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Old problems of the mathematical description of the economical 
behavior of a man are briefly reviewed. They are the comparison of 
choices of a man between uncertain and sure games and the radically 
different behavior of a man in different domains. The proposed solution 
of the problems consists in the purely mathematical method and models 
and is briefly reviewed in the Appendix.  

In the present paper the main attention is paid to the analysis of the 
experimental support of this possible solution.  

The generally accepted random incentive experimental procedures 
are discussed. A “certain-uncertain” inconsistency between the certain 
type of the choices and the uncertain type of the incentives is revealed 
and analyzed.  
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1.  Introduction. The old problems of economics   
 

There are a number of problems related to the mathematical description of the 
behavior of a man. Examples of these are the underweighting of high and the 
overweighting of low probabilities, the Allais paradox (Allais, 1953), risk aversion, 
loss aversion, equity premium puzzle, fourfold pattern of risk preferences, etc.   
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1.1.  Comparison of choices of a man between uncertain and sure games   

 
One of the problems of this mathematical description is a comparison of 

choices of a man between uncertain and sure games.   
The essence of this problem consists in biases of choices of people (subjects) 

for the uncertain and sure games in contradiction with the predictions of the theory 
of probability. This problem is crucial and well-known. It is most important in 
behavioral economics in prospect and utility theories and also in psychology, 
decision theory, and the social sciences. It is pointed out in a wealth of works.   

For example, we see in Kahneman and Tversky (1979) (pp. 265):   
“PROBLEM 1: Choose between   
A:   2,500  with probability  .33,  //   

2,400  with probability  .66,  //   
0    with probability  .01;   

B:   2,400  with certainty.   
N =  72  [18]  [82].”   
My note. We see the clear inconsistency:  18%  for A, that is less than  82%  for B 
(for  72  trials) in opposition with the expectations  2,500×.33+2,400×.66 = 2,409  
for A, that is more than  2.400  for B.   

For example, we see in Starmer and Sugden (1991) (pp. 974):   
“... a choice between two lotteries R’ (for “riskier”) and S’ (for “safer”). R’ gave a  
0.2  chance of winning  £10.00  and a  0.75  chance of winning  £7.00  (with the 
residual  0.05  chance of winning nothing); S’ gave  £7.00  for sure.”   
My note.  £10.00×0.2+£7.00×0.75 = £7.25  for R’  and  £7.00  for S’.  Here the 
expectations are  £7.25  for R’ that is more than  £7.00  for S’,  but the results were  
13  choices for R’ that is less than  27  choices for S’.   
 
 

1.2.  Radically different behavior of a man in different domains   
 

An additional problem (that is probably a lot harder than the previous one) is, 
moreover, the radically different behavior of a man in different domains.   

Thaler (2016) (pp. 1581–1582) wrote (the boldface type is my own):   
“Kahneman and Tversky’s research documented numerous choices that violate any 
sensible definition of rational. ... subjects were risk averse in the domain of 
gains but risk seeking in the domain of losses.”  
My note: at high probabilities.   

For example, the data in Kahneman and Tversky (1979) (pp. 268) in Table 1 
can be represented as:   
Problem 3:  (4,000  at  0.80) > (3,000  at  1.00)  leads to choices  [20%] < [80%].   
Problem 3’:  (-4,000  at  0.80) < (-3,000  at  1.00)  leads to choices  [92%] > [8%].   
My note. These data lead to the undoubted deduction of the clear inconsistency 
between the behavior of subjects in the domains of gains and losses.   

The above problems were stated first in Allais (1953) and have not been 
solved at present (see, e.g., Kahneman and Thaler, 2006, Thaler, 2016).  
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2.  Purely logical question   

2.1.  Qualitative difference between certain and uncertain outcomes   
 

As was mentioned above, one of the problems of behavioral economics is to 
compare certain (sure, guaranteed) and uncertain (probable) outcomes. The essence 
of these problems consists in biases between choices of people for the certain and 
uncertain outcomes in contrast to the predictions of the theory of probability.   

Some (little or big) qualitative difference between certain and uncertain 
outcomes is intuitively understood. Certain and uncertain outcomes can be 
moreover understood as opposite ones in some cases.   

In the content of this article, it should be stressed that this qualitative 
difference takes place in any case regardless of the particular numerical results or 
values of such outcomes. It should be stressed especially that the particular 
numerical results (or values) of such outcomes can be very close to each other, but 
the qualitative difference remains true.   

What does create the qualitative difference between the certain and uncertain 
outcomes? The basis for a certain outcome is some guarantee that this outcome will 
come. This guarantee should be supported by some additive efforts.   

So the origin of this qualitative difference is based on some additive efforts 
that are intended to guarantee the certain outcomes.   
 
 

2.2.  Qualitative difference versus the quantitative equalities   
 

Let us consider schematically (see fig. 1) the probability weighting (or 
Prelec’s) curve (see, e.g., Kahneman and Tversky, 1979, Prelec, 1998).  

 
 

Fig. 1.  Schematic sketch of the decision (or probability) weighting curve   
 

This curve displays the weight of the reaction of subjects (people) versus 
probability in experiments with probable (non-guaranteed) outcomes at probabilities 
from  0  to  1.   
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It is an inverse S-shaped function  π(p), that is first concave  π(p)>p  at low 
probabilities and then convex  π(p)<p  at high probabilities.  Two features can be 
mentioned that should attract our attention.   

