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Abstract

I propose a mathematically tractable model to study the optimal compensation scheme in organizations

with arbitrary interpersonal networks, in which agents connected in a network help neighbors and work

collectively to produce a team’s output, and payment is an equity share linked to the position in the

network. The optimal compensation is shaped by: (a) “incentivizing the peripheral” mechanism: agents

with a smaller (degree) centrality should be paid higher since they receive relatively less help; and (b)

“incentivizing the central” mechanism: agents with a larger centrality should be paid higher to help others

more. Due to these two conflicting mechanisms, the relationship between centrality and optimal pay may

not be monotonic. When the externality of help is not pronounced, all agents should enjoy the same pay,

as in a flat organization. I provide a necessary condition for monotonically increasing relationships and

rule out monotonically decreasing relationships. I verify the theoretical predictions using numerical and

empirical analyses.
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1 Introduction

The design of an optimal compensation scheme in an organization is a central research question in orga-

nizational economics. However, the existent literature is almost silent on this issue when considering complex

interpersonal social networks that allow for multiple interactions and spillovers among connected agents. One

of the most pressing reasons is that due to the complexity and arbitrariness of social networks, it is technically

challenging to establish a mathematically tractable model to analyze this issue. In this paper, I provide the first

tractable framework to investigate the relationship between the structure of social networks in an organization

and its optimal compensation scheme, filling the gap in the literature.

In particular, as argued in Shi (2024) (European Economic Review), the structure of the social network

within an organization is crucial for its performance, because network neighbors can help one another to create

payoff spillovers.1 In this paper, I ask how to design the optimal compensation scheme in which the pay of

each agent is an equity share that may be linked to the position in the network, which provides a situation

for strategic interactions among connected agents. To meet this end, I follow and extend the model setup of

Shi (2024), but focus on providing theoretical insights on network-based optimal compensation schemes and

empirical evidence. The major contribution of this paper is to provide a tractable framework to investigate the

optimal compensation scheme associated with the network structure, which is also consistent with the empirical

evidence.

In a networked organization,2 each agent works to exert their own effort to jointly produce the team’s

output, and at the same time, connected agents can help each other to reduce the marginal disutility of working.

Different from Shi (2024), I introduce heterogeneity in compensation and further introduce heterogeneity in

ability.3 Each agent receives a compensation which is a fixed share of the team’s output, or an equity share as

in Dasaratha, Golub, and Shah (2023). I assume that the output-sharing rule is employed for the compensation

scheme to provide incentives for exerting efforts.4 Moreover, since the principal cannot observe agents’ efforts

but can observe the network structure, the compensation has to depend on the share of the total output and

the network position. Most of the results on the properties of the equilibrium in Shi (2024) still hold, including

the existence and weak uniqueness of the equilibrium.

In a networked organization, where connected agents can help each other, the optimal compensation hinges

upon the pattern of mutual help. For example, on an apple farm, workers have their friends and own social

contacts within the farm. Each worker can do their own job sowing and watering apple trees that contribute

to the output of the apples directly, and at the same time help their friends by handing over tools and sharing

food that contributes to the output indirectly. In this setting, should more popular workers (workers who have

more friends or social contacts within the farm) enjoy higher pay? My answer is surprising: no. Contrary to our

intuition that more central agents should get higher pay, the relationship between centrality5 and payment may

not be strictly increasing, due to two competing forces. On the one hand, more pay should also go to peripheral

1In this paper, I assume that networks only allow for payoff spillovers but not information spillovers. I leave the latter
case to future research.

2Networked organizations are defined as those with interpersonal social networks, which enable payoff spillovers
through mutual help, as described in this paper.

3The heterogeneity in ability only applies to Proposition 5.
4If each agent gets a fixed share of the team’s output, (s)he has incentives to work hard to increase the team’s output,

and, thus, his(her) payment.
5Centrality is the most commonly used measure to describe the position of a node in a network. In this paper, I focus

on degree centrality, whereas the empirical analysis also holds for Bonacich centrality.
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agents, since they do not enjoy access to much help from others, and have less incentive to work hard. Given a

concave team production function, these peripheral agents are the weak spots of the organization. Therefore,

this is the “incentivizing the peripheral” mechanism, whereby the peripheral agents should enjoy higher pay to

be incentivized to work hard. On the other hand, more pay should go to agents with a large centrality, since

they have the chance to help many other agents and thus increase the team’s output. This is the “incentivizing

the central” mechanism, whereby central agents should enjoy higher pay to be incentivized to help others.

The optimal compensation scheme should take into consideration the presence of these two mechanisms,

which are contradicting. More specifically, I find that if the externality of helping effort on the team’s output

(characterized by β in the model part) is not salient enough, then these two effects neutralize each other

perfectly. As a result, in this case, the same pay goes to the central and the peripheral agents.6 This result is

consistent with some real-world examples of organizations with flat organizational structures (despite uneven

degree distribution of the social network) and payment schemes.7

A perfect example of such a flat organization is Morning Star, which is a food processing company

located in California, USA.8 Morning Star has implemented a self-management approach where each employee is

responsible for managing their own work and making decisions that align with the company’s mission. Therefore,

the organization features a low level of β with a low level of the salience of helping efforts. It also features a

flat organizational structure. There are no formal titles or supervisors, and employees enjoy a relatively flat

payment scheme.

If helping effort matters a lot, or the externality of mutual help is salient, then the “incentivizing the

central” effect dominates, since it is more important to incentivize the central agents to help others more. As

a result, it is possible that higher pay may go to more central agents. This is a necessary (but not sufficient)

condition for the monotonically increasing relationship between optimal pay and degree centrality. The intuition

is that in this case, it is more important to incentivize the central agents since the payoff spillover or externalities

from them are more salient. In particular, for star networks, I can provide sufficient and necessary conditions

for a monotonically increasing relationship between optimal pay and degree centrality. I can further show that

there can never be a monotonically decreasing relationship between optimal pay and degree centrality. When

there is heterogeneity with respect to ability, there can be an arbitrary relationship between (degree) centrality

and payment.9 In all, the theory predicts that there should be a non-monotonic relationship between centrality

and payment. In addition to the mathematical proof, I support such a prediction by numerical simulation and

empirical analysis using the UK Workplace Employment Relations Study (WERS) data in Appendix D.

This paper is related to two strands of the literature. First, this paper contributes to research on incentive

schemes in organizations (Groves, 1973; Holmstrom, 1982; Che and Yoo, 2001; Ichniowski and Shaw, 2003;

Franco, Mitchell, and Vereshchagina, 2011). The main distinction of this paper compared to previous research

is that this paper considers how compensation is related to the position in the network. In particular, this paper

is related to Dasaratha, Golub, and Shah (2023), who study equity compensation in a networked team that

6The intuition relies on the concavity of the production function as a function of the compensation scheme and
Jensen’s inequality.

7In such organizations, the position in the social network does not matter much for the status of the agent in the
organization and the payment received.

8See an introduction here: https://www.morningstarco.com/exploring-morning-stars-mission-focused-self-management-model/.
9In the theoretical analysis, I focus on degree centrality, while in the empirical analysis, I use both the degree centrality

and the Bonacich centrality. Moreover, the effect of “incentivizing the peripheral” cannot dominate in the setting of this
paper because of the specific choice of functional forms. As a result, the relationship between optimal pay and centrality
cannot be monotonically decreasing. However, under general functional form assumptions, it can be the dominant effect.
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features exogenous and pre-determined complementarities between pairs of agents in production. The main

difference between my paper and theirs is that the payoff spillovers among agents in my paper are endogenous

decisions made by agents, not shaped by an exogenous structure as in their paper.

Second, this paper speaks to the literature on mutual help. This paper builds on the setting in Shi (2024),

in which agents are connected through a fixed, undirected, and unweighted network, and work collectively to

produce a team’s output. Connected agents can help each other to reduce the marginal disutility of working.

The optimal compensation scheme thus depends upon the pattern of connectedness in the network. This

paper extends Kandel and Lazear (1992) in that they treat the compensation scheme as given and explore

the pattern of mutual help, or more broadly, peer effects. Calvó-Armengol and Jackson (2010) study peer

pressure in organizations that can be regarded as the opposite of mutual help. Different than these papers,

I consider an organization with interpersonal networks, which are absent in these papers, and examine the

optimal compensation in the presence of peer effects. Finally, Itoh (1991) concerns moral hazard problems in

multi-agent situations where cooperation is an issue. This paper differs from it by introducing networks among

agents.

The remainder of the paper is organized as follows. Section 2 introduces the model. Section 3 characterizes

the equilibrium properties. Section 4 analyzes the optimal compensation scheme. Finally, Section 5 concludes.

2 Model

The setup of the model is heavily based on Shi (2024) except that the equity payment that goes to each

agent can be different, and each agent can have different abilities in this paper.10 As in Shi (2024), in the model,

a principal is in charge of a team of agents who work collectively to produce a team’s output. The principal

cannot observe the effort of each agent but can observe the network structure, and hence the compensation of

equity share given to each agent hinges only upon the team’s output and the network position. I assume that

the entire team’s output is shared among all the agents. The output-sharing rule also provides incentives for

each agent to exert more effort. The analysis is the same if a fixed share of less than one of the output is paid

to the agents, and the rest of the output is paid to the principal. In the following analysis, I study the optimal

compensation scheme in the sense that the total output is maximized.

Network Among Agents The model consists of a principal, denoted by P , and a team of N ≥ 2 agents,

denoted by A = {1, 2, ..., N}. Agents work together to produce a team’s output, taking the compensation

scheme set by the principal as given. Different from existent multi-agent models, here I assume that agents

are inter-connected. Connections between agents could be seen as some interpersonal relationships such as

acquaintance or friendship. Agents connected to i are deemed as her “neighbors,” whose set is denoted by

N(i) = {j ∈ A : gij = 1}. The pattern of connections among agents is represented by a N by N matrix G,

which represents the adjacency of agents. Each entry of G, gij ∈ {0, 1}, denotes whether there is a connection

from i to j, and gij = 1 means that i and j are connected. By convention, I set gi,i = 0.11 I also denote the set

of nodes of G, V (G), and the set of edges of G, E(G).12

Own Effort and Helping Effort In the model, the principal P observes the ability of each agent and

10Except for Proposition 5, I assume homogeneity of agents’ abilities. However, different from Shi (2024), I assume
throughout the paper that each agent can enjoy different payments.

11The network is undirected and connections are mutual, i.e., gi,j = gj,i and G is a symmetric matrix.
12These notations are used in Definition 1.
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sets the compensation scheme, which is the share of the output that is paid to each agent. Each agent i ∈ A

chooses her level of own effort which is denoted by ei, as well as the level of helping effort to each of her neighbor

j ∈ N(i), which is denoted by hij .
13 Agent i cannot afford the high psychological cost and hence is unwilling to

help any other agent except her neighbors, who are more approachable to her.14 The collection of own effort by

each agent is denoted as E = {e1, ...eN}, and the collection of the profile of helping effort of all agents is denoted

as an N by N matrix H, in which each entry, hij , is how much helping effort i exerts to j. In addition, denote

the total received helping effort of each agent by Hr = {
∑

k∈N(1) hk1, ...,
∑

k∈N(N) hkN}, and the total given

helping effort of each agent is denoted by Hg = {
∑

k∈N(1) h1k, ...,
∑

k∈N(N) hNk}. Assume here that each agent

has limited time and energy to expend on the two types of effort, i.e., both the own effort and the sum of helping

effort have an upper bound, and hence ei ∈ [0, ē], and
∑

j∈N(i) hij ∈ [0, h̄], where ē, h̄ > 0 are fixed constants

and are sufficiently large so that in equilibrium each agent’s strategy can never reach the upper bound. In such

a setting, the strategy space for each agent is a convex and compact set.15

Each type of effort induces disutility or cost to agents. The cost of i’s own effort is (θ+
∑

j∈N(i) hji)
−βei,

where ei is the level of i’s own effort, and (θ +
∑

j∈N(i) hji)
−β ≡ c(θ,

∑
j∈N(i) hji) is the marginal disutility of

exerting own effort, which is affected by i’s “ability” to exert own effort, θ, and by helping effort received from

i’s neighbors,
∑

j∈N(i) hji. Besides, in this setting, c(·) is a smooth function with c ≥ 0, c′1 ≤ 0, c′2 ≤ 0, and

c′′22 ≥ 0,16 which means that the marginal effect of helping effort is decreasing.

β in the cost function c(θ,
∑

j∈N(i) hji) is the core parameter of the model. It reflects the salience of the

effects of helping efforts on agents’ own efforts. If β is large, then helping efforts play a quantitatively important

role in the organization, since the effects of helping efforts on the marginal costs of agents’ own efforts are large.

This leads to the fact that more central agents should be more incentivized to help others more. If β is small,

then helping efforts play a relatively trivial role in the organization. Thus, the same pay should go to all agents

in the organization.

Disutility of helping effort is denoted by γv(
∑

j∈N(i) hij), where γ denotes the “ability” to help others,

and v is a smooth function with v ≥ 0, v′ ≥ 0, v′′ ≥ 0. Again, I assume for now that all agents have the

same ability to help others, but I will relax this assumption later in Proposition 5. For simplicity, I assume

that v(x) = 0.5x2.17 Hence the marginal disutility of helping effort at zero is zero, which guarantees that in (a

nontrivial) equilibrium all agents are willing to help.

