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Abstract

This study examines the declining trend in global labor share across countries
and sectors, focusing on the roles of robotic innovation (RI) and human innovation
(HI). To address potential endogeneity, we construct instrumental variables using
US patent data and large language models, calculating similarity scores between
patent descriptions and robot descriptions for RI, and between patent descrip-
tions and O*NET occupation descriptions for HI. Employing a general equilibrium
model to derive our regression formula, our empirical findings reveal that RI
negatively affects labor share, while HI has a positive impact. We estimate the
elasticity of substitution between non-robot capital and labor to be less than one,
aligning with most literature but differing from some previous studies.
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1 Introduction

The global labor share has exhibited a declining trend since the early 1980s, with an
average decrease of approximately five percentage points, as observed by Karabarbou-
nis and Neiman (2014) and Autor et al. (2020). Figure 1, based on data compiled by
Gutiérrez and Piton (2020), illustrates a comparison of labor shares in the manufac-
turing sector between the United States and eight European Union countries analyzed
in our study. While countries such as the USA, Sweden, Denmark, and Austria have
experienced substantial declines, others report comparatively modest decreases. This
discrepancy highlights the considerable heterogeneity in global labor share trends, fur-
ther emphasizing the importance of our investigation into variations across countries
and sectors to elucidate this decline.!

Figure 1: Labor shares
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Although the precise cause of this decline remains a subject of debate, advance-
ments in automation have emerged as a potential key driver. The urgency of addressing
the diminishing labor share is intensified by the accelerated growth in automation
and artificial intelligence technologies. For example, Tesla aims to deploy “genuinely
useful humanoid robots,” known as Optimus, in their factories by 2025. Additionally,

In this context, our study aligns with Graetz and Michaels (2018), which assesses seventeen EU
countries, although their focus is predominantly on productivity growth rather than the decrease in
labor share.



the recent debut of Claude 3.5 Sonnet in June 2024, which builds upon the impressive
performance of its predecessors in the Claude 3 family on standardized tests like the
LSAT and GRE, further underscores the rapid evolution of Al systems.

The influence of automation on labor share continues to be a prominent topic in
active research. Several studies, including those by Acemoglu and Restrepo (2020),
Acemoglu et al. (2020), Dauth et al. (2021), and Martinez (2018), suggest that automa-
tion reduces labor share. Conversely, findings from research conducted by De Vries
et al. (2020) and Gregory et al. (2016) propose that automation amplifies labor share.
Moreover, studies by Humlum (2019) and Hubmer and Restrepo (2021) explore the
diverse impacts of automation on various population groups and industry sectors.

Another factor potentially promoting labor share is human innovation’ —innovative
tasks beyond the capabilities of robots. Autor (2015) contends that the sustained rele-
vance of human labor in the future will largely depend on the pace at which human
innovation’ outstrips the advancement of automation. To the best of our knowledge,
Autor et al. (2024) represents the only study that empirically measures human innova-
tions. They utilize Census Alphabetical Index of Occupations and Industries and patent
information to produce a proxy for ‘human innovation.

However, few studies attempt to measure multiple factors within a unified frame-
work (Bergholt et al., 2022). Bergholt points out that “while a large literature has
discussed each of these four explanations in isolation, an empirical analysis including
all of them in the context of the same model is lacking. Our aim is to fill this gap.” Sim-
ilarly, Grossman and Oberfield (2022) highlighted the importance of utilizing general
equilibrium analysis, stating: “Many authors present different sides of the same coin ...
Even if the various mechanisms are all active, it becomes difficult to gauge what part of
the effect estimated in one study has already been accounted for elsewhere.” To address
this challenge, we adopt a general equilibrium model, an approach that represents a
contribution to the existing literature.

To the best of our knowledge, no existing study within a general equilibrium
framework has incorporated both robotic innovation (RI) and human innovation (HI).?
Our study addresses this gap by integrating these concepts through the application of
appropriate instruments. These instruments are derived from the semantic understand-
ing feature of large language models, which we use to compare patent descriptions with
robotic and human task descriptions. Through this approach, we meticulously examine
how RI and HI influence labor share across countries and sectors. This comprehensive
analysis constitutes our primary contribution to the literature.

The study most akin to ours is that of Acemoglu and Restrepo (2022). They too utilize a general
equilibrium model, though their main focus is on wage inequality rather than the decline in labor share.
Our model is built on Acemoglu and Restrepo (2022) but is distinct in that it separately introduces both
robot and non-robot capital as inputs for production. This model setup is important because it enables
us to analyze how robot and non-robot capital differently affect the labor share in conjunction with four
types of technological innovation.



Based on our theoretical framework, we derive a reduced-form regression equa-
tion. Our empirical estimation reveals that RI negatively affects labor share, while
HI positively affects it. Other price factors —wage, robot price, and non-robot capital
price— serve as control variables. Using the estimated coefficients of these price fac-
tors, we additionally calculate the elasticity of substitution between non-robot capital
and labor as less than one. These results provide empirical evidence supporting the
notion that the elasticity of substitution between labor and capital is less than one,
a finding consistent with the majority of the literature, as noted by Chirinko (2008),
Grossman and Oberfield (2022), and Glover and Short (2020). Our results differ from
Karabarbounis and Neiman (2014) on this elasticity.

While our study is innovative, it is not without limitations. The primary concern is
the endogeneity of price factors. Although RI and HI are instrumented by exogenous
variables, other price factors inherently include endogeneity problems. This limitation
underscores the need for further research and refinement of methodologies in this area.

In the following section, we provide key definitions used in this study. Section 3
presents our general equilibrium model, which forms the theoretical foundation of our
analysis. Section 4 details the datasets employed in our research. Section 5 illustrates
how we constructed instrumental variables (IVs) for RI and HI. Section 6 conducts the
regression analysis, utilizing our model and data to examine the relationships between
various factors and labor share. Section 7 performs various accounting exercises to as-
certain which mechanisms predominantly explain labor share decline across different
countries and industries. Section 8 offers various robustness checks to demonstrate that
all our results remain stable across different specifications. Finally, Section 9 provides
our concluding remarks.

2 Definitions

This section provides definitions for ‘robot’, ‘robotic innovation (automation)’, and
‘human innovations’ that will be used throughout this paper. We adhere to the def-
inition of a robot as specified by ISO standard 8373:2012, which describes it as an
“automatically controlled, reprogrammable, multipurpose manipulator programmable
in three or more axes”® The International Federation of Robotics (IFR) also strictly
adheres to this definition (Miiller, 2022). We source our robot data from the IFR.

In Figure 2, Panel (a) depicts a robot. However, Panel (b) is not robot because this
milling machine does not come with any type of hook-up to have it run automatically.

3Acemoglu and Restrepo (2020) also defines robots in a manner consistent with this description:
“fully autonomous machines that do not need a human operator and can be programmed to perform
several manual tasks ... This definition excludes other types of equipment”
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Figure 2: Examples of Robot

(a) Robot (b) Not robot*

Therefore, it is neither reprogrammable nor automatically controlled. Additionally, it
cannot be considered multipurpose, as it is designed solely for milling. Also, it does
not operate on three or more axes. This example underscores the narrow definition of
a robot.

We define ‘automation’ (or ‘robotic innovation (RI)’ in alternative terminology) as
the enhancement of robots’ capabilities, enabling them to perform tasks previously be-
yond their scope. This definition aligns with those proposed by Acemoglu and Restrepo
(2018) and Acemoglu and Restrepo (2019).

We propose a novel definition of ‘human innovations’ (HI) as the expansion of tasks
that human workers are expected to perform, specifically those beyond the current
capabilities of robots. This concept is framed within a model where T represents robot
innovation in production, while ‘N’ denotes human innovation.

Figure 3: Conceptual Diagram
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Unlike existing studies that define human innovation in terms of newly created
occupations, tasks, or cognitive enhancements, we view it as the counterpart to au-
tomation (I) in our conceptual model. The development of new technologies that are
not robots reflects human efforts to increase productivity and contribute to production
processes performed by human beings.



The growing number of human-task-related patents serves as an exogenous shock
in this framework, indicating a surge in human innovation. These patents demon-
strate conscious efforts by workers and inventors to address complex problems and
create novel solutions in areas where robots lack sufficient autonomy, creativity, or
problem-solving skills. This trend illustrates that humans are not passive in the face of
technological change. Rather, they are actively adapting and developing new method-
ologies to maintain their relevance in an increasingly automated world. Such proactive
approaches challenge the notion of human obsolescence amid technological advance-
ments.

It is important to note that our definition and empirical construction of HI does not
inherently guarantee increases in wages, employment, or labor share; in fact, it may
lead to decreases. This is consistent with other studies (Acemoglu and Restrepo, 2018;
Autor et al., 2024). Specifically, Acemoglu and Restrepo (2018) demonstrates, through
a proposition, that under certain parameters, HI indeed leads to increases in wages and
employment. Similarly, Autor et al. (2024) finds empirical evidence that “employment
and wage bills expand in occupations exposed to ‘augmentation innovation’ ” (referred
to as HI in our terminology).’

3 Model

Acemoglu and Restrepo (2018) propose a formal model that illustrates how RI and HI
influence labor share. We have refined our model based on their static version, with
our key contribution being the distinction between robots and other capital equipment
—a delineation absent in their model. Subsequent research by Acemoglu and Restrepo
(2020) found that advancements in robotics negatively impact wages and employment,
while other forms of capital positively affect these variables. This distinction under-
scores that ‘robots’ and ‘non-robot capital’ can have divergent implications for labor
demand.

Our model offers several advantages over existing literature, such as Berg et al.
(2018) and DeCanio (2016), which also introduced robots as a distinct factor from
traditional capital. Primarily, our model comprehensively incorporates multiple tech-
nological changes affecting labor share, most notably RI and HI, along with produc-
tivity enhancements in the manufacturing of both robotic and non-robotic capital,
as well as wage dynamics. Second, the regression equation derived from our model
allows us to estimate both the elasticity of substitution between labor and robot capital

SMeanwhile, Acemoglu and Restrepo (2019) employs a strong assumption that ‘reinstatement’
necessarily increases the labor share. Although they did not explicitly state, we surmise that their as-
sumption might be supported by the propositions made by Acemoglu and Restrepo (2018). Utilizing this
assumption, Acemoglu and Restrepo (2019) empirically infer the reinstatement through a decomposition
of labor share. For a comprehensive explanation of their methodology, see Appendix A.



and the elasticity of substitution between labor and non-robot capital within a single
framework. These advantages enable a more nuanced and thorough analysis of the
interplay between different technological changes and their effects on labor share.

