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Abstract

The quantitative HANK model, incorporating the coordination of hours worked in produc-

tion, yields an improved empirical fit along two dimensions: a more concentrated steady-state

distribution of hours worked and lower marginal propensities to earn (MPEs) with positive

but moderate fiscal multipliers for separable preferences. In the model, failing to coordinate

work hours with coworkers leads to wage penalties, and labor earnings display decreasing

returns to hours. Consequently, households prefer working hours closer to the average and

adjust their hours less in response to idiosyncratic shocks than in the standard model. Ag-

gregate shocks increase optimal hours for all employees, and the coordination friction does

not bind. The model matches the empirical estimates of the idiosyncratic and aggregate

Frisch elasticities.
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1. Introduction

I establish that introducing coordinated work schedules (Yurdagul (2017)) into the canonical

HANK model provides a better fit to the empirical evidence about consumption, labor earnings,

and output dynamics. The coordination of hours worked in production can account for two facts

about labor supply: most employees work around 40 hours a week, and the annual marginal

propensities to earn (MPEs) are close to zero. A higher concentration of hours brings the model

closer to the evidence in Bick et al. (2022). The model generates lower MPEs without increasing

fiscal multipliers, offering a significantly improved fit to the targets set in the HANK Trilemma

of Auclert et al. (2023).

The improvement derives from the way coordination affects labor earnings. Firms want to

coordinate hours worked because modern production processes involving assembly lines, team-

work, and business-to-business interactions require simultaneous execution of multiple tasks.

In the model, firms encourage coordination by conditioning wages on hours worked and pay

the highest hourly wage at endogenously determined optimal hours. Deviations from optimal

hours result in wage penalties, and the labor earnings display decreasing returns to hours. As a

result, households find it optimal to supply hours closer to the mean than in the model without

coordination, leading to a more concentrated distribution of hours worked. When households

increase (decrease) hours worked, the marginal earnings decrease (increase), making households

react less to idiosyncratic shocks. Household labor supply becomes less responsive to wealth

shocks, leading to lower MPEs.

Moreover, optimal hours depend positively on all employees’ hours worked, and individual

marginal earnings depend positively on optimal hours. Since aggregate shocks affect all workers

symmetrically and optimal hours adjust in the same direction, the coordination friction does

not bind. In this way, coordination drives a wedge between the Frisch elasticity of hours to

idiosyncratic and aggregate shocks. I target the Frisch elasticity of hours to aggregate shocks

of 0.5, as in Battisti et al. (2024), and consider a range of values for the idiosyncratic Frisch

elasticity.

The Frisch elasticity to idiosyncratic wage shocks declines as coordination in hours increases.

Consequently, the steady-state distribution of hours worked becomes significantly more concen-

trated around optimal hours, bringing the model closer to the data (Bick et al. (2022)). Moreover,

coordination makes agents adjust their hours less in response to idiosyncratic wealth shocks: the

MPEs decline, bringing the model closer to the empirical targets of Auclert et al. (2023).
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Empirical evidence on coordination of hours worked in production. The empirical literature

provides ample suggestive evidence that firms coordinate hours in production. For example,

Cubas et al. (2021) and Cubas et al. (2022) found that mothers earn lower hourly wages when

they leave work at peak hours to spend time with their children. The wage penalties are higher

in occupations with more coordinated work schedules. Similarly, Bick et al. (2022) find a robust

hump-shaped relationship between hours and wages. They argue that coordination in hours

worked explains the empirical relationship between hours and wages and provides a unifying

explanation for bunching at mean hours across countries.

Coordination of hours worked in production provides a microfounded explanation for the preva-

lence of full-time contracts with uniform hours, such as 37.5 hours a week in Denmark. When

firms coordinate work schedules, these contracts lower the dispersion of hours worked and, thus,

improve productivity. Firms have incentives to impose uniform hours across workers regardless

of whether the determination of hours worked is more decentralized, as in the US, or collec-

tively bargained, as in Europe. Moreover, the optimum level of hours is an endogenous object

that depends on the choices of all workers. Differences in productivity, wealth, and preferences

can generate differences in optimal hours. Thus, coordination of hours worked can explain the

bunching of usual weekly hours worked at the mean across countries.

The results documented by Bick et al. (2022) confirm and expand the previous empirical find-

ings of positive returns to hours for part-time workers in Aaronson and French (2004) and

decreasing returns to hours for long shifts in Pencavel (2015). Kuhn et al. (2023) find that the

German firms that are more coordinated are more productive and pay higher wages but were

also more vulnerable to worker absences following the pandemic shock. Yurdagul (2017) was

the first to study a production function that features coordination of hours worked. In his model,

the preference for flexible hours is a strong driver of entrepreneurship. The salaried workers

produce in a coordinated manner, but the entrepreneurs do not. Individuals who prefer flexible

hours self-select into the entrepreneurial sector. This finding is consistent with the relatively low

income of entrepreneurs in the US data. I use his production function in the intermediate goods’

production in the HANK model. Shao et al. (2023) estimated the Yurdagul (2017) production

function using the Canadian firm-level data and found that individual hours worked are gross

complements in production. Battisti et al. (2024) estimates a structural labor supply model with

coordination in production using a matched employer-employee dataset from Italy. He finds that

the Frisch elasticity of hours to firm-level shocks is 0.5, and the Frisch elasticity to idiosyncratic
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shock is substantially lower because firms coordinate hours strongly. These findings support my

calibration strategy.

Related literature. Auclert et al. (2023) find that the sticky price HANK models with frictionless

labor supply fail to simultaneously deliver the MPC, MPE, and fiscal multipliers consistent with

empirical evidence: in the data the MPCs are high (Johnson et al. (2006), Jappelli and Pistaferri

(2010), Fagereng et al. (2021)), annual MPEs are low (Cesarini et al. (2017), Golosov et al.

(2023), Bartik et al. (2024)), and fiscal multipliers are positive but moderately sized (Ramey

and Zubairy (2018), Ramey (2019)). Their solution to the puzzle relies on the assumption that

unions impose uniform hours across workers. In a related paper, Gerke et al. (2024) relax the

assumption that unions impose uniform hours across workers in the sticky wage model and show

that the model with heterogeneous hours features even more attenuated impulse responses than

a baseline sticky wage model. Ferraro and Valaitis (2024) provide an elegant solution to the

wealth-hours puzzle. They argue that a data-consistent quality choice in consumption explains

the low wealth sensitivity of hours worked.

In this paper, I study a sticky price model with flexible labor supply and coordinated work

schedules. I use the model and methodology of Auclert et al. (2023), which relies on the

Sequence-Space Jacobian algorithm introduced in Auclert et al. (2021) to efficiently solve for

the first-order perfect foresight transitions of the aggregate variables. I show that the HANK-

coordination model relaxes the MPE-fiscal multiplier tradeoff.

Road map. The remainder of the paper has the following structure. Section 2 derives an ana-

lytical relationship between the MPC and MPE in the partial equilibrium heterogeneous agent

model extending the Proposition 1 of Auclert et al. (2023). Section 3 outlines the quantitative

HANK model that extends the model of Auclert et al. (2023) to incorporate the coordination

of hours worked in production. Section 4 presents the model calibration. Section 5 shows that

coordination of hours worked in production substantially reduces the MPEs without raising the

fiscal multipliers. Section 6 concludes.

2. The MPC-MPE relationship with non-linear labor earnings

In this section, I study a partial equilibrium heterogeneous agent model with frictionless labor

supply, as in Aiyagari and McGrattan (1998), and Auclert et al. (2023), extended to nonlinear

wage-hours dependence. I generalize Proposition 1 in Auclert et al. (2023) by allowing the

hourly wage rate to depend on hours worked and show that decreasing returns to hours lead to
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lower idiosyncratic Frisch elasticities and lower MPEs.

Households maximize the discounted sum of expected utility flows from consumption and

labor. They experience idiosyncratic labor productivity shocks 𝑥 that follow a stationary Markov

process, face a borrowing constraint, and solve the following Bellman equation.

𝑉 (𝑎, 𝑥) = max
𝑐,𝑛,𝑎′

𝑈 (𝑐, 𝑛) + 𝛽E [𝑉 (𝑎′, 𝑥′) | 𝑥] (1)

s.t. 𝑐 + 𝑎′ = �̃�𝑥 𝑓 (𝑛)𝑛 + 𝑇 + (1 + 𝑟)𝑎

𝑎′ ≥ 𝑎

To account for the empirical evidence on the hump-shaped relationship between hours worked

and wages (Bick et al. (2022)), I allow the hourly wage 𝑤(𝑛) = �̃�𝑥 𝑓 (𝑛) to depend on hours

worked through function 𝑓 (𝑛). �̃� is a wage-level shifter that does not depend on hours worked.

The literature usually assumes that income from labor is a linear function of the wage 𝑌 𝑙𝑎𝑏𝑜𝑟 ≡

𝑦(𝑛) = �̃�𝑥 𝑓 (𝑛)𝑛 = �̃�𝑥𝑛, and the hourly wage does not depend on hours worked: 𝑓 (𝑛) = 1

and 𝑓 ′(𝑛) = 0. The hump-shaped wage-hours relationship documented in the data (Bick et al.

(2022)) corresponds to 𝑓 ′(𝑛) > 0 for short hours and 𝑓 ′(𝑛) < 0 for long hours worked. This

specification nests the coordination of hours worked in production, which I will discuss in the

next section.

I assume that the first-order conditions are necessary and sufficient.

𝑈𝑐 (𝑐, 𝑛) = 𝜆 (2)

𝑈𝑛 (𝑐, 𝑛) = −𝜆�̃�𝑥 ( 𝑓 (𝑛) + 𝑓 ′(𝑛)𝑛)︸              ︷︷              ︸
=𝑦′ (𝑛)

(3)

The marginal benefit of working extra time depends on how labor earnings react to changes in

hours. In the baseline model, marginal earnings �̃�𝑥𝑦′(𝑛) are equal to the wage rate 𝑤 ≡ �̃�𝑥. With

the coordination of hours worked in production, workers face positive but decreasing returns to

hours (𝑦′(𝑛) > 0, and 𝑦′′(𝑛) < 0).

The Frisch elasticity measures the sensitivity of hours to the wage level shifter 𝑤 = �̃�𝑥, holding

wealth constant. In this section, I only consider partial equilibrium effects and do not allow

for aggregate shocks. Therefore, I will refer to the following measure as idiosyncratic Frisch

elasticity. Applying the implicit function theorem to the optimal consumption-labor choice yields

the following formula for the idiosyncratic Frisch elasticity of labor supply (see Appendix A.1).

Frisch ≡ 𝜕 log 𝑛(𝜆, 𝑤)
𝜕 log𝑤

=

(
𝑈𝑛𝑛𝑛

𝑈𝑛

− 𝑦′′(𝑛)𝑛
𝑦′(𝑛)

)−1
(4)
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The first term 𝑈𝑛𝑛𝑛
𝑈𝑛

is equal to the elasticity of marginal disutility from labor to hours worked.

The higher the curvature of disutility from labor, the less reactive households are to wage shocks.

For the standard separable preferences 𝑈 (𝑐, 𝑛) = 𝑐1−𝜎−1
1−𝜎 − 𝜑 𝑛1+𝜈

1+𝜈 =⇒ 𝑈𝑛𝑛𝑛
𝑈𝑛

= 𝜈. The second

term 𝑦′′ (𝑛)𝑛
𝑦′ (𝑛) is new compared to the baseline model of endogenous labor supply, where marginal

earnings are equal to the wage rate 𝑦′(𝑛) = 𝑤 and do not change with hours worked 𝑦′′(𝑛) = 0.

The term 𝑦′′ (𝑛)𝑛
𝑦′ (𝑛) equals the elasticity of marginal earnings to hours worked and measures whether

there are increasing or decreasing returns to hours. With decreasing returns to hours, workers

react less to idiosyncratic wage shocks.

In the next step, I extend proposition 1 in Auclert et al. (2023) that determines the partial equilib-

rium relationship between the MPC and MPE. In addition to the idiosyncratic Frisch elasticity,

the MPE-MPC ratio depends on the elasticity of intertemporal substitution in consumption

and the complementarity index between consumption and labor. The elasticity of intertemporal

substitution is equal to the elasticity of consumption to changes in the marginal utility of wealth.

EIS ≡ −𝜕 log 𝑐(𝜆, 𝑤)
𝜕 log𝜆

The elasticity of intertemporal substitution regulates how quickly the marginal utility of con-

sumption decreases in wealth. The lower the EIS, the faster the marginal utility of consumption

declines with wealth, making leisure more attractive to households. They reduce their labor

earnings more in response to unexpected wealth shocks, which results in a higher MPE.

The complementarity index measures the marginal propensity to consume out of wealth-

compensated changes in the labor income.

CI ≡ 𝜕𝑐(𝜆, 𝑤)
𝜕𝑤

/
�̃�𝑥 ( 𝑓 (𝑛) + 𝑓 ′(𝑛)𝑛) 𝜕𝑛(𝜆, 𝑤)

𝜕𝑤

Lemma 1 from Auclert et al. (2023) holds (see Appendix B.1) and CI = 𝑈𝑐𝑛𝑈𝑐

𝑈𝑐𝑐𝑈𝑛
. Therefore, CI

measures the degree of complementarity between consumption and labor. A preference for more

positive comovement between consumption and labor reduces the wealth effect on labor supply,

yielding a lower MPE.

This logic also holds in the extended version of Proposition 1 in Auclert et al. (2023).

Proposition 1. For any individual in the state (a, x) at time t:

MPE
MPC

=
�̃�𝑥 𝑓 (𝑛)𝑛

(
1 + 𝜖𝑤,𝑛

)
𝑐

Frisch
EIS

(1 − CI) (5)

where MPC ≡ 𝜕𝑐(𝑎,𝑤;𝑇)
𝜕𝑇

, MPE ≡ −�̃�𝑥 ( 𝑓 (𝑛) + 𝑓 ′(𝑛)𝑛) 𝜕𝑛(𝑎,𝑤;𝑇)
𝜕𝑇

and 𝜖𝑤,𝑛 ≡ 𝑓 ′ (𝑛)𝑛
𝑓 (𝑛) (proof in

Appendix B.2). Low Frisch elasticity to idiosyncratic shocks is the best explanation for low
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MPEs observed in the data. Households typically do not consume more than their income:

𝑐 < �̃�𝑥 𝑓 (𝑛)𝑛, and there is a broad consensus in the empirical literature that EIS is 0.5. Most

employees work around mean hours, and 1 + 𝜖𝑤,𝑛 is close to one. In the next section, I show

that high complementarity between consumption and labor leads to high fiscal multipliers,

as in Auclert et al. (2023). Thus, these variables are unlikely to solve the puzzle. However,

a mechanism that generates very low Frisch elasticities to idiosyncratic shocks and higher

elasticities to aggregate shocks can explain low MPEs while respecting the empirical evidence

about labor supply elasticities.

