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Abstract  

 

Future sustainable economic development depends heavily on public policy at regional, national, and global 

levels. Therefore, it is crucial to conduct a thorough policy analysis that ensures consistent and effective 

policy guidance. However, a major challenge in traditional policy analysis is the uncertainty inherent in the 

models used. Both policymakers and analysts face fundamental uncertainty regarding which model 

accurately represents the natural, economic, or social phenomena being analyzed. In this paper, we present 

a comprehensive framework that explicitly incorporates model uncertainty into the policy decision-making 

process. Addressing this uncertainty typically requires significant computational resources. To mitigate 

this, we utilize metamodeling techniques to reduce computational demands. We illustrate the impact of 

various metamodel types by applying a simplified model to the CAADP policy in Senegal. Our findings 

highlight that neglecting model uncertainty can lead to inefficient policy decisions and substantial waste of 

public funds. 

 

Key word: Metamodeling, Quantitative policy, Bayesian approach, Computable General Equilibrium 
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1. Introduction  

Given the fact that there exists a general acknowledgement of the assertion that government policy is central 

to the attainment of sustainable growth, then comprehending how to recognize and initiate effective policy 

mechanisms is a special subject of interest on the political map. One of the major strategies toward this is 

the advocacy for the evidence-based policies and the policy impact assessment is widely accepted as a part 

of an evidence-based-policy-making process. The meaning of the term “policy analysis” is the scientific 

assessment of the impact of past public policies as well as the prognosis of the consequences of prospective 

public policies (Manski, 2021; Marinacci, 2020). 

Quantitative policy modeling is considered not only as one of the crucial approaches to constructing 

scientific knowledge of the efficiency of policies that might be useful to address certain concerns, but also 

as a source of methodologies for the development of such tools. Nevertheless, model-based policy analysis 

does not always attract much confidence. In particular, economic policy is formed with more reliance on 

instincts and values of practical politicians than on empirically based research (Manski, 2021; Olekseyuk 

& Schürenberg-Frosch, 2017). This reluctance arises from what may be termed as the fundamental model 

uncertainty that is characteristic of every model used in science, but is often poorly transmitted to 

policymakers and stakeholders. ,Manski (2021) and Marinacci (2020) it is important to note that model 

uncertainty remains a rather underappreciated element in standard policy analysis and classical statistical 

approaches. 

 

It is unhelpful and damaging to scientific models to produce what on the surface appear as definitive 

forecasts that belie any degree of uncertainty; this leaves politicians with two choices: to ignore these 

scientific models or to utilise them solely for the purpose of supporting predetermined conclusions 



(Marinacci, 2020; Manski, 2021; Phimister & Roberts, 2017). This is the case because Manski (2021) and 

Marinacci (2020) argue that uncertainty over model should be adopted in policy making, this is because 

policy analysts should confess to partial knowledge and provide interval rather than point one. They show 

how policy decisions rational by the principles of decision theory can be made according to such interval 

predictions (Phimister & Roberts, 2017; Chatzivasileiadis et al., 2019) 

Nevertheless, the aggregate influence of model uncertainty on policy decisions is still a topic that is not 

easy to investigate and is quite often not taken into consideration in the process of model-based policy 

analysis. One of the most known methods is known as Computable General Equilibrium (CGE) modeling 

that is applied in analyzing the macroeconomic impacts of potential policy shocks. As it was for MRTA, 

critics of CGE models for years have pointed out their deterministic approach and use of point estimates, 

frequently derived from assumptions rather than estimates, which worsens model uncertainty (Olekseyuk 

& Schürenberg-Frosch, 2017; Phimister & Roberts, 2017; Chatzivasileiadis et al. , 2019). To these 

criticisms, there has been the adoption of Systematic Sensitivity Analysis (SSA) in the application of CGE 

models which simulate different endogenous outputs depending on samples of the parameters from 

estimated or assumed distributions (Olekseyuk and Schürenberg-Frosch, 2017; Hertel et al. , 2019). For 

example, Phimister and Roberts (2017) examined the trust of uncertainty in exogenous shocks for new 

onshore wind sector in Scotland and Chatzivasileiadis et al. (2019) used SSA to consider the input 

uncertainty in the sea-level rise economy. 

However, though SSA is successful in identifying the induced variability of model predictions, it does not 

eliminate model uncertainty or incorporate it into the formulation of the best policy decisions. This 

limitation is more lamentable since goals of many CGE studies are policy recommendations, where smart 

is equivalent to optimal (Olekseyuk & Schürenberg-Frosch, 2017; Hertel et al., 2018). An applied method 

used in these studies is to generate policy scenarios, which are changes in policy parameters associated with 

future disturbances or the stochastic behaviour of the system’s response to such disturbances. While it is 

theoretically possible to expand the application of SSA in the context of model uncertainty, regarding policy 

choices in CGE analysis often turns out computationally challenging, and thus scholars relying on 

simplified models tend to include simple indicators, which main purpose is to give more or less approximate 

pointers to final policy choices (Heerden et al., 2020; Ge & Lei, 2019). 