3.1 Firms

In our model, firms face monopolistic competition, which allows them to generate
positive profits. For simplicity, we assume that the production function is the same for
all firms®. Also, for brevity, we omit the time subscript.

Each firm utilizes a continuum of tasks, indexed between N — 1 and NN, in addition
to capital, for production. As in Acemoglu and Restrepo (2018), N increases over time
due to human innovations (HI), which can only be conducted by labor. Additionally,
there is an index [ that falls between N — 1 and N. [ is related to the possibility of
automation (RI) and thus increases along with improvements in automation technol-
ogy. Specifically, tasks below I in firm ¢ can technically be conducted by either labor
or robots, while tasks above I can only be performed by labor, as follows:

tj(i) = my(i) +l;(0) ifj < T (1)
tj(i) = vl;(@) if j > 1 (2)
, where m; (i) and () represent the number of robots and labor used for task j in firm

i. 7y; represents the productivity of labor for task j. The productivity, 7;, increases with
a higher task index, j.

Tasks, ¢;(i), are aggregated using Constant Elasticity of Substitution (CES) aggre-
gator, and both the aggregated tasks and capital are further combined using another
CES function. Therefore, the production function is:

Y (i) = (T(i)”T’l + K(z)"al)’il (3)

T(i) = (/N_ltj(z')ccldj> _ (4)

, where T'(i) and K (i) represent the number of aggregated tasks and capital used for
the production of the final good i, denoted as Y (). Meanwhile, o and ( represent
the elasticity of substitution between aggregated tasks and non-robot capital, and the
elasticity of substitution between tasks, respectively.

Factor markets are assumed to be perfectly competitive. Additionally, since we
focus on long-run change in labor share, it is reasonable to assume that factors are
supplied elastically. For further simplicity, we assume that factors are supplied per-
fectly elastically at a given factor price at each period.

®Introducing heterogeneity in terms of Hicks-neutral productivity does not change our analysis.



3.2 Labor Share

Let us move the detailed elaboration of our model to Appendix C. Based on Equations
(15) to (22) presented in this appendix, the labor share is derived as follows:

N (w\
n—lfz <W> dj lef"

Sy = 5
oy P PLOfRe ®
1
A
, where Pp = u>Jv+U¢F9+/i — dj
I i

, where 7; represents the productivity of labor for task j. The productivity, y;, increases
with a higher task index, j. W}, ¢, and R represent wage for labor conducting task j,

robot price, and non-robot capital price, respectively.

It is worth mentioning that the term, %1, is the inverse of the firm’s mark-up.

Since we focus on labor income as a fraction of total factor income, we denote it as S }-j
as follows:

N (w,\6
N Y
n Py T +

By taking the natural log of Equation (6) and then computing the total derivative
of the resulting equation with respect to the exogenous variables in the model (/, N,

W, v, R, and 7), we obtain Equation (7). This equation represents our final regression
equation.
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wage, and assume dIn W = d In W for all j. Additionally, d In - represents the change
in labor productivity. It is also assumed that dIny = dIn~; for all j. S {( is the capital
cost over total cost. By definition, S£ + S{( =1

ST, (ST) represents the share of robot cost (labor cost) in the total combined task

non-robot capital price, and 7 is labor productivity. W = is the average
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cost, which comprises both labor and robot costs. By definition, ST, + ST equals one.
In detail, these are described mathematically as follows:

ST _(I - N+ 1>¢1_<
M — Pl_g
T
N (Wi\1-C ;.
o7 _f[ (T) dj
L — —1-c
Pc

h 1-¢ 1—¢ N VVJ 1-C ;.
,where P,/ " = (I = N+ 1)y + (=) "dj.

I Vi

We acknowledge that price factors —R (non-robot capital price), W (labor price),
and 1) (robot price)— are not purely exogenous. We do not employ instrumental vari-
ables or other techniques to mitigate endogeneity. This limitation represents the most
significant weakness of this paper. In the next section, we discuss the datasets used in
this paper and the construction of the variables.

4 Data Collection and Variable Generation

For the purpose of assessing HI, we will use data from O*NET, which offers information
on the number of new tasks in the USA, measured at the occupation-year level. To
analyze RI, we will use data provided by the International Federation of Robotics (IFR),
which gives us the number of automated machines at the country-industry-year level.

4.1 Human Innovations

To proxy dN in Equation (7), we utilize HI, which we elaborate on in this subsection.
The Occupational Information Network (O*NET), managed and maintained by the
United States Department of Labor, serves as a comprehensive database of occupational
information (National Center for O*NET Development, 2023). For each Standard Occu-
pational Classification (SOC),” O*NET consistently updates the spectrum of tasks that
workers are expected to perform. For instance, in 2023, Automotive Engineers were
assigned 25 responsibilities, including the calibration of vehicle systems, control algo-
rithms, and other software systems. When new tasks, previously nonexistent, emerge,
O”NET increases the number of tasks associated with the Automotive Engineering
occupation.

7SOC is an acronym for Standard Occupational Classification employed by US agencies. The O*NET
classification system (O*NET-code) is a subclassification of the SOC system, hence, every O*NET-code
has a corresponding SOC. However, the O*NET-code does not align perfectly with the Occupational
Classification Code (OCC).

12



Furthermore, O*NET periodically reports ‘Emerging new tasks’ approximately once
or twice annually. These tasks have recently emerged but have not been extensively
studied by the O*NET department; hence, these specific tasks are not included in the
standard occupational list. We incorporate these ‘Emerging new tasks’ in addition to
our base number of tasks provided by O*NET. This process completes our generation
of ‘Task scores’ for each occupation.?

The ‘Task scores’ vary by Standard Occupational Classification (SOC) and year.
Acemoglu and Restrepo (2019) (henceforth AR) translated this information into vari-
ations by industry and year using the US Census from IPUMS (Ruggles et al., 2020), a
dataset comprising individual worker data with specific occupation codes.” After as-
sociating the ‘Task score’ with each individual, an average is calculated at the industry
and year level. Subsequently, we compute the 5-year growth rate of this variable, which
we denote as HI. This method can also be applied to European Union (EU) countries
by using the EU Labor Force Survey (EU-LFS) instead of the US Census. It’s important
to note that even when calculating HI for EU countries, we still use the “Task scores’
from the US-based O*NET database.

The European Commission has recently initiated a project akin to O*NET, named
‘European Skills, Competences, Qualifications, and Occupations’ (ESCO). ESCO has
disclosed the tasks required for workers only for two distinct years. In the absence of
a European equivalent of the yearly ‘“Task scores’, we depend on data from O*NET. A
foundational assumption in the creation of the EU’s HI is that the task requirements in
the USA mirror similar trends in the EU. For instance, if the number of tasks required
for Automotive Engineers surged in the USA in 2015, it is assumed that a similar trend
occurred in the EU around the same period. Consequently, the variation for the EU
stems from the differing composition of workers in each country, occupation, and year.

8Meanwhile, Acemoglu and Restrepo (2019) employs only ‘Emerging new tasks’ to construct the
Task scores. We contend that our method of integrating both the ‘base number of tasks’ and ‘Emerging
new tasks’ offers a more sophisticated approach than relying solely on Emerging new tasks, as AR does.
Specifically, the ‘base number of tasks’ serves as a primary source of information for capturing new
tasks that were nonexistent before, while ‘Emerging new tasks’ function as supplementary information.

°Our matching procedure from ‘Task score’ to the US Census is as follows: We use SOC as it is,
instead of converting it to OCC as Acemoglu and Restrepo (2019) does. The US Census provides both
SOC and OCC for occupational taxonomy, allowing us to simply use SOC to match the US Census with
the ‘Task score’.

Moreover, when matching ‘Task score’ to EU-LFS, using SOC is more advantageous than using OCC.
EU-LFS uses ISCO for occupational taxonomy, and ISCO (4-digits) matches with SOC (6-digits). This
granular level of crosswalk matching is made possible by the recent work of Frugoli and ESCO (2022).
The excel file for the crosswalk between ISCO and SOC is in this link. This is publicly released by O*NET
and ESCO.

13


https://github.com/jayjeo/public/blob/6237aa8b7d3436743d86a101181fa5b2858b3841/Laborshare/ESCO_to_ONET-SOC.xlsx

4.2 Robot Innovations

The International Federation of Robotics (IFR) provides data on the number of auto-
mated robots (both flow and stock) at the country-industry-year level. Instead of using
the raw data on the number of robots from the IFR, Acemoglu and Restrepo (2020)
proposed utilizing the Adjusted Penetration of Robots (APR) to proxy automation. For
a detailed explanation of APR, please refer to Appendix E.

One issue with APR is that it effectively represents d(I — N + 1), not dI, which
is the true measure of automation (RI). Our introduction of the proxy for d/N, the HI,
as explained in the previous section, enables us to address this issue in the following
manner.

From Equation (7) in the Regression section,
dlnS{ = a1dl + asdN + azdIn W + aydIn + asdIn R

Therefore, on the right-hand side,

a1dl + aedN = ayd(I — N + 1) + a1dN + aedN (8)
= a1 APR + a1 HI 4 aoHI
= a1 (APR + HI) + a,HI
= a;RI+ apHI

In short, we use the Robotics Innovation (RI) to proxy dI. Rl is essentially a summation
of APR and HI. One might wonder why we don’t simply use d/ from the beginning
instead of using d(I — N+1)+dN. The issue here is that there is no effective alternative
to proxy dI. As mentioned earlier, the number of robots used is the result of economic
equilibrium and is not the abstract concept of d/. Should readers be curious about the
outcomes if the regression had employed APR instead of RI, these results are provided
in the Robustness Check section.