In the next section, I present a quantitative HANK model that features the coordination of hours

worked in production, which endogenously generates a hump-shaped wage-hours schedule and

the decreasing returns to hours 𝑦′′(𝑛) < 0. Consistent with Proposition 1, decreasing returns lead

to lower idiosyncratic Frisch elasticities and lower MPEs, bringing the quantitative model closer

to empirical targets. At the same time, the HANK-coordination model replicates the empirical

aggregate Frisch elasticity of 0.5 as in Battisti et al. (2024).

3. HANK Model with the Hours’ Coordination in Production

This section presents the quantitative sticky-price HANK model of Auclert et al. (2023) extended

to include the coordination of hours worked in the intermediate goods’ production. I find that

empirically plausible levels of coordination in production generate a high concentration of hours

worked around the mean and a significant decline in the MPE.

3.1. The Economic Environment

Firms. There are two types of firms: the final goods and intermediate goods producers. The

final goods producers are standard and aggregate the intermediate varieties with the CES tech-

nology. Intermediate goods firms are monopolistically competitive and produce according to

the Yurdagul (2017) production function. The production function is a CES aggregator over

individual hours worked, which can capture the coordination of hours worked in production.

𝑦(𝑖) = 𝑧

(∫
𝑥∈𝐵𝑥

∫ ∞

0
𝑥𝜇𝑖 (𝑛, 𝑥)𝑛𝜌𝑑𝑛𝑑𝑥

) 1
𝜌
(∫

𝑥∈𝐵𝑥

∫ ∞

0
𝑥𝜇𝑖 (𝑛, 𝑥)𝑑𝑛𝑑𝑥

)1− 1
𝜌

− 𝐹 (6)

The notation is the following: 𝑧 is the aggregate productivity, 𝜇𝑖 (𝑛, 𝑥) is the mass of agents

working 𝑛 hours with idiosyncratic productivity 𝑥, 𝜌 = 𝜎−1
𝜎

is a parameter that regulates
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the degree of coordination in hours and 𝜎 is the elasticity of substitution between individual

hours worked. For 𝜌 = 1, 𝜎 −→ ∞, and the individual hours worked are perfect substitutes in

production, a common assumption in the macro literature. As 𝜌 declines, coordination in hours

increases. For 𝜌 > 0, hours are gross substitutes. For 𝜌 < 0, hours are gross complements. As the

parameter 𝜌 −→ −∞ approaches negative infinity, hours worked become perfect complements.

The available empirical evidence suggests values close to 0 but negative (Shao et al. (2023),

Battisti et al. (2024)). However, even a mild complementarity of hours in production is sufficient

to generate substantial wage penalties for deviating from optimal hours.

Firms choose the masses of workers 𝜇𝑖 (𝑛, 𝑥) that they want to employ to minimize the total cost

of producing a given quantity subject to the production function in equation (6). Solving the

problem yields the following equilibrium wage function.

𝑤(𝑛, 𝑥) = �̃�𝑥E [𝑛𝜌]
1
𝜌

(
𝑛𝜌−1

𝜌E [𝑛𝜌] +
1
𝑛

(
1 − 1

𝜌

))
(7)

where �̃� ≡ 𝑚𝑐 · 𝑧 and the expectation is over the distribution of individual labor inputs (see

Appendix C.4 for more details). The expectation term is equal to the power mean of hours due

to the CES specification.1

𝐿 ≡ E[𝑛𝜌]
1
𝜌 =

(∫
𝑥∈𝐵𝑥

∫ ∞

0
𝑛𝜌

𝑥𝜇(𝑛, 𝑥)∫
𝑥∈𝐵𝑥

∫ ∞
0 𝑥𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥

𝑑𝑛𝑑𝑥

) 1
𝜌

The remainder of the firm problem is standard and follows closely Auclert et al. (2023). Solving

the Rotemberg pricing problem leads to a standard New Keynesian Philips Curve (see Appendix

C.5 for a complete derivation).

log(1 + 𝜋𝑡) = 𝜅𝑝

(
𝑚𝑐𝑡 −

𝜀𝑝 − 1
𝜀𝑝

)
+ 1

1 + 𝑟𝑒𝑡

𝑌𝑡+1
𝑌𝑡

log (1 + 𝜋𝑡+1)

Aggregate firm dividends equal the total revenue minus the total wage bill and the price adjust-

ment cost.

𝑑𝑡 = 𝑌𝑡 −
∫
𝑥∈𝐵𝑥

∫ ∞

0
𝑤(𝑛, 𝑥)𝑛𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥 −

𝜀𝑝

2𝜅
log (1 + 𝜋𝑡)2𝑌𝑡 (8)

where
∫
𝑥∈𝐵𝑥

∫ ∞
0 𝑤(𝑛, 𝑥)𝑛𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥 = �̃�𝐿 (details in Appendix C.7).

Households choose their optimal consumption 𝑐, hours 𝑛, and savings 𝑎′. The utility function

is GHH-Plus (Auclert et al. (2023)), nesting CRRA and GHH utility functions, allowing for

1Power means are increasing functions of the parameter 𝜌. In economic terms, this means that whenever there is

dispersion in hours, the stronger the degree of complementarity in production, the lower the optimal hours.
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an arbitrary complementarity between consumption and labor. They face a budget constraint,

which includes the idiosyncratic risk term 𝑥 and the equilibrium wage function derived from the

intermediate firms’ problem.

𝑉𝑡 (𝑎, 𝑒) = max
𝑐,𝑛,𝑎′

1
1 − 𝜎

(
𝑐 − 𝜑𝛼

𝑛1+𝜈

1 + 𝜈

)1−𝜎
− 𝜑(1 − 𝛼) 𝑛

1+𝜈

1 + 𝜈
+ 𝛽E [𝑉𝑡+1(𝑎′, 𝑥′) | 𝑥] (9)

s.t. 𝑐 + 𝑎′ = (1 − 𝜏𝑤)�̃�𝑥E[𝑛𝜌]
1
𝜌

(
𝑛𝜌

𝜌E[𝑛𝜌] + 1 − 1
𝜌

)
+ 𝑇 + (1 + 𝑟)𝑎

𝑎′ ≥ 𝑎

The choice of assets is subject to the borrowing constraint 𝑎′ > 𝑎. Households choose their

hours worked, and there is no extensive margin. Therefore, households desiring to work very

few hours might face negative labor earnings. In the calibrated model, the fiscal transfers 𝑇 are

sufficiently high to ensure that households have positive consumption, and the problem only

affects a small fraction of agents.

𝑈 (𝑐, 𝑛) = 1
1 − 𝜎

(
𝑐 − 𝜑𝛼

𝑛1+𝜈

1 + 𝜈

)1−𝜎
− 𝜑(1 − 𝛼) 𝑛

1+𝜈

1 + 𝜈

GHH-Plus preferences make it easy to calibrate the degree of complementarity between con-

sumption and labor measured through the complementarity index CI =
𝛼𝑈𝑐

𝛼𝑈𝑐+1−𝛼 by choosing

the parameter 𝛼. The complementarity index directly affects the strength of the wealth effect on

labor supply and increases the propagation of government shocks to consumption, as in Auclert

et al. (2023).

The first-order conditions of the household problem are the following.(
𝑐 − 𝜑𝛼

𝑛1+𝜈

1 + 𝜈

)−𝜎
= 𝜆 (10)

−𝜑𝑛𝜈
(
𝛼

(
𝑐 − 𝜑𝛼

𝑛1+𝜈

1 + 𝜈

)−𝜎
+ (1 − 𝛼)

)
+ 𝜆(1 − 𝜏𝑤)�̃�𝑥

(
E[𝑛𝜌]

1
𝜌

𝑛

)1−𝜌

= 0 (11)

𝛽E [𝑉𝑎 (𝑎′, 𝑥′) | 𝑥] = 𝜆 (12)

The envelope condition (derivative of the value function w.r.t. 𝑎).

𝑉𝑎 (𝑎, 𝑥) = (1 + 𝑟)𝜆 (13)

I follow Auclert et al. (2023) and solve the household problem using the endogenous gridpoints

method of Carroll (2006) (details in Appendix C.1).
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Asset market. There are two types of assets: bonds and equity. Both assets are perfectly liquid,

and under certainty equivalence, both assets offer the same ex-ante rate of return.

1 + 𝑟𝑒𝑡 = E𝑡

[
𝑑𝑡+1 + 𝑝𝑡+1

𝑝𝑡

]
Bhandari et al. (2023) point out that the first-order MIT shock approach implicates certainty

equivalence, and the optimal portfolio choice is indeterminate. Following Auclert et al. (2023),

I assume that all households hold the same portfolio of equity and bonds. Thus, they solve their

savings problem in terms of the whole portfolio of assets 𝑎′, and the ex-post rate of return on

the portfolio is equal to the weighted average of the realized rates of return to each asset.

1 + 𝑟𝑡 =
𝑝𝑡−1

𝑝𝑡−1 + 𝐵𝑡−1︸        ︷︷        ︸
equity share

𝑑𝑡 + 𝑝𝑡

𝑝𝑡−1
+ 𝐵𝑡−1
𝑝𝑡−1 + 𝐵𝑡−1︸        ︷︷        ︸

bond share

(
1 + 𝑟𝑒𝑡−1

)
Government. Linear labor taxation is the only source of government revenue. Debt issuance

covers the remaining financing needs. Transfers 𝑇 are rebated lump-sum and are constant in

time. There is discretionary government spending 𝐺 𝑡 .

𝐵𝑡 + 𝜏𝑤𝑡 �̃�𝑡𝐿𝑡 = (1 + 𝑟𝑒𝑡−1)𝐵𝑡−1 + 𝐺 𝑡 + 𝑇

The deficit financing rule states that whenever government spending increases above its steady-

state value, the fraction 𝜌𝐵 of the extra spending is initially covered by debt issuance. In

calibration, I set 𝜌𝐵 = 0.9 as in Auclert et al. (2023). Thus, higher deficits cover most of the

initial increase in spending, and debt is very persistent.

𝐵𝑡 − 𝐵𝑠𝑠 = 𝜌𝐵 (𝐵𝑡−1 − 𝐵𝑠𝑠 + 𝐺 𝑡 − 𝐺𝑠𝑠)

The tax rate 𝜏𝑤𝑡 varies in time, ensuring that the government budget holds even though 𝑇 is

constant, and the deficit financing rule pins down the debt level in each period. The variations

in tax rates 𝜏𝑤 have important implications for the propagation of the government spending

shock. The shock is typically expansionary, and total labor earnings �̃�𝑡𝐿𝑡 increase markedly.

When higher debt covers most of the extra spending, the tax rate 𝜏𝑤𝑡 drops, equilibrating the

government budget. A lower tax rate provides extra stimulus to the economy.

Equilibrium. An equilibrium in this economy consists of a set of decision paths for house-

holds {𝑐𝑡 , 𝑛𝑡 , 𝑎𝑡+1}∞𝑡=0 and firms
{
𝜇𝑖𝑡 (𝑛, 𝑥)

}∞
𝑡=0, the equilibrium wages {𝑤𝑡 (𝑛, 𝑥)}∞𝑡=0 for each

worker type (𝑛, 𝑥), the rate of return on bonds {𝑟𝑒𝑡 }∞𝑡=0, equity price {𝑝𝑡}∞𝑡=0, the fiscal vari-

ables {𝜏𝑤𝑡 , 𝐺 𝑡 , 𝐵𝑡 , 𝑇𝑡}∞𝑡=0 and the distribution of households over assets and labor market states
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{𝐷𝑡 (𝑎, 𝑥)}∞𝑡=0 such that for every 𝑡:

(i) The policy functions of households and firms maximize their objective functions subject to

the respective resource constraints, taking wage rates {𝑤𝑡}∞𝑡=0 = {�̃�𝑡𝑥𝑡}∞𝑡=0, equity prices, taxes,

and transfers as given.

(ii) The household distributions are consistent with the individual policy functions.

(iii) The government budget constraint (3.1) holds in all periods.

(iv) The asset, labor, and goods markets clear for all 𝑡. In particular, the optimal hours 𝐿𝑑
𝑡 that

households take as given are consistent with optimal hours implied by their choices 𝐿𝑠
𝑡 .

A𝑑
𝑡 =

∫
𝑥∈𝐵𝑥

∫
𝑎∈𝐵𝑎

𝑎𝑡+1(𝑎, 𝑥)𝐷𝑡 (𝑎, 𝑥)𝑑𝑎𝑑𝑥 = A𝑠
𝑡 = 𝐵𝑡 + 𝑝𝑡 (14)

∀
𝑛,𝑥

𝜇𝑡 (𝑛, 𝑥) =
∫
𝑎∈𝐵𝑎

1 {𝑛(𝑎, 𝑥) = 𝑛} 𝐷𝑡 (𝑎, 𝑥)𝑑𝑎 (15)

𝐿𝑑
𝑡 = 𝐿𝑠

𝑡 =

(∫
𝑥∈𝐵𝑥

∫
𝑎∈𝐵𝑎

𝑥𝑛𝑡 (𝑎, 𝑥)𝜌𝐷𝑡 (𝑎, 𝑥)𝑑𝑎𝑑𝑥
) 1

𝜌

(16)

𝑌 𝑑
𝑡 = 𝐶𝑡 + 𝐺 𝑡 +

𝜀𝑝

2𝜅𝑝
log (1 + 𝜋𝑡)2𝑌𝑡 = 𝑌 𝑠

𝑡 = 𝑧𝐿𝑡 − 𝐹 (17)

3.2. Coordination and Hours Worked

Coordination of hours worked in production drives a wedge between the idiosyncratic and

aggregate Frisch elasticities. The model generates low idiosyncratic Frisch elasticities necessary

to explain low MPEs in the data while allowing for non-negligible aggregate and firm-level

Frisch elasticities consistent with the empirical estimates.

