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Abstract 
Human activities have created environmental degradation with the internalization of 
the resulting externalities having been the main concern for policy makers worldwide. 
Uncertainty and unconvincing scientific evidence of various biophysical processes are 
present in many planned environmental policies. An important source of model 
uncertainty is accounted by entropy with the typical normal distribution being 
inadequate in such analyses challenging for more sensible approximations. The 
problems are, from one side the fat tails characteristic in this area and on the other 
side what probability density function (pdf) to be chosen. The choice of the 
appropriate probability model describing the phenomenon that is the pdf is a main 
priority in any decision making planning. Here we pay attention on the entropy and 
even more on the transfer entropy in Environmental Economics and the existing 
underlying uncertainty based on the probability theory. We show that the γ-order 
Generalized Normal distribution covers both requests, due the "International constant" 
(γ/(γ-1))**(γ/(γ-1)), leading to a number of pdf, and the Logarithm Sobolev 
Inequalities (LSI), which provide a solid background. 
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1.  Introduction 

 Uncertainty and entropy are two terms first adopted in the development of 

Thermodynamics with the pioneering work of Schrodinger (1946). Afterward it was 

adopted in Physics, then in Mathematics and Statistics and now are applied in various 

fields, covering Thermodynamics, with the pioneering work of Landau and Lifshitz 

(1959) followed by Mandl (1988) among others. An uncertain situation means not 

known beyond doubt, not having complete knowledge. So it is clear that uncertainty is 

not the error, but it is somehow related with it. In principle, uncertainty is the lack of 

certainty and as far as the Environmental Economics is concerned, Halkos and Kitsos 

(2018a) tackled the problem investigating a number of possible causes of uncertainty 

providing possible measurements of it. 

 At the early stages of developing such a theoretical approach were not all 

satisfied. Typical example is Caratheodory’s (1909) axiomatic formulation of the 

Second law of Thermodynamics, which is considered as one of the standard forms of 

formulation of the law. However, it was oriented more as advanced Mathematics than 

Physics. The formulation was strongly criticized by Max Planck. We avoid 

considering such problems from other research fields, but still each problem needs its 

own Mathematical foundation, especially Physics (Kitsos, 2015). That is there are 

always those who do not wish to “enlarge” the existed believe, even when the new 

framework is solid, close to the existent new developments. 

 Entropy describes the disorder of a system, the "change within a closed 

system". It is based on the Greek prefix "en" implying within and the "trope" related 

to the root, here meaning the "change". The "closed system" is a request from the 

physical point of view of entropy. We understand entropy when the temperature of 

everything in the room evens out. Entropy is central to the second law of 
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thermodynamics, known as Caratheodory's theorem (among others, Zachananoglou, 

1973). 

 In principle and in mathematical terms, uncertainty links a real-valued 

function of events in a probability space, which depends on the probability law of the 

events under consideration. Moreover, events with probability one have zero 

uncertainty, as we are “certain” that it will take place. Besides as the probability of the 

event drops, the uncertainty of the event increases. It is then asked to resulting, for the 

independent events, the uncertainty of the occurrence of two of them - the events 

under study - to be such as the sum of their individual uncertainties. Looking for a 

measurable function, reflecting these imposed important requirements, we can 

conclude that the information of event E, I(E), linked with its probability, 𝑃(𝐸), obeys 

to  

𝐼(𝐸)  =  − 𝑐𝑙𝑜𝑔 [𝑃(𝐸)]    (1) 

with c>0 a given constant.  

 In this paper we try to apply these ideas, providing more emphasis on the 

entropy and particularly to transfer entropy (TE), working on a family of distributions, 

to be used in various environmental problems. We have already worked with γ-order 

generalized normal 𝑁 (𝜇, 𝛴) (Halkos and Kitsos, 2018b), introduced by Kitsos and 

Tavoularis (2009), and it has been already adopted for an extension to TE under the 

Nγ(𝜇, 𝛴)  (Hlavackova - Schlinder, 2011). We shall try to extend such a work to 

Environmental Economics working with Nγ(𝜇, 𝛴)  and the extensions on Transfer 

Entropy (TE).  

 The structure of the paper is as follows. In section 2 we formalize the existent 

background, while in section 3 we discuss the appropriate points for Nγ(𝜇, 𝛴). Section 

4 is devoted to the extension that Nγ(𝜇, 𝛴) can offer to entropy and uncertainty. In 
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section 5 we introduced the transfer entropy especially to Environmental Economics 

(TEEE). The last section concludes the paper.  