1.  The first feature. The curve deviates from the straight line  π(p)=p  of the 
predictions of the probability theory near the boundaries of the probability scale.   

2.  The second feature. At the end-points of the boundaries the curve tends to 
the straight line  π(p)=p  of the predictions of the probability theory and touches it 
exactly at the boundaries. So  π(0)=0  and  π(1)=1.   

Thus we see that the curve tends to the quantitative equalities at the end-points 
while the qualitative difference remains true. This fact was mentioned also in 
Kahneman and Tversky (1979) (pp. 282-283).   
 
 

2.3.  Purely logical question   
2.3.1.  Should they cause?   

 
The above features (especially the second one) can lead one to ask:  

Should qualitatively different situations cause the same quantitative result?   
One can easily give the evident answer “No” to this evident question.   

 
2.3.2.  Can they cause?   

 
If one asks:  

Can qualitatively different situations lead to the same quantitative results?   
then one can evidently answer: Yes. They can. But they can only under some 
special conditions. The discussed quantitative results nevertheless aren’t the special 
ones, they are widespread and well established.   

If there are the facts that qualitatively different situations lead to the same 
quantitative results, then, at least, three evident consequences can be derived from 
these facts.   

1.  The situations are not qualitatively different.   
There is evidently little likelihood of this consequence.   

2.  The quantitative results are not equal to each other (are not the same).   
There is little likelihood of this consequence, because a plenty of skilled and 
independent research groups have repeated these results.   

3.  The situations have, in a sense, very little influence on the results.   
Therefore one can come to a question:   

 
2.3.3.  Why do they cause?   

 
As the result, we come to a purely logical question:   

Why do the different qualitative situations  
cause the same quantitative result  

at the end-points of the probability weighting curve?   
Note that, strictly speaking, one should name the question as “purely logical” 

only in that part of it which do not concern with experiments and other parts those 
cannot be named as “purely logical”.  
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3.  Purely mathematical restrictions   

3.1.  One possible way to solve the problems   
 

One (and the first possible) way to solve the above problems is widely 
discussed, e.g., in Schoemaker and Hershey (1992), Hey and Orme (1994), Chay et 
al (2005), Butler and Loomes (2007).  The essence of this way consists in a proper 
attention to noise, uncertainty, imprecision, and other reasons that might cause 
dispersion, scattering, spread of the data.   
 
 

3.2.  Another possible way.  
The Aczél-Luce question whether  W(1)=1   

 
Another possible way to solve the problems of prospect and utility theories is 

to consider the vicinities of the boundaries of the probability scale, e.g. at  p~1  (see 
Aczél and Luce, 2007).   

Aczél and Luce (2007) emphasized a fundamental question: whether  W(1)=1  
or, equivalently,  π(1)=1  (whether the Prelec’s weighting function (see Prelec, 
1998)  W(1)  is equal to  1  at  p=1).  From now on, I refer to this question as the 
Aczél-Luce question (or, in short, as Luce question).   
 

Additional definitions   
 

There are a number of the evidences of the qualitative difference between 
subjects’ treatment of the probabilities of probable and certain outcomes (see, e.g., 
Kahneman and Tversky, 1979, McCord and de Neufville, 1986, Halevy, 2008). 
Therefore, in a general case, one should distinguish between the values of the 
probability weighting function of the certain outcome and of the limit of the 
probability weighting function of the uncertain outcome when the probability of this 
uncertain outcome tends to  1.   

Let us additionally define or specify a value  WCertain  of the probability 
weighting function  W(p)  for the certain outcome.  WCertain  may be assumed to be 
equal to  1  or else values of  W(p)  may be normalized by  WCertain.   

Let us additionally specify a value  W(1)  as the limit of the probability 
weighting function  W(p)  for the probable outcome when  p  tends to  1   

)(lim)1(
1

pWW
p→

≡ .  

If  W(1)=WCertain,  then  W(p)  is continuous (at  p=1).  In the general case, this 
has not been proven. So, if  WUnreal  is defined similarly for the impossible case,   

0
( ) ( ) ]0,1[

1

Unreal

Certain

W p
W p W p p

W p

=
= ∈
 =

   

(see also Aczél and Luce, 2007) and  W(p)  can be continuous or discontinuous. 
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3.3.  Modification of the question.  

A synthesis of the two ways   
 

Let us reformulate, modify the Aczél-Luce question whether  W(1)=1  into the 
question whether  W(1)=WCertain  or  whether  W(p)  is continuous at  p=1.   

To answer to the question and to prove or disprove the continuity of  W(p)  at  
p=1  one should determine and measure the difference   

?)1( =−WWCertain    
Note, that this does not put a question whether  WCertain  is equal to  1.   
The answer  W(1)≠WCertain  to the modified Aczél-Luce question means that 

the function can have a discontinuity at  p=1.  This is not only a quantitative but a 
qualitative, moreover, a topological feature also. So, the answer to the question can 
qualitatively change the situation in the prospect and utility theories, at least in their 
mathematical aspects.   

In any case, one may suppose that a synthesis of these two possible ways can 
be of some interest. This idea of the synthesis turned out to be useful indeed. It has 
successfully explained, at least partially or qualitatively, the underweighting of high 
and the overweighting of low probabilities, risk aversion, and some other problems 
(see, e.g., Harin, 2012a, b). There are also works providing experimental support of 
this synthesis (see, e.g., Steingrimsson and Luce, 2007, Harin, 2014).   