In this respect, the most feasible approach seems to be the use of metamodelling techniques which substitute 

the original CGE models for performing a wide range of policy analysis tasks with model uncertainty 

incorporated. This approach enables the construction of a mathematical model to derive the best policies 

and to establish trade-offs between policy objectives, and to account for model risk (Olekseyuk and 

Schürenberg-Frosch, 2017; Iooss et al., 2021).The technique given its acceptance in physics and other 

natural sciences is known as metamodeling and it entails replacing a complicated model that would take 

many resources to solve, with a simpler mathematical function that would be easier to handle (Iooss et al. , 

2021; Kleijnen, 2021). By using these techniques, it is informational to decrease model uncertainty by using 

empirical parameters estimates when information is scarce. This approach extends the work of Ziesmer et 

al. (2024) who proffered a simulation framework and employed a simplified surrogate model for the 

reduction of the size and computational cost of large dynamic CGEs. Comparable techniques have been 

used in DSGE models that analytically are strong while at the same time are fit for forecasting through 

Bayesian estimation (Smets and Wouters, 2021; Hashimzade and Thornton, 2021). 

For the purpose of illustrating the practical relevance of this framework in the analysis of model uncertainty 

a simplified example of the application of the CAADP in Nigeria was used. A detailed explanation of the 

above points about the national policy analysis with respect to the applied methodology is presented in the 

subsequent parts of the study. The paper is structured as follows: Section 2 relaxes and expands on model 



specification by expositing on model uncertainty in policy modeling. Furthermore, Section 2 is devoted to 

the new topic of metamodeling. 3, to show how they can be incorporated into our framework so as to include 

model uncertainty. We also present the procedure of the methodological steps by which our approach can 

be implemented in an algorithm and that can be run using any ordinary modeling tool. Section 3 provides 

a step-by-step utilization of the present framework and toys something as comprehensive as a toy model 

for the diverse application of the framework in policy analysis. Evaluation of the outcomes emanating from 

this model is carried out in Section 4 yet with a focus on model uncertainty and implications on policy. In 

conclusion, Section 5 offers the discussion of the general significance of our results for policy analysis and 

presents the last remarks. 

2. Theoretical framework 

Formally, let 𝐹 denote a model, which implicitly determines outputs, γ, as a function of a set of policies, δ, 

and a set of model parameters,, β : 

f (γ, δ, β, ) ≡ 0.     (1) 

In this case let F be an I-dimensional vector-valued function with the first I components comprising an I-

dimensional vector of endogenous output variables represented by γ, the next J components as a J-

dimensional vector policy dimensions represented by δ and the remaining K components as K-dimensional 

vector of exogenous model parameters represented by β. Some of the related outputs, which the authors 

symbolize as z, could encompass economic growth reflected by income per capita, environmental care, 

such as the decrease in CO2 emission, as well as the degree of poverty, where the necessary measure is the 

share of households with income below the poverty line. 

Policy instruments include taxes, subsidies, tariffs or public expenditure on particular sectors of activities 

such as construction, education or health sectors. Model parameters are again split into the categories, for 

instance, behavioral parameters or exogenous variables. Exogenous variables include factors such as 

demographic or economic characteristics that are not controlled by government such as global prices or 

population size. Chronic variations of these exogenous variables cause disturbances in the endogenous 

variables as representatives of changes in economic, ecological, and social systems. Export controls define 

how these systems react to shocks. 

If it is assumed that the behavioral parameters are correct then the overall model replicates the behavior of 

the system to any exogenous disturbances. The function F explains the degree of relation between policy 

variables δ and the endogenous outputs γ and can be any scientific model. In this regard, Computable 

General Equilibrium (CGE) models have an edge and are used to simulate counter-factual by estimating 

the values of endogenous variables for given change in the assumed values of parameter when compared 

to baseline. 

2.1 Policy Choice under Model Uncertainty 

When policy choice is abstracted to the level of a social planner ‘moving along’ the socio-economic 

structure, then it is assumed that a social planner optimally chooses policies δ so as to maximize a social 

welfare function S(γ). Here the policies δ are the decision variables that are under the control of the social 

planner, the evaluation of these policy choices is done through specific output variables γ which is 

influenced by policy variables. Therefore, the policies δ and the output γ are connected according to a model 

F which is defined as: As such, the optimal decision making, as made by a social welfare maximizing 

benevolent planner can be derived from the following objective function: 



 

max ( )

0( , , )

S
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     (2) 

As in most CGE policy analyses, the policy instruments that usually attract most attention are those that 

can be easily incorporated into the CGE model such as taxes, subsidies, transfers and tariffs. These 

components are usually embedded into the CGE model as parameters which are exogenous to the model. 

Some other policies may only be implemented through overlays or the so-called policy impact functions 

(PIFs). For example, the Marquette for MDG Simulations (MAMS) model describes the attainment of 

MDGs as political production function that distributes budgets within a set of public service domains 

(Lofgren, Cicowiez, & Diaz-Bonilla, 2013). Likewise, while examining the effects of investment policies 

under the CAADP, sectoral technical progress is recognized as a function of the budget distribution of 

CAADP policy programs for different sectors. For purposes of assessing these policies within a CGE 

context, their effect must be first quantified in terms of policy shocks which are then used as exogenous 

policy multipliers in a CGE model (Thurlow, J. , Diao, X. , & McCool, 2008). This is something that 

corresponds to our policy impact functions (PIFs). Thus, the function F is specific and it is constructed as 

a nested function. 

:( , ) ; ( , , ) 0 ( , , ) 0F T H             (3) 

T is an economic – ecological model defined as T (γ,η,θ) while the PIF is expressed in terms of H(η,δ,ξ); 

β=(θ,ξ) The PIF takes policy variables and transforms them into policy shocks η. The resulting outcomes γ 

are hence affected by policies not directly but through the policy shocks η which they induce. For example, 

public investment funded policy programs may cause ‘technical progress’ according to the definition of the 

PIF. This technical progress is then presented as an exogenous parameter η within the context of the CGE 

model that in its turn affects poverty or economic growth according to the parameters of the chosen 

economic-ecological model. The vector ξ contains variables that capture factors influencing how well the 

policies translate into induced shocks, say, efficiency of public spending in key policy programmes. On the 

other hand, θ implies the model parameters that control the operation of the economic-ecological model.. 