2. Background 

 Uncertainty and entropy, as well as the fundamental approaches in Quantum 

Statistical Mechanics share a solid background from Physics with Statistics. In 1865, 

Rudolf Clausius (1822-1888) introduced the term entropy, using Greek terminology 

as the energy has still the same orientation as etymologists believe. Around 1875, 

Ludwing Bollzmann (1844-1906) put entropy into the probabilistic framework and 

developed the Statistical explanation of the Second Law of Thermodynamics. But the 

fundamental push to probability was given by Shannon (1948), working on formation 

theory (Coven and Thomas, 1991) as we will refer to it in section 3.  

 Environmental concerns have been considered as crucial and substantial part 

of assessing energy conversion systems. The thermodynamic approach implies a 

profound evaluation of the notion of sustainability as the second law of 

Thermodynamics counteracts the ability of any open and developing system to 

preserve itself sustainably without rewarding itself of an uninterrupted supply of low 

entropy that is high specific exergy input. Exergy in the form of available energy is a 

crucial notion in thermodynamics. If a society is considered as an open system, its 

ability to develop in a sustainable manner is a function not only on how it uses the 

conventional energy sources but also on the speed it exploits the renewable energy 

sources (Sciubba, 2021).   

 In economic theory and not only, a number of uncertainty sources, such as 

model choice uncertainty, data uncertainty, the right mathematical specifications 

chosen might cause uncertainty as extensively discussed in Halkos and Kitsos (2018a, 

b). The three different research areas: Risk Analysis, Uncertainty and Entropy are 
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supporting different lines of thought, through Statistics and are not identical. Having 

different initial points, Risk Analysis have arisen from cancer and now is involved in 

many areas, such as Environmental Risk; while the other two initiated by Physics, 

improved by Statistics and we try to prove how important are in Environmental 

Economics, adopting the Statistical evolution. 

 Heizerberg’s uncertainty principle, in the first introduction in 1927 

(Heizerberg, 1927) as a part of the mathematical framework of quantum physics 

stated that: It is not, in general, possible to predict the value of a quantity with 

arbitrary certainty, even if all the initial conditions are well imposed and specified. 

Under uncertainty the more precisely the position Δx of some particle is determined, 

the less precisely its momentum Δp can be predicted and concluded that: 𝛥 𝛥  ≈

ℎ with h being the full planck constant. Later, Weyl (1928) proved that:  

𝜎 𝜎  ≥    , ℎ =       (2) 

With h’ the reduced planck constant h.  

There are cases where the information needs to be evaluated under the line of 

thought as in (1). In such a case for a measurable partition, τ, of the space the 

information function, I(τ), can be considered as: 

𝐼(𝜏) = (−𝑐) log[𝛲(𝛦)]𝛸

∈

 

With 𝑋   being the characteristic function and c is chosen to yield logarithm to base 2, 

while the expected value of 𝐼(𝜏)  provides the entropy of the partition. 

It was Shannon (1948) who thought to provide the information in units of bits. 

Therefore, he adopted the base-2 measure of entropy, using the logarithm of base 2, in 

such a way that for given random variable (rv) X, with probability density 

function 𝑝(𝑥)  then for the discrete case the entropy of X, 𝐻(𝑋), is: 
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                                𝐻(𝑋) =  − ∑ 𝑝(𝑥) log 𝑝(𝑥) = 𝐸[− log 𝑝(𝑥)]∈ℝ                          (3) 

with E[.] denoting, as usually, the expected value. 

 Under the same line of thought the conditional entropy of the rv Y given the rv 

X is defined as: 

   H(Y|X) = -∑ 𝑝(𝑥) log 𝑝(𝑦|𝑥), ∈ℝ                                        (4) 

While the joined entropy can be, briefly, defined as:  

   H(X, Y) = H(Y|X) + H(X)                                                      (5) 

 When the comparison of two distributions is requested, the Kullback–Leibler 

divergence, 𝐷 , is adopted, provided that 𝑝(𝑥) is the “true” distribution probability 

and the 𝑞(𝑥) probability is asked to be evaluated “how far” is from 𝑝(𝑥) then: 

        𝐷(𝑝, 𝑞): =  𝐷 𝑝(𝑥) ∥ 𝑞(𝑥) = 

                          =  ∑ 𝑝(𝑥) log
( )

( )
=∈ ∑ 𝑝(𝑥) log 𝑝(𝑥) − ∑ 𝑝(𝑥) log 𝑞(𝑥)∈∈  = 

                              =   -∑ [−𝑝(𝑥) log 𝑝(𝑥)] − ∑ 𝑝(𝑥) log 𝑞(𝑥) =∈∈  

                              =   E[-log(q(x))]–E[-log(p(x))]=Hq(X)-Hp(X)                                 (6) 

The first line is the notation, the second line is the definition, the third line is a trivial 

new presentation, which with the last line we can see that the definition is the 

subtraction of the entropy of X due to “valid” p(x), Hp(X) from the entropy due to 

“examined” q(x), Hq(X).  