A purely mathematical research (see, e.g., Harin, 2012, 2022) combines, 
synthesizes the two above-mentioned ways. That is, it considers the dispersion of 
data (or the influence of the dispersion of the data) near the boundaries of the 
probability scale.   
 
 

3.4.  Existence theorem and its consequences   
 

A purely mathematical theorem was proved, e.g., in Harin (2022). It states that 
near every boundary of the probability scale there is some non-zero restriction on 
the expectation of a real-valued random variable under the condition that its 
variance is non-zero. These restrictions may be considered as some forbidden zones 
for the expectation (see the Appendix of the present article).   

The theorem gives the answer to the above logical question (strictly speaking, 
it cancels this question). Indeed, the theorem states that the probability weighting 
curve cannot tend to the straight line  π(p)=p  exactly at the end-points of the 
probability scale. In particular, the expectations cannot take values within this 
forbidden zone and are therefore biased from the boundaries of the probability scale 
to its middle. So the considered particular qualitatively different situations should 
not and cannot lead to the same quantitative results.   

The theorem allows moreover to explain the above problems, at least partially. 
Namely, an applied mathematical method of biases of expectations, qualitative 
mathematical models and special qualitative mathematical model are proposed in 
Harin (2022). The special qualitative mathematical model explains in particular the 
above problems. The method, general models and special model are briefly 
reviewed in the Appendix of the present article.   
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4.  Pure mathematical issue   

4.1.  Preliminary   
 

As have been mentioned in the preceding subsection, the theorem gives the 
answer to the above logical question. Indeed, the theorem states that, due to the 
forbidden zones, the probability weighting curve cannot tend to the straight line  
π(p)=p  exactly at the end-points of the probability scale.   

Nevertheless the experiments are seemed to contradict the above logic and are 
seemed to don’t manifest the predictions of the theorem.   

For example, the experiments at  p~1,  in particular the tendency of the 
experimental (Prelec’s) probability weighting curve to  π(p)=p  (see, e.g., Bruhin et 
al, 2010, Abdellaoui et al, 2011), are seemed to do not support the theorem.   

One can see that an issue arises:   
 
 

4.2.  Pure mathematical issue   
 

So a pure mathematical issue arises:   
 

Why the mathematics  
has not been manifested and confirmed by the experiments?   

 
Note that, strictly speaking, one should name the issue as “purely 

mathematical” only in that part of it which do not concern with experiments and 
other parts those cannot be named as “purely mathematical”.  

So the theorem need experimental confirmation.   
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5.  Analysis of a typical detail of the experiments   

5.1.  Random, uncertain incentives   
 

Let us analyze a feature of the abovementioned experiments. Let us consider 
some typical descriptions of the prospect and utility experiments. One can see in the 
literature (the boldface type is my own):   

Loewenstein and Thaler (1989), page 188: “The students … were told that the 
experimenter would select and implement one of their choices at random.”   

Tversky and Thaler (1990), page 206: “The subjects are told that one of these 
pairs will be selected at random at the end of the session, and that they will play 
one of these bets.”   

Kahneman et al, (1991), page 195: “One of the four market trials would 
subsequently be selected at random and only the trades made on this trial would be 
executed”. Page 197: “One of the accepted offers (including the original 
endowment) was selected at random at the end of the experiment to determine the 
subject's payment.”   

Vossler et al, (2012), page 158: “Participants are instructed that one of the 12 
choice sets will be randomly chosen at the end of the experiment, each with equal 
probability.”   

Baltussen et al (2012), page 424: “In the WRIS treatment, subjects play the 
game ten times, one of which for real payment. In the BRIS treatment, subjects play 
the game only once with a one-in-ten chance of real payment.”; page 425: “In both 
RIS treatments, a ten-sided die was thrown individually by each subject to 
determine her payment.”   

Such a procedure can be seen not only in the field of the prospect and utility 
theories but also in other fields of the economics, see, e.g., Larkin and Leider 
(2012), page 193: “Subjects made fifteen choices between a lottery and a fixed 
payment. … Subjects were paid for one randomly selected decision”.   
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5.2.  Certain outcomes   

 
So, subjects are stimulated by random incentives. This is a well-known feature 

of the experiments including in the field of the prospect and utility theories. But let 
us consider this feature more closely. One can see a fine detail in the literature (the 
boldface type and underlining are my own):   

Andreoni and Sprenger (2012), page 3365: “One choice for each subject was 
selected for payment by drawing a numbered card at random. Subjects were told to 
treat each decision as if it were to determine their payments.” and page 3366: 
“Section I provided a testable hypothesis for behavior across certain and uncertain 
intertemporal settings.”   

Von Gaudecker et al, (2011), page 669: “Additionally, for one in every ten 
participants in these two treatments, one lottery was randomly selected and played 
out, and the payoff of that lottery was paid out.” and page 667: “the probabilities of 
the high payoff in each option vary from 25 percent to 100 percent”.   

