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Abstract

This paper studies how frictions in the patent market inhibit economic growth.

I document that the patent market is considerably less developed in China than in

the US. To understand this fact, I build a growth model incorporating three frictions

in the patent market—search costs, fixed transaction costs, and information asym-

metry on patent quality. The calibrated model matches the key features of China’s

patent market well. Quantitatively, eliminating all the frictions in the patent market

would increase China’s productivity growth by 44%. I also find that reducing search

costs plays the most effective role in promoting the Chinese patent market.
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1 Introduction

A well-functioning technology market plays a crucial role in a country’s economic

development by facilitating the transfer of technology to the firms that can make the

best use of it. For example, Akcigit et al. (2016) show that patent transactions between

firms improve allocative efficiency of technologies, leading to higher economic growth

for the US. However, the technology market is not immune to frictions that prevail in

the goods and factor markets, and these frictions can be more severe in developing

economies. Whereas there is a large literature studying the frictions in the goods and

factor markets (e.g., Hsieh and Klenow, 2009; Restuccia and Rogerson, 2017; Hsieh et al.,

2019), there are fewer studies exploring the frictions that prevail in a technology market.

This paper fills this gap in the literature by studying the frictions prevailing in the

Chinese patent market. First, using the micro-level Chinese patent transaction data, I

document a set of stylized facts that suggest the persistent underdevelopment of the

Chinese patent market, and I also contrast these facts with those of a developed market

(the US patent market). Second, I build on Akcigit et al. (2016) to develop an endoge-

nous growth model featuring firms’ decisions on patent production and transactions. In

this model, I highlight three types of frictions that prevail in the patent market—search

costs, fixed transaction costs, and information asymmetry on patent quality. Finally, I

estimate the model to shed light on the role of each friction in affecting the efficiency of

the Chinese patent market and its implications on aggregate productivity growth.

The Chinese patent market serves as a good laboratory to study frictions within a

technology market, due to two reasons. First, I have compiled a comprehensive dataset

by merging micro-level patent registration and transaction data with firm annual opera-

tion information, allowing for a comprehensive understanding of China’s patent trans-

actions and the characteristics of participants in the patent market. Second, due to the

fast-growing R&D expenses, the number of China’s granted patents has almost caught

up with that in the US during the last two decades (see Appendix Figure G1). However,

there is still no evidence on the functioning of the Chinese patent market, whereas it is

already well-known that China’s factor markets are highly distorted (e.g., Song et al.,

2011; David et al., 2016; Wu, 2018; Tombe and Zhu, 2019; König et al., 2022).

Using the rich patent data, I document two facts. First, the narrowing gap in the

number of granted patents between China and the US did not narrow the gap in the
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Figure 1: Number of Granted Patent and Fraction of Traded Patents, by Year

Notes: (1) “US” indicates the US, and “CN” indicates China. (2) The US granted patents include all the patents that were
invented by the US firms, and filed and granted between 2000 and 2013. The Chinese granted patents include all the
patents that were invented by Chinese firms, and filed and granted between 2000 and 2013. I define the nationality of a
patent according to its applicant’s nationality in the database. (3) The yearly number of granted patents is the number of
patents granted in each year, and in the graph, the ratio equals this value in China over that in the US in the corresponding
year. (4) The fraction of granted patents sold within 3 years =

The number of granted patents in year t sold between t and t+3 year
The number of granted patents in year t ,2 and

the ratio in this graph indicates the gap of the fraction of traded patents between China and the US.

fraction of traded patents between these two countries, as shown in Figure 1.1 In the

Chinese patent market, only 4.5% of domestic patents filed and granted between 1998

and 2013 were traded during this period, and this share was only a quarter of the share

of traded patents in the US in the same period (14.6%). I also find this pattern robust to

controlling for patents’ technology fields, firm size, and time periods considered. Sec-

ond, I document that high-quality patents were traded more than low-quality patents,

and the gap in the fraction of traded patents between the US and China was much larger

among high-quality patents than among low-quality patents.

To understand these facts and perform a quantitative analysis, I develop an endoge-

nous growth model featuring firms’ patent production and transactions. In the model,

firms are heterogeneous in their productivity levels and R&D capacities, and they im-

prove their productivity by either doing the in-house R&D (which generates patents)

1Appendix Figures G1 and G2 present the number of granted patents and the fraction of traded patents
separately for China and the US, also suggesting that compared with the narrowing gap in the number of
granted patents between China and the US, the gap in the fraction of traded patents between these two
countries has remained wide persistently.

2As it may take a long time for the patent to be sold, counting the number of patents sold within 3
years after getting granted makes the fractions of patents sold in different years comparable.
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or purchasing a patent from the patent market. Akcigit et al. (2016) first characterize

the patent market in a general setting, in which the patent market plays the role of cor-

recting the mismatch between patents and their initial inventors by reallocating patents

to the firms that can make a better use of them. I follow their framework to model the

patent market, however, given the purpose of this study to explain the underdevelop-

ment of the Chinese patent market, I newly introduce three frictions into their general

framework of the patent market.3 First, I introduce search costs into the patent mar-

ket, as firms typically face difficulties in participating in the patent market.4 Guided by

the second fact, I also introduce patent quality and two related frictions: fixed transac-

tion costs, which discourage the trading of low-quality patents relative to high-quality

patents; and information asymmetry on patent quality, which can explain why the gap

in trading probabilities between the US and China varies by patent quality.

