
MPRA
Munich Personal RePEc Archive

Unveiling extreme dependencies between
oil price shocks and inflation in Tunisia:
Insights from a copula dcc garch
approach

Jeguirim, Khaled and Ben Salem, Leila

University of Monastir, Tunisia

5 July 2024

Online at https://mpra.ub.uni-muenchen.de/121616/
MPRA Paper No. 121616, posted 09 Aug 2024 10:25 UTC

http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/121616/


Unveiling Extreme Dependencies between Oil
Price Shocks and Inflation in Tunisia: Insights

from a Copula DCC-GARCH Approach

Leila Ben Salem and Khaled Jeguirim*

University of Monastir – Tunisia

July 2024

Abstract

We follow a non-linear dynamic correlation approach using a combination of
a DCC-GARCH model and a copula model to capture the dependence between oil
price changes and inflation in Tunisia. The case of Tunisia is particularly instruc-
tive since, after having been an exporter and a major producer, it became a net oil
importer in the 2000s. The study, based on monthly data spanning decades, selects
a Gumbel copula and shows that beyond weak average dependencies, there is a
strong correlation between extreme values, suggesting that inflation in Tunisia is
more sensitive to extreme (positive) variations in oil prices than to average varia-
tions. The implications of these empirical results for economic policy are crucial
for the Tunisian economy.

Keywords: : oil price, inflation, copula, dynamic conditional correlation,
Tunisia

1 Introduction
The relation between oil prices and inflation caught the attention of economists, espe-
cially after the 1970 oil shocks that affected inflation in several countries around the
world (Hooker, 2002). In government discussions, oil price increase is considered good
news in oil exporting countries and bad news in oil importing countries.

As the impact of oil prices on macroeconomic variables, and in particular inflation,
depends on the economic structure and macroeconomic policies of each country, the
aim of this study is to examine the Oil-Inflation relationship in Tunisia. This country
has gone through a period of enormous structural change in its economy. Tunisia,
which was a net-exporter of oil for decades, had to rely on expensive imports to supply
its domestic needs. These changes are likely to affect the relationship between inflation
and oil price shocks in this country, and makes the study of the Tunisian case very
informative.

*Corresponding author: khaled.jeguirim@fsegma.u-monastir.tn
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From a methodological point of view, our work contributes to the literature by
adopting an empirical methodology that implement copulas (Sklar, 1959) to exam-
ine the dependency structure and a Dynamic Conditional Correlation GARCH (DCC-
GARCH) model (Engle, 2002) to study the dynamic relationship between oil price
variations and inflation in Tunisia.

On the one hand, copula functions are suitable tool to examine a multivariate dis-
tribution when only marginal distributions are known. Furthermore, such an approach
is suitable in situations where multivariate normality does not hold. This is especially
the case for oil price variation for which the normality distribution is rejected in many
studies (eg. Lee and Cheng, 2007, Choi and Hammoudeh, 2009). Moreover, copulas
capabilities of modelling the associated dependency parameter can be conditioned and
rendered time varying, even when the marginal dynamics that are being estimated are
complex.

On the other hand, in the DCC-GARCH approach the correlation changes over time
which allows for time-varying conditional correlation. But this model does not account
for a non-linear dependence that may exist between oil price changes and inflation.
Moreover, it does not provide information about the tail dependence that characterizes
dependency during periods of extreme price behavior.

The Copula-DCC-GARCH approach, adopted in this paper, permits modeling the
conditional correlation (via a DCC-GARCH) and the conditional dependence (via a
copula) separately and simultaneously for non (necessary) normal multivariate distri-
butions. In particular, the model presented hereafter combine the use of GARCH mod-
els and a copula function to allow flexibility on the choice of marginal distributions and
dependence structures. Hence, we can examine the tail dependence and dynamic de-
pendence between oil price and inflation in Tunisia with the same approach and without
imposing any restrictions such as the normal joint distribution or a linear relationship
between oil price changes and inflation. It is clear that the study of oil price shocks on
inflation must be coupled with the average effects linking inflation to oil prices. This is
partly the purpose of this study.

The link between oil prices and inflation is well documented (e.g. Cuñado and
Pérez de Gracia, 2003, Dogrul and Soytas, 2010). Studies tend to focus on oil price
shocks and are often limited to developed countries. To the best of our knowledge, there
are only a few empirical studies which investigate the relationship between oil price and
inflation in Tunisia. Guenichi and Benamou (2010) consider the impact of change in
oil price on economic growth and other macroeconomic variables but not specially on
inflation. Choi et al. (2018) study the impact of fluctuations in oil prices on inflation
using an a panel of developed and developing countries including Tunisia. Brini et al.
(2016) deal with the impacts of oil price shocks on inflation and real exchange rate in
some MENA countries. All theses studies do not focus specially on Tunisia or not deal
with exactly the relationship between oil price fluctuations and inflation, particularly
for the analysis of extreme variations.