 In continuous case, the summation is replaced by the integration and is usually 

referred as “differential entropy”. Notice that the Kullback – Leibler divergence,  

𝐷 = 𝐷  as in (6), with a number of notations, with the compact presentation 

𝐷 = 𝐷(𝑝, 𝑞), will he proved useful in the sequence, it is not symmetric. Actually, the 

distance measure in Statistics is not exactly what we mean as “distance” in Linear 

Algebra. 
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 But the lack of symmetry does not create any problem in Environmental 

Studies. We usually observe the source point of pollution, say at the origin  𝑂(0,0,0), 

and the pollution is moved to point 𝑃 (𝑋 , 𝑌 , 𝑍 ) in (Euclidean) distance 𝑂𝑃  =  𝐿  . 

We are working assuming continuous distribution functions (df) to approach the 

pollution at every point of investigation. At point 𝑂 the distribution function of the 

initial pollution, we say that it is 𝑓 , while at point 𝑃  is 𝑓 , therefore the K-L 

divergence is: 

    𝐷 = 𝐷 (𝑓 , 𝑓 )                                                      

and can be evaluated. Following the same direction, a sequence of points 

𝑃 (𝑋 , 𝑌 , 𝑍 ) , 𝑖 = 1,2, … , 𝑛  is selected.  

 Therefore, we can evaluate the K-L divergence between the selected points, 

and each one from the origin i.e. 

             𝐷 =  𝐷 (𝑓 , 𝑓 )  , 𝑖 = 1, 2, … , 𝑛 − 1 

                                             𝐷 = 𝐷 𝑓 , 𝑓   , 𝑗 ≠  𝑖 .                                     

We can say that the influence of the source of the pollution vanishes when      

          𝑓  ≈  𝑓 𝑓(𝑥)  =  𝑓 (𝑥) 

The two successive points 𝑃 (𝑋 , 𝑌 , 𝑍 ) and 𝑃 (𝑋 , 𝑌 , 𝑍 ) provide the same df 

and thus the K-L divergence is zero, practically very small as: 

𝐷 (𝑓 , 𝑓 ) =  𝐷 (𝑓𝑖, 𝑓 ) 

Equivalently         |𝐷 − 𝐷 | < 𝜀  i=1,2,..,n-q ε>0.   (7) 

 and            𝐷 − 𝐷 < 𝜀′               j=i+1ε’ > 0. 

The evaluation of the K-L distance at stage n is crucial, while we can have an 

information data set of “how far”, in terms of Euclidean distance, we are from the 

origin. It is clear that the distance from the origin, depends on the pollution 
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measurements the investigator collects. If we keep the measurements every d, say, 

Euclidean distance, the total distance, from the origin, at the end is dT = (n-1) d. 

 It would be desirable to work with a specific “large family” of distributions to 

keep the evaluation of distribution easier. We decided to work with the family of the  

γ-order Generalized Normal distributions, with shape parameter γ 

𝐺 =  𝛮 (𝜇, 𝛴), 𝛾 ∈ ℝ − [0,1]    (8) 

We introduce the definition and probability characteristics of this family in the next 

section, while section 4 is devoted to the extension of uncertainty and entropy 

measures it can obtained for the family Gγ. 

 

3.  γ-οrdered Generalized Normal Νγ (μ, Σ)   

 The multivariate normal distribution (p variables) is well known, with a large 

number of applications, in various fields of interest (Anderson, 2004) with 

Econometrics being one (Halkos, 2019 among others). There are some attempts to 

create a generalized form, by trial and error, working on the coefficients. The only one 

emerged with an extra parameter, γ, from a Logarithm Sobolev Inequality (LSI) by 

Kitsos and Tavoularis (2009), provided an extra shape parameter, and a strong 

theoretical background for its existence. These were a number of technicalities to 

generalized the well-known 𝑁(𝜇, 𝐼𝜎 ), the p-variate normal with the vector 𝜇 ∈ ℝ  

and covariance matrix Σ∈ ℝ .  