4.2.1 Variance Adjustment

Since APR and HI are constructed variables, they are not directly comparable. Given
that RI is constructed by summing APR and HI (as shown in Equation (8)), ensuring
comparability between APR and HI, especially in terms of variance, is important.

In Equation (9), the right-hand side represents the newly adjusted HI, whereas the
left-hand side details the adjustment process. Since the variances of HI and APR are
not directly comparable, we adjust by multiplying by “2% to equate the variance of HI
with that of APR. Here, o represents the standard error.

o Oinferre
HI x AR o ZinferedN 1 (9)

OHI Oinferred (I-N)

14



We then multiply by % Here, ‘inferred N’ (the inferred value of HI) and
‘inferred I’ (the inferred value of APR) are obtained by replicating the methodology
of Acemoglu and Restrepo (2019), as detailed in Section 4.1 and Appendix A. We have

extended this replication to nine countries and continued it through 2019.

While the variances of APR and HI were not directly comparable, those of ‘in-
ferred N’ and ‘inferred I’ are. This comparability stems from the fact that Acemoglu
and Restrepo (2019) inferred these values using the same set of variables, particularly
focusing on the labor share. Our approach involves adjusting the variance of HI so that
the difference in variance between HI and APR matches that between ‘inferred N’ and

‘inferred I.

According to our replication, the ratio -ZnfedN_ equals 22227 = 3 435. Throughout
Oinferred (I-N) 17.923

this paper, we will employ the variance-adjusted version of HI. To ensure robustness,
we additionally provide regression tables in Section 8, using a ratio of % =1
(i.e., with no adjustment). All other analyses remain unchanged even when using this

value instead of 3.435.

4.3 Robot Price

Unfortunately, the International Federation of Robotics (IFR) no longer provides infor-
mation on the prices of robots. IFR provided robot prices in the form of an average unit
price until 2009, and as a price index until 2005. Klump et al. (2021) and Jurkat et al.
(2022) provide in-depth information on this topic.!® An alternative method to obtain
robot prices is by following the approach of Fernandez-Macias et al. (2021), which
involves the use of UN Comtrade data.!’ We adopted this method, which illustrate
in their Figures 3 and A1 that the robot price trends based on IFR and UN Comtrade
data are similar. Furthermore, they demonstrate that the robot price has been steadily
declining.'?

4.4 Capital Price

In Figure 9, provided in Appendix L, we replicate the derivation of capital price fol-
lowing the approach used by Karabarbounis and Neiman (2014) (hereafter referred to
as KN), utilizing the KLEMS data version. This ensures that the ‘overall’ capital price

They noted, “Due to the considerable effort involved and owing to compliance issues, the IFR no
longer continues to construct the price indices”

"https://comtradeplus.un.org/

2The data generation process is as follows: UN Comtrade provides annual import and export values
in dollar for ‘Machinaery and mechanical appliances; industrial robot, n.e.c. or included. (HS847950)
They also provide the quantity of these values for both imports and exports. Hence, we infer the robot
prices by dividing the dollar values by their quantities.
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variable is identical to that used by KN. Subsequently, we derive the non-robot capital
price variable as detailed in Section 4.5. This non-robot capital price variable is then
consistently utilized throughout Sections 6 and 7. Our data indicate that the prices
of non-robot capital have generally increased over the past 15 years, as illustrated in
Figure 9 in Appendix L. This observation might initially appear contradictory to the
claims of KN, who reported a rapid global decline in capital prices (see Figure 7 of their
paper). However, our Figure 9 is consistent with their findings, considering that capital
prices began to rise from around year 2000. Furthermore, their figure aggregates data
from all countries worldwide, whereas our analysis is more focused, presenting data
at the country level for only 9 selected countries.

4.5 Non-robot Capital Price

Denote total capital that includes robot and non-robot as K. Also, denote robot capital
and non-robot capital as M and R, respectively. Then it follows that

Pri Pri Costyy + or Pri Costp
r_Price,. = gr_Price r_Price,———
g K= 8 MG g R Cost

osty

, where ‘gr’ denotes the growth rate. The implication of this equation is that the
level and scale of the prices do not matter in this growth rate relationship. The above
equation can be rearranged to

or Price, — gr_Price;, — gr_Price,;, X «
R=

11—«

, where «a is %
osti

non-robot capital.

. This completes the derivation of the growth rate of price for the

For the capital price, gr Price,., we strictly adhere to the approach outlined by
Karabarbounis and Neiman (2014) throughout this paper. For detailed explanations,
please refer to Appendix F. We have values for Costy from KLEMS data. For further
explanations regarding this, please refer to Appendix G.

We can estimate Costy; by sector and country through two approaches. The first
approach employs the value obtained using the approach introduced in Section 6.3.
This approach yields the ratio % = 2.813%, and labor cost information is avail-
able from the KLEMS dataset. Consequently, we can calculate Costy; based on this in-
formation. However, this approach is contingent on labor cost values, raising concerns
that the ratio % = 2.813% may vary significantly across sectors and countries.
Therefore, we propose an alternative approach.

The alternative approach leverages information from the alternative method de-
tailed in Appendix H.1. In this method, we have determined the cost ratio between

OMach and robots to be 13.595 : 2.149, where ‘OMach’ refers to the machinery and
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equipment in the KLEMS. Given that we possess detailed OMach cost data by sector
and country, we can subsequently estimate Costy;. This approach circumvents the
need for labor cost data. By using this approach, we complete our derivation of the
growth rate of non-robot capital price, which will be used in our regression analysis.

5 Instrumental Variables

In our general equilibrium model, multiple variables present challenges for applying
instrumental variables (IVs) comprehensively. However, it is imperative to employ IVs
at least for the key variables, RI and HI, to ensure exogeneity. To generate IVs for RI
(henceforth RI-IV) and HI (henceforth HI-IV), we utilize the detailed descriptions of all
U.S. granted patents from 2004 to 2019, which encompasses the entire span of our study.
These detailed descriptions extend beyond abstracts, International Patent Classification
(IPC), or Cooperative Patent Classification (CPC) information, providing comprehen-
sive explanations of the patents. This approach constitutes one of our contributions,
as most existing studies rely solely on abstracts, IPC, or CPC information.

Our critical assumption posits that patent invention represents an exogenous shock.
To validate this premise, we argue that the development of an invention is a protracted
process, not subject to high-frequency fluctuations in economy. Under this assump-
tion, the growth rate of granted patents can serve as an IV, provided it demonstrates
significant correlation with the endogenous variables.

Although U.S. patent data do not directly provide the country information of patent
holders, they include company names and city locations. By leveraging the Google
Maps API, we can infer the actual country of origin for each patent holder. Addition-
ally, we can deduce the industrial sector of the patent. Lybbert et al. (2014) provide
matching crosswalks between IPC codes and industrial sectors. Consequently, we
construct a dataset comprising Patent ID, patent descriptions, patent holder’s country,
corresponding detailed industry in the manufacturing sector, and patent grant year.

Recent advancements in semantic embedding technology have led to significant
improvements in natural language understanding. This technology enables the com-
prehension of semantic content within sentences. Unlike other studies, we utilized
the most recently developed text-to-vector embedding software. One such software
is ‘sentence-transformers/all-mpnet-base-v2’ developed by Microsoft, and the other is
‘text-embedding-3-large’ developed by OpenAl. To date, they represent one of the best-
performing tools available (Harris et al., 2024)."?

BWhile both OpenAr’s ‘text-embedding-3-large’ and Microsoft’s ‘sentence-transformers/all-mpnet-
base-v2’ are among the best-performing tools available, they are not the only top performers. Other
models like NVIDIA’s ‘NV-Embed’ and Salesforce’s ‘SFR-Embedding’ also demonstrate exceptional
performance (Lee et al., 2024; Meng et al., 2024).
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Both of these embedding software tools are unique in their ability to understand
not only word-to-word similarity but also sentence-to-sentence similarity. If two sen-
tences have completely different meanings, even if they use similar words, sentence
embedding models will recognize them as different. In contrast, word embedding
models will perceive the sentences as similar (Ul Haq et al., 2024; Zhang et al., 2024;
Mandelbaum and Shalev, 2016; Li et al., 2015).

Baer and Purves (2023) demonstrates that the ‘sentence-transformers/all-mpnet-
base-v2’ approach significantly outperforms TF-IDF in identifying similar documents,
as judged by human annotators. Existing studies have predominantly relied on word
embeddings. For instance, studies have utilized TF-IDF (Autor et al., 2024; Kogan et al.,
2021; Webb, 2019) and BERT (Frugoli and ESCO, 2022). To the best of our knowledge,
we are the first to apply sentence embedding technology in the field of economics.

To construct RI-IV, we compare each patent description with a curated list of vo-
cabularies closely associated with robotics and automation technologies. The detailed
vocabulary list is provided in the footnote.!* By comparing each patent description
with these automation-related terms, we derive a similarity score ranging from 0 to 1.
We subsequently aggregate the scores by country, industry, and year. The growth rate
of this aggregated value is what we define as RI-IV. For brevity, we present two scoring
examples: one with a high score and another with a low score.

Patent Number: 10209063

Applicant: X Development LLC

City: Mountain View

Similarity Score: 0.61 (high)

Patent Description: (1) Robots may be programmed to perform a variety of tasks such
as, for example, autonomous or semi-autonomous navigation, manipulating objects
(e.g., repositioning an object, altering an object, and/or picking up an object and mov-
ing it to a different location), transporting objects (without necessarily manipulating
those objects), monitoring environmental conditions, functioning as “video conferenc-
ing on wheels”, and so forth. ...(Omitted to save space)... (3) The present disclosure
is generally directed to using sensor-based observations from multiple agents (e.g.,
mobile robots and/or fixed sensors) in an environment to estimate the pose of an object
in the environment at a target time and to estimate an uncertainty measure for that
pose. The object for which the pose and uncertainty measure are estimated may be a
non-agent object such as a pallet, a box, a product, etc. or may itself be an agent (e.g.,

“actuator, artificial intelligence, automation, autonomous, biomimetics, computer vision, cyber-
netics, human-machine interface (HMI), humanoid robots, industrial automation, industrial robot,
kinematics, machine learning, machine perception, machine vision, motion control, Natural Language
Processing (NLP), neural networks, object recognition, odometry, programmable, programmable logic
controller, robot, Robot Operating System (ROS), robotic, robotic arm, robotic exoskeleton, robotic
process automation (RPA), sensor fusion, servo motor, visual servoing, workflow automation.
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a mobile robot). As used herein, “pose” of an object may reference a position of the
object only (e.g., a multidimensional coordinate), or may reference both the position of
the object and an orientation of the object (e.g., a pose in the SE(3) configuration space).

