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Abstract 
 
This thesis examines, quantifies, and ranks the influence of various factors of activity, 

structure, and intensity on passenger transport energy consumption to assess the progression 

of energy efficiency. For this purpose, four logarithmic mean Divisia index (LMDI) 

decomposition analyses are conducted employing continuous data from 2000 to 2016, one 

each for the land passenger transport sector and one for the LDV sector. In particular, the 

question of to what extent gross efficiency gains can be attributed to technical efficiency 

improvements versus behavioral factors is answered. The analyses on land passenger 

transport solely feature gross energy intensity, whereas the subsequent analyses on LDV 

energy consumption further decompose gross efficiency into fuel share, average occupancy, 

and technical energy intensity. Beyond that, population factors are introduced to obtain 

results normalized per capita. The results of the full decomposition analyses highlight that 

technical energy efficiency enhancements are always substantially offset by behavioral 

factors, such as passenger activity per capita or LDV average occupancy. What is more, modal 

split is of the least significance even though it holds an enormous energy savings potential. 

However, passenger transport energy consumption per capita decreases throughout all 

scenarios. Ultimately, a successful policy response must address behavioral and personal 

utility factors since measures exclusively focused on technical energy efficiency improvements 

are likely to induce rebound effects. 
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1. Introduction 
 

In the face of climate change, our societies are confronted with the generational task 

of curbing GHG emissions in order to halt global warming. While the political debate 

is often dominated by decarbonization concerns (i.e., the switch to lower or no 

carbon fuels), energy efficiency often falls short in this discussion. And yet, the IEA 

(International Energy Agency) views energy efficiency as the first fuel of all energy 

transitions. (IEA, 2019) The benefits of energy efficiency are numerous. Improved 

energy efficiency not only lowers consumer spending, which may lead to a 

redirection of consumer spending to other (potentially more value-creating) 

economic sectors, but also reduces import dependency of resource-poor countries, 

thereby increasing energy security. (IEA, 2013, 2018, 2019) After all, non-consumed 

energy due to energy efficiency is carbon-free by default, and associated externalities 

with energy use and production decline accordingly. (IEA, 2018) However, the overall 

rate at which technologies and processes become less energy intensive is slowing, 

and structural and behavioral factors are further limiting gross efficiency gains. When 

technologies become less energy intensive, this often leads to rebound effects, i.e., 

purchased devices or machines become larger or more powerful or are simply used 

more, thus offsetting technical efficiency gains. Therefore, barriers to energy 

efficiency play a decisive role in translating technical efficiency gains into ultimately 

less energy consumed. (Craglia and Cullen, 2019; IEA, 2013, 2019) According to the 

IEA, of all energy sectors, the transport sector comprises the biggest potential for 

cost-efficient energy intensity improvements, accounting for around 27 % of global 

final energy consumption in 2010. (Craglia and Cullen, 2019; IEA, 2013, 2018)  

This thesis decomposes drivers and impediments to energy consumption of 

passenger transportation in Germany and the Netherlands from 2000 to 2016. This 

happens by decomposing energy consumption into factors of activity, structure, and 

energy intensity by using a Logarithmic Mean Divisia Index (LMDI) approach. In doing 

so, an additional population factor is introduced to exclude fluctuations in 

population. The countries and time periods to be studied are selected primarily for 

reasons of data quality and availability. Four index decomposition analyses (IDA) are 

performed. Two per country, including one focusing on the land passenger transport 
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sector and one on the LDV (light duty vehicle) sector itself. Behavioral patterns are of 

utmost importance for energy efficiency outcomes, especially in the passenger 

transport sector, which is deeply embedded in our everyday lives and strongly shaped 

by our everyday decisions. Generally, there are few studies on decomposing energy 

demand in the passenger transport or LDV sector, and none do both. Jiang et al. 

decompose GHG emissions of the US passenger and freight transport sectors (Jiang 

et al., 2022), and Jennings et al. decompose energy consumption and related 

emissions of the Irish passenger transport sector (Jennings et al., 2013). For the LDV 

sector, there are more examples, such as Dennehy and Ó Gallachóir, who decompose 

energy and emissions of the Irish LDV sector (Dennehy and Ó Gallachóir, 2018), 

Craglia and Cullen decomposing LDV energy consumption in the UK (Craglia and 

Cullen, 2019) and (Papagiannaki and Diakoulaki, 2009) decomposing LDV emissions 

of Greece and Denmark (with it the only example of a two-country study). This IDA 

study is unique in the sense that two similarly developed neighboring countries are 

analyzed, allowing us to draw conclusions based on a related benchmark. Moreover, 

in contrast to the mentioned studies, this thesis decomposes energy consumption of 

the passenger transport sector and the (therein included) LDV sector with respect to 

the base year but also interjacent years to account for interim fluctuations. Besides 

that, all energy units are in J to facilitate inter-fuel comparisons, and data on vehicle 

fuel economy most commonly stems from type approval ratings which must be 

corrected for real-world consumption (Craglia and Cullen, 2019; Dennehy and Ó 

Gallachóir, 2018), whereas this study employs associated data in a top-down 

approach. 

The primary aim of this thesis is to investigate the evolution of energy efficiency in 

the land passenger transport sector and determine the relative contributions of the 

underlying factors by the example of Germany and the Netherlands. After outlining 

the background and scope, the first objective is to develop a comprehensive 

understanding of the concept of energy efficiency and its implications in the context 

of passenger transport. This includes exploring the various dimensions but also 

drivers and barriers of energy efficiency and examining its relevance to sustainable 

development goals and environmental considerations. Additionally, it involves 

delving into the concept and expressiveness of energy efficiency indicators and 
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developing an understanding of how the underlying data is collected and ultimately 

validated. This theoretical review is consummated by the theory of decomposition 

analysis, also involving a review of variant decomposition approaches. After deducing 

the applied methodology, underlying efficiency indicators, and addressing concerns 

of data quality and sources, the LMDI IDA is applied to discern the various factor 

contributions to land passenger transport energy consumption. Given the limitations 

in the available primary data for passenger land transport, a secondary analysis 

concerning the LDV sector (representing the majority share in passenger transport 

energy use) is conducted, aiming to further decompound gross energy intensity into 

technical and usage efficiency and to explore the implications of an altering fuel 

share. In the course of the analysis, historical trends of the underlying indicators are 

analyzed, aiming to identify patterns and interrelations.  

The central question here is:  

 

How did energy efficiency evolve in the land passenger transport sectors between 

2000 and 2016, and, more importantly, to what extent can the energy efficiency gains 

be attributed to technical energy efficiency improvements versus behavioral factors?  

 

This question seeks to ascertain the relative influence of technological advancements 

and changes in passenger behavior on energy efficiency to infer the possible 

existence of a rebound effect. Based on existing literature and prior research in the 

field, the hypothesis that there is a rebound effect, with technical efficiency gains 

offset first and foremost by increasing passenger activity, will be tested. 

By achieving these objectives and addressing the central question, this thesis aims to 

contribute to the understanding of energy efficiency dynamics in the passenger 

transport sector and provide valuable insights for decision-making processes to 

promote sustainable and energy-efficient practices. 
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2. Theoretical Review 
 

2.1. Relevance of the Transport Sector and Scope of the Thesis 
 

The transport sector accounts for all energy consumed transporting people or goods. 

(IEA, 2018) Energy used in transport infrastructures – such as illumination in train 

stations or airports – should not be included and attributed to the tertiary sector. 

Therefore, the definition of the transport sector is quite different in energy 

consumption statistics from its definition in economic statistics. (ODYSSEE-MURE, 

2020) In 2018, transport accounted for roughly one fifth of worldwide energy 

demand, with an especially high reliance on oil, which supplies 92 % of its energy 

needs and is equivalent to 56 % of global oil consumption. (IEA, 2018) Transport 

activities are usually classified by the infrastructure type, thereby road, rail, air, 

water, and pipeline and further by vehicle types. Moreover, there is a distinction 

between passenger and freight transportation. So-called active modes of 

transportation – such as walking and cycling – are not considered here since they do 

not consume any commercial energy source even though they may account for 

sizable amounts of transport activity. (ODYSSEE-MURE, 2020) 

 
Figure 1: Worldwide Transport Energy Demand across Modes, adaptation from (IEA, 

2018) 
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As it can be seen in Figure 1, the road transport sector – comprised of LDVs (light duty 

vehicles, such as cars, vans, or light-duty trucks), HDVs (heavy duty vehicles, which 

include medium- and large-sized trucks), buses and motorcycles (which include two- 

and three-wheelers) – is of predominant importance with an aggregated share of 76 

% in worldwide transport energy demand. 

The recent decades have been characterized by a steady increase in demand for 

transport activities, driven – amongst other things – by an increase in population sizes 

and disposable incomes, accompanied by relatively low fuel prices and technology 

advances. Between 2008 and 2018, the distance traveled by passenger light-duty-

vehicles (PLDVs) increased by 3.1 % per year on average and the quantity of freight 

moved by road grew by 3.4 % annually (expressed in ton-kilometers). In contrast, the 

distance traveled by airplane passengers grew by 5.8 % per year.  

Across scenarios developed by the IEA, demand for passenger and good mobility is 

expected to rise substantially – with a doubling of traveled distance of PLDVs until 

2050. However, the transport sector offers a variety of energy-saving potentials, with 

its current high reliance on low-efficiency internal combustion engines. This includes 

friction reduction, vehicle weight reduction, downsizing, propulsion electrification, or 

intermodal shift. (IEA, 2018) 

When looking at passenger transport on a country level, international transport (such 

as cross-border traffic or international marine and aviation) is excluded. Therefore, 

domestic transport comprises all transport activities and associated energy 

consumption subject to the country’s territory, performed by vehicles registered in 

and outside of the country while also accounting for fuel quantities purchased abroad 

(i.e., fuel tourism). (IEA, 2014a) 

This thesis looks at the land passenger transport sectors of Germany and the 

Netherlands between 2000 and 2016. The selection was made largely owing to data 

quality and availability. Due to insufficient data quality, motorcycles are excluded 

from the analyses, which correspond to roughly 1.5 %  (of LDV energy consumption 

in both countries. (IEA, 2020a) Notwithstanding, domestic passenger transport 

(including motorcycles, navigation, and aviation) accounts for most of transport 

energy consumption compared to (domestic) freight transport. In Germany, it stands 

for around 72 % and in the Netherlands for around 66 % of total domestic transport 
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energy consumption, with little variance over the years. Land passenger transport 

(excluding motorcycles), on the other hand, accounts for around 95 and 98 % of 

passenger transport energy demand in Germany and the Netherlands. (IEA, 2020a; 

ODYSSEE-MURE, 2023) Therefore, the land passenger transport sector is a significant 

driver in energy demand and, thus, a powerful lever to enhance economy-wide 

energy efficiency. For 2000, 2009, and 2016, the passenger land transport sector (i.e., 

LDVs, busses, and passenger trains) accounts for roughly a third, 39 % and 41 % of 

TFC of oil products1 and around 16 % of total TFC in all periods in Germany. The entire 

domestic transport sector is responsible for around 24 % of Germany’s TFC. In the 

Netherlands passenger land transport stands for 29, 28 and 27 % of TFC of oil 

products and around 10 % of overall TFC. Here, entire domestic transport is 

responsible for approximately 18 % of the country’s TFC. (IEA, 2020c) Notably, 

passenger transport energy consumption per capita only decreased slightly in the 

observed periods, with a 3.3 % decrease in the Netherlands and 1.7 % in Germany. 

At the same time, passenger kilometers per capita decreased by 6 % in the 

Netherlands but increased by 11.9 % in Germany. (IEA, 2020a) In both countries, land 

passenger transport is clearly dominated by LDVs, representing approximately 95 % 

of energy consumption and respectively 84 % (Germany) and 83 % (Netherlands) of 

passenger kilometers. (IEA, 2020a) Whereas both are subject to a slightly positive 

trend in Germany, in the Netherlands, the share in energy increased whereas the 

share in passenger activity decreased. 

At first glance, one notices that LDVs are dominant but comparably significantly less 

energy efficient than buses or trains, as LDVs are responsible for much more of the 

total energy consumption than passenger activity. Also, we can see that land 

passenger transport is overly reliant on crude oil products, and its energy 

consumption per capita reduced only slightly. These presented metrics provide us 

with a first understanding of the economic importance of passenger transport and 

underlying trends. However, to provide sound policy-relevant insights, we must first 

understand the term energy efficiency itself to identify key drivers of passenger 

energy consumption after that. 

 
1 excluding Biofuels 
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2.2. Efficiency in the Passenger Transport Sector 
 

2.2.1. The Role of Energy Efficiency 
 

Energy efficiency is an intuitively understandable yet hard-to-clearly define term. 

(IEA, 2014b) To illustrate this, one may think of two passenger cars that cover the 

same arbitrary distance. Car A is carrying one person and has a specific fuel 

consumption of 5 l/100 km, and the other car B is carrying four persons with a 

specific fuel consumption of 10 l/100 km. If we look at car A, it obviously uses less 

energy to cover the same distance. Is car A thus more efficient than car B? If we take 

the technical or mechanistic perspective, car A is more efficient as it uses less fuel to 

cover the distance. However, if we see this from a service- or overall- perspective and 

look at the fuel the cars use to move one person, car A uses 5 l/100 person 

kilometers (pkm). Car B, however, as four passengers occupy it, only uses 2.5 l/100 

pkm. In this case, a general statement regarding efficiency is hard to make, as car A 

could be more efficient in the latter terms if more passengers occupied it. In 

accordance with the efficiency indicators used by the ODYSSEE-MURE project, we 

can speak of technical efficiency in the first case, as it does not consider usage 

behavior, whereas we can speak of gross or overall efficiency in the second case, as 

it does take usage behavior into account. (ODYSSEE-MURE, 2020) Therefore, human 

behavior plays a decisive role in energy consumption. The human dimension can 

catalyze and amplify technology-based energy savings but can also cancel out 

technical energy savings. (IEA, 2014a) 

Historically, the relevance of energy efficiency started to grow in the 1970s due to 

the prevailing oil crisis, with oil prices reaching all-time highs. Back then, the primary 

purpose was to reduce energy demand to import fewer energy carriers. Once the oil 

crisis fainted, so did global awareness of energy efficiency. Especially since 2010, 

alongside climate change awareness, the political and market perception of energy 

efficiency has experienced a revival. (Chlechowitz et al., 2022)  

 

For the energy supply of an economy to be overall sustainable, the three dimensions 

of the so-called energy policy triangle must be fulfilled. Namely, Security of Supply, 
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Environmental Sustainability, and Energy Affordability. In real politics, this often 

becomes an energy trilemma, as rarely all three dimensions can be satisfied 

simultaneously. If we think of the rapid expansion of decentralized renewable 

electricity production, this indeed adds to improved energy security and 

environmental sustainability. However, due to often necessary electricity 

infrastructure expansions, this may lead to an increased cost of electricity, thus 

impairing the dimension of affordability. This holds true for many other energy policy 

interventions. Improved energy efficiency reduces energy consumption, while 

providing the same amount of energy service, and thus it is recognized as the 

cheapest and cleanest energy source. There is a growing recognition that energy 

efficiency improvements are of the cheapest, proven, and readily available means of 

achieving the goals of the energy policy triangle. (Chlechowitz et al., 2022; IEA, 2013, 

2014a) 

 

Energy efficiency as a market 

As with other energy resources, energy efficiency activity happens as part of a 

market, with forces on the demand and supply side. In its most basic form, 

investments are made in energy efficiency, leading to avoided energy use. However, 

this market is more diffuse and localized, as it is not traded as a commodity in the 

same way as traditional fossil fuels, like oil or gas. Still, there are parallels, yet it is 

much more difficult to directly measure markets for energy efficiency, as otherwise 

available information, such as trade volumes, extraction rates, or exchange-traded 

prices, are unavailable. The market is as diffuse as consumption patterns themselves. 

Describing the energy efficiency market in terms of drivers of supply and demand 

helps reveal its key factors and shows how interactions lead to investments and 

outcomes. Here, the broader economic environment is particularly sensitive to 

energy prices, and government policy interventions play a predominant role. 

 

A cost-effective supply of energy efficiency can be defined as investment 

opportunities where the sum of benefits (i.e., avoided energy consumption) 

outweigh the investment costs. Therefore, the saved energy can be described in 

terms of physical energy quantities not consumed. Hereby the used physical units are 
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interchangeable and depend on the context. Those avoided units of energy can be 

equated or directly substituted with supply-side energy commodities. Therefore, 

energy efficiency improvements can be quantified as a resource that provides the 

same level of service while avoiding a portion of the energy otherwise consumed 

without the efficiency improvement. Hence, energy efficiency is a domestically 

produced energy resource with a mostly local market. However, it is important to 

account for transformation and transmission losses when comparing final 

consumption (demand side) with primary energy (supply side). 

 

When assessing potential returns on investments, further complicating factors are 

the differences between annual and cumulated avoided energy demand and the 

respective current and expected future energy prices. An upfront investment in a car 

with improved fuel economy – for instance – will produce an annual quantity of 

avoided fuel use over the car’s lifetime. Therefore, understanding the lifetimes of a 

technology is crucial for energy efficiency investments. This implies similar 

considerations as with an investment decision for an electricity powerplant. A 

number of investment opportunities may be arranged in cost curves, which may be 

more or less economically viable at today’s energy prices. Expressing energy 

efficiency’s supply this way can usefully present the potential for avoided energy use 

in an economy. At an aggregate level, this can be considered as reserves of avoided 

energy consumption, analog to the world’s stated reserves of coal or oil. The 

economic reserves expand when the cost of producing a unit of saved energy use 

diminishes or the cost of another energy supply option increases. 

 

However, the energy efficiency demand/supply relationship is characterized by 

various market and behavioral failures, widely recognized to deter demand and thus 

investment. Still, demand is driven by the four factors of price, policy, consumer 

preferences, and multiple benefits in particular. Energy prices can be identified as a 

clear driver. Nonetheless, the market response often lags behind price movements 

by a considerable amount. Government policies can stimulate demand for energy 

efficiency and are driven by various considerations, such as improving trade balances, 

meeting energy security objectives, or greenhouse gas emission reduction. As a 
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driver of demand, policies are especially relevant when price signals are ineffective. 

Generally, these policies aim to adjust the relative cost of more efficient options and 

attract investment. This primarily takes place as direct regulation (e.g., minimum 

energy efficiency standards), economic incentives (i.e., taxes or subsidies), provision 

of information (e.g., through efficiency labels), and promoting R&D efforts. Next to 

price and policy, consumer preferences and multiple benefits are considered as main 

drivers of demand for energy efficiency. Energy consumers encompass a wide range 

of economic and societal backgrounds, and consumption decisions can be influenced 

by personal preferences or utility factors in addition. Consumers seeking more energy 

services from a limited level of energy supply or consumers subject to limited energy 

access are also of importance. (IEA, 2013) 

 

Multiple Benefits of Energy Efficiency 

Moreover, saving energy while maintaining the level of energy service is 

accompanied by a myriad of non-energy benefits that greatly exceed the value of the 

avoided energy itself. Those include benefits of economic, environmental, and socio-

economic nature. Hence, the associated benefits can aid in meeting various policy 

objectives. Improved energy efficiency contributes to enhanced energy affordability, 

reduced environmental damage, improved well-being and health, stronger trade 

balances, improved national competitiveness, and enhanced energy security and 

resilience at last. Beyond that, it can support international public goods, such as 

climate change mitigation efforts, and generally reduce resource consumption. With 

that said, multiple benefits can act as key drivers of demand for energy efficiency 

itself by altering how the returns of energy efficiency investments are valued. To 

exemplify this, politicians may pay more attention to the fact that improved energy 

efficiency lowers public expenditure on health or GHG mitigation efforts rather than 

reducing consumer expenditure on energy. 

 

Prevalently, energy professionals measure the outcome – or benefits – of energy 

efficiency interventions in purely energy terms, even though a monetary value can 

be applied to those non-energy benefits. Quantifiable non-energy benefits of 

reduced energy demand include, amongst others, the financial benefit of not 
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expanding electricity generation and transmission infrastructure to meet the else 

additional demand or redirecting consumer spending to other economic sectors due 

to decreased expenditure on energy. However, including those various factors 

substantially increases the complexity of assessing the value of avoided energy 

consumption. (IEA, 2013) 

 

Barriers to Energy Efficiency 

Energy-smart behaviors, practices, and choices play a fundamental role in allowing 

for additional sources of energy savings while ensuring these savings’ persistence into 

the future. As mentioned earlier, numerous behavioral and market failures 

discourage energy efficiency demand and investment. On that account, these human 

and market dimensions are mainly responsible for the well-known gap between 

potential and actual levels of energy efficiency. Conversely, energy savings achieved 

from technical energy performance improvements can be canceled out by negative 

behavioral factors, which is commonly referred to as rebound effect. If a car is more 

fuel efficient, the variable driving costs per km decrease accordingly, which may 

encourage consumers to drive more. Companies may also utilize the capital saved on 

energy to expand production, or households may use more energy services to 

improve their living standards. Thus, the rebound effect is not necessarily a net-

negative effect, as it may have a net-positive impact if the resulting improvement in 

living standards, health, and productivity is considered in addition to decreased 

energy savings. Yet, a substantial share of potential energy savings may be achieved 

through low-cost or no-cost behavioral changes rather than requiring more complex 

investment decisions. (Chlechowitz et al., 2022; IEA, 2014a; Laitner, J.A., Ehrhardt-

Martinez, K. and McKinney, 2009; Ugarte et al., 2016) The entirety of those barriers 

are, in principle, mechanisms that inhibit a decision or behavior which is energy 

efficient and economically efficient at the same time, and the subject matter of non-

realized investments in energy efficiency with a positive net present value is 

commonly referred to as “energy efficiency gap”. (Chlechowitz et al., 2022; Hausman, 

1979; Sorrell et al., 2006) In the academic discussion on this matter, several schemes 

to categorize those barriers emerged. Mostly, taxonomy follows behavioral, 

organizational, and economic (or market) barriers. Other approaches distinguish 
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between market and non-market barriers, which is particularly of interest for 

policymakers as the identification of market failures helps justify policy interventions 

to overcome such. (Brown, 2001; Chlechowitz et al., 2022; Hirst and Brown, 1990; 

Ordonez et al., 2017; Sorrell et al., 2006) 

 

Market barriers 

Market failures tend to extenuate price signals and can increase an energy-saving 

technology’s perceived costs and risks. Behavioral preferences, such as avoiding a 

perceived inconvenience, can discourage the uptake of new technology even in cases 

where financial benefits are clear. Altogether, this is considerably hampering the full 

potential of cost-effective energy efficiency improvements. In the literature, four 

main market failures have been widely identified. (IEA, 2013; Ryan et al., 2011) These 

include imperfect information, asymmetric information, the principal/agent 

problem, and externalities. Since energy efficiency comprises a wide range of 

products and services, accurate and sufficient information on energy performance 

can be difficult to obtain easily and at low cost. Additionally, it can be hard for 

consumers to separate energy efficiency from other attributes of a product or 

service. Thus, optimal investment decisions are often impaired by information not 

produced or provided in a sufficient manner by the market. (IEA, 2013) It could be 

demonstrated in studies about the impact of efficiency labels that consumers quickly 

adopt the most efficient technology when properly informed about appliance 

efficiency. (IEA, 2014a)  

Information failure also occurs when parties to a transaction have access to different 

levels of information on the subject of the transaction. Typically, the manufacturer 

may know more about the actual energy performance of his product, or energy 

suppliers may withhold information on future supply risks or costs unknown to 

consumers. A principal/agent problem comprises a market failure encompassing split 

incentives and asymmetric information at once. A good example is the relationship 

between the landlord (principal) and the tenant (agent), as they are subject to 

misaligned responsibility and authority regarding energy consumption and efficiency 

investments. This may also arise in firms due to organizational arrangements, such as 

different budgets for operational energy costs and capital investments in energy 
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equipment. Further, energy consumption and generation impose a cost on society 

and decrease social welfare. When the causer does not bear the costs, and those are 

thus not involved in his private cost function, this results in higher energy 

consumption – and thus lower energy efficiency – than socially desirable. (IEA, 2013)  

 

Non-market barriers 

On the other hand, there are non-market failures, which help further understand the 

energy efficiency gap. Those can be of financial, organizational, or behavioral kind. 

Financial non-market barriers comprise financial access, hidden cost, heterogeneity, 

and risk and uncertainty. As investments in energy efficiency are typically 

characterized by high upfront costs, access to external capital is often of relevance. 

One impeding factor is potentially high interest rates, and similarly to the 

beforementioned market failures, the relationship between debtor and lender may 

be characterized by information asymmetries on the performance and thus credit 

risk of the investment. Within companies, such investments may be perceived as less 

attractive due to their relatively long payback period. Beyond potential hidden costs, 

such as costs for administration, finding information, seeking capital, and installing 

the new technology, but also opportunity costs – i.e., when the perceived energy 

services of the more economical technology are inferior, such as slower acceleration 

of a more fuel efficient car – may be hidden to the observer but not to the investor. 

(Chlechowitz et al., 2022; Gillingham and Palmer, 2013; Schleich, 2009) Moreover, 

consumers are heterogenous and thus have different preferences, capital costs, and 

expected use of the energy efficient good or service. Hence, a more energy efficient 

technology may be cost-efficient for most consumers, but not all. Therefore, it is 

essential to recognize this when designing policies, measures, and products. (Cagno 

et al., 2012; Chlechowitz et al., 2022; Gillingham and Palmer, 2013) Investment 

decisions are generally associated to some extent with risks and uncertainty. In the 

context of energy efficiency, those especially lie in the uncertainty about future 

energy prices, technological risk, and uncertainty about future regulation. If future 

energy prices lie below a certain threshold, the investment may prove unviable. 

Similarly, the more efficient technology may prove to be more unreliable or may 

incumbent higher maintenance costs. On top of that, uncertainty about future 
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regulation may increase the option value, and thus the investment may not be 

materialized in anticipation of future grants or subsidies. (Chlechowitz et al., 2022; 

Schleich, 2009; Thollander et al., 2010) 

 

Organizational barriers mainly lie within the distribution of power and the culture in 

an organization (such as a company). Here, divisions responsible for energy topics 

may lack power which in turn leads to deficiencies in the implementation of energy 

efficiency measures. This is also strongly influenced by the company’s corporate 

culture.  

 

Conversely to the basic premise of neoclassical economics, consumers – be they 

individuals or companies – are not always rational decision-makers that strictly 

choose, based on all information available, the optimal solution that maximizes their 

utility and, thus, profit. When a consumer is faced with a decision to procure a 

technology or service with enhanced energy performance, several behavioral 

backgrounds are involved. Behavioral and organizational economics suggest that the 

assumed rationality of an agent is impaired by inattentiveness and cognitive limits, 

which may lead to inadequate processing of information or biases. This phenomenon 

is referred to as bounded rationality and suggests that individuals would rather 

satisfy than optimize their decisions by relying on heuristics or rules-of-thumb to 

simplify decision-making processes. Hence, opportunities for increased energy 

efficiency may be neglected even with present access to perfect information and 

incentive structures. This may partly account for the betimes relatively low priority 

conceded to energy efficiency when facing a consumption or investment decision. 

For instance, consumers may overvalue the price or delivery time of a car while 

largely ignoring its life-cycle cost. 

 

For the consumer, it too plays a role from where and in which form the information 

on the subject of the decision comes, as people tend to be selective about attending 

to and assimilating information. In doing so, the form and design of information plays 

a vital role in the receiver assimilating and remembering the information. Moreover, 

potential distrust and incredibility may arise depending on the provider of the 
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information. Relevant factors here are the nature of the information provider, as well 

as past experiences and the mutual relationship. Generally, information is considered 

more trustworthy when it stems from contacts within the own social and professional 

network, which may hold a partial explanation for the often very influential role of 

consultants and sectoral organizations. (Chlechowitz et al., 2022; Sorrell et al., 2006; 

Thollander et al., 2010) 

 

Beyond this, personal values play a role in decision-making as well. Values may not 

present an inherent barrier to energy efficiency; however, values play an underlying 

role in the context of energy conservation measures. Of particular relevance here are 

environmental concerns, moral commitments, and cooperativeness, which can serve 

as reliable predictors for the implementation of low-cost energy saving measures, 

but this relationship weakens with the cost of the measure increasing. Similarly, the 

personal values of higher-level decision-makers in a company may reflect in an 

increased sensitivity to energy efficiency opportunities and vice versa. (Chlechowitz 

et al., 2022; Sorrell et al., 2006; Stern and Aronson, 1984) Ultimately, individuals and 

companies often prove to be plainly reluctant to move from the status quo. A well-

known example of this phenomenon is the studied consumer behavior in the 

electricity market. Even when there are lots of tariffs to choose from in the liberalized 

European end-user electricity market – with corresponding money-saving 

opportunities – many consumers are content staying with their supplier rather than 

switching to a new one. Consumer inertia tends to get enhanced with an increasing 

number of potential choices and increasing risk and uncertainty. In a study on the 

Swiss residential sector, it was demonstrated that increased uncertainty about future 

energy prices paradoxically increases the preference for the status quo compared to 

investments in improved energy efficiency. (Alberini et al., 2013; Chlechowitz et al., 

2022; Hartman et al., 1991) 

 

To conclude, policy and price are two of the most important drivers for creating 

market signals that influence demand for energy efficiency investments. Beyond that, 

energy prices are just one of the factors influencing the intensity of energy 

consumption, and its precise relationship with energy efficiency outcomes is not 
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straightforward. Reasons are – amongst others – inertial effects in the economy, slow 

turnover of capital stock, and general delay between price effects and induced 

innovation. Policy interventions can address market failures and technical barriers, 

along with behavioral and organizational barriers that may reinforce existing market 

failures. Regulation, information provision, and economic instruments often must be 

combined to overcome particular barriers facing energy efficiency. (Birol and 

Keppler, 2000; IEA, 2013; Popp, 2002; Ryan et al., 2011) 

 

2.2.2. Assessing Energy Efficiency 
 

As established in the previous chapter, relatively higher energy efficiency can be 

defined as delivering the same level of energy services while using less energy. A 

common way to observe to what extent energy is efficiently used is the use of 

indicators or energy efficiency indicators (EEI). An indicator can be said to be any of 

various statistical values that provide an indication, be it an absolute value, a ratio, 

or other compounded values. (IEA, 2014a) Fundamentally, EEI help demonstrate that 

one thing is more energy efficient than another or that the degree of energy 

efficiency of something changed over time. Therefore, EEI can be expressed in 

absolute units, in ratio terms, or as percentages, whereas ratio terms are most 

commonly used. The usual composition of ratio terms is with energy consumption as 

numerator and activity data as denominator, analog to energy intensities. In other 

cases, the inverse is used, such as liters per 100 kilometers with cars. (IEA, 2014b) 

 

EEI have multiple objectives. They organize information and analyze interactions 

among economic and human activity, energy consumption, and emissions. (IEA, 

2014a) Therewith, they help understand trends and thus provide market insights. 