I structurally estimate the model using the simulated method of moments, match-

ing the key data moments from the Chinese patent market. I find that the model is

capable of replicating the two facts documented earlier and can also match many non-

targeted features of the Chinese patent market.

Using the calibrated model, I conduct several counterfactual exercises. Firstly, I as-

sess the contribution of the patent market to China’s long-run productivity growth. The

findings indicate that if the patent market were to be shut down, China’s productivity

growth would decrease by 5%. This highlights the current contribution of this under-

developed patent market to China’s growth, as well as its potential for a larger contri-

bution. Secondly, I examine the effect of eliminating all three frictions in the Chinese

patent market. I find that doing so would increase the fraction of traded patents to 67%

and improve China’s productivity growth by 44%, and the elimination of search costs

alone contributes to 78% of this increase in patent market size. However, it is impractical

to completely remove all the frictions in an underdeveloped market. Instead, aligning

the level of frictions with that of a developed market, such as the US patent market, is a

more feasible target. By reducing all the frictions to the US levels, the fraction of traded

3Akcigit et al. (2016) show that within a firm, the patent that is technologically distant from the firm’s
technology specialty is more likely to be sold. In Appendix B.3, I perform similar regressions for Chinese
firms’ patents, and the results in Table B3 are consistent with the evidence from the US in Akcigit et al.
(2016). These pieces of evidence support the basic role of the patent market, which is to provide a platform
for initial inventors to sell the patents that are less useful for them.

4The difficulty in finding a partner or a patent is reported as one of the main obstacles for European
firms as well as Japanese firms that find it hard to enter the technology market (Zuniga and Guellec, 2009;
Radauer and Dudenbostel, 2013).
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patents in China would increase from 4.5% to 18.4%, resulting in an improvement of

14% in China’s productivity growth.

To corroborate the quantitative findings, I perform several robustness checks. In

particular, I evaluate two additional factors that potentially affect the size of the patent

market: patent quality and patent infringement. These considerations are inspired by

the observation that China is frequently criticized for having low patent quality and in-

adequate intellectual property protection. By incorporating China’s lower patent qual-

ity and higher patent infringement rate into the model, I recalibrate the model and ob-

tain the following findings. Firstly, eliminating the production of low-quality patents

and eradicating patent infringement, in addition to removing the three frictions, can fur-

ther increase the fraction of traded patents to 77% and 80%, respectively, also resulting

in a 4-percentage-point and 1-percentage-point improvement in aggregate productivity

growth. It is worth noting that while the enhancement of patent quality and the de-

crease in patent infringement would separately contribute to 3% and 20% of the overall

improvements in patent market size, the decline in search costs still accounts for more

than 70% of the observed increase in patent market size.

Finally, I explore policies that may improve the efficiency of the Chinese patent mar-

ket. Specifically, I evaluate the effectiveness of subsidies to R&D and search costs, re-

spectively. R&D subsidy has a slightly negative impact on the fraction of traded patents,

as it leads to an increase in the supply of patents in the patent market. However, sub-

sidies to search costs can effectively enlarge the patent market. Under the optimal sub-

sidies to search costs, the fraction of traded patents would increase from 4.5% to 20%,

and aggregate productivity growth would increase by 0.17 percentage points, indicating

potential productivity gains from incentivizing firms’ search in the patent market.

Related Literature First, this paper is closely related to the literature studying the mis-

allocation of R&D. König et al. (2022) introduce firm-specific labor and capital market

distortions into an endogenous growth model, and they show that these distortions

also change firms’ R&D choices. The R&D misallocation can also arise from the gov-

ernment’s ill-targeted policies. For instance, the Chinese patent subsidy program en-

courages low-quality patent applications (Dang and Motohashi, 2015; Wei et al., 2023),

and the InnoCom program leads to firms’ relabelling of non-R&D expenditures as R&D

expenses to obtain tax exemptions (Chen et al., 2021). All these papers emphasize the
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misallocation of R&D investments. However, if the technology market functions well,

the inefficiency of cross-firm R&D allocations can be partially remedied through tech-

nology transactions between firms. Complementing these papers, this paper shows that

the frictions in the Chinese technology market lead to too few technology transactions,

intensifying the detrimental impact of R&D misallocation on China’s growth.

More broadly, a vast literature has delved into the inefficient use of production

factors, as reviewed by Restuccia and Rogerson (2017). In the labor market, the ineffi-

cient allocation can arise from search costs, discrimination, barriers to forming human

capital, and differences in social norms (e.g., Pissarides, 2000; Hsieh et al., 2019; Foster

and Rosenzweig, 2022). In the capital market, misallocation can arise from capital ad-

justment costs, information frictions, and other firm-specific factors (e.g., Akerlof, 1970;

David et al., 2016; David and Venkateswaran, 2019). I contribute to this literature by

studying the misallocation prevailing in the technology market. Moreover, I show that

the underdevelopment of the Chinese patent market can be explained by technology

market frictions including search costs, fixed transaction costs, and information fric-

tions. These frictions also similarly exist in labor and capital markets as aforementioned,

though the specific forms of these frictions can vary across markets.