Patent Number: 10285908

Applicant: Sun Pharmaceutical Industries Limited

City: Mumbai

Similarity Score: 0.01 (low)

Patent Description: (1) The present invention relates to a dual-chamber pack for a
multi-dose oral liquid pharmaceutical composition wherein the compositions of the
first and second chambers are mixed at the time of first administration ...(Omitted to
save space)... (6) The present invention provides an alternative pack for a multi-dose
oral liquid pharmaceutical composition comprising of two chambers, wherein the pack
is adaptable for low to high dose drugs. The pack allows the patient ease of dispensing
with only a few simple steps required for reconstitution.

To construct HI-IV, the instrument for human innovation, we employ a comparable
methodology, comparing patent descriptions with occupation descriptions provided
by the Occupational Information Network (O*NET). The O*NET database contains
approximately 800 distinct occupation descriptions. For each patent, we compute sim-
ilarity scores against all of these occupation descriptions and select the highest score,
which becomes the representative similarity score for that specific patent. We apply
this process to all patents available from 2004 to 2019. Subsequently, we aggregate these
similarity scores by country, industry, and year. The growth rate of this aggregated
value constitutes what we define as the HI-IV.

Our conceptual framework posits that patents exhibiting a semantically close rela-
tionship to occupational descriptions are indicative of supporting human innovation,
as they enhance the efficiency of human labor without reliance on robotic assistance.
Fundamentally, we differentiate between autonomous robots and conventional ma-
chines or tools. Under this assumption, we infer that the aggregated similarity scores
represent the evolution of human tasks. For the sake of brevity, we present two high-
scoring examples.

Patent Number: 10300695

Applicant: Toshiba TEC Kabushiki Kaisha

City: Tokyo

Similarity Score: 0.66 (high)

Patent Description: An ink jet printer prints patterns according to an input signal
corresponding to an image or text. The ink jet printer includes, for example, an ink
jet head and an ink jet head control circuit that controls the ink jet head. The ink jet
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head includes an actuator for ejecting ink and a driver integrated circuit (IC) that drives
the actuator according to a control signal input from the ink jet head control circuit
...(Omitted to save space)... An ink jet head may include a non-volatile memory that
stores unique information of the ink jet head, maintenance information, and the like.
When a non-volatile memory is mounted on the ink jet head, the ink jet head control
circuit also requires a connection terminal for accessing the non-volatile memory.
However, adding such a terminal to the inkjet head control circuit and the inkjet head
may increase costs.

O*NET Occupation Description: Printing Press Operators [SOC 51-5112] Set up
and operate digital, letterpress, lithographic, flexographic, gravure, or other printing
machines. Includes short-run offset printing presses.

Patent Number: 10513832

Applicant: Scott

City: Naples

Similarity Score: 0.68 (high)

Patent Description: A pile driver or piling hammer is a mechanical device used to
drive piles, pilings or poles into the Earth to provide foundation support for docks,
buildings or other structures. A conventional pile driver or piling includes a heavy
weight that it is able to freely slide up and down in a single line, wherein the weight is
placed above a pile, piling or pole. The weight is raised, and when the weight reaches
its highest point, it is released and impacts the pile, piling or pole in order to drive it
into the ground. ...(Omitted to save space)... Consequently, a need exists to overcome
the problems with the prior art as discussed above, and particularly for improved and
innovative pilings hammers.

O*NET Occupation Description: Pile Driver Operators [SOC 47-2072] Operate pile
drivers mounted on skids, barges, crawler treads, or locomotive cranes to drive pilings
for retaining walls, bulkheads, and foundations of structures such as buildings, bridges,
and piers.
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6 Regressions

6.1 Regression Equations

Based on the specification in Equation (7) shown in Section 3.2, we provide consistent
regression equations as below:

gr_(laborshare x markup) =a;RI + aHI
+ azgr_labor price + augr_robot price
+ asgr_non-robot capital price
+ aggr_labor productivity
+ XN F N NN (10)

gr indicates the variables are in a 5-year growth rate, and i, j, and ¢ correspond to
country, industry, and year, respectively. We exclude the notation of gr from RI and
HI, as by definition, they already represent a 5-year growth rate.

6.2 Regression Results

We present IV regresion results (2SLS) in Table 1. Standard errors are clustered by
country to account for serial correlation. To improve readability, both the coefficients
and standard errors have been multiplied by 100.

Upon examination of Equation (7), it is evident that the sum of the coefficients for
dInW, dInv, and dIn R is equal to zero (i.e., @)+@9+@y= 0). In the regression table,
Column (1) does not incorporate this constraint, whereas Column (2) imposes it. The
baseline model employed throughout this study is represented by Column (2), which
includes this restriction.

In assessing the congruence between the regression results and the model’s pre-
dictions, two findings are noteworthy. First, the model delineates the coefficient for
robot price as @, with the term Sﬂ = 2.81% included, which we estimated in Section
6.3. The model thus anticipates this coefficient to be of an insignificantly small value.
In line with this prediction, the regression coefficient for robot price is not statistically
significant, and the point estimate lacks precision.

Second, the IV regresion results maintain consistency in both magnitude and direc-
tion, regardless of whether the restriction is applied. Utilizing the regression without
the restriction (as shown in Column (1)), we test the null hypothesis that the restriction
is non-binding. The hypotheses is not rejected at the 0.05 significance level. This
suggests an alignment between the data and the model’s predictions. In subsequent
analyses, we refer to the IV results from Column (2), the restricted version, as our
baseline.
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Table 1: IV Two-stage Regressions

Constraint No Yes
1) ©))
@): RI -0.437* -0.380**
(0.204) (0.187)
@: HI 0.473* 0.360"
(0.221) (0.189)
@): gr_labor price 10.425*** 10.669***
(3.583) (4.068)
(@u): gr_robot price -0.293 -0.029
(1.262) (1.630)
(@v3: gr_non robot capital price -20.297*** -10.641***
(4.035) (3.745)
N 839 839
R? 0.430 0.445

The coefficients and the standard errors have been multiplied by 100 for better readability.
Standard errors in parenthesis are clustered by country.
*p <0.10, " p < 0.05, " p < 0.01

For Column (1), the first-stage F-values are 39.27 (RI-IV) and 68.83 (HI-IV). For
Column (2), the first-stage F-values are 13.83 (RI-IV) and 33.18 (HI-IV). The rule of
thumb suggests that an F-value above 10 indicates a sufficient instrument. Therefore,
both RI-IV and HI-IV meet the criteria for appropriate instrumental variables.

6.3 Estimation of ST,

ST, represents the share of robot cost in the total combined task cost, which comprises
both labor and robot costs. This metric is vital for our analysis in the Regression section.
Unfortunately, no official data is available that directly quantifies this value, requiring
us to rely on multiple sources for an accurate estimation.

For a detailed explanation of how we estimated S}, please refer to Appendix H.
By synthesizing all available information, we estimate S, to be 2.813% for the total
manufacturing sectors. An alternative method detailed in Appendix H.1 estimates the
S]E value at 2.104%. However, we consider the method outlined in this section to be
more accurate and reliable, leading us to conclude that the S%; value is 2.813%.

6.4 Estimation of o and (

By utilizing Equation (7) along with the regression results, we estimate the values of o
and (. o represents the elasticity of substitution between the aggregate task and non-
robot capital. Notably, labor costs account for 97.2% of the aggregate task cost, while
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non-robot capital accounts for 91.1% of the ‘overall’ capital cost. Thus, o serves as a
close proxy for the elasticity of substitution between labor and overall capital.

We detail the methodology for estimating these two elasticities, o and ¢ in Ap-
pendix I. Our results are as follows: first, we calculate 0 = 0.527, with a 90% confidence
interval for o of (0.253,0.801). o differs from the elasticity of substitution between
labor and non robot-capital, but as mentioned, o serves as a close proxy of this elasticity.
In Appendix J, we provide a formal estimation of the elasticity of substitution between
labor and non-robot capital using the estimation of o. This measure closely aligns with
the measures used by Karabarbounis and Neiman (2014) and Glover and Short (2020),
and our estimate ranges between 0.518 and 0.574. Thus, this result contributes to
literature by providing additional empirical evidence that the elasticity of substitution
between labor and non-robot capital is less than one, indicating a gross complementary
relationship between the two. This is supported by most literature, as suggested by
Chirinko (2008), Grossman and Oberfield (2022), and Glover and Short (2020).

We estimate ( = 0.833, with a 90% confidence interval of (-0.071, 1.838). DeCanio
(2016) proposed a ¢ value of 1.9. A ( value greater than one implies that improvements
in robot productivity —as reflected by a decrease in robot price— significantly affect
the labor share. Unfortunately, due to the inconclusive nature of our ( estimation, we
are unable to draw further conclusions on this matter.

6.5 Effects of Price Factors on Labor Share

6.5.1 Labor Price

The regression findings provide important insights into the relationship between factor
prices and labor share. Our analysis reveals a positive correlation between the labor
price (wage) and labor share. This relationship can be understood through the concept
of gross complementarity between labor and non-robot capital, as indicated by o < 1
in our model.

The mechanism underlying this relationship can be explained as follows: When
the wage increases, the usage of labor does not decrease proportionally to the price in-
crease. This disproportionate response leads to an overall increase in the cost attributed
to labor. Consequently, a larger portion of the cost is allocated to labor, resulting in a
rise in labor share.