They can aid in benchmarking (e.g., for cross-country comparisons) and monitoring 

of targets and the impact of policy measures. In this way, EEI can help create policy 

roadmaps for the future, improve information dissemination, and help to measure 

the multiple benefits of energy efficiency. (ODYSSEE-MURE, 2020) In doing so, 

indicators have different levels of aggregation, such as the whole transport sectoral 

energy intensity (e.g., energy consumption per passenger kilometer over all traffic 
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modes) or the average unit consumption per kilometer of gasoline cars as examples 

of high and low aggregation. (IEA, 2014b) 

 

Information from energy balances is often readily and widely available and thus well-

suited to develop aggregate indicators. Those reveal high-level developments in 

energy consumption in simple terms and therefore provide a general idea of trends 

in energy consumption. Their usefulness is limited, however, as they can generate 

misleading results when not sufficiently contextualized. Many other possible factors, 

such as activity and structural variables, can have significant influences on aggregate 

EEI. Hence, aggregate indicators are useful to describe trends but cannot explain the 

trends observed. For instance, if we look at the energy consumption of all buses in a 

country, it shows us that the overall efficiency of buses in that country is changing, 

but a decrease does not necessarily imply an improved energy efficiency from a 

technical viewpoint. It could just have been that there are now fewer buses 

operating, with nevertheless more energy consumed in relation to the individual bus; 

or that the average bus’s activity (i.e., kilometers traveled) was decreasing, but not 

the specific energy consumption. Therefore, more detailed data is required to grasp 

the key drivers of energy consumption and thus to better assess the progress in 

energy efficiency to provide policy-relevant analysis. In a generalized way, EEI 

consider three main external factors to describe the links between human and 

economic activities and energy consumption. Those are measures of activity (such as 

the volume of passenger transport), measures of structure (such as changing modal 

shares in transport), and measures of energy intensity (generally the energy 

consumption per one unit of activity). (IEA, 2014a, 2014b) 

Indicators can be arranged into a hierarchy – or pyramid – with data requirement 

increasing alongside disaggregation level, as visualized in Figure 2. 
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Figure 2: Energy indicator pyramid, adaptation from (IEA, 2014b) 

This hierarchy shows how detailed changes at the lowest level (which may be the 

result of policy, technological progress, structural changes, or behavioral change) are 

linked to an indicator of higher order, showing how the former affects the latter. By 

this means, more aggregate changes in energy consumption can be better explained 

in terms of its components, and it thus aids in choosing the adequate level of depth 

of the performed analysis. 

However, with more disaggregated EEI – next to increasing data requirement – the 

complexity of reaggregating the data to a higher-level increases as well. Having said 

this, descending the indicator hierarchy provides better measures of energy 

efficiency with regard to a specific sector/sub-sector, end-use, technology, or 

process. Associated with the respective energy intensities, there are activity and 

structural variables. The latter is necessary to weigh the respective intensities while 

forming the aggregate. When we conflate this information with economic and 

demographic data, we can already identify factors behind improving energy 

efficiency, but also factors that restrain it. Notwithstanding, it is also possible to 

develop CO2 indicators where the same objectives and limitations apply as with 

indicators devoted to analyzing energy efficiency. 

Each indicator has its purpose and limitations in what it can explain. Providing an 

accurate picture requires a set of several indicators that together deliver a strong 

basis for policymaking. Therefore, it is important to choose which indicators to give 

priority to. Indicator selection is based on the type and quality of data available, the 

resources available, and ultimately on the policy question sought to be answered. 
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Beyond that, selecting and developing indicators is only the first step in analyzing the 

context of energy use in a specific sector or country and in drawing initial conclusions 

on how to interpret the influence of past trends on future development. 

Ultimately, understanding to what extent technical energy improvements have been 

(or have not been) responsible for the observed changes in final energy intensity in a 

sector or country is one of the most important issues from an energy policy 

perspective. This is mostly done using a decomposition approach, which separates 

and quantifies the impact of changes in activity, structure, and other exogenous 

factors. (IEA, 2014a) The theory and applications of decomposition analyses will be 

further elaborated in section 2.3. of this thesis. 

 

2.2.3. Energy Efficiency in the Passenger Transport Sector 
and Expressiveness of Data 

 

How to get from energy balances to meaningful EEI 

As already delineated in paragraph 2.1., in the context of energy balances and EEI, 

the transport sector refers to the energy consumed solely for transporting people 

and goods, thus passenger and freight transport. Accordingly, energy consumed 

within transport infrastructure or fuels used for other reasons (such as off-road use, 

use in stationary engines, pipeline transport, or military purposes) is excluded and 

attributed to the respective economic sectors. Even so, the transport activity 

considered here is not linked to any specific economic activity or (sub)sector. 

Moreover, only transport activity using a commercial energy source is considered 

here. Consequently, so-called active modes of transportation – such as walking or 

cycling – are excluded, even though they may account for sizable amounts of 

transported passengers. For the analysis of individual countries, only transportation 

within national borders is considered, further excluding energy consumption from 

cross-border traffic and international aviation and marine bunkers. At the level of 

national energy balances, transport is generally disaggregated into four sub-sectors 

as per the type of infrastructure: road, rail, domestic aviation, and domestic 

navigation. For the sake of perspicuity, in this thesis, the term sub-sector is used for 

the higher level of aggregation (e.g., road or rail), and mode or vehicle type for the 



20 
 

lower level of disaggregation (e.g., LGV or bus), as each sub-sector is characterized 

by a number of different modes and vehicle types. Further, the distinction between 

passenger and freight transport within each sub-sector is of utmost importance, as 

respective activity and energy consumption are driven by very different factors in 

those two segments. (IEA, 2014a, 2014b, 2020b) 

 

In the collection of data and development of energy balances, it is inherently intricate 

to attribute energy consumption, as well as activity data to a single country. This 

holds especially true considering that international transport is a significant 

contributor to global transport energy consumption and emissions, against the 

background of the ubiquity of free cross-border flow of people and goods in the 

European Union across open borders. This gets further aggravated by the widespread 

phenomenon of fuel tourism, where motorists refuel in adjacent countries since fuel 

prices vary across borders, mainly owing to different levels of fuel excise duty. Due 

to considerable fuel price differentials, fuel tourism has visible effects, leading to 

national consumption statistics (based on fuel sales or taxation) not matching 

national activity data. The common practice applied by statisticians to enable cross-

country comparability of energy balances is to include consumption of foreign 

vehicles on the country’s territory and to exclude consumption of nationally 

registered vehicles abroad while simultaneously correcting the amount of consumed 

energy for fuel tourism. Common methods for this are cross-border traffic estimation 

practices, which typically rely on counting vehicles crossing the border and 

interviewing drivers at service stations. Estimating the extent of fuel tourism is 

additionally supported by collecting and comparing fuel price data across countries. 

Despite all this, vehicle activity data –mainly gathered through odometer reading 

during regular vehicle safety inspections and national surveys – includes the activity 

of nationally registered vehicles abroad but excludes the activity of foreign vehicles 

on the territory. A common assumption lies in the two volumes compensating for 

each other. However, in reality, this is not necessarily correct. Possible explanatory 

factors for cross-border traffic are differentials in income, prices, industry 

production, and tourism between the countries. Therefore, to have a more accurate 

match between national activity and energy use data, kilometers traveled on the 
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national territory by foreign vehicles, and kilometers traveled abroad by domestic 

vehicles would have to be estimated with the aid of other data sources, such as 

statistics on tourism for passenger transport. However, such data does not always 

exist; if it does it may not have a harmonized methodology from one country to 

another. (IEA, 2014b) 

 

Energy Efficiency in Passenger Transport 

Coming from data acquisition and processing in the overall transport sector in 

composing EEI, we now talk about further disaggregation and sources of data in the 

context of passenger transport - according to the scope of this thesis defined in 

section 2.1. - and about which indicators to use to comprehensively examine the 

influence of the three established main external links between human and economic 

activity and energy consumption. 

 

As established earlier, passenger transport includes the movement of people within 

the sub-sectors of road, rail, water, and air, while road and rail are of special interest 

here, standing for land passenger transport. Therefore, passenger transport by air or 

water is disregarded. Disaggregation in the road sub-sector usually happens by 

powered two- to four-wheelers (i.e., powered road vehicles not exceeding 400 kgs), 

passenger light-duty vehicles (LVDs, i.e., vehicles carrying up to eight persons, such 

as cars, minivans, SUVs, and private use pickup trucks, but also special purpose 

vehicles such as rental cars, motor homes or ambulances) and buses (ranging from 

minibuses, designed to carry more than eight persons, to coaches). Passenger trains 

may be further disaggregated by vehicle type (such as trams or high-speed trains) or 

scope of transport activity (i.e., urban, regional, or long-distance rail). A further 

disaggregation into fuel type can be performed for each vehicle type. With this, trains 

may run on electricity, diesel, or steam, and road passenger vehicles may run on 

gasoline, diesel, electricity, or others, such as CNG, LNG, or biofuels. 

However, the level of disaggregation provided by national statistics depends on the 

structure of passenger transport in each country and, ultimately, on the availability 

of detailed data and resources available to develop indicators based thereon. Owing 

to its prominent role in passenger activity and energy consumption, data and 
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indicators concerning the road sub-sector are typically more sophisticated than for 

other sub-sectors. The following analyses build on the disaggregation of the land 

passenger transport sector into passenger LDVs, buses, and trains, in line with the 

classifications stated above. Powered two- to four-wheelers are excluded. This is 

mainly due to poor data quality and a relatively low significance for activity and 

energy use in the countries considered. Therefore, when referring to the passenger 

transport sector, this aligns with the aforementioned delimitations. (IEA, 2014b) 

 

Frequently used Indicators 

When we now look at trends in passenger transport energy consumption, those are 

driven by a myriad of influencing factors. Among those are changes in the size and 

density of population, changes in land-use sprawl, transport infrastructure, travel 

patterns, disposable income, vehicle ownership and occupancy rates, as well as 

consumer preferences and average fuel economy. (IEA, 2014a) Depending on the 

availability of data, the structure of the looked-at (sub-)sector, and the question to 

be answered, one may build very disaggregated indicators (such as the energy 

consumption per passenger kilometer for each vehicle type) or stay at a level which 

may be too aggregated to entail meaningful information for energy efficiency 

analysis, despite providing information on the considered sector, such as the share 

of buses in total passenger transport consumption. Similar to other end-use sectors, 

EEI on passenger transport can be defined using a hierarchical or pyramidal approach. 

Here as well, the lower on the pyramid, the more disaggregated energy and activity 

data is required. In its guide on fundamentals on statistics for the development of EEI 

(IEA, 2014b), the IEA arranges indicators into three levels of aggregation. Indicators 

on level one encompass absolute values and percentage shares, whereas lower-level 

indicators consist of ratio terms. 

 

At the most aggregated level – on top of the pyramid – indicators can provide first 

clues to the absolute and relative importance of passenger transport, and the relative 

reliance on various fuels. This can be expressed with respect to the overall economy, 

within passenger transport, or with regard to the overall transport sector. Even 

though those are not indicators of energy efficiency in the classical sense, they could 
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be relevant to assess to what extent passenger transport may be relevant for 

potential energy savings and simply to gain a first grasp of the subject matter.  

 

Level two indicators, by contrast, comprise energy intensities of yet superordinated 

nature. Three forms of intensity are here of relevance. We can look at energy 

consumption per passenger kilometer (pkm), vehicle kilometer (vkm), or per 

GDP/capita over the entirety of passenger transport. Having pkm or vkm as a 

denominator more closely relates to energy efficiency, representing ratios between 

energy consumption and activity data. Therefore, those are to be preferred. Yet, in 

the absence of better data, trends in GDP per capita are commonly used to estimate 

energy trends in passenger transport. Trends in energy intensity with regards to pkm 

are influenced by the technical energy efficiency of the respective transport modes, 

as well as by the share of those modes in a particular country (as different traffic 

modes are characterized by different passenger capacities). In other words, 

considering pkm takes usage efficiency into account. However, technical energy 

efficiency developments (also known as fuel economy) are not directly measurable 

as the relative importance of each mode is embedded into the indicator and, thus, 

hard to decompose without explanatory data. In contrast, expressing energy 

intensity per vkm provides insights into the technical efficiency but leaves out usage 

behavior. Combining energy intensities per pkm and vkm, however, overcomes the 

core limitations of both and delivers a more wholesome picture, which allows for 

determining the passenger load factor or occupancy rate (i.e., the average number 

of passengers per vehicle, which can be calculated by dividing pkm by vkm). 

Nonetheless, given the various influencing factors, no final conclusions can be drawn 

as to where efficiency improvements are achievable or more political focus is 

required. Similarly, results may be misleading when comparing different countries 

due to potentially hidden developments. Among those are the modal split, LDV 

ownership rate, but also population density, and public transport network. (IEA, 

2014a, 2014b, 2020b) 

 

Ideally, sound and informative EEI should be developed at the third level, featuring 

further disaggregation by sub-sector and preferentially by passenger mode/vehicle 
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type. Once again, energy intensities involving pkm or vkm are most appropriate 

here. These could address subsectors (such as rail or road as a whole), make the 

distinction between individual and collective transport across sectors, extend to 

vehicle types, or even distinguish by the type of service provided (e.g., urban or inter-

city service for collective transport or personal, public, or commercial ownership for 

LDVs) or a combination of type and category. In general, a higher level of 

disaggregation (by vehicle type) is recommended for the road sub-sector than for rail. 

Sub-sector intensities for rail are already helpful in assessing transportation policy 

options. Reasons therefore are the higher heterogeneity among road vehicles, as 

LDVs – for instance – generally have a much higher energy intensity per pkm than 

buses, owing to the much lower passenger capacity. Hence, the relative share of LDVs 

and buses may significantly impact road energy intensity. On that score, a 

differentiation between LDVs and buses is regarded as the minimum, which is 

generally performed by countries developing detailed indicators for road transport. 

Nonetheless, further disaggregation may be desirable or even required depending on 

the country’s structure of road transport and, crucially, the availability of data and 

resources. One could include two- and three-wheelers (which are of higher 

importance in developing nations), distinguish between passenger cars and light 

trucks (which is particularly relevant in North America), or distinguish by fuel types 

(which may yield further insights against the background of increasing shares of 

diesel LDVs in European countries). 

 

As a result, we can say that passenger transport energy consumption per pkm and 

vkm, decomposed by mode/passenger vehicle type are among the most expressive 

EEI to evaluate the energy efficiency within passenger transport. This allows us to 

compare different intensities across countries, indicating changes in driving 

conditions. Energy per pkm is helpful to assess the overall system efficiency (if 

specified at a detailed enough level), taking usage behavior into account, what also 

allows for – e.g. – evaluating programs that promote carpooling. However, important 

structural changes may still be hidden with limited disaggregation level, and there 

are still influential factors unrelated to energy efficiency, such as changing vehicle 

characteristics and features (e.g., increasing average vehicle tare weight or stronger 
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motorization). On the other hand, looking at energy per vkm, assessing fuel economy 

on a vehicle level is more relevant to assess policies aiming at improving the technical 

energy efficiency of vehicles, as it is not influenced by vehicle occupancy. 

Notwithstanding, when deepening an indicator’s detail resolution (i.e., 

disaggregation), more specified data is required for both the energy consumption 

and the respective activity, which in turn substantially increases the task’s 

complexity. 

 

Next to energy efficiency, there are numerous factors affecting passenger transport 

energy consumption that can provide vital information to better assess 

macroeconomic drivers of energy consumption. Among those are passenger travel 

activity, modal shares, car ownership, and annual vehicle mileage. Travel activity can 

provide insights into consumer trends in transport or provide a benchmark to 

understand the prospective evolution of travel. Furthermore, data on the modal split 

provide qualitative information on activity trends and on how a change in activity 

reflects in energy use. After all, modal shifts can also be thought of as measures of 

energy efficiency, given the substantial differences in energy intensity on a pkm basis 

across travel modes. Moreover, car ownership figures help explain the often 

observed increase in car travel and at the same time provide a sound basis for 

projecting future trends, whereas the combination with annual kilometers per 

vehicle allows assessing changes in travel patterns by providing useful qualitative 

information on activity trends. Combining both can even serve as a partial 

explanation for changing LDV occupancy factors. Overall travel patterns and 

kilometers per vehicle – and thus passenger load factors – are influenced by many 

diverse factors. Among them are the age profile of traffic participants, the number of 

vehicles per household and household size, disposable income, the flexibility of 

working and leisure activities, geographic characteristics, and local transport policies 

or the local availability of alternative modes of transport, respectively. For car 

ownership and travel activity, it is also worth examining the correlation between GDP 

and/or population size. Nevertheless, as with EEI, the actual informative value is 

ultimately related to the degree of disaggregation and, thus, the availability of 

detailed information. (IEA, 2014a, 2014b) 
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Data behind the indicators 

After having understood the delineations, explanatory power, but also limitations of 

passenger transport energy and activity data – and thus indicators – at the national 

level, it is now time to clearly define utilized indicators and to discuss how the 

underlying data are collected, how we obtain them, and what steps need to be taken 

to ensure data are substantive enough to make a decent cross-country comparison. 

After all, the key to establishing sound transport indicators is to ensure that 

boundaries and definitions match between activity and energy data. A major 

challenge for cross-country comparisons lies within the often non-harmonized data 

collection methods for transportation activity data. Any the less, to adequately 

capture the three main drivers of passenger transportation energy demand (activity, 

structure, and energy intensity), we need energy and activity data (therewith pkm 

and vkm) broken down by the total sector, by sub-sector, and ideally by vehicle 

type/transport mode. In addition, it is useful to have data on population size, GDP, 

and vehicle stock or annual mileage. (IEA, 2014b) For clarity, Table 1 below 

summarizes all indicators used on a country level with the associated definitions. 

Further indicators are derived from these. 

Table 1: Definition of Utilized Indicators 

Indicator Definition 

𝑇𝐹𝐸𝑖,𝑡 Total final energy consumption [TJ] of traffic mode i in year t. 

𝑝𝑘𝑚𝑖,𝑡 One passenger kilometer (pkm) represents the movement of one 

passenger over one kilometer. Therefore, pkmi,t is the total distance 

traveled by all passengers in the year t, summed up for all vehicles of 

type i. 

𝑣𝑘𝑚𝑖,𝑡 One vehicle kilometer (vkm) represents the movement of one vehicle 

over one kilometer. Therefore, vkmi,t is the total distance traveled by all 

vehicles of type i in year t. 

𝑚𝑖𝑙𝑒𝑎𝑔𝑒𝑖,𝑡 mileagei,t refers to the average distance performed of each vehicle of 

type i in year t. 

𝑃𝐿𝐹𝑖,𝑡 PLFi,t refers to the average number of passengers per vehicle of type i in 

year t. 

𝑆𝑡𝑜𝑐𝑘𝑖,𝑡 Stocki,t refers to all active (registered) vehicles of type i in year t. 

𝑃𝑂𝑃𝑡 POPt refers to the total population in year t. 

𝐺𝐷𝑃𝑡 GDPt refers to the GDP in year t in constant 2015 USD. 
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The relationships summarized in equations E1 and E2 must hold to ensure data 

consistency. 

 

𝑣𝑘𝑚𝑖,𝑡 = 𝑆𝑡𝑜𝑐𝑘𝑖,𝑡 × 𝑚𝑖𝑙𝑒𝑎𝑔𝑒𝑖,𝑡 (E1) 

𝑝𝑘𝑚𝑖,𝑡 = 𝑣𝑘𝑚𝑖,𝑡 × 𝑃𝐿𝐹𝑖,𝑡 (E2) 

 

Therefore, pkm can increase either due to an increased length of the average trip or 

due to more passengers per vehicle on average. 

Finding some kinds of data is undoubtedly easier than others when searching for 

data. This holds for both energy and activity data. As already outlined, the difficulty 

level in composing data increases alongside the degree of disaggregation. When 

compiling energy and activity data, there are generally four commonly applied 

methodologies: administrative sources, surveying, modeling, and measuring. All 

come with specific strengths and weaknesses. Beyond that, reporting countries often 

combine several methods to build proper sectoral indicators. Given the inherent 

complexity of the transport sector, applied practices do not homogeneously cover 

those four methodologies. 

GDP and population are among the most readily available data, as they are usually 

reported by administrative sources, such as national statistics offices. Similarly, total 

transport energy consumption can be obtained by drawing on administrative 

sources, such as national energy balances and statistics. However, mobility surveys 

or modeling approaches usually must be resorted when it comes to energy data with 

resolution down to sub-sector, segment, or vehicle type. Data on vkm are usually 

published by national transport ministries or transport databases and collected by 

employing measurement approaches, such as odometer readings during periodic 

roadworthiness testing or traffic counts. Nevertheless, they may also imply mobility 

surveys, modeling approaches, and using administrative sources. It is worth noting 

that when traffic is counted on the road, this includes foreign vehicles operating on 

national territory and excludes activity of domestic vehicles abroad, while details on 

vehicle characteristics often are lacking. In contrast, traffic measurements based on 

odometer readings only consider nationally registered vehicles while including their 

activity abroad. Odometer readings – next to providing higher detail resolution on 
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vehicle characteristics – have the additional advantage of directly measuring annual 

mileage. Data on pkm are commonly conflated from administrative sources and 

mobility surveys and are mostly published by national transport ministries or 

transport databases. Vehicle stock data is usually obtainable from national statistics 

offices, national and international databases, or vehicle registers based on 

administrative sources and/or measurements. However, the quality of vehicle stock 

data varies across countries and is betimes overestimated, and this mainly depends 

on the quality of scrappage statistics and how the reporting bodies deal with 

temporarily deregistered vehicles. (IEA, 2014b; ODYSSEE-MURE, 2020) 

 

Data validation 

Since EEI are used to assess the status of energy efficiency in a country, enabling it to 

define policies and measure their success, a thorough validation of the data is of 

utmost importance. Needless to say, data validation is vital for any basic data 

collection. However, validation must be even more solid as basic data is further 

elaborated when forming EEI. Given the variety of employed methodologies among 

the number of different data sources, which generally must be consulted when 

collecting data on the transport sector, verifying the data’s consistency is very 

important. Considering that lower-level EEI mainly comprise ratio terms of two 

variables, small uncertainties or errors in either can cause significant changes in the 

indicators’ trends and thus reduce the overall conclusiveness of monitoring energy 

efficiency. On the other hand, having a compound term of distinct variables allows 

verifying whether the relationship turns out as expected and thus contributes to 

assessing basic data. 

Therefore, a careful data validation process should include checking the data’s 

coverage and definitions, internal and external consistency, and ultimately, 

plausibility. Especially when drawing data from more than one source, it is of utmost 

importance to ensure that applied coverage and definitions – such as for sub-sectors 

and mode/vehicle type – match across sources. This includes defined boundaries of 

a sector and how periods are defined (i.e., whether the data refers to a calendar or 

fiscal year and whether the datapoint refers to a year-round average or an effective 

date). When deriving figures from different sources, internal inconsistencies are likely 
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to occur. Therefore, one should perform arithmetic checks whether totals equal the 

sum of sub-components (such as total distance traveled vs. sum of all distances 

traveled of all sub-sectors), whether basic relationships hold (e.g., the relationships 

in E1 and E2), and check for the coherence of data in time. The latter is conducive to 

identifying discontinuities or breaks (such as changed definitions regarding coverage 

or classification of data or changed methodology or sources) within time series. 

Breaks can substantially complexify time series analysis by producing misleading 

results. Moreover, it is important to understand the reasons behind any historical 

data revision and to ascertain whether revisions were applied to the whole time 

series or not. With this, looking for potentially related variables is useful to verify 

whether a discovered divergence in trends is justifiable. After checking for internal 

consistency, it is advisable to examine whether the collected data are consistent with 

similar data produced by other sources and whether any significant discrepancies can 

be explained (e.g., by different methodologies, coverage, or boundary definitions). 

Even if all the former checks were performed, obtained results may still be 

implausible. The variability of data and indicators depends largely on the country’s 

characteristics; therefore, adequate knowledge of the topic is required to assess the 

plausibility of EEI. In the end, it is hard to see whether a trend for a specific indicator 

is the expected outcome of a new policy, corresponds to technological progress, or if 

there are issues in the underlying data. However, values for energy consumption 

should not be negative and necessarily positive for some fuel end-uses (such as 

gasoline consumption of LDVs). If data is reported as zero, it should be examined 

whether this refers to actual zero values or unavailable information. Further, activity 

data and key indicators for various modes should fall within expected ranges and 

reflect country-specific characteristics (such as geography and wealth). Figures for 

average occupancy (PLF) should be within the expected ranges. For a group of 20 

OECD countries in 2010, the average PLF for passenger LDVs was between 1.2 and 

1.9, with a median of 1.6. For buses, the average PLF was between 7 and 38, with 

13 as median. The same goes for average annual mileage by vehicle type. For the 

same group of countries, the average mileage was between 9,000 and 18,000 km 

for LDVs and between 22,000 and 143,000 km for buses. Beyond that, the average 

fuel economy of road vehicles (can be calculated as MJ per vkm or pkm), which is 
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calculated from activity and energy data, should lie within reasonable ranges. 

However, values determined by these means can deviate substantially from values 

published by vehicle manufacturers. For the same group of countries, reported 

values for the entire passenger transport sector ranged between 1 and 3 MJ/pkm 

with a mode of 2 MJ/pkm. Besides, energy consumption per pkm and vkm should 

follow stable trends within reasonable ranges for each mode. (IEA, 2014b) 
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2.3. Decomposition Analysis 
 

After establishing how to develop expressive energy efficiency indicators in the 

previous section, we now look at how to track – and ultimately decompose – energy 

efficiency progress in the passenger transport sector. While the presented EEI 

represent fundamental tools to explain changes in energy consumption, they cannot 

be used per se to describe the impact of underlying drivers wholesomely. For 

instance, if we think of a modal shift towards LDVs at the expense of collective 

transport (i.e., bus and train), accompanied by an enhanced technical energy 

efficiency across all modes and steady PLF per mode, the energy consumption on a 

pkm basis would still most likely increase. In other words, it is difficult to capture the 

broader context to a sufficient degree using EEI alone as they cannot predict variation 

in aggregate energy consumption. Therefore, the key goal of decomposing energy 

demand is to isolate and quantify the impacts of changes in a set of predefined 

factors on the aggregate. In its most basic form, those are aggregated activity (e.g., 

pkm), structure (modal shares), and energy intensity by mode (as a proxy for energy 

efficiency) in the context of passenger transport. However, extending the 

decomposition to more than three factors is generally possible. For instance, activity 

can be divided into pkm per capita and population size to capture the effect of 

demographic variance separately. Moreover, the decomposition of energy 

consumption can be extended to address changes in CO2 emissions by introducing 

the dimensions of fuel mix and carbon intensity. Ultimately, the selection of metrics 

depends on the availability of data and the research questions sought to be 

answered. 

By decomposition analysis, we can estimate to what extent each underlying driver is 

responsible for changes in gross sectoral energy demand and thus quantify the 

energy that would have otherwise been consumed if the respective underlying driver 

stayed constant. Besides decomposing energy demand by traffic mode, a more 

detailed decomposition can also be done by type of vehicle, given that the necessary 

data is obtainable.  

At last, understanding how each of the underlying forces impacts energy demand is 

essential to localize where the largest energy savings potentials lie and, thus, the 
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areas that should be targeted first by energy efficiency policies. (Goh and Ang, 2019; 

IEA, 2014a, 2014b) This chapter will give an overview of the fundamentals of 

decomposition analysis featuring a review of which attributes to consider when 

selecting the right decomposition method. It is worth noting that potential issues 

regarding data quality, level of sector disaggregation, data elicitation, and indicator 

choice are generally not method dependent despite significantly affecting the quality 

and validity of decomposition results. (Ang, 2004) 

 

2.3.1. Theory of Decomposition Analysis 
 

SDA vs. IDA 

In the scientific literature on decomposition analysis, many methods can be found. 

Any decomposition analysis employs historical data and starts by identifying the time 

period and indicators of interest for which the driving forces are to be investigated. 