Holt and Laury (2002), page 1646: “… subjects began by indicating a 
preference, Option A or Option B, for each of the ten paired lottery choices in Table 
1, with the understanding that one of these choices would be selected at random ex 
post and played to determine the earnings for the option selected.” and “Even the 
most risk-averse person should switch over by decision 10 in the bottom row, since 
Option B yields a sure payoff of $3.85 in that case” and page 1645: TABLE 1 
“Option A: 10/10 of $2.00, 0/10 of $1.60. Option B: 10/10 of $3.85, 0/10 of $0.10”   

Harrison et al (2005), page 898: “We undertook a new series of experiments 
that build closely on the basic design features of HL,” (“HL” means here Holt and 
Laury, 2002) “but allow an identification of the extent to which the apparent scale 
effects on risk aversion are actually order effects.” and from TABLE 1: 
Probability=1  Payoff=$2  Probability=0  Payoff=$1.60  Probability=1  
Payoff=$0.10.   

Bruhin et al, (2010), page 1380: “At the end of the experiment, one row 
number of one decision sheet was randomly selected for each subject, and the 
subject’s choice in that row determined her payment.” and “The subjects had to 
indicate in each row of the decision sheet whether they preferred the lottery or the 
certain payoff.” and page 1378: “We elicited certainty equivalents for a large 
number of two-outcome lotteries.”   

Abdellaoui et al (2011), page 704: “Each series involved a choice between a 
prospect and an ascending range of sure payments, … At the beginning of the 
experiment, each subject was told that one of his choices would be randomly 
drawn and then played for real.”   

Starmer and Sugden (1991), page 974: “subjects in groups B and C knew that 
they were taking part in a random-lottery experiment in which questions 21 and 22 
had equal chances of being for real.” and “One problem, which we shall call P', 
required a choice between two lotteries R' (for "riskier") and S' (for “safer”). R' 
gave a 0.2 chance of winning ₤10.00 and a 0.75 chance of winning ₤7.00 (with the 
residual 0.05 chance of winning nothing); S' gave ₤7.00 for sure.”   

So, the random incentive procedures are used not only in the probable but in 
the certain situations too. Let us consider this detail more closely.   
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6.  “Certain-uncertain” inconsistency  

of the random-lottery incentive systems   
6.1. Inconsistency between  

the uncertain incentives and certain outcomes   
 

First, let us note that the stimulation by the random payment of one from two 
or more alternatives may be named as a random, uncertain stimulation. One may 
name it also as the stimulation by an uncertain incentive.   

Further, let us consider the stimulation by this uncertain incentive for 
uncertain and certain choices.   

Suppose, that subjects choose an uncertain choice, that is the choice, which 
probability is strictly less than  1  (and strictly more than  0).  In this case, the 
choice and the incentive are of the same type.   

Suppose, that the subjects choose a certain choice, that is the choice, which 
probability is strictly equal to  1  (or strictly equal to  0).  In this case, the choice and 
the incentive are of the qualitatively different types. The choice is certain but the 
incentive is uncertain.   

Hence, there is an evident inconsistency between the certain type of the choice 
and the uncertain type of the incentive.   

One may name this problem as a “certain-uncertain” inconsistency.   
This “certain-uncertain” inconsistency is evident but is not still mentioned in 

the literature (see, e.g., Andreoni and Sprenger, 2012, Vossler et al, 2012, Baltussen 
et al, 2012, Harin, 2005-2024). The inconsistency was revealed (discovered) in the 
report Harin (2014).   
 
 

6.2.  Role of the incentives   
 

Incentives are widely discussed in economics (see, e.g., Starmer and Sugden, 
1991, Fehr and Falk, 2002, Holt and Laury, 2002, Baltussen et al, 2012, Larkin and 
Leider, 2012). Do incentives influence the choice of the subjects in the prospect and 
utility theories and models?   

The correct answer to this question needs a special research. However, one 
may be sure, that if incentives would not have any significant influence on the 
choice of the subjects, then there would be no reason to use such incentives.   

So, one may not exclude that an incentive can influence a choice of a subject, 
at least partially.   
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6.3.  Random-lottery incentive systems  

as the generally accepted experimental procedure systems   
 

The discussed random incentive procedures are usually referred to as the 
random-lottery incentive systems (or the random lottery incentive systems or 
random incentive systems (RIS), etc.).   

Baltussen et al (2012), page 219: “Savage (1954, p. 29) credits W. Allen 
Wallis for first proposing the RIS.”   

Page 420: “RISs are known under several names, including random lottery 
incentive system (Starmer and Sugden 1991), random lottery selection method 
(Holt 1986), random problem selection procedure (Beattie and Loomes 1997), and 
random round payoff mechanism (Lee 2008). The different names apply to 
particular types of experiments (risky choice or social dilemma), rewards (lotteries 
or outcomes), or tasks (composite or single-choice)”   

The random-lottery incentive systems are the well-known mechanisms in 
experiments in the prospect and utility theories and models.   

Starmer and Sugden (1991), page 971: “This is the random lottery procedure. 
This incentive system has several attractive features. It allows the experimenter to 
collect a considerable amount of data from each subject, thus economizing on the 
costs of recruiting subjects and allowing tests that compare a subject's responses to 
two or more tasks. At the same time, it avoids the problem of reference-point and 
wealth effects that would be created if subjects were paid according to their 
performances on each of a number of tasks. (A subject's response to one task might 
be affected by the amount he or she had won on a previous task.)”   

Andreoni and Sprenger (2012), page 3365: “random-lottery mechanism, 
which is widely used in experimental economics”   

Starmer (2000), page 371: “although most experiments involve real — usually 
monetary — incentives, the most common reward mechanism is the random lottery 
incentive system. In experiments with this design, subjects are rewarded according 
to their response to one task which is randomly selected at the end of the 
experiment.”   