Technically speaking, the robot cost share, denoted by S/, is a very small value,
specifically 0.028. This indicates that when wages change, substitution between labor
and robots does not have a significant effect, and substitution between labor and non-
robot capital plays a more important role, as demonstrated below. In essence, the
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condition that determines () > 0 is fundamentally o < 1, from a technical perspective.

~(1-0O+ (-1 -0 +sk(1-a)) 5]
(1—0) (1= SE)+ Sk(1—0)ST

(1= Q)(Shy) + Sk(1—0)SE
=0.00328 4 S(1 — 0)SE
~ S1(1—0)ST =0.10341 > 0.

1—
1 —

6.5.2 Non-robot Capital Price

The underlying principle is analogous to the labor price scenario. An increase in the
price of non-robotic capital does not elicit a proportional decrease in its utilization.
This disproportionate response engenders an overall increase in the costs associated
with non-robotic capital, consequently leading to a reduction in the relative costs
attributed to labor. As a result, a diminished proportion of total costs is allocated
to labor, precipitating a decline in the labor share. From a technical perspective, the
fundamental reason for (v < 0 is essentially that o < 1.

@ =- [52(1—0)} <0 (11)

6.5.3 Robot Price

The regression results indicate a negative, albeit small, association between robot price
and labor share. This insignificance is attributed to the low share of the robot cost
(ST, = 2.8%). This means that even if robot prices change, their impact on labor share
will inevitably be small.

@=(-1-Q+ska-a) s <0 (12)

In the future, we anticipate that the coefficient for robot price will become more
significant, yielding a stronger association as the proportion of robots in society in-
creases. This expectation is attributable to the term S1,, which represents the share of
robot costs and is projected to be larger in the future.

Our analysis of the robot price factor reveals a negative correlation with labor
share. We demonstrated, ¢ has a 90% confidence interval of (-0.071, 1.838), yielding

inconclusive results. Furthermore, the term <—( 1—-¢)+ 8L - 0)) has confidence

interval of (-0.963, 0.943) with a point estimate of -0.010. Consequently, interpreting
this negative coefficient in terms of the elasticity of substitution between robot capital
and labor lacks statistical significance.
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7 Accounting Exercise

Our primary research objective in this paper is to elucidate the factors influencing labor
share, both in terms of magnitude and direction. This fundamental inquiry drives our
investigation. The Accounting section of our study directly addresses this core research
question. By employing a comprehensive accounting framework, we quantitatively
assess the relative contributions of various factors to changes in labor share across
different countries.

Based on the main regression results from Column (2) in Table 1, we have generated
Figures 4 and 5. In this paper, we exclusively focus on country-level variation to
maintain brevity. Accordingly, the values in these figures are derived by aggregating
data at the country level. During this aggregation process, ‘Average variables’ are
consolidated by weighting the value-added in each sector and year. Intuitively, the
values illustrated in Figures 4 and 5 quantify the extent to which each factor influences
the growth rate of the markup-adjusted labor share (S7)."®

Figure 4: Labor shares
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Figure 4 presents the results of our accounting analysis, demonstrating that RI
and HI are significant factors influencing labor share. Specifically, an increase in RI
corresponds to a decrease in labor share, while an increase in HI leads to an increase.
These findings corroborate the argument put forth by Autor (2015), who posited that

g i is defined in Equation (6) in the Model section.
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Figure 5: Labor shares (NET of RI and HI)
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“the sustained relevance of human labor in the future will largely depend on the pace
at which ‘human innovations’ outstrips the advancement of automation.”

Our data reveal a general upward trend in non-robotic capital prices over the past
15 years, as illustrated in Figure 9 in Appendix L. The negative coefficient associated
with the price of non-robotic capital suggests a consequent decline in labor share. This
observation stands in direct contrast to the argument presented by Karabarbounis and
Neiman (2014), who contended that the decline in capital prices has led to a drop in
labor share. Our findings yield the opposite result. Meanwhile, Figure 4 incorporates
a component representing fixed effects, albeit small, accounting for unobserved time-
sector-country invariant factors.

Figure 5 provides an alternative perspective by netting out the effects of RI and HI,
effectively canceling out their opposing directional impacts. Despite the substantial
offsetting effects between these two factors, the aggregate result indicates that the
negative effect of automation (RI) marginally surpasses the positive impact of hu-
man innovations (HI) on labor share. This nuanced analysis underscores the intricate
balance between technological advancement and human innovation in shaping labor
market outcomes.
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8 Robustness Check

As we promised in previous sections, we provide several robustness information. First,
we use APR and HI as an explantory variable instead of using RI and HI.

Table 2: IV Two-stage Regressions using APR

Constraint No Yes
1) )
@): APR -0.437* -0.380**
(0.204) (0.187)
@: HI 0.035 -0.020
(0.051) (0.047)
@) grlabor price 10.425*** 10.669***
(3.583) (4.068)
@) gr_robot price -0.293 -0.029
(1.262) (1.630)
(@v3: gr_non robot capital price -20.297*** -10.641***
(4.035) (3.745)
N 839 839
R? 0.430 0.445

The coefficients and the standard errors have been multiplied by 100 for better readability.
Standard errors in parenthesis are clustered by country.
*p < 0.10,* p < 0.05, *** p < 0.01

In our baseline analysis presented in Table 1, we employed a variance adjustment
value of 3.435, as elucidated in Section 4.2.1. To assess the robustness of our findings,
we subsequently conducted an alternative analysis using a variance adjustment value
of 1. The results of this analysis, while slightly different, prove to be remarkably
consistent with those presented in our baseline table.

9 Concluding Remarks

This paper has investigated the declining trend in global labor share during 2004 to
2019, with a particular focus on the roles of robotic innovation (RI) and human inno-
vation (HI) in shaping this trend. We have developed a general equilibrium model that
incorporates both RI and HI, addressing a gap in the existing literature and providing
a unified framework for analyzing multiple factors influencing labor share.

Our primary contribution lies the development of novel instrumental variables for
RI and HI. Leveraging recent advancements in natural language processing, specifi-
cally sentence embedding technology, we constructed these instruments by analyzing
the semantic content of patent descriptions. This approach represents a significant
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Table 3: IV Two-stage Regressions using without variance adjustment

Constraint No Yes
1) ©))
@): RI -0.437* -0.380**
(0.204) (0.187)
@: HI 0.559* 0.312
(0.297) (0.238)
@): gr_labor price 10.425*** 10.669***
(3.583) (4.068)
(@u): gr_robot price -0.293 -0.029
(1.262) (1.630)
(@v3: gr_non robot capital price -20.297*** -10.641***
(4.035) (3.745)
N 839 839
R? 0.430 0.445

The coefficients and the standard errors have been multiplied by 100 for better readability.
Standard errors in parenthesis are clustered by country.
*p <0.10, " p < 0.05, " p < 0.01

methodological advancement over previous studies that relied primarily on word em-
beddings or more limited patent information.

The instrumental variables we developed for RI and HI demonstrate the potential
of applying cutting-edge language models to economic research. By utilizing tools
such as ‘sentence-transformers/all-mpnet-base-v2’ and ‘text-embedding-3-large’, we
were able to capture the nuanced relationships between patent descriptions and both
automation-related terms and occupation descriptions. This method allowed us to
more accurately identify patents related to robotic and human innovations, respec-
tively.

Our empirical findings, based on data from nine countries, confirm the significant
and opposing effects of RI and HI on labor share. Specifically, we find that increases
in RI are associated with decreases in labor share, while increases in HI correspond
to increases in labor share. These results provide empirical support for the theoretical
arguments put forth by scholars such as Autor (2015) regarding the importance of hu-
man innovation in maintaining the relevance of human labor in the face of advancing
automation.

The accounting exercise we conducted reveals that while Rl and HI have substantial
offsetting effects, the negative impact of automation slightly outweighs the positive
effect of human innovation on labor share. This nuanced finding underscores the com-
plex interplay between technological advancement and human capital development in
shaping labor market outcomes.

Furthermore, our analysis yields an estimated elasticity of substitution between
labor and non-robot capital that is less than one, consistent with the majority of the
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literature. This finding suggests a gross complementary relationship between labor
and non-robot capital, contributing to the ongoing debate on factor substitutability.

While our study makes significant contributions to the understanding of labor
share dynamics, it is not without limitations. The primary challenge lies in the endo-
geneity of price factors, which we were unable to fully address through instrumental
variables. This limitation underscores the need for further research and refinement of
methodologies in this area. In conclusion, our research provides valuable insights into
the factors driving changes in labor share, particularly the roles of robotic and human
innovation.
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A Appendix: Human Innovations by
Acemoglu and Restrepo (2019)

Acemoglu and Restrepo (2019) (henceforth referred to as AR) presents a tool for infer-
ring automation and human innovation (henceforth, HI). This tool utilizes a relatively
small set of variables: labor compensation, employee count, value-added, wage, and
investment price. The AR framework enables the inference of automation and HIL
Fundamentally, the AR framework operates under the assumption that if there is an
observed increase in labor share, it must be attributed to HI. Conversely, if there is a
decrease, it is attributable to automation. This principle is clearly articulated in Figure
1 of their paper.

The online appendix of the AR paper elaborates on this framework. For ease of
reference, we include it in our Appendix B. In this appendix, Term (AR4) represents
the percentage change in labor share, which can be broken down into Terms (AR6) and
(AR?7). The former represents the percentage change in substitution effects, while the
latter shows the percentage change in ‘task contents. A positive (negative) result in
Term (AR7) is interpreted as indicative of HI (automation). Given that the percentage
change in substitution effects (Term ARG6) is usually minimal, the percentage change in
‘task contents’ (Term AR?7) virtually mirrors the percent change in labor share (Term
AR4).

To summarize, AR’s inference of automation and Hl is largely based on the percent
change in labor share. However, using these inferred variables in our primary analysis
presents a challenge due to the expected high correlation with labor share, which could
lead to reverse causality. Furthermore, there is no certainty that the inferred variables
accurately represent the real-world values of automation and HI. Consequently, we
require variables obtained through direct measurement.
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B Appendix: Acemoglu and Restrepo (2019)

Let me first introduce their notations in Table 4.