The efforts of agents, both individuals’ own and helping efforts, can be illustrated as follows. Imagine a

group of farm workers who are responsible for growing fruit. Each worker’s own effort is focused on producing

as much fruit as possible, which directly contributes to the farm’s overall output. In addition, each worker

can assist others, for example, by providing water to those who are thirsty or sharing their food with those

who are hungry. This helping effort does not directly increase the amount of fruit produced or the farm’s total

output, but it does reduce the marginal disutility of working. In addition, in this example, agents’ own effort

and helping effort require different sets of skills, and, thus, can be regarded as independent. Therefore, the

13In the example of an apple farm, the agent’s own effort is growing apple trees directly, and the helping effort is
handing over tools and sharing food with friends.

14Please see Shi (2024) for a detailed discussion of the ability to help and the willingness to help.
15Note that there are no interactions between helping efforts and own efforts. They enter the cost function in an

additively separable way. Such a setting is critical for the tractability of the model.
16c′1 = −β(θ+

∑
j∈N(i) hji)

−β−1 ≤ 0, c′2 = −β(θ+
∑

j∈N(i) hji)
−β−1 ≤ 0, and c′′22 = β(β+1)(θ+

∑
j∈N(i) hji)

−β−2 ≥ 0.
17Hence, v′ = x and v′′ = 1.
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setting of the model is justified18 in which agents’ own effort and helping effort do not interact with each other,

and, can face separate and independent constraints and take separate values from two different compact sets. I

will revisit these assumptions in Section 4.3.

Production Technology, Compensation, and Payoff The team’s output y is a function of own effort

of all agents: y = f(e1, ..., eN ). For tractability, assume here that f takes the functional form of Cobb-Douglas:

f(e) =
∏N

i=1 e
w0
i , where Nw0 < 1, so that f(·) is strictly concave19. Hence each agent plays an identical

role in production, and the production function exhibits a decreasing return to scale so that the scale of the

organization is finite. In addition, we can see that f is a smooth function with strict concavity, f ≥ 0, f ′
i ≥ 0 and

f ′′
ij ≥ 020 for any i and j, which means that the production technology exhibits the property of complementarity.

Complementarity also implies the non-separability of each agent’s contribution. It also provides a foundation

for the proof of Lemmas 6 and 7.

The principal can observe the team’s output, yet she cannot observe the agents’ own efforts and helping

efforts. Therefore, she sets the compensation scheme dependent only upon the team’s output y. Moreover, the

principal can observe each agent’s network position, and, thus, she links the payment to each agent’s network

position. This is a novel setting in the literature of organizational economics. Consistent with the existing

literature, here I only consider the simple output sharing rule and equity payment, where the principal pays a

share of αi in the output to agent i. Without loss of generality, I assume that
∑N

i=1 αi = 1, i.e. the principal does

not retain any profit. In this way, I simplify the model by abstracting away the optimization of the principal’s

payoff but instead look at the optimal compensation scheme in the sense that the team’s output is maximized.

In other words, I first study the equilibrium outcomes given a fixed compensation scheme, and then how to

design a compensation scheme to maximize the team’s output.

The payoff of each agent is the compensation obtained minus disutility yielded from exerting their own

effort and helping effort. Therefore the payoff of agent i given the above output sharing compensation and

functional forms could be written as

αi

N∏
i=1

ew0
i − (θ +

∑
j∈N(i)

hji)
−βei −

1

2
γ(

∑
j∈N(i)

hij)
2

.

Timing of the game The game proceeds as follows. In stage 0, P observes the ability {θ, γ} of each

agent and the network structure G, and sets the compensation scheme {αi}Ni=1. The optimal compensation

scheme denotes with a star as {α∗
i }Ni=1. I assume that the principal does not get any surplus, and instead

leaves all surplus to the agents.21 Thus, I do not study the profit/surplus maximization of the principal, but

the maximization of the team’s output. In stage 1, given the team structure G and the compensation scheme

{αi}Ni=1, each agent simultaneously chooses her helping effort Hi = (hi1, ..., hij), j ∈ N(i). In stage 2, given

team structure G, compensation scheme {αi}Ni=1, and helping effort H chosen in the former stage, each agent

simultaneously decides her own effort ei. This setting is the same as Calvó-Armengol and Jackson (2010), where

agents first choose peer pressure exerted on other agents and then choose another action (such as whether to

18I discuss the implication of this setting in Section 4.3.
19The form of Cobb Douglas can make the model tractable. More general functional forms, like constant elasticity of

substitution, cannot. Strict concavity is needed for several main theoretical results below.
20f ′

i = w0e
−1
i

∏N
i=1 e

w0
i ≥ 0 and f ′′

ij = w2
0e

−1
i e−1

j

∏N
i=1 e

w0
i ≥ 0.

21The analysis and the main results are the same if the principal retains a fixed proportion of the output.
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participate) based on former choices of peer pressure.

In this paper, I focus on (pure strategy) subgame perfect Nash equilibria of the game, in which agents first

decide the pattern of mutual help devoted to the neighbors, then decide their own efforts.

3 Equilibrium Properties

In this section, I analyze equilibrium properties given a fixed set of equity shares {αi}. I extend the

results of the existence and generic uniqueness of equilibrium in Shi (2024). The only difference, for now, is

that the equity compensation for each agent can be different, and in Proposition 5 below, I further introduce

heterogeneity with respect to ability parameters. Thus, efforts given in equilibrium satisfy equations in which

they are weighted by inverse equity share.22 The details of model derivations and the proofs of this section are

relegated to Appendix C.

Also, note that there is always a trivial equilibrium, which is a result of the functional form of the Cobb-

Douglas production function: in stage 1 all agents exert zero helping effort, and in stage 2 all agents exert zero

own effort. In this equilibrium, the output is zero. So this equilibrium is Pareto inferior to that where helping

efforts and own efforts are strictly positive and thus the output is also strictly positive. I assume that there is

some exogenous communication device to avoid such trivial and inefficient equilibrium.

3.1 Equilibrium Existence

First, I provide the proposition for the existence of a subgame perfect Nash equilibrium, for the specific

functional forms of the model. We have a proposition regarding the existence of the equilibrium as follows:

Proposition 1. Given the output sharing rule and the above-mentioned functional forms, a non-trivial subgame

perfect Nash equilibrium of the game exists.

This is a direct implication of Theorem 1 in Rosen (1965), which states that in an N -person concave game

where the strategy space of each agent is convex and compact and the payoff function is concave in his own

strategy, there always exists a Nash equilibrium. Note that the overall game has two classes of subgames of

stages 1 and 2, and it is easy to verify that the existence condition stated by Theorem 1 in Rosen (1965) is

satisfied in these two classes of subgames.

I use backward induction to solve for the equilibrium. In stage 2, given the collection of helping effort in

stage 1 and the choices of own effort of others, each agent decides her level of own effort to maximize her payoff,

taking the choices of other agents {e∗j}j ̸=i as given. Hence

e∗i = argmax
ei

αie
∗
1
w0e∗2

w0 · · · eiw0 · · · e∗N
w0 − (θi +

∑
j∈N(i)

hji)
−βei −

1

2
γ(

∑
j∈N(i)

hij)
2. (1)

The first-order condition for agent i with respect to ei is that

αiw0e
∗
1
w0e∗2

w0 · · · eiw0−1 · · · e∗N
w0 − (θi +

∑
j∈N(i)

hji)
−β = 0,

22In a model with homogeneous equity shares, such weights all cancel out in the associated equations.
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for each i ∈ 1, 2, ..., N.

Combining the N first-order conditions for each agent, we could solve for the equilibrium own effort of the

subgame of stage 2. Note that given the specific functional form, the system of equations has a unique strictly

positive solution {e∗i }:

e∗i = αiw
1

1−Nw0
0 (θ +

∑
k∈N(i)

hki)
β
∏
j≥1

[αj(θ +
∑

k∈N(j)

hkj)
β ]

w0
1−Nw0 (2)

The details of derivations are relegated to Appendix C. By backward induction, substituting equation (2)

to the payoff function, we could find that in stage 1 agent i’s problem is to find {hij}j∈N(i) given {h∗
kl}k ̸=i,l∈N(k):

h∗
ij = argmax

hij

αi

∏
j≥1

α
w0

1−Nw0
j w

1
1−Nw0
0 (

1

w0
− 1)(

∏
k≥1

(θ +
∑

l∈N(k)

h∗
kl)

β)
w0

1−Nw0 − 1

2
γ(

∑
j∈N(i)

hij)
2, (3)

We could further derive the first-order condition with respect to hij as an inequality of a complementary

slackness condition as follows

αi

∏
j≥1

α
w0

1−Nw0
j

βw0

1−Nw0

∏
j≥1

(θ +
∑

k∈N(j)

h∗
kj)

βw0
1−Nw0 (θ +

∑
k∈N(j)

h∗
kj)

−1(αiw0)
1

1−Nw0 (
1

w0
− 1) ≤ γ(

∑
j∈N(i)

h∗
ij) (4)

Note that the first-order condition (4) reflects the relation between the total helping effort exerted by i,∑
j∈N(i) h

∗
ij , and the total effort received by j,

∑
k∈N(j) h

∗
kj . If hij takes a corner solution, then (4) takes a

strict less equal sign. If hij takes a interior solution, then (4) takes an equal sign. Note that when hij = 0 (4)

can take either a strict less equal sign or an equal sign. Also, hij = 0 can be an interior solution as well as a

corner solution.

In equilibrium, if there exist agents i, j, l,m ∈ A such that h∗
ij and h∗

kl take interior solutions, then

1/αi×(
∑

j∈N(i) h
∗
ij)(θ+

∑
k∈N(j) h

∗
kj) = 1/αk×(

∑
j∈N(k) h

∗
kj)(θ+

∑
m∈N(l) h

∗
ml), and thus provides an important

equation to compute the equilibrium. It is also linked with the proof of Proposition 4, in which agents’ own

efforts are also weighed by the inverse equity share ( 1
αi
). In addition, equation (4) directly implies Lemma 1 as

follows.

Lemma 1. In (any non-trivial) equilibrium and with non-zero equity shares, each non-isolated agent (the agent

who has at least one neighbor) receives and gives a strictly positive amount of help. In the trivial equilibrium,

each agent gives and receives zero help.23

Since the marginal cost of helping effort is zero when the total helping effort is zero, all agents are willing

to help for a strictly positive amount. On the other hand, in the network structure of the organization, all

agents balance the marginal return of helping their different neighbors, and hence will not leave any of their

neighbors without receiving any help. Below is another lemma that describes this aspect of equilibrium. On

the other hand, however, there exists a trivial equilibrium in which all helping efforts and agents’ own efforts

are zero.

Lemma 2. In (any non-trivial) equilibrium, each agent only helps her neighbors who receive the least amount of

help (there would be more than one neighbor receiving the minimum help). Also, for each agent, only neighbors

23There is no equilibrium that some of the efforts are strictly zero and others are strictly positive.
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who give the least amount of help divided by the equity share would help her (there would be more than one

neighbor giving minimum help).

Lemma 2 implies that in the network structure, in any equilibrium all agents simultaneously balance the

marginal return and marginal cost for the whole organization: all agents will avoid helping their neighbors who

already receive enough help, and all agents have the most efficient (least marginal cost) neighbors to help them.

Lemma 2 in this paper is different from that in Shi (2024) since here the compensation for different agents can

be different. Therefore, here, the helping efforts given should be weighted by inverse equity share.

Below is another lemma that describes the equilibrium condition derived by the first-order condition (4).

Again, I need to adjust the argument for the given helping efforts by inverse equity shares, since they are related

to the compensation scheme.

Lemma 3. In (any non-trivial) equilibrium, for each agent i, if there are two neighbors j1, j2 such that h∗
j1i

and h∗
j2i

take interior solutions, then j1 and j2 give the same amount of help divided by the equity share (or

weighted by inverse equity share α). Similarly, if h∗
ij1

and h∗
ij2

take interior solution, then they receive the same

amount of help.

Lemma 3 is established simply by comparing different first-order conditions, and it implies the equilib-

rium configuration in a connected network. The following Lemma 4 further shows that the equilibria can be

characterized by bipartite graphs.24

Lemma 4. For a non-trivial equilibrium: Suppose that H∗ is an equilibrium profile of helping efforts in which

the first-order conditions of all elements take interior solutions. Given H∗, define a new matrix H̄
∗
= (h̄∗

ij)

whose entries are zeros or ones, with h̄∗
ij = 0 if h∗

ij in H∗ takes a corner zero solution, and h̄∗
ij = 1 if h∗

ij in

H∗ takes an interior solution. Then, if H̄
∗
is a bipartite graph, then there are no more than two different

amounts of the total received helping efforts (
∑

k∈N(j) h
∗
kj) and two different amounts of the total given helping

efforts (
∑

k∈N(j) h
∗
jk) weighted by inverse equity share, and agents in each of the two independent sets give and

receive, respectively, the same amount of helping efforts. If H̄∗ is not a bipartite graph, then there is only one

amount of total received or given helping effort (weighted by inverse equity share).

