rebalancing will occur in h periods ahead. Taking into account the

transition probabilities from t to t+h, our forward-looking regime-aware factor loadings will

finally be given by

θ̂(h)i,t = γtΠ
hΘ̂

T
(7)

where θ̂(h)i,t ∈ R1×k contains the regime-aware forward-looking sensitivity of stock i to the

set of k factors, with a horizon of h periods ahead. For the sake of simplifying the notation

going forward, we define

Φ(h) =

(
θ̂(h)1,t θ̂(h)2,t . . . θ̂(h)n,t

)
k×n

(8)

which contains every set of forward-looking regime-weighted factor loadings for each of the

n stocks in our investable universe on each date t. Martrix Φ(h) can be used to project the

estimated regime-aware joint distribution of the five-factor model from (6) onto our investable

universe, thereby estimating the expected return of the investable stocks and the systematic

component of their covariance matrix. The regime-weighted idiosyncratic component of the

covariance matrix of the n stocks in the investable universe can be estimated as follows:

Ξt (h) =



γtΠ
hξ1Π

hTγT
t 0 · · · 0

0 γtΠ
hξ2Π

hTγT
t · · · 0

...
...

. . . 0

0 0 0 γtΠ
hξnΠ

hTγT
t


n×n
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where

ξi =



εTi,{s=1}εi,{s=1} 0 · · · 0

0 εTi,{s=2}εi,{s=2} · · · 0

...
...

. . . 0

0 0 · · · εTi,{s=m}εi,{s=m}


m×m

and

εi,{s} = Zθ̂i,{s} − x

is the vector of residuals corresponding to stock i in the investable universe, for each

state s ∈ (1, 2, . . . ,m).

Constructing regime-aware portfolios with a large number of stocks is now feasible

by leveraging the equations above. We estimate the regime-conditional joint distribution of

the k factors using (6) and then project this distribution onto our large investable universe

using (8):

ψt,t+h = Φ(h)Tµt

Ωt,t+h = Φ(h)TΣtΦ(h) +Ξt (h)

(9)

In (9), the terms ψt,t+h ∈ Rn×1 and Ωt,t+h ∈ Rn×n correspond to the projected

conditional vector of means and the covariance matrix, respectively, of the investable set

at time t with a horizon of h periods ahead. These two terms can now be used in any

mean-variance optimization framework to build regime-aware stock portfolios, regardless of

the number of stocks that are part of the investable universe at time t.

In the next section, we present an implementation of the framework introduced in

this section, in the shape of a systematic sector rotation strategy that leverages the regime-
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dependent behavior of stock prices in the context of a large-scale investable universe which

encompasses nearly the entirety of the US stock market.

IV Building regime-aware stock portfolios

Sector rotation is a widely used portfolio allocation strategy that adjusts sector

weights (e.g., Industrials, Consumer Staples) based on the current and anticipated mar-

ket environment. We expect our framework to accurately identify market environments

through regime modeling and adjust portfolio allocations accordingly, overweighting sectors

that thrive in the current regime and underweighting those that struggle. In this empirical

experiment, we aim to trade a vast number of stocks (in the thousands) on each rebalance

date, covering nearly the entire stock market capitalization. We use the previously described

methodology to estimate means and covariances for the investable universe and then imple-

ment the sector rotation strategy based on these estimates. Working with large investable

universes in a mean-variance context presents challenges, such as singularity issues arising

from ill-defined sample variance-covariance matrices and substantial estimation errors in

mean and variance estimates. We anticipate that our factor-based framework can address

the invertibility of the variance-covariance matrix, while the regime-aware estimates can act

as a form of shrinkage for estimation errors, leading to superior risk-adjusted performance

compared to a passively held portfolio.