We examine the dependency structure of oil price variations and domestic inflation
in Tunisia by making use of a monthly dataset from 1975 to 2021. Indeed, during these
decades, the Tunisian economy has undergone massive structural changes, which in
turn, is likely to affect the relationship between oil shocks and inflation. Due to the
low refining capacity of the single refinery in Bizerte (North Tunisia), the production
capacity of the various oil products has decreased due to the sharp decline in oil re-
serves. Hence, the output of oil suffered from declining reserves and the absence of
new discoveries. In 2014, crude oil production was at about 53,000 barrels per day
(bbl/d), with a distinct decline from 97,000 bbl/d in the 1980’s, and an overall peak
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level of 118,00 bbl/d in 1980. Except for three years with high oil production after
2006, Tunisia has been a net importer of oil since 2003 (IEA, 2020).

The remainder of the paper is structured as follows: Section 2 presents the basic
features of copula functions, DCC-GARCH models and copula-DCC-GARCH frame-
work used in this study. Section 3 presents the empirical findings, including the de-
scriptive statistics of the data and the results of various copula specifications. Section
4 discusses. The final section concludes the paper and presents some suitable recom-
mendations.

2 Methodology
This section introduces the methodology that we adopt to analyse the dynamic de-
pendence structure between oil prices and inflation in Tunisia. We firstly present the
concept of bivariate copulas as well as the copula families considered in this study.
We also present measures of non linear dependence related to copulas used. Secondly,
we discuss the DCC-GARCH model. Finally, we present the method considered to
estimate the copula-DCC-GARCH parameters.

2.1 The Copula approach
The idea behind the concept of "copulas" or "copula functions" as named by Sklar
(1959) is the following: for multivariate distributions, the univariate margins and the
dependence structure can be separated and the latter may be represented by a copula.
In other words, copula describes the function that "joins" one-dimensional distribution
functions to form multivariate one, and may serve to characterize several dependence
concepts.

The copula theory is an extremely powerful tool because it is able to extract the
dependency structure of the joint distribution function and to isolate this dependency
structure from univariate marginal distributions. It can also capture asymmetric depen-
dencies. A copula creates a multivariate common distribution that combines marginal
distributions and dependencies between variables, which underlines the advantage of
this model over conventional methods.

With the copula function, multivariate distributions can be modeled in a simple and
extremely flexible way. This function is capable of generating any type of dependency
structure, regardless of the marginal distribution by constructing multivariate distribu-
tion functions that avoid the assumption of normality (Nelsen, 2006).

The copula of a multivariate distribution can be considered as the part describing
its dependence structure as a complement to the behavior of each of its margins. Given
that copulas fully describe dependence by providing information on average depen-
dence and dependence for joint distribution tails, we modelled the dependence struc-
ture between oil price and inflation in Tunisia for time scales using different copula
functions. In this study, we make use of two variables, and hence only bivariate copula
theory will be discussed.

Let X and Y two random variables with marginal distributions F and G respectively,
and joint distribution H. Then there exist a function C called copula such that:

H (x,y) =C (F(x),G(y)) =C (u,v) (1)

where u = F(x) is the univariate marginal distribution function of the variable X and
v = G(y) is the univariate marginal distribution function of the variable Y .
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The copula function in (1) satisfies the following equalities:

[1] C(u,v) =C(0,v) for every u,v ∈ [0,1]

[2] C(u,1) = u and C(1,v) = v for every u,v ∈ [0,1]

[3] C(u2,v2)−C(u2,v1)−C(u1,v2)+C(u1,v1)⩾ 0 for every u1,u2,v1,v2 ∈ [0,1]

Accordind to Sklar theorem, if the marginal distrbutions are continuous, then C is
uniquely determined. Conversely, if C is a copula, then the function H in equation (1)
is a joint function with margins F and G. The copula C and can also be expressed
as C (x,y) = H

(
F−1(x),G−1(y)

)
and so describes the whole dependence structure be-

tween X and Y .
The distinction between the variables x and y and the variables u and v transformed

respectively by F(x) and G(y) is important. u and v exist in what is called the uni-
form/rank domain, while x and y exist in the normalized domain. Since this is a copula
function, it is simple to generate dependent random variables in the uniform domain,
which can then be transformed by the appropriate inverse marginal distribution func-
tions into the normalized domain.

2.2 Copulas and dependencies
Different copula families capture various features of the dependence structure differ-
ently, with some copulas being more suitable to model the overall dependence while
others are better suited to represent the dependence at the tails of the distribution, which
is particularly relevant for modeling extreme events.

2.2.1 Measures of dependence

The common measure of dependence is the linear correlation coefficient. However,
this parametric coefficient (Pearsons’s correlation) has many shortcomings: not robust
to outliers; not invariant to monotone transformations of the variables; can take value
0 whereas variables are strongly dependent; only relevant when variables are jointly
normally distributed (Embrechts et al., 1999). This can result in misleading evaluations
of the dependence nature between oil price and inflation.

The most widely used non-parametric measures employed in copula modeling for
evaluating dependence strength are therefore rank correlations, including Kendall’s tau
and Spearman’s rho (Nelsen, 2006). These two coefficients measure different aspects
of dependence.