Table 4
Notation Meaning
? Industry sector
P, The price of the goods produced by sector ¢
Y; Output (value added) of sector ¢
Y =) BY; Total value added (GDP) in the economy
Xi = P;’,Y" = ZI_D"}D?K = 221 | The share of sector i’s GDP
W, I Wage per worker in sector ¢
L, Number of workers in sector ¢
W, L; Total wage bill in sector ¢
WL=) WL, Total wage bill in the economy
l; = m}% The share of the wage bill in sector ¢
sk = Vg"}% = TOtaleggj bl The labor share in sector 7
st = M{,L = % The labor share in the economy
I, =T(N;, L) The task content of production with regards to labor in sector ¢
v The comparative advantage schedules for labor in sector ¢
VK The comparative advantage schedules for captial in sector ¢

The decomposition starts from the percent change in the wage bill normalized by

population (Equation (AR1)). Since 111(

WiLy
Ny

) can be expressed as In (Y; >, xuts5),

Equation (AR1) can be decomposed as Equation (AR2);
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(AR1)

N_t()) (AR2)

+ In ( thslt
+1In <Z th032t> —In (Z XitOSiLto>
~ In <£> —1In <&>
Ny Nio
s
+ Z ﬁ (th th())
+In (Z Xitosi%) —1In (Z XitOSiLto>
Y; Yio
~1 (-) I ( ) AR3
"N Nio (453)
s
+ Z S sk (xit — Xito)

+ Z Ciro(In s — Insky) (AR4)

The first-order Taylor expansion of Term (AR4) yields Terms (AR6) and (AR7); De-

note (1—0)(1—s%,) ( In ¥ e —In 11;” " —g;0.¢ ) as Substitution; 4 ;, we can rewrite Equa-

tion (AR5) as (AR8); Denote ( In s5;—In s%, ) —Substitution; s, as ChangeTaskContent, ,, ,,
we can rewrite Equation (AR8) as (ARY).
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Wi R;
+ Z&'to {(1 - U)(l - 350) (ln W:O —In ﬁ.:o - gfto,t)

+1_Sﬁ°(1r InT )}
—F nly —Inl;
1—P,L't0 t t0

~ In <£> —In <&>
N, Ny

+ Z gitO [Substitutionmo’t
i

1 - Sz’Lto
1 —To

~ In <£> —1In <ﬁ>
Ny Ny

(ln Fit — ln FitO):|

+ Z Cito {Substitutionivto’t
i

+ (ln siLt —1In siLtO) — Substitution, ;0 ;

~ In (%) —In <§—tt(;>

+ Z Cito {Substitutionmo’t
i

+ ChangeTaskContenti’tojt}
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L
+ Z % (th tho)

+ Substitutiony

+ Z Cito [ChangeTaskContenti7t0,t]

> lirn[ChangeTaskContent, ,, ,| can be decomposed again into Equation (AR10),
assuming that over five-year windows, an industry engages in either automation or
the creation of new tasks but not in both activities.

t+2
1
Displacementt_u = Z {; 10 min {0, R Z ChangeTaskContent, 1 ,y} (AR10)

1€T y=t—2

t+2
1
Reinstatement;_; ; = Z ; yo max {0, R Z ChangeTaskContent, 1 ,y}

1€T y=t—2

To sum up, starting from Equation (AR1), it can be decomposed into 1) productivity,
2) composition, 3) substitution, 4) displacement, and 5) reinstatement effects.

L L
In (Wt t) —1In (Wto to) [Wage bill per capita] (AR11)
N, Nio
Y, Yio .
~ In ( ) —1In (—) Productivity effect
N, N [ y ]

+ (xit — X Composition effect
Z E thOSJt t— tO) [ p ]

+ Substltutlonto,t [Substitution effect]
+ Displacement,, , [Displacement effect (Automation)|
+ Reinstatement; ; [Reinstatement effect (New tasks)|
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C Appendix: Model

C.1 Households

The representative consumer consumes an aggregated continuum of final goods, with
the mass of final goods assumed to be one for simplicity. It’s also assumed that there
is no disutility from the supply of labor. The utility function of the representative
consumer takes the following form:

n

1 . n—1
U= (/0 Y(i) 7 dz) (13)

, where 7 represents the elasticity of substitution between final goods.

The representative consumer’s budget constraint is as follows:

1 1 N N
/ PG)Y (i)di = / W;l,(i)dj + ym;(i)dj + RK; +11; | di  (14)

0 0 N-1 N—1
, where W;, 1, and R represent wage for labor conducting task j, robot price, and
capital price, respectively.

C.2 Labor Share

A step-by-step process for this section is provided in Appendix D. We set an assumption
related to robot and labor productivity for simple algebra in deriving the equilibrium
in the model.

i wy
Assumption 1. ¢ < s

The above assumption implies that it is efficient to use a robot for task j below I. In
other words, whenever firms have the technological capability to substitute labor with
a robot, they would be inclined to do so. This is a reasonable assumption, especially
considering that robot prices have significantly declined, while wages have seen a
steady increase. Figure 6 illustrates these trends by depicting the 5-year growth rates
of the respective prices.

Based on the Assumption 1 and by solving the firm’s cost minimization problem,
factor demands, the price for the aggregated task, and the marginal cost of firm 7 are
derived as follows:

(i) =0, ifj<I (15)
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Figure 6: Prices in a 5-year growth rate
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(i) =" <%) _CT(i), ifj > 1
m;(i) = (P_T> _CT(Z'), ifj <1
m(i) =0, ifj > 1
() = (%T@) v
K(i) = <%(Z)) v

N W. 1=¢
Pr=|(I-N+1)p<+ / (—J) dj
I

Vi

MO(i) = [P0 + R\ ™

1-¢
W;l; (i) = (:E%;{) - Pp- T
J

(16)

(17)
(18)
(19)

(20)

(21)

(22)

(23)

, where Pr and M C; represent the price for the aggregated task and marginal cost of

firm i, respectively.
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D Appendix: Detailed Model Derivations

D.1 Environment

There is a representative household with utility function in Equation (24):

n

1 . n—1
U= (/0 Y (k)" dk) . (24)

There are infinite number of identical firms i with production functions in Equation
(27) and (28):
tj(i) =my(i) +y;l;(i) ifj < 1 (25)

e </NN1tj<i>C<_ldj> . (27)
v (i) = (T() + K(i)*7") =

(28)

By Assumption 1, Equation (25) simplifies to Equation (29). Without this assumption,
the algebra becomes too complex to yield a closed-form solution. The implication of
this assumption is that whenever robot operation is technically feasible, firms opt for
robots over labor. This is because, according to Assumption 1, the cost of using a robot
is lower than the cost of labor for unit of production.

ti(i) =m;(i) ifj < I (29)

D.2 Step 1: derive Pr, and optimal inputs for robot* and labor”*
We derive Pr, the price for an aggregated task, 7'(7), by solving the cost minimization
problem. We assume perfectly competitive market.
min cost(i) for 7°(7) s.t. Equation(29), (26), and (27)

I N I N - =

= min Yym;dj + / w;l;dj s.t. m; " dj + / (vl;) < dj =T(i)
N-1 I N-1 I
=> This finds optimal inputs for robot* and labor™ to produce T(i)

= Specifically, letting T(i)=1 means the minimization solution is the price for T(i), Pr :

N 1-¢ 1<
= Pp=|(I—-N+1y'¢ +/ <&> dj (30)
I i
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D.3 Step 2: find optimal inputs for 7'(i) and K (7)
Next, we find optimal inputs for 7°(7) and K () to produce Y (7).

min cost(i) for Y'(7) s.t. Equation(28)

< min Pr-T(i) + R - K(i) s.t. Equation(28)
=-This finds optimal inputs for T(i)* and K(i)* to produce Y(i)
=Specifically, the minimization solution is the minimum cost for producing Y (7)
(T(0) =Y ()P

K@) =Y@W)R°
= q Cost for Y (i) = Y (i) [Py 7 + R'"™7] =
=Y (i) x AC
=Y (i)

0
We let [lefo + Rl_(’} = 1 as a numeraire. This numeraire significantly simplifies
the algebraic complexity. Since we let AC= 1, MC is also one.
D.4 Step 3: find a demand function for Y (1)
Next, we find a demand function for Y (i) by minimizing consumption cost.

min cost for consumption s.t. Equation(24)
< min /1 P(3)Y (i)di s.t. Equation(24)

0

=Specifically, this yields a demand function for Y (7)

Y (i) = (P(i))_n  where P = |

P

/01 P(i)l_”di] -

D.5 Step 4: find firm(i)’s profit

The final goods market is the monopolistic competition that allows firms’ positive
profit. Until now, we know two things: (1) a demand function for Y'(7), and (2) the
minimum cost for producing Y (7). Firm’s profit maximization problem yields:



Meanwhile, we naturally get optimal Y (i) as below, but this is redundant for this paper.

1

/0 1 P(i)l_”di] a

D.6 Step 5: derive the labor cost for producing optimal Y (7)

Y (i) = (ﬁ) " where P =

In Step 1, we already found optimal inputs of /;(7) to produce 7(7). Therefore we can
also know the optimal labor cost at task j for firm ¢ to produce 7().

A\ ¢
(0)" = (Z”é?) v T() (31)

A\ 1=¢
= W (i) (i)° = (W—“> PET(i)

Vi

And we also derived optimal 7'(7) while in Step 2: T'(¢)* = Y (i) P ?. Plugging in this
to the equation above,

1-¢
Ny s W; (i o
W0L0)" = <—J( )) RSV ()
Therefore, the optimal labor cost for firm i to produce Y (i) by using every task from I
to N is:
N N A\ ¢
N W (2 oy
[ wnera- | (—“) PV (i)
I I i

N e 1=¢
_ /1 <W;—J()> dj - P57V (i)

D.7 Step 6: derive an expression for labor share

Until now, we have figured out (1) labor cost, (2) total cost, and (3) profit. Putting all
together, we find labor share. Since we prefer not to focus on "T_l we move this term
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to the left-hand side.