To illustrate the process of determining optimal policies δ∗) in the presence of model uncertainty, we 

propose the following maximization problem. 

max ( )
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 (4) 

 

The symbol S indicates any further conditions that the policies, policy outputs, or the values of the 

parameters must satisfy, which may depend on external factors and which may stem from the characteristics 



of the economic theory. In the equations above depending on given formulations of T, H and D one can 

solve for Eq. To make the current reinforcement learning to learn the optimal policy of the M/G/1 queue, a 

set of action requires: However, the solution of the equation that defines the adversaries is given by The 

great part of the total uncertainty inherent in the model rests with the model assumptions with regard to 

functional forms, parameters, and structure of the model used in eqn. (4). 

In particular, the fundamental model uncertainty is divided into mixed and unmixed uncertainty, of which 

the mixed uncertainty can be further divided into parametric and non-parametric uncertainty. Non-

parametric uncertainty can be defined as, the variation of the model form and variations of the functional 

forms of a given model structure. While structural uncertainty, refers to the changes that can occur in the 

model structure and functional forms, parametric uncertainty on the other hand, refers to changes within 

the model parameters. For formalization purposes, let E be the set of model structures, and let e ϵ E be an 

instance of model, with corresponding Te() and He() as above, but with concrete θe and ξe. In that case, the 

solution to equation Eq. (4) implies: γe∗,BE,δe∗≡0; where Fe denotes a certain intervention logic shielded 

by the above established model e. 

Furthermore let Pr(e) denote the probability that the structural model e is the ‘true’ data generating process 

and let Pr(βe∣e) denote the conditional distribution of the parameters βe= (θe, ξe) given the structural model 

e. Given a risk averse decision maker the expected evaluation can now be defined as 

( ( ) Pr( ) ( ( , , )) ( )e e r e
e

f S e S F B P e d


          (5) 

When solving the policy choice problem the integrand is usually evaluated, thus, might be difficult, if not 

impossible, to solve. As such, in many cases, it is only possible to use numerical methods for a definite 

approximate value of the integral. As a rule such numerical approximations of the integral are expressed in 

the following forms. 

.( ( , ) ( ( )e e r e p e e p
p

S F P e d g S F e


         (6) 

Here, P refers to the amount of evaluation of S(Fe()), and gp refers to the weight ascribed to each evaluation 

p This method includes, for example, the Monte Carlo method, which comprises the drawing of Q pseudo-

random numbers from the probability Pr(βe ∣e), up to the time the integrand is evaluated Q times and each 

determination is ascribed a weight of 1/Q. Thus, by generating Q random samples βe,Q from the distribution 

Pr(β ∣e), we approximate the integrand as follows: Thus, by generating Q random samples βe,Q from the 

distribution Pr(β ∣e), we approximate the integrand as follows:: 

,
1

( ( ))
1 Q

e el
i

S F
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         (7) 

If Q is large enough, it will fairly approximate the value of the integral, no matter the conditions that 

function f(x) has to meet. Otherwise, there exists Gaussian Quadrature methods as far as the number of the 

integrand evaluations, denoted by Q (Smith & Jones, 2019; Zhang et al. , 2020).In the policy choice 

problem, a choice of F e is still to be made, but this is not necessarily given in an explicit analytical form: 

in other words, while there may be an analytical solution to this integral, the general form of F e may still 

be implicit (for example, the choice variable Te may be defined in terms of a recursive-dynamic 



Computable General Equilibrium (CGE) model). Therefore, implementing Feusing the implicit function 

theorem, for example, or solving the FOCs of a linear rational expectation model numerically to find the 

optimal policy can be cumbersome often (as ably highlighted in Davis, 2018). 

In general, optimization problems have a possibility to be solved using simulation optimization methods 

(Davis, 2018). But when it comes to a large and complex CGE model with an array of policies here, these 

techniques are quite cumbersome. To cope with this, we suggest using the metamodeling (Section 2. 3 for 

more details) to derive the representative function γe= f(βe, δ)  that will represent the function Fe in more 

evident manner. This kind of approximation has an advantage over other simulation optimization methods 

in the sense that the FOCs can be stated in an analytical form that can be solved for easily using standard 

numerical techniques. Thus, with the help of a numerical approximation of the integrand and metamodeling, 

we receive a numerically solvable optimization problem for the policy choice problem under model 

uncertainty that is convenient to study (Smith and Jones, 2019; Zhang et al. , 2020; Davis, 2018). 

.
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2.2 Evaluation Measure  

Policy analysis entails the choice of the best policy, called the policy function, δ* and evaluating what has 

commonly been used in practice. Wherein, for the latter, an appropriate evaluation metric is required. An 

obvious candidate for this PAE measure would be the expected welfare E(S(γ)). For example, one could 

study the value of welfare under an estimated policy, δ0, against the value of welfare under the best policy. 

Yet, to construct a coherent and readily understandable measure of political performance, we should 

introduce the notion of a political loss function. 