Spearman’s rho is simply Pearson correlation on the rank-transformed marginal
variables. In terms of a copula C, it can be expressed as follows (Nelsen, 2006):

ρS = 12
∫∫

[0,1]2
C (u,v)dC (u,v)−3 (2)

for every u,v ∈ [0,1] which are the values of marginal distribution functions.
Kendall’s tau is a rank correlation measure that can be described as the probability

of concordance minus the probability of discordance of two pairs of random variables
(Fredricks and Nelsen, 2007). Kendall’s tau can be expressed in terms of a copula
function C as follows:

τC = 4
∫∫

[0,1]2
C (u,v)dC (u,v)−1 (3)
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Both Kendall’s τ and Spearman’s ρ provide measures of strength of the association
between random variables, typically referred to as correlation. Thus, they do not fully
reflect the complexity of dependence structure between variables, as they are not able to
reveal the dependence structure at specific parts of the distribution. For example, they
do not specifically capture tail dependence, which refers to the probability that two
variables X and Y experience extreme upward or downward movements (Joe, 2014;
Nelsen, 2006; Poulin et al., 2007).

In this study, it is very helpful to measure the tendency of inflation to react to a
sudden oil price increase or a sudden decrease. Such dependence is usually evaluated
through upper- and lower-tail dependence coefficients denoted by λU and λL, respec-
tively, and are obtained (respectively) from a copula C as:

λU = lim
u→1

P
[
X ⩾ F−1(u)|Y ⩾ G−1(u)

]
= lim

u→1

1−2u+C(u,u)
1−u

(4)

λU = lim
u→0

P
[
X ⩽ F−1(u)|Y ⩽ G−1(u)

]
= lim

u→0

C(u,u)
u

(5)

where F−1(u) and G−1(v) are the marginal quantile functions for variables X and Y
respectively, and λU ,λL ∈ [0,1].

λU = λL = 0 corresponds to the absence of dependence between variables in the
tails. Two variables exhibit upper (lower) tail dependence if λU > 0 (λL > 0). Larger
values of λU (λL) indicate greater tendency of the data to cluster in the upper (lower)
tail of the joint distribution, in which case the variables are said to be upper (lower) tail
dependent.

2.2.2 Copula families used

In general, there are two main types of parametric copulas: elliptic (implicit) and
archimedean (explicit) copulas. Each of them have distinctive properties. Here, we
focus on the presentation of bivariate copulas, which will be used later.

Elliptical copulas are generally used to account for overall dependance structures.
They are capable of representing positive and negative dependance. The most popular
elliptical copulas are the Gaussian (i.e. normal) copula and the Student’s t copula.
These copulas do not have a closed-form expressions, however their density functions
are available.

The bivariate Gaussian copula is defined by

Cθ (u,v) = Φ
(
Φ

−1(u)+Φ
−1(v)

)
(6)

where Φ is the bivariate normal cumulative distribution function with correlation θ be-
tween X and Y and where Φ

−1 (u) and Φ
−1 (v) are standard normal quantile functions.

Gaussian copulas cannot capture tail dependence.
The Student’s t copula is characterized by a greater modeling flexibility in terms

of tail dependence, which is enabled by an additional degree-of-freedom parameter
compared to the Gaussian copula. The Student’s t copula is given by

CT
θ ,ν (u,v) = T

(
t−1
ν (u)+ t−1

ν (v)
)

(7)

where T is the bivariate Student-t cumulative distribution function with ν as the degree-
of-freedom parameter and correlation θ and where t−1

ν (u) and t−1
ν (v) are the quan-

tile functions of the univariate Student distribution with ν degree-of-freedom. This
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copula converges to the Gaussian one, as ν diverges. The Strudent’s t copula allows
for symmetric non-zero dependence in the tails, where tail dependence is given by
λU = λL = 2tν+1

(
−
√

ν +1
√

1−θ/
√

1+θ

)
> 0.

Archimedean copulas are frequently used in economic and financial applications
(Patton, 2012) as they have a simple mathematical form and are specifically easy to
sample from, when considering only two variables (Joe, 2014). Furthermore, they
allow for different dependence structures, such as concordance and tail dependence
(Hofert, 2008). Several Archimedean families exhibit asymptotic dependence in at
least one of the two tails (Charpentier and Segers, 2009). This makes them especially
suitable for modeling of extreme events such as sudden high variation of oil prices.

In this article, we use the most commonly archimedean copulas in the one-parameter
families, namely the Clayton, Frank and the Gumbel Copulas.

The Clayton copula has the following distribution function

CClayton
θ

(u,v) = max
[
(u−θ + v−θ −1)−1/θ ,0

]
(8)

where θ ⩾ 0. When θ = 0 there is independence. For θ > 0, this copula shows asym-
metry, as the degree of dependence is higher in the lower tail (λL = 2−1/θ ) than in the
upper tail, where it equals zero (λU = 0).

The Frank copula is a symmetric copula with no tail dependence. It is given by

CFrank
θ (u,v) =− 1

θ
ln
(

1+(e−θu −1)(e−θv −1)(e−θ −1)−1
)

(9)

where θ ∈ (−∞,∞)\{0}.
The Gumbel copula is given by

CGumbel
θ (u,v) = exp

(
−
[
(− lnu)θ +(− lnv)θ

]1/θ
)

(10)

where θ ∈ [1,∞). The two variables are independent when θ = 1. It is an asymmetric
copula with a higher degree of dependence in the upper tail (λU = 2−21/θ ) than in the
lower tail, where it equals zero (λL = 0).