To rephrase Lemma 4 mathematically, the argument that “there are no more than two different amounts

of the total received helping efforts (
∑

k∈N(j) h
∗
kj) and two different amounts of the total given helping efforts

(
∑

k∈N(j) h
∗
jk) weighted by inverse equity share, and agents in each of the two independent sets give and receive,

respectively, the same amount of helping efforts (weighted by inverse equity share)” is equivalent to saying that

the elements in each of the sets {
∑

k∈N(j) h
∗
kj}j∈A and {

∑
k∈N(j) h

∗
jk}j∈A (weighted by 1/αj) take at most two

distinct values. Moreover, if the bipartite graph A = A1 ∪A2, where A1 and A2 are two independent sets, then

for all j1, j2 ∈ Ak (k = 1, 2),
∑

k∈N(j1)
h∗
kj1

=
∑

k∈N(j2)
h∗
kj2

, and
∑

k∈N(j1)
h∗
j1k

/αj1 =
∑

k∈N(j2)
h∗
j2k

/αj2 .

3.2 Equilibrium Uniqueness

In this section I characterize the most important property of subgame Nash equilibria: in the same fixed

network, all equilibria lead to the same profile of own effort E∗. Different networks can have different equilibria.

24A bipartite graph is a graph where the vertices can be divided into two disjoint sets such that all edges connect a
vertex in one set to a vertex in another set. Such a set is an independent set of the bipartite graph.
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In other words, in any different equilibria of the same fixed network, each of the agents gives (weighted by

inverse equity share) and receives the same total amount of help. It is only the specific pattern of help, who

gives help to whom or who receives help from whom, might be different across equilibria.

Proposition 2. For any fixed network structure G, all non-trivial subgame perfect Nash equilibria lead to the

same profile of own effort E∗ = {e∗1, ..., e∗N}. in such a fixed network. For each agent, she exerts and receives

the same total amount of helping effort in different equilibria. They also have the same level of payoff across

equilibria.

Proposition 2 establishes the weak uniqueness of equilibrium with respect to the total amount of given and

received helping efforts, which is independent of the structure of the network.25 On the other hand, however,

the multiplicity of equilibria depends on the structure of the network: if there is no loop in the network, then

the equilibrium helping effort can be uniquely determined. This is what Corollary 1 argues.

Corollary 1. If the network contains loops, there are multiple equilibria; otherwise, there is a unique equilib-

rium.

In Shi (2024), I also provide a mathematical interpretation and associate the loopy network structure with

the rank of the auxiliary matrix defined therein. To be short, consider a ring network with N agents. There are

two equilibria in which agents help one another in a clockwise or a counterclockwise fashion, but the equilibrium

profile of agents’ own efforts and payoffs in these two equilibria is the same.

4 Optimal Compensation Schemes

The above-mentioned game setting and functional forms produce an equilibrium that exists and is weakly

unique. The properties are not essentially different than those in Shi (2024). I would further emphasize here

that given the above setting, there exists an equilibrium (Proposition 1) in which the profile of own efforts

and equilibrium payoffs is strictly unique given a fixed network structure (Proposition 2), if we do not consider

the trivial equilibrium in which the equilibrium own and helping efforts are zero. In this section, I focus on

presenting the theoretical results of the optimal compensation scheme.

4.1 Characterizing Optimal Compensation Schemes

In this paper, I assume that the total share of output paid to agents is 1. Thus, I do not examine the decision

of the principal who may try to maximize his surplus gained from the organization of the agents. I study the

optimal compensation scheme, in which “optimal” means that the maximum of the output of the organization is

25I can also use Theorem 3 in Kennan (2001) to establish the uniqueness result. It is based on the condition that
f(·) (in that paper) is increasing and strictly concave and satisfies f(0) > 0 (can be further relaxed to f(0) ≥ 0, since
we can focus on an additional fixed point other than zero), f(a) > a, and f(b) < b for some vector b > a > 0. In my
setting, since the f(·) function is Cobb-Douglas, c(·) is linear, and v(·) function is quadratic, the weakly positive (at
zero), increasing, and strictly concave (given Nw0 < 1) conditions are satisfied. Moreover, given the Inada conditions of
the Cobb-Douglas function, given the marginal return of own effort ei goes to infinity as ei goes to zero (the function is
sufficiently “steep”), f(a) > a is satisfied with a vector a that is close to 0, and given the marginal return of own effort
ei goes to 0 (the function is sufficiently “flat”) as ei goes to infinity, I can also find a vector b that is sufficiently large
(but still finite). Therefore, I can show that all conditions required by Theorem 3 of Kennan (2001) are easily satisfied
in my setting.
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achieved. Thus, the optimal compensation scheme solves {α∗
i }Ni=1 = argmax{αi}N

i=1

∏N
i=1 e

∗
i ({αi}Ni=1)

w0 , where

e∗i ({αi}Ni=1) is the optimal choice of own efforts given the compensation scheme.

The optimization problem to solve for the optimal compensation scheme is formally as follows:

max
α1,...,αN

N∏
i=1

(e∗i (α1, ..., αN ))w0 , (5)

The first-order condition is (for all k ∈ {1, 2, ..., N}):

N∏
i=1

(e∗i (α1, ..., αN ))w0w0

N∑
i=1

[(e∗i )
−1 ∂e

∗
i

∂αk
] = λ. (6)

where λ is the shadow price of the total equity shares, or equivalently, the Lagrangian multiplier associated

with the constraint that all equity shares add up to one.

Thus, for all k:

N∑
i=1

[(e∗i )
−1 ∂e

∗
i

∂αk
] =

N∑
i=1

[(e∗j )
−1

∂e∗j
∂αk

]. (7)

To start with, we have a lemma that rules out corner solutions of optimal compensation schemes.

Lemma 5. For any optimal compensation scheme {α∗
i }Ni=1, 0 < α∗

i < 1 for all i = 1, 2, ..., N , if w0, β > 0.

The proof is straightforward since under any equity share with α∗
i = 0, we have e∗i = 0 and

∂e∗j
∂αk

= 0 given

equation (2). Thus, the team’s output is zero, which can never achieve the maximum since it is dominated by

all profiles of equity shares with 0 < α∗
i < 1 for all i = 1, 2, ..., N that produces a strictly positive team’s output,

given Lemma 1 that dictates that all agents’ own efforts are strictly positive when 0 < α∗
i < 1. The role of

Lemma 5 is to rule out all corner solutions for all theoretical results below.

Using the above equations (2), (4), (7), and the constraint on αs (adding up to one), we can first establish

the increasing relationship between efforts and payment that provides incentives. The intuition is that given a

higher level of reward incentives, each agent is willing to work harder. As agents’ own efforts are complementary,

each agent is also willing to work harder if others enjoy higher pay (when their own pay is fixed).

Lemma 6. The equilibrium own efforts and helping efforts are strictly increasing functions of own and others’

equity share given that γ is sufficiently small:
∂e∗i
∂αk

|αj,j ̸=k
> 0, for all i ̸= j, k ∈ {1, 2, ..., N}. The partial

derivatives are obtained by taking other αj,j ̸=k fixed.

The proof is based on a system of equations (2) and (4) and exploits an implicit function theorem argument.

The proof needs a parameter restriction that γ is sufficiently small (but still strictly positive). The intuition

is that the marginal cost of helping effort should be small enough so that providing stronger incentives by a

greater α indeed induces more (own) effort. Based on Lemma 6, we have the following important property for

the production function: concavity with respect to {αi}.

Lemma 7. Under parametric restrictions that (1) γ is sufficiently small; (2) βw0

1−Nw0
is sufficiently small; and

(3) Nw0

1−Nw0
< 1, the function

g(α1, ..., αN ) ≡ f(e∗1(α1, ..., αN ), ..., e∗N (α1, ..., αN ))
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is strictly concave with respect to {αi}.

The intuition of the proof of Lemma 7 is to set an upper bound for the partial derivatives of one component.

Next, we establish the proposition for the existence and uniqueness of the optimal payment scheme. It relies

on the Weierstrass theorem and Lemma 7 since the production function is a continuous and strictly concave

function defined on a compact set.

Proposition 3. Given the parametric restrictions of Lemmas 6 and 7 so that g(α1, ..., αN ) is concave in α:

For any network structure G, there is a unique optimal compensation scheme that maximizes the team’s output.

Given the detailed network structure, we may also derive the following symmetry of the payment system.

The results are also intuitive, since agents in the same environment of arbitrary order of network neighbors play

exactly the same role in the organization and, thus, should enjoy the same level of pay in the optimal payment

system. I provide the formal definition of symmetry below.

Definition 1. Two nodes or agents i and j have symmetric positions in the network G, if for any graph

automorphism ϕ (a bijection ϕ : V (G) → V (G) such that uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(G)), i = ϕ(j)

and j = ϕ(i).

Recall that V (G) is the set of nodes in G, and E(G) is the set of edges in G. It is easy, then, to

establish the following lemma regarding the payment of different agents who have a symmetric position in

the optimal compensation scheme. The intuition is built on the definition of symmetry, which, in turn, is

based on the definition of graph automorphism. Graph automorphism, by definition, preserves edge and node

relationships. In particular, note that if two agents are regarded as having symmetric positions, then they

have the same number of first-order network neighbors (denoted as N1(i)), second-order neighbors (N2(i)), ...,

and kth-order neighbors (Nk(i)), and their first-order neighbors have the same number of first-order network

neighbors, second-order neighbors, ..., and kth-order neighbors, ..., and their kth-order neighbors have the same

number of first-order network neighbors, second-order neighbors, ..., and kth-order neighbors, where k can be

any arbitrarily large positive integer that tends to infinity. Thus, these symmetric agents face the same set of

first-order conditions.

Lemma 8. In an arbitrary network, given the parametric restrictions of Lemmas 6 and 7 so that Proposition

3 holds, the agents in the symmetric positions receive the same pay. As a result, they receive and give the same

amount of helping efforts.

The role of Lemma 8 is to simplify calculation to analyze some specific examples of networks (in Appendix

B). All examples are consistent with the theoretical results. Given Lemma 8, we have the following corollary.

Corollary 2. In any symmetric graph G (where given any two pairs of adjacent vertices (u1, v1) and (u2, v2),

there is an automorphism ϕ : V (G) → V (G) (defined in Definition 1), such that f(v1) = v2 and f(u1) = u2),

all agents enjoy the same optimal pay for any parameter values, as long as these values are the same for each

agent.

Corollary 2 is a direct implication of Lemma 8, and its proof is straightforward. Corollary 2 also applies

to specific symmetric graphs including ring networks and complete networks of an arbitrary number of agents.
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Also, note that all agents should enjoy the same optimal pay given any set of parameter values, as long as

these values are the same for each agent. However, we also have a result in which all agents enjoy the same

optimal pay, but with arbitrary network structures and some specific parameter values. We thus have

the following Proposition 4 below.

4.2 Payment and Position

In this subsection, I formalize two propositions to describe the relationship between network position, or

(degree) centrality,26 and optimal payment. I focus on degree centrality because it is easy to construct and,

thus, can be naturally connected to the proofs of this paper. Also, in the theoretical results below, the first-

order degree centrality is sufficient to characterize the monotonicity of the relationship between optimal pay

and network position. The first proposition states that the relationship between centrality and payment can be

non-monotonic, and it depends on the parameter β, which describes the salience of the externality of help. The

proofs are relegated to Appendix A.

Proposition 4. Given the parametric restrictions of Lemmas 6 and 7 so that g(α1, ..., αN ) is concave in α:

For any network structure G, and ability parameters {θ, γ}, there is a cutoff β̄ = β̄(G, θ, γ), such that if β ≤ β̄,

then in the optimal compensation scheme, same pay goes to agents with different positions; If β > β̄, then the

pay received by agents with different position may differ. The relationship between pay and degree centrality may

not be monotonic. Finally, optimal pay may increase monotonically with (degree) centrality only when β > β̄.

The result in Proposition 4 is consistent with some real-world examples of organizations with flat organi-

zational structures (despite potentially uneven degree distribution of the social network) and payment schemes.

In such organizations, different agents possess different positions in the social network, but they have relatively

equal status and play a relatively similar role in the organization, and, thus, enjoy similar pay.

In addition to the example of Morning Star in the Introduction, another valid example is Semco

Partners,27 a diversified manufacturing and services company located in Sao Paulo, Brazil. It is known for its

democratic workplace where employees have significant and independent control over their work environment,

schedules, and decision-making processes. Thus, the organization features a low β with a small salience of

helping efforts. There is a minimal hierarchy, and employees often set their own goals, participate in their own

decision-making, and enjoy a flat payment scheme.

Proposition 4 is also built on Lemma 7, and it indicates that β > β̄ is the necessary condition for the

monotonically increasing relationship between optimal pay and degree centrality, but it is not sufficient.28 In

particular, the parametric restrictions in Lemmas 6 and 7 can hold for both the cases of β > β̄ and β ≤ β̄.

The intuition of the proof is that given the concavity (Lemma 7), a disturbance at equal pay should lead

to a first-order reduction of the total output, especially given that the responses of own and helping efforts are

bounded due to a small β. Given a larger β, the responses of own and helping efforts can be large enough to

offset the reduction of the output due to concavity.

26Centrality, including degree centrality and Bonacich centrality, is the most important and widely used indicator to
describe the network position of each node.

27See an introduction here: https://hbr.org/1989/09/managing-without-managers.
28Given my functional restrictions and as the examples suggest, it is infeasible to analytically derive for a sufficient

condition for the monotonically increasing relationship between optimal pay and degree centrality. I can only show,
numerically, that given some values of parameters, the relationship between optimal pay and degree centrality can be
strictly increasing.
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The reason to focus on degree centrality, not other forms of centrality, such as Bonacich centrality, as in

the existing literature is that, in this paper, I do not use the traditional framework of quadratic payoff functions

and linear best-replies, under which Bonacich centrality naturally pops out.29 Moreover, the flat relationship

between the degree centrality and optimal pay depends on the specific functional form restrictions. In the

empirical analysis in Appendix D, however, I find that the results of non-monotonicity also apply to Bonacich

centrality. Moreover, Proposition 4 is consistent with all numerical examples of a small number of agents (N)

in Appendix B. For example, Figure B1(b) shows that when β is low, each agent should get the same pay, but

when β is high, the central agent should get a higher pay.