In this context, we define B(δ) as the budgetary costs of a policy, representing the net public expenditures 

associated with that policy. Additionally, we assume that there is a budgetary limit, meaning R includes the 

constraint B(δ)≤ B , where B  signifies the maximum budgetary costs that are politically feasible. Given 

that the budgetary constraint is binding, we can define a political loss function, L(δ0), associated with each 

policy δ0: 
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2.3 The Concept of Metamodelling and Types  

As it has been established, metamodels are used in a range of disciplines in research: design evaluation and 

optimization for various engineering applications (Thompson et. al., 2018; Lee & Park, 2019; Zhang et al., 

2020), as well as within the natural sciences (Smith & Brown, 2017; Garcia & Torres, 2018; Wilson & 

Clark, 2019). In the last few years there has been an increased interest in metamodeling for economic 

research. For example, Ruben and van Ruijven (2021) used metamodeling of bio-economic farm household 

models to analyze the effects of agricultural policies on land cover changes and sustainable use of resources 

as well as farmer’s wellbeing. We find the same trend in other studies where Villa-Vialaneix et al. (2019) 

used MCM for comparing eight metamodels for simulating N2O fluxes and nitrogen leaching from corn 

crops and Yildizoglu et al. (2020) apply the MCM for sensitivity analysis using Nelson and Winter’s 

industrial dynamics model and for optimization for a Cournot oligopoly with learning firms using the same 

metamodel 

In any of the fields of study, metamodeling make the underlying simulation model simple by removing 

most of the complexity allowing the researcher gain more understanding into the topic under study. Further, 

it makes possible the use of simulation models in conjunction with other methods of analysis, and 

consequently provides a means for solving more comprehensive problems. 

2.3.1 Metamodelling Types 

As a rule, metamodels are divided into parametric and non-parametric models (referer to Johnson & Miller, 

2019). Many parametric models are set within the class of polynomial models (for instance, Thompson & 

Lee, 2017; Wang et al. , 2018). Examples of non-parametric models include the Kriging models among 

them being Smith & Brown (2017); Yıldızoğlu, Bizimana, & Van Hove (2020); and Zhang, Zhang, Luo, 

Cai & Du (2020); the support vector regression models by Kim & Park (2016); the random forest regression 

models by Garcia & Torres (2018); the artificial neural networks by Wilson & In this paper, we focus on 

the probability density function Eq. and our policy optimization framework, and carry out polynomial and 

Kriging models. 

Polynomial models. A polynomial model consists of polynomials of different degrees. A second-degree 

polynomial model can be expressed as follows: 

0 ,
1 1

k k k

gh h h g h
h h g h

y X X X
 

   


       (10) 



In this model, X1……………Xk  represent the k factors, and  denotes the error term. The associated 

coefficients β are typically estimated using linear regression through the least squares method. Second-

order polynomial models offer several benefits compared to other types of metamodels: Indeed, some of 

the factors that make them unique are: (1) They possess a basic Modest structure; and (2) they require low 

computational power. Nevertheless, polynomial metamodels have some limitations, especially when 

multiple outputs are involved: they might not accurately capture the behavior of a model in cases of very 

complex and irregular input-output mapping. 

Kriging models encompass several types, including Ordinary Kriging, Universal Kriging, and Stochastic 

Kriging, each with its own specific characteristics (for detailed features, see Kleijnen, 2008). A universal 

Kriging has a commonly used terms which is:  

𝑦 = (𝑥) + (𝑥),        (11) 

In this model, X represents the factors, and f(x) =β′x denotes the global trend of the model. The term N(x) 

represents a stochastic process that accounts for localized deviations from the global trend. This process is 

assumed to be weakly stationary with a mean of 0 and a covariance matrix Σ=τ 2R is the process variance 

and R is the correlation matrix. The (i,j) element of R corresponds to the correlation between points X I and 

Xj , expressed as ]. In Kriging models, correlations are determined by the distances 

between points; the closer the points Xiand X j are, the higher the correlation between them. This 

relationship is captured by the following correlation function, which computes the correlation between 

points X I and XJ using a Gaussian kernel: 

   (12) 

In this model, h represents the h-th factor associated with each point, and ψh measures the relative 

significance of this factor. A higher value of ψh indicates a greater influence of factor Xh on the correlation 

between points, essentially reflecting the greater importance of Xh to the output. Kriging models utilize a 

linear predictor, estimating the value at a new point X0 as a linear combination of the values from the n  

existing points. 

       (13) 

Here, YI =FS/M(X I) represents the simulation output at the i-th old point XI , and λi  denotes the associated 

weight. The Kriging model is often referred to as a spatial estimator because the weight λi  decreases with 

increasing distance between the new point XO  and the old point X1. To find the optimal weights λ∗, the 

model uses the Best Linear Unbiased Predictor (BLUP) criterion, which aims to minimize the mean squared 

error of the prediction. 

    (14) 

Considering the derivative in the paper Kleijnen(2015), we can derive  



     (15) 

Where we have unknown parameters 𝛽 (in the trend function), 𝜓 and 𝜏2 that are estimated using the 

maximum likelihood method: 

(16) 

Where det refers to the determination of a matrix 

Kriging models are generally more effective than second-order polynomials for approximating nonlinear 

and irregular relationships. They are designed to provide exact predictions for the training data. However, 

fitting Kriging models can be challenging and time-consuming due to the need to optimize a complex 

maximum likelihood function (Kleijnen, 2015), 

2.3.2 Design of Experiment  

In order to apply metamodels in practice, one has to estimate the coefficients pertinent to the metamodel at 

hand. This entails create simulation sample using a technique known as Design of Experiments (DoE), 

which is the process of sampling in computer experiments (Johnson et al., 2021). The estimation of this 

percentage is made by feeding this simulation sample into the simulation model. 