Table 1 summarize the main characteristics of copula families used in this study:
distribution function, Kendall’s correlation coefficient τ , Spearman’s correlation coef-
ficient ρS, upper and lower tail dependence coefficients λY and λL, and parameter range
(Embrechts et al., 2002) .

2.3 Marginal distribution modelling: the DCC GARCH approach
In order to build the model for bivariate distribution with the copula, the marginal
distribution for the series must initially be formed. We will consider a multivariate
GARCH (Bollerslev, 1986) model with time varying conditional correlations or DCC
GARCH model introduced by Engle (2002). Firstly, let us note yt =(y1t ,y2t)

′ the vector
containing the two analyzed series, and consider a first-order autoregressive model for
the mean equation for each series:

yt = µ +Ayt−1 + εt (11)

where A is a diagonal matrix of dimension 2 comprising the autoregressive coefficients
a1 and a2 and µ = (µ1,µ2)

′ a vector of the two unconditional means of the two series.

6



Copula Cθ (u,v) τ ρS λU λL θ range

Gaussian Φ
(
Φ

−1(u)+Φ
−1(v)

)
2arcsinθ/π – – – (−1,1)

Student’s T
(
t−1
ν (u)+ t−1

ν (v)
)

2arcsinθ/π – −2tν+1
√

ν +1

√
1−θ

1+θ
(−1,1)

Clayton (u−θ + v−θ −1)−1/θ 2/(2+θ) – – 2−1/θ (0,+∞)

Frank − 1
θ

ln(1+
(e−θu −1)(e−θv −1)

e−θ −1
1− 4

θ
(1−D1(θ)) 1− 12

θ
(D1(θ)−D2(θ)) – – (−∞,+∞)\{0}

Gumbel exp(−[(− lnu)θ +(− lnv)θ ]1/θ ) 1−1/θ – 2−21/θ – [1,+∞)

Note: D1(θ) =
1
θ

∫
θ

0

x
exp(x)−1

and D2(θ) =
2

θ 2

∫
θ

0

x2

exp(x)−1
.

Table 1: Main characteristics of copula functions used in this study and links with
dependent measures

The error term εt = (ε1t ,ε2t)
′ can be written in the form (following Engle, 2002):

εt = H1/2
t νt (12)

where H1/2
t is a square matrix of order 2 defined positive and νt is a random vector

of null mean and variance-covariance matrix equal to the identity matrix of order 2:
E(νt) = 0 and Var(νt) = I2.

The matrix Ht can be decomposed in this way:

Ht = DtRtDt (13)

where Dt = diag(h1/2
1t ,h1/2

2t ) and Rt is the matrix of conditional correlations. Ht is de-
fined positive from the moment when the conditional variances h1t and h2t are positive,
and that the matrix of conditional correlations Rt is assumed to be defined positive.

A GARCH(1,1) model is then specified for the conditional variances, i.e. for each
conditional variance hit (i = 1,2):

hit = ωi +αiε
2
i,t−1 +βihi,t−1 (14)

These variances are positive under the following conditions: ωi > 0, αi ⩾ 0 and
βi ⩾ 0. Moreover, in order to ensure a stationary covariance model, we need to have,
for every i, αi + βi < 1. The parameter α captures the ARCH effect, β captures the
GARCH effect, and α +β shows the volatility persistence.

Considering that the conditional correlation between the two series is dynamic
(DCC model), the Rt dynamic correlation matrix specified in (13) is written as follows:

Rt = PtQtPt

where Pt = diag(Qt)
1/2 and Qt = (1−θ1−θ2)Q̄+θ1εt−1ε

′
t−1+θ2Qt−1 the covariance

matrix and Q̄ a long term covariance matrix. In the particular case of two series, the
elements of the matrix Qt are then qi j,t = (1− θ1 − θ2)ρ̄ + θ1εi,t−1ε j,t−1 + θ2qi j,t−1,
i, j = 1,2 where ρ̄ is a constant correlation between ε1 and ε2.

When the parameters θ1 and θ2 are positive and check the inequality θ1 +θ2 ⩽ 1,
then the correlation matrix Rt is defined positive, in other words |ρt |< 1. On the other
hand, if θ1 = θ2 = 0, the correlation is no longer dynamic and we obtain a model with
a constant conditional correlation.
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Finally, dynamic correlations are obtained by normalizing q12,t according to the
following expression:

ρt =
q12,t√q11,tq22,t

(15)

In order to estimate all the coefficients in the DCC GARCH model, it is usually
used the maximum likelihood method (MLM) or quasi-maximum likelihood method
(QMLM) respectively (Engle, 2002). Those methods are based on maximizing the
likelihood function.

After specifying the marginal distributions for each variable, the second part con-
sists of modelling the dependence by a copula function. Thus, the task of creating a
multivariate distribution is to choose an appropriate copula form that best describes the
dependence structure between the variables. In other words, the model removes the
linear correlation of the dependent variable and forms uncorrelated dependent errors
controlled by a copula, while the correlation is controlled by a DCC GARCH model.