More importantly, Proposition 4 only provides a necessary condition for the strictly increasing relationship

between optimal pay and degree centrality. Unfortunately, due to the complexity of arbitrary network structures,

it is infeasible to provide a sufficient condition under which the optimal pay must strictly increase with the

degree centrality. For example, in a line network, the relationship between optimal pay and degree centrality

can never be strictly increasing for any set of parameters’ values. See a four-agent line network and Figure B2

for example. Thus, to establish a sufficient condition for monotonicity, I need to step back and focus on specific

network structures. For example, I am able to establish a sufficient (and necessary) condition for monotonicity

for star networks in the following corollary, which also requires the parametric restrictions of Lemma 7 so that

Proposition 3 holds.

Corollary 3. Given the parametric restrictions of Lemmas 6 and 7: In an N -agent star network Gstar,N , there

is a cutoff β̄(N) (cutoff as a function of the number of nodes), such that all N agents get the same pay if and

only if β ≤ β̄(N), and the central agent gets a strictly higher pay than peripheral agents if and only if β > β̄(N).

The proof is based on Lemma 8, which dictates that all peripheral agents should enjoy the same pay. Thus,

the set of optimal pay of all agents only has two distinct values, and, thus, the proof follows. Numerical analyses

and examples regarding star networks that are consistent with Corollary 3 are provided in Appendix B. For

ring or circle networks, each agent must get the same pay regardless of β due to Lemma 8 and Corollary 2. For

line networks, there is a non-monotonic relationship between degree centrality and optimal pay if and only if β

is sufficiently large. In fact, the relationship can never be monotonically increasing for any set of parameters’

values. Examples in Appendix B (a line with N = 3, 4, 5 agents) support this argument.

On the other hand, I can rule out the case that the relationship between optimal pay and degree centrality

can be monotonically decreasing. Specifically, we have the following corollary, which also requires the parametric

restrictions of Lemmas 6 and 7 so that Proposition 3 holds:

Corollary 4. Given the parametric restrictions of Lemmas 6 and 7: For any network G, any i, j ∈ V (G)

such that i has a strictly larger degree centrality than j (
∑

k∈N(i) gik >
∑

k∈N(j) gjk), and any β, optimal pays

α∗
i ≤ α∗

j does not always hold.

The proof is completed by providing contradictions. The implication of Corollary 4 is that the mechanism

of “incentivizing the peripheral” can never always dominate the mechanism of “incentivizing the central,”

resulting in a monotonically decreasing relationship between optimal pay and degree centrality. The intuition

of the proof of Corollary 4 is to exploit contradictions resulting from Lemmas 6 and 7.

29The construction of degree centrality is simpler and more straightforward compared to Bonacich centrality, and, thus,
can be better connected to my model, in which a simple and straightforward measure of network position is needed.
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I further extend the discussion to the case with more heterogeneity that can match real-world data. To

be more specific, I assume that the set of parameters (w0, θ, β, γ) can be different for different agents. So

far, I assume that these parameters are the same for all agents. For Proposition 5 whose proof is the only

one that directly needs heterogeneity in ability parameters (w0, θ, β, γ), agent i can have his own and different

(wi, θi, βi, γi), but these parameters are common knowledge. Given such heterogeneity, the relationship between

centrality and payment is also non-monotonic. The proof is relegated to Appendix A.

Proposition 5. For any network structure G, if the set of parameters for agent i, (wi, θi, βi, γi), are different for

different agents, then there can be a non-monotonic relationship between degree centrality {
∑

j 1(j ∈ N(i))}Ni=1

and optimal pay {α∗
i }Ni=i.

In Proposition 5, wi corresponds to the parameter in the production function, θi is the ability to exert each

agent’s own effort, βi is the externality of helping efforts, and γi is the ability to exert helping efforts. These

parameters are heterogeneous only for Proposition 5.30

4.3 Model’s Assumptions Revisited

In this section, I revisit the main assumptions, including the functional form assumptions, independence of

agents’ own efforts and helping efforts, perfect substitutability of helping efforts, and homogeneity assumption.

I also discuss the extensions for relaxing such assumptions.

Functional form assumptions To get a closed-form solution for the equilibrium, I exploit three

assumptions regarding the functional forms of production technology and costs: (1) Cobb-Douglas production

function; (2) marginal cost of agents’ own effort is c(θ,
∑

j∈N(i) hji) = (θ +
∑

j∈N(i) hji)
−β ; (3) cost function

of helping effort is v(
∑

j∈N(i) hij) = 1
2γ(

∑
j∈N(i) hij)

2. These assumptions altogether construct a tractable

framework for the game-theoretic setting of team production with network interactions, and, thus, can generate

predictions for the relationship between optimal pay and degree centrality. The set of functional forms and the

resulting tractable framework is one major contribution of this paper.

As the proof of Proposition 4 dictates, the flat relationship between optimal pay and degree centrality with

a small β relies on Lemma 7, which in turn requires the concavity of the production function and the convexity

of the cost function. Moreover, under alternative settings of functional forms (and associated curvatures), it

is likely to generate monotonically increasing relationships between optimal pay and degree centrality. For

example, when the marginal return of helping effort is strictly increasing and bounded below, the mechanism

of “incentivizing the central” can always be strictly dominating, since the externality of helping effort plays

a salient role. However, it is infeasible to find a specific analytical functional form that satisfies such criteria

and makes the model tractable at the same time. Thus, I take a step back and still use the above-specified

functional form in this paper.

Independence of agents’ own efforts and helping efforts Another important assumption in the

model is that agents provide helping effort and their own effort separately, so the cost of these two types of

effort enters the payoff function separately. The costs are also subject to different and separate constraints. I

make this assumption for the tractability of the model. If this assumption is not made, then the complexity of

the relationship between own effort and helping effort makes the model highly untractable, since an agent’s own

30Specifically, Proposition 5 does not rely on the uniqueness of the optimal compensation scheme, and, thus, does not
require the parametric restrictions in Lemma 7 to hold.
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effort and helping effort may be a complicated function of those of all other agents. As a result, it is infeasible

to generate general theoretical predictions for the monotonicity of the relationships between optimal pay and

degree centrality.

The independence between agents’ own and helping efforts can also be justified using a real-world example

mentioned previously: a group of farm workers who are responsible for growing fruit. Each worker’s own effort

is to grow as much fruit as (s)he can that contributes directly to the farm’s outputs. At the same time, each

agent can also help other agents, like handing over water to those who are thirsty or sharing his/her own food

with those who are hungry. Such helping effort does not directly contribute to the amount of fruit, or the farm’s

output, but reduces the marginal disutility of working. In this example, agents’ own effort and helping effort

require different sets of skills and intellectual and physical resources, and, thus, can be regarded as independent.

Therefore, the setting of the model is justified, in which agents’ own effort and helping effort do not interact

with each other, and, can take independent values from two separate compact sets.

Perfect substitutability of helping efforts In the model, I assume that the helping efforts given

to and received from different neighbors are perfectly substitutable. In other words, conditional on the total

amount of helping effort given and received, agents are indifferent regarding the source and target of the helping

effort. Therefore, the marginal cost of agents’ own effort and the cost of helping effort are both a function of

the total amount of given and received helping effort. Such an assumption is used to establish Propositions 3

and 4. The reason is the same as above which requires some curvature restrictions of production function and

cost functions.

Homogeneity assumption I assume throughout this article except for Proposition 5 that agents are

the same in terms of abilities (wi, θi, βi, γi), their role in production. The only source of heterogeneity is the

network position and the pay. Such homogeneity is heavily needed to establish Proposition 4, but is not needed

to establish Lemmas 6, 7, and Proposition 3, since they only require conditions on functional curvatures.

5 Concluding Remarks

In this paper, I build on Shi (2024) to provide a mathematically tractable model to study the optimal

compensation scheme in networked organizations, in which agents connected in a network work collectively to

produce a team’s output. Connected agents can help neighbors to reduce the disutility of working. The pay

received by each agent is a fixed equity share of the team’s output which is linked to the position in the network.

For any given network structure, the optimal compensation scheme exists and is unique. There are two

effects determining the optimal compensation: (a) “incentivizing the peripheral” effect: the nodes with a smaller

centrality have to enjoy a relatively higher pay to be incentivized to work harder since they receive relatively

less help; and (b) “incentivizing the central” effect: the nodes with a larger centrality have to enjoy a relatively

higher pay to be incentivized to help others more, due to the externality of help. When the externalities of

helping efforts are relatively unimportant for the team’s output, the same pay goes to agents in different network

positions because the two effects neutralize each other perfectly. When the externalities of helping efforts are

relatively important, the pay varies with the position, because the second effect dominates. Due to these two

conflicting effects, the relationship between centrality and optimal pay may not be monotonically increasing.

On the other hand, it cannot be monotonically decreasing. Such a non-monotonic relationship is supported by

the numerical and empirical analyses in Appendix D.
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This paper, together with Shi (2024), gives theoretical predictions regarding the performance and optimal

compensation system in organizations featuring social networks and mutual help. Future research could focus on

another form of spillover—information spillover—which is mentioned in Shi (2023b), and its impact on optimal

network structures and compensation schemes.
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Appendix For Publication

Appendix A Proof of Main Results

Proof of Lemma 6: Here, I show that
∂e∗i
∂αk

|αj,j ̸=k
> 0 for all i and k. The partial derivative is

obtained taking αj,j ̸=k fixed. The system of equations to determine e∗s and h∗s at the equilibrium

level includes equations (2) and (4). We can rewrite equation (2) as

e∗i ({αi}) = mi({h∗ij({αi}), {αi}}), (A1)

where mi(·) is some function that is defined to fit the formulation of equation (2), {h∗ij} is a collection

of h∗s, and {αi} is a collection of αs. We can rewrite equation (4) as

ni({h∗ij({αi})}, {αi}) = 0, (A2)

where ni(·) is some function that is defined to fit the formulation of equation (4).

Thus, given equations (A1) and (A2), and an implicit function theorem or chain rules, we have,

for all i, k:

∂e∗i
∂αk

=
∑
i,j

∂mi(·)
∂h∗ij

∂h∗ij
∂αk

+
∂mi(·)
∂αk

, (A3)

and,

∑
i,j

∂ni(·)
∂h∗ij

∂h∗ij
∂αk

+
∂ni(·)
∂αk

= 0. (A4)

From the algebraic formula of equation (2), we have ∂mi(·)
∂h∗

ij
> 0 and ∂mi(·)

∂αk
> 0 for all i, j, k. From

the algebraic formula of equation (4), we have ∂ni(·)
∂h∗

ij
< 0 and ∂ni(·)

∂αk
> 0 for all i, j, k.

Plugging in specific functional forms, we have ∂mi(·)
∂h∗

ij
= β

e∗i
(θ+

∑
j∈N(i) h

∗
ji)

, ∂ni(·)
∂h∗

ij
= −K1

e∗i
(θ+

∑
j∈N(i) h

∗
ji)

2−

K2γ × e∗i∑
j∈N(i) h

∗
ij
, and ∂ni(·)

∂αk
= K3

e∗i
(θ+

∑
j∈N(i) h

∗
ji)

, where K1,K2,K3 > 0 are constants (functions

of parameters), and K3 is not a function of parameter γ. When γ > 0 is sufficiently small, then

with the above results (and with simple manipulation with equations (A3) and (A4) and plugging in

specific functional forms in the associated partial derivatives), we have
∑

i,j
∂mi(·)
∂h∗

ij

∂h∗
ij

∂αk
> 0. There-

fore,
∂e∗i
∂αk

=
∑

i,j
∂mi(·)
∂h∗

ij

∂h∗
ij

∂αk
+ ∂mi(·)

∂αk
>

∑
i,j(mini,j(θ +

∑
j∈N(i) h

∗
ji) × (K3

e∗i
(θ+

∑
j∈N(i) h

∗
ji)

) −maxi,j(θ +∑
j∈N(i) h

∗
ji)× (K2γ × e∗i∑

j∈N(i) h
∗
ij
)) > 0.