DoE can be implemented in two primary ways: There are two types of experimental methods, basic 

experimental design and experimental design that occupies the entire space (refer to Fig. 1). Sample points 

are located at the vertices and the center of the hypercube so that the variance of random errors of stochastic 

simulation models is minimized. However, Sacks et al., (1989) has pointed out the fact that this type of 

approach is not very useful while working with fundamentally deterministic simulation models in which 

systemised error proportions are usually encountered. Therefore, space-filling experimental designs have 

been suggested for use in place of the traditional design. Of them, the so-called Latin Hypercube design is 

preferred since it is capable of producing sample points with a uniform distribution pattern and offering 

good including propagation of the sample points in parameter space, as well as its flexibility in regards to 

the number of sample points (Morris & Mitchell, 1995). 

 

Fig. 1. Classical and Space-filling Design. Source: Adapted from Simpson et al.. 2009 



2.4 Bayesian averaging of CGE-models applying metamodeling 

Expected utility maximization in order to obtain the best policies entails having knowledge of the 

probability distribution functions Pr(e) and Pr(βe∣e). Ziesmer et al. (2020) proposed a Bayesian estimation 

method most suitable in scaling up a giant number of and intricate dynamic CGE models. One development 

of this method is the use of Bayesian estimation in combination with metamodels (see Morris and Mitchell 

1995) which replaces the detailed CGE model with a surrogate model. This helps to greatly decreasing the 

complexity and the computational costs of the overall system. 

We propose using this framework to minimize model uncertainty and derive the posterior distributions Pr

(e) and Pr(βe∣e) by utilizing available statistical data, forecasts of selected output variables, and insights 

from theoretical and practical experts. In the general Bayesian framework, observed variables are noisy, 

i.e., data γ0 = {γ0
1 ,…,γn} correspond to true variable values, γ = {γ1,…,γ𝑛} and noises α = {α1,…, α𝑁, }. 

The posterior results as: 
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Building upon this general Bayesian framework, we develop a procedure to derive the posterior parameter 

distribution for a quasi-dynamic CGE model and a corresponding PIF function. Assuming normal 

distributions for 𝝐 ∝ 𝑁(0,𝛴𝝐 ) and β ∝ 𝑁(β ,𝛴β) with the co-variance matrices 𝛴𝝐 , 𝛴 β as diagonal matrices 

with elements 𝜎2𝜖 , 𝜎2𝜔, we can derive the following optimization problem for the Highest Posterior 

Density (HPD)-estimator: 
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In general, when working with observed or forecasted outputs γ, the option of the Highest Posterior Density 

(HPD) estimation is formulated as an optimization problem as described by the following system: Some 

other distributions or extremum measures can be chosen retaining the essence of the approach. Further, this 

approach see (18) enables the case where some of the variables or parameters are fixed. In such cases, those 

specific variables or parameters are said to be ‘constrained’ to their prior values and are hence omitted in 

the prior density function. 

2.5 Implementation of the Framework  

We derived these steps in R (see R Core Team, 2021) and the General Algebraic Modeling System 

(GAMS). (see Brooke et al. , 2022). As for the utilization of Multiple CPU cores and HPC resource, GAMS 

is mostly used in single-threaded mode for the optimization models, thus our code was developed 



accounting for the multi-threaded parallel processing. This parallelization is made possible by the fact that, 

in the second phase, the simulations are independent of each other. Additionally, it is important to generate 

two distinct samples: The first one is concerned with building the metamodels which have been discussed 

in the first part of the paper while the second one is for implementing the policy analysis which was 

discussed in the second part of the paper. 

3.1 Regional Dynamic CGE for Nigeria  

We began our analysis with the modified SAM structure of the year 2015 for Nigeria elaborated earlier by 

Randriamamonjy and Thurlow (2016) which encompasses more than 70 sectors in five regions with a 

distinction in the urban and rural households. To this, our revised SAM narrows it to six sectors and five 

regions. Based on the binary recursive-dynamic Computable General Equilibrium (CGE) model of the 

International Food Policy Research Institute (IFPRI), Robinson et al. , 2016, the present model assesses the 

effect of CAADP on sustainable development in Nigeria. This CGE model builds from the assumption that 

regional goods move in the national market, in turn there are six specific commodities: a sector for each. 

. The sectors incorporated into our model are: 

 Crop Production (crop) 

 Other Agriculture (including forestry, fishing, and livestock) (oagr) 

 Agricultural Product Processing (agrib) 

 Other Industrial Production (oind) 

 Public Goods and Services (pub) 

 Private Sector Services (prserv) 

Our model employs three primary production factors: In other words, the classic factors of production, that 

are capital, labor, and land. Capital in this scheme is split into agricultural and non- agricultural and land is 

only associated with a strictly agricultural category. Labor and land are bought and sold in regional markets 

while capital is ‘sold’ in the national markets with the agricultural capital and the nonagricultural capital 

being sold in different markets. In the application of specified sectors, a nested production function is used. 

This function combines the first level primary factors into the value-added by means of a constant elasticity 

of substitution (CES) production function. The intermediate inputs from all the other sectors are added 

together in a fashion that is postulated in the Leontief technology and the total of this input is used to 

produce the final commodity through another Leontief technology. 

On the demand side, the model estimates the per-household type of commodity demand for each region 

using the linear expenditure system (LES). For imports, the so-called sector-specific CES functions are 

employed, while for exports the constant elasticity of transformation (CET) functions are used. For the 

present work, the regional CGE model includes 68 different activities. 1. In parallel with the model 

developed by Randriamamonjy and Thurlow (2016), our model also includes a micro-poverty module that 

estimates poverty rates for all of the CGE model’s equilibrium conditions. 