Specifically, the proposed model uses the DCC specification for marginal distri-
butions, and different types of copulas for the joint distribution to allow a wide range
of possible dependence structures that will be fitted to the residuals obtained from the
DCC model and, for each case, the dependence parameters will be determined. In ad-
dition, Spearman’s correlation, Kendall’s tau and the extreme dependency coefficient
will be calculated to measure the effectiveness of the dependency in the use of copula.

3 Data description
The variables used in this study are inflation rate in Tunisia and the growth rate of oil
price calculated on a monthly basis. Inflation rate (expressed hereafter in percentage)
is deduced from the consumer price index, produced by the "Institut National de la
Statistique" (INS) in Tunisia. The data were seasonally adjusted. The data for the oil
price (West Texas Intermediate) are from the Energy Information Administration (EIA)
and are expressed in dollars. Variations in oil prices and inflation data are observed
monthly from January 1975 to December 2021. Monthly series were used because
they have sufficient complexity to capture short-term movements over time.

Summary statistics of the two variables used and test statistics are presented in Ta-
ble 2. These include the mean, standard deviation, skewness, kurtosis, extreme values,
and the Jarque-Bera and the Shapiro-Wilk normality tests.

The skewness values of the oil price changes are positive which implies that the
distribution of this variable is more skewed towards the right than a normal distribu-
tion. The Kurtosis values for the two series exceeds 3, indicating that the distribu-
tions are leptokurtic. These results might indicate that the variables are not normally
distributed. Indeed, the normality test indicates a clear rejection by the Jarque-Bera
normality test under a 1% significant level. Similarly, none of these variables are
normally distributed according to the results from the Kolmogorov-Smirnov test of
normality, which justifies the choice of copula theory in this study. Moreover, the val-
ues of the Ljung-Box statistic for no correlation up to 16th order in the observations
suggested the existence of serial correlation, whereas the ARCH (autoregressive con-
ditional heteroscedasticity)-LM (Lagrange multiplier) statistic for serially correlated
squared observations indicated that ARCH effects were likely to be found in the in-
flation variable. The dependence between series may be affected by autoregressive
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Table 2: Descriptive statistics

Oil price monthly
variations

Monthly inflation
in Tunisia

Mean 0.0093 0.4532
Median 0.0000 0.4135
Maximum 1.3457 4.3255
Minimum −0.4334 −3.2148
Std. Dev. 0.1004 0.6630
Skewness 4.2033 0.6644
Kurtosis 55.1070 8.0135
Jarque-Bera 80794∗ 1715.5∗

Kolmogorov-Smirnov 0.9679∗ 0.9871∗

Ljung-Box 27.787† 105.51∗

ARCH-LM 2.2135 155.10∗

Note: Jarque-Bera and Kolmogorov-Smirnov check for normality. Ljung-Box
checks for serial correlation (no autocorrelation) computed here with 12 lags.
ARCH-LM is Engle’s LM test to detect autoregressive conditional heteroscedas-
ticity, conducted using 12 lags (null hypothesis no ARCH effects). ∗ and † imply
rejection of the null hypothesis at the 1% and 5% level, respectively.

Table 3: Unit root tests

Oil price variations Inflation

ADF1 −17.000∗ −16.520∗

PP2 −20.542∗ −21.154∗

KPSS3 0.056∗ 0.349

ERS4 0.282∗ 1.097∗

1Augmented Dickey-Fuller test; 2Phillips-Perron test; 3Kwiatkowski, Phillips,
Schmidt and Shin test; 4Elliot, Rothenberg and Stock test. Tests are computed
with constant and trend. The optimal lag is chosen as per the Akaike Information
Criterion (AIC). ∗ imply significance at the 1% level.

and heteroscedastic components, which therefore justifies the use of the standardized
residual of the series from the DCC-GARCH.

Furthermore, several unit root tests are used for testing to the series’ stationar-
ity. The unit root test statistics are reported in Table 3. We used the Augmented
Dickey-Fuller (ADF) test, Phillips-Perron (PP) test, Kwiatkiwski-Phillips-Schmidt-
Shin (KPSS) test and Elliot-Rothenberg-Stock test (ERS) (see Patterson, 2012 for a
review and details about these tests). ADF, PP and ERS unit root tests have a null hy-
pothesis (H0) stating that the series in question has a unit root against the alternative
that it does not. The null hypotheis (H0) of KPSS, on the other hand, states that the
variable is stationary. All the tests confirm that the two series are stationary at the 99%
significance level, except the KPSS test for the inflation variable. Yet, the KPSS test
tends to have extreme size distortions when the null hypothesis (H0) of a stationary
series is close to the alternative of a unit root (Caner and Kilian, 2001). Hence, the test
may reject H0 even if the true series is stationary.
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Table 4: Results of DCC-GARCH model estimation

The conditional means and variances equations

Parameter Estimate Std. Error t value p-value

Oil price

µ1 0.0038 0.0050 0.7695 0.4416
a1 0.2002 0.0486 4.1234 0.0000
ω1 0.0003 0.0009 0.3485 0.7274
α1 0.3295 0.1061 3.1040 0.0019
β1 0.6695 0.1833 3.6525 0.0003
υ1 5.1501 2.8857 1.7847 0.0743

