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Abstract

This study builds a Kaleckian model that incorporates endogenous technologi-
cal progress and investigates how a change in a parameter that directly fosters
technological progress affects growth and distribution. In this model, there is an
optimal wage share that maximizes the technological progress rate. Accordingly,
if the actual wage share can be moved to an optimal level, the economic growth
rate will increase. This analysis reveals that a policy that directly promotes tech-
nological progress consequently decreases the long-run equilibrium value of the
wage share, the capacity utilization rate, the employment rate, and the economic
growth rate.

Keywords: endogenous technological progress; education; R&D; growth and dis-
tribution
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1 Introduction
The Kaleckian model belongs to the post-Keynesian growth model class. The Kaleckian
model is useful for analyzing the relationship between growth and distribution.1) If a
rise in the wage share increases the economic growth rate, then this situation is called
wage-led growth. On the other hand, if a rise in profit share increases the economic

∗Graduate School of Economics, Kyoto University. Email: sasaki.hiroaki.7x@kyoto-u.ac.jp
1) The contribution of Micha l Kalecki is summarized in Kalecki (1971). For the conventional Kaleck-

ian model, see Rowthorn (1981).
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growth rate, this situation is called profit-led growth. Thus, the following inference
arises: If the economy exhibits wage-led growth, the economic growth rate climbs as
the wage share increases, implying that the wage share that maximizes the economic
growth rate is unity; hence, the profit share is zero. Likewise, if the economy displays
profit-led growth, the profit share that maximizes the economic growth rate is unity;
as such, the wage share is zero. In either case, the income distribution that maximizes
the economic growth rate is either zero or unity. This is extreme and unreasonable if
we consider an economic policy that aims to increase the economic growth rate through
a change in income distribution.

This study proposes a Kaleckian model that introduces endogenous technological
progress. Specifically, I provide a Kaleckian model in which there is an optimal wage
share that maximizes the technological progress rate and consequently the economic
growth rate, which lies within the interval between zero and unity. Using this model,
I investigate how an economic policy aimed at directly fostering technological progress
affects growth and distribution.

To the best of my knowledge, only Lima (2004) has discussed the optimal wage
share in the Kaleckian model. He proposes a technological progress function in which
the growth rate of labor productivity is convex upward with respect to the wage share,
ga(ω) = ω − ω2, where ga denotes the growth rate of labor productivity and ω is
the wage share. In this specification, ga is maximized when ω = 1/2. Lima (2004)
conducts both short- and long-run analyses. In the long-run equilibrium, the economic
growth rate is equal to the natural growth rate, given by the sum of the technological
progress rate and labor supply growth rate. Hence, the long-run economic growth
rate is maximized when ω = 1/2. Thus, the optimal wage share is 1/2. Lima (2004)
explains this specification as follows: This simplified innovation function is intended to
capture plausible non-linearity in the influence of the wage share on firms’ propensity
and ability to adopt labor-saving innovations, namely that the rate of innovation is
lower for both low and high levels of the wage share and is higher for intermediate
levels. At high profit share levels, the availability of funding for innovation is high, but
the incentives to innovate are low; at low profit share levels, the incentives to innovate
are high, but the availability of funding is low.

Similar to Lima (2004), I use a technological progress function that is convex upward
with respect to the wage share. However, unlike Lima (2004), I incorporate certain
parameters into the technological progress function. In the Lima model, there is no
parameter in the technological progress function; hence, we cannot consider the effects
of economic policies on growth and distribution. By contrast, in my model, a change
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in a parameter due to an economic policy directly affects the technological progress
function, which enables us to examine the effect of economic policy on growth and
distribution.

Let me now explain the technological progress function in detail. Suppose that the
average labor productivity increases by two factors: workers’ investment in education
and firms’ investment in research and development (R&D). Workers spend a fraction
of their wages on education investment, which contributes to enhanced labor produc-
tivity. This implies that a rise in the wage share increases the growth rate of labor
productivity. On the other hand, firms spend a fraction of their retained earnings on
R&D investments, which fosters labor productivity growth. This denotes that a rise
in the profit share increases the labor productivity growth rate. If we assume that the
growth rate of average labor productivity takes a Cobb–Douglas function of workers’
and firms’ factors, it becomes a function convex upward with respect to the wage share.
This indicates the existence of an optimal wage share that maximizes the technological
progress rate and consequently the economic growth rate.

Some studies consider endogenous technological progress in the Kaleckian model.
Dutt (2006), Flaschel and Skott (2006), and Sasaki (2010, 2013) use a specification
in which the growth rate of labor productivity is an increasing function of the em-
ployment rate. Based on the concept of induced technological innovation, Tavani et
al. (2011) employ a specification such that the growth rate of labor productivity is an
increasing function of the wage share. Taylor et al. (2019) adopt a specification such
that the growth rate of labor productivity is an increasing function of the capital stock
per labor supply and a decreasing function of the profit rate.2) However, these studies
do not explicitly consider innovation costs. Innovation cannot arise from nothing and
requires resources. In addition, if some resources are used for innovation, the resources
necessary for other economic activities are reduced, such as in the trade-off between
innovation and other activities. A survey by Tavani and Zamparelli (2017) calls this
“costly innovation.”3) As previously stated, my specification considers costly innova-
tion, which enables us to investigate the interactions between innovation and other
economic activities.

For Kaleckian models that consider costly innovations, I refer to Lima et al. (2021),
Serra (2023), and Carvalho et al. (2024). These studies assume that spending on educa-

2) For induced technical innovation, see also Hicks (1932), Kennedy (1964), Von Weizsäcker (1966),
and Drandakis and Phelps (1966). The above-mentioned specification by Taylor et al. (2019) is a
combination of the Kaldor–Verdoorn law and induced technical innovation. For the Kaldor–Verdoorn
law, see Verdoorn (1949) and Kaldor (1966).

3) For specifications of innovation, see also Tavani and Zamparelli (2020, 2021).
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tion contributes to human capital accumulation, which increases labor productivity.4)

In Lima et al. (2021), the government imposes taxation on workers and capitalists and
invests in education with the use of tax funds. In Serra (2023), households spend on
education as a fraction of their income and borrowings. In Carvalho et al. (2024),
workers spend a fraction of their wages on human capital accumulation. Among these
three models, Serra (2023) and Carvalho et al. (2024) assume an exogenous wage share
while Lima et al. (2021) endogenizes the wage share dynamics by using conflict theory.