Finally, this paper connects with the literature on patent markets. This paper is

closely related to Akcigit et al. (2016) who use an endogenous growth model to quanti-

tatively study how efficiency in the patent market affects growth in the US. This paper

differs from theirs in two main aspects. First, I incorporate three frictions to speak to the

underdevelopment of the Chinese patent market. Second, I empirically and quantita-

tively compare the performance of the patent markets between the US and China. This

comparison can help us understand the impeding factors of the technology market in

developing countries. Aside from quantitative research, many studies document that

difficulties in finding a partner, fixed transaction costs like broker fees, and information

frictions can cause inactive patent transactions (Teece, 1977; Zuniga and Guellec, 2009;

Hagiu and Yoffie, 2013; Khan, 2013; Radauer and Dudenbostel, 2013; Serrano, 2018; Han

et al., 2022). These studies are mostly empirical, and thus the aggregate implications are

unclear. In contrast, I build an endogenous growth model to quantify the aggregate role

of these distortions in shaping the patent market and the aggregate growth.

The paper is organized as follows. Section 2 describes the key empirical facts in

the Chinese patent market and contrasts them with those in the US patent market. Sec-
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tion 3 develops the model, and Section 4 estimates the model using the Chinese data.

Sections 5 uses the calibrated model to perform several counterfactual experiments. Fi-

nally, I conclude in Section 6. The details of the data construction and some additional

robustness checks are provided in the appendix.

2 Descriptive Facts of the Chinese Patent Market

In this section, I document the descriptive facts of the Chinese patent market and

compare them with those of the benchmark US patent market. Sections 2.1 and 2.2

describe the background and the data, respectively, and Section 2.3 documents the facts

regarding the underdevelopment of the Chinese patent market.

2.1 Institutional Background

The establishment of China’s intellectual property (IP) system occurred in the 1980s,

as the country aimed to encourage foreign direct investment and the importation of

technologies. To accomplish this, China became a member of the World Intellectual

Property Organization in 1980 and enacted its first version of the patent law in 1984.

Over time, this patent law has undergone several revisions to enhance patent protec-

tion. Notably, there has been a significant increase in patent applications from firms,

particularly from domestic firms: as of 2005, over half of all patent applications were

submitted by firms (Xie and Zhang, 2015). To regulate patent sales conducted by firms,

the Chinese Contract Law, effective since 1999, and the Administration of the Recogni-

tion and Registration of Technology Contracts Procedures, effective since 2000, establish

the necessary legal framework. The government has also implemented many policies

to boost the patent market.5 Given the continuous development of laws and policies

aimed at regulating and standardizing technology transactions, this presents a valuable

opportunity to investigate and quantify potential challenges in the patent market within

this evolving and maturing context.

Firms are the primary participants in patent transactions, as demonstrated by Ap-

pendix Figure B2, which indicates that they account for 80% of technology market par-

5For example, the Chinese government provides subsidies to incentivize patent transactions: when
a patent transaction is certified and recorded by the local registration institution, both the assignor and
assignee can enjoy a reduction in corporate income tax for the trading year.
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ticipants in China. In contrast, other participants such as public institutions are less

active in such transactions. Given that firms are the main generators of innovations and

technology transactions, this paper centers on firm patent transactions occurring within

the country.

2.2 Data

I mainly use Chinese patent transaction data from the China National Intellectual

Property Administration (hereafter CNIPA). The transaction data record patents’ trans-

action date, transacted patents’ application number, assignee name, and assignor name.

The data include all transacted patents that were filed and granted between 1985 and

2016 in China. The structure of the original data is described in Appendix A.

I complement the transaction data with the CNIPA patent database to obtain other

information about invention patents’ characteristics, including their application date,

grant date, publication date, inventors, and forward and backward citations.6 It usu-

ally takes three years for a Chinese patent to get granted after application, as shown

in Figure G4, and thus the patents filed from 2013 to 2016 may not get granted before

2016. Moreover, in my data, the first patent transaction happened in 1998.7 Therefore,

my empirical analysis focuses on the patents filed and granted between 1998 and 2013.

In the paper, I take the US patent market as a benchmark to study why the Chinese

patent market is underdeveloped. As Akcigit et al. (2016) focus on the characteristics of

the US patent market from 1976 to 2006, to be consistent with the Chinese data, I update

the US patent transaction and registration data to 2013. The US patent registration data

come from the Patentview database, and the patent transaction data come from the

United States Patent and Trademark Office (hereafter USPTO) publication. The details

are described in Appendix A.

6The Chinese patents office grants three types of patents: inventions, utility models, and design
patents. Among these, only the grant of inventions requires a substantive examination for utility, novelty,
and non-obviousness, making it equivalent to US utility patents. In contrast, the criteria for obtaining util-
ity model and design patents are significantly lower. Consequently, the applications for these two types of
patents in China may be influenced by non-innovation-related patenting activity driven by strategic con-
siderations and government policy incentives (Hu et al., 2017). Therefore, this paper primarily focuses on
invention patents and their transactions. Similarly, in the US, I also concentrate on utility patents, which
is in line with the research conducted by Akcigit et al. (2016). It is important to note that throughout this
paper, the term "patent" refers specifically to the invention patent in China.