The equilibrium wage function 7 delivers the hump-shaped relationship between wages and

hours described in Bick et al. (2022). In the model, the maximum hourly wage is at optimal

hours worked 𝐿 = E[𝑛𝜌]
1
𝜌 , and there is a substantial wage penalty for deviating from the optimal

hours when 𝜌 < 1. The penalty is high for workers who wish to work fewer than optimal hours,

and it is higher when there is more coordination in hours worked (parameter 𝜌 is lower). Figure 1

shows that the wage function in the model is qualitatively similar to the cross-sectional estimates

in the data.

The introduction of wage-hours dependence critically affects the optimal consumption-labor

choice 11 through the multiplicative term E[𝑛𝜌]
1
𝜌

𝑛
. In particular, the marginal benefit of working

extra time depends positively on the ratio of optimal hours and individual hours worked E[𝑛𝜌]
1
𝜌

𝑛
.

The marginal benefit of increasing hours worked depends positively on firm-level optimal hours

E[𝑛𝜌]
1
𝜌 . Coordination to higher hours increases all workers’ incentives to work. On the other

11



hand, the marginal benefit of working more decreases with hours worked 𝑛: for a given level of

optimal hours, workers face diminishing returns to hours worked. Figure 2 provides a graphical

explanation: conditional on optimal hours 𝐿, the slope of the earnings function declines with

hours; conditional on hours worked 𝑛, the slope increases with optimal hours 𝐿.
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Figure 1: Wages and earnings in the model with 𝜌 = −0.44, and estimated in CPS ORG August

1995-September 2007. Log hourly wages and labor earnings are scaled to 0 at 40 hours a week.
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Figure 2: Marginal earnings in partial and general equilibrium: an illustrative plot.

Consequently, in the model with coordination, there are two distinct types of Frisch elasticity of

labor supply: idiosyncratic and aggregate Frisch elasticity. Workers who draw an idiosyncratic

shock recognize that other workers are unaffected and optimal hours stay constant. Therefore, on

average, the stronger the coordination friction, the less workers adjust their hours to idiosyncratic

12



shocks. The following expression determines the elasticity of hours to idiosyncratic shocks:

𝜕 log 𝑛
𝜕 log �̃�

�����
𝜆=𝜆

=
1

1 − 𝜌 + 𝜈
(18)

If I keep 𝜈 constant and increase coordination in hours worked by decreasing the parameter 𝜌, the

Frisch elasticity of labor supply to idiosyncratic shocks drops. Due to technological constraints,

the preference-based willingness to substitute labor intertemporally is higher than the actual

elasticity. The idiosyncratic Frisch elasticity with coordination in equation 18 is a special case

of the general idiosyncratic Frisch elasticity in equation 4 derived in Section 2. In particular,

the wage function 7 implies decreasing return to hours with 1 − 𝜌 measuring the elasticity of

marginal earnings to hours.
𝑦′′(𝑛)𝑛
𝑦′(𝑛) = 1 − 𝜌

On balance, the aggregate shocks affect all workers, and, as a result, optimal hours change in

the same direction as individual choices. Therefore, the coordination friction does not affect

the aggregate Frisch elasticity. The elasticity of hours to the aggregate productivity 𝑧 and the

taxation rate 1 − 𝜏𝑤 is solely governed by the curvature parameter 𝜈:

𝜕 log 𝑛
𝜕 log 𝑧

�����
𝜆=𝜆

=
𝜕 log 𝑛

𝜕 log (1 − 𝜏𝑤)

�����
𝜆=𝜆

=
1
𝜈

(19)

All workers in the firm are affected symmetrically by aggregate shocks, optimal hours adjust in

proportion to individual choices, and no coordination difficulties arise. The complete derivation

in the spirit of Battisti et al. (2024) is available in Appendix A.2. Conversely, when a household

experiences an idiosyncratic shock, it has to coordinate hours with unaffected households. Failing

to do so would result in wage penalties. Therefore, the aggregate Frisch elasticity is higher than

the idiosyncratic Frisch elasticity.

Divergent micro and macro elasticities of labor supply (Chetty et al. (2011)) have typically

been reconciled by introducing extensive margins into the macro models (Keane and Rogerson

(2015)). Coordination of hours worked in production introduces a wedge between the micro and

macro labor supply elasticities in a continuous labor supply choice framework. Low idiosyncratic

and higher aggregate and firm-level Frisch elasticities are consistent with the micro estimates

(Battisti et al. (2024)) and help the model match other data moments, such as the MPE and

distribution of hours worked, significantly better than the baseline sticky price HANK model

without coordination.
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4. Calibration

Calibration follows Auclert et al. (2023) and McKay et al. (2016). The model features no illiquid

asset and thus belongs to the class of one-asset HANK models. To generate sufficiently high

MPCs, I follow Auclert et al. (2023) and introduce discount factor heterogeneity. Half of the

agents have a high, and the other half have a low discount factor. I calibrate the upper discount

factor to match the aggregate supply of assets equal to 1.4 times the annual GDP (McKay

et al. (2016)) and the lower discount factor to match the MPC of 0.25 (Johnson et al. (2006)). I

calibrate the elasticity of substitution between the intermediate inputs to 𝜀𝑝 = 7, which implies

a steady-state markup of 𝜇 = 1.1667. The appropriate choice of fixed cost in production ensures

that firm dividends yield the equity value of 0.85 times the annual GDP (Auclert et al. (2023)).

I set the steady-state bond supply to 0.55 times the annual GDP (Auclert and Rognlie (2020)).

I calibrate the disutility of labor parameter 𝜑 so that optimal hours E[𝑛𝜌]
1
𝜌 on the household

side are equal to the labor demand 𝐿𝑑 = 1, and the labor market clears. Similarly, I choose the

aggregate productivity 𝑧 to normalize the steady-state output 𝑌 = 1. I summarize the calibration

in Table 1; the subsequent sections describe the main aspects of the calibration in greater detail.

Production and dividends

Adjusting the fixed cost in production is a convenient tool to target equity value without com-

promising the markup calibration. In particular, steady-state firm dividends satisfy the following

formula.

𝑑 = 𝑧𝐿 − 𝑧

𝜇︸︷︷︸
�̃�

𝐿 − 𝐹 =

(
1 − 1

𝜇

)
𝑧𝐿 − 𝐹

The per-period return to all equity holdings equals total dividends by no arbitrage.

𝑝𝑟 = 𝑑 =

(
1 − 1

𝜇

)
𝑧𝐿 − 𝐹 (20)

Steady-state calibration sets 𝑟 = 0.005, 𝜇 = 1.1667, the scaling of hours 𝐿 is pinned down by

𝜑. The remaining two parameters, 𝑧 and 𝐹, are responsible for output scaling and the return to

equity. Substituting for the fixed cost from the production function 𝐹 = 𝑧𝐿 − 1 (in steady state

𝑌 = 1) into the equation (20) yields a formula for 𝑧.

𝑧 =
𝜇 (1 − 𝑝𝑟)

𝐿
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The Frisch elasticities of labor supply

Battisti et al. (2024) estimates a structural model of labor supply with coordination in production

using the matched employer-employee data from Italy. He finds that the curvature of disutility

function parameter 𝜈−1 = 0.483, and the coordination in production parameter 𝜌 = −1.962. I set

𝜈 = 2 and consider a range of values for the parameter 𝜌. The baseline value is the estimate of

Shao et al. (2023), who find 𝜌 = −0.44 for the aggregate economy using the Canadian matched

employer-employee dataset. The Frisch elasticity of labor supply to idiosyncratic wage shocks

depends on the disutility of labor parameter 𝜈 and the coordination parameter 𝜌 in equation (18).

Income process

I assume that idiosyncratic productivity 𝑥 follows an AR(1) process with persistence 𝜌𝑥 .

log 𝑥′ = 𝜌𝑥 log 𝑥 + 𝜀𝑥

I discretize the process as a Markov chain using the Rouwenhorst method. I target the persistence

parameter 𝜌log 𝑥 = 0.966 and choose the variance of idiosyncratic productivity 𝜎2
log 𝑥 =

𝜎2
𝜀𝑥

1−𝜌2
𝑥

to

target a cross-sectional standard deviation of log labor earnings of 0.92 (Song et al. (2018)). I

report the calibrated values of 𝜎log 𝑥 in Appendix C.8. Coordination of hours worked leads to

slightly lower 𝜎log 𝑥 for separable preferences and to moderately higher 𝜎log 𝑥 for nonseparable

preferences. Coordination affects the dispersion in labor earnings in two opposite ways: it

makes hours worked more concentrated and introduces wage penalties that can increase wage

dispersion when there are more part-time than overtime workers, which is the case with separable

preferences.

I adjust the calibration of the variance of the productivity process to account for the coordination

of hours worked. In the standard linear wage case, the labor earnings equal 𝑌 𝑝𝑟𝑒𝑡𝑎𝑥

𝑙𝑎𝑏𝑜𝑟
= �̃�𝑥𝑛.

However, in the model with coordination in hours, the following formula for the variance of log

earnings applies.

Var
[
log(𝑌 𝑝𝑟𝑒𝑡𝑎𝑥

𝑙𝑎𝑏𝑜𝑟
)
]
= Var

[
log

(
�̃�𝑥E[𝑛𝜌]

1
𝜌

(
𝑛𝜌

𝜌E[𝑛𝜌] + 1 − 1
𝜌

))]
When firms coordinate hours strongly, there are substantial penalties for deviating from optimal

hours. Therefore, in rare cases, households with high wealth or low productivity work very few

hours and thus receive negative labor earnings. Negative values are problematic for calibrating

the variance of log labor earnings. Therefore, I calibrate the variance of log labor earnings only
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using households with positive labor earnings: Var
[
log(𝑌 𝑝𝑟𝑒𝑡𝑎𝑥

𝑙𝑎𝑏𝑜𝑟
) |𝑌 𝑝𝑟𝑒𝑡𝑎𝑥

𝑙𝑎𝑏𝑜𝑟
> 0

]
. In Appendix C.9,

I report that fewer than 0.4% of households report negative labor earnings for all parametrizations.

Therefore, negative labor earnings are unlikely to affect the results materially.

Parameter Name Value/Target Source

𝜈 labor curvature 𝜕 log 𝑛
𝜕 log 𝑧

|
𝜆=𝜆

= 0.5 Battisti et al. (2024)

𝜏𝑤 wage tax rate 0.334 Auclert and Rognlie (2020)

𝑇 transfer 0.143 · �̃�𝐿 Auclert and Rognlie (2020)

𝜀𝑝 elasticity of substitution 7 Auclert et al. (2023)

𝜅𝑝 NKPC slope 0.01 Hazell et al. (2022)

𝐵 government bonds 0.55 · 4𝑌 Auclert et al. (2023)

𝐸 steady-state equity value 0.85 · 4𝑌 Auclert et al. (2023)

𝜌𝐵 persistence of public debt 0.9 Auclert et al. (2023)

𝜌𝑥 income shock persistence 0.966 McKay et al. (2016)

𝑎 borrowing constraint 0

𝛽1 upper discount factor 𝐴 = 5.6 Auclert et al. (2023)

𝛽2 lower discount factor MPC = 0.25 Johnson et al. (2006)

1/𝜎 𝑈𝑐 curvature average EIS = 0.5 Havránek (2015)

𝜑 disutility of labor 𝐿 = 1

𝑍 aggregate productivity 𝑌 = 1

𝜎𝑥 std of income shocks Var[log(𝑌𝑙𝑎𝑏𝑜𝑟)] = 0.922 Song et al. (2018)

𝐹 fixed cost 𝑝 = 0.85 · 4𝑌 McKay et al. (2016)

Table 1: Fixed and Calibrated Parameters

Government

I set 𝑇 = 0.143 · 𝑌 𝑙𝑎𝑏𝑜𝑟
𝑝𝑟𝑒𝑡𝑎𝑥 , as in Auclert and Rognlie (2020), to match the empirical relationship

between the pretax and post-tax-and-transfers labor income. I set the labor income tax to

𝜏𝑤 = 0.33, as in Auclert et al. (2023). The labor tax rate affects the labor wedge and, thus, the

fiscal multipliers with the GHH preferences. Therefore, for comparability, I keep this parameter

unchanged. The calibration of the government implies the transfers to GDP ratio 𝑇
𝑌
= .140569,

and the government spending to GDP ratio 𝐺
𝑌

= .176753. As Auclert et al. (2023), I calibrate

16



the slope of the Philips curve 𝜅𝑝 = 0.01 in line with the recent empirical evidence (Hazell et al.

(2022)).

Other calibration targets

I delegate the remaining calibration adjustments to the Appendix. In particular, in Appendix

C.3, I show how the calculation of the elasticity of intertemporal substitution is affected by

wage-hours dependence. Appendix C.5 outlines the procedure to calculate the model MPE and

how it corresponds to empirical evidence. In Appendix C.7, I show that the firm total wage bill

used to calculate dividends and tax revenues equals a product of the economy-wide wage rate

and optimal hours �̃�𝐿. The remainder of the calibration is the same as in Auclert et al. (2023).

5. The HANK Trilemma with the Coordination of Hours Worked

Coordination of hours worked in production lowers MPEs without raising the fiscal multipliers. I

use the HANK model with coordinated wage schedules described and calibrated in the previous

two sections to repeat the exercise of Auclert et al. (2023). I investigate how changing the degree

of coordination of hours worked in production affects the MPE-fiscal multiplier tradeoff. The

connected blue dots in Figure 3 correspond to the baseline model of Auclert et al. (2023). Higher

values of the complementarity index between consumption and labor deliver lower MPEs at the

expense of unrealistically high fiscal multipliers. However, as I increase 𝜌 and, thus, decrease

the elasticity of substitution between individual hours worked in production, the MPEs decline

substantially. Graphically, the improvement corresponds to a leftward shift of the orange, red,

and brown dotted lines relative to the blue line.

The improvement in the MPE is consistent with Proposition 1. When firms coordinate hours

more, the Frisch elasticity to idiosyncratic shocks declines, translating directly into lower MPEs.

With coordinated work schedules, workers face sizable penalties for deviating from optimal

hours worked, and there are decreasing returns to hours. Consequently, when an agent receives

an unexpected idiosyncratic wealth shock, on average, he is reluctant to adjust his hours for fear

of receiving a lower wage. Thus, the marginal propensity to earn (MPE) in Figure 3 declines

substantially as the coordination of hours in production increases. Aggregate Frisch elasticity is

the same in all calibrations; complementary in hours worked does not introduce complementarity

between consumption and labor. Therefore, with separable preferences, coordination of hours
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worked delivers lower MPEs and moderate fiscal multipliers.