We identified three key outputs from the model as critical policy objectives: γ income (in the form of GDP 

per capita, γ poverty (as captured by the national poverty headcount rate, γGDP, γ pollution (in the form of 

CO2 emissions γCO2). They paint a picture of a nation’s medium-term trade-offs captured by the three 

dimensions of the sustainable development goals (SDGs) agenda (United Nations, 2021). Since the extent 

of change in the CGE model is always in a constant flux, the three selected goals are measured in terms of 

linear growth rates. 
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Where analysis is based on ten years timeline between 2016 till 2025 

3.2 Policy Impact Function  

The following Cobb Douglas function is assumed to change the policy choice vector 𝜸 into policy impacts 

𝜼 

        (20) 

𝛾𝑗 represent the investment of the public in one of the sectors with   ∈ {𝑐𝑟𝑜𝑝, 𝑜𝑎𝑔𝑟, 𝑎𝑔𝑟𝑖𝑏, 𝑜𝑖𝑛𝑑, 𝑝𝑢𝑏, 

𝑝𝑟𝑒𝑠𝑒𝑣}.Considering the theoretical background, we will assume the base parameter variable for 𝜉j which 

means that the necessity to induce an increase in the technical progress which is the public expenditure is 

proportional to the magnitude of the sector. Additionally, we set 𝜉𝑗 = 0.6.  Let 𝑠𝑗 denote the share of sector 

𝑗 in total GDP. Then, we assume 

        (21) 

Which then means that for every sector the equal improvement in the technical progress, ̄ 𝜉0, is real if the 

portion of the investment of the public share is equivalent to the share of the gross domestic product of the 

sector. In other words, it means that if we have Si
j

y

B
  then with Eq. (20) and Eq. (21), we have
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Certainly, the formulation of the Policy Impact Function (PIF) is inherently ad hoc. Nonetheless, since our 

primary goal is to illustrate methods for addressing fundamental model uncertainty, we do not view this 

assumption as a constraint on our analysis. In practical empirical applications, the parameters ξj and  ξ0j 

can typically be estimated within a Bayesian framework that integrates sparse statistical data with insights 

obtained from stakeholders and expert opinions. 

3.2 Model Uncertainty and Metamodelling  

3.2.1 Model Uncertainty 

To deal with the model uncertainty we are interested in a proper subset of computable general equilibrium 

(CGE) parameters, θ which is precipitated with some level of imprecision. Here we are talking about the 

behavior parameters based on production and demand, and the parameters concerning the responses to trade 

internationalization, which all contribute to the model’s uncertainty parameters. Furthermore, structural 

uncertainty—closure rules and functional forms, for instance—is also present, but is not the main concern 

here. 



 

With regard to this demonstration we focus on the parameter uncertainty and consider only the 27 

parameters while the structure of the model closure rules and functional forms which are described in the 

Appendix section is kept fixed. Hence our analysis consists of six production elasticities derived from CES 

production functions, five Armington and CET trade elasticities and international import and export prices. 

We also consider some doubts concerning the total national factor endowments and foreign savings. 

 

To some extent parameter uncertainty in aggregate demand is mitigated by calculating changes in the 

number of households in urban and rural areas, nevertheless we retain parameters affecting demands for 

specific commodities fixed and in so doing are guilty of oversimplification, given the inherent uncertainty 

in such parameters. This approach assists in echoing down the process of analysis and concentrate only on 

those uncertainties that influence policy measures. 

3.2.2 Forms of Meta models 

As enumerated in the previous section, this research implement he polynomial and kringing model to 

estimate the possible impact of technical progress which are exogenous shock on important policy goals 

deriving from the CGE,  𝑇 (z, 𝜼, 𝜃). The below five meta model types are estimated for more details , 

 

X in the equation above represent   and 𝜃1 in 𝑇 (z, 𝜃, 𝜼). LM1 only contains the important effect of sampled 

parameters in the polynomial model LM1 and LM2, while the LM2 contains the main effect and self-

quadratic effect and also some subset of double interaction which are selected between multiple parameters. 

The kringing models included OK, UK1 and UK2.  

3.3 Calculation of Optimal Policies and Policy Loss  

Considering the computed Metamodels and the Monte carlo sample L, We estimate the optimal policy (δ*) 

taking the uncertainty in the model into consideration in eqn (22)     
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      (22) 

The estimated metamodel of the CGE model, denoted as 𝑓(𝜼𝑙, 𝜃𝑙) is derived for the CGE parameters 𝜃𝑙 = 

(𝜃1𝑙 , 𝜃−1), where 𝜃−1 represents all fixed CGE parameters—essentially 𝜃.excluding the sampled 



parameters 𝜃1. Similarly, we can address the problem outlined in Equation (22) by solving it for a single 

chosen parameter specification l∈L. This approach yields the optimal policies (δl
*) corresponding to the 

specific parameter specification l∈L. 
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Table 1: Validation result across metamodel types 

Goal Measure  LM1 LM2 UK1 UK2 OK 

GDP  RMSE 0.0475 0.0413 0.0323 0.0219 0.0439 

ER 0.1457 0.0356 0.0462 0.0369 0.0282 

POVERTY  RMSE 0.0456 0.0373 0.0452 0.0622 0.0376 

ER 0.1244 0.0164 0.0348 0.0340 0.0625 

2CO  RMSE 0.0243 0.0817 0.0410 0.0511 0.0135 

ER 0.3570 0.2036 0.1962 0.1269 0.1715 

Total AER 0.3214 0.1100 0.0611 0.0606 0.0747 

Validation results across meta-model type 

To estimate how the optimal policy obtained base on a specific chosen specification of parameter 
*

l


differs from the optimal policy derived under uncertainty in model, we estimate the distance measured; 
* * * *

,, ) ,( i j j i jD       . Moreso, we derive a performance political gap for individual optimal policy  

*
l
  relating to the loss of policy L(

*
l
 ) as defined in eq(9) 

4.1 Result  

4.1 Validation of Metamodel  

Our chosen modeling framework requires the estimated metamodels to capture the policy impact well as 

that done by the original CGE model. The results of validation are given in the form of a comparison 

between various metamodel types in Fig. 2. The polynomial models shown that the Kriging models obtained 

a better fit than the polynomial metamodels. In particular, it is possible to observe that the RMSE of the 

degree 1 polynomial model (LM1) is higher and statistically different from the RMSE of the Kriging 

models. However, the values of RMSE obtained from the quadratic model (LM2) are highly competitive 

with those of the Kriging models. 