7The first transacted patent is CN98107411.1, and this transaction happened between Webasto Kickt-
bustuen AG and IFE Ind Einrichtungen.
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I merge the patent data with firm-level financial data to understand the character-

istics of firms participating in the patent market. I obtain the Chinese manufacturing

firm data (hereafter NBS) in 2001–2013, the Chinese listed firm data (1998–2013), and

the US listed firm data (1998–2013).8 The firm-level data provide information on firms’

operating behavior, such as industry, address, sales, fixed assets, and employment. I

merge these firm-level data with the CNIPA database using firm name (see Appendix

A.3 for detailed procedure) to obtain a firm-patent panel between 1998 and 2013.

2.3 Descriptive Facts on the Patent Market

I now use the assembled data to document several facts regarding the underdevel-

opment of the Chinese patent market.

2.3.1 Patent Market Size in China and the US

The Fraction of Traded Patents. To understand the magnitude of the Chinese patent

market, I compare the fraction of traded patents in China with that in the US. I define

the fraction of traded patents in a period as the share of patents filed and granted in that

period that are also transacted in the same period.

In order to conduct a consistent comparison of patent markets between China and

the US, I impose three constraints on the patent transaction data. First, to avoid the

influence of dual-listed patent registrations, I only include the transactions that hap-

pen among domestic entities. For example, the majority of patent transactions between

Google and Motorola in the US were also recorded in the Chinese patent office. How-

ever, these transactions did not occur in China and were consequently unaffected by any

obstacles present in the Chinese patent market.9 Second, I focus on transactions among

firms, as they are the primary drivers of patent invention and play a leading role in

the patent market as mentioned in Section 2.1. Finally, I exclude transactions occurring

within a corporate group since they are frequently influenced by non-market factors,

8The NBS data are conducted by the National Bureau of Statistics (NBS). The survey includes all indus-
trial firms that are either state-owned or non-state firms with sales above 5 million RMB (“above-scale”
firms) (Brandt et al., 2012). This paper uses the NBS data in 2001–2007 and 2011–2013.

9Out of all the transactions that occurred between 1998 and 2013, approximately 50% consisted of
overseas entities’ patents in both China and the US. Within these transactions involving overseas entities’
patents, around 70% to 80% of the patents were traded to other overseas entities. Appendix A.1 and
A.2 provide a detailed explanation of how I differentiate between domestic and overseas entities in the
CNIPA and USPTO datasets.
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Table 1: Patent Market Statistics in 1998–2013

Number of Patents Fraction of Patents Sold

China All Domestic Firms 1998–2013 322,632 4.5%
Listed Firms 1998–2013 46,657 1.6%

The US All Domestic Firms 1998–2013 975,284 14.6%
Listed Firms 1998–2013 42,125 10.8%

All Firms 1976-2006 (Akcigit et al., 2016) 3,210,361 16.0%

such as technology transfers from the parent firm to its subsidiaries or from the corpo-

rate R&D center to its production firm. Appendix A.1 and A.2 describe the procedure

of excluding the transactions within the corporate group.

Table 1 compares the fraction of traded patents between China and the US. In

China, Chinese firms had 322,632 patents filed and granted from 1998 to 2013. Among

these patents, 4.5% were sold to other Chinese firms. During the same period, the frac-

tion of traded patents in the US was 10.1 percentage points higher than that in China.

Thus, compared with the US patent market, the size of the Chinese patent market was

relatively very small.

I next present a set of robustness checks to rule out several factors unrelated to

market frictions that could potentially explain the small patent market size in China.

Accounting for Firm Size. The first concern is that the pattern in Table 1 reflects vari-

ations in firm size compositions across different countries. The literature (Serrano, 2010;

Figueroa and Serrano, 2019) finds that smaller inventors tend to have larger rates of

patent transfers because of the inability to capture the patent value, and thus the econ-

omy with more small firms may have a higher share of patent transactions. If anything,

this concern may bias the fraction of traded patents in China upwards, as poorer coun-

tries tend to have more small firms (Poschke, 2018). As a robustness check, to rule

out the impact of small firms, I compare the fraction of traded patents for listed firms’

patents between these two countries.10 As shown in Table 1, among listed firms, the gap

in the fraction of traded patents between China and the US is still 9.2 percentage points.

Therefore, firm size cannot explain the relatively smaller patent market size in China

compared with the US.

10I define the number of patents traded for the listed firm as the number of patents invented by the
listed firm and sold to any other domestic firm.

10



Figure 2: The Fraction of Trade Patents by Technology Field, 1998–2013

Accounting for Technology Fields. The second concern is with regard to the structure

of patents’ technology fields. As costs and opportunities of technology adoption dif-

fer across technology fields (Serrano, 2010), patent transfer rates may also vary across

technology fields. This hints that the technology heterogeneity may trigger different

patent market sizes among countries with different structures of patents’ technology

fields. Figure 2 exhibits the fractions of traded patents in each technology field (based

on 1-digit IPC code) of China and the US.11 I find that the scale of patent transactions

consistently remains small in every technology field when compared to the benchmark

of patent transactions in the US.