This study incorporates costly innovation into the Kaleckian model and conducts
short- and long-run analyses. In the short run, the capacity utilization rate becomes
an adjustment variable, and short-run equilibrium is attained through a change in the
capacity utilization rate when the price of the final goods is given. In the long run,
assuming that a short-run equilibrium is always attained, the wage share and capital
stock per effective labor supply are adjusted. In the long-run equilibrium, these two
variables become constant.5) My model considers the dynamics of the wage share and
is therefore close to Lima et al’s (2021) model.

The results of the analysis are as follows:
In the short-run equilibrium, the capacity utilization rate and economic growth rate

are increasing functions of the wage share. This suggests that the short-run equilibrium
exhibits wage-led demand and growth.

In the long-run equilibrium, the capacity utilization rate, employment rate, eco-
nomic growth rate, and wage share are all positively correlated. An increase in work-
ers’ propensity to spend on education investment decreases the capacity utilization
rate, employment rate, economic growth rate, and wage share. An increase in a firm’s
propensity to invest in R&D decreases its capacity utilization rate, employment rate,
economic growth rate, and wage share. An increase in firms’ retained earnings rate
decreases the capacity utilization rate, employment rate, economic growth rate, and
wage share.

These results are consistent with those reported by Lima et al. (2021). They con-
clude that a rise in the tax rate to increase education investment decreases the wage
share and capacity utilization rate, which decreases (increases) the economic growth
rate if the economy has wage-led growth (profit-led growth). Moreover, they show that
if the economy has wage-led growth (profit-led growth), an increase in the tax rate

4) Using the classical growth model, Dutt and Veneziani (2019, 2020) examine how human capital
accumulation affects growth and distribution.

5) Dutt (1992) is the first to perform such short- and long-run analyses of the Kaleckian model.
The capital stock per effective labor supply and the employment rate are interchangeable in long-run
analysis.
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has a negative (ambiguous) effect on the employment rate. In my model, an economic
policy that directly fosters technological progress to increase the economic growth rate
lowers the long-run economic growth rate. This outcome is opposite to the result ob-
tained from the mainstream endogenous growth model, which emphasizes the supply
side. The difference between my model and that of Lima et al. (2021) is that I consider
firms’ retained earnings and spending allocation from retained earnings to investments
in R&D and equipment. This enables us to investigate how changes in firms’ behavior
affect their growth and distribution.

The remainder of this paper is organized as follows: Section 2 presents the basic
framework of the proposed model. Section 3 contains a short-run analysis. Section
4 covers a long-run analysis. Section 5 outlines a comparative static analysis using
numerical simulations. Finally, Section 6 concludes the study.

2 Model
Suppose an economy has three agents: workers, rentiers, and firms. Workers provide
labor to firms and obtain wages. Rentiers own their equities and obtain profits through
dividends. Firms produce a single final good with labor power and capital stock,
allocate a fraction of their profits to rentiers as dividends, and save the remainder as
retained earnings. A fraction of firms’ retained earnings is devoted to R&D spending
and the rest to equipment investment. Following the work of Kalecki, I assume that
the final goods market is imperfectly competitive.

The production function is assumed to take the Leontief form.

Y = min{aE, uK}, (1)

where Y denotes the output, E refers to employment, and K indicates capital stock.
From the firms’ cost minimization behavior, I obtain aE = uK. In this case, a = Y/E

signifies labor productivity. I define the ratio of Y to the potential output Y ∗ as the
capacity utilization rate u. I assume that the technologically given potential output-
capital ratio is fixed at unity. Subsequently, I derive u = Y/K.

In the short run, the labor supply is unlimited; hence, firms can obtain as much labor
as they need for production. In contrast, in the long run, labor supply is constrained,
and labor supply N grows at a constant rate n > 0.

Ṅ

N
= n > 0. (2)
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Accordingly, I define the employment rate e as

e = E

N
. (3)

Because E = uK/a, I can decompose the employment rate into

e = u · K
aN︸︷︷︸
k

= uk, (4)

where k denotes capital stock per effective labor supply.
I specify the rates of change in nominal wages and prices using conflict theory. In

conflict theory, income distribution is determined through labor-management negotia-
tions. Rowthorn (1977) invented conflict theory, and Dutt (1987) and Cassetti (2003)
adopted it in the Kaleckian model.

First, I assume that the nominal wage W changes according to the gap between
the labor union’s target wage share ωw and actual wage share ω.

Ẇ

W
= θw[ωw(e) − ω], θw > 0, ω′

w(e) > 0, (5)

where θw indicates an adjustment parameter. This equation suggests that when the
actual wage share is below the target level, labor unions demand a wage increase, which
increases nominal wages. Moreover, I assume that the target level is an increasing
function of the employment rate. When the employment rate is high, the bargaining
power of labor unions is strong; hence, they set a higher target level. This specification
captures the reserve army effect stressed by Marx (1867).

Second, I assume that the price P set by firms changes according to the gap between
the actual and target wage shares of firms ωf .6)

Ṗ

P
= θf (ω − ωf ), θf > 0, (6)

where θf is the adjustment parameter. This specification implies that when the actual
wage share is higher than a firm’s target level, firms set a higher price to obtain more
profits. It is reasonable to assume that labor unions set a higher target wage share,
whereas firms set a lower target wage share. Hence, it is assumed that ωw > ωf . For

6) In this study, ωf is an exogenous variable. Lima (2004) assumes that ωf is a decreasing function
of the capacity utilization rate. If I adopt this specification, the long-run equilibrium is more likely to
be stable.
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the sake of convenience, I assume θw + θf = 1 and set θw = θ ∈ (0, 1) and θf = 1 − θ.
I now specify the flow of incomes. A fraction τ of wages wE is allocated to an

education investment, and the remaining 1 − τ is allocated to consumption. Here,
w = W/P denotes the real wage. A fraction sf of profits rK is allocated to retained
earnings sfrK and the remaining (1 − sf )rK to dividends. Here, r refers to the profit
rate, and sf is the retained earnings rate.7) A fraction σ of retained earnings is allocated
to R&D investment and the remaining 1 − σ is allocated to investment in equipment.
Dividends are the source of rentiers’ income; a fraction sr of dividends is devoted to
saving, and the remaining 1 − sr to consumption. Consequently, saving of the entire
economy is the sum of the retained earnings (savings of firms) and savings of rentiers.
Dividing the savings of the entire economy by capital stock and letting the resultant
expression be gs, I obtain

gs = [sf (1 − σ) + sr(1 − sf )]︸ ︷︷ ︸
s

(1 − ω)u (7)

= s(1 − ω)u, (8)

where s signifies the average savings rate of the entire economy and 0 < s < 1. For s,
the following relationship is obtained:

∂s

∂σ
= −sf < 0, (9)

∂s

∂sf
= 1 − σ − sr ≷ 0. (10)

An increase in the proportion of retained earnings allocated to R&D reduces the average
savings rate. An increase in the retained earnings rate either increases or decreases the
average savings rate.