 The γ-ordered generalized normal with an extra shape parameter               

                                                   ℝ − [0,1]  →  𝛾  ∈  ℝ − [0,1] ,  

will be denoted by 𝑁 (𝜇, 𝛴) and density function 𝑓 (𝑥)  equals to: 

   𝑓 (𝑥) = 𝐶 [det (𝛴)] 𝑒𝑥𝑝 − [𝑄(𝑥)] ( )                            (9)  

with 𝑥, 𝜇 ∈ ℝ and 
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𝑄(𝑥) = (𝑥 − 𝜇)𝛴 (𝑥 − 𝜇)  

With the transpose  𝑎 ∈ ℝ  , when 𝑎 ∈ ℝ  

𝐶 = 𝜋
𝛤 + 1

𝛤 𝑝 + 1

𝛾 − 1

𝛾
 

With 𝛾 = 2 it is obvious that the γ-order generalized normal is reduced to the usual p-

variable normal. Moreover 𝑁 (𝜇, 𝛴) is a Kotz-type distribution in the sense that   

   𝑁 (𝜇, 𝛴) = 𝐾𝑜𝑡𝑧(1, ,
( )

; 𝜇, 𝛴),  

with Kotz(.) being the appropriate type distribution, and its parameters. 

 Notice that the density function 𝑓 (𝑥) , as in (9), the γ-order generalized 

normal distribution emerged as an extreme function to Euclidean Logarithm Sobolev 

Inequality (LSI), and it is not an artificial achievement. This is clear as the term         

γ0=  and its inverse γ1, moreover the term  (𝛾 )  known as “international constant” 

it is very difficult to be “constructed”. Therefore there is a solid background for the 

𝑁 (𝜇, 𝛴) (Kitsos and Tavoularis, 2009). The family of distributions has been tackled 

by Kitsos and Toulias (2011).  

 Estimation of the parameters, would be a problem, and the MLE, as was 

considered by Fisher (1925), for the γ-ordered generalized Normal, has been 

considered 𝑓 (𝑥), the γ-order generalized normal distribution emerged as an extreme 

function to Euclidean Logarithm Sobolev Inequality (LSI), and it is not an artificial 

achievement.  

 The distribution function (9), with normalizing factor (10) forms the family of 

Generalized Normal distributions as in (8). Therefore different values of γ provide 

(10) 
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different curves, mainly “fat tailed” distributions.1 In particular as γ approaches 1 and 

infinity the 𝑁 (𝜇, 𝜎 𝛪 ) approach the uniform distribution with p=1 and the p-variate 

uniform equals: 

                                                𝑈(𝑥) =  
/

  , |𝛸 − 𝜇| ≤ 𝜎                                         (11) 

Moreover as (𝛾 → ∞)  the p-variate Laplace is obtained with: 

                                  𝐿(𝑥) =  
!
𝑒𝑥𝑝 −

| |
  , |𝛸 − 𝜇| ≤ 𝜎                            (12)       

 Furthermore, a number of well-known distributions are included in family (8) 

of the γ-order generalized Normal distributions, defined by (9) and (10), the Dirac 

distribution being one of them (for details see Kitsos et al., 2012). For these two 

important distributions in Environmental Economics studies the Kullback–Leibler 

divergence, for given values of γ can been evaluated. Indeed, the following holds. 

 

Theorem 1: The K-L information between two uniforms with σ1 ≥ σ2 and two 

Laplace as in (11) and (12) is: 

                                              𝐷(𝑈 , 𝑈 ) = 𝑝 ln                                                         (13) 

                                              𝐷(𝐿 , 𝐿 ) = 𝑝 ln − 1 +                                        (14) 

In this section the Kullback–Leibler divergence, for the given introduced γ-order 

generalized Normal, for different values of γ have been evaluated. Next step is the 

introduction of the appropriate Entropy measures for the distribution function (9), 

generator of the family of distributions as in (8). 