Proof of Lemma 7: First, by the uniqueness of equilibrium established by Proposition 2, for

any {α1, ..., αN} there is a unique {e∗1, ..., e∗N}. By Lemma 6, since
∂e∗i
∂αk

> 0 and
∂e∗i
∂αk

is a smooth

function, all
∂e∗i
∂αk

can be uniquely determined given any {α1, ..., αN}. To further establish the proof, I

exploit the fact that f(x): Rn → R is a strictly concave function if and only if the associated Hessian
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matrix H(x) ≡ ∂2f(x)
∂x2 is negative definite. Moreover, for a negative definite matrix H, it is equivalent

to saying that all the kth leading principal minors, det(Hk), satisfy (−1)kdet(Hk) > 0. Now, I show

that this case is indeed under some parametric restrictions. For the function of interest, g(α1, ..., αN ),

I can express it as a function of {αi} and {h∗ij}, the latter of which is in turn a function of {αi}. The

mathematical formula is the following:

g(α1, ..., αN ) =
N∏
i=1

α
w0

1−Nw0
i (

1

w0
− 1)w

1
1−Nw0
0

N∏
i=1

(θ +
∑

j∈N(i)

h∗ji)
βw0

1−Nw0 , (A5)

in which, again, h∗ij is a function of {αi}. Thus, g(·) contains two parts that are related to {αi}:

(1) g1(·) ≡
∏N

i=1 α
w0

1−Nw0
i ; and (2) g2(·) ≡

∏N
i=1(θ +

∑
j∈N(i) h

∗
ji)

βw0
1−Nw0 . Thus, g(α1, ..., αN ) ≡ ( 1

w0
−

1)w
1

1−Nw0
0 ×g1(·)×g2(·). Given that Nw0

1−Nw0
< 1, g1(·) is strictly concave (given the property of a Cobb-

Douglas function). If we restrict that βw0

1−Nw0
is sufficiently small, so that A ≡ βw0

1−Nw0
maxi,j,k |(θ +∑

j∈N(i) h
∗
ji)

βw0
1−Nw0

−1 ∂h∗
ji

∂αk
| (the maximum of the norm of the derivative of g2(·)) and its first-order

derivatives are sufficiently small, weakly smaller than those of B ≡ mini,j,k |∂g1(·)∂αk
| (the minimum of

the norm of the derivative of g1(·)), then the curvature of g2(·) is not salient enough that can change

the strict concavity of g1(·) × g2(·). β = 0 or w0 = 0 is a set of parameters that satisfies these

inequalities. Using an argument of continuity, I can find another set of parameters β,w0 > 0 that also

satisfies these inequalities.

Alternatively, the reason to use the above restrictions can be established by the following argu-

ment: consider the second-order derivatives, ∂2g
∂α2

i
and ∂2g

∂αi∂αj
, if the required restrictions hold, then

the derivatives are dominated by the second-order derivatives of g1(·), and the sign of the derivatives

are the same as those of g1(·), which in turn satisfy the conditions required by all the kth leading

principal minors. If the above restrictions can be satisfied, then the requirements on all the kth leading

principal minors of g(·) can also be satisfied.

Therefore, the parametric restrictions to be satisfied to establish the concavity are (1) A and its

first-order derivatives are weakly smaller than those of B, respectively, which in turn requires that

βw0

1−Nw0
is sufficiently small; and (2) Nw0

1−Nw0
< 1. Moreover, we need (3) γ to be small enough so

that Lemma 6 holds. They also serve as sufficient conditions for which the function g(·) is strictly

concave.

Proof of Proposition 3: Suppose {α1, ..., αN} and {α′
1, ..., α

′
N} both solve the optimality con-

dition for the optimal compensation scheme and without loss of generality assume that α1 > α′
1 and

α2 < α′
2. Then there exist α′′

1 and α′′
2 such that α1 > α′′

1 > α′
1 and α2 < α′′

2 < α′
2 and the team’s

output attains a larger level at {α′′
1, α

′′
2, α3, ..., αN}, due to the concavity (and Jensen’s inequality) of

the production function (a function g(·) of {αi}, Lemma 7). This leads to a contradiction. Note that

parameter restrictions are needed since the result is built on Lemma 7.

Proof of Lemma 8: This is a direct implication from the definition of symmetry (Definition 1)
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and Propositions 2 and 3, which imply that {e∗1, ..., e∗N} and {α∗
1, ..., α

∗
N} are both uniquely determined.

Therefore, it must be the case that symmetric positions (i1, i2) are related to the same set of first-

order conditions (2) and (4), since i1 = ϕ(i2) and i2 = ϕ(i1) with graph automorphism ϕ, and graph

automorphism preserves all edge and node relationships. The first-order conditions of arbitrary kth

order neighbors are also the same. As a result, we have α∗
i1

= α∗
i2
, and according to equations (2)

and (4), the own efforts should satisfy e∗i1 = e∗i2 ,
∑

j∈N(i1)
h∗i1j =

∑
j∈N(i2)

h∗i2j , and
∑

j∈N(i1)
h∗ji1 =∑

j∈N(i2)
h∗ji2 . In other words, the total amount of helping efforts given and received is also the same

for these agents, with the same equity share.

Proof of Proposition 4: By equation (2) and Lemma 6, e∗i is an increasing and continuous

function of αk. In other words, a higher αk leads to a larger e∗i , and the relationship is continuous.

Given that
∂h∗

ij

∂αk
is continuous almost everywhere in a compact set [0, h̄], and does not reach infinity,

∂h∗
ij

∂αk
is bounded above for all i, j, k. Denote the upper bound by H̄, which is a strictly increasing

function of β, since
∂h∗

ij

∂αk
cannot be negative everywhere. I now argue that y∗ =

∏N
i=1(e

∗
i )

w0 attains the

maximum at α∗
1 = α∗

2 = ... = α∗
N = 1

N if β is smaller than a threshold, say β̄(G, θ, γ), by the concavity

of the production function (g(·) function, Lemma 7) and the property that e∗i is increasing in αi. To

be more specific, I try to argue that given any small disturbance at the solution α∗
1 = α∗

2 = ... = α∗
N ,

without any loss of generality, suppose we have a new maximum α∗∗
1 > α∗∗

2 , α∗∗
3 = ... = α∗∗

N = 1
N . This

disturbance creates a first-order effect of a reduction of the output due to concavity.

To be more specific, recall that

g(α1, ..., αN ) ≡ (
1

w0
− 1)w

1
1−Nw0
0 × g1(·)× g2(·) =

N∏
i=1

α
w0

1−Nw0
i (

1

w0
− 1)w

1
1−Nw0
0

N∏
i=1

(θ +
∑

j∈N(i)

h∗ji)
βw0

1−Nw0 ,

(A6)

where (1) g1(·) ≡
∏N

i=1 α
w0

1−Nw0
i ; and (2) g2(·) ≡

∏N
i=1(θ +

∑
j∈N(i) h

∗
ji)

βw0
1−Nw0 . g1(·) is a symmetric

and concave function of {αi}, so that it reaches the maximum when α∗
1 = α∗

2 = ... = α∗
N = 1/N . A

deviation around the maximum point yields a reduction (denoted as ∆∗(g1)) of the team’s output.

Now, I argue that it “creates a first-order effect of a reduction of the output” as argued above. g2(·)

is a function of h∗s, which are in turn a function of {αi}. However, a deviation around the same point

only yields a small change (denoted as ∆∗(g2)) to the team’s output given g2(·) when β is very small,

since g2(·) is a power function of β. Specifically, as β → 0, the change ∆∗(g2) → 0. Given continuity,

∆∗(g2) must be sufficiently small under a small β > 0. Therefore, the disturbance around the previous

maximum point creates a first-order effect of a reduction of the output due to concavity when β is

small enough. Or, mathematically, ∆∗(g1) > ∆∗(g2).

Furthermore and under closer scrutiny, we can reinforce the above argument that ∆∗(g2) → 0

when β → 0, taking into account the response of agents’ efforts. Since
∂e∗1
∂αk

∂e∗2
∂αk

are both bounded by a

small number Ẽ, and
∂h∗

1j

∂αk
,
∂h∗

i1
∂αk

,
∂h∗

2j

∂αk
and

∂h∗
i2

∂αk
(i, j, k = 1, 2, ..., N , and i, j ̸= 1, 2) are all bounded by a
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small number H̃ (they are all a continuous function defined on a compact set), and given a sufficiently

small β, the improvement in {e∗i }, if any, is also sufficiently small. Therefore, as β approaches 0, the

improvement ∆∗(g2) also approaches 0.

Thus, given a cutoff value β̄(G, θ, γ), if β < β̄, then α∗∗
1 > α∗∗

2 , α∗∗
3 = ... = α∗∗

N = 1
N is inferior to

α∗
1 = α∗

2 = ... = α∗
N , which is the optimal solution, driven by concavity (and hence Jensen’s inequality),

and a continuity argument (all involved functions are continuous so that the inequality is preserved

in an open interval). In addition, the argument that ∆∗(g1) > ∆∗(g2) rules out the case that αi can

be distinct when β → 0, as the change around the disturbance resulted from g2(·) is always strictly

smaller than that from g1(·), or ∆∗(g1) > ∆∗(g2), provided that β is small.

On the other hand, if β > β̄, then αi should be larger for larger
∂h∗

ij

∂αk
. As H̄ and β approach

infinity,
∂h∗

ij

∂αk
can be sufficiently large. Thus, { e∗i

αi
}Ni=1 (e∗i weighted by 1

αi
), shaped by

∂h∗
ij

∂αk
can be

sufficiently large. In fact, when β approaches infinity, these partial derivatives also approach infinity

(they are all a multiplicative function of β), and the associated agents’ own efforts become sufficiently

large (e∗ → ∞ as β → ∞). When we revisit the small disturbance at α∗∗
1 > α∗∗

2 , α∗∗
3 = ... = α∗∗

N = 1
N ,

we have the result that an increase in α∗∗
1 leads to a very large increase in helping efforts and own

efforts of agent 1 (and his neighbors), and thus there can be an improvement of the team’s output

under such a disturbance. Therefore, we have ∆∗(g1) < ∆∗(g2). Finally, I can show that there is

a cutoff because I can use a continuity argument. For any β ∈ [0, β̄(G, θ, γ)), there exists a small

neighborhood B(β, ϵ) = (β− ϵ, β+ ϵ) ⊆ [0, β̄(G, θ, γ)), such that for any β′ ∈ B(β, ϵ), the optimal pay

associated with β′ has the same property as that associated with β. The proof for β ∈ (β̄(G, θ, γ),∞)

is similar. Moreover, the parametric restrictions in Lemma 7 that βw0

1−Nw0
is sufficiently small does not

create a contradiction with the requirement on β in this proof, since we can find proper values of w0 to

satisfy both. Finally, to show the non-monotonicity of the relationship between payment and degree

centrality, we only need one example of Figure B3.

Proof of Corollary 3: First, using Lemma 8, we have that all peripheral agents enjoy the same

pay, since their positions are symmetric. Thus, the system of optimal pays only contains two values,

α1 for peripheral agents, and α2 for the central agent. (N − 1)α1 + α2 = 1. Thus, using the second

half of the proof of Proposition 4, we have that α1 = α2 if and only if β ≤ β̄(N), and α1 < α2 if and

only if β > β̄(N). Specifically, if β approaches infinity, then α2 approaches 1. A similar continuity

argument used in the proof of Proposition 4 can be applied here to show α2 > α1. We can also use

the results in Corollary 4 below: since there can never be a strictly decreasing relationship between

optimal pay and degree centrality, we must have α2 > α1.

Proof of Corollary 4: Proof by contradiction. By Proposition 4, we only need to focus on

the case in which β is larger than the cutoff value, or otherwise all agents should enjoy the same

pay. Relabel agents in ascending order of degree centrality, such that
∑

k∈N(1) gk1 ≤
∑

k∈N(2) gk2 ≤

... ≤
∑

k∈N(N) gkN . Suppose a contradiction exists, i.e., for all i, j = 1, ..., N and i > j, α∗
i ≤ α∗

j .
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I now show that there exist i′, j′ = 1, ..., N and i′ > j′, so that switching α∗
i′ and α∗

j′ between i′

and j′ (so that the new α∗
i′ is strictly greater than the new α∗

j′) while fixing other pays strictly

increases team’s output. Let i′ = i∗ such that i∗ has neighbors, e∗i∗ is the smallest among e∗s, and

j′ ∈ N(i′) and α∗
j′ = maxk∈N(i′) α

∗
k.

A1 After switching, e∗i′ strictly increases due to higher pay (and his

neighbors are more willing to help him), and it leads to an increase in e∗k′1
for all k′1 ∈ N(i′) due to

complementarity of own effort (equation (2) and thus their neighbors are more willing to help them).

e∗j′ decreases, and for the same reason it leads to a decrease in e∗k′2
for all k′2 ∈ N(j′). However, due

to the facts that (1) j′ ∈ N(i′), (2)
∑

k∈N(j′) gkj′ ≤
∑

k∈N(N) gki′ , (3) the old e∗i′ ≤ e∗j′ , and agents

in ascending order of degree centrality and descending order of payment level, and (4) the positive

marginal effect of helping effort on own effort is decreasing in agents’ own effort (implied by the cost

function (θ+
∑

j∈N(i) hji)
−β, so that agents’ own effort responds to incentives αi less positively when

it is larger), and (5) the marginal product of agents’ own effort is decreasing in itself (implied by the

Cobb-Douglas functional form, so that the increase in the team’s output is larger when we add an

improvement on agents’ own effort at a lower level), we must have that the increase in e∗i′ (driven

by a higher α∗
i′ and thus i’s neighbors are more willing to help i′) and e∗k′1

for all k′1 ∈ N(i′) (driven

by complementarity of agents’ own efforts) outweighs the decrease in e∗j′ (driven by a lower α∗
j′ and

thus j’s neighbors are less willing to help j′) and e∗k′2
for all k′2 ∈ N(j′) (driven by complementarity of

agents’ own efforts) in the contribution to the team’s output.