Calibrations 𝜌 = −0.44, and 𝜌 = −1.962 correspond to empirical estimates in Shao et al. (2023),

and Battisti et al. (2024). These calibrations translate into the elasticities of substitution between

hours worked of around 0.7 and 0.34, respectively. However, a more extreme calibration of

𝜌 = −7, which gives an elasticity of substitution between hours of 0.125, is required to match the

MPE in the empirical range. The three calibrations correspond to idiosyncratic Frisch elasticities

of around 0.29, 0.2, and 0.1. Chetty et al. (2013) concludes that micro evidence suggests Frisch

elasticities of around 0.5 at an intensive margin. Battisti et al. (2024) provide empirical evidence

that Frisch elasticity to idiosyncratic shocks at about ≈ 0.2 is substantially lower than elasticity

to firm-level and aggregate shocks ≈ 0.5. In the latter case, the coordination friction does not

affect the labor supply adjustment, and households can adjust hours more freely.
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Figure 3: The impact of coordination of hours on the MPE-fiscal multiplier tradeoff

The takeaway is that low idiosyncratic Frisch elasticities not only do not contradict traditional

micro estimates of the Frisch elasticity but also help explain a low responsiveness of household

labor earnings to wealth shocks (low MPEs). Furthermore, as I argue in the next paragraph, low

idiosyncratic Frisch elasticities are key to explaining the high concentration of hours worked in

the US.

Coordination of hours worked in production yields a high concentration of hours worked around

mean hours. I compare model and empirical hours by assuming that average hours in the model

correspond to average hours in the data (further details in Appendix C.10). A lower Frisch

elasticity to idiosyncratic shocks yields a more concentrated distribution of hours worked. The

effect is apparent in Figure 4, where lower parameter 𝜌, corresponding to more coordination of
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hours in production, yields a steady-state distribution of hours worked closer to the empirical

counterpart from Bick et al. (2022). In Appendix C.11, I show that this effect is present regardless

of household preferences but tends to be more prominent for lower values of the complementarity

index, for example, for separable preferences. In intuitive terms, household preferences are the

same regardless of the degree of coordination of hours worked. However, when firms coordinate

hours more, workers face higher wage penalties for deviating from optimal hours. The wage

penalties are reflected in decreasing returns to hours (decreasing marginal earnings), which

translate into lower idiosyncratic Frisch elasticities. When households decrease (increase) their

hours, marginal earnings increase (decrease) rapidly. Therefore, as coordination increases, more

and more households work around optimal hours.
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Figure 4: The steady-state distribution of hours worked in the model and the data. CPS ORG

September 1995-August 2007 for women and men.

Even though coordination yields a substantial improvement in the empirical fit to the distribution

of hours worked, the model fails to replicate a significant fraction of employees who usually

work more than 50 hours a week in the data. As a side effect, coordination leads to a more

equal distribution of wealth (see Figure 6 in Appendix C.12). Bick et al. (2022) show that

correctly matching the empirical distribution of hours worked in the model requires introducing

permanent differences in preferences and productivity and a negative correlation between the

disutility from labor and productivity, which induces workers to work very long hours.

Coordination of hours worked does not increase fiscal multipliers under alternative monetary

policy and debt regimes. In this section, I explore how coordinated work schedules affect fiscal

multipliers in the canonical sticky price HANK model under alternative monetary policy and

debt regimes. Empirical literature documents that fiscal multipliers are higher when monetary
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authority is at the zero lower bound (Ramey and Zubairy (2018), Ramey (2019)). Auclert et al.

(2023) show that in a canonical HANK model with sticky prices, fiscal multipliers explode when

the policy rate is pegged at zero, reaching values as high as 73.92. In the HANK-coordination

model, multipliers are still very high but an order of magnitude lower than the canonical model

and closer to the empirical multipliers at the ZLB of no more than 1.5. (Ramey and Zubairy

(2018)). Table 2 presents the results.

Monetary Fiscal

Taylor rule constant-𝑟 3-year peg 𝜌𝐵 = 0 𝜌𝐵 = 0.9 𝜌𝐵 = 0.95

𝜌 = 1 hours are perfect subtitutes

separable 0.77 1.29 73.92 1.29 1.29 1.29

𝛼 = 0.5 1.14 2.49 3.49 2.49 2.49 2.49

GHH 2.39 5.50 6.00 5.50 5.50 5.50

𝜌 = −0.44 Shao et al. (2023)

separable 0.77 1.23 2.53 1.23 1.23 1.23

𝛼 = 0.5 1.20 2.59 3.69 2.59 2.59 2.59

GHH 2.27 5.41 6.39 5.41 5.41 5.41

𝜌 = −1.962 Battisti et al. (2024)

separable 0.80 1.28 2.40 1.28 1.28 1.28

𝛼 = 0.5 1.22 2.58 3.69 2.58 2.58 2.58

GHH 2.20 5.24 6.65 5.24 5.24 5.24

𝜌 = −7

separable 0.81 1.24 1.80 1.24 1.24 1.24

𝛼 = 0.5 1.22 2.49 3.59 2.49 2.49 2.49

GHH 2.20 5.11 8.06 5.11 5.11 5.11

Table 2: Cumulative multiplier under different monetary and fiscal policy regimes

6. Conclusion

Auclert et al. (2023) solve the HANK Trilemma using a sticky wage model where unions impose
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uniform hours across workers. However, in many countries, including the United States, union

participation is low (Farber et al. (2021)), and there is plenty of heterogeneity in individual

hours worked (Bick et al. (2022)). Therefore, I explore an alternative explanation: coordination

of hours worked in production (Yurdagul (2017)). As reported in the literature review, ample

empirical evidence supports the coordination of hours worked in production. I show that the

HANK model with firms coordinating worker hours in production offers an improved fit to

empirical evidence about MPEs and fiscal multipliers. Coordination drives a wedge between

the Frisch elasticity to idiosyncratic and the Frisch elasticity to aggregate shocks. In line with

empirical evidence in Battisti et al. (2024), I keep the Frisch elasticity to aggregate wage shocks

constant at 𝜈−1 = 0.5. Therefore, increasing coordination in hours worked in production leads to

lower Frisch elasticities to idiosyncratic shocks. Thus, consistent with Proposition 1, the model

generates markedly lower MPEs without raising the multipliers and a much more concentrated

distribution of hours worked: the former relaxes the MPE-fiscal multiplier tradeoff described by

Auclert et al. (2023); the latter brings the model closer to the empirical distribution in Bick et al.

(2022) for the US.
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Appendix

A. Labor supply elasticities

A.1. Idiosyncratic Frisch elasticity of labor supply

The optimal consumption-labor choice implicitly defines 𝑛 and �̃�.

𝐻 = 𝑈𝑛 (𝑐, 𝑛) + 𝜆�̃�𝑥 ( 𝑓 (𝑛) + 𝑓 ′(𝑛)𝑛) = 𝜆𝑦′(𝑛)

Differentiate the implicit function with respect to wages and hours.

𝐻�̃� = 𝜆𝑥𝑦′(𝑛)

𝐻𝑛 = 𝑈𝑛𝑛 (𝑐, 𝑛) + 𝜆�̃�𝑥𝑦′′(𝑛)

Applying the implicit function theorem yields a formula for the Frisch elasticity.

Frisch =
𝜕 log 𝑛
𝜕 log �̃�

����
𝜆=�̄�

=
𝜕𝑛

𝜕�̃�

�����
𝜆=�̄�

�̃�

𝑛
= −𝐻�̃�

𝐻𝑛

�̃�

𝑛

= − 𝜆𝑦′(𝑛)
𝑈𝑛𝑛 (𝑐, 𝑛) + 𝜆𝑦′′(𝑛)

1
𝑛

= − 1
𝑈𝑛𝑛𝑛
𝜆

+ 𝑦′′ (𝑛)𝑛
𝑦′ (𝑛)

Substituting for 𝜆 = − 𝑈𝑛

𝑦′ (𝑛) from the optimum yields the final formula.

Frisch =

(
𝑈𝑛𝑛𝑛

𝑈𝑛

− 𝑦′′(𝑛)𝑛
𝑦′(𝑛)

)−1

A.2. Labor supply elasticity to aggregate shocks

In this section, I derive the elasticity of hours to aggregate productivity 𝑧 and the taxation

factor 1 − 𝜏𝑤 in equation (19). The general idea is to show that optimal hours depend on the

aggregate hours directly through the equilibrium wage function and indirectly through optimal

hours 𝐿. The indirect effect captures the fact that coordination is not a friction when all agents

are affected by a shock symmetrically. Thus, the elasticity of hours to the aggregate shocks is

markedly higher than the idiosyncratic shocks.

The optimal consumption-leisure choice (11) implies the following optimal choice of hours

worked:

𝑛∗ =

(
(1 − 𝜏𝑤)�̃�𝑥 𝜆

𝜑 (𝛼𝜆 + 1 − 𝛼)

) 1
1−𝜌+𝜈

𝐿
1−𝜌

1−𝜌+𝜈 (21)
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Now, aggregating the individual optimal choices of hours to obtain the wage-maximizing number

of hours worked:

𝐿 = E𝑥 [𝑛𝜌]
1
𝜌 = E𝑥

[(
(1 − 𝜏𝑤)�̃�𝑥 𝜆

𝜑 (𝛼𝜆 + 1 − 𝛼)

) 𝜌

1−𝜌+𝜈
𝐿

1−𝜌
1−𝜌+𝜈

] 1
𝜌

= 𝐿
1−𝜌

1−𝜌+𝜈 ((1 − 𝜏𝑤)�̃�)
1

1−𝜌+𝜈 E𝑥

[(
𝑥

𝜑

𝜆

𝛼𝜆 + (1 − 𝛼)𝜆

) 𝜌

1−𝜌+𝜈
] 1

𝜌

Rearranging in terms of 𝐿:

𝐿 = ((1 − 𝜏𝑤)�̃�)
1
𝜈 E𝑥

[(
𝑥

𝜑

𝜆

𝛼𝜆 + (1 − 𝛼)𝜆

) 𝜌

1−𝜌+𝜈
] 1−𝜌+𝜈

𝜈𝜌

(22)

Substituting back into the optimal choice of individual hours:

𝑛∗ = (1 − 𝜏𝑤) 1
𝜈 �̃�

1
𝜈

(
𝑥

𝜑

𝜆

𝛼𝜆 + 1 − 𝛼

) 1
1−𝜌+𝜈

E𝑥

[(
𝑥

𝜑

𝜆

𝛼𝜆 + (1 − 𝛼)𝜆

) 𝜌

1−𝜌+𝜈
] 1−𝜌

𝜈𝜌

(23)

Using that �̃� = 𝑚𝑐 · 𝑧 = 𝑧
𝜇
, one directly obtains the desired result:

𝜕 log 𝑛
𝜕 log 𝑧

�����
𝜆=𝜆

=
𝜕 log 𝑛

𝜕 log (1 − 𝜏𝑤)

�����
𝜆=𝜆

=
1
𝜈
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B. MPCs, MPEs, and coordination in hours

B.1. Proof of Lemma 1

The proof follows the same steps as in Auclert et al. (2023), accounting for the adjusted definition

of the complementarity index and a slightly different function form of the first-order condition

with respect to labor.

First-order Taylor approximation of the first-order condition with respect to consumption yields:

𝑈𝑐,𝑡 ≈ 𝑈𝑐 +𝑈𝑐𝑐 (𝑐𝑡 − 𝑐) +𝑈𝑐𝑛 (𝑛𝑡 − 𝑛) = 𝑈𝑐 +𝑈𝑐𝑐𝑐𝑐𝑡 +𝑈𝑐𝑛𝑛�̂�𝑡

𝜆𝑡 ≈ 𝜆 + 𝜆
𝜆𝑡 − 𝜆

𝜆
= 𝜆(1 + �̂�𝑡)

Using the steady state relationship 𝜆 = 𝑈𝑐

𝑐𝑈𝑐𝑐

𝑈𝑐

𝑐𝑡 +
𝑛𝑈𝑐𝑛

𝑈𝑐

�̂�𝑡 = �̂�𝑡 (24)

Applying the first-order Taylor approximation to the first-order condition with respect to labor

𝑈𝑛,𝑡 ≈ 𝑈𝑛 +𝑈𝑛𝑐 (𝑐𝑡 − 𝑐) +𝑈𝑛𝑛 (𝑛𝑡 − 𝑛) = 𝑈𝑛 +𝑈𝑛𝑐𝑐𝑐𝑡 +𝑈𝑛𝑛𝑛�̂�𝑡

−𝜆𝑡�̃�𝑡𝑥 ( 𝑓 (𝑛𝑡) + 𝑓 ′(𝑛𝑡)𝑛𝑡) ≈ −𝜆�̃�𝑥 ( 𝑓 (𝑛) + 𝑓 ′(𝑛)𝑛) − �̃�𝑥 ( 𝑓 (𝑛) + 𝑓 ′(𝑛)𝑛) 𝜆�̂�𝑡

− 𝜆�̃�𝑥 ( 𝑓 (𝑛) + 𝑓 ′(𝑛)𝑛) �̂�𝑡 − 𝜆�̃�𝑥 (2 𝑓 ′(𝑛) + 𝑓 ′′(𝑛)𝑛) 𝑛�̂�𝑡

The first-order approximations are exactly equal by the same argument. Using the steady state

relationship 𝑈𝑛 = −𝜆�̃�𝑥 ( 𝑓 (𝑛) + 𝑓 ′(𝑛)𝑛)

𝑈𝑛𝑐𝑐𝑐𝑡 +𝑈𝑛𝑛𝑛�̂�𝑡 = 𝑈𝑛�̂�𝑡 +𝑈𝑛�̂�𝑡 +𝑈𝑛

𝑛 (2 𝑓 ′(𝑛) + 𝑓 ′′(𝑛)𝑛)
𝑓 (𝑛) + 𝑓 ′(𝑛)𝑛 �̂�𝑡

Rearranging terms:

𝑈𝑛𝑐𝑐

𝑈𝑛

𝑐𝑡 +
(
𝑈𝑛𝑛𝑛

𝑈𝑛

− 𝑛 (2 𝑓 ′(𝑛) + 𝑓 ′′(𝑛)𝑛)
𝑓 (𝑛) + 𝑓 ′(𝑛)𝑛

)
�̂�𝑡 = �̂�𝑡 + �̂�𝑡 (25)

To shorten the notation, denote:

Ψ̃ ≡ 𝑛 (2 𝑓 ′(𝑛) + 𝑓 ′′(𝑛)𝑛)
𝑓 (𝑛) + 𝑓 ′(𝑛)𝑛

Equations 24 and 25 form the following linear system
𝑐𝑈𝑐𝑐

𝑈𝑐

𝑛𝑈𝑐𝑛

𝑈𝑐

𝑐𝑈𝑛𝑐

𝑈𝑛

𝑛𝑈𝑛𝑛

𝑈𝑛
− Ψ̃



𝑐𝑡

�̂�𝑡

 =


�̂�𝑡

�̂�𝑡 + �̂�𝑡

 (26)

27



For as long as the matrix of the coefficients is invertible, the system has a unique solution
𝑐𝑡

�̂�𝑡

 =
𝑈𝑐𝑈𝑛

𝑐𝑛

1

𝑈𝑐𝑐

(
𝑈𝑛𝑛 − 𝑈𝑛

𝑛
Ψ̃

)
−𝑈2

𝑐𝑛


𝑛𝑈𝑛𝑛

𝑈𝑛
− Ψ̃ −𝑛𝑈𝑐𝑛

𝑈𝑐

− 𝑐𝑈𝑛𝑐

𝑈𝑛

𝑐𝑈𝑐𝑐

𝑈𝑐




�̂�𝑡

�̂�𝑡 + �̂�𝑡

 (27)

I use the result to calculate the complementarity index. From the linear system, it follows that

𝜕 log 𝑐𝑡
𝜕 log𝑤𝑡

=
𝜕𝑐𝑡

𝜕�̂�𝑡

= −𝑈𝑐𝑈𝑛

𝑐𝑛

1

𝑈𝑐𝑐

(
𝑈𝑛𝑛 − 𝑈𝑛

𝑛
Ψ̃

)
−𝑈2

𝑐𝑛

𝑛𝑈𝑐𝑛

𝑈𝑐

𝜕 log 𝑛𝑡
𝜕 log𝑤𝑡

=
𝜕�̂�𝑡

𝜕�̂�𝑡

=
𝑈𝑐𝑈𝑛

𝑐𝑛

1

𝑈𝑐𝑐

(
𝑈𝑛𝑛 − 𝑈𝑛

𝑛
Ψ̃

)
−𝑈2

𝑐𝑛

𝑐𝑈𝑐𝑐

𝑈𝑐

Therefore, the ratio of the derivatives satisfies
𝜕 log 𝑐𝑡
𝜕 log𝑤𝑡

𝜕 log 𝑛𝑡
𝜕 log𝑤𝑡

=

𝜕𝑐(𝜆,𝑤)
𝜕𝑤

�̃�
𝑐

𝜕𝑛(𝜆,𝑤)
𝜕𝑤

�̃�
𝑛

=

𝜕𝑐(𝜆,𝑤)
𝜕𝑤

𝜕𝑛(𝜆,𝑤)
𝜕𝑤

𝑛

𝑐
= −𝑈𝑐𝑛

𝑈𝑐𝑐

𝑛

𝑐
=⇒

𝜕𝑐(𝜆,𝑤)
𝜕𝑤

𝜕𝑛(𝜆,𝑤)
𝜕𝑤

= −𝑈𝑐𝑛

𝑈𝑐𝑐

Using the definition of the complementarity index

CI ≡ 𝜕𝑐(𝜆, 𝑤)
𝜕𝑤

/
�̃�𝑥 ( 𝑓 (𝑛) + 𝑓 ′(𝑛)𝑛) 𝜕𝑛(𝜆, 𝑤)

𝜕𝑤

and from the first order condition with respect to labor

�̃�𝑥 ( 𝑓 (𝑛) + 𝑓 ′(𝑛)𝑛) = −𝑈𝑛

𝜆
= −𝑈𝑛

𝑈𝑐

Combining both yields a formula for the complementarity index

CI =
𝑈𝑐𝑛

𝑈𝑐𝑐

𝑈𝑐

𝑈𝑛

which is unchanged from the baseline of Auclert et al. (2023).

B.2. Proof of Proposition 1

The proof closely follows Auclert et al. (2023). The derivations used to prove Lemma 1 will be

useful. Using the linear system (27), calculate the derivative terms:

𝜕 log 𝑛(𝜆, 𝑤)
𝜕 log𝜆

=
𝜕�̂�𝑡

𝜕�̂�𝑡
=
𝑈𝑐𝑈𝑛

𝑐𝑛

1

𝑈𝑐𝑐

(
𝑈𝑛𝑛 − 𝑈𝑛

𝑛
Ψ̃

)
−𝑈2

𝑐𝑛

(
𝑐𝑈𝑐𝑐

𝑈𝑐

− 𝑐𝑈𝑛𝑐

𝑈𝑛

)
𝜕 log 𝑛(𝜆, 𝑤)

𝜕 log𝑤
=

𝜕�̂�𝑡

𝜕�̂�𝑡

=
𝑈𝑐𝑈𝑛

𝑐𝑛

1

𝑈𝑐𝑐

(
𝑈𝑛𝑛 − 𝑈𝑛

𝑛
Ψ̃

)
−𝑈2

𝑐𝑛

𝑐𝑈𝑐𝑐

𝑈𝑐

Therefore:
𝜕 log 𝑛(𝜆,𝑤)

𝜕 log𝜆
𝜕 log 𝑛(𝜆,𝑤)

𝜕 log 𝑥

=

𝑐𝑈𝑐𝑐

𝑈𝑐
− 𝑐𝑈𝑛𝑐

𝑈𝑛

𝑐𝑈𝑐𝑐

𝑈𝑐

= 1 − 𝑈𝑛𝑐𝑈𝑐

𝑈𝑐𝑐𝑈𝑛

= 1 − CI
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It follows that the ratio of labor supply and consumption elasticities satisfies:

𝜕 log 𝑛(𝜆,𝑤)
𝜕 log𝜆

𝜕 log 𝑐(𝜆,𝑤)
𝜕 log𝜆

=

𝜕 log 𝑛(𝜆,𝑤)
𝜕 log𝜆

𝜕 log 𝑛(𝜆,𝑤)
𝜕 log 𝑥

𝜕 log 𝑛(𝜆,𝑤)
𝜕 log 𝑥

𝜕 log 𝑐(𝜆,𝑤)
𝜕 log𝜆

= (1 − CI) Frisch
EIS

(28)

Then, using the definitions of the marginal propensities to consume and earn:

MPC ≡ 𝜕𝑐(𝑎, 𝑥;𝑇)
𝜕𝑇

MPE ≡ −�̃�𝑥 ( 𝑓 (𝑛) + 𝑓 ′(𝑛)𝑛) 𝜕𝑛(𝑎, 𝑥;𝑇)
𝜕𝑇

Therefore, it holds that:

MPE
MPC

= −
�̃�𝑥 ( 𝑓 (𝑛) + 𝑓 ′(𝑛)𝑛) 𝜕𝑛(𝑎,𝑥;𝑇)

𝜕𝑇

𝜕𝑐(𝑎,𝑥;𝑇)
𝜕𝑇

= −
�̃�𝑥 ( 𝑓 (𝑛) + 𝑓 ′(𝑛)𝑛) 𝜕 log 𝑛(𝑎,𝑥;𝑇)

𝜕 log𝜆
𝜕 log𝜆
𝜕𝑇

𝑛

𝜕 log 𝑐(𝑎,𝑥;𝑇)
𝜕 log𝜆

𝜕 log𝜆
𝜕𝑇

𝑐

Using equation (28) and simplifying yields the equation to be proved

MPE
MPC

=

�̃�𝑥 𝑓 (𝑛)𝑛
(
1 + 𝑓 ′ (𝑛)𝑛

𝑓 (𝑛)

)
𝑐

Frisch
EIS

(1 − CI) (29)
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C. Computational Appendix

C.1. Steady State of the Household Block

The solution uses the endogenous grid method of Carroll (2006) and is based on Auclert et al.

(2021) and Auclert et al. (2023). The algorithm is adjusted to solve the household problem subject

to the equilibrium earnings function derived from the model of coordinated work schedules.

I set up a grid for the future level of asset 𝑎′ ∈ G𝑎 and approximate the expected derivative of

the value function tomorrow 𝑊 (𝑎′, 𝑥) ≡ E [𝑉𝑎 (𝑎′, 𝑥′) | 𝑥] starting from a guess that household

consumes a constant fraction of its cash on hand. I use the Euler equation 𝑊 (𝑎′, 𝑥) = 𝜆′ =

𝑈𝑐 (𝑎′, 𝑥) to recover 𝑐(𝑎(𝑎′), 𝑥) and 𝑛(𝑎(𝑎′), 𝑥) from the static first order conditions of the

problem. That is, combining the first order condition w.r.t. 𝑐 , 𝑎′, and the envelope condition

(equations 10, 12, and 13) yields:

𝛽(1 + 𝑟)𝑊 (𝑎′, 𝑥) = 𝛽(1 + 𝑟)E [𝑉𝑎 (𝑎′, 𝑥′) |𝑥] =
(
𝑐 − 𝜑𝛼

𝑛1+𝜈

1 + 𝜈

)−𝜎
= 𝑈𝑐 (𝑎′, 𝑥) (30)

Using the fact that we know 𝛽(1 + 𝑟)𝑊 (𝑎′, 𝑥) = 𝑈𝑐 (𝑎′, 𝑥), one can recover the optimal labor

supply from (11):

𝑛(𝑎(𝑎′), 𝑥) =
(
𝑈𝑐 (𝑎′, 𝑥) (1 − 𝜏𝑤)�̃�E[𝑛𝜌]

1
𝜌
−1

𝜑 (𝛼𝑈𝑐 (𝑎′, 𝑥) + (1 − 𝛼))

) 1
1−𝜌+𝜈

(31)

Then, from the first order condition with respect to consumption (10) and using the just calculated

optimal labor supply, one can recover the optimal consumption:

𝑐(𝑎(𝑎′), 𝑥) = 𝑈𝑐 (𝑎′, 𝑥)−
1
𝜎 + 𝜑𝛼

𝑛(𝑎′, 𝑥)1+𝜈

1 + 𝜈
(32)

The recovered policy functions 𝑐 and 𝑛 are defined on the endogenous grid for current assets

𝑎(𝑎′) ∉ G𝑎. I use linear interpolation to recover policy functions defined on the exogenous asset

grid - 𝑐(𝑎, 𝑥) and 𝑛(𝑎, 𝑥) - such that 𝑎 ∈ G𝑎. Linear interpolation uses the fact that writing the

budget constraint in the following fashion:

𝑎′(𝑎′, 𝑥) + 𝑐(𝑎′, 𝑥) − (1 − 𝜏𝑤)�̃�𝑥E[𝑛𝜌]
1
𝜌

(
𝑛(𝑎′, 𝑥)𝜌
𝜌E[𝑛𝜌] + 1 − 1

𝜌

)
− 𝑇 = (1 + 𝑟)𝑎(𝑎′) (33)

This equation implicitly defines an endogenous grid for current assets 𝑎(𝑎′), which is different

from the exogenous grid G𝑎. The iteration procedure requires that one updates 𝑉𝑎 (𝑎) and that

current assets 𝑎 are on the exogenous grid 𝑎 ∈ G𝑎. Therefore, using linear interpolation, we

look for current assets that lie on the exogenous grid G𝑎, and, at the same time, obtain the future
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level of assets 𝑎′(𝑎) now defined on the exogenous grid 𝑎 ∈ G𝑎. Once assets today are on the

exogenous grid 𝑎 ∈ G𝑎, we can recover assets tomorrow 𝑎′(𝑎, 𝑥) from the budget constraint:

𝑎′(𝑎, 𝑥) = (1 − 𝜏𝑤)�̃�𝑥E[𝑛𝜌]
1
𝜌

(
𝑛(𝑎, 𝑥)𝜌
𝜌E[𝑛𝜌] + 1 − 1

𝜌

)
+ 𝑇 + (1 + 𝑟)𝑎 − 𝑐(𝑎, 𝑥) (34)

Once we find the correct policy functions for the constrained agents as described in the subsection

below, the iteration step closes with an update of the derivative of the value function using the

envelope theorem 𝑉𝑎 (𝑎) = (1 + 𝑟)𝜆 = (1 + 𝑟)𝑈𝑐 using the policy function 𝑐(𝑎, 𝑥) and 𝑛(𝑎, 𝑥)

where 𝑎 ∈ G𝑎.

C.2. The Constrained Households

Some agents would like to choose 𝑎′(𝑎, 𝑥) < 0, which would violate the borrowing-constrained

𝑎′(𝑎, 𝑥) > 0. For those agents, I set 𝑎′(𝑎, 𝑥) |𝑏𝑐 = 0 and solve for their policy functions 𝑐(𝑎, 𝑥) |𝑏𝑐,

𝑛(𝑎, 𝑥) |𝑏𝑐 which maximize the following objective function

max
𝑐,𝑛

1
1 − 𝜎

(
𝑐 − 𝜑𝛼

𝑛1+𝜈

1 + 𝜈

)1−𝜎
− 𝜑(1 − 𝛼) 𝑛

1+𝜈

1 + 𝜈

s.t. 𝑐 = (1 − 𝜏𝑤)�̃�𝑥E[𝑛𝜌]
1
𝜌

(
𝑛𝜌

𝜌E[𝑛𝜌] + 1 − 1
𝜌

)
+ 𝑇 + (1 + 𝑟)𝑎

The first-order conditions of the static constrained optimization problem:(
𝑐 − 𝜑𝛼

𝑛1+𝜈

1 + 𝜈

)−𝜎
= 𝜆

𝜑𝑛𝜈
(
𝛼

(
𝑐 − 𝜑𝛼

𝑛1+𝜈

1 + 𝜈

)−𝜎
+ (1 − 𝛼)

)
= 𝜆(1 − 𝜏𝑤)�̃�𝑥E[𝑛𝜌]

1
𝜌
−1
𝑛𝜌−1

The problem is a system of 2 equations in 2 unknowns:

𝜑𝑛𝜈
(
𝛼

(
𝑐 − 𝜑𝛼

𝑛1+𝜈

1 + 𝜈

)−𝜎
+ (1 − 𝛼)

)
=

(
𝑐 − 𝜑𝛼

𝑛1+𝜈

1 + 𝜈

)−𝜎
(1 − 𝜏𝑤)�̃�𝑥E[𝑛𝜌]

1
𝜌
−1
𝑛𝜌−1

(1 − 𝜏𝑤)�̃�𝑥E[𝑛𝜌]
1
𝜌

(
𝑛𝜌

𝜌E[𝑛𝜌] + 1 − 1
𝜌

)
+ 𝑇 + (1 + 𝑟)𝑎 = 𝑐

I solve this system of equations using the algorithm of Auclert et al. (2023) because of its

computational efficiency. The algorithm needs to be adjusted to handle the non-linear earnings

properly; I provide the full algorithm description below.