I specify the firms’ investment functions. I assume that firms’ equity investment is
an increasing function of retained earnings and the capacity utilization rate.

gd = γ + α(1 − σ)sf (1 − ω)u+ βu, α, β, γ > 0, (11)

where γ indicates the animal spirit of firms, α is the sensitivity of investment to re-
tained earnings, and β is the sensitivity of investment to the capacity utilization rate.
The specification that investment depends positively on retained earnings is supported

7) For Kaleckian models with retained earnings, see also Charles (2008) and Sasaki and Fujita (2012).
They consider a situation in which rentiers make loans to firms; hence, firms hold debt. In contrast,
I abstract firms’ debt to clarify the analysis.
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by empirical studies by Hayashi and Inoue (1991) and Hoshi et al. (1991), Fazzari et
al. (1988), and Ndikumana (1999). The specification that investment depends posi-
tively on capacity utilization is generally used in the Kaleckian model.

I specify the technological progress function as follows: I assume that the growth
rate of labor productivity ga ≡ ȧ/a takes the Cobb–Douglas form, which synthesizes
the increase effect of labor productivity arising from workers’ investment in education
and firms’ investment in R&D. As mentioned above, workers invest a proportion τ of
their wages in education and firms invest a share σ of their retained earnings in R&D.
I specify this as follows:

ga = ϕ0 + ϕ1(τω)ψ[σsf (1 − ω)]1−ψ, ϕ0, ϕ1 > 0, ψ ∈ [0, 1]. (12)

The restriction ϕ0 > 0 warrants ga > 0 when ω = 0 or ω = 1. Parameter ϕ1 shows
the efficiency of education investment and R&D. Parameter ψ captures the weight
of education investment in the technological progress function. I obtain g′

a(ω) < 0
when ψ = 0 and g′

a(ω) > 0 when ψ = 1. Subsequently, ga is maximized at ω = ψ.8)

Thus, the optimal wage share that maximizes the economic growth rate is ωoptimal =
ψ. Subsequently, I investigate how τ , σ, and sf affect the model’s main variables.
Empirical analyses by Himmelberg and Petersen (1994) and Carpenter and Petersen
(2002) show that R&D investments depend more heavily on internal funds than on
external funds. Hence, the specifications of Equation (12) are reasonable.9)

3 Short-run analysis
In the short run, labor productivity a, capital stock K, labor supply N , price level P ,
and nominal wage W are constant, and capacity utilization u becomes an endogenous
variable for attaining a goods market equilibrium.

The aggregate demand Yd is given by

Yd = C + I = Cw + Cr︸ ︷︷ ︸
C

+Id + Ip (13)

= (1 − τ)wE︸ ︷︷ ︸
Cw

+ (1 − sr)(1 − sf )rK︸ ︷︷ ︸
Cr

+Id + (τwE + σsfrK)︸ ︷︷ ︸
Ip

(14)

= wE + [(1 − sr)(1 − sf ) + σsf ]rK + Id. (15)

8) If I differentiate ga(ω) with respect to ω, I obtain g′
a(ω) > 0 for 0 < ω < ψ, g′

a(ω) = 0 when
ω = ψ, and g′

a(ω) < 0 when ψ < ω < 1.
9) For R&D investment and its finance, see also Hall (2002).
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where Cw denotes the consumption of workers, Cr is the consumption of rentiers, Id
is the investment of firms, and Ip is the R&D investment of firms. For equation (15),
which is equal to national income wE + rK, I need

[sf (1 − σ) + sr(1 − sf )](1 − ω)uK = Id. (16)

By dividing both sides of equation (16) by K, I obtain

gs = gd. (17)

This is the short-run equilibrium condition for the goods market. By solving equation
(17) for u, I obtain the following equation: 10)

u∗ = γ

ε(1 − ω) − β
, ε ≡ s− α(1 − σ)sf > 0. (18)

The superscript “*” refers to the short-run equilibrium value of a variable. Because ε
is the sensitivity of savings to the profit rate s minus the sensitivity of investment to
the profit rate α(1 − σ)sf and it can be rewritten as ε = sf (1 − σ)(1 −α) + sr(1 − sf ),
I find that ε > 0. This implies that the Robinsonian stability condition is satisfied in
my model. Finally, I obtain

∂ε

∂σ
= −sf (1 − α) < 0, (19)

∂ε

∂sf
= (1 − σ)(1 − α) − sr ≷ 0. (20)

An increase in the proportion of the retained earnings devoted to R&D investments
lowers ε. An increase in the retained earnings rate either increases or decreases ε.

For the positivity of the short-run equilibrium capacity utilization rate, I require

ε(1 − ω) − β > 0. (21)

This is a Keynesian stability condition such that the quantity adjustment of the goods
market is stable. For this constraint to be effective, I require ε > β, which I assume
in the following analysis.11) Moreover, the capacity utilization rate must be less than

10) If β = 0 in the investment function, the short-run equilibrium growth rate is independent of the
wage share. Hence, to investigate the relationship between growth and distribution, I need β > 0.
11) The Keynesian stability condition is criticized theoretically and empirically by Skott (2012).
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unity, which requires the following conditions:

γ < ε(1 − ω) − β. (22)

This equation can be rewritten as

ω < 1 − β + γ

ε
≡ ωmax. (23)

This corresponds to the upper limit of the capacity utilization rate. That is, the wage
share must lie within the interval ω ∈ (0, ωmax)

As the short-run equilibrium capacity utilization rate u∗ depends on ω, I can write
it as u∗ = u(ω). Moreover, if I use u∗ = u(ω), the short-run equilibrium growth rate
g∗ also depends on ω. Hence, I can write g∗ = g(ω), which leads to:

g(ω) = sγ(1 − ω)
ε(1 − ω) − β

. (24)

By differentiating u(ω) and g(ω) with respect to ω, I derive the following relationship.

u′(ω) = γε

[ε(1 − ω) − β]2
> 0, (25)

g′(ω) = sγβ

[ε(1 − ω) − β]2
> 0. (26)

If other things are equal, a rise in the wage share increases the consumption of workers
while decreasing the consumption of rentiers and the investment of firms. Since workers’
propensity to consume is unity, rentiers’ propensity is given by 1 − sr < 1 and it is
less than unity, consumption of the entire economy increases. This rise in consumption
outweighs the decline in firms’ investment; hence, the aggregate demand increases.
As such, both the short-run equilibrium capacity utilization rate and the growth rate
increase.