S, (i) = Labor cost(i) _ Labor cost(i)
B Total cost(i) + Profit(i) Y (i) + n%lY(z)
= 1 Labor cost(i)
n  Total cost(i)
Ui . Labor cost(i)
— ISL(Z) ~ Total cost(i)
= 51(0)

After substituting the expressions for Labor cost(i) and Total cost(i) that we derived
earlier, we finally construct a detailed expression for .S z(z)

. Labor cost(i)
F —
Sp(i) = Total cost(i)
_ W@ 0)dj
Y(Z’)
f[ ;1)1 (i)dy
PTT( ) + RK( )
[ (M) s Py (i)
P1 "Y(z) + R'=Y (i)
1—¢ .
ST G pr
Pl ¢ P77 + Rt~
1-¢ 11<
_ 1-¢ N Wj .
,where Pr = | (I — N+ 1)y %+ — dj
I Vi

E Appendix: Adjusted Penetration of Robots

APR is defined as in Equation (32):

Miws — Min  Yigs —Yin Min

(E5:21) L; 2005 Yin L; 2005 (32
_ (Mi,tE) —Minn  Yips —Yin\ Min (33)
M; 1 Yin L; 2005
M;
= (g9m — gv) 7 (34)
4,2005
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, where 7 is the industry sector (country x industry in our case), and t5 is 5-year after
t1. M is the number of robots (stock), L is the number of employees, Y is value-added
(in real terms).

Acemoglu and Restrepo (2020) employs APR as a proxy for d(/ — N + 1) primar-
ily because the term d/ encapsulates the theoretical concept of a ‘pure direction of
automation,” which is abstract and not directly observable in empirical settings. The
observable growth rate of the number of robots is not a suitable proxy for d/ since
it reflects an equilibrium outcome in real-world scenarios. Given this, Acemoglu and
Restrepo (2020) proposes APR to effectively serve as a proxy for d(I — N + 1).

The second term in Equation (34), —gy, serves to measure the ‘penetration’ of
robots. In other words, if the growth rate of robots exceeds that of value-added, they
interpret this as a positive penetration. This penetration equates to / — N + 1 in their
terminology, which represents the length between N — 1 and /. The inclusion of the
second term, (34), —gy, in Equation (34) is necessary for the following reason: Suppose
there is an economic boom. In such a scenario, the growth rate of robot adoption would
likely surge, while d(I — N + 1) remains unchanged. Therefore, they adjust the growth
rate of robot adoption by subtracting the growth rate of value-added, gy .

The APR represents the 5-year growth rate of robots adjusted by labor input and
the value-added within a given sector. Multiplication by L]\iot;, is necessary as the
raw number of robots does not adequately represent their definition of automation.
Consider, for instance, that the IFR began collecting data in many countries starting
in 2004. A change from 1 robot to 100 robots between 2004 and 2005 would represent
a growth rate of 9900%, whereas an increase from 100 to 200 robots between 2005
and 2006 would only reflect a 100% growth rate. These rates are not useful because

the number of machines increased by the same amount (100) in both cases. The term

1:]\1/[;—(;)15 is introduced to adjust for this discrepancy. Suppose L; 2005 = 100. In 2005,
g X LMZJ(; equals 99%, and in 2006, it amounts to 100%, which makes them comparable.

The unaerlying idea is that the 5-year difference in the number of machines across
countries and industries is not directly comparable; they needed to normalize it by
dividing by the number of employees.'¢

F Appendix: Capital Price

In our paper, we utilize the replicated values for capital price from Karabarbounis and
Neiman (2014) (hereinafter KN). To calculate this, we initially require the investment
price, which the KLEMS data provides, including industry variations.

Instead of dividing by L; 2005, dividing by ‘quantity’ would be more accurate, but it will not change
the results significantly.
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It’s important to note that we don’t directly observe the capital price, which rep-
resents the usage cost of one unit of capital. We do, however, observe the investment
price, which signifies the purchase cost of one unit of capital. In accordance with the
theory of investment by Jorgenson (1963), we can calculate the capital price as follows:

Ri=& 1(1+414;) — &(1 =) (35)

R, =& (%—1+5) (36)

In this Equation (35), R represents the capital price, & is the investment price, ¢ is the
interest rate, and ¢ is the depreciation rate. All values are expressed in real terms. This
equation signifies that investors are indifferent between paying a usage cost for capital
(R;) and purchasing capital, paying interest, and then selling the depreciated capital at
a later date.

To simplify Equation (35) into the form presented in Equation (36), we follow
a specific process. This involves the assumption of a constant interest rate, 7, and
approximating 1+ as % Equation (36), as employed by KN in their KLEMS version of
the capital price variable, assumes a depreciation rate of 10%. This rate aligns closely
with the 10.8% rate assumed by Stehrer et al. (2019), an official KLEMS document.
Throughout this paper, we strictly adhere to the approach by KN."’

G Appendix: KLEMS Data and Capital Cost

G.1 KLEMS Data

Aside from the IFR dataset, the O*NET dataset, and Robot Price, we will use data
from KLEMS."® All nominal values are converted to real values through division by
the chain-linked price index provided by KLEMS (VA_PI), following the methodology
implemented by Karabarbounis and Neiman (2014).

KLEMS comes in two different versions: one follows national accounts, and the
other follows growth accounts. The main difference between these versions is that
the national accounts allow room for a markup greater than one, while the growth
accounts do not. The latter assumes that the sum of labor cost and capital cost equals

"t is important to note that KN employed a 3 value of 0.909 (corresponding to an interest rate,
1 = 0.100), reflecting the high real interest rates prevalent in the 1970s. In contrast, our study adopts
a 3 of 0.988 (equivalent to ¢ = 0.012), derived from averaging the real interest rates from 2005 to 2019
across ten countries. However, the specific value of 5 does not influence the regression outcomes in our
analysis, as we focus on the growth rate of the capital price, which effectively cancels out the impact of

8.
BKLEMS: EU level analysis of capital (K), labour (L), energy (E), materials (M) and service (S) inputs.

42



the value-added, implying that the markup is exactly one. As allowing for a markup is
critical for our analysis, we use the national accounts when using KLEMS.

KLEMS shares similar characteristics with OECD STAN in terms of many national
account variables at a country-industry-year level. Table 5 presents descriptive statis-
tics. Predominantly, the values for OECD STAN and KLEMS are comparable, albeit not
identical. In some instances, the values are in fact identical. This alignment is a result
of collaborative projects aimed at fostering more consistent values between the two.

Table 5: Descriptive Statistics

WL (labor comp) RK (capital comp) Value added Labor Share
STAN KLEMS STAN KLEMS STAN KLEMS| STAN KLEMS
USA 867,789 851,834| 292,456 308,662 1,647,140 1,593,719 52.85 53.60
DEU 366,787 366,806 104,117 104,034| 569,189 570,196| 64.67 64.57
SWE 256,507 256,540 115,040 124,370 502,728 502,728| 51.17 51.18
DNK 219,076  226,496( 199,337 220,713 410,478 426,533 55.33 54.87
ITA 140,568 140,568 57,107 54,924 253,368 253,353] 55.60 55.60
FRA 135,093 135,098 52,379 41,244 226,181 226,181 59.74 59.74
GBR 110,603 109,347 26,230 25,535 171,778 170,498| 64.45 64.19

Country

AUT 28,106 29,959 9,427 12,090 51,011 54,254 55.22 55.31
FIN 17,100 17,979 7,512 7,204 33,112 34,848 51.91 51.85
PRT 11,537 12,897 3,166 3,166 20,575 23,030 56.06 55.99

Total 215,317 214,753 86,677 90,194 388,556 385,534 56.75 56.69

G.2 Capital Cost

The KLEMS data has one limitation: it lacks RK (rental cost for capital stock) and profit
(operating surplus and mixed income). If either RK or Profit were available, we could
deduce the other because Value-added is calculated as WL + RK + Profit. Regrettably,
the absence of both presents a challenge. This issue is addressed by utilizing OECD
STAN data.

In particular, the KLEMS dataset lacks RK. It does include I.GFCF (Investment
in Gross Fixed Capital Formation) and K_GFCF (Capital Stock of Gross Fixed Capital
Formation), but these do not provide the necessary RK information. I_GFCF represents
the net investment in fixed assets —a flow metric indicating capital goods investment.
K_GFCF, on the other hand, denotes the total value of all fixed assets available for
production —a stock variable. Consequently, although RK can be estimated based on
K_GFCEF, this method lacks precision. This is because K_GFCF represents the purchase
cost, not the rental cost. To convert the purchase cost into rental cost, the real inter-
est rate and depreciation rate as shown in Equation (35) are required. Notably, the
depreciation rate requires numerous assumptions, and we lack this information.

43



A pertinent question arises: why not use OECD STAN initially, instead of KLEMS?
The response lies in the fact that OECD STAN does not contain R (capital price) data.
Therefore, we resort to using R obtained from KLEMS. However, integrating this with
other data from OECD STAN, particularly wage variables, poses complications. Fur-
thermore, STAN does not provide industry-specific Producer Price Index (PPI). To
enhance the accuracy of our analysis, we prefer to use industry-specific PPI, specifically
the VA_PI variable from KLEMS.

Hence, an alternative approach is to employ RK from OECD STAN. This is feasible
because the value-added and WL (labor compensation) figures are nearly identical in
both STAN and KLEMS datasets (as illustrated in Figures 8 in Appendix L). Conse-
quently, it is highly probable that RK, along with operating surplus and mixed income,
are consistent across both KLEMS and STAN. Therefore, in this paper, we assume that
the markups in KLEMS and STAN are identical, denoted by %“Le'—w. Based on this
assumption, we are able to recover RK for KLEMS as below:

Value—addedSTAN . Value—addedKLEMS
WLstan + RKstan  WLirems + RKkiems |

H Appendix: Estimation of S,

Denote W, M, W, and L as robot price, number of robots, wage, and employment,
respectively. Then ST, can be expressed as follows:

v M

VM + WL
1

WL
1+W

1

T

T _
S]V[—

Unfortunately, the International Federation of Robotics (IFR) provided robot prices in
the form of an average unit price until 2009 and discontinued this practice thereafter.
Access to robot price information prior to 2009 is also restricted for those who have
purchased IFR data after this point. Nonetheless, Fernandez-Macias et al. (2021) offers
a comprehensive method to approximate the missing price information from the IFR
dataset. Specifically, they provide values for M/ L as well as ¥. We supplement these
data with wage information from the OECD STAN database to complete the S, value
in the equation above.