The algorithm solves the budget constraint using Newton’s updates incorporating the first-order

conditions. The total derivative of the expenditure function takes into account the first-order

conditions. To make the function more linear, use the logarithm of marginal utility log𝑈𝑐 as an
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argument of the expenditure function.

The general structure of Newton’s method is as follows: Approximate a function 𝑓 (𝑥) to first

order at a point 𝑥∗

𝑓 (𝑥) ≈ 𝑓 (𝑥∗) + 𝑓 ′(𝑥∗) (𝑥 − 𝑥∗)

Then, in approximation, it holds that:

𝑥 ≈ 𝑥∗ + 𝑓 (𝑥) − 𝑓 (𝑥∗)
𝑓 ′(𝑥∗)

We want the target point 𝑥 to be the root of the function 𝑓 such that 𝑓 (𝑥) = 0, then:

𝑥 ≈ 𝑥∗ − 𝑓 (𝑥∗)
𝑓 ′(𝑥∗)

The approximation motivates the iteration procedure in Newton’s method.

𝑥 (𝑛+1) = 𝑥 (𝑛) − 𝑓 (𝑥𝑛)
𝑓 ′(𝑥𝑛)

Function 𝑓 is the budget constraint, and the argument 𝑥 = log𝑈𝑐 is equal to the logarithm of the

marginal utility. The budget constraint is evaluated using the policy functions 𝑐 = 𝑐(log𝑈𝑐) and

𝑛 = 𝑛(log𝑈𝑐), which are both functions of log𝑈𝑐.

𝑓 (log𝑈𝑐) = 𝑐 − (1 − 𝜏𝑤)�̃�𝑥E[𝑛𝜌]
1
𝜌

(
𝑛𝜌

𝜌E[𝑛𝜌] + 1 − 1
𝜌

)
− 𝑇

and the derivative of the expenditure function with respect to the log𝑈𝑐

𝑓 ′(log𝑈𝑐) =
𝜕 𝑓

𝜕 log𝑈𝑐

=
𝜕𝑐

𝜕 log𝑈𝑐

− (1 − 𝜏𝑤)�̃�𝑥E[𝑛𝜌]
1
𝜌
−1
𝑛𝜌−1 𝜕𝑛

𝜕 log𝑈𝑐

It follows that Newton’s iteration, in our case, is the following

log𝑈 (𝑛+1)
𝑐 = log𝑈 (𝑛)

𝑐 −
𝑐 − (1 − 𝜏𝑤)�̃�𝑥E[𝑛𝜌]

1
𝜌

(
𝑛𝜌

𝜌E[𝑛𝜌] + 1 − 1
𝜌

)
− 𝑇

𝜕𝑐(log𝑈𝑐)
𝜕 log𝑈𝑐

− (1 − 𝜏𝑤)�̃�𝑥E[𝑛𝜌]
1
𝜌
−1
𝑛𝜌−1 𝜕𝑛(log𝑈𝑐)

𝜕 log𝑈𝑐

(35)

Taking the first order condition w.r.t. labor and substituting out 𝜆 = 𝑈𝑐, one obtains

𝜑𝑛𝜈 (𝛼𝑈𝑐 + 1 − 𝛼) = 𝑈𝑐 (1 − 𝜏𝑤)�̃�𝑥E[𝑛𝜌]
1
𝜌
−1
𝑛𝜌−1

Taking logs, I get an implicit function

𝐻 = (1 − 𝜌 + 𝜈) log 𝑛 − log
(
(1 − 𝜏𝑤)�̃�𝑥E[𝑛𝜌]

1
𝜌
−1

)
+ log 𝜑 − log𝑈𝑐 + log (1 − 𝛼 + 𝛼𝑈𝑐)
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Applying an implicit function theorem to recover 𝜕𝑛
𝜕 log𝑈𝑐

one obtains.

𝐻log 𝑛 =
𝜕𝐻

𝜕 log 𝑛
= 1 − 𝜌 + 𝜈

𝐻log𝑈𝑐
=

𝜕𝐻

𝜕 log𝑈𝑐

= −1 + 𝜕 log (1 − 𝛼 + 𝛼𝑈𝑐)
𝜕𝑈𝑐

𝑈𝑐 = −1 + 𝛼𝑈𝑐

1 − 𝛼 + 𝛼𝑈𝑐

= − 1 − 𝛼

1 − 𝛼 + 𝛼𝑈𝑐

𝜕 log 𝑛
𝜕 log𝑈𝑐

= −
𝜕𝐻log𝑈𝑐

𝜕𝐻log 𝑛
=

1
1 − 𝜌 + 𝜈

1 − 𝛼

1 − 𝛼 + 𝛼𝑈𝑐

𝜕𝑛

𝜕 log𝑈𝑐

= 𝑛
𝜕 log 𝑛
𝜕 log𝑈𝑐

=
𝑛

1 − 𝜌 + 𝜈

1 − 𝛼

1 − 𝛼 + 𝛼𝑈𝑐

(36)

The derivative 𝜕𝑐
𝜕 log𝑈𝑐

can be recovered from the marginal utility function.

𝑈𝑐 =

(
𝑐 − 𝜑𝛼

𝑛1+𝜈

1 + 𝜈

)−𝜎
Taking logs, one obtains the following implicit function

𝐻 = log𝑈𝑐 + 𝜎 log
(
𝑐 − 𝜑𝛼

𝑛1+𝜈

1 + 𝜈

)
Using the same approach as before

𝐻log𝑈𝑐
=

𝜕𝐻

𝜕 log𝑈𝑐

= 1 − 𝜎

𝑐 − 𝜑𝛼 𝑛1+𝜈
1+𝜈

𝜑𝛼𝑛𝜈
𝜕𝑛

𝜕 log𝑈𝑐

𝐻𝑐 =
𝜕𝐻

𝜕𝑐
=

𝜎

𝑐 − 𝜑𝛼 𝑛1+𝜈
1+𝜈

𝜕𝑐

𝜕 log𝑈𝑐

= −
𝐻log𝑈𝑐

𝐻𝑐

= 𝜑𝛼𝑛𝜈
𝜕𝑛

𝜕 log𝑈𝑐

− 1
𝜎

(
𝑐 − 𝜑𝛼

𝑛1+𝜈

1 + 𝜈

)
= 𝜑𝛼𝑛𝜈

𝜕𝑛

𝜕 log𝑈𝑐

− 1
𝜎
𝑈

− 1
𝜎

𝑐 (37)

After providing an initial guess for the marginal utility, using, for example, the GHH utility case,

all that remains is to bring the iteration (35) to convergence using the partial derivatives (36)

and (37).

C.3. Elasticity of intertemporal substitution with GHH Plus Preferences

Note that the formula (37) provides a direct way to compute the elasticity of intertemporal

substitution for the GHH Plus preferences.

EIS = −𝜕 log 𝑐(𝜆, 𝑤)
𝜕 log𝜆

= −1
𝑐

𝜕𝑐

𝜕 log𝑈𝑐
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C.4. The Cost Minimization and the Equilibrium Wage

A representative monopolistically competitive intermediate good firm 𝑖 solves the following cost

minimization problem.

min
𝜇(𝑛,𝑥)

∫
𝑥∈𝐵𝑥

∫ ∞

0
𝑤(𝑛, 𝑥)𝑛𝜇𝑖 (𝑛, 𝑥)𝑑𝑛𝑑𝑥 s.t.

𝑧

(∫
𝑥∈𝐵𝑥

∫ ∞

0
𝑥𝜇𝑖 (𝑛, 𝑥)𝑛𝜌𝑑𝑛𝑑𝑥

) 1
𝜌
(∫

𝑥∈𝐵𝑥

∫ ∞

0
𝑥𝜇𝑖 (𝑛, 𝑥)𝑑𝑛𝑑𝑥

)1− 1
𝜌

− 𝐹 = 𝑦𝑡 (𝑖) (𝑚𝑐𝑖𝑡)

where 𝑚𝑐𝑖𝑡 is the Lagrange multiplier on the technological constraint and measures the marginal

cost of production.

L(𝜇𝑖 (𝑛, 𝑥);𝑚𝑐𝑖𝑡) =
∫
𝑥∈𝐵𝑥

∫ ∞

0
𝑤(𝑛, 𝑥)𝑛𝜇𝑖 (𝑛, 𝑥)𝑑𝑛𝑑𝑥

+𝑚𝑐𝑖𝑡

(
𝑦𝑡 (𝑖) − 𝑧

(∫
𝑥∈𝐵𝑥

∫ ∞

0
𝑥𝜇𝑖 (𝑛, 𝑥)𝑛𝜌𝑑𝑛𝑑𝑥

) 1
𝜌
(∫

𝑥∈𝐵𝑥

∫ ∞

0
𝑥𝜇𝑖 (𝑛, 𝑥)𝑑𝑛𝑑𝑥

)1− 1
𝜌

+ 𝐹

)
The first-order condition of the Lagrangian defines the optimal wage function.

𝜕L
𝜕𝜇𝑖 (𝑛, 𝑥) : 𝑤(𝑛, 𝑥)𝑛 = 𝑚𝑐𝑖𝑡𝑧

(∫
𝑥∈𝐵𝑥

∫ ∞

0
𝑛𝜌

𝑥𝜇𝑖 (𝑛, 𝑥)∫
𝑥∈𝐵𝑥

∫ ∞
0 𝑥𝜇𝑖 (𝑛, 𝑥)𝑑𝑛𝑑𝑥

𝑑𝑛𝑑𝑥

) 1
𝜌


𝑛𝜌

𝜌
∫
𝑥∈𝐵𝑥

∫ ∞
0 𝑛𝜌

𝑥𝜇𝑖 (𝑛,𝑥)∫
𝑥∈𝐵𝑥

∫ ∞
0 𝑥𝜇𝑖 (𝑛,𝑥)𝑑𝑛𝑑𝑥 𝑑𝑛𝑑𝑥

+ 1 − 1
𝜌


Since the equilibrium is symmetric, all firms choose the same mass of workers of each type

to hire 𝜇𝑖 (𝑛, 𝑥) = 𝜇 𝑗 (𝑛, 𝑥) ≡ 𝜇(𝑛, 𝑥) for all 𝑖, 𝑗 and 𝑛, 𝑥. Therefore, integrating over all firms∫
𝜇𝑖 (𝑛, 𝑥)𝑑𝑖 = 𝜇(𝑛, 𝑥). Moreover, we know that the total mass of agents is unity. Thus, in equilib-

rium,
∫
𝑥∈𝐵𝑥

∫ ∞
0 𝜇𝑖 (𝑛, 𝑥)𝑑𝑛𝑑𝑥 = 1. The masses 𝜇𝑖 (𝑛, 𝑥) need to be consistent with the distribution

of agents over (𝑛, 𝑥) from the household block. In the model, the expected productivity equals

one: E[𝑥] = 1. Therefore, in equilibrium
∫
𝑥∈𝐵𝑥

∫ ∞
0 𝑥𝜇𝑖 (𝑛, 𝑥)𝑑𝑛𝑑𝑥 = 1, allowing me to write an

equilibrium wage.

𝑤(𝑛, 𝑥)𝑛 = 𝑚𝑐𝑡𝑧

(∫
𝑥∈𝐵𝑥

∫ ∞

0
𝑥𝑛𝜌 𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥

) 1
𝜌

[
𝑛𝜌

𝜌
∫
𝑥∈𝐵𝑥

∫ ∞
0 𝑥𝑛𝜌 𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥

+ 1 − 1
𝜌

]
Since 𝜇(𝑥, 𝑛) integrates to unity, denote E[𝑛𝜌] ≡

∫
𝑥∈𝐵𝑥

∫ ∞
0 𝑥𝑛𝜌 𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥. Furthermore,

denote �̃� = 𝑚𝑐 · 𝑧 that is common across all workers. Therefore, the equilibrium wage function

takes the following form.

𝑤(𝑛, 𝑥) = �̃�𝑥E [𝑛𝜌]
1
𝜌

(
𝑛𝜌−1

𝜌E [𝑛𝜌] +
1
𝑛

(
1 − 1

𝜌

))
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C.5. The New Keynesian Philips Curve

I derive the New Keynesian Philips Curve as in Auclert et al. (2023). The firm maximizes the

present value of its profits using the ex-ante real rate of return on bonds 𝑟𝑒𝑡 as its discount rate.

The derivation assumes certainty equivalence, which holds in transitions after an MIT shock,

and thus, I omit the expectations operator. The firm chooses its price 𝑃𝑡 subject to the quadratic

price adjustment cost proportional to its production and defined in the log domain.

Using the result from Appendix C.7 that the total cost is equal to the product of the wage shifter

term �̃� and aggregate effective hours 𝐿

𝑇𝐶 =

∫
𝑥∈𝐵𝑥

∫ ∞

0
𝑤(𝑛, 𝑥)𝑛𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥 = 𝑚𝑐𝑡𝑧E[𝑛𝜌]

1
𝜌 ≡ �̃�𝐿

the total cost depends linearly on the marginal cost 𝑚𝑐𝑡 =
�̃�𝑡

𝑧𝑡
.