 

                                                
1  To work with “fat tailed” or “heavy tailed” distributions see Furioli, et.al. (2022), who although they 
are adopting Logarithm Sobolev Inequalities (LSI) the distributions discussed are rather complicated to 
be applied in practical problems, such as the Cauchy distribution.  
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4.  Entropy and uncertainty for 𝑵𝜸(𝝁, 𝜮) 

 The Shannon Entropy, H(.), of the random variable 𝑋~𝑁 (𝜇, 𝛴) , (Kitsos, 

Tavoularis, 2009) is: 

                                    𝐻 (𝛸) = 𝑝 + log
( ( ))

𝐶  𝑎𝑠 𝑖𝑛 (10)                           (15) 

Depending on γ every member of the family Gγ obtains the Entropy measure, which 

in case of γ=z coincide with the p-variate normal 𝑁(𝜇, 𝛴):  

                                          𝐻 (𝛸) = log{(2𝜋𝑒) |det (𝛴)|}    

With γ=1, the Laplace case the entropy for the multivariate Laplace is:  

𝐻 (𝛸) = 𝑝 + log
𝑝! 𝜋

𝛤 + 1
[det (𝛴)]  

When p=1 for the uniform distribution 𝑈(𝜇 − 𝜎, 𝜇 + 𝜎), for the normal, 𝑁(𝜇, 𝜎 ) and 

for the Laplace 𝐿(𝜇, 𝜎) it can be evaluated respectively:  

                                                           ℎ (𝛸) = log 2𝜎 

ℎ (𝛸) = log(2𝜋𝑒𝜎)  

ℎ (𝛸) = 1 + log 2𝜎 

Proposition 1: It holds 

                                                        ℎ
( )

< ℎ
( )

< ℎ
( )

< ℎ
( )    (19) 

Proof:  

Indeed with σ> 0 it holds 

2𝜎 <  2𝜋𝜎 <  2𝜋𝑒𝜎 

thus:ℎ (𝑋) =  log(2𝜎) < log(2𝜋𝑒𝜎) < log(2𝜋𝑒𝜎) =  ℎ  

and: ℎ (𝑋) =  log(2𝜎) < 1 + log(2𝜎) =  ℎ  

 From (16) it is easy to be verified that the more the involving parameters p, the 

larger the (differential) entropy is, i.e. there is an order of the entropy depending on 

(16) 

(17) 

(18) 
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the number of the involving parameters. This implies that in Environmental 

Economics problems we are working with the accurate number of parameters, 

although this is another problem: 

                                                        𝐻 (𝛸) ≤ 𝐻 (𝛸) ≤                                        (20)   

The following Theorem is due to Kitsos and Toulias (2010) information, and provides 

the evaluation of the K-L divergence between generalized Normal, from the defined 

family as in (8). 

Theorem 2: Let two γ-order generalized normal distributions 𝑁 (𝜇 , 𝜎 𝛪 ) and 

𝑁 (𝜇 , 𝜎 𝛪 ), with density functions f1, f2 respectively, from the family Gγ. Their K-L 

information is: 

                                   𝐷 (𝑓  , 𝑓 ) =  𝐶 log 𝛪 − 𝛪 + 𝛪                          (21)                                  

With the integrals Ii ,i = 1, 2, 3 defined as:  

𝛪 = exp[−𝑞 (𝑥)]𝑑 , 𝑤𝑖𝑡ℎ   𝑞 (𝑥) =
𝛾 − 1

𝛾

1

𝜎
∥ 𝑥 − 𝜇 || ,   𝑖 = 1,2

ℝ

 

and    𝛪 = ∫ exp[−𝑞 (𝑥)]𝑞 (𝑥)𝑑
ℝ

 

𝛪 = exp[−𝑞 (𝑥)]𝑞 (𝑥)𝑑
ℝ

 

Notice that ||.|| represents the appropriate norm.It is clear that the entropy is a function 

only of the standard deviation (the variance in principle). 

5.  Transfer entropy and G-causality 

 Uncertainty is related to entropy, which is associated with entropy type 

Fisher’s information, describing different information measures. When we refer to 

observed data and possible causalities between them, we refer to G-causality (G-C) in 

honors of Granger (1969) pioneering work and his Nobel Prize Lecture Granger 

(2003). 



13 
 

 There is obviously uncertainty to be measured: what is caused from a process 

as the new result. Therefore we are looking for a “causality measure” and possible 

bounds for it. Since the time of Heisenberg (1927) the bounds on the uncertainty are 

investigated. 

As such measure of uncertainty in G-C we chose the entropy type of 

information so popular in Cryptography. It is necessary to give “more possibility” to 

the tails, that is adopted the Νγ (μ, Ισ2), introduced in section 3. The γ-order normal, 

𝑁 (𝜇, 𝐼𝜎 ) as above, offers fat tails and an accepted interpretation for the application, 

as it is a normal distribution with an extra “shape parameter γ”. This is why it was 

adopted working on the equivalence of G-C and Transfer Entropy (TE), (Hlavackowa 

–Schlinder, 2011). 