Accounting for the Patent-Inventing Firm Similarity. The third concern is that the

difference in the distribution of patent-inventing firm similarities could influence the

likelihood of a firm selling the patents it invents. Akcigit et al. (2016) constructs the

patent-firm similarity measure, which captures how distant the patent’s technology

field is from the firm’s technology field. They find that the patent which is closer to

the firm in terms of technological distance contributes more to the firm’s value and has

a lower possibility of being sold by its inventor.12 As a robustness check, I construct the

distribution of similarity between new-born patents and their inventing firms in both

11The structure of patents’ technology fields in China is quite different from that in the US, as shown
by Appendix Figures G5 and G6. Detailed information about IPC classification is described in Appendix
A.4. The IPC 1-digit codes contain eight sections.

12In Appendix B.3, I also check this pattern using Chinese data, and the results in Table B3 are in
accordance with Akcigit et al. (2016).
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countries following Akcigit et al. (2016) and also adjust for knowledge scopes to ease

cross-country comparison (see Appendix B.2).13 As shown in Figure 3, the distributions

of patent-firm similarities in these two countries are relatively analogous and thus could

not explain why the patent market size in China is much smaller than in the US.

Figure 3: Distribution of Similarity between New-born Patent and Knowledge Stock

Note: (1) The sample used here includes patents filed and granted from 1998 to 2013. (2) Given that every firm’s first

patent’s similarity with the firm is absolutely zero, I drop observations of patents which are firms’ first patent applications.

Accounting for Patent License and Litigation. In this robustness check, I take two

other patent activities—patent license and litigation—into consideration. Patent license

is an alternative way to transfer a technology across firms. In contrast with the patent

right transfer (this paper’s focus), patent license transfers the right to use a patent, not

the ownership of that patent. Consequently, if Chinese firms prefer the patent license

to the patent right transfer, the fraction of traded patents could overestimate the actual

gap of the patent market size between China and the US. To check this, I merge the

Chinese patent license data with the patent registration data and compare the number

of traded patents with the number of licensed patents. Within Chinese firms’ patents

filed and granted between 1998 and 2013, there were 0.86% of patents licensed during

this period, versus 4.5% of patents traded during the same period. In the US, around

13In practice, the patent-firm similarity measure also depends on knowledge scopes: if Chinese firms
produce patents mostly within narrow scopes, then one would expect fewer transactions of patents. Thus,
when constructing the similarity distribution, I also adjust for differences in the distribution of firms’
knowledge scopes between the two countries. Please see the detailed discussions in Appendix B.2.
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5% of patents were licensed and 16% of patents were traded (Arora and Ceccagnoli,

2006; Akcigit et al., 2016). Thus, there exists no large difference in the ratio of the license

intensity over the patent right transfer intensity between China and the US. Moreover,

according to the survey (Zuniga and Guellec, 2009), patent license is used more as a tool

to establish a technological monopoly rather than a technology exchange.

Besides the patent license, the other concern comes from the threat of patent liti-

gation risk. Abrams et al. (2019) argue that patent trolls, such as stick-up artists and

middlemen, may purchase the patent from its inventing firm and compel other firms

to buy it by the threat of the litigation. Therefore, highly developed IP protection and

litigation system, and mature patent agent institutions could be a main reason for the

sizeable patent market in the US, not the low market frictions. To rule out this potential

channel, this paper merges the Chinese patent litigation data with the patent registra-

tion and transaction data. Among all Chinese firms’ patents filed and granted between

1998 and 2013 in CNIPA, 0.1% of patents were involved in litigation during this period,

and among traded patents, 0.2% of patents were ever litigated. Akcigit et al. (2016) re-

port that about 1% of US patents were involved in litigation, and among traded patents,

2% of patents were ever litigated. Given these small shares in both countries, the dif-

ference in litigation risk seems unlikely to drive the large gap in the fraction of traded

patents between China and the US.

Other Confounding Factors. One concern for the lack of patent transactions in China

is the low quality of Chinese patents. I will show in the next subsection that even among

high-quality patents, there still exists a large gap in the fraction of traded patents be-

tween China and the US. Additionally, in the quantitative analysis of Section 5.2.1, I

will further measure the gap in patent quality between China and the US and explore

how the patent market in China would change if its patent quality aligns with the US’s.

Another natural concern for few patent transactions in China is the lack of intel-

lectual property right (IPR hereafter) protection. There is much evidence on the fast

improvement of the IPR protection in China in the 2000s,14 however, the gap in the frac-

tion of traded patents between China and the US was still persistently wide as shown

in Figure 1. Figures G9 and G10 also show that in the provinces that experienced rein-

14Godinho and Ferreira (2012) and Hong et al. (2022) describe the significant changes in design and
enforcement of IPR laws, especially after 2000. Awokuse and Yin (2010) and Ang et al. (2014) show that
this reinforcement of IPR protection encouraged the surge in FDI and R&D investments in China.
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forcement of the IPR protection, there was no significantly faster increase in the fraction

of traded patents within these provinces.15 These pieces of evidence indicate that the

IPR protection may not be a main driver for the lack of patent transactions in China.