𝑇𝐶 = �̃�𝐿 =
�̃�

𝑧
𝑧𝐿 = 𝑚𝑐𝑡𝑌𝑡

Therefore, defining the objective function in real terms, in every period 𝑡, the firm solves the

following maximization problem by choosing the optimal price level 𝑃∗
𝑡 .

max
𝑃∗
𝑡

∞∑︁
𝑠=0

(
1

1 + 𝑟𝑒𝑡

) 𝑠
𝑃𝑡

𝑃𝑡+𝑠
𝑌𝑡+𝑠

[
𝑃∗
𝑡+𝑠

(
𝑃∗
𝑡+𝑠

𝑃𝑡+𝑠

)−𝜀𝑝
− 𝑃∗

𝑡+𝑠𝑚𝑐𝑡+𝑠

(
𝑃∗
𝑡

𝑃∗
𝑡+𝑠

)−𝜀𝑝
− 𝜓

2
(
log

(
1 + 𝜋∗𝑡

) )2
𝑃𝑡+𝑠

]
𝑃 denotes the aggregate price level, and the firm-level inflation rate is 𝜋∗𝑡 ≡ 𝑃∗

𝑡−𝑃∗
𝑡−1

𝑃∗
𝑡−1

. The per-

period profits inside the square brackets are in nominal terms. The 𝑃𝑡

𝑃𝑡+𝑠
transforms the objective

function from nominal to real values. The first-order condition of this problem is the following.

𝜕

𝜕𝑃∗
𝑡

: (1−𝜀𝑝)
(
𝑃∗
𝑡

𝑃𝑡

)−𝜀𝑝
𝑌𝑡+𝜀𝑝𝑚𝑐𝑡

(
𝑃∗
𝑡

𝑃𝑡

)−𝜀𝑝
𝑌𝑡−𝜓 log (1 + 𝜋𝑡)

𝑃𝑡

𝑃∗
𝑡

𝑌𝑡+
𝜓

1 + 𝑟𝑒𝑡
log (1 + 𝜋𝑡+1)

𝑃𝑡

𝑃∗
𝑡

𝑌𝑡+1 = 0

Assuming a symmetric equilibrium where all firms set the same price 𝑃𝑡 = 𝑃∗
𝑡 (thus 𝜋𝑡 = 𝜋∗𝑡 ),

the first-order condition simplifies to.

𝜀𝑝

𝜓
𝑌𝑡

(
𝑚𝑐𝑡 −

𝜀𝑝 − 1
𝜀𝑝

)
+ 𝜓

1 + 𝑟𝑒𝑡
log (1 + 𝜋𝑡+1)𝑌𝑡+1 = 𝜓 log (1 + 𝜋𝑡)𝑌𝑡

Rearranging terms and defining the slope of the Philips curve as 𝜅𝑝 ≡
𝜀𝑝
𝜓

.

log (1 + 𝜋𝑡) = 𝜅𝑝

(
𝑚𝑐𝑡 −

𝜀𝑝 − 1
𝜀𝑝

)
+ 1

1 + 𝑟𝑒𝑡

𝑌𝑡+1
𝑌𝑡

log (1 + 𝜋𝑡+1)
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Steady-state MPC

The model is quarterly, and the steady-state calibration targets MPC = 0.25 broadly consistent

with empirical evidence in Johnson et al. (2006) and Fagereng et al. (2021) among many others.

As in Auclert et al. (2023), I use discount factor heterogeneity to target aggregate savings

and MPCs consistent with empirical evidence. A sufficiently high discount factor ensures that

households generate savings consistent with the data. A sufficiently low smaller discount factor

yields the steady-state MPC of 0.25.

In the steady state, I calculate the MPC and the MPE using the finite differences method to

approximate the derivatives. In particular, for each individual characterized by a pair of states

(𝑎𝑖, 𝑥), I calculate his MPC and MPE in the following fashion:

MPC(𝑙, 𝑎, 𝑥) = 𝑐(𝑎𝑖+1, 𝑥) − 𝑐(𝑎𝑖−1, 𝑥)
(1 + 𝑟) (𝑎𝑖+1 − 𝑎𝑖−1)

MPE(𝑙, 𝑎, 𝑥) = 𝑌 𝑙𝑎𝑏 (𝑎𝑖+1, 𝑥) − 𝑌 𝑙𝑎𝑏 (𝑎𝑖−1, 𝑥)
(1 + 𝑟) (𝑎𝑖+1 − 𝑎𝑖−1)

For individuals at the maximum gridpoint, I take a finite difference between point 𝑛𝑎 and 𝑛𝑎 − 1.

For households that are borrowing-constrained, back out the MPE from an analytical relationship

derived in equation 5 in the main text.

MPE(𝑎, 𝑥)
MPC(𝑎, 𝑥) =

𝑌 𝑙𝑎𝑏 (𝑎, 𝑥) (1 + 𝜖𝑤,𝑛 (𝑎, 𝑥))
𝑐(𝑎, 𝑥)

Frisch
EIS(𝑎, 𝑥)

(
1 − CI(𝑎, 𝑥)

)
The formula yields a ratio of the MPE and MPC. Combining the formula above with the

differentiated budget constraint: MPC+MPE = 1 yields the MPC and MPE for each borrowing-

constrained agent. Most variables needed to calculate the MPE-MPC ratio are available from

the solution of the household problem.

The labor earnings and consumption for the borrowing-constrained household are readily avail-

able from the solution of the household problem. The Frisch elasticity to idiosyncratic shocks

equals 1
1−𝜌+𝜈 . One can calculate the elasticity of intertemporal substitution from the formula 37.

EIS =
𝜕 log 𝑐
𝜕 log𝑈𝑐

=
1
𝑐

(
𝜑𝛼𝑛𝜈

𝜕𝑛

𝜕 log𝑈𝑐

− 1
𝜎
𝑈

− 1
𝜎

𝑐

)
The complementarity index is defined in the main text as CI = 𝛼𝑈𝑐

1−𝛼+𝛼𝑈𝑐
. The remaining object

that I need to derive is the wage elasticity to hours worked 𝜖𝑤,𝑛 =
𝑓 ′ (𝑛)𝑛
𝑓 (𝑛) . 𝑓 (𝑛) is the wage

function. In the quantitative model, I define it in the following fashion.

𝑓 (𝑛) = (1 − 𝜏𝑤)�̃�𝑥𝐿
(
𝑛𝜌−1

𝜌𝐿𝜌
+ 1
𝑛

(
1 − 1

𝜌

))
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Differentiating with respect to hours yields a formula for the elasticity 𝜖𝑤,𝑛 of wages to hours

worked.

𝑓 ′(𝑛) = (1 − 𝜏𝑤)�̃�𝑥𝐿
(
𝜌 − 1
𝜌

𝑛𝜌−2

𝐿𝜌
− 1
𝑛2

(
1 − 1

𝜌

))
=

(
1 − 1

𝜌

)
(1 − 𝜏𝑤)�̃�𝑥𝐿 1

𝑛2

(( 𝑛
𝐿

) 𝜌
− 1

)
𝜖𝑤,𝑛 =

(
1 − 1

𝜌

) 1
𝑛
𝐿

(
𝑛𝜌

𝐿𝜌 − 1
)

𝐿

(
𝑛𝜌−1

𝜌𝐿𝜌 + 1
𝑛

(
1 − 1

𝜌

)) =

(
1 − 1

𝜌

) ( (
𝑛
𝐿

) 𝜌−1 − 𝐿
𝑛

)
1
𝜌

(
𝑛
𝐿

) 𝜌−1 + 𝐿
𝑛

(
1 − 1

𝜌

)
1 + 𝜖𝑤,𝑛 =

(
𝑛
𝐿

) 𝜌−1

𝐿

(
𝑛𝜌−1

𝜌𝐿𝜌 + 1
𝑛

(
1 − 1

𝜌

))
The last formula for 1 + 𝜖𝑤,𝑛 corresponds directly to the implementation in the code.

MPE in the model and in the data

The model is quarterly, as in Auclert et al. (2023), but almost all empirical evidence about

the MPEs is at annual frequencies. Therefore, to match the data, it is necessary to simulate

a transition path of individual household choices in response to a one-time wealth shock. In

particular, I calculate the model MPE as a mean partial equilibrium cumulative response of

labor earnings over the 4-quarter horizon to a small transfer shock.

MPE =

3∑︁
𝑠=0

𝜕𝑌 𝑙𝑎𝑏𝑜𝑟
𝑠

𝜕𝑇0

Moreover, it is necessary to determine what MPE values are compatible with empirical evi-

dence. Auclert et al. (2023) argue that the direct MPE measure from lottery winnings in Swedish

administrative data in Cesarini et al. (2017) was the best available evidence when their paper

was published. Cesarini et al. (2017) find an annual average MPE of 0.01. On the other hand,

Imbens et al. (2001) study the impact of 20-year-long annuity payments on labor supply. The

MPE in Imbens et al. (2001) measures a change in labor earnings per annual payment from a

20-year annuity. Auclert et al. (2023) note that in the permanent income model with unit dis-

count factor and gross interest rate, receiving an annuity over 20 years is equivalent to receiving

the whole amount immediately. Thus, the model MPE equals 1/20 of the Imbens et al. (2001)

MPE. However, the more borrowing-constrained an agent is, the more he will use the one-time

payment to reduce his hours in the same period. Thus, the ratio of the two MPE measures is

model-dependent and reflects the prevalence of borrowing constraints. In the baseline model
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of Auclert et al. (2023), the ratio of the Imbens et al. (2001) MPE to the model MPE is 3.6.

Combined with the maximum MPE estimate of 0.122 in Imbens et al. (2001), Auclert et al.

(2023) consider MPE values between 0 and 0.122/3.6 ≈ 0.04 an acceptable range.

The most recent estimates of the MPE based on high-quality administrative data from the US in

Golosov et al. (2023) are within the target range put forward by Auclert et al. (2023). Golosov

et al. (2023) find an annual average MPE = 0.023 at a household level. This value is very close

to the middle of the original interval in Auclert et al. (2023).

Moreover, I redo the calculation of the MPE ratio for the 20-year annuity and one-time winning

in Auclert et al. (2023) for the model with coordination in hours worked. For separable prefer-

ences, hours as gross complements in production with 𝜌 = −0.44, the ratio of the Imbens et al.

(2001) and Auclert et al. (2023) MPEs is 3.4, little changed from the baseline model. Therefore,

I use the original MPE interval from Auclert et al. (2023).

𝛼

𝜌 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1 0.55 0.49 0.43 0.38 0.33 0.28 0.23 0.17 0.12 0.06 0.0

0.5 0.48 0.42 0.38 0.33 0.28 0.23 0.19 0.14 0.09 0.05 0.0

0.02 0.43 0.37 0.32 0.28 0.24 0.20 0.16 0.12 0.08 0.04 0.0

-0.44 0.38 0.33 0.29 0.25 0.21 0.18 0.14 0.10 0.07 0.03 0.0

-1.962 0.28 0.24 0.21 0.18 0.15 0.12 0.10 0.07 0.05 0.02 0.0

-7 0.15 0.13 0.11 0.10 0.08 0.06 0.05 0.03 0.02 0.01 0.0

Table 3: Golosov et al. (2023) MPE in the model

Additional considerations. A prominent feature of the labor earnings responses to unexpected

lottery winnings is their high persistence. Very high MPEs out of changes in unearned income

estimated by Golosov et al. (2023) suggest that the baseline one-year MPE measure does not

fully capture the nature of labor supply adjustment. In particular, the labor earnings responses in

Cesarini et al. (2017) and Golosov et al. (2023) are moderate compared to the size of the wealth

shock. However, the response is persistent and builds up to a substantial fraction of the total

lottery size over the lifetime. To further compare the model’s performance with the estimates in

Golosov et al. (2023), I calculate the lifetime MPE as in Golosov et al. (2023). In particular, I
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calculate the following measure:

MPE𝐺𝑜𝑙𝑜𝑠𝑜𝑣 =

𝜕

(
20∑
ℎ=0

𝑌 𝑙𝑎𝑏
𝑡+ℎ

)
𝜕

(
20∑
ℎ=0

(1 + 𝑟)𝑎𝑡+ℎ − 𝑎𝑡+ℎ+1

)
In other words, I calculate transitional dynamics to a one-time wealth shock over a 5-year horizon

and calculate the ratio of the average response of labor earnings to the average change in an

unearned income. I use the fact that the response of (1 + 𝑟)𝑎𝑡 in the initial period is equal to

the 𝜖-sized wealth shock. The wealth shock is idiosyncratic, and I keep the interest rate at its

steady-state level 𝑟.

C.6. Aggregation

The labor market encompasses submarkets for worker types (𝑛, 𝑥). Therefore, the market clearing

condition on each market requires that the demanded measures 𝜇(𝑛, 𝑥) are equal to the measure

of household supplying this combination of hours and productivity.

∀𝑛,𝑥 𝜇(𝑛, 𝑥) =
∫
𝐵𝑎

𝐷 (𝑎, 𝑥)1 {𝑛(𝑎, 𝑥) = 𝑛} 𝑑𝑎

The model features a unit mass of workers, and both sides of the equation integrate to 1.∫
𝑥∈𝐵𝑥

∫ ∞

0
𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥 =

∫
𝑥∈𝐵𝑥

∫
𝑎∈𝐵𝑎

𝐷 (𝑎, 𝑥)
(∫ ∞

0
1 {𝑛(𝑎, 𝑥) = 𝑛} 𝑑𝑛

)
𝑑𝑎𝑑𝑥 = 1

Integration over the entire state spaceA×X must also yield a unit mass of households. Therefore,

integration over hours worked 𝑛, and 𝑥 equals the integration over 𝑎 and 𝑥.∫
𝑥∈𝐵𝑥

∫ ∞

0
𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥 =

∫
𝑥∈𝐵𝑥

∫
𝑎∈𝐵𝑎

𝐷 (𝑎, 𝑥)𝑑𝑎𝑑𝑥 = 1

In the next steps, I provide a discrete approximation to the labor market variables from the main

text. First, calculate the expected worker productivity over the measure of workers 𝜇(𝑛, 𝑥).

E[𝑥] ≡
∫
𝑥∈𝐵𝑥

∫ ∞

0
𝑥𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥 =

∫
𝑥∈𝐵𝑥

∫
𝑎∈𝐵𝑎

𝑥𝐷 (𝑎, 𝑥)𝑑𝑎𝑑𝑥 = 1 (38)

Calculate an analogous integral for hours 𝑛𝜌.∫
𝑥∈𝐵𝑥

∫ ∞

0
𝑥𝑛𝜌𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥 =

∫
𝑥∈𝐵𝑥

∫
𝑎∈𝐵𝑎

𝑥𝑛(𝑎, 𝑥)𝜌𝐷 (𝑎, 𝑥)𝑑𝑎𝑑𝑥 (39)

Introduce a notation for the expected efficiency hours.