Inflation

µ1 0.3759 0.0242 15.529 0.0000
a2 0.3346 0.0479 6.9866 0.0000
ω2 0.0026 0.0021 1.2589 0.2080
α2 0.0403 0.0322 1.2486 0.2118
β2 0.9413 0.0410 22.930 0.0000
υ2 6.6250 1.4405 4.5991 0.0000

The conditional correlation equation

DCC
θ1 0.0049 0.0164 0.2999 0.7642
θ2 0.9104 0.0632 14.403 0.0000
η 7.2361 1.4018 5.1619 0.0000

4 Empirical findings

4.1 Results of the marginal distribution estimation
The estimated model is a DCC-GARCH(1,1) model where the three random errors νt
and ε1t and ε2t given in equation (12) are assumed to follow a Student distribution rather
than a normal distribution, given the stylized facts previously observed on the two series
studied. The degrees of freedom of these three error terms are denoted by η , υ1 and
υ2 respectively. The model is estimated by the maximum likelihood method in two
steps. In the first step, the conditional volatility of each time series is estimated from
a univariate DCC-GARCH model. Then, in a second step, the dynamic correlations
are estimated using the standardized residuals from the first step. The results of the
estimation are given in Table 4.

All the parameters of Student’s distribution are significant, which justifies the ade-
quacy of the selected distribution. The parameters of the mean equation (11), namely
the unconditional means and the autocorrelation coefficients are all positive and signif-
icant, except µ1 which is relative to the oil price variable. Furthermore, it can be seen
that all the individual GARCH series fulfill the criteria that α + β < 1 and the sum
exceeds 0.9, which allows us to conclude that there is a pronounced GARCH effect.
The estimated values of β1 and β2 are highly significant which indicates a high degree
of volatility persistence specially for the variable inflation in Tunisia. The DCC param-
eters follow the reversibility condition, since θ1 +θ2 < 1. This confirms the presence
of dynamic conditional correlations between the two series.

Figure 1 shows the dynamic conditional correlations between international oil price
changes and inflation in Tunisia. These time varying correlations are estimated from
the results of the DCC-GARCH model. The correlation between oil price changes and
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Figure 1: Dynamic correlation between oil price variations and inflation in Tunisia

inflation is generally positive but two particular events are worth mentioning. First, the
level of correlation increased sharply in 1990, which is a period of high oil price volatil-
ity following Iraq’s invasion of Kuwait (Wickham, 1996). Second, this correlation has
recently decreased significantly. The Covid-19 pandemic has negatively influenced the
price of oil (Bourghelle et al., 2021), while prices in Tunisia have continued to rise due
to multiple political and economic factors (Khatat et al., 2020).

We cannot fail to mention that on average, the correlation is quite weak. On the
one hand, Tunisia largely subsidizes the price of oil. Therefore, low price volatility
will not have an immediate direct effect on domestic prices. On the other hand, the
correlation measure is linear and cannot reflect correlations between variables in the
presence of high price variability. In other words, Pearson correlation is not robust:
outliers can introduce false correlations or mask existing ones. A deeper and different
analysis of the link between oil prices and inflation is therefore needed since these
variables exhibit higher dependence during turbulent periods than in calm periods. As
a consequence, we quantify the dependency through copulas using the results provided
by the DCC-GARCH model.

4.2 Dependence estimation using copulas
Selection of the copula The choice of the copula allows a good control of the parts
of the distribution to which the variables are most strongly associated. For the selection
of the best copula, two criteria will be used. These criteria are based on the maximum
likelihood estimation method. The objective is to select the model (the copula) with
the highest likelihood while taking into account the number of estimated parameters.

The Akaike Information Criterion (AIC) and the Bayesian Information Criterion
(BIC) are used to select the most appropriate copula for our analyzed series. These two
criteria are defined as follows:

AIC =−2× ln(likelihood)+2k
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Copula AIC BIC

Gaussienne 0.966 5.213
Student 4.273 12.765
Clayton 1.256 5.502
Gumbel 0.955 5.201
Frank 1.814 6.060
Joe 0.974 5.220

Table 5: AIC and BIC criteria for the selection of the best copula

BIC =−2× ln(likelihood)+ ln(n)k

where k is the number of copula parameters and n is the number of observations. The
best model is the one that gives the lowest values for these two criteria.

Table 5 gives the results obtained from the standardized residuals of the DCC-
GARCH(1,1) model. The two criteria identify the Gumbel copula which is given by:

C(u,v) = exp
(
−
[
(− logu)θ +(− logv)θ

] 1
θ

)
1 ≤ θ < ∞ (16)

Remember that Gumbel copula only detects positive dependencies. The degree of
dependency is captured by the parameter θ , which is always positive and greater than
or equal to 1. The farther the value of θ is from 1, the stronger is the dependence, and
when θ = 1 there is independence between the two series.

Therefore, the fact that the two series analyzed here are captured by a Gumbel
copula suggests that the dependence between oil price changes and inflation in Tunisia
can only be positive. A rise in oil price can only leads to an increase in inflation. The
selected copula cannot envisage the case where an increase in the price of oil leads to
a fall in the general price level in Tunisia.