In principle the transfer entropy of Y to X given W is defined due to the 

“history” of the event (Hlavoskova–Schlinder, 2011; Hlavoskova–Schlinder et al. 

(2016) as: 

𝑇𝐸{𝑌 → 𝑋 | 𝑊} =  𝐻(𝑋 | 𝑋 𝑊 ) − 𝐻(𝑋 | 𝑋 ⨁𝑌 ⨁𝑊 )   (22) 

where the “-“ is also referred to “the history” or to “past”. Recall the definition of 

entropy H(.) and the conditional entropy, H(.|), see (4), as well as the definition 

⨁ , Barnet et al. (2009) proved that, in a compact presentation, the TE for the G-C 

is reduced to GTE and holds: 

GTE{Y → X | W} =  ln[Θ(X | X ⨁W )] − ln[Θ(X | X ⨁Y ⨁W )]                   (23) 

With the nxn covariance matrix, and the nxm matrix of cross covariance defined as: 

Gov X  , X = Θ(X) ∈ ℝ  

Gov X  , Y = Θ(X, 𝛶) ∈ ℝ  

Respectively, for the given jointly distributed multivariate vectors 

    X = (X , … , X ) ∈ ℝ   , (Y , … , Y ) ∈ ℝ   , 
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X⨁Y = (X , … , X , Y , … , Y ) ∈ ℝ( ) 

 Now, given  𝛩(𝛸)  the covariance matrix of random variable 𝑋 ∈ ℝ  and 

𝛩(𝛸, 𝛶)) ∈ ℝ  the cross covariance of the random vectors X and Y with 𝑚 ≠ 𝑛, 

we define: 

𝛩(𝑋|𝑌) = 𝛩(𝛸) − 𝛩(𝛸, 𝛶)[𝛩(𝛶)] 𝛩(𝛸, 𝛶)   (24) 

under the assumption that the inverse of 𝛩(𝛶)  exists in ℝ . Notice that 

𝛩(𝑋|𝑌)𝜖𝑅 𝑛𝑥𝑛 as both parts at the right hand side of (24) as in 𝑛𝑥𝑛. It is easy to see, 

with the formulation we offer, the similarity of (22) and (23). 

 According to Granger (2003) a consequence of this attempt is that the casual 

variables can help to forecast the effect variable after other data has been first used. 

Although this statement is too optimistic, still we have more information for the 

“future stage” being at the “current stage”. 

 Therefore the extension to Transfer Entropy problem for the γ-order Normal 

distribution 𝑁 (𝜇 ; 𝛴) was necessary and Hlavackova–Schlinder et al. (2016) provided 

a number of results for it. The important result, for our development is the provided in 

the Appendix A Theorem, which evaluates, although in a complicated way the fact 

that  

    𝑇𝐸 {𝑊 → 𝑈 | 𝑉}     (25) 

exists and it is evaluated. 

 The crucial result from this Theorem, in Appendix A, is that it generates the 

results for the classical Normal distribution, which are provided for the case of γ = 2: 

the transfer entropy with normally distributed and spherically contoured joint 

distribution vanishes. 

Proposition 2: In the case of the normal distribution 𝑁 𝜇, 𝜎 𝛪 ∶     

    𝑇𝐸 {𝑊 → 𝑈 | 𝑉} = 0                                             (26) 
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Recall that the conditional mutual information I(U,W|V) vanishes, if and only is (iff), 

the conditional random variables U|V and W|V are independent. Therefore transfer 

entropy can be expressed also by means of conditional mutual information 

                                              𝑇𝐸 {𝑊 → 𝑈 | 𝑉} = Ι (U, W|V)                                        (27) 

This is a crucial result as the transfer entropy with normally distributed 

variable with a spherically contoured joint distribution is zero. So we need more 

general forms, generalized multivariate normal 𝑁 (𝜇, 𝜎 ) , 𝛾 ≠ 2 , elliptically 

contoured normal applied in Theorem of Appendix A. 