The choice of the base year is thereby extremely important. Usually, data from two 

periods are used (i.e., a fixed base year), but there is also the possibility to include 

the interjacent years (i.e., a chained base year). In the latter case, the previous year 

is used as the base year for every year, and thus continuous time series data is 

required. By doing so, results tend to be more accurate, and analyzing multiple time 

periods is facilitated. In any case, there are two fundamental techniques for 

decomposing indicator changes on the sectoral level, which have been developed 

quite independently from each other. Both methods have been extensively used in 

studies on economic, socio-economic, and environmental indicators. On the one 

hand, there is structural decomposition analysis (SDA), which draws on information 

from detailed input-output tables, and index decomposition analysis (IDA), which 

uses aggregate data on the (sub-)sector level, on the other hand. The different 

models being used constitute the main difference between both methodologies. As 

a result, SDA can decompose economic and technological effects in a more 

sophisticated way, including the capture of indirect demand effects (i.e., when a 

direct demand increase in one sector leads to an increase in the demand for inputs 

from another sector), whereas IDA can only capture direct effects. Beyond that, IDA 

is characterized by a greater variety of potential mathematical specifications and 
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indicator forms. Given the necessity of having input-output tables for an SDA, 

conducting an IDA is characterized by a substantially lower data requirement, and 

hence more detailed time and country studies can be performed. In consequence, 

SDA studies are generally characterized by shorter and less continuous time periods. 

In contrast, IDA studies are usually highly detailed regarding considered time periods 

and thus commonly include annual time steps. A more sophisticated comparison of 

SDA and IDA can be found in Hoekstra et and van den Bergh 2003. As a result, having 

in mind the data requirements, SDA may be rather suitable for industry and service 

energy end-use sectors and less for analyzing passenger transport energy demand. 

(Ang, 2004; Dennehy and Ó Gallachóir, 2018; Goh and Ang, 2019; Hoekstra and van 

den Bergh, 2003; IEA, 2014a) Therefore, IDA is considered superior in this context 

and will thus be used in this thesis. 

 

Index Decomposition Analysis 

Index decomposition analysis was introduced in the late 1970s to study the impact 

of changing energy mix in the industry sector. Since then, IDA has been continuously 

extended and applied to several other areas of policymaking. Given the simplicity and 

flexibility of the methodology, IDA is relatively easy to adopt, especially when 

compared to SDA. By now, based on the number of scientific contributions, IDA is a 

widely accepted analytical tool for policymaking concerning national energy and 

environmental issues. Main application areas include energy demand and supply, 

energy-related GHG emissions, material flows, national energy efficiency trend 

monitoring, and cross-country comparisons. The decomposition of energy demand 

and supply can easily be extended to analyze demand patterns in the transport or 

residential sector but also in the whole economy. Given the common distinction into 

impacts of activity, structure, and energy intensity, the definitions of those impacts 

usually vary depending on the energy sector studied. For instance, structural change 

in the transport sector implies a change in modal share, whereas it addresses fuel mix 

changes in the case of electricity generation. Notably, the qualitative information 

associated with each factor (e.g., the environmental implications of a change in 

structure) is the same for all decomposition methods, whereas the quantitative 

information (i.e., the measured value of the relative contribution) is method 
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dependent. This means that method selection affects the obtained numerical results, 

even though the meanings of those components are the same across methods. (Ang, 

2004) 

After defining the indicators of interest and the time period to be studied, the IDA 

begins by defining the governing function. This governing function – also called index 

decomposition identity – relates the aggregate to a number of pre-defined drivers of 

energy demand. Effectively, the governing function can contain any number of 

factors, each with arbitrary units. In order for the equation to add up to the aggregate 

energy consumption, all other elements of the equation (with their respective units) 

must cancel out so that the aggregate remains at the end. (Ang, 2004; Hoekstra and 

van den Bergh, 2003)In principle, this corresponds to the same basic mathematical 

idea of the so-called I=PAT equation in the field of resource economics, with energy 

consumption as the dependent variable (Chertow, 2000) 

 
 

2.3.2. Choice of Decomposition Methodology 
 

Steps to Method Selection and Desirable Attributes 

Once having established the decomposition identity, various IDA methods can be 

formulated to quantify the impacts of the underlying drivers on the aggregate. The 

IEA, in its guide on essentials for policy marking from EEI (IEA, 2014a), and Ang (Ang, 

2004), in his sophisticated review on IDA method selection, point out accordantly 

that there are at least four main issues to account for when choosing the right IDA 

methodology. The chosen method must be theoretically sound and adaptable to all 

(sub-)sectors so that sub-sector results can be interpreted in the same way and thus 

reaggregated. Further, the interpretation of the index must be straightforward (i.e., 

ease of understanding and result presentation), and the method should be easily 

applicable to a specific problem (i.e., adaptability). Since it is not self-evident to fulfill 

the abovementioned criteria, Ang states that a variety of methods have been 

adopted by researchers, but also by national and international agencies and 

organizations (Ang, 2004). Often, method selection has been made rather on an ad-

hoc basis. However, from a theoretical foundation viewpoint, it is relatively easy to 
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show that some methods are superior to others. Yet, from an application viewpoint 

– where ease of use and simplicity are important considerations – other methods 

may prove superior. (Ang, 2004; IEA, 2014a) 

 

Method Properties 

Hence, to adequately assess the eligibility of a decomposition method, we must look 

at the method’s mathematical form, underlying index theory, and associated index 

properties. 

Relevant index properties are – amongst others – zero value robustness, factor 

reversibility, and time reversibility. Factor reversibility (i.e., complete decomposition 

without a residual) is the most important criterion. Especially when underlying 

indicators change substantially, some methods may return a residual value bigger 

than determinant effects. A time-reversal test shows whether decomposition results 

are the same when the time periods of the determinants are reversed. Zero value 

robustness may pose an issue when there are zero- or negative values in the dataset 

or if an indicator does not differ from period 0 to T.  

 

A decomposition analysis for n factors from year 0 to year T can be performed 

multiplicatively or additively. In the multiplicative case, the ratio change Dtot of the 

aggregate V is decomposed into n determinant indicators Dk. In the additive variant, 

the difference change ∆Vtot of the aggregate is decomposed into n determinant 

indicators Vk. These relationships are illustrated in E3 and E4. In the case of perfect 

decomposition (i.e., when the method is factor-reversible), the residual is one in the 

multiplicative form and zero in the additive form. (Ang, 2004; Hoekstra and van den 

Bergh, 2003) 

 

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑣𝑒: 𝐷𝑡𝑜𝑡 =
𝑉𝑇

𝑉0
= ∏ 𝐷𝑘 × 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙

𝑛

𝑘
 

 

(E3) 

𝐴𝑑𝑑𝑖𝑡𝑖𝑣𝑒: ∆𝑉𝑡𝑜𝑡 = 𝑉𝑇 − 𝑉0 = ∑ 𝑉𝑘 + 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙
𝑛

𝑥
 

(E4) 
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From a theoretical foundation viewpoint, this choice is fairly arbitrary. It may be seen 

that the results of an additive decomposition are more easily interpretable by non-

professionals. Yet, the existence of a direct relationship between multiplicative and 

additive decomposition would constitute a good property from a methodological 

viewpoint. (Ang, 2004) 

 

Furthermore, since IDA methods are closely related to index numbers, their 

theoretical foundation is largely based on the underlying index theory. An index is a 

weight assigned to a determinant. Therefore, this decisively impacts the obtained 

numerical values for the determinants. The crucial issue here is how the indicators 

(or determinant effects) are weighted against the aggregate, given that the indicators 

are subject to changing values (and thus to differing weights) between year 0 and 

year T. Widespread IDA methods can be divided into two principal groups. There are 

methods linked to the Laspeyres index and methods linked to the Divisia index. 

Simply put, Laspeyres-related methods are based on the concept of percentage 

change relative to a particular point, whereas Divisia-related methods are based on 

the concept of logarithmic change employing a continuous function between two 

points. Their key difference is that logarithmic change is a symmetric and additive 

indicator of relative change, whereas ordinary percentages are non-additive and 

asymmetric. To illustrate this, let us assume that the energy consumption of a sub-

sector increased from 10 units in year 0 to 20 units in year T. From year 0 to T, the 

percentage difference is 100 %, whereas it is -50 % with reversed periods. In the 

case of logarithmic change, the relative change only differs in sign and is thus 

symmetric (ln (20/10) = -ln (10/20)). Although, several Laspeyres-linked 

approaches overcome this central limitation of asymmetry. Thus, most methods are 

time-reversal besides the conventional Laspeyres index. By implication, there are 

various sub-variants with divergent methodological properties among those two 

classes. Concerning the resulting index properties, Divisia methods are generally not 

robust to zero or negative values due to the inherent logarithm. (Ang, 2004; Dennehy 

and Ó Gallachóir, 2018; Hoekstra and van den Bergh, 2003) 
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Choice of IDA Methodology 

Given the properties of various methodologies to consider, the Logarithmic Mean 

Divisia Index (LMDI) method emerges as the most appropriate method. LMDI 

decomposition passes the time-reversal test and factor-reversal test. Therefore, it 

provides complete decomposition without residual, and a determinant’s absolute 

value is the same if time periods are reversed. (Ang, 2005) Moreover, the LDMI 

approach is consistent in aggregation, which implies the value of the index calculated 

in one step (i.e., on aggregate level) coincides with the summed-up effects of the sub-

groups (i.e., in a multi-step procedure). However, this property only remains valid as 

long as the data used in the first step of the multi-step procedure are the same as 

those employed in the single-step procedure. Given this limitation, there is a situation 

where consistency in aggregation can be only partially satisfied. This is when there 

are factors on the right-hand side of the index decomposition identity (i.e., the 

governing function) whose definitions in a multi-step and one-step procedure differ. 

(Ang and Liu, 2001) 

 

Beyond this, the choice between the multiplicative and additive layout is 

inconsequential, as the multiplicative LMDI also contains the additive form in the log 

form. Hence, both are linked by the simple relationship shown in E5. However, the 

primary problem is formulated as an additive LMDI, due to presentation 

considerations. (Ang, 2004) 

 

∆𝑉𝑡𝑜𝑡

ln 𝐷𝑡𝑜𝑡
=

∆𝑉𝑥

ln 𝐷𝑥
 

(E5) 

 

After all, the LMDI formulation process is relatively easy and adaptable. The formulae 

for a multi-factor problem possess exactly the same form as a two-factor problem. 

However, LMDI is not applicable if the dataset contains negative values. In the case 

of zero values, it has been shown that the LMDI converges if small non-zero values 

replace the data. (Ang, 2004)  
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LMDI Formulation Process 

For a decomposition with n factors contributing to an energy-related aggregate (such 

as total passenger transport energy consumption), the aggregate V is decomposed 

into the general IDA identity stated in E6. Here, subscript i constitutes the sub-

category (i.e., sub-sector) of the aggregate for which the structural change is to be 

studied. 

 

𝑉 = ∑ 𝑉𝑖
𝑖

= ∑ 𝑥1,𝑖 ∙ 𝑥2,𝑖 ⋯ 𝑥𝑛,𝑖
𝑖

 (E6) 

 

The aggregate changes from V0 in period 0 to VT in period T. Therefore, the change 

over time is decomposed according to E7, following from the additive form of the 

decomposition stated in E4. The subscript tot refers to the total change of the 

aggregate and the terms of the right-hand side give the effects of the associated 

factors from E6. 

 

∆𝑉𝑡𝑜𝑡 = 𝑉𝑇 − 𝑉0 = ∆𝑉𝑥1 + ∆𝑉𝑥2 + ⋯ + ∆𝑉𝑥𝑛 (E7) 

 
The general formula for the effect of the kth factor on the right-hand side of E7 is 

stated in E8. Here, L(Vi
T, Vi

0) constitutes the logarithmic mean and can be calculated 

as stated in E9. 

 

∆𝑉𝑥𝑘 = ∑ 𝐿(𝑉𝑖
𝑇 , 𝑉𝑖

0) ∙ ln (
𝑥𝑘,𝑖

𝑇

𝑥𝑘,𝑖
0 )

𝑖
 

(E8) 

𝐿(𝑉𝑖
𝑇 , 𝑉𝑖

0) =
𝑉𝑖

𝑇 − 𝑉𝑖
0

ln(𝑉𝑖
𝑇) − ln (𝑉𝑖

0)
 

(E9) 

 
Starting from the IDA identity, all LMDI formulae can be readily derived and 

calculated by using – for instance – commercially available spreadsheet software. 

However, due to the inherent logarithmic terms, the variables must not contain 

negative or zero values. Potential zeroes of an indicator or a dataset value may be 

adjusted by small positive constants (e.g., between 10-10 and 10-20), as the LMDI has 

been shown to converge in this case. The same applies for an indicator not changing 
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between period 0 and T, given the resulting division by zero in E9. (Ang, 2005, 2015; 

Dennehy and Ó Gallachóir, 2018) 
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3. Methodology 
 
For the time period from 2000 to 2016, two consecutive index decomposition 

analyses are performed, respectively, for Germany and the Netherlands. The first IDA 

examines four drivers of energy demand in the land passenger transport sector (i.e., 

the sub-sectors of LDVs, buses, and trains). Given the great dominance of LDVs in 

terms of passenger traffic as well as energy use, the subsequent analysis further 

examines five drivers of energy demand within the LDV sub-sector. Against the 

background of the observed increasing dieselization of the LDV fleet in some 

countries in the European Union, the second IDA also takes the dimension of 

propulsion technology (gasoline, diesel, and others) into account. 

This chapter begins by specifying the IDA model configurations used, including the 

respective underlying factors driving energy demand. Thereupon, utilized data 

sources are outlined, and issues regarding data quality and gaps are addressed. 

 

3.1. Model configuration 
 

Both analyses are performed as an additive LMDI approach, as specified in section 

2.3.2. In order to allow for more flexibility in the follow-up result evaluation, all 

analyses are performed with fixed and chained base-year. This implies that the 

energy consumption of a particular year can be examined with regard to the energy 

consumption of 2000 and to the year prior. 

 

3.1.1. Passenger Transport IDA 
 

The analysis of land passenger transport energy demand (EPT) takes effects of activity 

(PIi and Pi), structure (MSi), and energy intensity (EIi) into account. Thereby, the 

activity effect is split into passenger intensity per capita (PIi) and population variation 

(Pi), to facilitate the comparison of obtained results for the two countries. Structure 

refers to the modal shift (MSi) of the respective three traffic modes on a pkm basis, 

and intensity (EIi) is the energy used per pkm of the respective modes. The subscript 

i refers to the three traffic modes being examined (LDVs, busses, and trains). The 

index decomposition identity is given in E10.  
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𝐸𝑃𝑇 = ∑
𝑝𝑘𝑚

𝑃𝑂𝑃
×

𝑝𝑘𝑚𝑖

𝑝𝑘𝑚
×

𝐸𝑖

𝑝𝑘𝑚𝑖
× 𝑃𝑂𝑃

𝑖
= ∑ 𝑃𝐼 × 𝑀𝑆𝑖 × 𝐸𝐼𝑖 × 𝑃

𝑖
 

 

 
(E10) 

In principle, the choice of units is arbitrary, however, pkm are measured in 109 km, 

population size is given in 106 inhabitants, and energy consumption is stated in PJ (1 

PJ = 109 MJ or roughly 23884.59 toe). 

The changes in energy demand between year 0 and year T can therefore be 

decomposed into the four factors passenger intensity modal share, energy intensity, 

and population, using E11-E15. L(Ei
T, Ei

0) is the logarithmic mean, as defined in E9. 

 
∆𝐸𝑃𝑇 = ∆𝐸𝑃𝐼 + ∆𝐸𝑀𝑆 + ∆𝐸𝐸𝐼 + ∆𝐸𝑃 (E11) 

∆𝐸𝑃𝐼 = ∑ 𝐿(𝐸𝑖
𝑇 , 𝐸𝑖

0) ∙ ln
𝑝𝑘𝑚𝑇 𝑃𝑂𝑃𝑇⁄

𝑝𝑘𝑚0 𝑃𝑂𝑃0⁄𝑖
 

(E12) 

∆𝐸𝑀𝑆𝑖
= ∑ 𝐿(𝐸𝑖

𝑇 , 𝐸𝑖
0) ∙ ln

𝑝𝑘𝑚𝑖
𝑇 𝑝𝑘𝑚𝑇⁄

𝑝𝑘𝑚𝑖
0 𝑝𝑘𝑚0⁄𝑖

 
(E13) 

∆𝐸𝐸𝐼𝑖
= ∑ 𝐿(𝐸𝑖

𝑇 , 𝐸𝑖
0) ∙ ln

𝐸𝑖
𝑇 𝑝𝑘𝑚𝑖

𝑇⁄

𝐸𝑖
0 𝑝𝑘𝑚𝑖

0⁄𝑖
 

(E14) 

∆𝐸𝑃 = ∑ 𝐿(𝐸𝑖
𝑇 , 𝐸𝑖

0) ∙ ln
𝑃𝑂𝑃𝑇

𝑃𝑂𝑃0
𝑖

 
(E15) 

 
 

3.1.2. LDV IDA 
 
The analysis of energy demand within the sub-sector of passenger light-duty vehicles 

examines the influence of five factors driving energy demand (ELDV). Thereby, 

activity effects are split into passenger intensity per capita (PI) and population 

variation (P), for the same motivation as in 3.1.1. However, in contrast to the 

passenger decomposition IDA, this analysis takes usage behavior separately into 

account to capture intensity effects. This implies that energy intensity (EIi) is 

evaluated on a vkm basis – to capture technical energy efficiency – and that the 

analysis is extended to relate vkm to pkm with the passenger move factor (PMF; the 

inverse of PLF), with it including usage efficiency. The technology share factor (TSi) 

accounts for structural effects regarding the share of propulsion technologies in 

overall LDV vkm. The subscript i refers to the three propulsion types studied 

(gasoline, diesel, and others). The resulting index decomposition identity is given in 

E16. 



42 
 

 

𝐸𝐿𝐷𝑉 = ∑
𝑝𝑘𝑚

𝑃𝑂𝑃
×

𝑣𝑘𝑚

𝑝𝑘𝑚
×

𝑣𝑘𝑚𝑖

𝑣𝑘𝑚
×

𝐸𝑖

𝑣𝑘𝑚𝑖
× 𝑃𝑂𝑃

𝑖

= ∑ 𝑃𝐼 × 𝑃𝑀𝐹 × 𝑇𝑆𝑖 × 𝐸𝐼𝑖 × 𝑃
𝑖

 

 
(E16) 

 

Person- and vehicle kilometers are measured in 109 km, population size is given in 

106 inhabitants, and energy consumption is stated in PJ. The changes in energy 

demand between year 0 and year T can therefore be decomposed into the five 

factors passenger intensity, passenger move factor, technology share, energy 

intensity and population, using E17-E22. L(Ei
T, Ei

0) is the logarithmic mean, as 

defined in E9. 

 

∆𝐸𝐿𝐷𝑉 = ∆𝐸𝑃𝐼 + ∆𝐸𝑃𝑀𝐹 + ∆𝐸𝑇𝑆 + ∆𝐸𝐸𝐼 + ∆𝐸𝑃 (E17) 

∆𝐸𝑃𝐼 = ∑ 𝐿(𝐸𝑖
𝑇 , 𝐸𝑖

0) ∙ ln
𝑝𝑘𝑚𝑇 𝑃𝑂𝑃𝑇⁄

𝑝𝑘𝑚0 𝑃𝑂𝑃0⁄𝑖
 

(E18) 

∆𝐸𝑃𝑀𝐹 = ∑ 𝐿(𝐸𝑖
𝑇 , 𝐸𝑖

0) ∙ ln
𝑣𝑘𝑚𝑇 𝑝𝑘𝑚𝑇⁄

𝑣𝑘𝑚0 𝑝𝑘𝑚0⁄𝑖
 

(E19) 

∆𝐸𝑇𝑆𝑖
= ∑ 𝐿(𝐸𝑖

𝑇 , 𝐸𝑖
0) ∙ ln

𝑣𝑘𝑚𝑖
𝑇 𝑣𝑘𝑚𝑇⁄

𝑣𝑘𝑚𝑖
0 𝑣𝑘𝑚0⁄𝑖

 
(E20) 

∆𝐸𝐸𝐼𝑖
= ∑ 𝐿(𝐸𝑖

𝑇 , 𝐸𝑖
0) ∙ ln

𝐸𝑖
𝑇 𝑣𝑘𝑚𝑖

𝑇⁄

𝐸𝑖
0 𝑣𝑘𝑚𝑖

0⁄𝑖
 

(E21) 

∆𝐸𝑃 = ∑ 𝐿(𝐸𝑖
𝑇 , 𝐸𝑖

0) ∙ ln
𝑃𝑂𝑃𝑇

𝑃𝑂𝑃0
𝑖

 
(E22) 
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3.2. Data Sources and Quality 
 

The two primary data sources used are for one the December 2020 edition of the 

database on energy efficiency indicators of the International Energy Agency (IEA, 

2020a) and second, the January 2023 edition of the ODYSSEE-MURE database 

(ODYSSEE-MURE, 2023). Both aim at monitoring energy efficiency and provide data 

(i.e., energy and activity data) and indicators for the residential, services, industry, 

and transport sector. The data collection is decentralized and carried out by national 

teams. Data is primarily sourced from the respective national administrations (such 

as transport ministries or statistics offices) and centralized in the two common 

databases. Since analyzing demand-side energy efficiency trends requires highly 

disaggregated end-use data, data quality and coverage vary enormously across 

countries for both the IEA and ODYSSEE-MURE database. Therefore, the country’s 

passenger transport sectors and time periods to be studied are selected based on 

data availability and coverage. (IEA, 2014b, 2020b; ODYSSEE-MURE, 2020)  

 

After data collection, the data is validated according to the established criteria in 

paragraph 2.2.3. Concerning coverage and definitions, no inconsistencies appear 

regarding vehicle- or (sub-)sector definitions between and within those two 

databases. However, concerning energy data, there are some major inconsistencies 

across sources. One major issue is that biofuels consumed as a blend with or as a 

substitute for liquid fossil fuels (i.e., bioethanol and biodiesel) are reported jointly in 

the respective fossil fuel category by the IEA while separately covered in the 

ODYSSEE-MURE database. Nonetheless, the sum of reported bio- and fossil fuel 

consumption largely corresponds to the reported values for the respective fossil fuels 

in the IEA database. Therefore, for the sake of coherency, when referring to gasoline 

or diesel consumption, this includes biofuels in the scope of this thesis. Nonetheless, 

biofuels may impact energy efficiency, particularly GHG emissions. However, in an 

extensive IDA study on the Irish LDV sector from 1995 to 2015 (Dennehy and Ó 

Gallachóir, 2018), biofuel substitutions ranked as the least significant factor affecting 

energy efficiency. Beyond that, the other primary reason for inconsistencies 

concerning energy data lies within differing detail resolutions regarding individual 
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energy sources. This means that in some cases, for a (sub-sector) or mode, 

disaggregated energy data for some energy carrier is missing in one (or both) of the 

data sources, leading to differing values for total final consumption, despite values 

for other sources of energy being congruent. Beyond that, data is checked for internal 

consistency (i.e., that disaggregated data can be reaggregated and that E1 and E2 

hold) and external consistency – apart from coverage – between the two sources. In 

case of implausibility or any validation criteria not fulfilled (e.g., due to a 

methodology break), data is compared – and possibly conflated – between the two 

databases or other external sources such as national administrations. Given the high 

intricacy in compiling energy and activity data for passenger transport, deviations 

across sources up to 2 % may be seen as consistent in the context of this thesis. 

 

3.2.1. Passenger Transport IDA 
 

The required data for pkm and energy consumption, disaggregated for the three 

traffic modes, as well as population data, can be readily derived from the IEA 

Database on EEI for the transport sector. After all, the decisive reason this analysis 

does not separately consider the technical and usage efficiency of the modes is that 

data on rail vkm or PLF – for Germany and the Netherlands – are not obtainable. 

Nonetheless, validation criteria are largely fulfilled for data concerning LDVs and 

trains, and the IEA data can be readily deployed. There were some minor issues with 

energy data quality for LDVs. On the one hand, the data quality is sufficient for this 

aggregated view of the LDV sector but not for the downstream analysis. Therefore, 

energy data from the subsequent LDV analysis is used to maintain the consistency of 

results.  

 

For buses, however, there were some inconsistencies and implausibilities. Regarding 

energy data for Germany, values until 2012 for TFC are highly congruent (i.e., < .5 % 

deviation across databases) and roughly follow the trend of bus vkm. However, as of 

2013, the IEA’s values are decoupled from the vkm trend, whereas ODYSSEE-MURE 

data follow the trend. Another anomaly is that there is no consumption data for fuels 

other than diesel and gasoline in both data sources, even though their share in 
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consumption is significant in the Netherlands (especially for gas). Looking into vehicle 

stock statistics of the German motor vehicle authority (KBA, 2009, 2010, 2016), the 

share of busses driven by alternative fuels comprised between 2 and 2.7 % of total 

busses in exemplary years between 2008 and 2015. Still, considerable amounts of 

fuel consumption are reported under other fuels, so it can be assumed that those 

represent alternative fuels. The observed decoupling from the vkm trend in IEA data 

can be explained by deviating or missing values reported under other energy sources 

as compared to ODYSSEE-MURE. Values for diesel and gasoline consumption largely 

correspond. However, owing to the relatively coarse value resolution and resulting 

rounding differences (with energy consumption data in PJ with two decimals in IEA 

and four decimals in ODYSSEE-MURE vs. a share in stock of below 3 %), few 

interferences can be drawn about the relationship between stock and energy data 

for alternatively fueled busses. Having said all this, energy consumption data from 

ODYSSEE-MURE is employed for the analysis.  

 

Moreover, despite being congruent in both sources, data on bus pkm for the 

Netherlands seem implausible. The data suggest an average bus occupancy roughly 

half as big as in Germany, and pkm/cap (for busses) significantly less than half as 

large. In contrast, when we look at pkm per capita for the other modes, the biggest 

difference is less than 30 %. More extensive research shows a methodological 

change in 2015 regarding how bus pkm data are collected. Therefore, historical 

values found in the main sources have been retrofitted. This more recent approach 

estimates bus pkm based on a nationwide Dutch travel survey, where the share of 

bus transport is estimated over the aggregate bus, tram, and metro. Before the 

change in methodology, values provided in the statistical pocketbook of the 

European Commission on the transport sector more closely resemble trends in bus 

pkm per capita (and PLF) of Germany and other surrounding countries. (EC and 

Directorate-General for Mobility and Transport, 2018; KiM Netherlands Institute for 

Transport and Policy Analysis, 2018) Therefore, values before the methodology 

change were taken from the EU statistical pocketbook, and missing values have been 

imputed. Beyond that, energy consumption data between the two databases were 

not congruent, as values for CNG are missing in ODYSSEE-MURE. Yet, the TFC of 
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buses fully matches once CNG consumption is added. Therefore, IEA energy data can 

be seen as valid. 

A more exhaustive illustration of sources of data and how data was revised can be 

found in Appendix A. 

 

3.2.2. LDV IDA 
 

Since the second IDA looks at passenger light duty vehicles (LDVs) – disaggregated by 

three fuel types – within the road sub-sector of passenger transport, highly 

disaggregated energy and activity data (here: vkm) is needed. Data on population 

and pkm can simply be drawn from the previous analysis, as deduced in Appendix A. 

Disaggregated traffic performance and energy consumption data must be re-derived. 

Inherently, corresponding energy data can be found in both principal sources, 

whereas activity data is only available for overall LDVs in the IEA database. The 

ODYSSEE-MURE database provides mileage and stock data for gasoline, diesel, and 

overall LDVs. With relationship E1 the corresponding vkm data for all disaggregation 

levels can be easily derived. Pkm data, however, are generally not collected broken 

down by fuel type. Yet, an allocation of pkm to the three fuel types would be 

principally possible as per vkm proportion but is not purposeful since LDVs of 

different fuel types are characterized by different ownership (regarding private and 

commercial), which in turn suggests differing average occupancies. In consequence, 

we can examine the technology share (TSi) based on the share in total LDV vkm. 

However, we must assume an equal average occupancy across the three engine 

types, which does not necessarily correspond to reality. Another crucial issue is that 

coverage and definitions of activity and energy data match. In the case of this IDA, 

this is especially true for vkm since it constitutes the numerator in the IDA identity’s 

central energy efficiency indicator (cf. E16). The discussion for this is provided in the 

following subparagraph. 

 

Another prevailing issue in compiling energy data is partially missing or non-

corresponding consumption values for certain energy carriers, especially for fuels 

other than gasoline and diesel. Therefore, energy data from the two sources are 
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conflated to ensure sufficient coverage of non-conventional vehicles. 

Notwithstanding, the consumption of liquid biofuels is reported jointly under the 

respective fossil-fuel category in the IEA database, whereas it is separately reported 

in the ODYSSEE-MURE project. Even so, consumption data largely mutually 

correspond once reaggregated. As mentioned, when referring to gasoline or diesel 

consumption, it includes associated biofuels in this context. 

 

With traffic performance data (i.e., vkm) data, there are two principal issues. For one, 

the calculated values based on average annual mileage and LDV stock data (from 

total, gasoline, and diesel) are not always valid. Secondly, the rise of bivalent LDVs 

(i.e., an engine running on more than one fuel) makes it hard to unequivocally assign 

activity data to one fuel category.  

For Germany, the resulting vkm of other LDVs are partially negative, and there are 

discrepancies when obtained values are collated with further external sources. For 

instance, vehicle stock data are subject to an unmentioned revision up to 2008 due 

to a methodological break on the side of the national agency providing the statistics. 