To be more specific, Fact (1) implies that the increase in e∗i′ (due to the increase in α∗
i′) also leads

to the increase in e∗j′ and the decrease in e∗j′ (due to the decrease in α∗
j′) also leads to the decrease in

e∗j′ , since helping efforts also respond to the switch of α∗
i′ and α∗

j′ and the associated changes in returns

of helping efforts; combined with Facts (4), this implies that the resulting increase in e∗j′ outweighs the

decrease in e∗i′ (given decreasing marginal effects of helping efforts). Therefore, since the new e∗i′ > e∗j′ ,

combining with Fact (5) implies that switching α∗
i′ and α∗

j′ leads to an increase in the team’s output

due to the change in e∗i′ and e∗j′ (in response to switching α∗
i′ and α∗

j′). Denote this as Fact (6). Also,

the increase in e∗i′ also leads to the increase in e∗k′1
(where k′1 ∈ N(i′)) and the decrease in e∗j′ also leads

to the decrease in e∗k′2
(where k′2 ∈ N(j′)), and Facts (2) and (3) imply that more neighbors of i′ are

affected than those of j′. Further combined with Fact (4), we have that for each neighbor of j′, say

k′2 ∈ N(j′), we can find a distinct neighbor of i′, say k′1 ∈ N(i′), such that the decrease in k′2’s own

effort is outweighed by the increase in k′1’s own effort (also given decreasing marginal effects of helping

efforts). Denote this as Fact (7). Combining Facts (3), (5), (6), and (7) implies that the responses

of relevant agents’ own efforts lead to an improvement in the team’s output. Thus, a contradiction is

established.

Proof of Proposition 5: I provide examples to establish the proof. For brevity, I only discuss

A1We can find the second-smallest, and so forth, if i∗ does not have any neighbor.
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the proof for wi, but the proof for θi, βi, γi can be analogously obtained. With a low level of β, each

agent enjoys a similar level of pay. Consider two different agents 1 and 2 with w1 = 0 and w2 > 0.

Then, by first-order conditions (equation (7) and (1)), α∗
1 = 0 and α∗

2 > 0. Since agents 1 and 2 can

interchangeably have arbitrary network positions, we can establish the non-monotonic relationship

between degree centrality and optimal payment share. For even a positive w1 = ϵ, the results still

hold due to a continuity argument, since all involved functions are smooth almost everywhere.
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Appendices Not For Publication

Appendix B Examples for Calculation with Small N

In this section, I provide some examples for an illustration of the lemmas and propositions in the

main text. In particular, these examples are all consistent with Proposition 4, which indicates the

non-monotonicity of the relationship between compensation and degree centrality.

B.1 Cases with N ≤ 5

Cases with N = 3 First consider a star network with N = 3, shown in Figure B1. By Lemma

8, in optimal compensation scheme, α1 = α3 = ᾱ. By Lemma 1, h∗12, h
∗
21, h

∗
23, h

∗
32 > 0. By Lemma 3,

we have h∗12 = h∗32 ≡ h1, h
∗
21 = h∗23 ≡ h2. Hence h∗1, h

∗
2 are the solution to the following equations

ᾱ(ᾱ
2w0

1−3w0 (1− 2ᾱ)
w0

1−3w0 )
βw0

1− 3w0
w

1
1−3w0
0 (θ + 2h∗

1)
2∗ βw0

1−3w0
−1

(θ + h∗
2)

βw0
1−3w0 (

α

3
w0)

1
1−3w0 (

1

w0
− 1) = γh∗

1, (B1)

(1− 2ᾱ)(ᾱ
2w0

1−3w0 (1− 2ᾱ)
w0

1−3w0 )
βw0

1− 3w0
w

1
1−3w0
0 (θ + 2h∗

1)
2∗ βw0

1−3w0 (θ + h∗
2)

βw0
1−3w0

−1
(
α

3
w0)

1
1−3w0 (

1

w0
− 1) = 2γh∗

2 (B2)

These equations have a unique solution h∗1, h
∗
2. Plugging h∗1, h

∗
2 into equation (2), we can get

e∗1, e
∗
2, e

∗
3, and thus the team’s output y =

∏3
i=1(e

∗
i )

w0 . For varying βs, we can find the related optimal

ᾱ. The relation between α2
α1

= 1−2ᾱ
ᾱ and β is shown in Figure B1(b). We can see that for a small value

of β, α2
α1

= 1, which implies that the same pay should go to the central node and the peripheral nodes.

For a large value of β, the central node should enjoy a higher level of pay compared to the peripheral

nodes, and the gap of the pay increases as β increases.

Figure B1

(a) (b)

Notes: The figure illustrates the relationship between the ratio of the equity share α2
α1

and β in a 3-agent star network.
The values of the parameters are w0 = 0.1, θ = 1, γ = 1.

Cases with N = 4 First consider a line network with N = 4, shown in Figure B2. By

Lemma 8, in optimal compensation scheme, α1 = α4 = ᾱ1, and α2 = α3 = ᾱ2. By Lemma 1,
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h∗12, h
∗
34, h

∗
21, h

∗
43 > 0. Again, by Lemma 3, we have h∗21 = h∗34 ≡ h1, h

∗
12 = h∗43 ≡ h2, h

∗
23 = h∗32 ≡ h3.

First, suppose h3 > 0, then by Lemma 3, we have h2 = h1 + h3, and
h2+h3
ᾱ2

= h1
ᾱ1
. Then we have

h2 = ᾱ1+ᾱ2
2ᾱ1

h1, and h2 = ᾱ2−ᾱ1
2ᾱ1

h1, which requires that ᾱ2 > ᾱ1. Hence h1 is the solution to the

following equation:

ᾱ2(ᾱ1ᾱ2)
2w0

1−4w0
βw0

1− 4w0
w

1
1−4w0
0 (θ +

ᾱ1 + ᾱ2

2α1
h1)

4∗ βw0
1−4w0

−1
= γ

ᾱ2

ᾱ1
h1. (B3)

This equation has a unique solution h∗1. Plugging h∗1 into equation (2), we can get e∗1, e
∗
2, e

∗
3, e

∗
4,

and thus the team’s output y =
∏4

i=1(e
∗
i )

w0 . If α2 ≤ α1, then h3 = 0, and h1, h2 are the solution to

the following equations:

α1(ᾱ1ᾱ2)
2w0

1−4w0
βw0

1− 4w0
w

1
1−4w0
0 (θ + h1)

2∗ βw0
1−4w0

−1
(θ + h2)

2∗ βw0
1−4w0 (

1

w0
− 1) = γh1, (B4)

ᾱ2(ᾱ1ᾱ2)
2w0

1−4w0
βw0

1− 4w0
w

1
1−4w0
0 (θ + h1)

2∗ βw0
1−4w0 (θ + h2)

2∗ βw0
1−4w0

−1
(
1

w0
− 1) = γh2 (B5)

These equations have a unique solution h∗1, h
∗
2. Again, we can solve for the team production

as a function for ᾱ1, ᾱ2. We can plot the relationship between the maximized team’s output and

compensation scheme α1. It is shown in Figure B3. For β = 6, the team’s output reaches the

maximum at ᾱ1 = 0.25, ᾱ2 = 0.25. For β = 16, the team’s output reaches the maximum at ᾱ1 =

0.073, ᾱ2 = 0.427.

Figure B2

(a) (b)

Notes: The figure illustrates the relationship between the ratio of the optimal equity share ᾱ2
ᾱ1

and β in a 4-agent line
network. The values of the parameters are w0 = 0.1, θ = 1, γ = 1.
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Figure B3

(a) (b)

Notes: The figure illustrates the relationship between the team’s output and the equity share ᾱ1 in a 4-agent line network.
The values of the parameters for (a) are w0 = 0.1, θ = 1, β = 6, γ = 1, and those for (b) are w0 = 0.1, θ = 1, β = 16,
γ = 1.

For varying βs, we can find the related optimal ᾱ1, ᾱ2. The relation between optimal ᾱ2
ᾱ1

= 1−3ᾱ
ᾱ

is shown in Figure B2(b). We can see that for a small value of β, ᾱ2
ᾱ1

= 1, which implies that the same

pay should go to the central node and the peripheral nodes. For a large value of β, the central node

should enjoy a higher level of pay compared to the peripheral nodes, and the gap of the pay increases

as β increases.

Then consider a star network with N = 4, shown in Figure B4(a). By Lemma 8, in optimal

compensation scheme, α2 = α3 = α4 = ᾱ. By Lemma 1, h∗i1, h
∗
1i > 0 for all i ∈ {2, 3, 4}. By Lemma

3, we have h∗21 = h∗31 = h∗41 ≡ h1, h
∗
12 = h∗13 = h∗14 ≡ h2. Hence h∗1, h

∗
2 are the solution to the following

equations

ᾱ(ᾱ
3w0

1−4w0 (1− 3ᾱ)
w0

1−4w0 )
βw0

1− 4w0
w

1
1−4w0
0 (θ + 3h∗

1)
3∗ βw0

1−4w0
−1

(θ + h∗
2)

βw0
1−4w0 (

α

4
w0)

1
1−4w0 (

1

w0
− 1) = γh∗

1, (B6)

(1− 3ᾱ)α(ᾱ
3w0

1−4w0 (1− 3ᾱ)
w0

1−4w0 )
βw0

1− 4w0
w

1
1−4w0
0 (θ + 3h∗

1)
3∗ βw0

1−4w0 (θ + h∗
2)

βw0
1−4w0

−1
(
α

4
w0)

1
1−4w0 (

1

w0
− 1) = 3γh∗

2 (B7)

These equations have a unique solution h∗1, h
∗
2. Plugging h∗1, h

∗
2 into equation (2), we can get

e∗1, e
∗
2, e

∗
3, e

∗
4, and thus the team’s output y =

∏4
i=1(e

∗
i )

w0 . For varying βs, we can find the related

optimal ᾱ. The relation between α2
α1

≡ 1−3ᾱ
ᾱ is shown in Figure B4(b). We can see that for a small

value of β, ᾱ
1−3ᾱ = 1, which implies that the same pay should go to the central node and the peripheral

nodes. For a large value of β, the central node should enjoy a higher level of pay compared to the

peripheral nodes, and the gap of the pay increases as β increases.
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Figure B4

(a) (b)

Notes: The figure illustrates the relationship between the ratio of the equity share ᾱ2
ᾱ1

and β in a 4-agent star network.
The values of the parameters are w0 = 0.1, θ = 1, γ = 1.

Cases with N = 5 Consider a line of 5 agents. Let α1 = α5 = ᾱ1, α2 = α4 = ᾱ2. By Lemma 3:

h12 = h54 ≡ h1, h21 = h45 ≡ h2, h23 = h43 ≡ h3, and h32 = h34 ≡ h4. By Lemma 1: h1, h2, h3, h4 > 0.

Thus by Lemma 3: h2 = 2h3, and
h1
α1

= 2h4
1−2α1−2α2

. Then h2, h4 are the solution to the following

equations:

ᾱ1(ᾱ1
2ᾱ2

2(1− 2α1 − 2α2))
w0

1−5w0
βw0

1− 5w0
w

1
1−5w0
0

× (θ + h2)
3∗ βw0

1−5w0
−1

(θ +
1− 2ᾱ2

1− 2ᾱ1 − 2ᾱ2
h4)

2
βw0

1−5w0 (
α

5
w0)

1
1−5w0 (

1

w0
− 1) = γ

2ᾱ1

1− 2ᾱ1 − 2ᾱ2
h4,

(B8)

ᾱ2(ᾱ1
2ᾱ2

2(1− 2ᾱ1 − 2ᾱ2))
w0

1−5w0
βw0

1− 5w0
w

1
1−5w0
0

× (θ + h2)
3∗ βw0

1−5w0 (θ +
1− 2ᾱ2

1− 2ᾱ1 − 2ᾱ2
h4)

2
βw0

1−5w0
−1

(
α

5
w0)

1
1−5w0 (

1

w0
− 1) = γ

3

2
h2.

(B9)

These equations have a unique solution h∗2, h
∗
4. Plugging h∗2, h

∗
4 into equation (2), we can get

e∗1, e
∗
2, e

∗
3, e

∗
4, e

∗
5, and thus the team’s output y =

∏5
i=1(e

∗
i )

w0 . The relationship between compensation

and output is shown in Figure B6. In Figure B6(a), the value of β is relatively small, and thus output

attains the maximum when α1 = α2 = 1−2α1−2α2 = 0.2. In Figure B6(b), the value of β is relatively

large, and the output attain maximum when α1 = 0.201, α2 = 0.198.
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Figure B5

(a) (b)

Notes: The figure illustrates the relationship between the ratio of the equity share α2
α1

and β in a 5-agent line network.
The values of the parameters are w0 = 0.1, θ = 1, γ = 1.

Figure B6

(a) (b)

Notes: The figure illustrates the relationship between the team’s output and the equity share α1, α2 in a 5-agent line
network. The values of the parameters for (a) are w0 = 0.1, θ = 1, β = 7, γ = 1, and those for (b) are w0 = 0.1, θ = 1,
β = 27, γ = 1.

For varying βs, we can find the related optimal ᾱ1, ᾱ2. The relation between α1
α2
, 1−2ᾱ1−2ᾱ2

ᾱ2
and β

is shown in Figure B5(b). We can see that for a small value of β, α2
α1

= 1, which implies that the same

pay should go to the central node and the peripheral nodes. For a large value of β, the central node

should enjoy a higher level of pay compared to the peripheral nodes, and the gap of the pay increases

as β increases.

B.2 Generalization of N agents

Now, I analyze the case of three stylized networks with an arbitrary number of agents. These

examples are all consistent with Proposition 4, which indicates the non-monotonicity of the relationship

between compensation and degree centrality.