Before estimating the degree of this dependency, it should be noted that the Gum-
bel copula also makes it possible to characterize dependencies at the level of extreme
values and in particular at the level of positive extreme values (values at the level of the
right tail of the distribution). It is therefore particularly well adapted when it comes to
modelling dependencies between extreme values characterized by positive variations.
This suggests that if there is a dependency between the two series analyzed, it is largely
due to dependencies at the level of positive extreme values.

In practical terms, the findings suggest that a strong positive change in oil price
could have an effect on inflation in Tunisia (depending on the degree of dependence
captured by θ ). On the other hand, inflation in Tunisia would be less affected by
moderate variations, i.e. small fluctuations, in oil prices. In particular, the dependence
at the extreme values on the left side of the distribution is zero, and if the relationship
between these two variables is modeled by the Gumbel copula, it is because any strong
but negative variation (significant drop in oil prices) will have no effect on inflation in
Tunisia.

Dependence estimation using copulas In order to estimate the dependence between
oil price variations and inflation in Tunisia, we will use the Gumbel copula as explained
above. This copula has a single parameter θ . It distinguishes a dependence at the level
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of the right tail of the distribution: λU = 2− 2
1
θ (λL = 0). The Kendall correlation

coefficient (Kendall τ) is in this case equal to 1− 1
θ

.

However, since the Gumbel copula is symmetrical (in the sense that C(u,v) =
C(v,u)), it similarly models two random variables X1 and X2 independently of the role
of each of them. Tawn (1988) has shown that this hypothesis is restrictive in some
cases and has proposed an extension of the Gumbel copula by adding two asymmetric
parameters α and β allowing the second one to be more flexible. This new extension
is named Tawn copula. It is not an archimedean copula, but rather a copula of extreme
values.

This type of copula (extreme value copula) consists of analyzing the two tails of
the distributions, which constitute only a small part of the entire distribution under ex-
amination. Its purpose is not to describe the usual behaviour of stochastic phenomena,
but unusual and rarely observed events.

Tawn copula is given by (cf. Tawn, 1988):

C(u,v) = u1−α v1−β exp
(
−
[
(−α logu)θ +(−β logv)θ

] 1
θ

)
(17)

where 1 ≤ θ < ∞ captures the dependence (as in Gumbel copula) and the parameters
α and β are such that 0 ≤ α and 0 ≤ β 1.

For the Tawn copula, when θ = 1 or α = 0 or β = 0, the two variables are indepen-
dent. The farther θ is from 1, the stronger the dependence is as in the case of Gumbel
copula. If α = β = 1, we find the Gumbel copula. If α = β , the Tawn copula is sym-
metrical. When α = 1 (0 ≤ β ≤ 1), we get the so-called Tawn type 1 copula. When
β = 1 (0 ≤ α ≤ 1), we get the so-called Tawn copula type 2 (Nagler et al., 2019).

In addition, and as for the Gumbel copula, the Tawn copula allows us to distinguish
the dependence at the level of the positive extreme values (i.e. at the level of the right
tail of the distribution). In this case, we have: λU = (α + β )− (αθ + β

θ )
1
θ and we

still have λL = 0. Kendall’s tau can be obtained from θ , although its expression is not
simple as in the case of Gumbel copula (cf. Tawn, 1988).

From the two series analyzed, table 6 gives the results of the estimations of different
copula: Gumbel copula, Tawn type 1 and Tawn type 2. The different estimations were
also carried out over shorter periods corresponding only to the data for the periods 1990
– 2021, 2000 – 2021 and 2010 – 2021. All the estimations and copula selection were
performed using the VineCopula package (Nagler et al., 2019) under R.

First of all, it should be noted that for the whole period, the AIC criterion favors
the Tawn type 2 copula, while the BIC criterion favors the Gumbel copula. However,
for all the other periods, these two criteria are in line with the choice of the Gumbel
copula. We will therefore only interpret the results obtained using the Gumbel copula.

Over the whole period, the estimated coefficient of the Gumbel copula (θ = 1.021
with a standard deviation of 0.023), is not significantly different from 1. Consequently,
it seems that there is a little dependence between the two variables if it is estimated
over the whole period.

However, this coefficient becomes significantly different from 1, and becomes higher
when estimates are made for the most recent periods. Recall that this θ coefficient in
Gumbel copula makes it possible to characterize the dependence between the two se-
ries: the higher it is compared to 1, the stronger the dependence.