Proposition 3: The Transfer Entropy 

                           𝑇𝐸𝛾{𝑊 → 𝑈 | 𝑉} with 𝑈⨁𝑉⨁𝑊 ~Laplace𝐿 (𝜇, 𝜎 , 𝛪 ) ,   

𝑖. 𝑒.  𝑤ℎ𝑒𝑛 𝛾 → ±∞, 𝑤𝑖𝑡ℎ  𝑞 = 1 + 𝑚 + 𝑛  

exists and can be evaluated.  

Proposition 4:  Under certain conditions for given pdf p, q, namely p is the joint pdf. 

of X and Y and p exists for stationary random processes Y and X, depending on the 

estimated value of x, up to time t=i. given the “history” of x and y i.e. the pdf 

   p=p(xest| x
- , y- ))   with 𝑝~𝑁 (𝜇 , 𝜎 𝛪 ) 

and the pdf q is  

  q = q(y) = p(xest
 , y-) p(xest

 , x-)/p(x-)  with 𝑞~𝑁 (𝜇 , 𝜎 𝛪 ) 

Then:       𝑇𝐸{𝑌 → 𝑋} =  𝐷 (𝑝 ∥ 𝑞) =  𝑟 log − 1 −      (28) 

For details in the case of 𝜎 ≠ 𝜎 , see Kitsos and Toulias (2010). 

 Following Jeffreys (1946) recipe for Symmetric Transfer Entropy (STE) we 

can define it as:     S𝑇𝐸{𝑌 → 𝑋} = 1/2{ 𝐷 (𝑝 ∥ 𝑞) + 𝐷 (𝑞 ∥ 𝑝)} 

Due to this essential point the (28) can be reduce to a symmetric one as: 

                                   𝑆𝑇𝐸{𝑌 → 𝑋} =  𝑟/2 2 − − ( )     (29) 
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This is an easy relation to be calculated, to obtain symmetric transfer entropy in cases 

were symmetry is essential in Environmental Economics. 

 From the above mentioned useful theoretical results the following points must 

be considered with a special attention: 

i. Keeping γ stable, then  

                       𝐷 < 𝐷 . π = 1, 2, 3…                             (30) 

Due to (30) the Laplace distribution, provides the lower bound, when the shape 

parameter tends to infinity 

ii. For given r=m+n+1, 𝜇 = 𝜇  and for 𝛾 < 𝛾  then:  

      𝐷 , > 𝐷 ,     (31) 

iii. Notice that the value of the shape parameter participates with a special 

weight to the analysis we would like to proceed. For value γ=2 it vanishes! 

Therefore the classical Normal distribution is inadequate for such 

applications. A rough explanation can be justified as “there is any disorder 

between Normals”, that is we need a more realistic approach – the fat 

tailed family of distributions as the family (8) with members as in (9). 

iv. The exact calculations through given states of the process is difficult. To 

obtain 𝑇𝐸{𝑿 → 𝒀} is simple through the existent results, especially (28), a 

quite easy to be calculated way of the involved transfer entropy. 

6.  Discussion  

 This paper is based on our believes that quantified methods and optimization 

procedures need the Mathematical background, and a common understanding and link 

with the area of interest. Our main concern here is in Environmental Economics in 

which there is no doubt that an underlying uncertainty exists based on the probability 

theory.  
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 An essential source of model uncertainty measured by entropy comes into 

view from the imposed assumptions and the assumed distributions to be considered. 

We are referring to entropy as it is strongly related to a system’s disorder and 

uncertainty and is related to variance. As it is applied to a lot of engineering problems 

we believe that this idea can be adapted in Economics in addition to a measure of 

existing uncertainty.2 

 Ιt is clear that the entropy depends only on the variance-covariance matrix Σ or 

σ in case p=1. In practice this means that the uncertainty is irrelevant to mean value μ 

(of the pollution centre to an industry, say) but depends on the standard deviation (the 

experimental error), that is how much is expanding from the centre. The Uniform 

distribution can be adopted if it is assumed that pollution levels are (almost) the same 

around the area [a, b], while the Laplace when it is assumed a “sharp explosion” 

around the center and much lower far from it. Estimates of (9) can be obtained in 

practical situations. Figure 1 is a graphical representation of the relationship between 

Uniform, Normal and Laplace in the univariate case.    

 In simple words, this implies that the choice of the appropriate probability 

model describing the phenomenon that is the probability density function (pdf) is a 

main priority in any decision making planning. The typical normal distribution is 

inadequate in such cases demanding more realistic approximations with the fat tailed 

family of distributions as presented here to facilitate in these directions. 