IV.A. Portfolio Rebalancing Process

For this exercise, we set up a monthly rebalance schedule that takes place during the

validation sample which starts on December 31, 2002, and ends on December 31, 2022, with

the target weight calculation taking place on the last business day of the month. Given

that our stock dataset is US centric, we choose the five-factor model of Fama and French

(2015) as the parsimonious set of factors on which we will train the regime-switching model.
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The five-factor model adds profitability (RMW ) and investment (CMA) to the classical

and widely accepted three-factor model of Fama and French (1993) that includes market

excess returns (Mkt), size (SMB), and value (HML) as risk factors. The authors argue

that the model is capable of explaining between 71% and 94% the cross-sectional variance of

their dataset of companies listed on US stock exchanges. We obtain the returns for the five

factors, along with the risk-free rate, from Kenneth French’s website at Dartmouth. ”We

collect daily returns from July 1964 (the earliest available data point) to December 2022.

We downsample to weekly frequency to match our stock returns dataset’s frequency.

The parameter estimation process at the beginning of each rebalance date t is as

follows:

1. We fit a multivariate HMM with Gaussian emissions on the five-factor model using the

most recent available observations, as of t. Given that we are using weekly estimates,

but we have monthly rebalances, we set h = 4 to obtain forward-looking estimates that

also account for the probability of potentially transitioning into other market regimes

during the coming month.

2. We define our investable universe as the stocks available in our validation sample

that have at least five years of weekly returns as of that day, in addition to having

market capitalization information and a valid GICS industry classification. The size

and composition of the investable universe are expected to vary across rebalance dates

due to factors such as company delistings and additions throughout the validation

sample.

3. We leverage γt and Π, coming from the most recent HMM estimation, and cycle

through each of the n stocks in the investable universe available on t, to estimate its

regime-conditional factor loadings Φ (h) as described in (7).

4. Then, we combine these estimates with the most recent regime-conditional factor mo-
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ments µt and Σt to arrive at the regime-conditional joint distribution of our investable

universe.

5. Finally, we use these estimates to tilt the industry in our portfolio in a regime-aware

manner.

IV.B. Market Regime Calibration and Identification

We begin by determining the optimal number of market regimes (hidden states) that

best characterize the dynamics of the five-factor model. For this purpose, we set up a grid

search of possible integer values ranging from 2 to 10 regimes. Modeling the dynamics

of stock returns with more than 10 regimes is not only excessive and lacks widespread

support in the literature but also renders estimation infeasible due to the limited number of

observations relative to the parameters to be estimated. We iteratively train a multivariate

Gaussian HMM on the five-factor training dataset from Kenneth French’s website, varying

the number of regimes in each iteration. For each iteration, we compute the Bayesian

Information Criterion (BIC) and the Akaike Information Criterion (AIC). Figure 5 shows

that both information criteria decrease when four hidden states are used in the estimation,

before increasing due to the penalty for model complexity associated with additional states,

particularly in the case of BIC. Based on these results, we select four as the optimal number

of states to describe the dynamics in our factor sample, consistent with findings in the

financial literature. This number of states remains fixed throughout the simulation.

While not essential for implementing our framework, an economic interpretation of

the four regimes may be of interest. One approach is to examine the resulting regime-

dependent distributions of each of the five factors. Figure 6 presents the regime-conditional

Gaussian distributions for each of the five factors, across the four identified market regimes.

Consider the first column, which displays the return probability densities in Market Regime

1. We can observe that the Mkt factor is characterized by a strong positive return, accom-
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Figure 5: Determining the Number of Market Regimes