Wakker (2007):  “the random-lottery incentive system has become the almost 
exclusively used incentive system for individual choice, and numerous studies have 
used and tested it. It is used by people well recognized in experimental economics 
… Without it, real incentives for individual choice are no longer well possible.”   

Baltussen et al (2012), page 419: “If a subject performs multiple tasks in an 
experiment where each task is for real, then income and portfolio effects will arise 
(Cho and Luce 1995; Cox and Epstein 1989). The RIS is the only incentive system 
known today that can avoid such effects. In addition, for a given research budget 
and with the face values of the monetary amounts kept the same, RISs allow for a 
larger number of observations.”   

So, the random-lottery incentive systems are the prevailing and generally 
accepted experimental procedures in the prospect and utility theories and models. 
The tests of the Aczél-Luce questions are often connected with these systems.   
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7.  To consider certain outcomes as uncertain   

 
So, one may conclude:   
1) The random-lottery incentive systems are widespread in the prospect and 

utility theories and models. They are moreover the generally accepted experimental 
procedure systems.   

2) The essence, in particular the incentives of these random-lottery incentive 
systems, corresponds to the random, uncertain character of their name.   

3) These incentives are used for all the outcomes including the certain ones. 
This causes the evident inconsistency between the uncertain incentives and certain 
outcomes. One may name this inconsistency as the “certain-uncertain” 
inconsistency.   

4) The specific “certain-uncertain” inconsistency of the random-lottery 
incentive systems is a natural feature of these systems. But it has still not been 
considered as it deserves.   

In many works (see, e.g., von Gaudecker et al, 2011, Vossler et al, 2012, 
Harin, 2005-2023) one can find the elaborated researches of correctness of the 
random-lottery incentive systems. But the author of the present article has found no 
mention about what one can name the “certain-uncertain” inconsistency.   

5) So, the (direct and non-direct) tests of the modified Luce question those 
have been performed to date (those, maybe, have not been analyzed thoroughly 
enough) can lead to the misleading opinion that, at  p~1,  the probable outcomes are 
quantitatively the same as the certain ones. That is, it can lead to the misleading 
opinion that the probability weighting function  W(p)  WCertain,  when  p  1.   

But there are a number of the evidences of the qualitative difference between 
the probable and certain outcomes (see, e.g., Kahneman and Tversky, 1979, 
McCord and de Neufville, 1986, Halevy, 2008). The existence theorem support this 
qualitative difference and the answer  W(1) ≠ WCertain  to this question.   

6) Because of this evident “certain-uncertain” inconsistency, the deductions 
from the random-lottery incentive experiments, those include the certain outcomes, 
cannot be unquestionably correct.  

In particular the existing random-lottery incentive systems seems at present 
unable to determine the quantitative difference between certain and probable 
outcomes at  p~1.   

So, these deductions need an additional proof or an amendment.   
7) In any case, additional independent analyses and/or researches of the 

“certain-uncertain” inconsistency are needed.   
8) A following feature should be stressed: the uncertain incentives can call the 

certain outcomes into question.   
That is, the uncertain incentives of the generally accepted experimental 

procedure systems can mislead the subjects to consider (to some extent, indirectly 
or directly, unconsciously or consciously) the certain outcomes, that are stimulated 
by these uncertain incentives, as some uncertain outcomes.   

So, very approximately, the generally accepted experimental procedure 
systems can mislead the subjects to consider certain outcomes as uncertain.   
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8.  Confirmations of the theorem   

 
Let us consider some of the many confirmations of the occurrence of the 

discussed forbidden zones and of usefulness of them and of SQMM in behavioral 
economics. Let us also find adequate answers to the logical question and 
mathematical issue.   
 
 

8.1.  Practical everyday life evidences  
of the occurrence of the considered forbidden zones   

8.1.1.  Boat and waves   
 

Consider a calm or mirror-like sea and a small rigid boat or any other small 
rigid floating body at rest in the sea. Suppose that this boat or body rests right 
against (or is constantly touching) a rigid moorage wall. As long as the sea is calm, 
the expectation of its side can touch the wall.   

Suppose there is a heavy sea. Consider a small rigid boat or any other small 
rigid floating body which oscillates on the waves in the heavy sea. Suppose that this 
boat or body oscillates on the waves near this rigid moorage wall.   

When the boat is oscillated by sea waves, then its side oscillates also (both 
up–down and left–right) and it can touch the wall only in the (nearest) extremity of 
the oscillations. Hence the expectation of the side cannot touch the wall. Hence the 
expectation of the side is biased away from the wall.   

So, one can say that, in the presence of waves, a forbidden zone exists 
between the expectation of the side and the wall.   

This forbidden zone biases the expectation away from the wall. The width of 
the forbidden zone is roughly one-half of the amplitude of the oscillations.   
 

8.1.2.  Washing machine, drill   
 

Consider a washing machine or drill (or any other rigid body) that can vibrate 
when it works. Suppose its rigid (and not sharp, thick) side (or some rigid limiter of 
the movement of its side) is located near a rigid surface or wall.   

If the machine or drill is at rest, then the expectation of this side can be located 
right against (be constantly touching) the wall.   

If the machine or drill vibrates, then the expectation of this side is biased and 
kept away from the wall due to the vibrations.   