Star of N agents Consider a star with N agents. Let the central agent be agent 1, and

{2, 3, ..., N} are the peripheral nodes. The following paragraph and Figure B7 describe the structure

of compensation for a star network. This is also consistent with Corollary 3.
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Example 1. (Optimal compensation in a star) In a star with N agents, in the optimal compensation

scheme, when β is small, the same pay goes to all agents. When β is large, higher pay goes to the

central nodes, and all peripheral nodes get the same, and lower, pay.

Figure B7

Notes: The figure illustrates the relationship between the ratio of the equity share α1
αN

and N . The values of the parameters
are w0 = 0.1, θ = 1, β = 10, γ = 1.

Line of N agents Consider a line with N agents as shown in Figure 5(b). The equilibrium

of the network structure is characterized as follows, which can be obtained using induction (from line

networks of small even and odd numbers of nodes):

Example 2. (Optimal compensation in a line) In a line network with N agents, all agents get the

same pay if β is small. When β is large, there is a non-monotonic relationship between optimal pay

and degree centrality.

Circle of N agents Consider a circle with N agents. The following argument can be obtained

using the symmetry argument in Lemma 8, since all nodes in the circle have symmetric positions.

Example 3. (Optimal compensation in a circle) In a circle with N agents, the optimal compensation

system is one in which the same pay goes to each agent.

Appendix C Additional Proofs

Details of deriving the best-reply functions: From equation (1), we take a first-order

condition, and thus the power of ei should be w0 − 1, and the first term in equation (1) should

be multiplied by w0. The second term in equation (1) is linear in ei, and thus taking a first-order

derivative yields (θ +
∑

j∈N(i) hji)
−β. Therefore, we have the following equation:

αiw0e
∗
1
w0e∗2

w0 · · · eiw0−1 · · · e∗N
w0 − (θ +

∑
j∈N(i)

hji)
−β = 0. (C1)
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Rearrange equation (C1) by expressing ei as a function of e∗j (j ̸= i) yields

ei = ((θ +
∑

j∈N(i)

hji)
−β

1−w0 )
∏
j ̸=i

(e∗j )
w0

1−w0 . (C2)

Since equation (C2) holds for all i = 1, 2, ..., N , comparing the equation for i and j yields

e∗j =
αi

αj
ei ×

(θ +
∑

k∈N(i) hki)
−β

(θ +
∑

k∈N(j)hkj
)−β

. (C3)

Express all e∗j as a function of ei by equation (C3), and plug back to equation (C2), we have

ei = (αiw0)× ew0N
i × ((θ +

∑
j∈N(i)

hji)
β)

∏
j ̸=i

[(θ +
∑

k∈N(i)

hki)
−βw0N (

N∏
j=1

(θ +
∑

k∈N(j)

hkj)
βw0)]. (C4)

Rearranging equation (C4) yields equation (2). Thus, we can express the payoff function of all

helping efforts hij , which is the right-hand side of the equation (3). Taking a first-order derivative of

the first term of the equation (3) yields the left-hand side of the inequality (4). Taking a first-order

derivative of the second term of the equation (3) yields the right-hand side of the inequality (4). Since

hij should be weakly positive, the direction of the inequality (4) should be “less than or equal to.”

Standard complementary slackness conditions follow.

Proof of Proposition 1: This proposition directly derives from the Theorem 1 in Rosen (1965),

which states that in an n-person concave game where the strategy space of each agent is convex and

compact and the payoff function is concave in his own strategy, there always exists a Nash equilibrium.

To prove that there exists a subgame perfect equilibrium of the subgame of stages 1 and 2, we need

to show that the existence condition stated in Theorem 1 in Rosen (1965) is satisfied in the subgames

of stage 2 and stage 1.

In stage 2, each agent i decides her level of own effort e∗i to maximize her payoff, taking the

choices of other agents {e∗j}j ̸=i as given. Thus she solves

e∗i = argmax
ei

αie
∗
1
w0e∗2

w0 · · · eiw0 · · · e∗N
w0 − (θi +

∑
j∈N(i)

hji)
−βei −

1

2
γ(

∑
j∈N(i)

hij)
2. (C5)

Notice that if ei approaches +∞, then the above equality cannot be satisfied. Thus, we can

impose an upper limit to the range of ei. Then, we can observe that the strategy space for ei is convex

and compact and that the objective function is concave in ei, therefore there exists a Nash equilibrium

of this subgame. Actually, the profile of E∗ = (e∗1, .., e
∗
N ) is given by equation (2).

By backward induction, substituting equation (2) to the payoff function, we could find that in
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stage 1 agent i’s problem is to find {hij}j∈N(i) given {h∗kl}k ̸=i,l∈N(k):

h∗ij = argmax
hij

(αiw0)
1

1−Nw0 (
1

w0
− 1)(

N∏
k=1

(θ +
∑

l∈N(k)

h∗kl)
β)

w0
1−Nw0 − γ(

∑
j∈N(i)

hij)
2, (C6)

First, note that if hij goes to +∞, then the complimentary slackness condition (4) may fail. So

the solution H∗ = (h∗ij) is bounded above. Again, observe that the strategy space for hij is convex and

compact and that the objective function is concave in hij , given β ∈ (0, 1−Nw0
w0

). Therefore there exists

a Nash equilibrium of the subgame of stage 1, and there exists a subgame perfect Nash equilibrium

of the overall game.

Proof of Lemma 1: Prove by contradiction. First show that every non-isolated agent gives a

strictly positive amount of help. For such agent i, let j ∈ N(i) denote one of her neighbors. If in

equilibrium the total amount of help i gives is zero, then the first-order condition for hij implies that

0 <
βw0

1−Nw0

∏
j≥1

(θ +
∑

k∈N(j)

h∗kj)
βw0

1−Nw0 (θ +
∑

k∈N(j)

h∗kj)
−1(αiw0)

1
1−Nw0 (

1

w0
− 1) ≤ γ(

∑
j∈N(i)

h∗ij) = 0,

and hence renders a contradiction.

Then show that every non-isolated agent receives a strictly positive amount of help. For non-

isolated agent i, assume that all of her neighbors do not give her any help, i.e., for any j ∈ N(i),

h∗ji = 0. There are two cases. (1) If one of i’s neighbors say j, has no other neighbors except for i,

then since all non-isolated agents give a strictly positive amount of help, we have h∗ji > 0, which is a

contradiction. (2) If all i’s neighbors have other neighbors except i, i.e. for any j ∈ N(i), N(j) has

no less than two elements, then since all non-isolated agents give a strictly positive amount of help,

there exists k ∈ N(j)(k ̸= i), such that h∗jk > 0. Then the first-order conditions of hji and hjk implies

βw0

1−Nw0

∏
j≥1

(θ +
∑

k∈N(j)

h∗kj)
βw0

1−Nw0 θ−1(αiw0)
1

1−Nw0 (
1

w0
− 1) ≤ γ(

∑
k∈N(j)

h∗jk), (C7)

and

βw0

1−Nw0

∏
j≥1

(θ +
∑

k∈N(j)

h∗kj)
βw0

1−Nw0 (θ +
∑

k∈N(j)

h∗jk)
−1(αiw0)

1
1−Nw0 (

1

w0
− 1) = γ(

∑
k∈N(j)

h∗jk). (C8)

Since h∗jk > 0, θ < θ +
∑

k∈N(j) h
∗
jk. Hence, compare (C7) and (C8) we have

∑
k∈N(j) h

∗
jk >∑

k∈N(j) h
∗
jk, and hence a contradiction.

Proof of Lemma 2: The proof is straightforward noting that for any i and j, (
∑

j∈N(i) h
∗
ij)(θ+
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∑
k∈N(j) h

∗
kj) ≥ M(H∗). h∗ij > 0 implies that the first-order condition takes an equality sign, and

thus for any j′ ∈ N(i)/{j}, (
∑

j∈N(i) h
∗
ij)(θ +

∑
k∈N(j′) h

∗
kj′) ≥ (

∑
j∈N(i) h

∗
ij)(θ +

∑
k∈N(j) h

∗
kj). Since∑

j∈N(i) h
∗
ij > 0, we have

∑
k∈N(j) h

∗
kj ≤

∑
k∈N(j) h

∗
kj′ for any j′ ∈ N(i)/{j}. By the same reasoning, if

h∗ij > 0, we have for any i′ ∈ N(j)/{i},
∑

j∈N(i) h
∗
ij ≤

∑
j∈N(i′) h

∗
i′j .

Proof of Lemma 3: This is a direct implication of the first-order condition (4). For j1, j2 ∈ N(i)

such that h∗ij1 , h
∗
ij2

> 0, we have the following to equations:

βw0

1−Nw0

∏
j≥1

(θ +
∑

k∈N(j)

h∗kj)
βw0

1−Nw0 (θ +
∑

k∈N(j1)

h∗kj1)
−1(αiw0)

1
1−Nw0 (

1

w0
− 1) = γ(

∑
k∈N(j)

h∗jk), (C9)

βw0

1−Nw0

∏
j≥1

(θ +
∑

k∈N(j)

h∗kj)
βw0

1−Nw0 (θ +
∑

k∈N(j2)

h∗kj2)
−1(αiw0)

1
1−Nw0 (

1

w0
− 1) = γ(

∑
k∈N(j)

h∗jk), (C10)

Compare (C9) and (C10) we have θ+
∑

k∈N(j1)
h∗kj1 = θ+

∑
k∈N(j2)

h∗kj2 , and hence j1, j2 receive

the same amount of help. We could prove the second part of this lemma in the same way.

Proof of Lemma 4: Suppose the underlying network G has n agents and l links, where n ≥ 2,

and each node has at least degree 1 (thus the network is a connected one). Thus n− 1 ≤ l ≤ n(n−1)
2 .

There are 2l unknown helping efforts (each link is associated with 2 helping efforts) in total. The sum

of degrees is also 2l. Since all elements in H∗ are interior solutions, we can use Lemma 3 to determine

which helping efforts are equal (adjusted by compensation), and this may yield 2(2l − n) = 4l − 2n

equationsB1. Also observe that the number of nodes n and the number of edges l satisfy the following

inequality: n− 1 ≤ l ≤ n(n−1)
2 , and thus 2l − 2 ≤ 4l − 2n ≤ 4l − 2

√
2l. This implies that there are at

most 2 unknowns remaining. For a bipartite network, there are two independent sets, and each node

in the same independent set gives and receives the same amount of helping efforts, respectively, and

each amount of given (received) helping efforts is associated with one unknown. For a non-bipartite

network, it then has to be the case that all nodes must receive and give the same amount of helping

efforts, as a result of Lemma 3.

Proof of Proposition 2: By Lemma 4, if each hij (gij = 1) in the profile of helping efforts

H takes interior solution, then there are at most two unknowns, and there are at most two amounts

of helping efforts given and received (adjusted by compensation), namely (Hg
1, H

g
2) and (Hr

1, H
r
2).

If there are exactly two unknowns, then we can express Hg
i and Hr

i as a (strictly increasing) linear

transformation of the two unknowns (namely h̄1 and h̄2), and thus Hr
i = Hr

i (h̄1, h̄2), and Hg
i =

Hg
i (h̄1, h̄2), where i ∈ {1, 2}. The original set of first-order conditions is reduced to two and can be

B1With n nodes and l links, there are 2l−n pairs of neighbors, and thus 2(2l−n) = 4l− 2n equations on total helping
efforts.

32



rewritten as

M(H∗)(θ +Hr
1(h̄1, h̄2))

−1 = Hg
1(h̄1, h̄2), (C11)

and

M(H∗)(θ +Hr
2(h̄1, h̄2))

−1 = Hg
2(h̄1, h̄2), (C12)

Since the system of first-order conditions only has two degrees of freedom, and the LHS is strictly

decreasing in (h̄1, h̄2) and the RHS is strictly increasing in (h̄1, h̄2), and at least one solution exists

by Proposition 1. Then we have that (h̄1, h̄2) and hence Hr
i and Hg

i (i ∈ {1, 2}) can be uniquely

determined.

If there is exactly one unknown, then there is one amount of helping efforts given and received,

namely Hg and Hr. Then, we can express Hg and Hr as a (strictly increasing) linear transformation

of the only unknown (namely h̄), and thus Hr = Hr(h̄), and Hg = Hg(h̄). There is only one distinct

first-order condition:

M(H∗)−Hg(h̄)(θ +Hr(h̄)) = 0. (C13)

Again, since the first-order condition only has one degree of freedom, and by the same reasoning

as above, we have that h̄ and hence Hr and Hg can be uniquely determined.

On the other hand, if some hij (gij = 1) in the profile of helping efforts H take a corner solution,

then in (4) equality does not hold, and instead hij is directly pinned down by hij = 0. Therefore, the

total degree of freedom for H is the same when some hij take a corner solution, as in the case where

all hij take an interior solution.

In addition, we can use a special version of the fixed-point theorem as in Kennan (2001) to provide

another approach and intuitions for the proof, as argued in Shi (2024).

Proof of Corollary 1: For a network without any loop (i.e., a tree), we can find its leaf nodes,

whose degrees are equal to 1. For these leaf nodes, the total amount of helping effort (both given

and received) is equal to the helping effort on the single link between the nodes and their neighbor

(Suppose a leaf node i and its neighbor j, then h∗ij and h∗ji, adjusted by compensation, are pinned

down by M(H∗) = h∗ij(θ+
∑

k∈N(j) h
∗
kj), and M(H∗) =

∑
k∈N(j) h

∗
jk(θ+h∗ji)). Given all h∗ij and h∗ji of

the leaf nodes, we can pin down the helping efforts for all nodes with degree 2, with the same method.