It is important to note that the equipment cost for robots is estimated to constitute
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around 33.04% of the total robot costs'?, covering elements like operation, training, soft-
ware, maintenance, and disposal (Zhao et al., 2021). The figures provided by Fernandez-
Macias et al. (2021) pertain only to equipment cost. Therefore, we have accounted for
this information accordingly.

H.1 An Alternative Approach to Estimating the SI,

Let’s assume labor cost to be 100 without loss of generality. According to KLEMS data,
the rental cost for OMach is recorded as 13.595. But it’s important to note that OMach
encompasses not just robots but also a range of other items, including equipment,
machinery, engines, and turbines (Stehrer et al., 2019; Gouma and Timmer, 2013).
Therefore, the challenge is to determine the share of robots within the broader category
of OMach. The most reliable approach we can consider involves utilizing UN Comtrade
data, which offers information about import and export values by detailed commodity
categories. By calculating the total export values of commodities corresponding to
OMach,? and separately calculating the total export values of HS Code 8479 (which
pertains to robots),”! we find that the ratio between these values is 13.595 : 0.71. In
brief, the ratio between labor cost, OMach cost, and robot cost is 100 : 13.595 : 0.71.

The equipment cost for robots is estimated to be around 33.04% of the total robot
costs (Zhao et al., 2021), and the UN Comtrade estimate of 0.71 corresponds to the
equipment cost. Therefore, the total cost of the robot amounts to 0.71/0.33 = 2.149.
Hence, S}, is estimated to be 2.104%.%

I Appendix: Estimation of 0 and (

Given that S }; > () and the coefficient for dIn R is negative, we can infer that o < 1.
Further, by substituting the value S}; = (.225 that we obtained from the data, we
calculate 0 = 0.527, as illustrated in Equation (37). We conduct a Wald test on the null
hypothesis that 0 = 0 and find that it can be rejected at the 0.05 significance level.
The confidence interval for o is (0.253,0.801). Consequently, we can conclude with

1933.04% = 35.73% x (1 — 0.075), where 0.075 represents taxes, transactions, and after-sales fees.
The cost share of robot equipment accounts for 35.73% of the total cost for using robots, as estimated by
Zhao et al. (2021).

20HS Classification 84 excluding 8401, 8402, 8403, 8404, 8405, 8429, 8440, 8443, 8470, 8471, and 8472.

?’Machinery and mechanical appliances; having individual functions, n.e.c. in this chapter.

#22.104% = 2.11&19100
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confidence that o lies within the range of 0 to 1 (gross complement).

— Sl (1-0)= 37
[1-0- ® (37)
0.225 -0.00029
So=11 @ (Sigma)
st

The derivation of the value for ¢ proceeds as follows. From Equation (7), utilizing
coefficients (v and (v, we arrive at Equation (Zeta).

@+ @951
=1—-=- Zet
As demonstrated earlier in Section 6.3, we estimate S? to be 0.972. Upon substituting
ST = 0.972 into Equation (Zeta), we obtain an estimate for ¢ of 0.833. We then conduct
a Wald test on the null hypothesis that ( = 0 and find it cannot be rejected at the
0.05 significance level. Specifically, the confidence interval is from -0.071 to 1.838.

Consequently, we cannot draw any definitive conclusions about (.

J Appendix: Estimation of the Elasticity of Substitu-
tion between Labor and Non-robot Capital

The condition o < 1 indirectly confirms that capital and labor are gross comple-
mentary, a result that aligns with the findings reported by Glover and Short (2020).
Conversely, this result contradicts the hypothesis of gross substitutability (c > 1)
posited by Karabarbounis and Neiman (2014) (henceforth KN). We clarify that the term
o in our general equilibrium model does not align exactly with the definition of ¢ in
the work of KN as well as Glover and Short (2020). The divergence stems from our
model’s distinction between robots and non-robot capital. Specifically, in our model,
o represents the elasticity of substitution between ‘non-robot capital’ and ‘aggregated
tasks’, where the latter encompasses both robot and labor inputs.

Hence, in this subsection, we introduce the elasticity of substitution between labor
and non-robot capital, denoted by y, a measure that closely aligns with the findings of
both KN and Glover and Short (2020). The solution for x is given in Equation (38), and
its derivation can be found in Appendix K.
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ME;Z((E;% , where (38)
W/ K
o[ @r _ =¢ Y T =t
() =) [ 2 Ry ] - () [y
- (—o
. T ¢
% :(%> 1 fﬂg]@ !

= p=o if S5, =0,

Differentiating Equation (38) is infeasible. However, we can employ numerical
approximation to estimate ;. We use actual W and R values from the dataset (all
possible combinations of these), along with 0 = 0.527. We introduce small random
variations to each W and R and consider scenarios where ]AW—IE/] is approximately 0.01.
These values are then plugged into Equation (38) to obtain an approximated .

Panel (a) of Figure 7 displays the approximation results. When S7, is zero, we
find that 4 = o = 0.527. This stage indicates a complete absence of robot tasks,
with all tasks being performed by labor. When S, = 2.813%, which corresponds to
our estimate presented in Section 6.3, we obtain © = 0.534. Even if SJ\T/[ = 100%,
1 does not exceed one. Consequently, we argue that in the context of the KN model,
the elasticity of substitution between labor and non-robot capital closely approximates
o. Our analysis suggests that p ranges between 0.527 and 0.574, supporting the idea
of a gross complementary relationship between the two. In the future, as automated
robots assume a greater share of tasks, the elasticity of substitution between labor and
non-robot capital may rise. However, making accurate predictions about this trend
necessitates more comprehensive research.

The above estimation of p is contingent upon the value of ( = 0.883, which is
our point estimate as derived in Section 6.4. However, the confidence interval for
varies: it spans from -0.071 to 1.838. To demonstrate the robustness of our ;. estimate,
we examine its sensitivity across a wide range of ¢ values. This analysis is presented
in Panel (b) of Figure 7. Within the { range of 0 to 1.838, . varies between 0.518 and
0.551, confirming the robustness of our y estimation.

Recent research underscores the importance of quantifying this elasticity of sub-
stitution between labor and capital, as highlighted by Martinez (2018), Oberfield and
Raval (2021), and Zhang (2023). Many studies report an elasticity less than one, en-
dorsing the concept of gross complementarity. However, Piketty and Zucman (2014)
suggest the potential for gross substitutability. They observed an escalating capital-
output ratio and argued that this trend could consistently account for the declining
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Figure 7: Elasticity of Substitution between Labor and Non-robot Capital
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labor share if the elasticity of substitution between labor and capital exceeds one —a
claim our estimates do not corroborate.

Our finding also does not support the hypothesis proposed by Karabarbounis and
Neiman (2014), who argue that the falling price of capital accounts for half of the
recent decline in labor share. For their argument to hold, the elasticity of substitution
between labor and capital must be greater than one (gross substitutes). They directly
measured the correlation between the trend of capital price and labor share without
using instrumental variables.

In contrast, Glover and Short (2020) reached a different conclusion, that of gross
complements, by using cross-country variation with instrumental variables. They ar-
gue that correcting for bias is critical when estimating the correlation between the
capital price and labor share. Our paper addresses omitted variable bias using a con-
trol function approach. We regress automation, the emergence of new tasks, wages,
and robot price, along with capital price, on labor share, believing that this approach
corrects for omitted variable bias. Our study supports Glover and Short (2020).

K Appendix: Derivation of p

Let 1 denote the elasticity of substitution between labor and non-robot capital. The
concept of elasticity of substitution formally defines p as follows:

R
. (39)
K

To proceed, we must express L and K in terms of W and R, respectively. Equation
(31), derived in Appendix D.6, provides the formulation for L as follows:

A\ ¢
L) = (WJ‘(”) 7TG)

%‘PT

N
I

N e -
— /I (%ﬂ}ﬁj) v T (i)dj. (40)

We introduce a parameter f3; to serve as a weight for the wage distribution correspond-
ing to each worker, indexed by j. Utilizing [3; enables us to establish a representative
measure for wages, W.

W, = B;W (41)
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Consequently, Equation (40) can be restructured to yield Equation (42). To streamline
the notation, we define A = | IN 'ng*l By dj.

=[5 o (g (2
—A-T() (%)C (43)

We have derived 7'(i) in Appendix D.3 and Pr in Appendix D.2. For the sake of clarity,
we restate these formulations here:

T(i) = Y (i)Py°

1

N A 1-¢ 1-¢
Pr= [(I =N+ + / (ﬂ) dj
I

Vi
By substituting 7°(7) and Py into Equation (43),
Ao [ WY ¢
L=A-Y(i)P; (P_T)
—A-Y(i)Ps WS

as

—0o

o

1-¢
—A-Y6) (I = N+ 1)<+ /N (%) di| W
I J

N\ 1-¢
(I-N+1)¢p'Cand [ IN (%) dj correspond to the cost share of robots and human

labor, respectively. Consequently, we can reformulate these expressions as follows:

(I =N+~ =57

N 1=¢
Wy . aT
— dj =S
/1 (’Yj) / r

Therefore, L can be reformulated as follows:

(—o

L=A-Y(i) [SAZ + Sﬂ Wl
ST =
=A-Y(i) | +1] W (44)
ST
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We derived the optimal value of K in Appendix D.3, given by K = Y (i) R~?. Conse-
quently, we complete our derivation of % as follows:

(—o

L AYO[g ] T W
K Y (i) R~
(—o
A-[ +1}1 W<
_ —

Thus, the expression for d(+£) /% is given below. This concludes our derivation of .

(—o

(—0o
w,) 7| ST (we )\ e wo\ 7 i=¢
V() () +1] - ()7 [ 1]
¢—o
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L Appendix: Tables and Figures
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