Beyond that, until 2008, gasoline traffic performance contains gas vehicles, which 

holds as the primary explanation for the calculated traffic performance of others 

being invalid. In the absence of further explanatory data, energy, and activity data of 

gasoline LDVs entails natural gas vehicles until 2008, and further alternative fuels are 

neglected and therefore set to zero. For the Netherlands, calculated annual mileage 

values for other LDVs significantly deviate from figures published by the Dutch 

national statistics agency (CBS), which suggests data from ODYSSEE-MURE is 

erroneous or inconsistent respectively. Further, total LDV traffic performance in both 

principal sources substantially deviates from CBS data as well. Both are because LDV 

traffic performance calculations (in the IEA and ODYSSEE-MURE database) are 

subject to a wrong population (i.e., stock) of LDVs. 

Further, bivalent LDVs exist as hybrids (this includes hybrid electric vehicles (HEV), 

plug-in hybrid electric vehicles (PHEV)) and bivalent natural gas LDVs. HEVs are fueled 

solely with gasoline or diesel (thereof almost exclusively gasoline), with the battery 

charging while driving, whereas PHEVs can be additionally charged at a power outlet 

(CBS, 2016). In the scope of this thesis, gas LDVs are attributed to the other category, 
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except until 2008 for Germany. However, the share of bivalent gas engines within gas 

LDVs is unfortunately not published for the periods under scrutiny and therefore the 

resulting data bias cannot be estimated. Furthermore, since we can assume that 

hybrids predominately run on gasoline (Fraunhofer ISI and Plötz, 2020; HandWiki, 

2023), those are attributed to the gasoline category in terms of traffic performance. 

It is to be expected that both approaches have opposite effects on result accuracy 

and thus compensate for each other to a certain degree. 

Ultimately, revised disaggregated energy consumption and traffic performance data 

are validated by plotting together the respective shares in the total together. An 

extensive outline of all data revisions, sources, and validation steps can be found in 

Appendix B. 

 

Coverage and Definitions of energy and activity data 

In order to form meaningful energy efficiency indicators (here: energy consumption 

per vehicle kilometer), the coverage and definitions of both must match. As 

delineated in Chapter 2.2.3, one of the most intricate tasks – next to appropriate 

disaggregation of data into sub-sectors and vehicle types – is delimiting data to the 

national territory of the country under study. Given the open borders in the EU – with 

free movement of goods and people – this is of particular challenge. For energy data, 

this is generally easier, as this can be based on relatively easily available fuel sales 

volumes, additionally taking factors such as fuel tourism into account. 

When it comes to capturing data on traffic performance, an often-adapted method 

is odometer readings. This comes with the advantage that data can be collected as 

part of periodic vehicle quality inspections without significant additional effort but 

with many observation points. Yet solely vehicles registered in the respective country 

can be captured by this means. This results in the so-called national traffic 

performance, i.e., distances covered domestically and abroad by vehicles registered 

in the respective country, but distances covered domestically by foreign-registered 

vehicles are excluded. Since utilized energy data are subject to the energy consumed 

within the respective national territory, the matching traffic performance measure is 

the domestic traffic performance since it includes all vehicle movement on the 
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national territory by domestic- and foreign-registered vehicles but excludes distances 

abroad.  

 

In the case of the Netherlands, the gathering of traffic performance is primarily based 

on odometer readings (yielding national traffic performance) and complemented by 

traffic counts, tourism statistics, and driver surveys to obtain domestic traffic 

performance. In practice, the domestic traffic performance is determined by a linear 

conversion factor by which the national traffic performance is multiplied. For this 

purpose, an equal distribution across all fuel types is assumed. (CBS, 2021c, 2022; 

Geilenkirchen et al., 2022; Molnár-in 't Veld, 2014) Moreover, the underlying 

population of vehicles is not the official LDV stock statistics (subject to the stock on 

Jan 1st) but the so-called “park in use,” which includes all vehicles on the road for at 

least part of the year.  

In the case of Germany, the relevant LDV population is official stock statistics (subject 

to the stock on Jan 1st), whereas mileage data subject to traffic performance 

calculation are of arithmetical nature. The underlying basic idea is that the quantity 

of consumed fuels widely corresponds to the turned-over volumes of gas stations on 

the one hand and to the product of vehicle population, average fuel consumption, 

and average mileage on the other. Therefore, apart from the consideration of further 

influencing factors (e.g., fuel tourism and distances covered abroad), elements of the 

equation (thereof annual mileage in particular) are iteratively determined to reach 

equivalence. The resulting metric is the national traffic performance. (BMDV et al., 

2016) A closer examination reveals that there are further national traffic 

performance studies that are based on primary data collection (Bäumer et al., 2017a) 

and process data (KBA, 2022). Resulting values are quite similar to each other (2014 

values for national LDV vkm 599, 611, and 627 billion km) (Bäumer et al., 2017a; 

BMDV et al., 2016). Furthermore, regular elicitations of domestic traffic performance 

are not conducted. In consequence, energy data (energy consumption on German 

territory) and activity data (traffic performance of German vehicles in and outside of 

Germany without kilometers of foreign vehicles in Germany) do not match in terms 

of coverage and definitions. In this respect, the common assumption is that both 

volumes cancel each other out (IEA, 2014b). However, a pair of traffic performance 
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surveys identify the national and domestic traffic performance of several road vehicle 

types for 2014 (Bäumer et al., 2017a, 2017b). Results show that German LDVs 

covered 2.8 % of distances abroad, whereas 3.6 % of domestic vkm are driven by 

foreign vehicles. From this follows that approximately 5 billion vkm more were 

driven by foreign vehicles in Germany than by German vehicles outside of Germany. 

Therefore, the domestic traffic performance of LDVs is roughly 1 % larger than the 

national traffic performance. However, this result cannot be judged with certainty, 

given the comparably bigger difference in overall LDV traffic performance from the 

three competing estimation methods (cf. above). On the other hand, given the 

methodological conformance within the two studies (Bäumer et al., 2017a, 2017b), 

we can assume that the resulting EEI slightly underestimate energy efficiency since 

the underlying vkm (i.e., national vkm) are likely to be smaller than actual (i.e., than 

domestic vkm). 

In the Netherlands, there is the opposite situation, with domestic LDV vkm being 8.8 

% smaller than the national traffic performance on average. In the period under 

scrutiny, the difference ranges from 6.4 to 10.4 %, with 9.4 % in 2014 (cf. Table 17). 

Given the geographical proximity to Germany, this suggests the extent or even 

direction of the in-/outflow balance is also subject to changes. Therefore, this adds 

to result uncertainty, and due to missing studies for the remaining periods, the extent 

cannot be reasonably assessed. 

 

Final comments on data validity 

Summarizing, the quality of energy data is generally higher for gasoline and diesel 

than for other fuels. German gasoline and diesel consumption data match across 

sources, whereas their values diverge by up to 2 % for the Netherlands. Consumption 

of other energy carriers varies significantly across databases in both cases. However, 

regarding respective registration counts, all seem plausible but Dutch electricity 

consumption (which is substantially underestimated). 

The unclear allocation of bivalent LDVs to the energy categories further complicates 

result evaluation. This is especially true for the Netherlands since there are 

substantially more alternatively fueled LDVs than in Germany. In both cases, there 

are more (potentially bivalent) natural gas LDVs than HEVs roughly up to period 13 
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(i.e., 2012), with a growing tendency for HEVs thereafter. Since gas LDVs are 

attributed to the other category and HEVs to the gasoline category, these effects 

partially cancel each other out. However, the attribution of HEVs to the gasoline 

category implies that there are no diesel hybrids which may not be true. 

Nevertheless, the effect should be of subordinate significance. Moreover, 

disaggregated results from 2012 to 2014 for the Netherlands should be taken 

cautiously since these periods are subject to a linear imputation. Beyond that, for the 

reattribution of hybrid LDVs to the gasoline category in Germany as of 2009, the 

annual mileage of gasoline was assumed. Since the annual mileage of hybrids is likely 

higher than that of gasoline vehicles – due to comparably more commercial 

ownership – we can assume that not all of the hybrids’ vkm were reattributed.  

 

All in all, given the high intricacy in compiling disaggregated data on the road 

passenger transport sector, there is considerable potential for upstream errors as 

well, which may be of higher magnitude than the aforementioned limitations. 

Therefore, results should always be interpreted with caution, also against the 

background that exact data collection of this diffuse sector is impossible. 

Nevertheless, considering the plausible ratios of the share in total activity and energy 

of the individual disaggregation levels, a trend analysis seems quite possible. 
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4. Results 
 

This chapter gives record of the results of the index composition analyses. The 

decomposed changes in transport energy consumption between 2000 and 2016 are 

presented in waterfall charts (cf. Figures 3, 6, 10, and 14), each supplemented by two 

stacked column diagrams with incremental year-on-year changes (one each in 

relation to 2000 (fixed base year; cf. Figures 4, 7, 11 and 15) and each one compared 

to the previous year (chained base year; cf. Figures 5, 8, 12 and 16) with the 

respective factor contributions and their total effect. In the latter two, the 

incremental change in energy consumption relates to the sum of negative and 

positive effects, symbolized by the line. The first chart with overall decomposition is 

well-suited for a first overview of the individual factor’s significance over the entire 

period, whereas the latter two allow for deeper insights into the factor trends from 

year to year, relative to the base- and previous year. Underlying numerical results are 

provided in Tables 24-31 in Appendix C. 

 

4.1. Energy Consumption in the Land Passenger Transport 
Sector 

 

4.1.1. Germany 
 

From 2000 to 2016, aggregated land passenger transport energy consumption 

decreases by about .5 %, with a 5 % decline until 2009 and a subsequent rise. On a 

per-capita basis, total energy consumption decreases by 1.6 %, decreasing by 4.7 % 

until 2008 and increasing subsequently. Overall, LDVs clearly dominate energy 

consumption, with the share even increasing from 95.5 to 96.6 %. The modal split 

stays quite constant - with around 84 % of pkm made by LDVs (subject to a .4 % 

increase) and a slight increase in rail traffic, mainly at the expense of buses – 

explaining why the structural effect (MS) is the least significant. Prominently, the 

effects of passenger intensity (PI) and energy intensity (EI) are of different signs yet 

similar amounts and, therefore, largely compensate for each other. Energy intensity 

– on a pkm basis – improves for all three traffic modes; therein, trains have the 

greatest relative improvement and buses the lowest. LDVs’ contribution to the 
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overall energy intensity effect is -182.33 PJ (89 %). Nonetheless, usage efficiency 

behavior (i.e., average occupancy) is embedded in the pkm-based energy intensity 

indicator and may distort results. Moreover, Germany’s slight population increase of 

1 % has an (expectedly) rather small effect when viewed over the entire period, 

although there are periodic trend reversals. 

For the most part, aggregate energy consumption slightly decreases because energy 

efficiency gains have been greater than passenger activity increases. 

 

Figure 3: German Passenger Transport IDA 2000 – 2016 

 
Figure 4: German Passenger Transport IDA year-on-year vs. 2000 
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Figure 5: German Passenger Transport IDA year-on-year vs. previous 

When looking at the year-on-year results, passenger activity – as the strongest overall 

driver of energy demand – is subject to a steady upward trend compared to 2000 but 

subject to three rather minor changes in direction compared to the previous year. 

During the entire period, pkm per capita increase by 11.9 %. The opposite can be 

said for energy intensity, with LDVs – owing to the major share in aggregate energy 

consumption – dominating in terms of the effect’s magnitude, which is subject to a 

steady downward trend (when compared to the base period) but also to three rather 

minor changes in direction when compared to the previous period. Altogether, LDV’s 

energy intensity decreases from 1.78 to 1.58 MJ/pkm. In addition, LDVs’ modal share 

effect has a consistently positive contribution to overall energy consumption 

compared to 2000 but is subject to several changes in direction when viewed with 

respect to the previous period. This is because LDVs’ modal share was the lowest in 

2000 and is following a “M-shaped” trend thereafter. In consequence, this effect’s 

overall contribution is sensitive to the choice of the base period. Beyond that, trains’ 

energy intensity is subject to a continuously decreasing trend (with meanwhile minor 

changes in direction) and, therefore, in total negatively affects total energy 

consumption. Effects other than that are of rather limited significance.  

Ultimately, the aggregate change in energy demand is subject to a slight downward 

trend even though it was subject to an increase in five out of 17 periods. Therefore, 

if any period after 2004 were the base year, the aggregate change would be positive. 
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4.1.2. Netherlands 
 

From 2000 to 2016, the aggregate energy consumption of passenger land 

transportation increases by 4 %, whereas it decreases by 2.4 % on a per-capita basis. 

This can be seen in Figure 6, as aggregate energy consumption in 2016 is nominally 

higher than in 2000 but smaller when the (positive) population effect is subtracted. 

On a per capita basis, total energy consumption increases by 3.3 % until 2004 and 

follows a downward trend – except in the last period – thereafter. As in Germany, 

LDVs clearly dominate in terms of energy and passenger activity. LDVs’ share in 

energy consumption rises by .4 %-points to 95 %, whereas the share in passenger 

activity decreases by .6 %-points to 83%. The modal split stays quite constant, with 

LDVs’ share decreasing mainly due to an increase in trains’ modal share, which 

explains the structure (MS) effect being the least significant but of the opposite sign 

when compared to Germany (where LDVs’ activity share increases). Here the 

population effect is of greatest significance, but it is also the case that passenger 

intensity and energy intensity are of different signs yet similar amounts, whereby 

interestingly – opposing to Germany – the respective signs differ, and PI’s negative 

effect predominates. This implies energy efficiency (on a pkm basis) deteriorating 

while traveled distance per capita decreases. In 2016, the average Dutch citizen 

traveled 6 % less than in 2000 but using 4 % more energy per kilometer traveled. 

Strikingly, LDVs’ and buses’ energy intensity increased by 5 and 8 % (from 1.67 to 

1.76 and from .67 to .72 MJ/ pkm), but trains’ energy intensity decreased by 21 % 

to .25 MJ/pkm. The total contribution of increasing LDV energy intensity is 11.67 PJ. 

Given that average occupancy is a masked but potentially significant influence, 

drawable conclusions from here are limited. 

Therefore, aggregate energy consumption mainly increases due to the increase in 

population and gross energy intensity, attenuated by decreasing passenger intensity. 
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Figure 6: Dutch Passenger Transport IDA 2000 - 2016 

 
Figure 7: Dutch Passenger Transport IDA year-on-year vs. 2000 

 
Figure 8: Dutch Passenger Transport IDA year-on-year vs. previous 
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The year-to-year results show that increasing LDV energy intensity and population 

are the most significant drivers of energy demand. Both consistently contribute to 

higher energy consumption compared with 2000, although LDV energy intensity is 

subject to several changes in direction compared with the previous year. The effect 

of LDVs’ modal share is as well subject to several changes of direction, both when 

compared to the base and the previous year. This suggests that the choice of the base 

year greatly affects the magnitude and sign of the structural (MS) effect. This is similar 

for passenger intensity (pkm/cap) – which tendentially increases until 2007 and only 

decreases by tendency thereafter – but in contrast is subject to a negative trend 

overall. This is shown for perspective in Figure 9, where pkm per capita and LDV’s 

modal share are indexed with respect to the values in 2000. 

 

Figure 9: Dutch LDV Modal Share and Overall Passenger Intensity indexed 

Beyond this, the other factors’ contributions are of rather limited significance. 
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4.2. Energy consumption in the LDV sector 
 

From decomposing energy consumption in the passenger land transport sector, we 

see that LDVs clearly dominate energy consumption and passenger activity and that 

the modal split is subject to minor changes. Furthermore, over the whole period 

overall and LDV energy intensity decrease in Germany but increase in the 

Netherlands. Apart from examining the effect of different fuel technologies, this IDA 

– looking at LDVs – seeks to decompose overall energy intensity on a pkm basis into 

technical energy intensity (i.e., on a vkm basis) and usage efficiency (i.e., passengers 

moved per vkm). 

 

4.2.1. Germany 
 
Methodological remarks 

Since traffic performance and energy consumption of other fuels are set to zero until 

2008 (cf. paragraph 3.2.2), present zero values must be replaced by very small 

positive values (following (Ang, 2004)) due to the mathematical limitations of the 

LMDI approach (including the inadmissibility of zeros in the denominator and 

logarithm). In principle, the form of the small positive values impacts the effects of 

TS and EI (cf. 3.1.2), thereby potentially skewing results. Therefore, a sensitivity 

analysis is conducted for aggregate effects. With regards to the chained base-year 

case, the only impact is on the structure (TS) and intensity (EI) effect in period 10 

(2009). In the fixed base-year case, the same applies to TS and EI effects for every 

year as of 2009. The values for vkm and energy consumption of other fuels are set in 

such a way that they are equivalent for one year and increase by a small amount each 

year. More precisely, the value in period x is 1+x multiplied by 10-100. In period 0, x 

is 0, and in the following periods, x corresponds to the number of the period to the 

power of minus nine. From setting vkm and energy consumption equal in each 

period, it follows that the energy intensity is one. In an alternative approach, where 

vkm and energy consumption are set in such a way that the resulting energy intensity 

corresponds to the weighted average of gasoline’s and diesel’s energy intensity, the 

only significant difference lies in the TS effect in period 10. Additionally, the approach 
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was tested with different exponents from -7 to -100, and the only significant 

differences occur in TS and EI effects for period 10. Moreover, it seems that effect 

sizes converge with increasing negative exponent. For the effects in 2016 compared 

to 2000, the difference in effect sizes for an exponent of -7 and -100 is less than 1.5 

%. Therefore, the selected approach can be seen as valid for all effects and periods 

except for the TS and EI effect in period 10 in the chained base-year case. 

 

Results 

In contrast to land passenger transport, LDVs’ total energy consumption increases by 

.8 % from 2000 to 2016 but stays almost constant on a per-capita basis (- 0.3 %). 

Positive impacts on energy consumption are increasing passenger activity per capita 

(PI), decreasing average occupancy (PMF) and to a small extent increasing 

population (P). Annual pkm per capita increase by 12.4 % to 11722 km, and the 

average PLF decreases from 1.52 to 1.49 pkm per vkm. Moreover, Germany’s LDV 

fleet is subject to continuous dieselization, i.e., diesel LDVs – which are characterized 

by a comparably better fuel economy – continuously replace gasoline LDVs with a 

consequentially negative effect on total energy consumption. In addition, technical 

energy efficiency improvements (i.e., decreasing EI) contribute to the greatest extent 

to decreasing energy consumption. 

Further, the observed increasing energy efficiency from the first IDA is composed of 

the increase in fuel-efficient diesel vehicles, a generally decreasing energy intensity 

(on a vkm basis), and a decreasing PLF (with the latter counteracting efficiency 

gains). 
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Figure 10: German LDV IDA 2000 - 2016 

 
Figure 11: German LDV IDA year-on-year vs. 2000 
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Figure 12: German LDV IDA year-on-year vs. previous 

When looking at the year-to-year results, aggregate LDV energy consumption is lower 

in all years but 2004 and 2016 when compared to the base-year value. Therefore, the 

aggregate change is sensitive for base-year selection. However, as in the first analysis, 

increasing passenger activity has a mostly steady positive effect on energy 

consumption. The opposite – with isolated positive exceptions of diesel and fewer 

for others – can be said for energy intensity on a vkm basis. Compared to the base 

year, average occupancy (the inverse of PMF) is lower in every year but 2008, 

whereas when related to the previous period, the sign of the difference is alternating 

up to 2009. Hence, PMF is sensitive to the choice of the base year for periods under 

review up to 2009 but not for subsequent periods, as it is subject to an overall 

downward trend. 

Beyond that, the changing technology share continuously has a negative effect. 

When the structure effect (TS) for a fuel type is positive, this implies that the share 

in overall traffic performance of this fuel type increased and that the structure effect 

of the fuel type subject to a decrease in vkm share is negative. The total structure 

effect is the sum of the respective disaggregated effects. Since, in our case, the share 

in traffic performance of comparably more energy-efficient diesel vehicles increases, 

the positive TS effect of diesels is of smaller size than the corresponding negative 

effect of gasoline LDVs, and therefore, the total TS effect is negative. 

Beyond that, other effects are of comparably lower significance. 
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Advanced findings 

It is worth noting that diesel LDVs are generally characterized by a higher annual 

mileage when compared to gasoline. Other LDVs lie in between. Therefore, gasoline-

powered vehicles are overrepresented in the overall fleet compared to the overall 

traffic performance. Further, gasoline’s average annual mileage decreases from 61 

% in 2000 to 54 % in 2016 of diesel’s average annual mileage. Moreover, registered 

LDVs per 1000 inhabitants continuously increase from 487 to 556 in the period 

under study. As to be expected, the annual mileage of gasoline and diesel vehicles 

decrease accordingly. At the same time, however, the annual mileage of all LDVs 

remains fairly constant. This is due to the substitution of gasoline by diesel LDVs, 

thereby largely offsetting the effect of individually decreasing mileages. Ultimately, 

for a sophisticated overview, key activity metrics (including vkm, pkm, annual 

mileage per LDV and fleet) are presented standardized per capita and indexed to the 

base period in Figure 13. Notably, pkm and vkm roughly follow the same trend, 

which explains the small magnitude of the PMF factor. Since the LDV fleet is subject 

to a strong upward trend, but the annual mileage remains largely constant, this 

indicates that more vehicles overall drive more, but not the individual vehicle.  

 

Therefore, in the aggregate view, we can infer that the additional demand for 

individual mobility is being met first and foremost by purchasing new vehicles since 

the active fleet is increasing while the annual mileage stays constant. However, 

against the background of decreasing fuel-type specific mileages being offset by the 

changing technology share, the conjecture arises that the LDVs’ annual mileage 

increases in the wake of gasoline to diesel fuel technology substitution. 
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Figure 13: Key German LDV Activity Metrics indexed to the Base Period (normalized per 
Capita) 

 

4.2.2. Netherlands 
 

Similar to land passenger transport, aggregate energy consumption of LDVs increases 

by 5 % while it decreases by 2 % on a per-capita basis. Decreasing average occupancy 

has the biggest positive impact on energy demand, next to increasing population size. 

If the average PLF would stay equal – implying a decline in vkm corresponding to 

pkm – overall LDV energy consumption would decrease, especially since passenger 

activity decreases by 6.7 % to 8268 km per capita and year. In principle, declining 

average occupancy cancels out all technical efficiency gains (EI) plus the negative 

structure effect (TS) and thus largely explains the observed increasing energy 

intensity of the land passenger transport IDA. 
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Figure 14: Dutch LDV IDA 2000 - 2016 

 
Figure 15: Dutch LDV IDA year-on-year vs. 2000 

-80

-60

-40

-20

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16∆
E 

[P
J]

∆E(PI) ∆E(PMF) ∆E(TS) (Gasoline)

∆E(TS) (Diesel) ∆E(TS) (Others) ∆E(EI) (Gasoline)

∆E(EI) (Diesel) ∆E(EI) (Others) ∆E(P)

SUM



65 
 

 
Figure 16: Dutch LDV IDA year-on year vs. previous 

Total LDV energy consumption is higher in all years following 2000, peaking at 6.9 % 

more in 2008, but declines temporarily in six periods (relative to the previous). 

Therefore, the overall change in consumption is sensitive to base-year selection. 

Furthermore, in the cumulative view, changes in average occupancy, population, and 

diesel technology share have a throughout positive effect on energy consumption. 

With three exceptions, PLF is subject to a steady downward trend, decreasing from 

1.51 to 1.31 pkm per vkm on average. On the other hand, pkm per capita peak in 

2004 at 9305 km but follow a downward trend thereafter, reaching the minimum in 

2015 with 8235 pkm per capita (-6.7 % compared to 8858 pkm/cap in 2000). 

Hence, the factor’s magnitude is well dependent on the base period chosen but its 

direction to a lesser extent. Beyond that, energy intensity declines or stagnates in all 

periods (relative to the previous period) but declines relative to 2000 every year. 

However, energy data for other fuels do not meet validation criteria, and 

consequently, resulting indicators cannot be considered valid. Given the small 

significance in energy consumption and activity, the effect on the aggregate EI 

indicator is of small significance. 

Also in the Netherlands, gasoline LDVs are characterized by a significantly higher 

energy intensity per vkm when compared to diesel vehicles (2.36 vs. 2.10 MJ/vkm 

in 2016). However, unlike in Germany, gasoline’s share in traffic performance is 
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67.0 % in 2016. On the other hand, the share of diesel is increasing from 24.7 % in 
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2000 to 32.0 % in 2008 but steadily decreasing thereafter down to 30.4 % in 2016. 

In contrast, the share of other fuels is continuously decreasing from 8.4 % in 2000 to 

2.6 % in 2016. This is mainly due to the decreasing popularity of natural gas vehicles 

and since hybrid LDVs are attributed to the gasoline category, which in turn explains 

gasolines revival as pure-gasoline LDVs stagnate to around 63 % of traffic 

performance in 2016. As a result, the technology share effect is of a much smaller 

magnitude when compared to Germany. 

 

Advanced findings 

Also, registered LDVs per 1000 inhabitants in the Netherlands continuously increase 

from 453 to 527 over the review period. However, fleet statistics are not directly 

comparable to Germany since they follow a different methodology (cf. Appendix B). 

Therefore, Dutch registration numbers are overestimated against the background 

that it relates to the park in use, which is higher than registration numbers on the 

first day of the year. Moreover, the annual mileage of gasoline is only about 45 % of 

that of diesel, and the mileage of all fuel types is trending downwards. As a 

consequence, gasoline vehicles have a higher share in the LDV population than in LDV 

traffic performance, with the opposite being true for diesel. Annual mileage of other 

fuels lies in between. Given the comparably constant technology share, overall 

mileage follows accordingly. For a more sophisticated overview, key activity metrics 

(including vkm, pkm, annual mileage, and stock) of all Dutch LDVs is presented 

indexed to the base period and normalized per capita in Figure 17. The increasing 

widening of the gap between pkm and vkm illustrates the major effect of the PMF 

factor. Moreover, total vkm increase by a lesser extent than the LDV fleet, with 

annual mileage declining accordingly. This suggests that newly registered LDVs are 

substituting parts of itineraries of existing vehicles but also serve additional demand. 

On the whole, this additional demand does not consist in the demand for additional 

passenger transport per se but in the transport of fewer people spread over more 

vehicles, which in turn cover more kilometers in total. 
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Figure 17: Key Dutch LDV Activity Metrics indexed to the Base Period (normalized per 
Capita) 

 

4.3. Comparison 
 

LDVs clearly dominate both countries’ land passenger transport sectors in terms of 

energy consumption and passenger activity. Over the whole period in Germany, land 

passenger transport energy consumption slightly decreases while LDV energy 

consumption is subject to an increase. In the Netherlands, both measures increase. 

On a per capita basis, all measures decrease, with the smallest decrease observed in 

the German LDV sector, with only a .3 % decrease in per-capita energy consumption. 

However, over the whole period, German users of land passenger transport use 

around a quarter more energy per annum than their Dutch counterparts (decreasing 

to 17 % more in 2008 and subsequently increasing). This is while Germans travel 16.5 

% more per capita in 2000 but 38.6 % more in 2016. Looking at the yearly values - 

as depicted in Figure 18 below – both passenger land transport and LDV energy 

consumption per capita follow a parallel overall downward trend in both countries. 

This is reflected in the linear trend lines. However, in a few periods, energy 

consumption per capita is higher than in 2000. In the Netherlands, there is an upward 

trend until 2007 (period 8), which is followed by a strong downward trend until 2015, 

although the trend reverses from 2015 to 2016. In Germany, on the other hand, there 

is an overall downward trend until 2008 and a subsequent increase until 2016. 
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Figure 18: Passenger Energy Consumption per Capita 2000 - 2016 

The most notable difference between the two countries is that passenger intensity 

(pkm/cap) decreases in the Netherlands, whereas it substantially increases in 

Germany. Since passenger activity is often correlated with the country’s GDP (IEA 

14P), it is worth looking at. When indexing together passenger intensity (pkm/cap) 

and GDP per capita (in constant 2015 USD; (World Bank and OECD, 2023); cf. Figure 

19), we can see that both largely run the same path in Germany, whereas the two 

seem to be decoupled in the Netherlands. However, passenger intensity alone cannot 

be considered a predictor of transport energy consumption, as between 2000 and 

2016, pkm per capita in the Netherlands decrease by 6 %, and passenger land 

transport energy consumption per capita decreases by 2.4 %. However, in Germany, 

energy consumption per capita decreases by 1.6 % while passenger intensity per 

capita increases by 11.9 %. 
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Figure 19: Passenger Intensity and GDP per Capita Indexed 

Whereas the positive effect of increasing passenger intensity is canceled out by 

decreasing overall energy intensity (i.e., per pkm) in Germany, the negative effect of 

decreasing passenger intensity is canceled out by increasing overall energy intensity 

in the Netherlands. Thereby, average LDV occupancy only decreases slightly in 

Germany – limiting but still resulting in strong overall efficiency gains (i.e., on a pkm 

basis) – whereas the negative effect of decreasing technical energy intensity (i.e., on 

a vkm basis) in the Netherlands is completely canceled out by the drastically 

decreasing PLF. Beyond that, the substantial dieselization of the German LDV fleet 

results in a significant negative effect, whereas the comparably limited changes in 

fuel technology distribution have a smaller – yet still negative – effect in the 

Netherlands.  

After all, LDVs’ specific energy intensity is decreasing in both countries in a consistent 

downward trend. In line with the trend in aggregate LDV energy consumption, the 

trend in aggregate specific energy intensity runs concave in the Netherlands and 

convex in Germany. This is while the greatest relative improvement can be observed 

in Germany (-13.2 vs. -9.4 %). 
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5. Discussion 
 

The results highlight the significant role of the human dimension in passenger 

transport energy efficiency, as behavioral factors substantially offset technical energy 

intensity improvements. After briefly reinstating the study’s main results, results are 

interpreted in hindsight of the main objectives and research question. Furthermore, 

underlying causes and higher-level developments contributing to the obtained 

results are explored while examining their broader implications. The discussion is 

consummated by acknowledging and discussing the limitations inherent in this study. 