Figure 5 plots the information criteria resulting from a search grid designed to find the op-
timal number of hidden states to use in our exercise. Fitting an HMM on any dataset requires a
pre-stablished number of densities to be identified from the set of observable (emmitted) variables
as input. Using the training sample window, and the five factor dataset, we iteratively fit an
HMM with multivariate Gaussian emissions to a grid of possible integer values ranging from 2
to 10 regimes, and register the Bayesian information criterion (BIC) and the Akaike information
criterion (AIC) obtained by using that particular number of regimes. The results suggest that an
optimal number of regimes to use for our dataset sits around 4 states, which seems to be in line
with the financial literature.
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panied by low market volatility. On top of the previous, we also see that in this regime,

in the HML factor ”growth” companies tend to outperform ”value” stocks, and that in

the CMA factor companies that are more ”aggressive” when it comes to investments out-

perform ”conservative” companies. These are characteristic features of positive trending

market states, commonly known as bull regimes. Conversely, Market Regime 4, depicted

in the fourth column, represents the opposite extreme. This regime is characterized by a

strong negative return and high volatility in the Mkt factor. Furthermore, value stocks and

companies with conservative and robust profiles outperform their counterparts. As expected,

companies with robust profitability offer some protection during this turbulent regime and

outperform weaker counterparts, as indicated by the positive mean return of the RMW fac-

tor. Therefore, we label this negative trending market state as a bear regime. Between these
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extremes lie Market Regime 2 (second column) and Market Regime 3 (third column). In

Market Regime 2 the Mkt factor exhibits a positive mean return in a volatile environment,

suggesting a stock market rebound or short rally state, which we label the greed regime.

Market Regime 3 is characterized by a negative mean return and relatively high volatility,

suggesting a short-lived market panic, which we term the fear regime. This interpretation is

further supported by the evolution of smoothed emission probabilities over time, as depicted

in Figure 8. Our bear regime coincides with major recession periods, such as the dot-com

bubble, the global financial crisis, and the COVID-19 pandemic. The bull regime, and to a

lesser extent the greed regime, tend to coincide with periods of economic expansion. Finally,

fear regime exhibits a very non-persistent profile, being present for short periods of time

and serving as a conduit for transitioning between the aforementioned regimes. The Markov

chain that governs the evolution of the process and the transition between these four regimes

over time is illustrated in Figure 7. The four states are highly persistent, with a probability

between 70% and 95% of staying in the same market regime within a month horizon. This,

of course, varies depending on the estimation sample used during the validation sample, but

the stickiness of these regimes remains througout the experiment. Within this Markovian

framework, is possible to transition from any market regime into another in the next step.

However, and as expected, the probability of transitioning from a bull regime into a bear

regime, in only one step, is close to zero. More likely is to use one of the aforementioned

transitory regimes, such as the fear regime, as an intermediate step before falling into a bear

regime.

IV.C. Estimating Regime-Aware Factor Loadings

Continuing with our empirical application, we proceed to estimate the conditional

regime-aware factor loadings for the stocks in our investable universe. For each weekly

observation in the validation sample, we fit our RWLS to the n weekly return time series

corresponding to the stocks that are available in the dataset as of that particular day. The
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Figure 6: Factor Regime-Conditional Probability Densities

Figure 6 exhibits the resulting regime-conditional probability densities for each of the five
factors, after fitting a four-state HMM with multivariate Gaussian emissions on these using the
training sample window. Each column in the figure collects the distributions of the five factor
during that particular market regime. For the sake of interpretability, each of the four regimes
was assigned a discretionary label (i.e., Bull, Greed, Fear, and Bear) based on sylized facts of the
performance of the five underlying factors during these regimes.
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length of these returns time series comprises not only the entire training sample, but also

the portion of the validation sample revealed up to time t, avoiding data snooping bias.

Consequently, the amount of data available to be used in the estimation grows with the

passage of time, as would be the case for a portfolio manager or researcher implementing

a framework like ours in a real-life setting. Given the jagged nature of stock data due to

the asynchronicity of initial public offerings, the length of the returns time series of each

stock will differ, with some stocks having only a couple of observations, while others might

exhibit long time series potentially starting in 1963 (the beginning of our training sample).