Proposition 1. The short-run equilibrium exhibits wage-led demand and growth regimes.

Bhaduri and Marglin (1990) and Marglin and Bhaduri (1990) show that both wage-
and profit-led regimes are obtained by specifying the investment function as an in-
creasing function of the profit share and capacity utilization rate.12) I use a different
investment function; hence, I obtain only a wage-led demand/growth regime.

12) Blecker (2002) is an excellent study that clearly explains the classification of regimes in the
Kaleckian model.
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Finally, the employment rate can be rewritten as

e = u(ω)k. (27)

In the long-run analysis, both ω and k are adjustment variables, and the employment
rate shifts as these variables change.

4 Long-run analysis
In the long run, labor productivity a, capital stock K, labor supply N , price level P ,
and nominal wage W change; hence, wage share ω = (W/P )/a and capital stock per
effective labor supply k = K/(aN) become endogenous variables. Because ω and k are
positive, I can take their logarithms. By differentiating them with respect to time, I
obtain

ω̇

ω
= Ẇ

W
− Ṗ

P
− ȧ

a
, (28)

k̇

k
= K̇

K
− ȧ

a
− Ṅ

N
. (29)

Substituting the rates of change of W , P , a, K, and N into the above equations, I
derive a system of differential equations for ω and k:

ω̇ = ω
{
θw[ωw(u(ω)k) − ω] − θf (ω − ωf ) − ga(ω)

}
, (30)

k̇ = k
[
g(ω) − ga(ω) − n

]
. (31)

I define the long-run equilibrium as a situation in which ω and k are constant; that
is, ω̇ = k̇ = 0. With k ̸= 0, from k̇ = 0, I obtain

g(ω∗∗) = ga(ω∗∗) + n. (32)

The superscript “∗∗” denotes the long-run equilibrium value of a variable. Equation
(32) determines the long-run equilibrium wage share: Figure 1 illustrates the determi-
nation of ω∗∗. The graph of g(ω) is upward sloping because the short-run equilibrium
is wage-led growth. The graph of ga(ω) + n is convex upward because ga(ω) is convex.
The value ωmin in Figure 1 is explained later. As Figure 1 shows, the number of the
long-run equilibrium value of ω is 0, 1, or 2, which depends on the values of g(ωmin),
ga(ωmin) + n, g(ωmax), and ga(ωmax) + n, and the shapes of g(ω) and ga(ω) + n.
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Equation (32) indicates that the economic growth rate is equal to the natural growth
rate in the long run. As such, the employment rate in the long-run equilibrium becomes
constant. Substituting ω∗∗ into the equation ω̇ = 0, I can solve it for the long-run
equilibrium value k∗∗.

ωminO ωωmaxωL ωH

g(ω)

ga(ω) + n

ψ

Figure 1: Determining the long-run equilibrium value of ω

For the numerical simulations that I conduct later, I specify labor unions’ target
wage share as a linear function:

ωw(e) = δ0 + δ1 u(ω)k︸ ︷︷ ︸
e

, δ0 > 0, δ1 > 0. (33)

Parameter δ1 captures the degree of the reserve army effect. With this specification,
the relationship between k and ω and that between e and ω are given by

k =
[ε(1 − ω) − β]

{
ϕ0 + ϕ1(τω)ψ[σsf (1 − ω)]1−ψ + ω − [θδ0 + (1 − θ)ωf ]

}
θδ1u(ω)

, (34)

e = ϕ0 + ϕ1(τω)ψ[σsf (1 − ω)]1−ψ + ω − [θδ0 + (1 − θ)ωf ]
θδ1

. (35)

By substituting ω∗∗ into these equations, I obtain k∗∗ and e∗∗.
Each element of the Jacobian matrix J corresponding to the system of differential

equations is given by

J11 = ∂ω̇

∂ω
= ω∗∗

[
θδ1k

∗∗u′(ω∗∗)
(+)

− 1 − g′
a(ω∗∗)
(+/−)

]
, (36)

J12 = ∂ω̇

∂k
= ω∗∗θδ1u(ω∗∗) > 0, (37)

12



J21 = ∂k̇

∂ω
= k∗∗

[
g′(ω∗∗)

(+)
− g′

a(ω∗∗)
(+/−)

]
, (38)

J22 = ∂k̇

∂k
= 0. (39)

J11 shows the impact of a change in the wage share on the wage share itself. This
impact comprises the reserve army effect δ1 > 0, the wage-led demand run u′(ω) > 0,
and the response of technological progress to the wage share g′

a(ω) ≷ 0. J11 is positive
if the reserve army effect is strong, the wage-led demand effect is strong, and the
technological progress response is negative. In contrast, if the reserve army effect is
weak, the wage-led demand effect is weak, and the response of technological progress is
positive; J11 will be negative. When J11 is negative, the long-run equilibrium is likely
stable.

J12 displays the impact of a change in capital stock per effective labor supply on
the wage share. Because the reserve army effect works (δ1 > 0), J12 becomes positive.

J21 presents the impact of a change in wage share on capital stock per effective labor
supply. This effect comprises the wage-led growth run g′(ω) > 0 and the response of
technological progress to the wage share g′

a(ω) ≷ 0. If this response to technological
progress is negative, J21 is positive. By contrast, J21 can be negative if this response
is positive.

J22 portrays the impact of a change in capital stock per effective labor supply on
the capital stock per effective labor supply. This self-feedback effect is zero near the
long-run equilibrium.

From the Routh–Hurwitz stability criterion, the necessary and sufficient condition
for local and asymptotical stability of the long-run equilibrium is that the trace of J is
negative and the determinant of J is positive. The trace and determinant are given by

tr J = J11
(+/−)

, (40)

det J = −J12
(+)

J21
(+/−)

. (41)

When g′
a(ω∗∗) < 0, J21 > 0, which yields that det J < 0. In this case, the long-run

equilibrium is unstable. When g′
a(ω∗∗) > 0, which is fairly large, I have J11 < 0 and

J21 < 0. In this case, the long-run equilibrium is stable.

Proposition 2. Suppose that the technological progress function is decreasing in the
wage share around the long-run equilibrium. Hence, the long-run equilibrium is unsta-
ble. On the other hand, suppose that the technological progress function is increasing
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in the wage share around the long-run equilibrium. The long-run equilibrium is stable
if the response of technological progress to the wage share is relatively strong, whereas
it is unstable if the response is relatively small.