Nevertheless, in the quantitative analysis, I will also consider a model extension that

takes into account the high infringement rate of patents in China and study how this

factor contributes to the underdevelopment of China’s patent market.

2.3.2 The Fraction of Traded Patents by Patent Quality

I now study how patent transactions vary by patent quality. I measure patent qual-

ity based on the widely-used forward citation number (e.g., Hall et al., 2001). I divide

patents into different quality groups based on the ranking of their forward citation num-

bers among all the patents within the same technology field and granted year.

Figure 4 presents the fraction of traded patents by patent quality in China and the

US, respectively. I highlight two findings. First, higher-quality patents were traded

more often, especially in the US.16 Considering that higher-quality patents usually com-

mand higher prices, one would expect the fraction of traded patents for high-quality

patents to be similar to that for low-quality patents. The observed difference in trading

probabilities between low- and high-quality patents suggests the presence of overhead

costs that impede the trading of low-value patents. Second, the disparity in the propor-

tion of traded patents between the US and China was more significant for high-quality

patents compared to low-quality patents. Particularly in China, the trading frequency of

higher-quality patents was not substantially higher, indicating that buyers may struggle

to accurately assess the true quality of patents. Guided by these two observations, I will

introduce fixed transaction costs and information asymmetry concerning patent quality

into the model. By incorporating these frictions, I will show that the model can match

these two observations well, and I will also demonstrate the role of these two frictions

in driving the underdevelopment of China’s patent market.

15I measure the province-year-level IPR protection levels by marketization index or the development
of intermediaries & legal environment, which is constructed by Fan et al. (2019). There is large variation
in IPR protection levels across provinces and cities, and the literature shows that firms’ innovation and
R&D investments increased in the regions with better environments of IPR protection (Lin et al., 2010;
Ang et al., 2014; Fang et al., 2017).

16In China, the fraction of traded patents for patents with above-median quality was 8% than that for
patents with below-median quality.
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Figure 4: Fraction of Traded Patents by Patent Quality

Note: (1) The x-axis represents the grouping of patents based on their quality, which is measured by the ranking of the
number of forward citations among all the patents within each grant year and 3-digit IPC technology class. Group 0
comprises patents with the lowest quality, while Group 20 consists of patents with the highest quality. (2) The y-axis, on
the other hand, represents the fraction of traded patents within each group.

3 Model

To quantitatively assess the underdevelopment of the Chinese patent market, I

build on the framework of Akcigit et al. (2016) to develop an endogenous growth model

featuring firms’ decisions on patent production and transactions. To reflect the key fea-

tures of the Chinese patent market, I embed two main changes into the framework.

First, to match the stylized fact regarding how the fractions of traded patents vary by

patent quality, I consider patent quality differences and two related frictions: (1) fixed

transaction costs, which discourage the trading of low-quality patents relative to high-

quality patents; and (2) information asymmetry on patent quality, which can explain

why the gap in patent trading probabilities between the US and China varies by patent

quality. Second, to account for firms’ varying patenting activities observed in the data,

I introduce firms’ heterogeneity in R&D capacities. Using the model, I will highlight

three types of frictions within the patent market—search costs, fixed transaction costs, and

information asymmetry on patent quality—and then study their contributions to the un-

derdevelopment of the Chinese patent market in the next section.
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3.1 Model Setup

At the start of each period t = 1, 2, ..., a measure Nt of incumbent firms exists,

each of which occupies a particular technology field j on a circle with a radius of 1/π.

The circle represents all different technology fields, where a shorter distance indicates a

higher degree of similarity between technologies. The firms are evenly distributed on

the circle, and thus the density of firms on the circle is Nt/2.

Each patent is positioned at a specific point on the circle. Due to uncertainty about

innovation outcomes, the patent’s technology field may be different from its inventor’s.

As shown in Figure 5, a shorter distance between the patent’s and the inventor’s tech-

nology fields implies a higher similarity level x between their technologies. I assume

that x is drawn randomly according to a distribution X(x) with support [0, 1]. The in-

troduction of uncertainty captures that every firm has its specialization and adept field,

but many inventions are generated in other fields accidentally, which may cause a mis-

match between the inventing firm and the patent. For example, the initial invention of

the microwave oven occurred during a radar test conducted by Raytheon Company, a

defense contractor in the United States. However, it was Tappan, an appliance manufac-

turer, who introduced microwave ovens extensively for household use, a decade after

the original invention. This discrepancy between patents and the firms inventing them

highlights the necessity of a patent market to bridge this gap and facilitate alignment.

Figure 5: Technology Field Circle: Potential Mismatch between Patent and Firm
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3.1.1 Timing

To streamline the exposition of firms’ problems, it is useful to first describe the

timing of this model.

Step 1: Entry and Exit. At the beginning of every period, all incumbents face an ex-

ogenous exit rate δ. A fixed number of new entrants will enter simultaneously.17

Step 2: Innovation Activity (In-house R&D or Search in a Patent Market). In order to

enhance productivity, a firm can initially engage in in-house R&D. Each firm will inde-

pendently determine their optimal level of R&D intensity, which in turn influences the

rate at which new patents are generated. Upon successfully innovating a new patent,

the firm is faced with the decision of whether to retain or sell it. In cases where a new

patent fails to be invented, the firm has the option to seek out and acquire a patent

from the patent market. After determining the optimal search effort within this market,

the firm will randomly encounter a potential patent seller and make a choice between

purchasing or refraining from purchasing.