So, in the presence of the vibrations, a forbidden zone exists between the 
expectation of the side of the rigid body and the rigid wall. This is evidently true for 
any rigid body near any rigid surface or wall.   
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8.2.  Numerical examples of the forbidden zones in behavioral economics   

8.2.1.  Practical numerical example. First domain. Gains   
 

Suppose that the parameters of the special practical qualitative mathematical 
model (see the Appendix) for the gains are: the presupposed bias for the choices for 
the uncertain game is equal to $2, and for the sure game it is equal to $1.   

The typical examples (see, e.g., Correa et al, 2013, Zhang and Siemsen, 2019) 
can be simplified to the special qualitative situations similar to that of Harin (2022) 
and Kumar and Goyal (2015). The numeration corresponds to the Appendix.   

Imagine that you face the following pair of concurrent games (a sure game 
and an uncertain game). Choose between:   

A) A sure gain of $99.   
B) A 99% chance to gain $100 and a 1% chance to gain or lose nothing.   
In the ideal case, without taking into account the dispersion of the data, the 

expectations  µsure  and  µuncert  are equal to each other: $99 100% $99sureµ = × =   
and  $100 99% $99uncertµ = × = .  So, in the ideal case we have   

99$99$ = ,   
that is, the uncertain and sure games are equally preferable.   

In the real case, one should take into account some dispersion of the data, and 
hence the minimal non-zero variance (3) caused by this dispersion, and the 
forbidden zones (4) caused by this variance, at least for the uncertain games.   

One can consider the real case of a non-zero variance of the data, the 
corresponding forbidden zones, and presupposed biases.   

The biases are  Δch-µ.uncert = $2  and  Δch-µ.sure = $1.  So we have  µsure – Δch-µ.sure 
= $99×100% - $1 = $98  and  µuncert – Δch-µ.uncert = $100×99% - $2 = $97.  The 
expectation  µuncert  is biased more than  µsure  and   

97$98$ > .   
We see the clear and evident difference between the resulting expectations 

(with their biases caused by the forbidden zones of the theorem) and its 
correspondence with the salient and unequivocal choices of the subjects.   
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8.2.2.  Practical numerical example. Second domain. Losses   

 
The case of gains has been explained many times, and in a lot of ways. But a 

uniform explanation for both gains and losses, without any additional suppositions 
(as, e.g., in Correa et al, 2013), had not been nevertheless recognized by the author 
of the present article (see a slightly similar work Arnold et al, 1983).   

SQMM (Special Qualitative Mathematical Model, see the Appendix) turns out 
to be useful for such a uniform explanation.   

The case of losses was considered under the same suppositions as for the case 
of gains.   

Imagine that you face the following pair of concurrent games (a sure game 
and an uncertain game). Choose between:   

A) A sure loss of -$99.   
B) A 99% chance to lose -$100 and a 1% chance to lose or gain nothing.   
In the ideal case, for the sure game  $99 100% $99sureµ = − × = −   and for the 

uncertain one  µuncert = -$100×99% = -$99.  So they are exactly equal to each other:   
99$99$ −=− .   

Therefore the both choices (games) should be equally preferable.   
Consider the real case. The forbidden zone biases the expectation from the 

boundary of the interval to its middle (see also, e.g., Kahneman and Thaler, 2006, 
Madansky, 1959, Zhang and Siemsen 2019). Therefore, at high probabilities, the 
biases are subtracted from the absolute values for both cases, gains and losses. That 
is, due to the opposite signs of the values for gains and losses, the bias is subtracted 
for the gains and added for the losses.   

Note. This is not a supposition but a rigorous conclusion. Hence the 
conditions of the SQMM are naturally uniform for more than one domain.   

The forbidden zones were considered under the same suppositions as for the 
gains, that is for the same, uniform parameters.   

The biases are  Δch-µ.uncert = $2  and  Δch-µ.sure = $1.  So we have  µsure + Δch-µ.sure 
= -$99×100% + $1 = -$98  and  µuncert + Δch-µ.uncert = -$100×99% + $2 = -$97.  The 
expectation  µuncert  is biased more than  µsure  and   

97$98$ −<− .   
The expectation for the uncertain game is biased more than that for the sure 

one, as was also the case for the gains, but here the bias increases the preferability 
of the uncertain loss and it is (due to the obvious difference between the resulting 
expectations) more preferable than the sure one.   

So here is the clear difference between the resulting expectations and its 
correspondence with the salient preferences and choices. So the SQMM provides 
the explanation for the domain of losses as well. Moreover, this explanation is 
uniform for the both domains of gains and losses.   
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9.  Answers to the question and issue   

 
Let us find adequate answers to the logical question and mathematical issue.   

 
9.1.  Logical question   

 
The purely logical question was:  

Why do the different qualitative situations  
cause the same quantitative result  

at the end-points of the probability weighting curve?   
The above analysis and confirmations lead to the statement that “the same 

quantitative result” is at least under question.  The theorem states that it is moreover 
impossible.   

The discussed different qualitative situations don’t (and cannot) cause the 
same quantitative result. Feasibly this is due to some mistake of the interpretation of 
the results of the experiments.   

So the purely logical question is cancelled.   
 
 

9.2.  Mathematical issue   
 

The pure mathematical issue was:   
Why the mathematics  

has not been manifested and confirmed by the experiments?   
The above analysis and confirmations lead to the statement that the 

mathematics is confirmed by everyday experience and (at correct interpretation of 
the experiments) by the experiments in behavioral economics.   