These differences in degree as Table 1 reveals indicate that metamodels can be rather accurate in predicting 

policy outcomes, although their level of accuracy may fluctuate depending on the goal in question. The 

following table provides validation data for several metamodel types: the linear trend models LM1 and 

LM2, and the Kriging models UK1, UK2 and Ordinary Kriging (OK). RMSE and ER were calculated and 

used as measures of performance as they gave the best results out of the available methods. 

 

The relative prediction errors for most models are less than 7% for the development of GDP per capita and 

poverty reduction; the relative prediction errors of L1M have reached 12% and 15%, respectively. This 

suggests that linear trend model has relatively a lower prediction accuracy or power in these goals. It is, 

however, markedly higher for the prediction errors for the reduction rate of GHG emissions across all 

models. The next model, the quadratic Kriging model, has been referred to as the UK2 and it has the lowest 

error 13%. 

In general, the AER varies from 32 to 36 with different errors being more frequent in different articles 

depending on their type and goal. It dropped to 1% for LM1, a significantly worse 11% for LM2, and just 

6. 1% and 6. It is zero per cent for the Kriging models UK1 and UK2 respectively. This implies that of all 

the metamodels except LM1, the impact of policy on the policy outcomes as estimated by the original CGE 

model was approximated fairly well. Of these, the best approximations are given by the universal Kriging 

models, namely the UK1 and the UK2, although the latter requires high computational power. Especially, 

it is found that solving the expected utility maximization problem with Kriging models costs approximately 

50GB RAM, and takes approximately 30 minutes CPU time, which suggests that these models are quite 

computationally expensive. 

4.2 Policy Choice 

The table below presents the optimal budget allocations across various economic sectors as determined by 

different metamodel types, highlighting the emphasis on technical progress (TFP) within specific sectors. 

The table details the distribution of budget shares among six sectors: Crop Production, Other Agriculture 

(Oagr), Agribusiness (Agrib), Other Industrial Production (Oind), Public Goods and Services (Pub), and 

Private Services (Prserv 

Table 2: Optimal Budget Allocation  

Type Crop Oagr Agrib Oind Pub prserv 

LM1 0.02 0.05 0.38 0.08 0.33 0.04 

LM2 0.03 0.04 0.49 0.04 0.42 0.04 

OK 0.01 0.05 0.47 0.42 0.02 0.32 

UK1 0.49 0.02 0.02 0.37 0.04 0.02 

UK2 0.43 0.04 0.37 0.05 0.02 0.08 

 

This work revealed that the decisions of metamodels can affect essentially the optimal budget allocations 

decided. Remarkably, all developed metamodels recommend pointing to the private service sector, and the 

proportion in the budget shares ranging from 42% in the quadratic trend model, LM2, to 49% in the Kriging 

model, UK1. The industrial sector also takes its large shares of the budget; it ranges from 37% for the 

Kriging models to 42% for the OK – ordinary Kriging. On the other hand, the agriculture and its related 

agribusiness lines have always been awarded low budget means across all the metamodels. This shows that 

in these sectors, irrespective of the type of metamodel that is being followed, the emphasis for enhancing 

TFP, is given lesser importance. 



Also, as indicated in Figure 3, it is evident that the budget optimality of all the various metamodel types 

shifts slightly as we tweak the various parameters of the budget allocation problem. Especially, it is possible 

to point out the instability in the shares of budget specifying the industrial and private service sectors, 

varying from zero to one. For Other Agriculture (Oagr) and Public Services (Pub), the growth of max bud 

share is generally stabilised under 0. 75, although majority are below 0. 5. These patterns are true for all 

the metamodel types, with an exception of the basic Kriging model which predicts a full spectrum of budget 

share for all the sectors. 

The identification of the most suitable policy outcomes, feasible for implementation by the government, 

highly depends with the specified model parameters (β𝑙, 𝝃𝑙) especially on the way PIF is constructed. For 

example, Henning et al. (2018) performed a Bayesian sectoral estimation of PIFs in Malawi and discover 

that fostering TFP in industrial and private service producing subsectors is extremely costly. Their research 

therefore implies that the Malawi agriculture based sectors should be allocated more proportion of the 

CAADP funding than the industrial and privatized service domains despite the evidential GDP ratio. This 

tells us that the assignment of policy where uncertainty prevails should be done cautiously so as to consider 

the effect of model parameters. To eliminate uncertainty it is necessary to use all the information available, 

including opinions of experts, to calculate the posterior distribution of appropriate parameters. Nonetheless, 

in this study, emphasis is on portraying how model uncertainty affects policies rather than prescribing ways 

of dealing with model uncertainty. Hence the current study does not use empirical studies or knowledge 

from experts to fine-tune these theoretical assumptions about model parameters. However, the 

metamodeling approach adopted in this study also has application in Bayesian estimation of other PIF 

parameters from expert as well as statistical data. 