Moreover, the coverage of the chosen model is discussed, including contextualizing 

this work with other authors’ approaches. 

 

Summary 

Passenger transport energy consumption per capita decreases in all four scenarios, 

although at a roughly double as high rate in the Netherlands. In Germany, aggregate 

energy consumption decreases until 2009 and increases thereafter, whereas energy 

consumption in the Netherlands increases until 2004 to decrease subsequently 

(except in the last period). Both countries’ passenger transport sectors are clearly 

dominated by LDVs, both in terms of passenger activity and energy consumption. The 

fact that LDVs account for a significantly higher share in aggregate energy 

consumption than passenger activity already suggests LDVs are substantially less 

energy efficient. Yet, modal shift has a rather limited effect on energy consumption 

besides holding a huge theoretical potential. In line with the initial hypothesis, the 

analyses demonstrate that technical energy efficiency improvements are always 

counteracted by other effects, thus sizably curtailing overall energy efficiency 

improvements. However, against the initial assumption, passenger intensity in 

passenger transport is decreasing in the Netherlands while gross energy efficiency 

deteriorates. In Germany, on the other hand, passenger intensity is subject to a 

substantial increase while gross energy intensity decreases. 

In Germany, decreasing gross energy intensity is the largest limiter of energy 

consumption and is mainly counteracted by increasing passenger activity (at it 

roughly following the trend in GDP per capita). Taking a deeper look at the LDV sector 
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– accounting for between 95.5 and 95.6 % of passenger transport energy demand – 

the decline in gross energy intensity is supported by decreasing specific energy 

consumption per vkm and LDV fleet dieselization and slightly limited by decreasing 

LDV average occupancy.  

In the Netherlands, however, overall passenger activity remains quite constant while 

pkm per capita decrease by 6 % over the whole period – counteracting the trend in 

GDP per capita. Therefore, population increase is the biggest contributor to 

increasing passenger transport energy consumption which would have decreased by 

about 2.5 % if the country’s population had stayed constant (ceteris paribus). 

Notably, gross passenger energy intensity is increasing, counteracting the negative 

effect of decreasing passenger intensity. A closer examination of the LDV sector – 

representing between 94.8 and 95.7 % of passenger energy consumption – shows 

that specific energy consumption per vkm decreases considerably, further but 

slightly supported by the altering technology share. However, the steadily decreasing 

PLF (from initially 1.51 to 1.31 in 2016) more than offsets the efficiency gains 

achieved otherwise. This observation is further supported by the fact that LDVs’ share 

in energy consumption is increasing, whereas its share in overall pkm is decreasing. 

 

Interpretation and Implications 

In line with the scope and background of the energy efficiency concept developed at 

the outset of this thesis, obtained results strongly support the proposition that the 

human dimension is a decisive factor in energy efficiency. Technical energy efficiency 

improvements constitute one factor among many and can be offset or even canceled 

out by behavioral changes. Results for Germany support the initial hypothesis that 

we expect a decreasing gross energy intensity mainly counteracted by increasing 

passenger intensity. By contrast, passenger intensity in the Netherlands is subject to 

a decrease while gross energy intensity is increasing. Nonetheless, per capita energy 

consumption decreases in all cases. All in all, both results may be interpreted in favor 

of the existence of a rebound effect. The second IDA, decomposing LDV energy 

consumption (representing over 94 % of passenger transport energy consumption), 

further decomposes gross energy intensity into usage efficiency (i.e., PMF), 

technology share, and technical energy intensity (i.e., per vkm). While the decreasing 
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technical energy intensity (plus technology share) in Germany is slightly offset by 

derogating usage efficiency and ultimately largely counterbalanced by increasing 

passenger intensity, the net effect remains negative. In the Netherlands, however, 

decreasing technical energy intensity is underpinned by decreasing passenger activity 

and technology share but is ultimately largely offset by the deteriorating average 

PLF.  Therefore, we may interpret the deteriorating PLF in the Netherlands 

(accompanied by increasing vkm but decreasing pkm) as a rebound effect in the 

sense that even though aggregate pkm decline, the demand for individual mobility is 

still increasing in the way that passengers are transported spread over more vehicles 

while traveling more vkm but less pkm on aggregate. On the other, the rebound 

effect in Germany may be interpreted in a more straightforward way since reduced 

energy intensity (aided by the fuel share effect) is correlated with increased 

passenger intensity. 

 

Beyond this, modal share effects are of rather limited significance for the passenger 

transport sector, given the relatively constant modal split. Bearing in mind the 

substantially differing energy consumption per passenger kilometer (for the energy 

an LDV uses to transport one passenger over one kilometer, between 2.4 and 3.3 and 

between 4.5 and 8.5 passengers are transported over the same distance in a bus or 

train, respectively), modal shift holds a large theoretical potential for energy savings. 

In 2016 LDVs’ modal share in land passenger transport is 84.6 and 82.7 % in terms 

of pkm in Germany and the Netherlands, which is above the EU average of 81.3 %. 

Other than that – aside from concerns of transferability – LDVs’ modal share in the 

Czech Republic and Hungary is merely 66.5 %. (EC and Directorate-General for 

Mobility and Transport, 2018) 

Moreover, the decreasing Dutch overall passenger intensity correlates with an 

increase in passenger activity in active transport modes (i.e., walking and cycling). 

The Dutch MON/OViN travel survey – whose numbers are of limited statistical 

certainty due to limited sample sizes but are suited for trend analysis – suggests that 

pkm of cycling increased by approximately 10 % to 15.5 billion pkm between 2005 

and 2015, thereby partially explaining the decline in passenger transport activity. In 

addition, consistent with this thesis, the study’s results indicate a deteriorating 
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average occupancy of LDVs, nonetheless to a lesser extent. (KiM Netherlands 

Institute for Transport and Policy Analysis, 2018) Another possible explanation for 

the deteriorating PLF could be an increase in the share of commercial LDV 

ownership. Nonetheless, the percentage share of LDVs registered on a commercial 

owner increased only marginally from 10.4 to 11.3 % in the period under study. (CBS, 

2022) 

 

What is more, on the grounds of the presented numerical results, the increasing 

technology share of diesel vehicles has a clear negative effect on energy 

consumption. It can therefore be regarded as clearly positive from a mechanistic 

energy efficiency viewpoint, simply owing to the fact that a diesel vehicle consumes 

on average less fuel per vkm (in absolute units) than a gasoline vehicle. This is 

especially true for Germany, where the magnitude of LDV fleet dieselization is 

substantially higher. For the sake of context, the (fleet) share of diesel LDVs in the EU 

increased significantly from a minor share in the 1980s to over 40 % in 2020, which 

is, in this form, unique in the world. Diesel fuels are taxed more leniently by most 

European countries because it is more energy efficient (than gasoline), and therefore, 

GHG emission reductions and energy savings were anticipated by policymakers. 

(Marrero and Rodríguez-López, J. González, R.M., 2020; Miravete et al., 2018) 

However, from an ecological viewpoint, externalities other than CO2 of diesel LDVs 

are always higher when compared to gasoline. In addition, owing to the more 

intensive use of diesel vehicles and the higher mileage in contrast to gasoline, 

dieselization may be subject to a rebound effect, thus offsetting efficiency gains.  

Therefore, dieselization’s actual impact on LDV energy efficiency is highly debated 

among transport economists. Marrero et al. conducted a dynamic general 

equilibrium model study regarding the choice of a diesel or gasoline LDV calibrated 

for main European countries. (Marrero and Rodríguez-López, J. González, R.M., 2020) 

In addition, the model was calibrated for a carbon-content-dependent Pigouvian fuel 

tax (therefore higher for diesel by assuming a carbon price of 25 € per ton of CO2). 

The authors’ findings suggest that the EU taxation favoring diesel caused an increase 

of 2.7 % in LDV traffic performance compared to the socially optimal carbon-content 

related fuel taxation. Consequentially, the authors point out that the relatively better 
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fuel economy plus lower fuel price of diesel may imply an increase in traffic 

performance and thus significantly limit the associated energy savings potential. In a 

different dynamic panel data approach examining the dynamic relationship between 

LDV emissions and fleet dieselization in 13 EU countries from 1990 to 2015, the 

authors estimate that a .1-point increase in the relative gasoline/diesel fuel price 

leads to about a 1.4 % increase in aggregate LDV emissions. (González et al., 2019) 

However, fleet dieselization cannot be explained by the more lenient fuel taxation 

alone, as consumer preferences and productivity gains in the European automotive 

industry due to specialization and policy decisions also played a crucial role. (Marrero 

and Rodríguez-López, J. González, R.M., 2020) Barring LDV usage behavior, an 

analysis of new car purchasing trends in Germany from 1998 to 2008 shows that 

consumers switching to a diesel model did not always buy a matched pair but rather 

preferred a more powerful diesel car than what they might have bought otherwise 

with a consequential less steep decrease in LDV energy consumption. This is while 

gasoline sales shifted to lower-emitting models to a greater extent. (Zachariadis, 

2013) 

Conclusively, the induced effect on traffic performance caused by the lower fuel cost 

and higher energy efficiency of diesel LDVs may serve as a partial explanation for the 

overall steadiness of German LDVs’ annual mileage against the background of 

individually declining mileages and increasing share in diesel vehicles, if we assume 

that new diesel car owners use their vehicle more in the course of the rebound effect 

than they would if they had kept their gasoline car. Notwithstanding, a change in LDV 

ownership distribution may serve as an alternative explanation for the observed 

progression of German LDV mileage since LDVs owned by a commercial owner are 

typically characterized by higher annual mileages. Nonetheless, throughout the 

period under study, commercial ownership rate remains at an almost constant 10 %, 

and thus this explanatory approach is not applicable. (BMDV et al., 2016) 

 

Beyond the impact of improved fuel economy on LDV usage behavior, there is 

increasing evidence that technical energy efficiency enhancements may also change 

LDV purchase preferences itself. A three-factor IDA on the British LDV fleet from 2000 

to 2018 – decomposing the sales-weighted average fuel economy of new vehicles 
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into technical energy efficiency, technology shift, and vehicle attribute change – 

found that around 60 % of the potential energy savings achieved by technological 

progress have been offset by increasing size and engine power of the vehicles. 

(Craglia and Cullen, 2019) In a formal framework analysis on the impact of more 

efficient but larger new passenger cars on energy consumption in EU-15 countries 

from 1990 to 2010, the authors concluded that the technically achievable energy 

savings were compensated by 22 % due to more vkm and by 48 % due to larger (i.e., 

stronger and heavier) cars, thus constraining theoretical savings by 70 %. (Ajanovic 

et al., 2012) However, involved feedback effects are complex, and many authors 

point out the significantly differing purchasing patterns of second-hand vehicles with 

accordingly different effects on the LDV fleet composition and energy demand. 

Moreover, effects identified in one or more European countries cannot be readily 

transferred to other countries. Nevertheless, we can assume a certain transferability. 

(Craglia and Cullen, 2019; Ó Gallachóir et al., 2009; Zachariadis, 2013)  

 

At last, there is the widely recognized increasing gap between type-approval and real-

world fuel economy of passenger cars, with the result that new LDV fuel economy 

standards set by the EU in 2008/09 had little effect on LDV energy efficiency. (Craglia 

and Cullen, 2019; Kok, 2015) In an ex-post energy consumption decomposition of 

Irish LDVs, on-road fuel consumption was, on average, 30 and 40 % higher for 

gasoline and diesel vehicles, respectively. For one, this reemphasizes the importance 

of relying on multiple indicators in order to gain relevant insights into the state of 

energy efficiency (Dennehy and Ó Gallachóir, 2018) On the other side, this constitutes 

an information failure that makes it harder for consumers to make an energy-efficient 

vehicle purchase decision. 

 

Limitations 

Limitations in the data underlying the employed energy efficiency indicators are 

addressed in section 3.2. However, in view of the incumbent complexity in collecting 

data from the passenger transport sector, all data can be considered valid for trend 

analysis except indicators involving alternatively fueled cars. Given the aggregate 

view with only one data point per year, it is difficult to ensure that the data points 
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employed are all of the same definition with regarding the time period. This is 

especially true for indicators compounded by two non-contiguous data points, such 

as energy intensity indicators. Therefore, long-term trends are generally of higher 

significance than – e.g. – an observed year-on-year change. On top of that, some 

uncertainty remains, particularly with respect to Dutch bus activity data as well as 

with the conformance of coverage and definition of energy intensity indicators 

regarding German LDVs. For the latter, we can assume that the resulting energy 

intensity is slightly overestimated. By way of contrast, since gas LDVs are attributed 

to the other category while HEVs are assigned to the gasoline category, but both 

entail a partially significant share of bivalent engines, further uncertainty regarding 

gasoline intensity indicators emerges. However, both effects cancel each other out 

to some extent, and the share of these fuel types is generally minor. Additionally, 

given the methodological heterogeneity in data collection practices between the two 

countries, a direct country-to-country comparison or decomposition seems 

unrewarding yet potentially insightful. After all, this paper is less concerned with 

explaining the difference in transport activity and energy consumption between the 

two countries themselves but more about grasping the difference in the drivers 

underlying energy consumption. 

 

Another inherent limitation lies within the breakdown of LDV gross energy intensity 

(energy per pkm) into usage efficiency (i.e., PMF) and technical energy efficiency 

(energy per vkm and TS), which constitutes a central objective of this study. Since 

the LMDI methodology is generally consistent in aggregation, we might expect that 

the size of LDVs’ EI effect in the passenger IDA (cf. E14) corresponds to the sum of 

the respective aggregate PMF, TS, and (vkm-based) EI effects in the LDV IDA (cf. E19-

21). This is also because when these three effects are multiplied out (cf. the IDA 

identity E16), the gross EI effect remains. However, since the definition of the factors 

differs in the single and multi-step procedure (namely the log mean of energy 

consumption), the sum of the three effects does not exactly match the size of the 

gross energy intensity of LDVs. The effect calculated in one step (i.e., LDVs’ EI effect 

in the first IDA) involves the log mean of aggregate LDV energy consumption, whereas 

the sum of the disaggregated effects implies the log mean of the three subaggregates 



77 
 

(i.e., LDV fuel types), which explains why the results do not necessarily coincide. 

Although this observation is in accordance with the limitations of the LMDI I approach 

mentioned in (Ang and Liu, 2001). 

To illustrate this, LDVs’ cumulative EI effect in 2007 for the Netherlands in the first 

IDA is 2.07 PJ. The sum of the corresponding PMF (8.4 PJ), TS (-1.88 PJ), and EI (-

4.41 PJ) effects in the second IDA is 2.11 PJ, however. On average, this difference is 

1.4 % and 0.5 % for German and Dutch results, respectively. The largest observed 

difference is 6.3 % in 2005 and 4.22 % in 2016 for the Netherlands and Germany, 

respectively. 

 

Fundamentally, the preceding analyses aim to comprehend the influence of several 

factors of activity, structure, and intensity on passenger transport energy 

consumption. However, as here, it is infeasible for any study to capture the entirety 

of drivers underlying energy demand. As already addressed, this study fails to capture 

behavioral factors embedded in the gross energy intensity of passenger transport. 

The primary reason for this is missing data for passenger train vkm. While (Jennings 

et al., 2013) perform extensive refinements and estimations on Irish passenger 

transport data to obtain average occupancies for all traffic modes, this thesis aims to 

comprehend the phenomenon of usage efficiency by example of the LDV sector. 

Moreover, the reasons for the differing transport demand patterns (i.e., activity 

levels) between the two countries are not addressed. Those include, among others, 

differing geographic characteristics, such as population density and urbanization 

rate. (IEA, 2014a; Jennings et al., 2013) Other issues not addressed include the 

potentially significant impact of energy prices, the effect of policy changes (such as 

subsidies or emission limits and the impact on the level of dieselization), but also the 

effects of LDV ownership type and vehicle attributes. For instance, a study on 

transport behavior against the background of partial tax exemption for commercially 

registered cars in Germany concludes that company car benefits stimulate growth in 

the number of LDVs and an increase in car motorization and usage. (Metzler et al., 

2019) 

Beyond that, we could quantify the potential rebound effect in terms of an increase 

in passenger activity or changing PLF in parallel with declining energy intensity per 
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vkm. Nevertheless, statements about the extent to which this occurred as a result of 

technical efficiency gains are not possible. On the other hand, a rebound effect in the 

course of inter-fuel substitution or in terms of changing vehicle attributes is not 

directly quantifiable in this setup. Nonetheless, given the myriad and possibly 

different nature of underpinning determinants, a top-down decomposition analysis 

does not seem the best way to address these questions.  

 

What is more, given that volumetric energy intensities (such as liters per 100 vkm or 

miles per gallon) are still the most widely used units quoted either in public 

discussions about car energy efficiency or in the context of car efficiency labels, it 

would seem natural to employ such a metric in the context of this work. Moreover, 

volumetric energy indicators are employed in a number of scientific works on the 

topic. (Ajanovic et al., 2012; Craglia and Cullen, 2019; Dennehy and Ó Gallachóir, 

2018; González et al., 2019; Marrero and Rodríguez-López, J. González, R.M., 2020) 

However, owing to the different volumetric carbon content of diesel and gasoline 

fuels, a volumetric energy intensity measure would substantially skew results, first 

and foremost, because the fuel share is not steady. Nonetheless, there is the 

possibility to employ volumetric energy intensity without distortions if the index of 

improvement for the individual fuels is calculated before aggregation or if a diesel 

intensity indicator – e.g. – is transformed into gasoline equivalents. Even so, such an 

indicator would be more difficult to interpret without further information on fuel 

composition and is further not suitable for comparing, for instance, the energy 

intensity of electric passenger trains with that of gasoline LDVs. Considering this, the 

use of an absolute indicator appears to be more elegant. Notwithstanding, the use of 

a single volumetric intensity indicator for all fuel types would still compound isolating 

and quantifying the impact of inter-fuel substitutions since this effect would be 

subsumed into the intensity effect. (Dennehy and Ó Gallachóir, 2018) Thus, 

introducing the TS effect remediates this issue. Any the less, in the pkm-based 

intensity indicator employed in the first IDA, this concern still holds. However, since 

a pkm-based intensity indicator also subsumes usage behavior (i.e., average 

occupancy), this is of secondary nature. 
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Beyond this, other authors based their technical LDV energy intensity metric on type-

approval fuel economy and included an on-road factor to account for differences 

between laboratory testing values and real-world fuel consumption. (Craglia and 

Cullen, 2019; Dennehy and Ó Gallachóir, 2018) While this approach elucidates the 

often-stark differences between published and real-world fuel economy and 

quantifies it, this is less in line with the top-down approach applied here, which 

primarily aims to identify higher-level relationships in the overall passenger transport 

sector on the basis of its most important component. 

 

Furthermore, the choice of metrics for activity, structure, and intensity metrics differs 

significantly among decomposition analysis studies. (Papagiannaki and Diakoulaki, 

2009) employ registered LDVs per capita together with population change and annual 

mileage as activity metric and use a vkm-based intensity metric. Passenger activity 

and, thus, average occupancy are disregarded. Similarly, (Dennehy and Ó Gallachóir, 

2018) use the number of cars together with average mileage as activity metrics, also 

neglecting passenger activity while excluding population change in addition. 

Consequently, the fuel share in both approaches is weighted according to the stock 

ratio. While Dennehy and Ó Gallachóir acknowledge that a vkm ratio derived 

weighting is more accurate owing to the differing mileages (since LDV energy 

consumption ultimately depends on the mileage), the authors point out that this step 

was necessary to extend the analysis to further factors. If the analysis in this thesis 

had employed LDVs per capita together with mileage and population as activity 

metrics, the size of the former would be significantly larger than the utilized pkm/cap 

metric but would have been eventually mediated by the mileage factor. The 

population factor size would have stayed equal in any case. However, since this would 

necessitate a stock-weighted technology share, the effect’s size would be 

substantially skewed in consequence of the differing annual mileages. To illustrate 

this, the stock-weighted technology share effect in the energy decomposition of the 

Irish LDV sector between 1995 and 2015 was substantially positive. This is against the 

background of profound dieselization (likewise to Germany) and corresponding 

negative contributions to technical energy intensity. The authors point out that this 

is primarily owing to the significantly greater mileage of diesel LDVs which is 
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incorporated in the factor. (Dennehy and Ó Gallachóir, 2018) Nevertheless, 

population growth, which is not considered, additionally distorts the effect upward. 

Furthermore, while we can observe the correlation between the increasing number 

of registered LDVs and decreasing average mileage only outside the IDA, a stock-

based activity metric neglecting pkm would encompass this but – e.g. – curtain the 

substantial impact of the declining Dutch LDV car occupancy on the other hand. 

Without the use of secondary data, the conclusion that Dutch LDVs were driven more 

while transporting fewer passengers could not have been made. The offsetting effect 

to decreasing technical energy intensity would have been primarily attributed to the 

increasing number of vehicles and thus increased activity.  

In conclusion, while the choice of factors is driven by the research objectives, it is 

essential to exercise caution when interpreting them. The size and sign of each factor 

are contingent upon their definitions and their interrelationships with other factors. 

It is crucial to view these factors not in isolation but rather as part of a complex 

functional interaction, recognizing that their interpretations are intrinsically linked to 

one another. 
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6. Conclusion 
 

This research aims to ascertain and quantify the progress of energy efficiency of land 

passenger transport in Germany and the Netherlands. Based on an LMDI factor 

decomposition analysis, the aggregate energy consumption of land passenger 

transport and LDVs – in a separate analysis – are decomposed into various factors of 

activity, structure, and energy intensity. With this approach employing historical data 

from 17 years, it ought to be examined, particularly to what extent the energy 

efficiency pathway can be attributed to technical energy efficiency improvements 

and behavioral factors. Moreover, the hypothesis that there is a rebound effect in 

the form that technical energy efficiency improvements are primarily offset by an 

increase in passenger activity is tested. However, owing to non-obtainable data, the 

technical energy efficiency of passenger transport cannot be directly ascertained. 

Therefore, the second IDA – looking at LDVs which represent most passenger activity 

and energy consumption – examines both gross and technical energy intensity, 

serving in turn as a reasonable proxy for the passenger transport sector as a whole. 

The numerical results suggest a rebound effect since technical efficiency 

improvements exist (for LDVs) yet are counteracted by behavioral factors. Thereby, 

gross passenger transport energy intensity improves in Germany but deteriorates in 

the Netherlands. While the case of Germany supports the initial hypothesis, the 

Netherlands is subject to declining per capita passenger activity (in pkm/cap) with 

other behavioral factors thwarting the progress of technical energy intensity. In the 

Dutch case, the rebound effect lies within a deteriorating LDV average occupancy 

with the effect that fewer passenger kilometers are traveled spread over more 

vehicles which are driven more overall. Therefore, increasing passenger activity in a 

broader sense is a major counteracting effect to enhanced LDV energy intensity since 

vehicle kilometers per capita increase in all cases. Moreover, the German LDV fleet 

dieselization – which has a significant negative impact on the specific LDV energy 

consumption – may be additionally subject to a rebound effect against the 

background of individually decreasing annual mileages (i.e., per fuel type) but 

relatively constant annual mileages on aggregate in the course of fuel-technology 

substitutions. In the Netherlands, this observation cannot be made since the fuel 
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share stays more constant. Beyond that, further academic research on the subject 

indicates that technical energy efficiency enhancements may prompt a shift in vehicle 

purchase patterns towards heavier and stronger-motorized models, thus further 

limiting tangible reductions in energy consumed. (Ajanovic et al., 2012; Craglia and 

Cullen, 2019; Ó Gallachóir et al., 2009) However, this could not be quantified within 

the scope of this work.  

After all, modal split has the most negligible impact on passenger transport energy 

consumption. This is surprising, given that modal shift offers some of the greatest 

saving potentials in view of the vast difference in energy consumption per passenger 

kilometer across modes. 

 

In conclusion, this thesis has shed light on several important aspects of energy 

efficiency in passenger transport. Firstly, drivers and barriers to energy efficiency in 

general have been outlined and linked to passenger transport by delving into the 

concept of associated energy efficiency indicators and data collection practices. 

Moreover, an in-depth review of decomposition practices was conducted, building 

on the framework previously developed. In addition, numerous limitations in the 

data underlying utilized efficiency indicators have been addressed. This especially 

applies to adopted practices to delimit transport activity data to a national territory. 

Beyond that, some data documentation was found to be incomplete or unavailable, 

which particularly affected the validation of energy data. Secondly, the 

disaggregation of LDV fuel types against the background of an increasing prevalence 

of bivalent engines poses a considerable challenge. To achieve a more 

comprehensive understanding, there is a need for more detailed data on the actual 

fueling of such. In the present research, assumptions were relied upon for attribution, 

underscoring the importance of acquiring precise data to ensure sound analysis. 

Lastly, the expressiveness and generalizability of any IDA’s results are intrinsically 

linked to the quality of underlying data. Addressing these limitations presents an 

auspicious opportunity to improve the streamlining of data collection methodologies 

to ensure the accuracy, reliability, but also comparability of energy efficiency 

indicators. By addressing these recommendations, researchers and policymakers can 
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bolster their efforts in understanding energy efficiency trends and devising effective 

strategies to combat climate change and promote sustainable development. 

 

Based on the main finding that the human dimension is an essential adversary to 

technical energy efficiency improvements, further research could address the 

context behind the differing levels of activity between the two countries. This may 

include the difference in passenger kilometers per capita but also as to why the Dutch 

LDV average occupancy decreases in such a manner. Ultimately, understanding the 

savings potential and monitoring the impact of technology and behavioral change on 

passenger transport energy consumption requires a holistic analysis, including a 

multifaceted set of employed indicators. Starting from the analyses’ results, an 

impactful policy response should target, first and foremost, the reduction of LDV 

traffic share given the largely untapped potential of an altered modal split. Besides, 

policies targeting the deteriorating PLF observed for Dutch LDVs also hold a 

considerable energy saving potential in hindsight of the former more than offsetting 

technical efficiency gains achieved otherwise. Bearing in mind the minor share in 

energy consumption, measures targeting buses and trains in isolation are expected 

to have less impact on aggregate passenger transport energy consumption. 

Nonetheless, in view of the elusiveness of energy efficiency but also of passenger 

transport itself – with the myriad of involved stakeholders taking decisions that are 

deeply embedded in everyday life – transport policies solely targeting technical 

efficiency improvements are likely to fail considering associated rebound effects. 

Therefore, a successful policy to enhance passenger transport energy efficiency must 

address behavioral and personal utility factors.  
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8. Appendix A: Data used in the Passenger Transport IDA 
 

General Notes 

This appendix gives record about sources and revisions of data instigated in chapter 

3.2.1. To perform the IDA for the years 2000 through 2016, data series for pkm, 

energy consumption and population size is required, whereas disaggregation by 

traffic mode is required for pkm and energy consumption. With passenger transport 

sectors of two countries to be examined, this sums up to 14 data series. The finally 

employed data is given in Tables 6 and 7 at the bottom of this paragraph. As already 

discussed, LDV energy and all train data can be readily deployed from the IEA 

database on energy efficiency indicators for the transport sector. Revisions on energy 

data for light duty vehicles are approached in Appendix B in the respective sub-

chapters. Nonetheless, German energy data, and Dutch energy and activity data on 

buses, are subject to some conspicuities which are dealt with in the following.  

 

Revision of German bus energy data 

Until 2012 bus energy consumption data are almost identical across databases. 

Missing values for energy carriers other than gasoline or diesel can be explained by 

values reported under other sources. However, in the periods after 2012, reported 

values for TFC vary substantially, where the IEA’s values seem to have decoupled 

from the trend in vkm. When energy consumption data is indexed to a base period – 

together with vkm data – and mapped in a graph (cf. Figure 20 with IEA energy data 

(IEA, 2020a) in blue, ODYSSEE-MURE (ODMU) (ODYSSEE-MURE, 2023) energy data 

in orange and IEA vkm data in grey), one easily finds, that the IEA’s datapoints 

deviate from the trend of vkm as of 2012. 



92 
 

 
Figure 20: Indexation of German Bus Energy Consumption and vkm Data 

As already deduced, the observed deviation can be explained by deviating values for 

other fuels in the IEA database. Therefore, energy consumption data from ODYSSEE-

MURE is used. For the years from 2005 to 2008, energy consumption may be 

overestimated (in both data sources). In the absence of any trackable change in 

methodology, we must assume – with reservations – that the provided data are 

correct. Underlying data for Figure 20 is provided in Table 2. 

Table 2: Bus TFC and vkm Values and Indexes for Germany 

period 

(year) 
TFCa [PJ] TFCb [PJ] 

vkma 

 [109 km] 

TFCa 

indexed 

TFCb 

indexed 

vkma 

indexed 

1 (2000) 36,85 36,84 3,74 1 1 1 

2 (2001) 36,56 36,56 3,72 0,992 0,992 0,995 

3 (2002) 35,70 35,70 3,68 0,969 0,969 0,983 

4 (2003) 35,13 35,12 3,57 0,953 0,953 0,955 

5 (2004) 35,15 35,15 3,57 0,954 0,954 0,955 

6 (2005) 35,15 35,14 3,57 0,954 0,954 0,955 

7 (2006) 36,40 36,40 3,50 0,988 0,988 0,936 

8 (2007) 35,57 35,56 3,40 0,965 0,965 0,909 

9 (2008) 32,94 32,93 3,31 0,894 0,894 0,885 

10 (2009) 32,10 32,09 3,31 0,871 0,871 0,885 

11 (2010) 32,18 32,17 3,33 0,873 0,873 0,890 

12 (2011) 31,90 31,90 3,31 0,866 0,866 0,885 

13 (2012) 32,16 32,16 3,34 0,873 0,873 0,893 

14 (2013) 31,35 31,20 3,25 0,851 0,847 0,869 
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15 (2014) 32,40 31,69 3,30 0,879 0,860 0,882 

16 (2015) 32,21 32,34 3,37 0,874 0,878 0,901 

17 (2016) 31,61 33,17 3,45 0,858 0,900 0,922 

Superscripts: a: IEA Database; b: ODYSSEE-MURE Database 

 

Notes on Dutch bus energy data 

Contrary to IEA, in ODYSSEE-MURE, there are no reported values for CNG 

consumption of buses. Once those values are added from the IEA dataset, values for 

TFC correspond. In consequence, the IEA data may be regarded as externally 

consistent.  