 

 

                                                
2  The researcher, in principle, may not be a Mathematician, so no need to know the existing 
development, but the solid results and the computational applications (Kitsos and Nyamsi, 2024). 
Exploring the economy–environment relationship in the case of air pollution (Halkos, 2013) but also 
the effects of government expenditure on the environment (Halkos & Paizanos, 2017), coping with 
energy poverty (Halkos and Gkampoura, 2021) and exergy (Sciubba, 2021) will be helped among 
others by the proposed analysis.  
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This will assist in the construction of adequate confidence intervals that will smooth 

the progress of the planning of effective environmental policies.3  

Conclusions 

 In this paper we emphasize on the entropy and more specifically on transfer 

entropy. We have already shown that assuming the γ-order generalized normal may 

help extending to transfer entropy. One problem is the fat tails characteristic, in this 

area, and another problem is what pdf to be chosen. So the family of distributions, the 

γ- order Generalized Normal distribution covers both requests, due the "International 

constant" (γ/(γ-1))**(γ/(γ-1)), which leads to a number of pdf, and the Logarithm 

Sobolev Inequalities (LSI), which provide a solid background.  

 Therefore uncertainty was extensively discussed through its origins, for the 

Environmental Economics problem. Moreover G-causality is essential to Economic 

problems and related to Transfer Entropy definition, highly related with the 

Information Theory. That is why we tried to clarify and simplify the Physical ideas: to 

be adopted in Environmental Economics, as are not that complicated any more, and 

the appropriate packages can offer easy calculations. At the same time, the concepts 

are essential to the field of our concern: in Environmental Economics.  

  

 
 
 
 

                                                
3 For instance in the case of transfrontier pollution and assuming linearity, the total annual depositions 
(ADi) of air pollution (like sulphur) in country i, will be given as (Halkos,  1993, 1994, 1996):  
    ADi=Σjdij(1-αj)Ej+Bi       i,j  i , j=1,...,N     

Where αi is the abatement efficiency coefficient in country i, dij is the transfer coefficient from country j 
to i, indicating what proportions of emissions from any source country is ultimately deposited in any 
receiving country, Bi is the level of the so-called background deposition attributable to natural sources 
(such as volcanoes, forest fires, biological decay, etc) in receptor-country i, or to pollution remaining too 
long in the atmosphere to be tracked by the model, i.e. is probably attributable not only to natural sources 
but also to emissions whose origin cannot be determined.  
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    APPENDIX A 
 
Transfer Entropy evaluation for the γ-order Generalized Normal distribution 

 
Theorem. The transfer entropy for 𝑈⨁𝑉⨁𝑊 ~ 𝑁 𝜇, 𝜎 𝛪 is: 

 
𝑇𝐸 {𝑊 → 𝑈 | 𝑉} =  log 𝐴 − 𝐵(𝑞, 𝛾)𝑆 (𝑞, 𝛾)𝑆 (𝑞) 

 
  With   
 

                               𝐴 = 𝐴(𝑞, 𝑚, 𝑛, 𝛾) =
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
  and    𝛾 =  

 

𝐵 = 𝐵(𝑞, 𝛾) =
𝛤( )

2 𝛤 𝛾

 

 

𝑆 (𝑞, 𝛾) =
𝑘!

𝑘

𝜆
(−1) 𝛾

( )

𝛤(
2(𝑘 − 𝜆) + 𝑞

𝛾
) 

 

𝑆 (𝑞) =
(𝑘 − 𝜆)!

𝑖 𝑖 … 𝑖
𝑃 (𝑚, 𝑛) 

 
with the usual notation valid (𝑟) = 𝑟(𝑟 − 1) … (𝑟 − 𝑠 + 1)  and 𝐼  be a set of 
indices such that 

𝐼 = 𝑖𝑛 𝑖 , 𝑖 , … , 𝑖 ∈ 𝑁 , 𝑖 = 𝑘 − 1, 𝑖 ∈ (𝑘, 𝜆)   𝑜𝑟 𝑡 + ⋯ + 𝑡

∈ (𝑘, 𝜆)  

 
And 𝑃 (𝑚, 𝑛) well defined polynomials depending on 𝑚, 𝑛 ∈ 𝑁∗ being or not being 
both odd  or even number, see Hlavackova – Schlinder et al. (2016) for details. The  
Pq (m, n) are well defined polynomials depending on m, n ∈N* being or not being 
both odd or even numbers, see Hlavackova – Schlinder et al. (2016), and their 
Theorem 6.2 for details. 
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