I draw a phase diagram to analyze the transitional dynamics. The equation k̇ = 0
contains only ω. At most, two ω values exist that satisfy k̇ = 0. The locus ω̇ = 0 is
a convex upward curve. The equation ω̇ = 0 can be rewritten as k = k(ω). I have
k′(0) > 0 when ω = 0 and k′(1) < 0 when ω = 1. Accordingly, there is an ω such
that k′(ω) = 0 for ω ∈ (0, 1). The reason this locus is convex upward is unrelated
to the fact that ga(ω) is convex upward. Specifically, when ψ = 0, ga(ω) becomes a
monotonically decreasing function of ω and when ψ = 1, it becomes a monotonically
increasing function of ω. However, in either case, the locus ω̇ = 0 is convex upward.
Moreover, in the equation ω̇ = 0, there is an ω such that k = 0, which I define ωmin.
Therefore, interval ω is given by ω ∈ [ωmin, ωmax]:

From the above discussion, I obtain Figures 2–5: four kinds of phase diagrams arise.

ω

k

O

ω̇ = 0

k̇ = 0 k̇ = 0

ES

EU

ωL ωHψ ω̄

S1

S2

ωmin ωmax

Figure 2: Phase diagram in Case 1

ω

k

O

ω̇ = 0

k̇ = 0 k̇ = 0

ES
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Figure 3: Phase diagram in Case 2
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Figure 5: Phase diagram Case 4

In Case 1, two loci of k̇ = 0 are located to the left of the top of the locus of ω̇ = 0
(Figure 2). ES and EU denote the stable and unstable equilibria, respectively. If the
economy starts at S1 or S2, then it converges toward ES. EU is a saddle point; if the
economy starts to the right of the pink saddle path, it explodes, whereas if it starts to
the left of the saddle path, it converges toward ES. As previously stated, if g′

a(ω∗∗) < 0,
the long-run equilibrium is unstable. EU in Figure 3 corresponds to such a case. By
contrast, if g′

a(ω∗∗) > 0 and its degree is relatively small, the long-run equilibrium is
unstable. Comparing ES and EU in Figure 2, I find that 0 < g′

a(ωU) < g′
a(ωS), which

means that ES is stable because the degree of technological progress response to the
wage share is relatively large at ES. As explained in Section 2, the wage share that
maximizes the technological progress rate is ωoptimal = ψ. Note that the wage share
that gives the top of the locus ω̇ = 0; that is, ω̄ is not ψ. In Figures 2 and 3, ω̄ exceeds
ωoptimal.

In Case 2, one locus of k̇ = 0 is located to the left of the top of the ω̇ = 0 locus,
whereas the other locus of k̇ = 0 is located to the right of the top of the locus of ω̇ = 0
(Figure 3). As in Case 1, the stable and unstable equilibria coexist.

In Case 3, two loci of k̇ = 0 are located to the right of the top of the locus of ω̇ = 0
(Figure 4). The two long-run equilibria E1 and E2 are both unstable. This implies
that if ω̄ < ωL, no stable equilibrium exists.

In Case 4, only one locus, k̇ = 0 exists (Figure 5). In this case, the long-run
equilibrium E1 is the saddle point. The pair (ω, k) explodes over time or converges
toward (ωmin, 0). In the latter case, k = 0 at the equilibrium, which has no economic
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meaning.
The above discussion can be described as follows:

• If ω∗∗ is larger than ωoptimal, it is unstable because g′
a(ω) < 0 holds at the equi-

librium, which is a condition for instability. Moreover, from the analysis of the
phase diagram, the long-run equilibrium is unstable when it is located on the
right of ω̄, even if it is smaller than ωoptimal.

• In Case 1, ωL is stable whereas ωH is unstable. Moreover, ωL is smaller than
ωoptimal. Hence, if we can increase ωL, economic growth also increases.

• In Case 2, I obtain ωL < ω̄ < ωH and ωL < ωoptimal < ωH . Since ωL < ωoptimal,
the economic growth rate rises if we can increase ωL.

• In Case 3, I obtain ω̄ < ωL < ωH and both equilibria are located on the left of ω̄.
In this case, I have g′

a(ωL) > 0 and g′
a(ωH) > 0, which implies that the long-run

equilibrium can be stable. However, since ω̄ < ωL < ωH , both long-run equilibria
are unstable.

• In Case 4, only one long-run equilibrium exists, and ωoptimal < ω̄ < ωH . Accord-
ingly, the equilibrium is unstable.

The wage share that maximizes the technological progress rate and economic growth
rate is given by ωoptimal = ψ. In this case, g′

a(ψ) = 0, resulting in J21 > 0. Subsequently,
I obtain det J < 0. Hence, the long-run equilibrium in which ω = ψ is unstable. This
suggests that if we can obtain ω = ψ through an economic policy, such a state cannot
last. For ω = ψ, from equation (32), the following equation holds.

sγ(1 − ψ)
ε(1 − ψ) − β

= ϕ0 + ϕ1(τψ)ψ[σsf (1 − ψ)]1−ψ. (42)

It is unlikely that combinations of many parameters satisfy this equation. From the
above discussion, the effective interval of the wage share is ωmin < ω < min{ψ, ω̄}
under the condition that the long-run equilibrium is stable.

Proposition 3. Suppose the long-run equilibrium lies within the interval ωmin < ω∗∗ <

min{ψ, ω̄}. The economic growth rate rises if we increase the long-run equilibrium
wage share.

This proposition implies that the effective wage share must lie within a specific
interval and that we cannot increase the economic growth rate indefinitely by increasing
the wage share, even if the short-run equilibrium exhibits a wage-led growth regime.
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5 Comparative static analysis in the long-run equi-
librium

This section presents a comparative static analysis of long-run equilibrium. To proceed,
I require a stable long-run equilibrium, which I assume in the following analysis.

From equation (32), in the long-run equilibrium, the following relationship holds:

g(ω;σ, sf )︸ ︷︷ ︸
Demand growth rate

= ga(ω; τ, σ, sf ) + n︸ ︷︷ ︸
Supply growth rate

. (43)

The left-hand side is determined by the principle of effective demand; hence, we call it
the “demand growth rate.” The right-hand side is the sum of the technological progress
rate and labor supply growth rate; as such, I call it the “supply growth rate.” When a
parameter changes, both the left- and right-hand sides change; accordingly, the wage
share must change to equalize both sides of the equation (43). The propensity to spend
on education investment τ is included only on the right side, whereas the propensity
to spend on R&D investment σ and the retained earnings rate sf are included on both
sides. Many Kaleckian models stress the principle of effective demand and underesti-
mate the impact of supply. However, as Dutt (2006) points out, it is reasonable that
in the long run, the interaction between the demand and supply sides determines the
economic growth rate.