 

Revision on Dutch bus activity data Netherlands 

Given that pkm per capita for trains are somewhat similar in Germany and the 

Netherlands, a value less than half for busses seems implausible. This holds especially 

true when looking at bus vkm, as this would imply busses in the Netherlands 

circulating with roughly half as many passengers on average. These relationships are 

depicted in Figures 21 and 22. Underlying data are presented in Tables 3 and 4. 
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Further investigation on the subject matter shows that provided Dutch bus pkm data 

are estimated based on a nationwide travel survey. Values before the methodological 

change can be found for the years 2000 and 2005-2014 in the book series “EU 

Transport in Figures” of the European Commission (EC and Directorate-General for 

Energy and Transport, 2008; EC and Directorate-General for Mobility and Transport, 

2011, 2014, 2016). Resulting PLF and pkm per capita relate more to values found in 

Germany and other surrounding countries (cf. Figure 23 and Table 3). Since values 
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Figure 21: Pkm per Capita for Public Transport Modes for Germany and 
Netherlands with IEA Data 

Figure 22: Bus Passenger Load Factors for Germany and Netherlands with IEA 
Data 
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on bus pkm are missing for 2001 to 2004 and as of 2015, missing values must be 

imputed. 

 
Figure 23: Bus pkm per Capita for Germany and Netherlands of different Sources 

To impute the six missing values, we can look at adjacent growth trends. This includes 

pkm per capita and average occupancy (PLF), both from IEA data and values from 

Germany. To easily find out whether growth trends resemble, we can index the 

values to the base year. Further scrutiny shows that pkm per capita is an unsuitable 

predictor since there are no observable correlations. The same is true when 

compared to data derived from the Dutch travel survey (i.e., pkm data drawn from 

IEA or ODYSSEE-MURE database). At last, when we index the PLF derived from EC 

pkm data and IEA vkm data together with IEA pkm data from Germany, we can see 

that as of 2009 (period 10), both functions behave in a very similar way (cf. Figure 24 

and Table 5). Notwithstanding, this cannot be said for values before 2009. 
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Figure 24: PLF for Buses in the Netherlands (EC/IEA) and Germany (IEA) indexed together 

Given the geographic and economic proximity, we therefore may assume that the 

PLF for busses in the Netherlands behaved in the same way as in Germany for the 

years of 2016 and 2017 when compared to the base year value. Therefore, those two 

values are estimated via multiplying the index value of German bus PLF (from Table 

5) to obtain the estimated PLF for the Netherlands. The value for pkm is obtained by 

the relationship established in E2. In the absence of any observable correlation, 

missing values for the years 2001-2004 are linearly interpolated (i.e., assuming a 

linear growth rate). The resulting finally deployed value for Dutch bus pkm – together 

with all other values relevant for the IDA – are given in Table 7 at the bottom of this 

chapter. 

Table 3: Data on 1000 pkm/cap used in Figures 21 and 23 

Period (year) 
1000 pkm/cap (traffic mode, country) 

Bus, NLc Bus, NLa Bus, GEa Train, NLa Train, GEa 

1 (2000) 0,709c1,2,3,4 0,381 0,845 1,056 1,105 

2 (2001) n/a 0,384 0,842 1,055 1,110 

3 (2002) n/a 0,356 0,827 1,050 1,056 

4 (2003) n/a 0,315 0,828 1,015 1,055 

5 (2004) n/a 0,319 0,832 0,983 1,079 

6 (2005) 0,723c1,2,3,4 0,306 0,824 0,982 1,135 

7 (2006) 0,734c1 0,269 0,815 0,980 1,165 

8 (2007) 0,751c2 0,261 0,807 0,981 1,176 

9 (2008) 0,760c2 0,264 0,787 0,980 1,220 
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10 (2009) 0,732c2 0,263 0,772 0,976 1,226 

11 (2010) 0,728c3,4 0,247 0,769 0,975 1,249 

12 (2011) 0,713c3 0,264 0,764 1,078 1,269 

13 (2012) 0,680c3 0,233 0,739 1,044 1,272 

14 (2013) 0,696c4 0,238 0,750 1,143 1,315 

15 (2014) 0,682c4 0,237 0,759 1,043 1,337 

16 (2015) n/a 0,260 0,781 1,015 1,343 

17 (2016) n/a 0,264 0,768 1,075 1,361 

Superscripts: a: IEA Database, c: EC Pocketbooks (1: (EC and Directorate-General for Energy 
and Transport, 2008), 2: (EC and Directorate-General for Mobility and Transport, 2011), 3: 
(EC and Directorate-General for Mobility and Transport, 2014), 4: (EC and Directorate-
General for Mobility and Transport, 2016)) 

Table 4: Bus vkm and PLF 

Period 

(year) 

PLF bus (country) vkm bus (country) 

NLa,c 

[pkm/vkm] 
NLa [pkm/vkm] 

DEa 

[pkm/vkm] 

NLa 

[109 km] 

DEa 

[109 km] 

1 (2000) 18,833 10,117 18,414 0,60 3,74 

2 (2001) n/a 10,441 18,444 0,59 3,72 

3 (2002) n/a 9,583 18,329 0,60 3,68 

4 (2003) n/a 8,828 18,919 0,58 3,57 

5 (2004) n/a 9,123 18,994 0,57 3,57 

6 (2005) 20,702 8,772 18,784 0,57 3,57 

7 (2006) 21,429 7,857 18,909 0,56 3,50 

8 (2007) 20,847 7,254 19,232 0,59 3,40 

9 (2008) 20,833 7,250 19,211 0,60 3,31 

10 (2009) 19,206 6,889 18,761 0,63 3,31 

11 (2010) 18,906 6,406 18,544 0,64 3,33 

12 (2011) 18,594 6,875 18,541 0,64 3,31 

13 (2012) 18,387 6,290 17,787 0,62 3,34 

14 (2013) 18,871 6,452 18,603 0,62 3,25 

15 (2014) 19,167 6,667 18,624 0,60 3,30 

16 (2015) n/a 7,333 18,926 0,60 3,37 

17 (2016) n/a 7,627 18,333 0,59 3,45 

Superscripts: a: IEA Database, a,c: pkm from EC Pocketbooks (cf. table above) and vkm from 

IEA 
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Table 5: Indexed Bus PLF for Germany and the Netherlands 

Period (year) PLFa,c (NL, indexed) PLFa (DE, indexed) 

1 (2000) 1,000 1,000 

2 (2001) n/a 1,002 

3 (2002) n/a 0,996 

4 (2003) n/a 1,027 

5 (2004) n/a 1,032 

6 (2005) 1,099 1,021 

7 (2006) 1,138 1,026 

8 (2007) 1,107 1,045 

9 (2008) 1,106 1,042 

10 (2009) 1,020 1,020 

11 (2010) 1,004 1,007 

12 (2011) 0,987 1,006 

13 (2012) 0,976 0,967 

14 (2013) 1,002 1,010 

15 (2014) 1,018 1,011 

16 (2015) n/a 1,028 

17 (2016) n/a 0,995 

 

Table 6: Final Data deployed for the German Passenger Transport IDA 

Period 

(year) 

Energy 

consumpt

ion (LDV)a 

[PJ] 

Energy 

consumpt

ion (bus)b 

[PJ] 

Energy 

consumpt

ion 

(train)a 

[PJ] 

pkm 

(LDV)a 

[109 km] 

pkm 

(bus)a 

[109 km] 

pkm 

(train)a 

[109 km] 

POPa 

[106] 

1 (2000) 1511,88 36,84 35,16 849,60 68,87 90,00 81,46 

2 (2001) 1527,28 36,56 35,02 872,02 68,61 90,45 81,52 

3 (2002) 1536,9 35,70 33,39 880,28 67,45 86,11 81,58 

4 (2003) 1508,53 35,12 28,08 875,65 67,54 86,04 81,55 

5 (2004) 1531,43 35,15 26,43 887,10 67,81 87,89 81,46 

6 (2005) 1478,04 35,14 26,37 875,67 67,06 92,31 81,34 

7 (2006) 1479,56 36,40 23,63 882,65 66,18 94,56 81,17 

8 (2007) 1469,17 35,56 21,94 885,44 65,39 95,26 80,99 

9 (2008) 1443,56 32,93 20,59 888,53 63,59 98,53 80,76 

10 (2009) 1454,07 32,09 23,20 898,70 62,10 98,70 80,48 
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11 (2010) 1455,55 32,17 22,68 902,40 61,75 100,30 80,28 

12 (2011) 1471,6 31,90 22,22 912,42 61,37 101,90 80,28 

13 (2012) 1453,76 32,16 21,64 914,56 59,41 102,30 80,43 

14 (2013) 1465,59 31,20 21,46 921,42 60,46 106,07 80,65 

15 (2014) 1490,39 31,69 20,30 934,96 61,46 108,31 80,98 

16 (2015) 1498,07 32,34 19,82 945,73 63,78 109,70 81,69 

17 (2016) 1523,31 33,17 19,70 965,30 63,25 112,04 82,35 

Superscripts: a: IEA Database; b: ODYSSEE-MURE Database 

Table 7: Final Data deployed for the Dutch Passenger Transport IDA 

Period 

(year) 

Energy 

consumpt

ion (LDV)a 

[PJ] 

Energy 

consumpt

ion (bus)a 

[PJ] 

Energy 

consumpt

ion 

(train)a 

[PJ] 

pkm 

(LDV)a 

[109 km] 

pkm 

(bus)a,c 

[109 km] 

pkm 

(train)a 

[109 km] 

POPa 

[106] 

1 (2000) 236,23 7,56 5,32 141,10 11,30 16,83 15,93 

2 (2001) 238,64 7,38 5,10 141,60 11,33 16,94 16,05 

3 (2002) 242,5 7,49 5,03 144,20 11,75 16,95 16,15 

4 (2003) 245,21 7,27 4,95 146,10 11,57 16,48 16,23 

5 (2004) 251,28 7,00 4,81 151,50 11,59 16,00 16,28 

6 (2005) 249,74 6,94 4,61 148,80 11,80 16,02 16,32 

7 (2006) 250,47 6,80 4,51 148,00 12,00 16,03 16,35 

8 (2007) 252,42 7,05 4,22 149,50 12,30 16,07 16,38 

9 (2008) 249,41 7,21 4,36 143,70 12,50 16,12 16,45 

10 (2009) 248,29 7,57 4,76 148,90 12,10 16,14 16,53 

11 (2010) 249,5 7,79 4,90 144,20 12,10 16,20 16,62 

12 (2011) 249,8 7,93 4,94 144,40 11,90 18,00 16,69 

13 (2012) 247,79 7,84 4,91 139,60 11,40 17,50 16,76 

14 (2013) 245,76 7,92 4,94 145,40 11,70 19,20 16,80 

15 (2014) 244,83 7,78 4,69 145,00 11,50 17,60 16,87 

16 (2015) 244,8 7,86 4,37 139,50 11,61 17,20 16,94 

17 (2016) 247,36 7,96 4,57 140,80 11,06 18,30 17,03 

Superscripts: a: IEA Database; a,c: pkm from EC Pocketbooks, Value Imputation using IEA 

Database 
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9. Appendix B: Data used in the LDV IDA 
 

General Notes 

This appendix gives record about sources and revisions of data instigated in chapter 

3.2.2. To perform the IDA for the years 2000 through 2016, data series for pkm, vkm, 

energy consumption and population size is required, whereas disaggregation by 

engine technology is required for vkm and energy consumption. With LDV sectors of 

two countries and three propulsion technologies to be examined, this sums up to 16 

data series. The finally employed data is given in Table 22 and 23 at the bottom of 

this paragraph. As discussed at the outset, energy data for both countries must be 

conflated from the two primary sources, since it is dealt differently with biofuels and 

due to differing data availability for unconventional fuels. Activity data on pkm can 

be readily deployed and are externally consistent. Vkm disaggregated by engine type 

must be calculated based on available data for annual mileage and stock, which are 

available for gasoline, diesel, and overall LDVs. 

 

Revision of German energy data 

For Germany, the sum of gasoline, diesel, and biofuel consumption in the ODYSSEE-

MURE database equals the sum of gasoline and diesel consumption in the IEA 

database. Besides, data from both sources pass reaggregation tests and are thus 

internally consistent. However, the ODYSSEE-MURE database is lacking values for 

other fuel consumption except LPG (whose values are substantially larger than in the 

counterpart). In contrast, the IEA provides consumption data on electricity, natural 

gas, and LPG. Strikingly, aggregated consumption of other fuels is remarkably similar 

with a mean difference of about .3 PJ. This suggests that disaggregation of fuel 

consumption is erroneous in the ODYSSEE-MURE database. To enable data 

consistency, energy consumption data for diesel and gasoline are drawn from the IEA 

database and aggregated data for other fuels are averaged over both sources. This 

approach leads to an equivalence of consistently over 99.8 % when compared to 

reported TFC of both sources. It is worth noting that the share in energy consumption 

of other fuels lies between .03 and 2.14 % within the examined period. Underlying 

data on TFC and consumption of other fuels are provided in Table 8. Here TFC values 
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are as reported as TFC in the original source. Other fuel consumption from ODYSSEE-

MURE solely constitutes LPG consumption and from IEA it is the aggregate of 

consumption of LPG, natural gas (CNG), and electricity. Since due to a methodological 

break (see sub-chapter to revision of German vkm data), the gasoline category in 

activity data contains gas driven LPGs from 2000 until 2008, energy consumption of 

the other category is allocated to the gasoline category for those years and 

consumption of other fuels is set to zero in those periods. Since the maximum LDV 

electricity consumption in this period is .06 PJ, this can be neglected. The revised – 

and therefore final – LDV energy consumption data is provided in Table 16 in the sub-

chapter validation of German energy and activity data. 

Table 8: Values for German LDV Energy Consumption 

Period (year) TFCa [PJ] TFCb [PJ] Othersa [PJ] Othersb [PJ] 

1 (2000) 1512,28 1511,17 0,92 0,09 

2 (2001) 1527,81 1526,47 1,14 0,10 

3 (2002) 1537,59 1535,93 1,98 0,61 

4 (2003) 1509,42 1507,36 2,47 0,69 

5 (2004) 1532,58 1530,00 4,18 1,89 

6 (2005) 1478,06 1477,74 5,53 5,48 

7 (2006) 1479,58 1479,26 9,10 9,05 

8 (2007) 1468,59 1469,46 13,64 14,78 

9 (2008) 1442,04 1444,81 19,75 22,79 

10 (2009) 1452,94 1454,92 30,02 32,28 

11 (2010) 1454,75 1456,06 29,01 30,59 

12 (2011) 1470,77 1472,18 30,69 32,38 

13 (2012) 1452,95 1454,31 30,76 32,39 

14 (2013) 1465,55 1464,86 30,37 30,46 

15 (2014) 1490,49 1490,01 29,12 28,93 

16 (2015) 1498,34 1497,53 26,90 26,37 

17 (2016) 1522,41 1523,92 25,13 26,93 

Superscripts: a: IEA Database; b: ODYSSEE-MURE Database, c: Average of a,b 

Revision of Dutch energy data 

For the Netherlands, however, sums of gasoline and diesel consumption (and biofuels 

respectively) do not match, the percentage difference never exceeds 2 % though. This 

is unexpected since the IEA states the ODYSSEE database as key source for Dutch 
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data (IEA, 2020b). Until 2006 the respective figures largely correspond, whereas from 

2007 until 2014 the IEA’s values are continuously larger, and smaller for the last two 

years. In absence of any traceable data revisions or breaks, the corresponding data 

for gasoline and diesel consumption (including bioethanol and biodiesel for the 

ODYSSEE-MURE counterpart respectively) are averaged. Moreover, consumption 

data for biofuels is missing until 2005 for bioethanol and until 2002 for biodiesel. 

Given the small values in the years onwards, we assume that consumption for the 

missing periods is zero. Underlying consumption data are provided in Table 9.  

Table 9: Gasoline, Diesel and Biofuel Consumption of Dutch LDVs 

Period 

(year) 

Gasolinea 

[PJ] 

Gasolineb 

[PJ] 

Bioethanolb 

[PJ] 

Diesela 

[PJ] 

Dieselb 

[PJ] 

Biodieselb 

[PJ] 

1 (2000) 161,97 161,29 n/a 53,63 53,62 n/a 

2 (2001) 162,83 162,58 n/a 56,38 56,29 n/a 

3 (2002) 164,45 165,16 n/a 59,69 59,63 n/a 

4 (2003) 166,04 166,25 n/a 62,96 62,81 0,027 

5 (2004) 170,47 170,66 n/a 66,26 66,14 0,028 

6 (2005) 167,73 167,99 n/a 68,87 68,78 0,021 

7 (2006) 166,07 165,02 0,77 72,04 71,70 0,208 

8 (2007) 166,90 161,38 3,48 75,11 71,86 2,050 

9 (2008) 162,99 156,56 4,17 75,69 72,83 1,647 

10 (2009) 163,87 155,64 5,30 74,87 71,32 2,279 

11 (2010) 166,40 158,11 5,24 74,03 72,52 0,910 

12 (2011) 168,29 159,17 5,78 73,58 70,90 1,621 

13 (2012) 166,59 158,62 5,04 73,72 70,37 2,039 

14 (2013) 166,58 158,50 5,18 72,23 69,00 1,987 

15 (2014) 167,95 159,54 5,42 70,61 66,73 2,628 

16 (2015) 166,98 161,13 6,05 69,41 67,80 1,911 

17 (2016) 168,50 166,59 5,14 68,58 67,96 1,467 

Superscripts: a: IEA Database; b: ODYSSEE-MURE Database 

Beyond that, as with German energy data, ODYSSEE-MURE only provides data for 

LPG, whereas the IEA database provides consumption data for LPG, natural gas, and 

electricity. By contrast, the aggregates of other fuels do not resemble. Since the 

differences in LPG consumption data are rather minor, we can assume that they 

correspond to actual LPG consumption and thus values for LPG are averaged and 
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values for otherwise missing fuels are added from the IEA database. This approach 

leads to a deviation of consumption values calculated here to reported TFC values in 

both sources of max 1.1 %. Underlying consumption data of other fuels is provided 

in Table 10. The resulting finally deployed data for the three fuel categories and the 

total is presented in Table 11. 

Table 10: Consumption of other Fuels of Dutch LDVs 

Period (year) LPGa [PJ] LPGb [PJ] LPGc [PJ] 
Electricitya 

[PJ] 

Natural Gasa 

[PJ] 

1 (2000) 20,85 21,05 20,949 0,02 0,00 

2 (2001) 19,51 19,65 19,580 0,02 0,00 

3 (2002) 17,92 18,10 18,008 0,02 0,01 

4 (2003) 16,07 16,20 16,137 0,02 0,01 

5 (2004) 14,40 14,54 14,472 0,02 0,01 

6 (2005) 12,95 13,08 13,016 0,02 0,01 

7 (2006) 12,48 12,58 12,529 0,02 0,02 

8 (2007) 11,94 12,02 11,982 0,02 0,03 

9 (2008) 12,88 11,92 12,400 0,03 0,04 

10 (2009) 11,48 11,60 11,540 0,03 0,08 

11 (2010) 10,68 10,79 10,735 0,04 0,12 

12 (2011) 9,83 9,92 9,876 0,05 0,21 

13 (2012) 9,18 9,30 9,238 0,07 0,29 

14 (2013) 8,55 8,65 8,602 0,12 0,30 

15 (2014) 7,76 7,82 7,789 0,25 0,35 

16 (2015) 6,92 7,22 7,068 0,67 0,42 

17 (2016) 6,44 6,57 6,505 1,25 0,49 

Superscripts: a: IEA Database; b: ODYSSEE-MURE Database, c: Average of a,b 

Table 11: TFC of Dutch LDVs by Fuel Type 

Period (year) Total [PJ] Gasoline [PJ] Diesel [PJ] Other [PJ] 

1 (2000) 236,23 161,63 53,63 20,97 

2 (2001) 238,64 162,71 56,34 19,60 

3 (2002) 242,50 164,80 59,66 18,04 

4 (2003) 245,21 166,14 62,90 16,17 

5 (2004) 251,28 170,57 66,21 14,50 

6 (2005) 249,74 167,86 68,84 13,05 

7 (2006) 250,47 165,93 71,97 12,57 
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8 (2007) 252,42 165,88 74,51 12,03 

9 (2008) 249,41 161,86 75,08 12,47 

10 (2009) 248,29 162,41 74,23 11,65 

11 (2010) 249,50 164,87 73,73 10,89 

12 (2011) 249,80 166,62 73,05 10,14 

13 (2012) 247,79 165,13 73,06 9,60 

14 (2013) 245,76 165,13 71,61 9,02 

15 (2014) 244,83 166,45 69,98 8,39 

16 (2015) 244,80 167,08 69,56 8,16 

17 (2016) 247,36 170,12 69,00 8,24 

 

Revision of vkm data 

The IEA database solely provides figures for stock count and aggregate vkm, both 

not disaggregated for LDV propulsion technology. At the required disaggregation 

level, the ODYSSEE-MURE database provides annual mileage and stock data. These 

data are available arranged by total, gasoline, and diesel LDVs. Assuming that data 

are internally consistent one may derive the missing overall vkm values using 

relationship E1. Thereafter, stock and vkm of alternatively powered LDVs shall be the 

remainder once the figures of diesel and gasoline vehicles are subtracted from the 

respective total values. Consequently, the annual mileage for the other category 

corresponds to the quotient of the respective vkm and stock figures (cf. E1). To 

validate the results, values are checked for internal and external consistency and 

visualized in a graph to check whether the proportional share (of other LDVs) in 

overall energy consumption and vkm seems plausible. However, resulting values for 

Germany are not feasible since resulting vkm figures for other LDVs are in parts 

negative. Nonetheless, resulting overall vkm from this method greatly correspond to 

the respective values found in the IEA database. The following last two sections 

provide a detailed overview of how vkm data (and thus underlying stock and mileage 

data) were revised. 

 

Revision of German vkm data 

As mentioned above – when calculating the traffic performance of other LDVs based 

on average annual mileage and LDV population data for total, gasoline, and diesel – 
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the resulting annual total vkm of other LDVs are partially negative and seem to follow 

no trend. Moreover, when we multiply the average annual mileage of total LDVs with 

the respective population (based on data from ODYSSEE-MURE), obtained values 

only correspond to the stated traffic performance in the IEA database for the periods 

up to 2007. For subsequent periods, calculated values are consistently smaller. 

However, calculated stock values for other fuels (as remainder once gasoline and 

diesel are subtracted from the total) are plausible. In consequence, activity data 

cannot be readily deployed but must be revised. 

Further scrutiny on German annual LDV stock data from administrative sources (all 

with respect to the 1st of January as reference date) reveals that there is a significant 

trend break as of 1st January 2008. Before that, fleet statistics included temporarily 

deregistered vehicles, whereas those are excluded from vehicle counts in the years 

onwards (BMDV et al., 2016; KBA, 2017; Statistisches Bundesamt, 2022). It is worth 

noting that reported numbers correspond across those three sources. According to 

the German Federal Statistics Office (Statistisches Bundesamt, 2022), temporarily 

deregistered vehicles amount to roughly 12 % of total stock. 

German car stock data prior to 2008 therefore have been revised in the IEA and 

ODYSSEE-MURE databases to enable time-series comparability. However, this only 

becomes evident once cross-checked with German governmental sources, since 

there is no indication. Besides that, total traffic performance – as a product of vehicle 

stock and average annual mileage – after 2008 only corresponds to the IEA 

databases’ values when multiplied with the car stock of Jan 1st of the subsequent 

year. Before the methodological change, the relationship holds when multiplied with 

stock count of the respective year. 

 

Moreover, the annual publication “Verkehr in Zahlen” (ViZ) (traffic in numbers), 

published by the German Federal Motor Transport Authority (KBA) provides 

statistics on traffic performance of motor vehicles, calculated as national traffic 

performance (i.e., distances traveled by German vehicles in- and outside of Germany 

but without distances traveled by foreign cars in Germany). Those numbers are 

published as average annual mileage per vehicle and total traffic performance, 

broken down by eight vehicle types and the fuel types of gasoline and diesel 
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(according to statement in ViZ, however, data broken down by fuel types is solely 

available via ODYSSEE-MURE). Gas-fueled vehicles are only separately considered 

as of 2009 and have been included in the gasoline category in antecedent years. Also 

here, the traffic performance of a vehicle type corresponds to the product of the 

respective traffic performance and vehicle count. However, in contrast to the 

Netherlands, annual mileage data is not based on odometer readings, but on a model 

calculation conducted by the German Institute for Economic Research (DIW Berlin). 

The underlying basic idea is that the quantity of consumed fuels in road transport 

widely corresponds to the turned over volumes of gas stations on the one hand, and 

to the product of vehicle population, average fuel consumption and average mileage 

on the other. To reach equivalence, elements of the calculation are iteratively 

determined, i.e., so that mileage-based consumption values correspond to total fuel 

consumption. Further determinants and influential factors that are considered 

comprise road fuels that are purchased abroad, distances covered abroad, and 

correction factors for real-world fuel consumption (since norm consumption values 

are used as input). (BMDV et al., 2016) 

Starting from this it is unclear how journeys of foreign vehicles in Germany are dealt 

with. If mileage-based consumption values equate to the total fuel consumption, this 

would include fuels quantities consumed by foreign vehicle owners and therefore 

skew resulting domestic traffic performance values. According to the latest available 

methodological report from 2005, fuel quantities purchased by foreign motor vehicle 

owners are excluded from the computation base (Kalinowska et al., 2005). 

Owing to the change in vehicle stock methodology, average annual mileages reported 

in ViZ are arithmetically larger in the years as of 2008 (due to a relatively smaller LDV 

population). Since mileage data from ODYSSEE-MURE for the years prior to 2008 are 

consistently smaller than in ViZ (after 2008 data correspond), those have been 

presumably revised accordingly. Beyond that, total traffic performance in ViZ 

corresponds to the reported values in the IEA database for all years.  

 

On the grounds that in ODYSSEE-MURE and ViZ the DIW is the source of data 

regarding mileage and stock of all, gasoline, and diesel LDVs, and due to the general 

lack in legends regarding methodological changes or breaks in the ODYSSEE-MURE 
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(but also IEA with respect thereto) database, we can assume that data for gasoline 

up to 2008 includes gas-powered LDVs. This is supported by the fact of the calculated 

traffic performance of others (in that period) being implausible. Hence, for activity 

data to match energy data in terms of coverage and definitions, LNG and CNG fuel 

consumption must be attributed to the gasoline category for those periods. In the 

absence of further explanatory data (such as revised fleet population and mileage 

data) for other LDVs, a data revision (i.e., reattributing gas LDVs’ activity to the other 

category) is not possible in a substantiated manner. For what is more, the share of 

bivalent gas engines (i.e., the engine runs on more than one fuel type with mostly 

gasoline as second fuel) lies between 69 and 79 % between 2000 and 2005 among 

gas powered LDVs (KBA, 2010). Therefore, it is not possible to clearly assign this to a 

fuel-category in any case. Alas, there is no data on the share of bivalent gas LDVs 

available for the following years. For the sake of simplicity – and since alternatively 

powered cars other than CNG and LNG comprise less than 0,005 % of energy (IEA, 

2020a) and vehicle stock in the years before 2008 (KBA, 2010) – activity and energy 

consumption of those car is disregarded and set to zero in those periods. 

 

Despite, in the periods as of 2009, energy data of gas LDVs are reattributed to the 

other category since activity data is recorded separately as of then. Still, since gas 

LDVs also encompass bivalent engines – for the extent of which no data are available 

– this adds to result ambiguity and thus uncertainty. This is especially true for EEI for 

the other fuel category. On top of that there are hybrid vehicles. Before 2009, these 

play a negligible role in terms of LDV fleet (with the highest share in overall LDVs of 

.05 % in 2008 but grow in significance with .36 % of LDV stock in 2016 (thereof 12.7 

% plug-in hybrids). (KBA, 2010) This may not be of great importance for gasoline or 

overall LDV EEI, but all the more for the other category as hybrids comprise from 5.7 

up to 22.8 % of the fleet of other fuels in the years between 2009 and 2016 with a 

growing tendency. Since, hybrid vehicles – which form the majority against plug-ins 

– are solely fueled with fossil fuels (thereof almost exclusively gasoline) and since we 

can assume that plug-in hybrids predominantly run on gasoline as well (Fraunhofer 

ISI 2020), hybrids’ activity shall rather be attributed to the gasoline category. This 

happens by adding the respective stock numbers (KBA, 2017) to the gasoline category 
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and multiplying it with gasoline’s average annual mileage in the absence of more 

fitting data. It is worth noting that we can assume, that hybrids have a higher annual 

mileage than gasoline LDVs, since hybrids are disproportionally owned by 

commercial parties with associated higher vehicle usage (e.g., 22.1 vs. 5.1 % of 

commercial owners in 2016 (KBA, 2017)). Given the relatively low share of hybrid 

LDVs, the associated effects should be of minor significance. 