Although emission probabilities Γ are commonly used across stocks when estimating (4), the
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Figure 7: Market Regime Transition Markov Representation

Figure 7 represents the one-step ahead DTMC that governs the evolution of the HMM pro-
cess in time. The system consist of four states which are fairly persistent (i.e., the probability
of staying in the same regime over the next period is high). Transitioning from one of the
extreme regimes (e.g., Bull regime) into the other extreme (i.e., Bear regime) is highly unlikely to
materialize, without passing through one of the intermediate states, such as the Fear regime.
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Bear
Regime

Fear
Regime

Greed
Regime

portion of this matrix ultimately used in the estimation of the RWLS of a particular stock,

will depend on the length of its time series, using only the overlapping observations given

the stock’s time series length as of that date. We iteratively repeat this process for each date

in the validation sample, extending the sample length by one observation (one week) with

each iteration, as new data become available.
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Figure 8: Smoothed Emission Probabilities

Figure 8 plots the smoothed probabilities that the observed set of realization of the perfor-
mance of each of the five factor was emmitted by one of the four states in the system, using both
the training and validation sample. Our bear regime coincides with major economic recession
periods, while our Bull and Greed regimes align with periods of economic expansion, leaving our
Fear regime as a conduit for transitioning between the aforementioned regimes
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IV.D. Sector-Rotation Strategy

We now proceed to use the estimates obtained in the previous subsections to define

and solve our allocation problem. Common implementations of sector rotation strategies over

(under) allocate to a subset of the q stock sectors available in the investable universe (e.g.,

industrials, consumer staples) that the portfolio manager expects to outperform (underper-

form), with respect to a value-weighted benchmark, while keeping stock weights proportional

to capitalization weights within each sector. In this context, the stock weights w ∈ Rn×1 to
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be determined by the portfolio manager can be expressed as

w = Sα

where S ∈ Rn×q is a matrix that maps the market capitalization weights of each stock (along

the rows) to its corresponding sector (along the columns), which is defined as follows:

S = diag (c)Q
(
diag

(
cTM

))−1

with c ∈ Rn×1 being a vector with the market capitalization of each of the n stocks that

form our investable universe, and Q ∈ Rn×q is an indicator matrix that maps each stock to

its corresponding sector, among the q available sector classifications. Finally, α ∈ Rq×1 is a

vector of multipliers, chosen by the portfolio manager, that is used to scale up or down the

benchmark sector-weights to implement his/her investment bets.

The extent to which the manager can deviate the sector weights in the portfolio

from its value-weighted benchmark weights vector (ν) is commonly controlled by a defined

risk budget constraint (σ̄), usually imposed by the investment policy. Putting everything

together, we try to solve the following objective function on each rebalance day:

argmax
α

ψT
t,t+hSα

s.t. (Sα− ν)TΩt,t+h(Sα− ν) ≤ σ̄2

1TSα = 1

wi ≥ 0 ; ∀ i = 1, . . . , n

(10)

Instead of simply choosing a single value for the tracking error budget constraint,

we define a grid of possible annual tracking error volatility constraints and analyze the

results for this range of values. Huij and Derwall (2011) study the relation between portfolio
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concentration and performance using a large database of global equity funds. The authors

point out that the average fund in our sample has a tracking error slightly higher than

6%, with an interquartile range that goes from 4.5% to 7.5% annualized tracking error.

Consistently, we define a sufficiently wide grid of possible annual tracking error volatility

constraints that ranges from 2% to 8%, which should encompass the variety of risk budgets

implemented by active fund managers. For each value on the grid, we run a historical

simulation that implements (10) on each rebalance date.

Figure 9 shows the information ratio measured against a value-weighted portfolio that

holds every single stock in the investable universe. Interestingly enough, the information

ratio progressively increases with the tracking error budget and reaches its peak around 4%

before starting to decrease as the budget continues to increase. This pattern might shed

some light on where part the value of this framework comes from. One possible explanation

could be that, in a mean-variance setting, most of the risk-adjusted performance added by

our framework comes from a more sound way to estimate the conditional risk model. At

high enough risk budgets, the impact of the risk model in the resulting target portfolio

weights decreases, as the introduced slack of active risk allows the return estimates to have a

higher impact in the portfolio solution. Given the higher estimation error surrounding these

numbers, the resulting information ratio is lower.