Fig 3:  Budget Allocation Distribution  

 

 

 



4.3 Policy Loss induced by neglecting model Uncertainty  

To show the potential consequences of model uncertainty neglect, policy losses were estimated assuming 

that 10,000 metamodels have been developed with the aid of Monte Carlo simulations presupposing a 

certain preselected model specification. This analysis has been performed only for the LM2 metamodel 

because for the Kriging models the computational load is particularly high. The LM2 metamodel was used 

instead because we find its AAE to be comparable to the AAE of the Kriging metamodels and, moreover, 

gives the same policy optimal values regardless of the metamodel type. Hence, by concentrating our 

analysis on the LM2 model, the study is not particularly limited because this metamodel captures the overall 

trends and does not impose a high level of computational costs compared to other metamodels. 

 

Fig 4: Density of Simulated Policy loss  

 

Figure 4 shows separate histograms for each parameter specification indicates the normalized policy losses 

of the LM2 metamodel type. It is the pure policy loss expressed in the number of actual policy losses divided 

through by the maximal budget that could have been ‘saved’ if the welfare level with the same expected 

value could have been reached by applying an ‘ideal’ policy. These lost, obtained from simulation made 

from a sample of parameters to 10,000; varies from 1% to 74% of total budget expenditure. The policy loss 

mean is 20% while the standard deviation is 8%; for the interquartile range the data is 11 to 30 percent. 

This implies that failure to consider model uncertainty results in inefficiency this is because if one 

randomizes there is always a 50% chance of wasting more than 11% of the budget and a 25% chance of 

wasting more than 30%. 

In light of the study’s outcomes, there is evidence that Manuski’s theory has it right; vagueness in policy 

models can lead to considerable bias in predictions and subsequent policy implications. Moreover, policy 

losses rise even more steeply with the separations of the policies deduced from various models and the ones 

achieved by Bayesian model averaging. This analysis shows that changes in parameters of CGE models 

and the parameters of the Policy Impact Function (PIF) create considerable influence on policy losses, 

assuming that there are strong difficulties in estimating the PIF functions. 

5 Conclusion  

This paper responds to the major policy problem of model uncertainty that, while not considered in basic 

policy analysis, brings about policy failure. The paper introduces a methodological approach by using 



Bayesian Averaging with metamodeling for model uncertainty in policy analysis. This framework enables 

one to compute a policy loss function that describes the policy’s loss when model uncertainty is not 

considered. Also, the Bayesian approach helps in minimizing the problem of model uncertainty by 

estimating the posterior probability distribution of models employing existing data and stakeholder 

knowledge. This method can be used for solving various public policy problems, in which the use of one 

or another policy instrument or the achievement of one or another policy goal presupposes certain input-

output relations, which are described by complex models. The application of the framework for evaluating 

policies under model uncertainty involves the expected welfare maximization where integrals over model 

based partial derivatives of input-output relations need to be computed. Metamodeling therefore makes this 

process easier by linking the policies and the model parameters to the output through simulation analysis. 

 

In this regard, and to illustrate this approach, the paper is devoted to Nigeria’s sustainable development 

policies, which raises the questions of how the government should distribute public funds across agricultural 

and, particularly, non-agricultural sectors. To do so, the study employs Latin Hypercube Sampling (LHS), 

simulating a CGE model to produce policy impacts, estimating multiple metamodels, as well as measuring 

the political costs of omitting model risk. 

The key findings from our simulation analyses are as follows: 

1. The validation of metamodels proves that virtually all selected metamodels well approximate the 

parameters of policy scenarios in the framework of the original CGE model, and the mean absolute 

percentage error ranges from 7% to 22%. As expected, again, kringing models are more accurate than 

polynomial models albeit needing much more computation time. 

2. When optimal policy choices are obtained from the expected welfare maxima with respect to the different 

classes of metamodels, the results turn out to be comparable. Nonetheless, investment shares in the in all 

the sectors demonstrates that model parameters affect policy choices and it may therefore be concluded that 

parameter specification influences policy choices. 

3. For the 10,000 Monte Carlo simulations the policy loss ranges from 1 to 74% of the total budget 

expenditures under CAADP. The median policy loss is 20 percent so you might choose random parameters 

for your model and achieve inefficiencies in access of 20 percent of the budget. These results decisively 

back the case that failure to address model uncertainty can result in costly policy mistakes. 

 

However, it is pertinent to note some of the limitations that have been noted in our study Biases, The study 

has some of the following sources of biases – The exclusion of participants who may have reported stress 

during screening can be referred to as a selection bias. First, the simulation analyses are, in fact, derived 

from a simple toy CGE model while practical policies are modelled using far more complicated models, 

for instance the original CGE model for Nigeria comprising 70 production sectors across five regions. This 

complexity raises the difficulty of effectiveness sampling and estimation of metamodels and especially for 

polynomial models the number of simulations needed increases as the square of the number of parameters. 

Nevertheless, the proposed framework can handle metamodels with more than one thousand parameters, 

using parallel computing or cluster system to share the computational burden. 

Third, they model a third person’s choices, but in reality, there are multiple decision-makers with their 

answers and preferences. Maybe, extending our approach towards the political bargaining models would 

provide more realistic view of the situation. Further, examining the process of formation of policy beliefs 

and their place in political decision-making might contribute to the reduction of biases and enhancement of 

science-society relationships. Presumably, our framework could be developed into computational tools that 

would enable interaction between scientific models and stakeholders. 



Appendix 

Table 1: Standard deviation  

 

Table 2: Correlation  
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