 

Having said all this, for all periods annual mileage data is used from ODYSSEE-MURE 

(which corresponds to ViZ data solely after 2007 owing to the change in LDV 

registration methodology). Until 2008 vehicle stock data for gasoline and diesel LDVs 

is employed from the ODYSSEE-MURE database, with stock of other LDVs set to be 

zero since gas LDVs are allocated to the gasoline category. For the periods after 2007, 

stock data for gasoline and diesel is employed from KBA (KBA, 2017)(data is the same 

as in ODYSSEE-MURE but with higher resolution). Until 2008, the traffic 

performance of gasoline and diesel is the product of the respective average annual 

mileage and vehicle stock (from the same year). Total traffic performance hence 

corresponds to the sum of the latter.  

After 2008, traffic performance of total, gasoline, and diesel is the product of average 

annual mileage of the respective year and vehicle stock of the subsequent year. 

Thereby, the gasoline stock contains hybrids vehicles as well (cf. above). In 

consequence, traffic performance of others is the remainder once the respective 

vkm of gasoline (incl. hybrids) and diesel are subtracted from the total. Obtained 

values for total LDV traffic performance is benchmarked against provided values from 

the IEA database (which match ViZ). In 2007, provided mileages seem to be outliers, 

since the calculated total vkm are 11.8 % smaller, with the difference never exceeding 

.43 % in the other period. Therefore, the values are imputed with the mean of the 

values from 2006 and 2008, leading to a deviation of less than .2 % for that year. 

In Table 12 and 13, the relevant stock values for traffic performance calculations are 

provided. Until 2009, the stock of others is assumed to be zero and therefore the 

total stock corresponds to the sums of gasoline (incl. gas) and diesel. The last column 

represents the unexplained LDV stock, that remains after gasoline (incl. gas) and 

diesel are subtracted from the stated total value. After 2008, the traffic performance 
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of hybrid LDVs included in the gasoline category and neglected in the prior periods 

due to missing data and relative insignificance. Gas LDVs’ traffic performance is 

included in the other category as of 2009 – which is the remainder once the stock of 

gasoline and diesel LDVs are subtracted from the total. The respective average annual 

mileages for gasoline, diesel, and total are presented in Table 14. 

Table 12: Underlying German LDV Stock Data until 2008 

Period (year) Gasoline and gas Diesel Others Unexplained 

1 (2000) 34144400 5519800 0 5000 

2 (2001) 34023100 5781900 0 7500 

3 (2002) 33978900 6336000 0 3900 

4 (2003) 33658600 6913300 0 5200 

5 (2004) 32636500 7894200 0 13400 

6 (2005) 32258500 8578700 0 45700 

7 (2006) 31707500 9276300 0 99100 

8 (2007) 30955600 10046000 0 182400 

9 (2008) 30744500 10045600 0 393500 

Source: ODYSSEE-MURE 

Table 13: Underlying German LDV Stock Data after 2008 

Period (year) 
Gasoline (incl. 

hybrids) 
Diesel Total 

10 (2009) 30478479 10817769 41737627 

11 (2010) 30524834 11266644 42301563 

12 (2011) 30499661 11891375 42927647 

13 (2012) 30271467 12578950 43431124 

14 (2013) 30041871 13215190 43851230 

15 (2014) 29945368 13861404 44403124 

16 (2015) 29955588 14532426 45071209 

17 (2016) 30144040 15089392 45803560 

Source: (KBA, 2017). Note: Stock figures for each period are from Jan 1st of the subsequent 

year (e.g., stock numbers of period 10 (2009) are from Jan 1st, 2010) 

Table 14: Average Annual Mileage of German LDVs for Gasoline, Diesel, and Total 

Period (year) Gasolinea [km] Diesel [km] Total [km] 

1 (2000) 12970,05 21126,07 14104,13 

2 (2001) 12900,90 23627,22 14455,25 
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3 (2002) 12691,60 24039,65 14474,62 

4 (2003) 12428,48 23074,74 14239,57 

5 (2004) 12649,03 22496,20 14562,14 

6 (2005) 12134,56 21765,66 14141,96 

7 (2006) 11943,71 22120,80 14212,71 

8 (2007) 11915,18b 21842,73b 14270,00 

9 (2008) 11886,66 21564,66 14147,44 

10 (2009) 11724,70 20914,39 14254,62 

11 (2010) 11439,49 21097,67 14200,00 

12 (2011) 11450,56 20736,06 14200,00 

13 (2012) 11112,73 20645,41 14046,61 

14 (2013) 10977,03 20517,54 14027,93 

15 (2014) 10998,48 20465,11 14106,67 

16 (2015) 10938,86 20253,72 14106,67 

17 (2016) 10936,57 20327,58 14183,15 

Superscripts: a: Until 2008 including gas LDVs and excl. gas but incl. hybrid LDVs as of 2009; 
b: Imputed as mean from 2006 and 2008 values. Source: (ODYSSEE-MURE, 2023) 

To obtain the traffic performance per fuel category, the two respective LDV 

populations are multiplied with the associated average annual mileage. In the periods 

up to 2008, vkm of others is assumed to be zero and therefore the total traffic 

performance of LDVs corresponds to the sum of gasoline and diesel vkm. It is worth 

noting that if total vkm are calculated by multiplying the total annual mileage (cf. 

Table 14) with total stock (refers to sum of all columns in Table 12), values deviate 

by less than .01 %. 

After 2008, vkm of gasoline, diesel, and total are calculated again by multiplying the 

annual mileage with the respective population. Traffic performance of others is 

consequently the remainder once the vkm of gasoline and diesel are subtracted from 

the total. Results are presented together with the values from the IEA database in 

Table 15. Calculated values for total vkm deviate by max .4 % from the IEA’s values. 

Table 15: Traffic Performance of German LDVs by Fuel Type 

Period (year) 
Gasolinea [106 

km] 

Diesel [106 

km] 

Othersb [106 

km] 

Totalc [106 

km] 

Totald [106 

km] 

1 (2000) 442854,74 116611,71 0,00 559466,44 559500,00 

2 (2001) 438928,62 136610,23 0,00 575538,85 575500,00 

3 (2002) 431246,54 152315,22 0,00 583561,76 583600,00 
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4 (2003) 418325,21 159522,61 0,00 577847,82 577800,00 

5 (2004) 412820,01 177589,48 0,00 590409,49 590410,00 

6 (2005) 391442,74 186721,03 0,00 578163,77 578160,00 

7 (2006) 378705,07 205199,21 0,00 583904,29 583900,00 

8 (2007) 368841,70 219432,08 0,00 588273,77 587540,00 

9 (2008) 365449,52 216629,94 0,00 582079,45 584590,00 

10 (2009) 357351,029 226247,043 11355,895 594953,967 595040,00 

11 (2010) 349188,555 237699,918 13793,722 600682,195 599010,00 

12 (2011) 349238,046 246580,250 13754,292 609572,587 608770,00 

13 (2012) 336398,652 259697,590 13963,988 610060,230 610060,00 

14 (2013) 329770,519 271143,147 14228,327 615141,994 615140,00 

15 (2014) 329353,645 283675,147 13351,302 626380,093 627220,00 

16 (2015) 327679,843 294335,735 13788,968 635804,546 635800,00 

17 (2016) 329672,446 306730,814 13235,498 649638,757 649640,00 

Superscripts: a: Until 2008 with gas LDVs and as of 2009 with hybrid LDVs; b: Set to zero 
until 2008 and after 2008 without hybrid LDVs; c: Calculated as sum of subcategories; d: 
Values from the IEA Database 

Validation of German energy and activity data 

To validate energy and activity data for the three fuel sub-categories, we plot 

together the respective share in total LDV energy consumption and traffic 

performance in Figures 25-27. For the years up to 2008, LPG and CNG consumption 

was attributed to the gasoline category and energy consumption of others was set to 

zero. Therefore, share in vkm refers to data in Table 15 and share in energy to the 

revised energy consumption data Table 16 below the graphs. 

 

Figure 25: Share in LDV Energy Consumption and Traffic Performance of Gasoline 
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Figure 26: Share in LDV Energy Consumption and Traffic Performance of Diesel 

 

Figure 27: Share in LDV Energy Consumption and Traffic Performance of other Fuels 

Table 16: Final German LDV Energy Consumption by Fuel Type 

Period (year) Gasoline [PJ] Diesel [PJ] Others [PJ] Total [PJ] 
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2 (2001) 1221,38 305,90 0,00 1527,28 
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9 (2008) 969,37 474,19 0,00 1443,56 

10 (2009) 930,01 492,91 31,15 1454,07 

11 (2010) 905,41 520,34 29,80 1455,55 

12 (2011) 904,79 535,28 31,53 1471,60 

13 (2012) 858,35 563,83 31,58 1453,76 

14 (2013) 840,76 594,41 30,42 1465,59 

15 (2014) 839,71 621,65 29,03 1490,39 

16 (2015) 826,38 645,06 26,63 1498,07 

17 (2016) 826,54 670,74 26,03 1523,31 

 

At first glance the obtained results seem valid and plausible since the graphs are 

highly consonant and since diesel vehicles are comparably more energy efficient than 

gasoline. Nonetheless, the other fuel category is subject to some degree of ambiguity 

since gas LDVs also encompass bivalent engines to an unknown extent and due to the 

possibly imprecise attribution of hybrid LDVs to the gasoline category since gasoline’s 

annual mileage was assumed for it. Therefore, we can expect that a certain extent of 

gasoline consumption by bivalent gas LDVs is misattributed to gasoline LDVs and not 

accounted for with respect to the other category’s activity data, whereas on the other 

hand a certain extent of electricity consumption from plug-in hybrid vehicles is not 

attributed for with respect to the gasoline’s activity data. Since, between 2009 and 

2016, there are between 3 and 15 times as many gas LDVs when compared to hybrids, 

we can expect the effect to be net negative for the other’s energy efficiency (i.e., 

smaller energy consumption per activity assumed than actual) with a decreasing 

tendency – since hybrid LDVs increase in number over the years. Nonetheless, owing 

to the comparably much lower numbers, the effects to gasoline’s EEI are of far 

smaller extent. 

Besides, in the years prior to 2009, activity and energy consumption of the other 

category was set to zero due to missing data and since gas LDVs are included in the 

gasoline category. Since there exist some electricity and hybrid LDVs in those periods 

(with growing tendency, up to .97 % in stock in 2008, cf. Table 12) this also adds to 

result uncertainty with energy efficiency slightly underestimated owing to 

underestimated activity data in the numerator. 
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Against the background of the high intricacy in compiling energy and activity data for 

LDVs on side of national and energy agencies (such as attributing data to national 

territory or vehicle type), high-level data errors can neither be ruled out nor 

reconstructed. This holds especially true since the calculation of other’s activity data 

is dependent on gasoline and diesel’s activity data. 

Ultimately, EEI regarding diesel and gasoline have all in all a clearly higher validity. 

Beyond that, in contrast to Dutch energy data, there are no conspicuities regarding 

energy data of other LDVs. The respective relations between stock and energy 

consumption seem plausible. As well, pkm data can be readily deployed since overall 

LDV traffic performance is not altered when compared to the original sources. 

 

Revision of Dutch vkm data 

The ODYSSEE-MURE database provides stock figures and annual mileages for total, 

gasoline, and diesel LDVs. Stock numbers of other LDVs shall therefore be the 

remainder once the stock counts of gasoline and diesel LDVs are subtracted from the 

total. When we multiply the respective stock count with the associated annual 

mileage, we obtain the aggregate vkm of the respective sub-group. The aggregate 

vkm of other LDVs is therefore the remainder once vkm of diesel and gasoline LDVs 

are subtracted from the total. To obtain the annual mileage of others – following the 

rationale of E1 – the mileage of others corresponds to the quotient of the respective 

stock count and aggregate vkm. The resulting total vkm values correspond to the 

ones provided in the IEA database and total LDV stock data also correspond with 

each other. Therefore, LDV activity data – besides different levels of disaggregation 

– mutually correspond among the IEA and ODYSSEE-MURE database and are 

internally consistent. 

Nonetheless, further external validation with publicly available data by the Dutch 

central agency for statistics (CBS) reveals some major inconsistencies in the data. This 

is surprising, since the CBS is stated as single source for Dutch activity data in 

ODYSSEE-MURE. Stated average annual mileages for all, gasoline, and diesel LDVs 

match. (CBS, 2021e) The same is true for all LDV stock figures (CBS, 2022)(besides 

that CBS’s stock numbers refer to the first day of the year, whereas the former are 

annual averages which simply correspond to the mean of the reference- and 
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following year). However, reported annual mileages for LDVs other than gasoline or 

diesel are significantly lower than the calculated values, which suggests the data 

being inconsistent. Beyond that, overall vkm data do not correspond to the reported 

figures from the CBS. The CBS publishes data on traffic performance (i.e., vkm) 

grouped by kilometers traveled in the Netherlands (subdivided into kilometers by 

Dutch and foreign cars) and kilometers traveled by cars registered in the Netherlands 

(subdivided into kilometers traveled inside and outside of the Netherlands). (CBS, 

2021d) Since Dutch annual mileage data is determined based on odometer readings, 

the product of annual mileage and vehicle stock shall correspond to the national 

traffic performance (i.e., kilometers performed by cars registered in the Netherlands 

in- and outside of the Netherlands). (Geilenkirchen et al., 2022; Molnár-in 't Veld, 

2014) However, this is not the case since the values for overall vkm are consistently 

about 10 % larger than the values in the main sources. 

Further scrutiny reveals that the average annual mileages are subject to a different 

population of registered LDVs and not to the values stated in official LDV stock 

statistics (CBS, 2022), or the ODYSSEE-MURE and IEA databases. The relevant 

population of vehicles is subject to a wider scope and therefore values are higher. In 

consequence, given values for vkm in the principal databases are erroneous.  

There exists a dataset where LDV traffic performance (grouped by territory as in 

(CBS, 2021d)(CBS, 2021c)(CBS, 2021c)) is provided together with average annual 

mileage and the associated LDV population, grouped by fuel type. (CBS, 2021e) 

However, time series data for mileage and stock are only available as of 2001. Data 

values are internally consistent, since E1 is fulfilled and since values are consistent in 

aggregation. All values concerning mileage and vkm published by the CBS for the 

reference period are in line with this larger population of LDVs. 

However, provided data from the CBS are not readily deployable since the data are 

disaggregated for the fuel types of diesels, LPG, and gasoline together with all other 

fuel types. This disaggregation is reflected in the different types of traffic 

performance, in annual mileages and stock in use (i.e., the here relevant population). 

Since the IDA requires disaggregation for gasoline, diesel, and others, we must 

attribute the values of other fuels – that are incorporated in the gasoline/other 

category – to the third LPG category. Here again, if we multiply the average annual 
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mileage with the respective stock count, we obtain the national traffic performance 

(vkm by Dutch cars in- and outside of the Netherlands). (CBS, 2021e) Since energy 

data are subject to fuels consumed within the Netherlands (accounting for fuel 

tourism), the relevant activity data is the domestic traffic performance (i.e., vkm 

performed in the Netherlands by Dutch and foreign cars. Subsequent corrections of 

the national traffic performance to obtain the domestic traffic performance are 

based upon traffic censuses, travel surveys, and tourism statistics. (Geilenkirchen et 

al., 2022; Molnár-in 't Veld, 2014) It is worth noting that LDV traffic in the Netherlands 

is subject to an export surplus. This means that Dutch LDVs perform more kilometers 

abroad than foreign LDVs perform in the Netherlands. (CBS, 2021c) Therefore, the 

domestic traffic performance is smaller than the national traffic performance. In 

practice the CBS determines a linear correction factor to calculate the domestic 

traffic performance based on the national traffic performance (which is based on 

odometer readings). Thereby, a constant distribution across fuel types is assumed. 

Associated national and domestic traffic performances with correction factors are 

presented in Table 17. Further it is worth noting that data for 2000 is estimated and 

data prior to 2012 have been revised to enable sequential comparability since there 

are trend breaks as of 2001 and between 2012 and 2013 due to a change in 

methodology. (CBS, 2023) 

Table 17: National and Domestic Traffic Performance of LDVs in the Netherlands with 
Correction Factor 

Period (year) 
Traffic performancea [109 km] Correction factorb 

(national/domestic) National Domestic 

1 (2000) 102,33 93,20 0,911 

2 (2001) 103,11 94,26 0,914 

3 (2002) 104,20 96,25 0,924 

4 (2003) 105,11 97,41 0,927 

5 (2004) 106,78 99,94 0,936 

6 (2005) 107,62 99,50 0,925 

7 (2006) 109,35 100,47 0,919 

8 (2007) 111,63 102,22 0,916 

9 (2008) 113,06 101,25 0,896 
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10 (2009) 112,89 101,51 0,899 

11 (2010) 112,39 102,31 0,910 

12 (2011) 114,54 102,96 0,899 

13 (2012) 113,72 103,12 0,907 

14 (2013) 113,82 103,21 0,907 

15 (2014) 114,51 103,70 0,906 

16 (2015) 115,91 105,09 0,907 

17 (2016) 118,72 107,71 0,907 

Superscripts: a: (CBS, 2021c, 2021d) b: own calculation 

Summarizing, we can calculate the domestic traffic performance by multiplying the 

national traffic performance with the established correction factors. From this 

follows that foreign LDVs driving in the Netherlands – which account for between 4.3 

and 5 % of traffic volume (CBS, 2021c) – are assumed to have the same fuel 

technology distribution as Dutch cars. Since this does not necessarily correspond to 

reality, this adds uncertainty to resulting energy efficiency indicators.  

Now to attribute the vkm performed by LDVs other than gasoline, diesel, and LPG 

from the gasoline/other to the other category (together with LPG), we can calculate 

the share in stock of gasoline LDVs among the aggregate gasoline/others by using 

relationship E1 and by introducing the mileages of gasoline and other (incl. LPG) LDVs 

(CBS, 2021e). Mileages for the same fuel classification that are provided in several 

CBS datasets are matching, therefore we can assume that mileage data available in 

one dataset can be applicated to data of another dataset. Hence, following the 

rationale of E1, the share x of gasoline LDVs among the aggregate stock of gasoline 

and other (incl. LPG) LDVs can be defined according to E23. Here the subscript A 

refers to the aggregate gasoline/others (incl. LPG) which refers to the sum of 

gasoline/others and LPG from (CBS, 2021d). G refers to gasoline cars only and R refers 

to others (incl. LPG), both from (CBS, 2021e). Underlying data and results are 

provided in Table 18. 

 

(𝑥 × 𝑚𝑖𝑙𝑒𝑎𝑔𝑒𝐺 + (1 − 𝑥) × 𝑚𝑖𝑙𝑒𝑎𝑔𝑒𝑅) × 𝑠𝑡𝑜𝑐𝑘𝐴 = 𝑣𝑘𝑚𝐴  

(E23) 
𝑥 =

𝑣𝑘𝑚𝐴 − 𝑚𝑖𝑙𝑒𝑎𝑔𝑒𝑅 × 𝑠𝑡𝑜𝑐𝑘𝑅

𝑠𝑡𝑜𝑐𝑘𝑅 × (𝑚𝑖𝑙𝑒𝑎𝑔𝑒𝐺 − 𝑚𝑖𝑙𝑒𝑎𝑔𝑒𝑅)
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Table 18: Data underlying E23 

Period (year) mileageG [km] mileageR [km] StockA 
vkmA  

[106 km] 
x 

1 (2000) n/a n/a n/a 77033,0 n/a 

2 (2001) 11340 21363 6434912 76697,8 0,942 

3 (2002) 11227 20792 6519741 76509,8 0,947 

4 (2003) 11174 20261 6549399 76051,1 0,952 

5 (2004) 11241 19485 6595265 76523,8 0,956 

6 (2005) 11199 19100 6579102 75811,4 0,959 

7 (2006) 11075 18965 6649447 75761,3 0,960 

8 (2007) 11055 18596 6740244 76526,9 0,960 

9 (2008) 10924 18534 6846108 76931,3 0,959 

10 (2009) 10855 18769 6900220 77218,6 0,958 

11 (2010) 10679 18307 7023536 77316,8 0,957 

12 (2011) 10680 17636 7177538 78861,6 0,956 

13 (2012) 10471 16898 7228779 77865,6 0,953 

14 (2013) 10540 16641 7221063 78329,7 0,950 

15 (2014) 10578 18069 7239042 79380,4 0,948 

16 (2015) 10628 17346 7310919 80512,9 0,943 

17 (2016) 10673 18420 7451277 82935,0 0,941 

 

Since some values for the year 2000 are missing, vkm values must be imputed later. 

Before that, we can apply our identified x – which represents the share of gasoline 

LDVs among the aggregate of gasoline and others (incl. LPG) – and correct the stock 

data to get the values for gasoline and others (incl. LPG). Stock figures for gasoline 

with others (excl. LPG) and LPG (both provided in (t)), their aggregate, and the final 

stock of gasoline and others (incl. LPG) LDVs are provided in Table 19. To get the stock 

of gasoline cars, the aggregate is multiplied with x (cf. Table 18) and to get the stock 

of others (incl. LPG), the aggregate is multiplied with 1-x. 

Table 19: Revision of Dutch LDV Stock Figures 

Period (year) G/R excl. LPG LPG G/R incl. LPG G R incl. LPG 

1 (2000) n/a n/a n/a n/a n/a 

2 (2001) 6063456 371456 6434912 6063177 371735 

3 (2002) 6173924 345817 6519741 6173409 346332 

4 (2003) 6234679 314720 6549399 6233771 315628 
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5 (2004) 6307264 288001 6595265 6305791 289474 

6 (2005) 6313734 265368 6579102 6309258 269844 

7 (2006) 6389145 260302 6649447 6380920 268527 

8 (2007) 6484759 255485 6740244 6473237 267007 

9 (2008) 6588598 257510 6846108 6564319 281789 

10 (2009) 6648389 251831 6900220 6607484 292736 

11 (2010) 6778817 244719 7023536 6720382 303154 

12 (2011) 6937471 240067 7177538 6860474 317064 

13 (2012) 6994707 234072 7228779 6890666 338113 

14 (2013) 7003742 217321 7221063 6857238 363825 

15 (2014) 7040434 198608 7239042 6864484 374558 

16 (2015) 7130208 180711 7310919 6892275 418644 

17 (2016) 7283851 167426 7451277 7011427 439850 

 

The resulting figures for stock of gasoline and other cars seem probable, since in the 

official stock statistics (CBS, 2022)(which is not subject to traffic performance 

calculations) LDVs other than gasoline/diesel or LPG seem to continuously substitute 

LPG vehicles. Moreover, the average annual mileage for the gasoline/other (excl. 

LPG) category (provided in (CBS, 2021d)) increasingly diverge from those of solely 

gasoline, which further supports the obtained results. All this is reflected in the 

percentage of gasoline LDVs in the aggregate (of gasoline, others, and LPG) staying 

almost constant over the period under study. 

Now, to obtain the domestic traffic performance broken down to gasoline, diesel, 

and other engine types, we multiply the adjusted stock figures (i.e., gasoline and 

others, cf. Table 19) with the respective mileages (cf. Table 18) to get the national 

traffic performance in a first step. Subsequently, we apply the correction factor 

established in Table 17 to arrive at the domestic traffic performance. Since coverage 

and definitions match, traffic performance of diesel and total LDVs can simply be 

taken from (CBS, 2021d). Validation shows that results with calculated values for 

gasoline and others, and adopted values for total and diesel are consistent in 

aggregation. 

As figures for 2000 are missing, those must be imputed. Since the share of LDVs other 

than gasoline, diesel, and LPG are negligible in 2001 – what is also reflected in 

domestic traffic performance for gasoline/others (excl. LPG) (CBS, 2021d) and 
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gasoline (calculated) being the same in 2001 – we can simply adopt the value for 2000 

from (CBS, 2021d). Traffic performance for others is thence the remainder. Resulting 

figures for the domestic traffic performance of passenger LDVs – disaggregated by 

gasoline, diesel and others – are presented in Table 20.  

Table 20: Preliminary Dutch Domestic Traffic Performance of LDVs by Fuel Type 

Period (year) Total [106 km] Gasoline [106 km] Diesel [106 km] Others [106 km] 

1 (2000) 93197,00 62325,93 23041,28 7829,79 

2 (2001) 94262,67 62858,52 24143,98 7260,16 

3 (2002) 96252,29 64025,41 25574,87 6652,01 

4 (2003) 97412,88 64555,19 26931,05 5926,64 

5 (2004) 99942,38 66345,41 28317,66 5279,31 

6 (2005) 99505,15 65331,23 29408,41 4765,51 

7 (2006) 100464,90 64928,99 30856,92 4678,99 

8 (2007) 102218,68 65528,30 32143,73 4546,65 

9 (2008) 101251,29 64216,20 32358,10 4676,99 

10 (2009) 101517,22 64497,32 32079,15 4940,75 

11 (2010) 102308,53 65330,66 31925,76 5052,11 

12 (2011) 102954,63 65860,16 32068,23 5026,25 

13 (2012) 103121,85 65426,71 32514,27 5180,88 

14 (2013) 103213,46 65539,24 32184,08 5490,14 

15 (2014) 103701,78 65758,30 31814,45 6129,04 

16 (2015) 105088,13 66410,08 32094,43 6583,62 

17 (2016) 107709,04 67889,53 32469,22 7350,29 

 

Validation of Dutch activity and energy data 

As mentioned at the outset of paragraph 3.2, in the scope of this thesis, energy 

consumption data for gasoline and diesel include biofuels. Liquid biofuels (i.e., 

bioethanol and biodiesel) for the road transport sector are exclusively sold as a blend 

with fossil fuels in the Netherlands. (CBS, 2020) Therefore, the approach of 

attributing biofuel consumption to the respective (liquid) fossil fuel categories seems 

appropriate. Beyond that, there are hybrid LDVs. Hybrid LDVs exist as hybrid electric 

vehicle (HEV) – which are solely fueled with gasoline or diesel and have a supporting 

electrical engine, with the battery charging while driving – and plug-in hybrids (PHEV) 

– which, on the other hand, can also be charged at a power outlet (CBS, 2016). 

Therefore, it is impossible to unequivocally assign activity data of PHEVs to one 
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category of energy data in forming EEI. However, the batteries of PHEVs are not 

always charged by the users and therefore it can be assumed that those 

disproportionately run on fossil fuels (HandWiki, 2023). Therefore, when looking at 

activity data, gasoline, and diesel LDVs should include HEVs and PHEVs. 

However, for Dutch activity data this is not the case since gasoline and diesel LDVs 

encompass vehicles solely fueled by gasoline or diesel (i.e., hybrids are assigned to 

the other category, thence distorting EEI for gasoline and diesel LDVs). There is a 

dataset of the CBS providing traffic performance, annual mileage, and vehicle 

population data for the matching extended categories (i.e., gasoline/diesel including 

hybrids), but only from the year of 2015 onwards (CBS, 2021b). Comparing national 

traffic performance – which is transferrable to domestic traffic performance as this 

is subject to a linear conversion as previously delineated – shows that the traffic 

performance of diesel LDVs subject to the extended coverage is around 1 % higher 

for the years 2015 and 2016. For gasoline, vkm including biofuels/hybrids are 5 to 6 

% higher in those years. Unfortunately, official stock statistics – besides not being 

subject to traffic performance calculations – (CBS, 2022; ODYSSEE-MURE, 2023) do 

not provide figures for hybrid LDVs but also do not explicitly include them in the fossil 

fuel categories. Therefore, it is not possible to draw conclusions about the extent of 

this phenomenon before 2015 based on official vehicle fleet statistics. 

 

In our final step of data validation (and revision), we look whether energy and activity 

data match by plotting together the respective shares in overall vkm and energy 

consumption of each of the three fuel categories. Those are depicted in Figures 28-

30 and are based on activity data from Table 20 and energy data from Table 11. 
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Figure 28: Preliminary Share in LDV Energy Consumption and Traffic Performance of 
Gasoline 

 
Figure 29: Preliminary Share in LDV Energy Consumption and Traffic Performance of 

Diesel 

0,6

0,61

0,62

0,63

0,64

0,65

0,66

0,67

0,68

0,69

0,7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Sh
ar

e

Period

Share in energy Share in vkm

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Sh
ar

e

Period

Share in energy Share in vkm



123 
 

 

Figure 30: Preliminary Share in LDV Energy Consumption and Traffic Performance of other 
Fuels 

Fundamentally, it is plausible that the share in energy is lower than the share in vkm 

for diesel and that the opposite is true for gasoline. Beyond, the findings for diesel 

seem overall plausible since the trends are consonant. However, there are 
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10 for others, there is an increasing gap in the data pairs. This suggests either 

coverage and definitions across energy and activity data not matching or underlying 

datapoints being erroneous. In consequence, the energy efficiency of gasoline LDVs 

is most likely underestimated and overestimated for other LDVs (i.e., values for 

energy consumption per vkm being too high and too low respectively). 

As mentioned before, hybrid LDVs are more prevalent among gasoline vehicles than 

for diesel, resulting in particularly the traffic performance of gasoline-consuming 

vehicles being presumably underestimated. Moreover, since 2013 tax incentives for 
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the tenable assumption that the share of hybrid LDVs is negligible up to 2011, we 

then impute the traffic performance from 2012 to 2014 by assuming linear growth 

behavior.  