Step 3: Production. Upon acquiring a new patent, whether through in-house inno-

vation or by purchasing, the firm’s productivity will increase. In the absence of a new

patent, the firm will proceed with production without experiencing any productivity

enhancements. Following production, the firm will sell the goods and generate profits.

I will now describe firms’ production and innovation activity in more detail.

3.1.2 Production and Evolution of Firms’ Productivity

Initial Productivity Distribution in Each Period. Define firms’ productivity distri-

bution at the beginning of every period t as Pt(z). Then, the average productivity of

incumbents at the beginning of every period is:

z̃t =

∫
zdPt(z). (1)

17I assume exogenous entry and exits to prevent the explosion of a firm’s size and obtain a stationary
distribution of firms’ productivity. As the new entrant’s productivity and type are drawn from the dis-
tribution of incumbents’ productivity and type, assuming exogenous entry and exit does not change the
firm distribution.
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When it causes no confusion, I will omit time subscript t for ease of description.

Productivity Improvement. The successful invention or purchase of a patent, as elab-

orated in the next subsection, will result in an increase in productivity for the firm:

z′ = L(z, γ, x; z̃) = z + γxzβ z̃1−β, γ ∈ {γh, γl}, x ∈ [0, 1], β ∈ (0, 1], (2)

where z′ is the firm’s productivity at the end of the period. Parameter γ captures patent

quality, with subscripts h and l indicating the high-quality patent and the low-quality

patent respectively. High-quality patents lead to a larger productivity increment, with

γh > γl. Patent quality is determined upon the birth of the patent, and I assume that the

share of patents born with high quality is h.18 x represents the patent-firm similarity,

as discussed earlier. If the patent’s technology field has a better match with the firm’s

technology (which implies higher x), the productivity improvement from this patent is

also larger. zβ captures that the productivity increment may rely on firm initial pro-

ductivity z.19 This setting is supported by Appendix Table B2 that the revenue gain of

the patent varies by firm size. This is also motivated by the existing literature that has

shown that larger firms may have larger markets, abundant advertising experience, and

a wide scope of knowledge, thus increasing the surplus of new-born patents (Arkolakis,

2010; Serrano, 2010; Figueroa and Serrano, 2019). Finally, z̃ is the economy-wide average

level of productivity. By modeling the dependence of the productivity improvement on

z̃1−β , I consider productivity improvement to be governed by the economy’s average

productivity, which indicates knowledge externality and also ensures the existence of a

stationary productivity distribution on the balanced growth path.

Production. I assume that at the end of each period, the firm produces a homogeneous

final good using labor with its productivity z′:

Y = (z′)αl1−α. (3)

18I assume that there is no correlation between patent quality and firm size. This is supported by the
observation that the quality distributions of patents originating from both large and small firms exhibit
minimal differences (see Figure G8 in Appendix G).

19In this model, the optimal labor hired is linear with the firm’s productivity, so the firm size is linear
with the firm’s productivity.
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The firm hires labor l with wage rate w. I assume that there is totally one unit of labor

available in the economy (normalization). The firm chooses the amount of labor to

maximize its profits:

Π(z′; z̃) = max
l

(z′)αl1−α − wl. (4)

The first-order condition implies the optimal labor l∗ = (1−α
w

)
1
α z′. The profits are thus:

Π(z′; z̃) = α ·
(

1− α
w

) 1−α
α

z′. (5)

Obviously, the firm’s profits increase with productivity z′, and thus the acquisition of a

patent will increase profits.

3.1.3 Cost of Innovation Activity

At the beginning of each period, the firm has two options to boost productivity in

production. It can either engage in in-house invention or purchase a new patent from

the patent market if its internal innovation attempts are unsuccessful. Therefore, the

innovation activities in this model encompass in-house R&D and searching for patents

in the patent market. In this section, I will provide a detailed explanation of the costs

associated with these two types of innovation activities.

Costs of In-house Innovation. Firms differ in in-house R&D capacity θ ∈ {θH , θL}.
Upon entry, the firm instantly learns its type θ, which is drawn randomly with proba-

bilities P(θ = θH) = Ip and P(θ = θL) = 1 − Ip, where Ip ∈ [0, 1] and θH > θL > 0. The

firm’s in-house invention cost is given by:

C(i; z̃) = χ
i1+ρ

1 + ρ
z̃α, (6)

where i is the R&D intensity chosen by the firm, and θ × i governs the arrival rate of a

new patent. In line with Klette and Kortum (2004) and Lentz and Mortensen (2008), the

R&D cost function is convex in research intensity i. I assume that the invention uses the

final good as the input, and the price of the final good is normalized to 1.

Searching for a Patent in the Patent Market. In the event that the firm is unable to

generate an in-house invention, it can still acquire a patent from the patent market.
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There are three participants in the patent market: the potential seller, the patent agent,

and the potential buyer.20 Once the in-house innovation process is complete, the inven-

tors who were successful must make a decision on whether to sell their newly created

patents to the patent agent. These inventors then become potential suppliers in the

patent market. Subsequently, the patent agent holds the patents on behalf of the in-

venting firm, leaving the firm without any new patents after internal innovation. These

firms, lacking new-born patents, become potential buyers in the patent market, where

they must decide whether to purchase the patents that they encounter.