The remaining additional value provided by the framework seems to come from its

ability to time turbulent market environments and allocate to assets that might provide

protection during these environments. Figure 10 shows the portion of the simulated portfolio

allocated to defensive sectors in the upper panel and the probability of the historical filtered

emission probability of going through a bear market regime in the lower panel. We can make

two main observations from this figure. Firstly, these regime probabilities tend to align with

stock market crises, such as the global financial crisis of 2008 and the COVID-19 pandemic of

2020. Secondly, and potentially a more relevant finding, the resulting allocation to defensive
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Figure 9: Information Ratio at Different Tracking Error Budgets

Figure 9 plots the information ratio of the systematic sector rotation exercise shown in this
study. The calculations are down in excess of a hypothetical benchmark that holds the entire
investable universe proportionally to the market capitalization of the stocks in it, at different
tracking error budget levels.
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sectors, which tend to perform relatively better during challenging market environments and

economic recessions, increases with the probabilities of a bear market regime. In light of this

evidence, we attribute this outperformance to the ability of our framework of identifying the

current market regime, recognizing which sectors are more suited to it, and overweighting

them over the ones that do not thrive in those environments.

V Conclusions

In this paper, we introduced a novel methodology for estimating conditional means

and covariance matrices that incorporates market regime dynamics and allows to handle a

large number of securities. The approach proposed addresses the limitations of traditional

mean-variance optimization, particularly in large-scale portfolios. Our framework showed

superior risk-adjusted performance compared to passively held portfolios in both relative

and absolute management settings. We construct a regime-aware sector rotation strategy

that is implemented on a large-scale investable universe, encompassing nearly the entire

U.S. stock market over a 20-year period. By utilizing our regime-weighted least squares, we
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Figure 10: Filtered Probability of Risk-Off Regime and Resulting Allocation to
Defensive Stocks

Figure 10 plots the resulting allocation to defensive stocks in the top panel and the filtered
probability in the bottom panel. The portfolio allocations used in this figure correspond to
the simulated portfolio with a 4% tracking error budget. The panels show how the proposed
regime-aware framework increases the allocation to defensive sectors, such as Consumer Staples,
Healthcare, and Utilities, during challenging market environments and economic recessions,
indicated by the bear market regime probabilities.
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estimated forward-looking, regime-dependent factor loadings for each stock. These loadings,

combined with the regime-conditional joint distribution of the five-factor model, enable us

to dynamically tilt sector weights based on the expected performance of each sector in the

prevailing market regime. The results of our historical simulation demonstrate that this

strategy consistently outperforms a passive benchmark, particularly at a 4% tracking error

budget. This outperformance is attributed to the model’s ability to accurately identify the

four market regimes (Bull, Greed, Fear, and Bear) and adjust sector allocations accordingly,

with a notable increase in allocation to defensive sectors during turbulent market conditions,

as indicated by the bear market regime probabilities.

The main findings in this paper have significant implications for both academics and
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practitioners, and suggest interesting further developments. It would be interesting to char-

acterize the different features of the market regimes in different time periods. Additionally,

our framework assumes exogenous switching, as the hidden state variables governing regime

switches do not depend on previous innovations. A clear area of improvement for our frame-

work would be to incorporate endogenous regime switching in the model, so that regime

switches can be triggered in the presence of a large innovation, such as a sharp sudden

market shock, which is not uncommon in the stock market. This can be achieved through

the implementation of the multivariate Markov-switching approach to the asset classes as

recently proposed in Kim and Kang (2022), who extend the univariate approach of Hwu

et al. (2021). This is part of an ongoing research agenda.
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