This happens by taking the national traffic performance for the extended gasoline 

and diesel categories for 2015 and 2016 from (CBS, 2021b). Additionally, we add 

traffic performance of PEVs to the gasoline category. Subsequently the values get 

multiplied with the correction factor (cf. Table 17) to obtain the respective domestic 

traffic performance as a first step to replace the vkm values for gasoline and diesel 

given in Table 20. Subsequently, the traffic performance for others is the remainder 

once those two values are subtracted from the total. To impute the traffic 

performances for 2012-2014 (period 13-15), we assume that the share in overall LDV 

vkm of gasoline and diesel fueled LDVs grows in a linear manner. The obtained 

percentage values are then multiplied with the total vkm of the respective year to 

obtain corrected vkm values for gasoline and diesel. Traffic performance of others is 

once again the remainder once the previous are subtracted from the total. Thereby, 

total LDV traffic performance always stays equal. Resulting revised traffic 

performance is provided in Table 21. 

Table 21: Final Dutch Domestic LDV Traffic Performance by Fuel Type 

Period (year) Total [106 km] Gasoline [106 km] Diesel [106 km] Others [106 km] 

1 (2000) 93197,00 62325,93 23041,28 7829,79 

2 (2001) 94262,67 62858,52 24143,98 7260,16 

3 (2002) 96252,29 64025,41 25574,87 6652,01 

4 (2003) 97412,88 64555,19 26931,05 5926,64 

5 (2004) 99942,38 66345,41 28317,66 5279,31 

6 (2005) 99505,15 65331,23 29408,41 4765,51 

7 (2006) 100464,90 64928,99 30856,92 4678,99 

8 (2007) 102218,68 65528,30 32143,73 4546,65 

9 (2008) 101251,29 64216,20 32358,10 4676,99 

10 (2009) 101517,22 64497,32 32079,15 4940,75 

11 (2010) 102308,53 65330,66 31925,76 5052,11 

12 (2011) 102954,63 65860,16 32068,23 5026,25 

13 (2012) 103121,85 66575,27 31936,57 4610,01 

14 (2013) 103213,46 67243,09 31781,03 4189,34 

15 (2014) 103701,78 68172,79 31746,61 3782,38 
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16 (2015) 105087,83 69703,70 32432,48 2951,65 

17 (2016) 107709,39 72118,64 32781,56 2809,19 

 

All this results in the updated validation graphs 31-33. 

 

Figure 31: Share in LDV Energy Consumption and Traffic Performance of Gasoline 

 

Figure 32: Share in LDV Energy Consumption and Traffic Performance of Diesel 
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Figure 33: Share in LDV Energy Consumption and Traffic Performance of other Fuels 
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limited significance. In the absence of alternative data sources, it is therefore not 

possible to plausibly revise energy data. 

 

Final comments on Dutch data validity 

In conclusion, resulting energy efficiency indicators for other LDVs are of limited 

expressiveness due to erroneous electricity consumption data and due to a potential 

overallocation of traffic performance from period 9 to 15 (cf. Figure 33). Therefore, 

since it is not subject to any imputations and since electricity played a negligible role 

as a fuel, EEI on other LDVs are of higher meaningfulness for the periods up to 2009. 

EEI for gasoline and diesel LDVs are of higher expressiveness at large, given the more 

consonant curve characteristics in Figure 31 and 32. Moreover, data revision to 

separately account for gasoline vehicles (starting from the gasoline/other excl. LPG 

category) seems valid and plausible. However, especially after 2013 energy efficiency 

is potentially overestimated since the electricity consumption of PEVs is not 

accounted for. Yet, we can assume that this is of a rather limited extent. Still, owing 

to the linear imputation of values from 2012 to 2014, EEI for those periods shall be 

interpreted with caution while trend analyses can be reasonably rendered. 

When looking at aggregate LDV EEI we can assume that overall energy efficiency is 

slightly overestimated since electricity consumption data is underestimated. 

 

Ultimately it must be ruled out that Dutch pkm elicitations are connected to traffic 

performance elicitations. It may be that both are connected via the PLF. Since, data 

on person mobility in the Netherlands is based on travel surveys and studies (CBS, 

2018) the extensive data revision on vkm data has no effects on the validity of pkm 

data. 

 

Finally employed data 

As mentioned at the outset, the LDV IDA requires time-series data for overall LDV 

pkm, population, and energy consumption and vkm disaggregated by the three fuel 

types. With two countries to be examined this adds up to 272 datapoints. Pkm and 

population data is applied from the passenger transport IDA (cf. Table 6 and 7 in 
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Appendix A). For the sake of a clear overview, all the employed data are again 

summarized in Tables 22 and 23 below. 

Table 22: Final Data deployed for the German LDV IDA 

Period 

(year) 

vkm G 

[109 km] 

vkm D 

[109 km] 

vkm R 

[109 km] 

Energy 

consum

ption G 

[PJ] 

Energy 

consum

ption D 

[PJ] 

Energy 

consum

ption R 

[PJ] 

pkm 

[109 km] 

POP 

[106] 

1 

(2000) 
442,85 116,61 0,00 1245,73 266,15 0,00 849,60 81,46 

2 

(2001) 
438,93 136,61 0,00 1221,38 305,90 0,00 872,02 81,52 

3 

(2002) 
431,25 152,32 0,00 1197,65 339,25 0,00 880,28 81,58 

4 

(2003) 
418,33 159,52 0,00 1155,45 353,08 0,00 875,65 81,55 

5 

(2004) 
412,82 177,59 0,00 1132,44 398,99 0,00 887,10 81,46 

6 

(2005) 
391,44 186,72 0,00 1067,55 410,49 0,00 875,67 81,34 

7 

(2006) 
378,71 205,20 0,00 1026,60 452,96 0,00 882,65 81,17 

8 

(2007) 
368,84 219,43 0,00 990,56 478,61 0,00 885,44 80,99 

9 

(2008) 
365,45 216,63 0,00 969,37 474,19 0,00 888,53 80,76 

10 

(2009) 
357,35 226,25 11,36 930,01 492,91 31,15 898,70 80,48 

11 

(2010) 
349,19 237,70 13,79 905,41 520,34 29,80 902,40 80,28 

12 

(2011) 
349,24 246,58 13,75 904,79 535,28 31,53 912,42 80,28 

13 

(2012) 
336,40 259,70 13,96 858,35 563,83 31,58 914,56 80,43 

14 

(2013) 
329,77 271,14 14,23 840,76 594,41 30,42 921,42 80,65 

15 

(2014) 
329,35 283,68 13,35 839,71 621,65 29,03 934,96 80,98 
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16 

(2015) 
327,68 294,34 13,79 826,38 645,06 26,63 945,73 81,69 

17 

(2016) 
329,67 306,73 13,24 826,54 670,74 26,03 965,30 82,35 

 

Table 23: Final Data deployed for Dutch LDV IDA 

Period 

(year) 

vkm G 

[109 km] 

vkm D 

[109 km] 

vkm R 

[109 km] 

Energy 

consum

ption G 

[PJ] 

Energy 

consum

ption D 

[PJ] 

Energy 

consum

ption R 

[PJ] 

pkm 

[109 km] 

POP 

[106] 

1 

(2000) 
62,33 23,04 7,83 161,63 53,63 20,97 141,10 15,93 

2 

(2001) 
62,86 24,14 7,26 162,71 56,34 19,60 141,60 16,05 

3 

(2002) 
64,03 25,57 6,65 164,80 59,66 18,04 144,20 16,15 

4 

(2003) 
64,56 26,93 5,93 166,14 62,90 16,17 146,10 16,23 

5 

(2004) 
66,35 28,32 5,28 170,57 66,21 14,50 151,50 16,28 

6 

(2005) 
65,33 29,41 4,77 167,86 68,84 13,05 148,80 16,32 

7 

(2006) 
64,93 30,86 4,68 165,93 71,97 12,57 148,00 16,35 

8 

(2007) 
65,53 32,14 4,55 165,88 74,51 12,03 149,50 16,38 

9 

(2008) 
64,22 32,36 4,68 161,86 75,08 12,47 143,70 16,45 

10 

(2009) 
64,50 32,08 4,94 162,41 74,23 11,65 148,90 16,53 

11 

(2010) 
65,33 31,93 5,05 164,87 73,73 10,89 144,20 16,62 

12 

(2011) 
65,86 32,07 5,03 166,62 73,05 10,14 144,40 16,69 

13 

(2012) 
66,58 31,94 4,61 165,13 73,06 9,60 139,60 16,76 
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14 

(2013) 
67,24 31,78 4,19 165,13 71,61 9,02 145,40 16,80 

15 

(2014) 
68,17 31,75 3,78 166,45 69,98 8,39 145,00 16,87 

16 

(2015) 
69,70 32,43 2,95 167,08 69,56 8,16 139,50 16,94 

17 

(2016) 
72,12 32,78 2,81 170,12 69,00 8,24 140,80 17,03 

 

10. Appendix C: Numerical Results 
 

Based on the input data from Tables 6, 7, 22 and 23 in accordance with the model 

configuration defined in chapter 3.1, this appendix provides the completive results 

(each IDA with fixed and chained base year). All energy units are in PJ and the sum of 

all effects (right column) corresponds to the difference in total energy consumption 

compared to the reference year (i.e., the year 2000 for fixed base year and the 

previous year for chained base year). Total effect always corresponds to the sum of 

the respective sub-effects, for instance the total effect of energy intensity (EIi) 

corresponds to the sum of the energy intensity effects of LDVs, buses and trains in 

the passenger transport case. Moreover, the difference in energy consumption of a 

disaggregation level (e.g., gasoline LDVs in the LDV IDA) corresponds to the sum of 

factors for i = Gasoline. 
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Table 24: German Passenger Transport IDA Results with respect to 2000 

Period 

(year) 
∆E(PI) 

∆E(MSi) ∆E(EIi) 
∆E(P) Total 

LDV Bus Train Total LDV Bus Train Total 

2 (2001) 34,11 5,89 -0,95 -0,60 4,33 -24,18 -0,14 -0,32 -24,64 1,17 14,98 

3 (2002) 37,28 16,20 -1,66 -2,37 12,18 -29,06 -0,38 -0,26 -29,70 2,35 22,11 

4 (2003) 30,41 14,84 -1,43 -2,06 11,34 -48,96 -1,02 -5,66 -55,64 1,74 -12,15 

5 (2004) 53,17 14,79 -1,76 -1,75 11,27 -46,17 -1,13 -8,00 -55,31 0,00 9,13 

6 (2005) 42,91 6,31 -1,89 -0,02 4,39 -79,02 -0,74 -9,56 -89,33 -2,30 -44,33 

7 (2006) 58,72 6,17 -2,71 0,45 3,91 -89,40 1,02 -12,96 -101,34 -5,57 -44,29 

8 (2007) 65,94 7,00 -3,20 0,57 4,36 -104,29 0,60 -14,81 -118,51 -9,00 -57,21 

9 (2008) 76,37 5,66 -4,21 1,35 2,80 -134,51 -1,13 -17,04 -152,68 -13,29 -86,80 

10 (2009) 95,02 10,11 -5,26 1,23 6,09 -141,12 -1,19 -14,61 -156,92 -18,71 -74,52 

11 (2010) 106,11 9,30 -5,62 1,55 5,22 -145,78 -0,91 -15,56 -162,25 -22,57 -73,48 

12 (2011) 122,96 10,15 -6,17 1,68 5,67 -146,69 -0,98 -16,44 -164,11 -22,68 -58,16 

13 (2012) 120,18 12,77 -7,33 1,76 7,19 -167,36 0,41 -17,09 -184,03 -19,66 -76,32 

14 (2013) 133,10 7,87 -7,00 2,45 3,33 -167,09 -1,22 -18,26 -186,57 -15,49 -65,63 

15 (2014) 151,67 6,86 -7,01 2,54 2,39 -165,20 -1,26 -19,87 -186,33 -9,23 -41,50 

16 (2015) 158,77 4,52 -6,25 2,51 0,78 -175,13 -1,85 -20,64 -197,61 4,42 -33,65 

17 (2016) 177,26 6,92 -7,28 2,56 2,20 -182,33 -0,69 -21,31 -204,32 17,16 -7,70 
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Table 25: German Passenger Transport IDA Results with chained base year 

Period 

(year) 
∆E(PI) 

∆E(MSi) ∆E(EIi) 
∆E(P) Total 

LDV Bus Train Total LDV Bus Train Total 

2 (2001) 34,11 5,89 -0,95 -0,60 4,33 -24,18 -0,14 -0,32 -24,64 1,17 14,98 

3 (2002) 3,10 10,35 -0,71 -1,77 7,86 -4,82 -0,24 0,05 -5,02 1,18 7,13 

4 (2003) -6,52 -1,22 0,21 0,11 -0,91 -20,34 -0,63 -5,29 -26,25 -0,58 -34,26 

5 (2004) 22,47 -0,16 -0,32 0,22 -0,26 3,15 -0,11 -2,23 0,81 -1,75 21,28 

6 (2005) -9,39 -8,27 -0,13 1,49 -6,91 -33,88 0,38 -1,36 -34,85 -2,31 -53,46 

7 (2006) 15,59 -0,14 -0,76 0,40 -0,50 -10,22 1,73 -3,34 -11,83 -3,22 0,04 

8 (2007) 7,37 0,84 -0,53 0,11 0,43 -15,04 -0,41 -1,86 -17,31 -3,40 -12,92 

9 (2008) 10,88 -1,26 -1,10 0,63 -1,74 -30,68 -1,67 -2,07 -34,43 -4,30 -29,59 

10 (2009) 17,83 4,34 -1,04 -0,15 3,15 -5,98 -0,07 2,57 -3,48 -5,22 12,28 

11 (2010) 10,79 -0,80 -0,33 0,26 -0,87 -4,50 0,26 -0,89 -5,12 -3,76 1,04 

12 (2011) 15,95 0,79 -0,53 0,12 0,37 -0,11 -0,07 -0,82 -1,00 0,00 15,32 

13 (2012) -2,01 2,64 -1,06 0,07 1,66 -21,27 1,30 -0,67 -20,63 2,83 -18,16 

14 (2013) 12,20 -4,85 0,21 0,55 -4,09 0,92 -1,51 -0,96 -1,55 4,13 10,69 

15 (2014) 17,17 -1,06 0,03 0,12 -0,91 3,24 -0,03 -1,60 1,62 6,25 24,13 

16 (2015) 6,64 -2,34 0,77 -0,01 -1,58 -9,43 -0,54 -0,74 -10,71 13,50 7,85 

17 (2016) 17,00 2,36 -0,89 0,04 1,51 -5,70 1,10 -0,54 -5,13 12,58 25,95 
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Table 26: Dutch Passenger Transport IDA Results with respect to 2000 

Period 

(year) 
∆E(PI) 

∆E(MSi) ∆E(EIi) 
∆E(P) Total 

LDV Bus Train Total LDV Bus Train Total 

2 (2001) -0,93 -0,06 -0,01 0,01 -0,05 1,57 -0,20 -0,25 1,12 1,88 2,01 

3 (2002) 1,95 0,07 0,13 -0,07 0,12 1,07 -0,36 -0,33 0,38 3,46 5,91 

4 (2003) 2,53 1,48 -0,04 -0,25 1,19 0,60 -0,47 -0,26 -0,13 4,72 8,32 

5 (2004) 8,93 3,53 -0,23 -0,54 2,76 -2,28 -0,74 -0,25 -3,28 5,56 13,98 

6 (2005) 4,73 2,52 0,00 -0,46 2,07 0,60 -0,93 -0,47 -0,80 6,17 12,18 

7 (2006) 3,41 2,03 0,15 -0,43 1,75 2,62 -1,19 -0,57 0,86 6,65 12,67 

8 (2007) 5,62 1,96 0,26 -0,46 1,76 2,07 -1,13 -0,88 0,06 7,14 14,58 

9 (2008) -3,58 0,04 0,61 -0,30 0,36 8,75 -1,10 -0,75 6,90 8,19 11,87 

10 (2009) 2,22 1,97 0,17 -0,44 1,70 -0,97 -0,51 -0,35 -1,83 9,42 11,51 

11 (2010) -5,95 0,63 0,38 -0,29 0,72 7,99 -0,29 -0,23 7,47 10,84 13,08 

12 (2011) -4,37 -1,56 0,17 0,19 -1,19 7,95 -0,03 -0,72 7,20 11,92 13,56 

13 (2012) -14,04 -1,54 0,10 0,22 -1,22 14,15 0,21 -0,61 13,75 12,94 11,43 

14 (2013) -3,11 -2,63 -0,05 0,47 -2,21 2,30 0,09 -1,06 1,33 13,50 9,51 

15 (2014) -7,33 -0,27 -0,08 0,08 -0,27 2,04 0,09 -0,85 1,27 14,52 8,19 

16 (2015) -16,93 -1,43 0,25 0,13 -1,05 11,31 0,09 -1,06 10,35 15,55 7,92 

17 (2016) -15,60 -1,84 -0,21 0,39 -1,66 11,64 0,57 -1,16 11,05 16,99 10,78 
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Table 27: Dutch Passenger Transport IDA Results with chained base year 

Period 

(year) 
∆E(PI) 

∆E(MSi) ∆E(EIi) 
∆E(P) Total 

LDV Bus Train Total LDV Bus Train Total 

2 (2001) -0,93 -0,06 -0,01 0,01 -0,05 1,57 -0,20 -0,25 1,12 1,88 2,01 

3 (2002) 2,90 0,12 0,14 -0,09 0,18 -0,52 -0,16 -0,07 -0,75 1,57 3,90 

4 (2003) 0,58 1,44 -0,17 -0,18 1,09 -0,48 -0,11 0,06 -0,53 1,27 2,41 

5 (2004) 6,48 2,07 -0,19 -0,28 1,60 -2,94 -0,28 0,00 -3,22 0,80 5,66 

6 (2005) -4,28 -1,03 0,22 0,07 -0,73 2,96 -0,19 -0,21 2,57 0,64 -1,80 

7 (2006) -1,36 -0,51 0,14 0,02 -0,35 2,08 -0,26 -0,10 1,72 0,48 0,49 

8 (2007) 2,25 -0,08 0,10 -0,03 -0,01 -0,59 0,08 -0,30 -0,81 0,48 1,91 

9 (2008) -9,43 -1,97 0,34 0,15 -1,48 6,92 0,05 0,13 7,09 1,12 -2,71 

10 (2009) 5,93 1,98 -0,44 -0,12 1,42 -9,97 0,60 0,39 -8,97 1,27 -0,36 

11 (2010) -8,36 -1,38 0,20 0,15 -1,03 9,19 0,22 0,12 9,54 1,42 1,57 

12 (2011) 1,62 -2,25 -0,21 0,47 -1,99 -0,05 0,27 -0,48 -0,25 1,10 0,48 

13 (2012) -9,95 0,01 -0,07 0,03 -0,03 6,40 0,25 0,11 6,76 1,09 -2,13 

14 (2013) 11,13 -1,12 -0,15 0,23 -1,04 -12,08 -0,12 -0,43 -12,63 0,62 -1,92 

15 (2014) -4,31 2,40 -0,04 -0,36 2,01 -0,25 0,00 0,17 -0,09 1,07 -1,32 

16 (2015) -9,76 -1,19 0,34 0,05 -0,80 9,44 0,01 -0,22 9,23 1,06 -0,27 

17 (2016) 1,46 -0,41 -0,47 0,23 -0,65 0,28 0,48 -0,08 0,68 1,37 2,86 
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Table 28: German LDV IDA Results with respect to 2000 

Period 

(year) 
∆E(PI) ∆E(PMF) 

∆E(TSi) ∆E(EIi) 
∆E(P) Total 

Gasoline Diesel Others Total Gasoline Diesel Others Total 

2 (2001) 38,45 3,48 -45,92 37,11 0,00 -8,81 -13,38 -5,45 0,00 -18,84 1,12 15,40 

3 (2002) 51,78 10,23 -83,96 67,76 0,00 -16,20 -15,66 -7,37 0,00 -23,03 2,24 25,02 

4 (2003) 43,87 3,23 -107,17 86,42 0,00 -20,74 -21,93 -9,44 0,00 -31,37 1,66 -3,35 

5 (2004) 65,49 16,15 -147,41 120,35 0,00 -27,07 -29,86 -5,17 0,00 -35,03 0,00 19,55 

6 (2005) 47,15 3,95 -180,40 145,87 0,00 -34,52 -35,73 -12,49 0,00 -48,22 -2,19 -33,84 

7 (2006) 61,92 6,84 -225,66 183,52 0,00 -42,14 -41,92 -11,74 0,00 -53,65 -5,29 -32,32 

8 (2007) 69,50 13,12 -259,48 210,71 0,00 -48,78 -51,59 -16,43 0,00 -68,01 -8,54 -42,71 

9 (2008) 78,12 -7,55 -255,32 208,82 0,00 -46,50 -64,71 -15,06 0,00 -79,77 -12,62 -68,32 

10 (2009) 98,90 7,73 -298,17 221,25 31,01 -45,92 -84,00 -17,12 0,13 -100,99 -17,53 -57,81 

11 (2010) 108,27 15,61 -329,25 243,07 29,69 -56,49 -86,90 -15,83 0,10 -102,63 -21,10 -56,33 

12 (2011) 124,72 20,97 -344,65 255,39 31,41 -57,85 -87,75 -19,31 0,11 -106,94 -21,18 -40,28 

13 (2012) 124,14 18,54 -375,99 283,17 31,46 -61,36 -101,44 -19,83 0,11 -121,16 -18,28 -58,12 

14 (2013) 131,13 19,75 -401,41 305,96 30,31 -65,14 -101,29 -16,46 0,10 -117,65 -14,38 -46,29 

15 (2014) 147,25 24,98 -421,13 325,21 28,92 -67,00 -101,20 -17,05 0,10 -118,16 -8,56 -21,49 

16 (2015) 151,33 30,07 -438,46 341,54 26,54 -70,38 -111,60 -17,38 0,08 -128,91 4,09 -13,81 

17 (2016) 170,50 31,78 -454,30 357,91 25,94 -70,44 -117,60 -18,74 0,08 -136,27 15,86 11,43 
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Table 29: German LDV IDA Results with chained base year 

Period 

(year) 
∆E(PI) ∆E(PMF) 

∆E(TSi) ∆E(EIi) 
∆E(P) Total 

Gasoline Diesel Others Total Gasoline Diesel Others Total 

2 (2001) 38,45 3,48 -45,92 37,11 0,00 -8,81 -13,38 -5,45 0,00 -18,84 1,12 15,40 

3 (2002) 13,31 6,78 -38,11 30,62 0,00 -7,49 -2,38 -1,73 0,00 -4,11 1,13 9,62 

4 (2003) -7,47 -6,97 -24,20 19,40 0,00 -4,80 -6,42 -2,16 0,00 -8,57 -0,56 -28,37 

5 (2004) 21,42 12,93 -39,76 32,23 0,00 -7,54 -7,84 5,61 0,00 -2,23 -1,68 22,90 

6 (2005) -17,29 -12,03 -35,42 28,77 0,00 -6,65 -6,41 -8,79 0,00 -15,20 -2,22 -53,39 

7 (2006) 14,83 2,89 -44,97 36,44 0,00 -8,53 -6,34 1,76 0,00 -4,58 -3,09 1,52 

8 (2007) 7,92 6,31 -34,13 27,76 0,00 -6,38 -9,41 -5,57 0,00 -14,98 -3,27 -10,39 

9 (2008) 9,22 -20,48 1,32 -1,08 0,00 0,24 -12,14 1,70 0,00 -10,44 -4,14 -25,61 

10 (2009) 21,29 15,06 -42,07 10,43 31,01 -0,63 -18,08 -2,29 0,13 -20,23 -4,98 10,51 

11 (2010) 9,60 7,94 -29,98 20,16 5,61 -4,20 -3,40 2,42 -7,26 -8,23 -3,62 1,48 

12 (2011) 16,16 5,34 -13,17 11,60 -0,54 -2,10 -0,75 -4,42 1,82 -3,35 0,00 16,05 

13 (2012) 0,70 -2,25 -33,72 28,04 0,45 -5,23 -13,43 0,07 -0,43 -13,79 2,73 -17,84 

14 (2013) 6,92 1,20 -23,95 20,16 0,34 -3,46 -0,68 5,62 -1,75 3,19 3,99 11,83 

15 (2014) 15,52 5,20 -16,29 16,48 -2,44 -2,24 0,02 -0,25 0,51 0,28 6,03 24,80 

16 (2015) 4,07 5,21 -16,68 13,90 0,49 -2,30 -9,10 0,05 -3,30 -12,35 13,04 7,68 

17 (2016) 18,78 1,57 -12,78 12,97 -1,64 -1,45 -4,84 -1,44 0,47 -5,82 12,16 25,24 
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Table 30: Dutch LDV IDA Results with respect to 2000 

Period 

(year) 
∆E(PI) ∆E(PMF) 

∆E(TSi) ∆E(EIi) 
∆E(P) Total 

Gasoline Diesel Others Total Gasoline Diesel Others Total 

2 (2001) -0,94 1,85 -0,46 1,94 -1,76 -0,28 -0,29 0,15 0,16 0,02 1,78 2,42 

3 (2002) 1,92 2,50 -0,86 4,07 -3,81 -0,60 -1,22 0,13 0,25 -0,84 3,28 6,27 

4 (2003) 3,89 2,28 -1,50 6,50 -5,95 -0,95 -1,25 0,20 0,33 -0,72 4,49 8,98 

5 (2004) 12,01 -0,29 -1,23 8,14 -8,14 -1,22 -1,44 0,26 0,44 -0,74 5,29 15,05 

6 (2005) 7,02 3,00 -3,05 10,88 -9,37 -1,54 -1,51 0,34 0,36 -0,82 5,86 13,52 

7 (2006) 5,27 6,64 -5,61 13,54 -9,68 -1,75 -2,39 0,12 0,05 -2,23 6,31 14,24 

8 (2007) 7,29 8,41 -6,93 15,27 -10,22 -1,88 -3,95 -0,26 -0,21 -4,41 6,78 16,19 

9 (2008) -3,35 15,64 -8,58 16,37 -9,77 -1,99 -4,60 -0,21 -0,08 -4,89 7,77 13,18 

10 (2009) 4,06 7,65 -8,31 15,56 -8,66 -1,41 -4,76 -0,38 -2,02 -7,16 8,92 12,06 

11 (2010) -5,00 17,29 -7,55 14,72 -8,18 -1,01 -4,43 -0,51 -3,33 -8,27 10,25 13,26 

12 (2011) -5,68 18,50 -7,30 14,52 -8,08 -0,86 -4,05 -1,36 -4,23 -9,65 11,27 13,58 

13 (2012) -14,80 26,95 -5,76 14,16 -9,18 -0,78 -7,28 -1,10 -3,66 -12,03 12,23 11,56 

14 (2013) -5,55 17,26 -4,28 13,66 -10,30 -0,93 -8,89 -2,02 -3,09 -14,00 12,75 9,53 

15 (2014) -7,19 19,01 -2,82 13,14 -11,47 -1,14 -9,87 -3,35 -2,58 -15,80 13,71 8,59 

16 (2015) -17,43 31,42 -1,35 13,59 -14,88 -2,64 -12,92 -5,01 0,44 -17,49 14,70 8,57 

17 (2016) -16,57 35,31 0,20 12,68 -15,94 -3,06 -15,70 -6,14 1,24 -20,60 16,06 11,13 
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Table 31: Dutch LDV IDA Results with chained base year 

Period 

(year) 
∆E(PI) ∆E(PMF) 

∆E(TSi) ∆E(EIi) 
∆E(P) Total 

Gasoline Diesel Others Total Gasoline Diesel Others Total 

2 (2001) -0,94 1,85 -0,46 1,94 -1,76 -0,28 -0,29 0,15 0,16 0,02 1,78 2,42 

3 (2002) 2,88 0,65 -0,40 2,13 -2,04 -0,32 -0,93 -0,02 0,09 -0,86 1,49 3,85 

4 (2003) 1,99 -0,25 -0,64 2,43 -2,16 -0,37 -0,02 0,07 0,09 0,13 1,20 2,71 

5 (2004) 8,24 -2,64 0,29 1,59 -2,17 -0,29 -0,17 0,06 0,11 0,00 0,76 6,07 

6 (2005) -5,12 3,40 -1,87 2,85 -1,34 -0,36 -0,09 0,08 -0,05 -0,06 0,61 -1,53 

7 (2006) -1,81 3,75 -2,63 2,71 -0,37 -0,28 -0,91 -0,26 -0,24 -1,40 0,46 0,72 

8 (2007) 2,07 1,81 -1,34 1,71 -0,56 -0,19 -1,58 -0,44 -0,19 -2,21 0,46 1,95 

9 (2008) -11,00 7,56 -1,76 1,22 0,46 -0,09 -0,71 0,06 0,09 -0,56 1,07 -3,01 

10 (2009) 7,64 -8,21 0,29 -0,84 0,62 0,07 -0,16 -0,20 -1,47 -1,83 1,21 -1,12 

11 (2010) -9,33 9,91 0,82 -0,92 0,16 0,06 0,37 -0,15 -1,01 -0,79 1,35 1,20 

12 (2011) -0,70 1,24 0,29 -0,14 -0,11 0,04 0,41 -1,00 -0,71 -1,30 1,05 0,32 

13 (2012) -9,45 8,82 1,53 -0,42 -0,88 0,24 -3,29 0,31 0,32 -2,67 1,04 -2,02 

14 (2013) 9,46 -9,85 1,50 -0,42 -0,90 0,19 -1,63 -1,09 0,31 -2,41 0,59 -2,03 

15 (2014) -1,70 1,84 1,49 -0,40 -0,94 0,15 -0,96 -1,56 0,27 -2,25 1,02 -0,94 

16 (2015) -10,48 12,70 1,50 0,56 -2,16 -0,11 -3,07 -1,90 1,82 -3,15 1,01 -0,02 

17 (2016) 0,98 3,80 1,59 -0,97 -0,60 0,02 -2,71 -1,30 0,48 -3,54 1,30 2,56 
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