So the pure mathematical issue is answered.   
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10.  Conclusions   

 
The old problems of behavioral economics and a new approach to their 

possible solution are briefly reviewed. The problems are concerned with the 
mathematical description of the behavior of a man. The first problem of this 
mathematical description is the comparison of choices of a man between uncertain 
and sure games. The second is the radically different behavior of a man in different 
domains.   

The basis of the possible solution of these problems is the purely 
mathematical theorem of the existence of some forbidden zones for the expectations 
of any real-valued random variable. These forbidden zones are located near the 
boundaries of the probability scale. The consequences of the theorem are the 
hypothesis of presupposed biases in the behavior and decisions of peoples, applied 
mathematical method of biases of expectations (MMBE), general and special 
(SQMM) qualitative mathematical models.   

In the present paper the main attention is paid to the analysis of the 
experimental support of this possible solution.   

The basic and prevailing random incentive experimental procedures are 
analyzed and the “certain-uncertain” inconsistency between the certain type of the 
outcomes and the uncertain type of the incentives is revealed.   

This inconsistency can lead (in the minds of peoples) to the (hidden) 
misleading understanding of the certain outcomes as some uncertain ones. This 
misleading understanding can explain the incorrect interpretation of the experiments 
at very high and very low probabilities where the forbidden zones must bias the 
behavior and choices of peoples.   

The confirmations of the occurrence of the discussed forbidden zones and 
usefulness of them and of SQMM are considered as well.   
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A.  Appendix. A new applied mathematical method and models   

for behavioral economics   
 

This Appendix summarizes briefly some of the results of Harin (2022).  The 
notation and numbering of expressions are maintained.   
 
 

A.1.  Existence theorem in a little more detail   
 

A set  {Xi},  i = 1, … , n,  of real-valued random variables  Xi  whose values 
lie within an interval  [a, b] was considered in, e.g., Harin (2020), Harin (2022). 
Under the normalizing condition   
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where  K  is the number of the discrete value(s) of  X,  pX(xk)  is the probability mass 
function and  fX(x)  is the probability density function, the expectation and variance 
of  X,  and their relations were analyzed.   

A proof was made that, for the variance  σ2  of any real-valued random 
variable  Xi  with range  [a, b]  and expectation  µ,   

))((2 µµσ −−≤ ba .        (2)   
Suppose a set  {Xi},  i = 1, … , n,  of random variables  Xi  whose values lie 

within an interval  [a, b].  If  0 < (b-a) < ∞  and there exists a forbidden zone (or a 
lower bound) of a non-zero width  σ2

min  for the variances  σi
2  of  Xi,  such that for 

all  i,   
0min

22 >≥σσ i .        (3)   
The theorem states: certain forbidden zones (or boundary bounds, or restrictions) of 
a non-zero width  rµ  exist for the expectations  μi  of each  Xi  such that   
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The proof uses inequalities (2) and (3) to obtain inequalities including   
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those are equivalent to (4).   
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A.2.  Hypothesis of presupposed biases   

 
The above practical examples of section 6 evidently illustrate possible 

forbidden zones of the theorem. Similar examples are widely disseminated in real 
life. Due to this dissemination, subjects (people) can keep in mind the feasibility of 
such forbidden zones and the biases of the expectations caused by the zones. This 
can influence the behavior and choices of the subjects.   

In consequence of this consideration, I propose a statement that can be named 
as a behavioral hypothesis of presupposed biases:   

“People, as economic subjects, behave and decide (at least to a 
considerable degree) as if there were some presupposed (hypothetical) biases of 
the expectations for games.”   

Note. This hypothesis can be supported by the reason that such biases may be 
proposed and tested even from a purely formal point of view.   

This hypothesis can be found in hidden forms in the literature or derived from 
it (see, e.g., Kumar and Goyal, 2015, Correa et al, 2013, Schoemaker and Hershey, 
1992, etc.) in this particular field, and in an explicit form in neighboring fields (see, 
e.g., Aldashev et al, 2011, Meier and Sprenger, 2010). Nevertheless one should 
state it here in an explicit form and emphasize it.   
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A.3.  Applied mathematical method of  

presupposed biases of expectations   
A.3.1. Propositions   

 
Two main propositions can be suggested for a mathematical method of 

solution of the above problems.   
Proposition 1. Subjects behave and decide (at least to a considerable degree) 

as if there were some presupposed biases of the expectations for games.   
Due to this proposition, the method (approach) can be called an Applied 

Mathematical Method of Presupposed Biases of Expectations, or AMMPBE, or 
shortly MMBE. The MMBE is to explain not only the objective situations but also 
and mainly the subjective behavior and choices of subjects.   

Proposition 2. Explanation by the forbidden zones of the theorem.   
That is these biases (real biases or subjective reactions and choices of the 

subjects) can be explained (at least to a considerable degree) with the help of the 
forbidden zones of the theorem.   
 
 

A.3.2. Notation   
 

The real expectations for the games were denoted by   

sureµ        and       uncertainuncert µµ ≡ .  
The presupposed biases (of the expectations) that are required to obtain the 

data corresponding to the choices of the subjects were denoted by   

. .ch uncert choice uncertainµ µ− −∆ ≡ ∆     and    . .ch sure choice sureµ µ− −∆ ≡ ∆ .  
That is the resulting expectations (i.e., expectations including these biases) for the 
observed choices of the subjects can be written as  .uncert ch uncertµµ −+ ∆   for the 

uncertain games and as  .sure ch sureµµ −+ ∆   for the sure ones.   
 