Given these helping efforts, we can apply the above reasoning to the rest of the nodes, until all helping

efforts are determined. Such is the unique way in which H∗ is determined. For any network with
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loops, the proof is obvious because it can be directly derived from the example of a circle with N = 3.

As in Shi (2024), I also have an argument that involves an auxiliary matrix defined therein.

Appendix D Empirical Analysis

In this section, I first validate model predictions using simulation data, and then test them using

real-world observational data.

D.1 Empirical Strategy

The main empirical strategy for estimating the relationship between network position, especially

centrality, and optimal payment is a nonparametric specification as follows:

Paymenti = f(Centralityi) +Xiβ + ui, (D1)

where Paymenti is the optimal payment (share) in the numerical analysis and the observed pay-

ment in the empirical analysis of agent i, Centralityi is the degree centrality or Bonacich centrality,B2

f(·) is an unspecified function to be nonparametrically estimated (can be parameterized as a linear or

quadratic function when estimating with observational data, and this function is different from that

in the Model section), Xi is a vector of control variables, including personal characteristics and fixed

effects when using the real-world observational data. Finally, ui is the error term.B3 For robustness

checks and to establish plausible causality and not just correlation, I also exploit a Hausman-style

instrumental variable estimation. The results are qualitatively similar.

D.2 Numerical Analysis

I generate random Poisson graphs with different levels of mean degree—5, 10, 15, 20—and N =

1000 nodes. I also assign different values of β and calculate the optimal compensation scheme for

each case. In the network, each agent has the same production and cost parameters: (w0, θ, β, γ).

Thus, there is no additional heterogeneity besides the payment share α. I compute the optimal

compensation scheme given the first-order conditions and the degree and Bonacich centrality. I exploit

a nonparametric specification (D1) to gauge the relationship between optimal payment share and

degree and Bonacich centrality of each agent.

I first present the relationship for different network densities with a low β, β = 0.05, in Figures

D1 and D2. In Figure D3 (a), as the degree increases, optimal pay first increases, then decreases, and

then increases again. In Figure D1 (b)-(d), the optimal pay first remains roughly constant and then

B2According to Section 3, the theoretical results are closer connected to degree centrality, but empirically they can also
be applied to Bonacich centrality, as mentioned below.

B3I use robustness standard errors, or equivalently, cluster standard errors at the individual level.

34



increases. This is consistent with Proposition 4 that optimal pay can be position-invariant, at least

for a subset of agents. Figures D2 (a)-(d) with Bonacich centrality have similar patterns.

Next, I present the relationship for a high β, β = 0.5, in Figures D3 and D4. All figures indicate

a strictly increasing relationship between the optimal payment share and the degree or Bonacich

centrality. This is also consistent with Proposition 4, which suggests that a monotonic relationship

can appear with a high β. This is the necessary condition for the strictly increasing relationship

between optimal pay and degree centrality.

Figure D1: Relationship between optimal pay and degree centrality, low β

(a) (b)

(c) (d)

Notes: These figures illustrate the nonparametric relationship between the mean of optimal compensation α∗ and degree
centrality of each agent in different random Poisson networks, all with N = 1000 nodes. A local-linear kernel estimator
is exploited, using the STATA command npregress kernel. There is no heterogeneity with respect to the production and
cost parameters of different agents. The value of β is low, 0.05. These figures show that the relationship between optimal
pay and centrality can be non-increasing or flat with a low β.
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Figure D2: Relationship between optimal pay and Bonacich centrality, low β

(a) (b)

(c) (d)

Notes: These figures illustrate the nonparametric relationship between the mean of optimal compensation α∗ and Bonacich
centrality of each agent in different random Poisson networks, all with N = 1000 nodes. A local-linear kernel estimator
is exploited, using the STATA command npregress kernel. There is no heterogeneity with respect to the production and
cost parameters of different agents. The value of β is low, 0.05. These figures show that the relationship between optimal
pay and centrality can be non-increasing or flat with a low β.

Figure D3: Relationship between optimal pay and degree centrality, high β

(a) (b)

(c) (d)

Notes: These figures illustrate the nonparametric relationship between the mean of optimal compensation α∗ and degree
centrality of each agent in different random Poisson networks, all with N = 1000 nodes. A local-linear kernel estimator
is exploited, using the STATA command npregress kernel. There is no heterogeneity with respect to the production and
cost parameters of different agents. The value of β is high, 0.5. These figures show that the relationship between optimal
pay and centrality can be strictly increasing with a high β.
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Figure D4: Relationship between optimal pay and Bonacich centrality, high β

(a) (b)

(c) (d)

Notes: These figures illustrate the nonparametric relationship between the mean of optimal compensation α∗ and Bonacich
centrality of each agent in different random Poisson networks, all with N = 1000 nodes. A local-linear kernel estimator
is exploited, using the STATA command npregress kernel. There is no heterogeneity with respect to the production and
cost parameters of different agents. The value of β is high, 0.5. These figures show that the relationship between optimal
pay and centrality can be strictly increasing with a high β.

D.3 Analysis Using Observational Data

Next, I use the Workplace Employment Relations Study (WERS) 2011 survey data from the

United Kingdom to provide empirical support for the theoretical results. The data set provides in-

formation on the weekly pay and the social networks, including the number of workers with similar

educational and social class (thus a high level of homophily), same gender and family background

(another measure of homophily), same religion, and same ethnicity. Therefore, I construct the asso-

ciated measures of degree centrality. Also, note that the data does not provide enough information

to construct Bonacich centrality, so I cannot use this centrality measure for empirical analysis. I

construct a degree centrality measure for each of the social connections. The details of the data

can be found in Appendix D. I use log weekly payments to proxy the compensation scheme for each

agent. Note that since I have controlled for workplace fixed effects, it is equivalent to using log equity

share as the dependent variable. Under this log form, the regression coefficients can be interpreted as

(semi-)elasticities.

37



In order to control for high-dimensional fixed effects, I use parametric regressions for ease of

computation. The f(·) function in equation (D1) is specified as a linear or a quadratic function. In

the regression, I control for age dummies, work experience dummies, a gender dummy, and workplace

and survey date fixed effects.

Moreover, the empirical setting corresponds to the theoretical setting under the assumption that

each workplace employs an “optimal” compensation scheme. This assumption is plausibly valid since

I only include private firms in competitive sectors that maximize total efficiency.

I first use the full sample for regression analysis. I report the results in Table D1. In columns (1)

through (4), in which the f(·) function is linear, none of the degree centrality measures is positively

and significantly associated with the weekly pay. As I use a quadratic f(·) function in columns (5)

through (8), the relationships become statistically insignificant.

Table D1: Network position and payment: Full sample results

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable: log Weekly Pay
Full Sample

Deg. Educational Backgd. -0.0177*** -0.0327***
(0.00200) (0.0102)

Deg. Gender Family Backgd. -0.00366* -0.00135
(0.00216) (0.00977)

Deg. Religious Backgd. 0.000855 0.00646
(0.00235) (0.00947)

Deg. Ethnicity Backgd. 0.00381 0.0162
(0.00233) (0.0112)

Deg. Educational Backgd.2 0.000817
(0.000522)

Deg. Gender Family Backgd.2 -0.000129
(0.000533)

Deg. Religious Backgd.2 -0.000352
(0.000574)

Deg. Ethnicity Backgd.2 -0.000685
(0.000612)

Workplace FE Y Y Y Y Y Y Y Y
Survey Date FE Y Y Y Y Y Y Y Y

Controls Y Y Y Y Y Y Y Y
Observations 20,902 20,902 20,902 20,902 20,902 20,902 20,902 20,902
R-squared 0.288 0.286 0.286 0.286 0.288 0.286 0.286 0.286

Notes: The sample is constructed using WERS 2011 data. Controls include age dummies, work experience dummies, a gender
dummy, and workplace and survey date fixed effects. “Deg.” is an abbreviation for “degree,” and “Backgd.” is an abbreviation
for “Background.” * Significant at 10%, ** 5%, *** 1%. The standard errors are clustered at the workplace level.

Next, I examine the heterogeneity underlying the main results. In particular, I look at the

situations for a high β and a low β. According to Bandiera, Barankay, and Rasul (2004), I define

offices for “white-collar” workers as workplaces with a high β—a high level of externality of mutual help

or cooperation. Examples include a financial institution or a law firm that needs frequent interactions

among members of the organization. A factory assembly line, a supermarket, or a farm is not such a

case, and it corresponds to the case with a low β. Table D2 presents the results. Columns (1) through

(4) correspond to the high β case, and all degree centrality measures are positively correlated with

the weekly pay. Columns (5) through (8) correspond to the low β case, and the positive correlations

disappear. Thus, the empirical findings support Proposition 4.
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Table D2: Heterogeneous results based on cooperation externality

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable: log Weekly Pay
High Cooperation Externality Workplace Low Cooperation Externality Workplace

Deg. Educational Backgd. 0.0255*** -0.0163***
(0.00291) (0.00251)

Deg. Gender Family Backgd. 0.0159*** -0.00309
(0.00243) (0.00258)

Deg. Religious Backgd. 0.0306*** 0.00257
(0.00251) (0.00274)

Deg. Ethnicity Backgd. 0.0215*** 0.00428
(0.00235) (0.00280)

Workplace FE Y Y Y Y Y Y Y Y
Survey Date FE Y Y Y Y Y Y Y Y

Controls Y Y Y Y Y Y Y Y
Observations 7,417 7,417 7,417 7,417 13,813 13,813 13,813 13,813
R-squared 0.828 0.984 0.831 0.828 0.297 0.295 0.295 0.295

Notes: The sample is constructed using WERS 2011 data. Controls include age dummies, work experience dummies, a gender
dummy, and workplace and survey date fixed effects. “Deg.” is an abbreviation for “degree,” and “Backgd.” is an abbreviation
for “Background.” * Significant at 10%, ** 5%, *** 1%. The standard errors are clustered at the workplace level.

Finally, I employ an instrumental variable estimation strategy for robustness checks, where the

instrument is a Hausman-style instrument which is obtained by calculating the average in the same

sector-location pair, excluding its own.B4 The results reported in Appendix Table E2 are still robust.

Appendix E Data Compilation and Robustness Checks

The Workplace Employment Relations Study (WERS) is a national survey of people at work in

Britain. It collects data from employers, employee representatives, and employees in a representative

sample of workplaces. I use the wave of 2011 survey for empirical analysis. The information collected

in WERS comes from 3 distinct sources: (1) a random probability sample of workplaces in which

face-to-face structured interviews are conducted with the most senior manager responsible for employ-

ment relations and personnel issues—in each workplace a self-completion questionnaire is distributed

before the interview to collate information on the basic characteristics of the workforce, and a second

questionnaire is left at the end of the interview to assess the financial performance of the workplace;

(2) survey interviews are undertaken in the same workplaces, with 1 trade union employee represen-

tative and 1 non-trade union representative where present; and (3) a self-completion survey with a

representative group of up to 25 employees, randomly selected from each workplace participating in

the survey.

Some of the information that has been produced by the survey includes: how workplaces are

managed and organized; individual and collective representation at work; trade union recognition and

membership, etc. In particular, the data provides information on social networks and the wages of

surveyed employees. I construct 4 degree centrality measures based on such information: (1) degree

of ethnicity background, which is the number of coworkers with the same ethnicity; (2) degree of

B4The instrument exploits the same idea as those in Hausman, Leonard, and Zona (1994) and Shi (2023a).
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gender and family background, which is the number of coworkers with the same gender and family

background (marital status and the number of children); (3) degree of educational background, which

is the number of coworkers with the same educational attainment and social class; and (4) degree

of religious background, which is the number of coworkers with the same religion. The summary

statistics are provided in Table E1

Table E1: Summary statistics

Variable Obs Mean Std. Dev. Min Max

log Weekly Pay 20,988 3.343 0.992 0 4.511
Degree Ethnicity Background 21,981 11.745 5.741 1 25

Degree Gender Family Background 21,981 9.783 4.911 1 23
Degree Educational Background 21,981 12.547 5.615 1 25
Degree Religious Background 21,981 7.848 4.354 1 21

Table E2: Robustness checks: Hausman instrumental variable regressions

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable: log Weekly Pay
High Cooperation Externality Workplace Low Cooperation Externality Workplace

IV-2SLS
Deg. Educational Backgd. 0.0254*** -0.0155***

(0.00291) (0.00252)
Deg. Gender Family Backgd. 0.159*** -0.00274

(0.00243) (0.00257)
Deg. Religious Backgd. 0.0306*** 0.00297

(0.00250) (0.00274)
Deg. Ethnicity Backgd. 0.0217*** -0.00107

(0.00235) (0.00280)
Workplace FE Y Y Y Y Y Y Y Y
Survey Date FE Y Y Y Y Y Y Y Y

Controls Y Y Y Y Y Y Y Y
Observations 7,417 7,417 7,417 7,417 13,813 13,813 13,813 13,813
R-squared 0.828 0.984 0.830 0.827 0.295 0.294 0.294 0.294

Notes: The sample is constructed using WERS 2011 data. Controls include age dummies, work experience dummies, a gender
dummy, and workplace and survey date fixed effects. “Deg.” is an abbreviation for “degree,” and “Backgd.” is an abbreviation
for “Background.” * Significant at 10%, ** 5%, *** 1%. The instrumental variable is a Hausman instrument, which is
constructed by calculating the average of the same variable in the same sector-location pair, excluding its own. The standard
errors are clustered at the workplace level.
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