An increase in τ does not affect g(ω) but shifts the graph of ga(ω) upward. As such,
at a stable equilibrium, ω declines, which also decreases the economic growth rate. In
this case, the long-run equilibrium values of capacity utilization and the economic
growth rate also fall.

An increase in σ shifts the graph of ga(ω) upward. However, the manner in which
the graph of g(ω) shifts remains unclear. The same holds for an increase in sf .

This discussion is examined in detail. Let the right-hand sides of the differential
equations for ω and k be F1(ω, k; z) and F2(ω, k; z), respectively. Here, z denotes one
of the parameters τ , σ, or sf . In this case, the long-run equilibrium conditions are

F1(ω∗∗, k∗∗; z) = 0, (44)
F2(ω∗∗, k∗∗; z) = 0. (45)

I completely differentiate both sides of the above equation. From this, I obtain a Jaco-
bian matrix whose elements are equations (36)–(39). Because the long-run equilibrium
is stable, det J > 0. Accordingly, I can use the implicit function theorem to obtain the
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following equation:

dω∗∗

dz
= 1

det J

(
−∂F1

∂z
J22 + ∂F2

∂z
J12

)
, (46)

dk∗∗

dz
= 1

det J

(
−∂F2

∂z
J11 + ∂F1

∂z
J21

)
. (47)

First, we obtain J22 = 0. Second, for the long-run equilibrium to be stable, I require
g′
a(ω∗∗) > 0. Moreover, when the long-run equilibrium is stable, I obtain J11 < 0,
J12 > 0, and J21 < 0.

5.1 An increase in τ

By partially differentiating F1 and F2 with respect to τ , I obtain

∂F1

∂τ
= −ω∗∗ ∂ga

∂τ
(+)

< 0, (48)

∂F2

∂τ
= −k∗∗ ∂ga

∂τ
(+)

< 0. (49)

From this, I obtain the following equation:

dω∗∗

dτ
= 1

det J
(+)

∂F2

∂τ
(−)

J12
(+)

 < 0, (50)

dk∗∗

dτ
= 1

det J
(+)

−∂F2

∂τ
(−)

J11
(−)

+ ∂F1

∂τ
(−)

J21
(−)

 . (51)

Therefore, an increase in τ reduces ω∗∗. However, the effect of increasing τ on k∗∗

remains unclear.
For the other endogenous variables, I obtain

du∗∗

dτ
= ∂u

∂ω
(+)

· dω
∗∗

dτ
(−)

< 0, (52)

dg∗∗

dτ
= ∂g

∂ω
(+)

· dω
∗∗

dτ
(−)

< 0, (53)

de∗∗

dτ
= k∗∗ du

∗∗

dτ
(−)

+ u∗∗ dk
∗∗

dτ
, (54)
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dg∗∗
a

dτ
= dg∗∗

dτ
< 0. (55)

5.2 An increase in σ

By partially differentiating F1 and F2 with respect to σ, I obtain

∂F1

∂σ
= ω∗∗

θ∂ωw
∂σ
(+)

− ∂ga
∂σ
(+)

 , (56)

∂F2

∂σ
= k∗∗

 ∂g

∂σ
(+/−)

− ∂ga
∂σ
(+)

 . (57)

Here, I have

∂ωw
∂σ

= δ1k
∗∗ ∂u(ω)

∂σ
> 0. (58)

The parameter σ appears in ε in u(ω), and ∂ε/∂σ < 0. Furthermore, u(ω) is a
decreasing function of ε. Accordingly, ∂u(ω)/∂σ > 0, leading to ∂ωw/∂σ > 0.

The effect of an increase in σ on g is given by:

∂g

∂σ
= γ(1 − ω)

sf

{
β − (1 − ω)[αsr(1 − sf )]

}
[ε(1 − ω) − β]2

≷ 0. (59)

From this, I find that

ω∗∗ > 1 − β

αsr(1 − sf )
=⇒ ∂g

∂σ
> 0, (60)

ω∗∗ < 1 − β

αsr(1 − sf )
=⇒ ∂g

∂σ
< 0. (61)

For the other endogenous variables, I derive the following relationship:

du∗∗

dσ
= ∂u

∂σ
+ ∂u

∂ω
(+)

· dω
∗∗

dσ
, (62)

dg∗∗

dσ
= ∂g

∂σ
(+/−)

+ ∂g

∂ω
(+)

· dω
∗∗

dσ
, (63)

de∗∗

dσ
= k∗∗ du

∗∗

dσ
+ u∗∗ dk

∗∗

dσ
, (64)
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dg∗∗
a

dσ
= dg∗∗

dσ
. (65)

The way in which an increase in σ shifts the graph of g(ω) is ambiguous. If the graph
shifts upward, g∗∗ either increases or decreases, depending on the size of the shift.

5.3 An increase in sf

By partially differentiating F1 and F2 with respect to sf , I obtain

∂F1

∂sf
= ω∗∗

θ∂ωw∂sf
(+)

− ∂ga
∂sf
(+)

 , (66)

∂F2

∂sf
= k∗∗

 ∂g

∂sf
(+/−)

− ∂ga
∂sf
(+)

 . (67)

Here, I have

∂ωw
∂sf

= δ1k
∗∗ ∂u(ω)

∂sf
> 0. (68)

With ∂ε/∂sf < 0, ∂u(ω)/∂sf > 0 holds
The effect of an increase in sf on g is given by

∂g

∂sf
= γ(1 − ω) αsr(1 − σ)(1 − ω) − (1 − σ − sr)β

[ε(1 − ω) − β]2
≷ 0. (69)

From this, I find that

ω∗∗ < 1 − β(1 − σ − sr)
α(1 − σ)sr

=⇒ ∂g

∂sf
> 0, (70)

ω∗∗ > 1 − β(1 − σ − sr)
α(1 − σ)sr

=⇒ ∂g

∂sf
< 0 (71)

For the other endogenous variables, I obtain

du∗∗

dsf
= ∂u

∂sf
+ ∂u

∂ω
(+)

· dω
∗∗

dsf
, (72)

dg∗∗

dsf
= ∂g

∂sf
(+/−)

+ ∂g

∂ω
(+)

· dω
∗∗

dsf
, (73)
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de∗∗

dsf
= k∗∗ du

∗∗

dsf
+ u∗∗ dk

∗∗

dsf
, (74)

dg∗∗
a

dsf
= dg∗∗

dsf
. (75)

The way in which an increase in sf shifts the graph of g(ω) is ambiguous. If the graph
shifts upward, g∗∗ either increases or decreases, depending on the size of the shift.