Consequently, if we retain the estimates of this coefficient over the different sub-
periods, we notice that the Kendall correlation coefficient becomes higher and higher
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Copula parameter(s) Kendall’s τ λU AIC BIC

Period 1975 – 2021 (number of observations n = 565)
Gumbel θ = 1.021 (0.023) 0.020 0.028 0.96 5.20
Tawn type 1 θ = 1.025 (0.051) β = 0.213 (n.d) 0.010 0.014 3.76 12.25
Tawn type 2 θ = 1.511 (0.398) α = 0.037 (0.025) 0.028 0.032 −1.43 7.06

Period 1990 – 2021 (number of observations n = 384)
Gumbel θ = 1.064 (0.035) 0.060 0.082 −4.12 −0.30
Tawn type 1 θ = 1.154 (0.127) β = 0.249 (0.236) 0.058 0.077 −1.77 5.87
Tawn type 2 θ = 1.129 (0.115) α = 0.249 (0.314) 0.050 0.067 −1.49 6.14

Period 2000 – 2021 (number of observations n = 264)
Gumbel θ = 1.087 (0.050) 0.080 0.108 −2.35 1.03
Tawn type 1 θ = 1.236 (0.323) β = 0.243 (0.376) 0.080 0.104 −0.60 6.16
Tawn type 2 θ = 1.155 (0.163) α = 0.289 (0.477) 0.064 0.086 0.28 7.03

Period 2010 – 2021 (number of observations n = 144)
Gumbel θ = 1.138 (0.086) 0.121 0.161 −1.18 1.38
Tawn type 1 θ = 1.285 (0.321) β = 0.329 (0.431) 0.112 0.147 0.89 6.02
Tawn type 2 θ = 1.238 (0.235) α = 0.329 (0.448) 0.098 0.129 1.28 6.41
Note: Values in parentheses indicate the estimated standard deviations. n.d. indicates that the standard deviation is not finite.

Table 6: Results of copula estimations

until it reaches 0.12. This may suggest that the correlation between changes in oil
prices and inflation in Tunisia measured by Kendall’s τ is not static but dynamic.

This result is consistent with the Pearson correlation coefficient estimates from the
dynamic conditional correlation model presented in the previous section (see figure 1).
The previous results showed that the Pearson’s ρ correlation coefficient is not constant
but varies over time. The same result is present for Kendall’s ρ when we use copula
modelling, although no dynamic coefficient model is estimated here.

Another important correlation coefficient is the one that describes the correlation
between extreme values. Note that Gumbel copula is mainly used to model positive ex-
treme dependencies (on the right side of the distribution). The dependence coefficient
of extreme values λU also gives increasingly larger values depending on the estima-
tion periods. With this copula, the correlation coefficient of positive extreme values
reaches the value of 0.16 when it is estimated over the period 2010 - 2021. Thus, it
can be deduced that a strong positive variation (a significant increase) in oil prices is
correlated with an increase in inflation in Tunisia. For a country such as Tunisia, which
became a net oil importer in 2000, any increase in the world price of this resource leads
to inflationary pressures on the economy. It is above all sudden and positive variations
that have the greatest impact on inflation in Tunisia.

According to table 6, as in the Gumbel copula λL = 0, a strong negative variation (a
significant drop) in oil prices is not correlated with inflation in Tunisia, we can therefore
deduce that any increase in oil prices can only lead to an increase in inflation, whereas
a significant drop in the price of this resource does not affect inflation. This asymmetric
effect has recently been highlighted in a number of specific studies (e.g., Raheem et al.,
2020, Li and Guo, 2022). However, they have not been accurately quantified and the
studies often suffer from the imposition of linearity (or quasi-linearity) assumptions
that our methodology does not impose. Our results, although limited to Tunisia, offer
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complementary perspectives to classic studies with less restrictive modelling.

5 Conclusion
In conclusion, this study highlights the significant relationship between oil price fluc-
tuations and inflation in Tunisia. By employing a non-linear dynamic correlation ap-
proach through the combination of a DCC-GARCH model and a copula model, we
were able to capture the dependence between extreme oil price changes and inflation.
The findings indicate that inflation in Tunisia is more sensitive to extreme positive vari-
ations in oil prices than to average variations, underscoring the asymmetrical impact of
oil price shocks on the Tunisian economy.

The transition of Tunisia from an oil-exporting to an oil-importing country since
the 2000s has further amplified the sensitivity of its inflation rate to global oil price
changes. This structural shift has had profound implications for the country’s economic
stability and policy-making. As demonstrated, the strong correlation between extreme
values of oil price changes and inflation suggests that economic policies in Tunisia
must account for the volatility and unpredictability of the global oil market.

Moreover, the study’s methodological approach offers valuable insights for other
developing countries facing similar economic conditions. The use of copula func-
tions to model the dependence structure between oil prices and inflation allows for
a more nuanced understanding of their relationship, especially in the presence of ex-
treme events. This approach can be adapted and applied to other contexts, providing a
robust framework for analyzing the impact of external shocks on domestic economic
variables.

The policy implications of these findings are crucial. For Tunisia, strategies to mit-
igate the impact of oil price volatility should be prioritized. This could include diver-
sifying energy sources, improving energy efficiency, and implementing fiscal policies
that cushion the economy against oil price shocks. Additionally, monetary policies
should be designed to respond swiftly to sudden spikes in oil prices to prevent runaway
inflation.

In summary, this research contributes to the existing literature by providing a de-
tailed empirical analysis of the oil price-inflation nexus in Tunisia using advanced
econometric models. The results emphasize the need for tailored economic policies
that address the specific challenges posed by oil price volatility, thereby enhancing the
resilience of the Tunisian economy. Future research could extend this analysis to other
developing nations, further validating the effectiveness of the copula-DCC-GARCH
approach in different economic settings.
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