E𝑥 [𝑛𝜌] ≡
∫
𝑥∈𝐵𝑥

∫
𝑎∈𝐵𝑎

𝑛(𝑎, 𝑥)𝜌 𝑥𝐷 (𝑎, 𝑥)∫
𝑥∈𝐵𝑥

∫
𝑎∈𝐵𝑎

𝑥𝐷 (𝑎, 𝑥)𝑑𝑎𝑑𝑥
𝑑𝑎𝑑𝑥 (40)
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Aggregation requires the approximation of the integrals from the main text. I approximate the

aggregate distribution on the discrete grid for assets G𝑎 and for the idiosyncratic income states

G𝑥 . The distribution affects the labor market where firms optimized over worker masses 𝜇𝑖 (𝑛, 𝑥)

(and 𝜇𝑖 (𝑛, 𝑥) = 𝜇(𝑛, 𝑥) due to symmetry). Approximate the integral over the idiosyncratic state

𝑥 using a discretized grid G𝑥 .∫
𝑥∈𝐵𝑥

∫ ∞

0
𝑥𝑛𝜌𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥 ≈

∑︁
𝑥∈G𝑥

∫ ∞

0
𝑥𝑛𝜌𝜇(𝑛, 𝑥)𝑑𝑛 (41)

The total mass of agents is unity regardless of whether we sum over masses of agents working a

specific number of hours or having a specific amount of assets.∑︁
𝑥∈G𝑥

∫ ∞

0
𝜇(𝑛, 𝑥)𝑑𝑛 = 1 ≈

∑︁
𝑥∈G𝑥

∑︁
𝑎∈G𝑎

𝐷 (𝑎, 𝑥) (42)

Similarly, use that integration over assets and hours are equivalent and approximate to obtain a

fraction of agents at the idiosyncratic state 𝑥.∫ ∞

0
𝜇(𝑛, 𝑥)𝑑𝑛 =

∫ ∞

0
𝜇(𝑎, 𝑥)𝑑𝑎 ≈

∑︁
𝑎∈G𝑎

𝐷 (𝑎, 𝑥) ≡ 𝐷 (𝑥) (43)

The expectation of the income state in the model is equal to unity, such that:

1 = E[𝑥] ≈
∑︁
𝑥∈G𝑥

𝑥𝐷 (𝑥) (44)

Using these results, one can derive optimal hours 𝐿 as a function of assets and income states.

𝐿 = E[𝑛𝜌]
1
𝜌 =

(∫
𝑥∈𝐵𝑥

∫ ∞

0
𝑥𝜇(𝑛, 𝑥)𝑛𝜌𝑑𝑛𝑑𝑥

) 1
𝜌
(∫

𝑥∈𝐵𝑥

∫ ∞

0
𝑥𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥

)1− 1
𝜌

≈
( ∑︁
𝑥∈G𝑥

∫ ∞

0
𝑥𝑛𝜌

𝜇(𝑛, 𝑥)∑
𝑥∈G𝑥

∫ ∞
0 𝑥𝜇(𝑛, 𝑥)𝑑𝑛

𝑑𝑛

) 1
𝜌
( ∑︁
𝑥∈G𝑥

∫ ∞

0
𝑥𝜇(𝑛, 𝑥)𝑑𝑛

)
(41)
≈

( ∑︁
𝑥∈G𝑥

𝑥

∫ ∞

0
𝑛𝜌

𝜇(𝑛, 𝑥)∑
𝑥∈G𝑥 𝑥

∑
𝑎∈G𝑎 𝐷 (𝑎, 𝑥) 𝑑𝑛

) 1
𝜌
( ∑︁
𝑥∈G𝑥

𝑥
∑︁
𝑎∈G𝑎

𝐷 (𝑎, 𝑥)
)

(43)
=

( ∑︁
𝑥∈G𝑥

𝑥

∫ ∞

0
𝑛𝜌𝜇(𝑛, 𝑥)𝑑𝑛

) 1
𝜌
( ∑︁
𝑥∈G𝑥

𝑥𝐷 (𝑥)
)

(44)
≈

( ∑︁
𝑥∈G𝑥

𝑥

∫ ∞

0
𝑛𝜌𝜇(𝑛, 𝑥)𝑑𝑛

) 1
𝜌

≈
( ∑︁
𝑥∈G𝑥

∑︁
𝑎∈G𝑎

𝑥𝑛(𝑎, 𝑥)𝜌𝐷 (𝑎, 𝑥)
) 1

𝜌

Using this approximation, one recovers the aggregate labor input (optimal hours) 𝐿 and, by

extension, the total production 𝑌 . The total firm wage bill is also a function of 𝐿.
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C.7. Total wage bill

First, using the definition of the wage bill
∫
𝑥∈𝐵𝑥

∫ ∞
0 𝑤(𝑛, 𝑥)𝑛𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥 and the optimal wage

schedule 𝑤(𝑛, 𝑥) = �̃�𝑥E[𝑛𝜌]
1
𝜌

[
1
𝜌

𝑛𝜌−1

E[𝑛𝜌] +
1
𝑛

(
1 − 1

𝜌

)]
, one derives the following.∫

𝑥∈𝐵𝑥

∫ ∞

0
𝑤(𝑛, 𝑥)𝑛𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥 =

∫
𝑥∈𝐵𝑥

∫ ∞

0
�̃�𝑥E[𝑛𝜌]

1
𝜌

(
𝑛𝜌

𝜌E[𝑛𝜌] + 1 − 1
𝜌

)
𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥 =

�̃�E[𝑛𝜌]
1
𝜌

(
1

𝜌E[𝑛𝜌]

∫
𝑥∈𝐵𝑥

∫ ∞

0
𝑥𝑛𝜌𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥 + 1 − 1

𝜌

)
Using the definition of the expectation term E[𝑛𝜌] ≡

∫
𝑥∈𝐵𝑥

∫ ∞
0 𝑥𝑛𝜌

𝜇(𝑛,𝑥)∫
𝑥∈𝐵𝑥

∫ ∞
0 𝑥𝜇(𝑛,𝑥)𝑑𝑛𝑑𝑥 𝑑𝑛𝑑𝑥 from

the main text, and that E[𝑥] =
∫
𝑥∈𝐵𝑥

∫ ∞
0 𝑥𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥 = 1, the total wage bill can be expressed

in terms of �̃� and 𝐿. ∫
𝑥∈𝐵𝑥

∫ ∞

0
𝑤(𝑛, 𝑥)𝑛𝜇(𝑛, 𝑥)𝑑𝑛𝑑𝑥 = �̃�E[𝑛𝜌]

1
𝜌 = �̃�𝐿

Thus, one can calculate the total wage bill using the expression for 𝐿 from above. That is.

�̃�𝐿 ≈ �̃�

( ∑︁
𝑥∈G𝑥

∑︁
𝑎∈G𝑎

𝑥𝑛(𝑎, 𝑥)𝜌𝐷 (𝑎, 𝑥)
) 1

𝜌

C.8. Variance of log idiosyncratic productivity

𝛼

𝜌 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0.95 0.85 0.80 0.76 0.73 0.70 0.68 0.66 0.64 0.63 0.61

0.5 0.95 0.86 0.81 0.77 0.74 0.72 0.70 0.68 0.66 0.64 0.63

0.02 0.94 0.87 0.82 0.79 0.76 0.73 0.71 0.69 0.67 0.66 0.65

-0.44 0.94 0.87 0.83 0.80 0.77 0.74 0.72 0.70 0.69 0.67 0.66

-1.962 0.93 0.89 0.85 0.82 0.80 0.77 0.76 0.74 0.72 0.71 0.70

-7 0.93 0.90 0.88 0.86 0.84 0.83 0.82 0.80 0.79 0.78 0.77

Table 4: 𝜎log 𝑥

This section reports the calibrated value of the log idiosyncratic productivity term log 𝑥. For

separable preferences 𝛼 = 0, the wage penalties incurred by part-time workers more than offset a

higher concentration of hours worked and a lower standard deviation of log idiosyncratic income
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terms 𝜎log 𝑥 is required to match the empirical variance of log labor earnings.

For non-separable preferences, the choice of hours depends more on productivity, and there are

relatively more workers working high hours (see Figure 5). The impact of more concentrated

hours prevails, and a higher standard deviation of log 𝑥 is required to match the empirical

variance of log labor earnings.

I follow Auclert et al. (2023) and do not separately model the transitory and persistent shock

components, contrary to Krueger et al. (2016). For comparison, the corresponding estimate of

𝜎log 𝑥 in Krueger et al. (2016) derives from the following formula.

𝜎log 𝑥 =

√︄
𝜎2
𝜂

1 − 𝜙2 + 𝜎2
𝜖

Krueger et al. (2016) estimate the persistence of the permanent shock component 𝜙 = 0.9695,

variance of the persistent shock 𝜎2
𝜂 = 0.0384, and variance of the transitory shock 𝜎2

𝜖 = 0.0522.

Substituting into the formula yields 𝜎log 𝑥 = 0.8315.

C.9. Negative labor earnings in the model of coordination

𝛼

𝜌 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00 0.0e+00

0.5 6.5e-05 1.3e-05 3.9e-06 1.2e-06 3.7e-07 1.1e-07 3.7e-08 6.7e-08 6.1e-08 6.0e-08 6.0e-08

0.02 2.1e-04 7.2e-05 3.1e-05 1.4e-05 7.6e-06 4.6e-06 3.3e-06 3.2e-06 1.8e-05 1.8e-05 1.8e-05

-0.44 3.1e-04 1.3e-04 6.4e-05 3.4e-05 2.0e-05 2.7e-05 2.3e-05 2.1e-05 2.1e-05 2.0e-05 1.8e-05

-1.962 3.8e-04 2.1e-04 1.2e-04 8.4e-05 6.0e-05 5.3e-05 1.5e-04 1.5e-04 1.4e-04 1.4e-04 1.4e-04

-7 1.9e-04 1.2e-04 7.4e-05 4.7e-05 4.6e-05 4.2e-05 1.5e-04 1.4e-04 1.4e-04 1.4e-04 1.4e-04

Table 5: Fraction of households reporting negative labor earnings

If optimal hours 𝐿 are positive and 𝜌 < 1, labor earnings become negative for sufficiently low

hours.

lim
𝑛−→0

𝑤(𝑛)𝑛 = �̃�𝑥E𝑥,𝑙 [𝑛𝜌]
1
𝜌

(
lim
𝑛−→0

𝑛𝜌

𝜌E𝑥,𝑙 [𝑛𝜌]
+ 1 − 1

𝜌

)
< 0

In the model with coordination, choosing 𝑛 = 0 has a severe adverse impact on firm production,

and the equilibrium wage is negative. Therefore, in contrast to the standard model with perfectly

substitutable hours, 𝑛 = 0 cannot be interpreted as non-participation.

Table 5 reports the fraction of households with negative labor earnings for each model parametriza-

tion. The share of households with negative labor earnings increases with the degree of coor-

42



dination of hours worked in production and is relatively insensitive to preferences. The highest

reported share is for separable preferences 𝛼 = 0, and 𝜌 = −1.962: around 3.8‰, a negligible

fraction of households.

C.10. Distribution of hours worked in the model and the data

Data. I calculate the distribution of hours worked in the data using the usual hours worked

variable (uhrswork1) from the CPS Outgoing Rotation Group. The sample includes working-

age women and men between 25 and 64 years old. Otherwise, the sample selection criteria are

the same as in the baseline sample of Bick et al. (2022). I focus on individuals holding a single

job, not enrolled in school, not self-employed, reporting positive earnings, and earning more

than half a federal minimum wage. I discard observations with imputed or missing hours worked

or earnings. I calculate group-specific mean usual weekly hours worked using CPS weights

wtfinl.

Model. To translate the hours’ distribution in the model into the data, I assume that the model

mean hours correspond to the mean hours in the data. More concretely, in the model, I calculate

the following object:

𝑁 =

∫
𝑥∈𝐵𝑥

∫
𝑎∈𝐵𝑎

𝑛(𝑎, 𝑥)𝐷 (𝑎, 𝑥)

𝑁 typically takes values around 1, and I assume that 𝑁 corresponds to the mean usual hours

worked at the main job in CPS: 40.72 hours a week. Based on this assumption, for each point on

the state space, I calculate hours worked 𝑛𝑒𝑚𝑝 =
𝑛𝑚𝑜𝑑𝑒𝑙

𝑁
· 40.72. Next, I assign individuals to bins

as in Bick et al. (2022). I calculate the probability masses of agents within each bin and create

histograms as in Figure 4.

C.11. Steady-state hours with GHH plus preferences

Figure 5 shows that introducing coordination of hours worked in production leads to a distribution

of hours worked more concentrated around the mean. The effect is present regardless of the utility

function assumed but tends to be stronger for low 𝛼 calibrations, for example, for separable

preferences.

C.12. Coordination and wealth distribution

Higher coordination of hours worked in production discourages households from working high

hours. As a result, the wealth distribution becomes more equal with a smaller fraction of wealth
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held by the top 5% (see Figure 6).
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Figure 5: Steady-state distribution of hours worked for different values of 𝛼
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Figure 6: Hours’ coordination and the steady state wealth distribution with separable preferences
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Figure 7: Hours’ coordination and the steady state wealth distribution with GHH preferences

45


	Introduction
	The MPC-MPE relationship with non-linear labor earnings
	HANK Model with the Hours' Coordination in Production
	The Economic Environment
	Coordination and Hours Worked

	Calibration
	The HANK Trilemma with the Coordination of Hours Worked
	Conclusion
	Labor supply elasticities
	Idiosyncratic Frisch elasticity of labor supply
	Labor supply elasticity to aggregate shocks

	MPCs, MPEs, and coordination in hours
	Proof of Lemma 1
	Proof of Proposition 1

	Computational Appendix
	Steady State of the Household Block
	The Constrained Households
	Elasticity of intertemporal substitution with GHH Plus Preferences
	The Cost Minimization and the Equilibrium Wage
	The New Keynesian Philips Curve
	Aggregation
	Total wage bill
	Variance of log idiosyncratic productivity
	Negative labor earnings in the model of coordination
	Distribution of hours worked in the model and the data
	Steady-state hours with GHH plus preferences
	Coordination and wealth distribution