5.4 Numerical simulations

In this section, I describe the numerical simulations. The purpose of this simulation
is to clarify the effect of a change in parameter on the long-run equilibrium values in
each case. Reproducing the actual economy is not its purpose; hence, some long-run
equilibrium values deviate from actual ones. I set the parameters producing Cases 1
and 2 as listed in Table1. Cases 1 and 2 differ in the settings of ϕ0, ωf , and δ0.

Table 1: Parameter sets in Cases 1 and 2
Case 1 Case 2

α 0.05 0.05
β 0.05 0.05
γ 0.053 0.053
σ 0.1 0.1
sr 0.5 0.5
sf 0.3 0.3
τ 0.1 0.1
ϕ0 0.015 0.02
ϕ1 1.5 1.5
ψ 0.5 0.5
θ 0.6 0.6
ωf 0.6 0.5
δ0 0.1 0.05
δ1 0.9 0.9
n 0.008 0.008

The numerical simulation outcomes are summarized in Tables 2 and 3. In these
tables, λr ≡ (1 − sf )(1 − ω) and λf ≡ sf (1 − ω) denote the income shares of rentiers
and firms, respectively. The workers’ income share is their wage share.
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From Tables 2 and 3, we obtain the following results. First, an increase in work-
ers’ propensity to spend on education investment decreases the long-run equilibrium
values of capacity utilization, the employment rate, the economic growth rate, and the
wage share. Second, an increase in a firm’s propensity to invest in R&D decreases the
long-run equilibrium values of capacity utilization, the employment rate, the economic
growth rate, and the wage share. Third, an increase in firms’ retained earnings ratios
decreases the long-run equilibrium values of capacity utilization, the employment rate,
the economic growth rate, and the wage share. Fourth, an increase in the labor sup-
ply growth rate decreases the long-run equilibrium values of capacity utilization, the
employment rate, the economic growth rate, and the wage share.

An increase in τ has a direct positive effect on technological progress but decreases
the consumption of workers. This decline in workers’ consumption lowers effective
demand and consequently lowers the wage share. This drop in the wage share lowers
the technological progress rate and in turn the economic growth rate. Therefore, an
increase in workers’ propensity to invest in education negatively affects growth and
distribution.

An increase in σ has a direct positive effect on technological progress but a direct
negative effect on firms’ equipment investment. A decrease in equipment investment
leads to a decline in effective demand, which consequently lowers the wage share.
This decline in the wage share decreases the technological progress rate. Overall, the
negative effect outweighs the positive effect; hence, an increase in firms’ propensity to
spend on R&D worsens growth and distribution.

An increase in sf has a direct positive effect on technological progress and a firm’s
investment in equipment. An increase in the retained earnings rate lowers the dividends
for rentiers, which decreases consumption of rentiers because their income declines. A
positive direct effect on firms’ equipment investments leads to an increase in effective
demand, whereas a decline of consumption among rentiers leads to a decrease in effec-
tive demand. Overall, the negative effect outweighs the positive one; hence, effective
demand falls, which produces a drop in the wage share, leading to a decline in the tech-
nological progress rate and economic growth rate. As such, an increase in the retained
earnings rate negatively affects growth and distribution.
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Table 2: Results of numerical simulations in Case 1
τ σ sf n

Benchmark 0.101 0.101 0.301 0.0081
ω 0.3396 0.3275 0.3277 0.3352 0.3330
u 0.1512 0.1481 0.1482 0.1500 0.1495
e 0.1731 0.1505 0.1508 0.1649 0.1607
k 1.1452 1.0160 1.0175 1.0996 1.0746
ga 0.0539 0.0537 0.0538 0.0538 0.0537
g 0.0619 0.0617 0.0618 0.0618 0.0618
λr 0.4623 0.4707 0.4706 0.4647 0.4669
λf 0.1981 0.2017 0.2017 0.2001 0.2001

Table 3: Results of numerical simulations in Case 2
τ σ sf n

Benchmark 0.101 0.101 0.301 0.0081
ω 0.1916 0.1887 0.1888 0.1906 0.1898
u 0.1204 0.1199 0.1200 0.1201 0.1201
e 0.0257 0.0204 0.0205 0.0239 0.0222
k 0.2138 0.1704 0.1710 0.1992 0.1852
ga 0.0523 0.0523 0.0523 0.0523 0.0522
g 0.0603 0.0603 0.0603 0.0603 0.0603
λr 0.5659 0.5679 0.5679 0.5658 0.5671
λf 0.2425 0.2434 0.2434 0.2436 0.2431

6 Conclusions
This study presents a Kaleckian model with endogenous technological progress and
conducts short- and long-run analyses. Assuming that technological progress arises
from the combination of workers’ education investment and firms’ R&D investment, the
technological progress function becomes convex upward with respect to the wage share,
which assures the existence of an optimal wage share that maximizes the technological
progress rate.

In the short run, capacity utilization becomes an adjusted variable and the long-run
equilibrium exhibits wage-led demand and growth regimes. In the long run, the wage
share and capital stock per the effective labor supply become adjustment variables. For
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the long-run equilibrium to be stable, the technological progress function must increase
the wage share around the long-run equilibrium. Moreover, the wage share that is
effective in the long run must lie within a specific interval, and a larger wage share
does not necessarily increase economic growth, even if the short-run equilibrium is a
wage-led growth regime. Furthermore, I obtain four types of long-run phase diagrams:
Two of the four cases produce a stable long-run equilibrium whereas the remaining two
cases produce an unstable long-run equilibrium.

The comparative static analysis with numerical simulations shows that in every
stable case, a parameter change that directly promotes technological progress nega-
tively affects the long-run equilibrium values of the capacity utilization, employment,
technological progress, and economic growth rates through a decline in the wage share.
This suggests that an economic policy aimed at fostering technological progress in a
demand-constrained economy lowers the rates of technological progress and economic
growth; this is called the “technological progress paradox.”

I obtained my results purely for theoretical analysis. To examine whether the
paradox of technological progress arises in an actual economy, I need to perform an
empirical analysis based on economic data, which will be left for future research.

Acknowledgement
I would like to thank Editage (www.editage.jp) for English language editing.

Disclosure statement
The author declare no conflicts of interest.

Funding
Not available.

References
Bhaduri A. and Marglin S. (1990) “Unemployment and the real wage: the economic
basis for contesting political ideologies,” Cambridge Journal of Economics 14 (4),
375–393.

24



Blecker, R. A. (2002) “Distribution, demand and growth in neo-Kaleckian macro-
models,” in Setterfield, M. (ed.) The Economics of Demand-led growth, challenging
the supply side vision of the long run ; Cheltenham: Edward Elgar.