 



25 
 

 
A.3.3. General relations   

 
1. Condition for the MMBE. Due to the first main proposition, the method of 

biases of expectations can be useful only if these biases for the choices for the 
uncertain (see the third relation below) games are non-zero   

.| | 0ch uncertµ−∆ >     or    .sgn ( ) 0ch uncertµ−∆ ≠ .     (7)   
2. Forbidden zones as, at least, one of the origins of biases. The presupposed 

bias  Δch-µ.uncert  may be introduced and considered purely formally. The question is 
not only whether  Δch-µ.uncert  can explain the problems. Due to the above second 
proposition,  Δch-µ.uncert  itself should be explained by the forbidden zones of the 
theorem, at least partially.   

First of all, the theorem should be applicable. Therefore some minimal 
variance  2

min 0σ >   is required to exist and inequality  2 2
minσ σ≥ ,  is required to 

be true.   
Further, the bias caused by the forbidden zone of the theorem was denoted by  

Δtheorem.  The sign of the presupposed bias should coincide with that for the bias 
caused by the theorem   

.sgn ( ) sgn ( )ch uncert theoremµ−∆ = ∆ .   
Then the conditions for the explanation can be written as  Δch-µ.uncert ≈ Δtheorem  

in the case when the forbidden zones are the main source of the biases. If these 
zones are only one of the essential sources of the biases, then these conditions can 
be represented as  Δch-µ.uncert = O(Δtheorem).   

So the relations of the explanation by the theorem are   
0min

22 >≥σσ     and also   

.ch uncert theoremµ−∆ ≈ ∆   or at least  . ( )ch uncert theoremOµ−∆ = ∆ .    (8)   
3. Biases for sure games. The above considerations about noise suppression 

and sure games emphasize the condition that the sure games are guaranteed by 
some guaranteeing efforts. Due to these efforts, the biases for the sure games can be 
suppressed and reduced. They can be moreover equal to zero.   

Therefore the presupposed biases of the data for the sure games were assumed 
to be equal to zero or, more generally, are strictly less than the presupposed biases 
for the corresponding uncertain games.   

So, the relation for the sure and uncertain games is   

. .| | | |c ch sureh uncert µµ− −∆ > ∆ .       (9)   
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A.4.  General and special qualitative mathematical models   

A.4.1.  General qualitative mathematical models   
 

A qualitative problem was defined for the purposes of the models as the 
problem such that the sign of the difference between the resulting expectations for 
the choices of the subjects (people) for the uncertain and sure games is distinct from 
the sign of the difference between the real expectations for these games.   

This type of problems was chosen as the example that is usual in experiments 
(see, e.g., Correa, 2013, Zhang and Siemsen, 2019, Schoemaker and Hershey, 
1992). It can make manifest a qualitative representation of the problems and can be 
a background for further research. Such problems will be the item of the first stage 
of the MMBE.   

The inalienable feature of the analyzed qualitative problems is the necessary 
change of the sign. There can be only three combinations of the signs: the 
expectation for the uncertain game (or outcome) can be greater than, less than, or 
equal to that for the sure game. So, the signs of their differences can be 
correspondingly positive, negative, or zero.   

In other words, when the difference between the real expectations is, e.g., 
positive (that is,  sgn (µuncert - µsure) > 0),  then, to obtain the observed data, the 
difference for the choices (resulting expectations) should be non-positive, that is, 
sgn (µuncert + Δch-µ.uncert - µsure – Δch-µ.sure) ≤ 0. When it is negative, then the 
difference for the choices should be non-negative. When the difference between the 
real expectations is equal to zero, then the difference for the choices should be 
undoubtedly positive or negative.   

This feature can be represented by   
. .sgn ( ) sgn ( )uncert sure uncert ch uncert sure ch sureµ µµ µ µ µ− −− ≠ + ∆ − −∆ .   (10)  

To overcome the real difference between the expectations for the uncertain 
and sure games, the absolute value of the presupposed bias for the uncertain game 
should be evidently not less than this real difference. That is   

.| | | |unch ceunce rt s ert urµ µ µ−∆ ≥ − .       (11)  
So, relations (10) and (11) constitute an addition to the method. The sum of the 
method and addition can be named as a family of preliminary general qualitative 
mathematical models.   
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A.4.2.  Special qualitative mathematical model   

 
A preliminary estimate of Harin (2018) restricts applications of the general 

model by the secure upper bound (5) for the bias. One of the main questions for 
future research is to analyze the possible widths of the forbidden zones for various 
types of distributions.   

Let us consider the qualitative problems under the special condition   

uncert sureµ µ=          (12)   
This special condition and relation assert that the expectations for the uncertain 
games are exactly equal to the expectations of the corresponding sure games. This is 
the well-known and important case of real experimental situations. Here (12) 
(keeping in mind (7)) substitutes (10) and (11).   

Such a special situation enables avoiding the constraints of preliminary 
estimate Harin (2018) of the secure upper bound (5) for the bias, and making this 
special model less formal. The biases can be selected to be much less than the 
secure upper bound (5), and the suppositions will be simpler.   

This Special Practical Qualitative Mathematical Model (SPQMM or shortly 
SQMM) can be considered as a first step of the first stage of the approach (method) 
MMBE.   
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