Carvalho, L. B., Lima, G. T., and Serra, G. P. (2024) “Household debt, knowledge
capital accumulation, and macrodynamic performance,” Journal of Post Keynesian
Economics 47 (1), 84–116.

Carpenter, R. E. and Petersen, B. C. (2002) “Capital market imperfections, high-tech
investment, and new equity financing,” The Economic Journal 112, 54–72.

Cassetti, M. (2003) “Bargaining power, effective demand and technical progress: a
Kaleckian model of growth,” Cambridge Journal of Economics 27 (3), 449–464.

Charles, S. (2008) “Corporate debt, variable retention rate and the appearance of
financial fragility, Cambridge Journal of Economics 32, 781–795.

Drandakis, E. M. and Phelps, E. S. (1966) “A model of induced invention, growth
and distribution,” The Economic Journal 76 (304), 823–840.

Dutt, A. K. (1987) “Alternative closures again: a comment of growth, distribution,
and inflation,” Cambridge Journal of Economics 11 (1), 75–82.

Dutt, A. K. (1992) “Conflict inflation, distribution, cyclical accumulation and crises,”
European Journal of Political Economy 8 (4), 579–597.

Dutt, A. K. (2006) “Aggregate demand, aggregate supply and economic growth,”
International Review of Applied Economics 20 (3), 319–336.

Dutt. A. K. and Veneziani, R. (2019) “Education and ‘human capitalist’ in a classical–
Marxian model of growth and distribution,” Cambridge Journal of Economics 43,
481–506.

Dutt. A. K. and Veneziani, R. (2020) “A classical model of education, growth, and
distribution,” Macroeconomic Dynamics 24, 1186–1221.

Fazzari, S. M., Hubbard, R. G., and Peterson, B. C. (1988) “Financing constraints
and corporate investment,” Brooking Papers on Economic Activity 1988 (1), 141–206.

Flaschel, P. and Skott, P. (2006) “Steindlian models of growth and stagnation,”
Metroeconomica 57 (3), 303–338.

25



Hall, B. H. (2002) “The financing of research and development,” Oxford Review of
Economic Policy 18 (1), 35–51.

Hayashi, F. and Inoue, T. (1991) “The relation between firm growth and Q with
multiple capital goods: theory and evidence from panel data on Japanese firms,”
Econometrica 59 (3), 731–753.

Hicks, J. R. (1932) The Theory of Wages, London: Macmillan.

Himmelberg, C. P. and Petersen, B. C. (1994) “R&D and internal finance: a panel
study of small firms in high-tech industries,” The Review of Economics and Statistics
76 (1), 38–51.

Hoshi, T., Kashyap, A., and Scharfstein, D. (1991) “Corporate structure, liquidity,
and investment: evidence from Japanese industrial groups,” The Quarterly Journal
of Economics 106 (1), 33–60.

Kaldor, N. (1966) “Causes of the slow rate of economic growth in the United King-
dom,” reprinted in N. Kaldor (1978) Further Essays on Economic Theory, London:
Duckworth.

Kalecki, M. (1971) Selected Essays on the Dynamics of the Capitalist Economy Cam-
bridge, UK: Cambridge University Press.

Kennedy, C. (1964) “Induced bias in innovation and the theory of distribution,” The
Economic Journal 74 (295), 541–547.

Lima, G. T. (2004) “Endogenous technological innovation, capital accumulation and
distributional dynamics,” Metroeconomica 55 (4), 386–408.

Lima, G. T., Carvalho, L., and Serra, G. P. (2021) “Human capital accumulation, in-
come distribution, and economic growth: a demand-led analytical framework,” Review
of Keynesian Economics 9 (3), 319–336.

Marglin, S. and Bhaduri, A. (1990) Profit Squeeze and Keynesian Theory in S. Mar-
glin and J. Schor (eds.) The Golden Age of Capitalism: Reinterpreting the Postwar
Experience, Oxford: Clarendon Press.

Marx, K. (1867) Capital: A Critique of Political Economy, Vol. I. London: Lawrence
and Wishart.

26



Ndikumana, L. (1999) “Debt service, financing constraints, and fixed investment:
evidence from panel data,” Journal of Post Keynesian Economics 21 (3), 455–478.

Rowthorn, R. E. (1977) “Conflict, inflation, and money,” Cambridge Journal of Eco-
nomics 1 (3), 215–239.

Rowthorn, R. E. (1981) “Demand, real wages and economic growth,” Thames Papers
in Political Economy, Autumn, 1–39.

Sasaki, H. (2010) “Endogenous technological change, income distribution, and unem-
ployment with inter-class conflict,” Structural Change and Economic Dynamics 21
(2), 123–134.

Sasaki, H. (2013) “Cyclical growth in a Goodwin–Kalecki–Marx Model,” Journal of
Economics 108 (2), 145–171.

Sasaki, H. and Fujita, S. (2012) “The importance of the retention ratio in a Kaleckian
model with debt accumulation,” Metroeconomica 63 (3), 417–428.

Serra, G. P. (2023) “Household debt, student loan forgiveness, and human capital
investment: a neo-Kaleckian approach,” Journal of Post Keynesian Economics 46
(1), 173–206.

Skott, P. (2012) “Theoretical and empirical shortcomings of the Kaleckian investment
function,” Metroeconomica 63 (1), 109–138.

Tavani, D., Flaschel, P., and Taylor, L. (2011) “Estimated non-linearities and multiple
equilibria in a model of distributive-demand cycles,” International Review of Applied
Economics 25 (5), 519–538.

Tavani, D. and Zamparelli, L. (2017) “Endogenous technical change in alternative
theories of growth and distribution,” Journal of Economic Surveys 31 (5), 1272–1303.

Tavani, D. and Zamparelli, L. (2020) “Growth, income distribution, and the ‘en-
trepreneurial state’,” Journal of Evolutionary Economics 30, 117–141.

Tavani, D. and Zamparelli, L. (2021) “Labor-augmenting technical change and the
wage share: new microeconomic foundations,” Structural Change and Economic Dy-
namics 56, 27–34.

Taylor, L., Foley, D. K., and Rezai, A. (2019) “Demand drives growth all the way:
Goodwin, Kaldor, Pasinetti and the Steady State,” Cambridge Journal of Economics
43, 1333–1352.

27



Verdoorn, P. J. (1949) “Fattori che regolano lo sviluppo della produttivit‘a del lavoro,”
L’Industria 1, pp. 14–28 (“Factors that determine the growth of labour productivity,”
translated by A. P. Thirlwall in J. McCombie, M. Pugno and B. Soro (eds.) Pro-
ductivity Growth and Economic Performance: Essays on Verdoorn’s Law, London:
Palgrave Macmillan, 2002).
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