I make three assumptions regarding the transaction process, following Akcigit et al.

(2016). First, whenever a new patent is created and the inventor chooses to sell it, a

patent agent will always be available to purchase it from the inventing firm at a given

price. Second, each patent agent is only capable of holding one patent at a time and

can meet a maximum of one buyer within a single period. The latter restriction is due

to search and matching frictions that exist between patent agents and patent buyers.

Third, the patent agent has the option to wait until the subsequent period to sell the

patent to alternative buyers.

Suppose there are na patent agents and nb potential buyers in the patent market.

The potential buyers make efforts, denoted as λθ(z; z̃), to search for the appropriate

patent that can enhance their productivity. On the other hand, the patent agents simply

20The introduction of the patent agent in this model follows Akcigit et al. (2016), which simplifies the
model in two aspects. First, the introduction of the patent agent reduces the complexity of the solution,
transferring a firm-to-firm-level matching problem to a firm-level buying and selling problem. Second, I
do not need to track the stock of unused patents for each firm. When a new patent is created, the invent-
ing firm decides whether to sell it or not. Any unsold patents are held by the patent agent. Additionally,
technology exchanges, as one type of technology agent serve as essential platforms for patent transac-
tions in China. The Shanghai Technology Exchange, established in 1993, holds the distinction of being
the country’s first technology exchange. By 2018, China had a total of 453 national technology exchanges
spanning across all provinces, with the exception of Tibet. Additionally, there were 24 permanent technol-
ogy (property rights) exchanges operating in the country. According to the Annual Reports on Statistics
of China Technology Market from 2002 to 2018, the permanent technology (property rights) exchanges
facilitated an average of 32,874 technology exchanges per year. Moreover, they organized an average of
1,590 technology promotion and trading activities annually, while providing technology transfer training
to approximately 62,804 individuals each year. In line with these observations, Han et al. (2022) found
that the increased patent trading facilitated by these exchanges in China is associated with a significant
7.5% rise in firm patenting output. These findings collectively provide suggestive evidence that patent
agents play a crucial role in facilitating technology transactions within the Chinese market.
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wait to be searched.21 I assume that search efforts incur costs (David, 2021):

B(λ; z̃) = η · λ
µ

µ
· z̃α, B′(λ) > 0, B′′(λ) > 0. (7)

Here, I introduce the parameter η to capture the degree of the search friction within

the patent market. As η approaches infinity, the search friction within the patent mar-

ket becomes excessively high, leading to a reduction in the size of the patent market.

Modeling the search friction is also consistent with the extensive evidence showing that

the difficulty in finding a patent is reported as one of the main obstacles to entering the

technology market (e.g., Zuniga and Guellec, 2009; Radauer and Dudenbostel, 2013).

DefineQ(θ, z) as the joint distribution of firms’ R&D capacity type and productivity

when firms enter the patent market. I define the tightness of the buyer side and the seller

side in a period as Tb and Ta, respectively, which can be written as:

Tb = min

(
na

nb ·
∫
λθ(z; z̃) dQ(θ, z)

, 1

)
Ta = min

(
1

Tb
, 1

)
. (8)

Therefore, the rate for a patent agent meeting with a potential buyer (θ, z) is:

ma = Ta ·
λθ(z; z̃)dQ(θ, z)∫
λθ(z; z̃) dQ(θ, z)

= Ta · Γθ(z; z̃). (9)

The rate for a potential buyer meeting with a patent agent is:

mb = λθ(z; z̃)Tb. (10)

I note that ma and mb are firm-specific and depend on firm type θ, firm produc-

tivity z, and aggregate productivity levels z̃. For ease of description, I omit these state

variables in the expression of ma and mb when it causes no confusion.

3.1.4 Three Types of Frictions Involved in the Patent Market

In addition to the search friction, there are two other types of frictions present in

the patent market. Since these three frictions are the primary focus of this paper, I will

describe them in the subsequent paragraphs, following the operational sequence of the
21As I abstract from heterogeneity across patent agents, search efforts are thus homogeneous among

patent agents.
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patent market. This will facilitate better understanding the role of these frictions.

1. The patent market begins with the creation of a new patent with quality γ and simi-

larity x by a firm. These successful innovators face a decision on whether to keep the

patent for their own use or sell it to a patent agent who will handle its sale. This is

where the first friction in the patent market, known as information asymmetry on patent

quality, arises. Due to the challenge of accurately assessing a patent’s true quality be-

fore it is put into production, the patent’s quality remains privately known only to

its initial inventor (Chatterjee and Rossi-Hansberg, 2012). Thus, I assume that there

is a possibility s that the patent’s true quality might not be observable in the patent

market. Conversely, with a probability of 1 − s, the true quality can be observed in

the patent market (Menzio and Shi, 2011; Donovan et al., 2018). When the patent’s

true quality can be observed, the inventor can receive a return of qγ from the patent

agent, which is positively correlated with the patent’s quality. However, in cases of

information asymmetry, the inventor can only obtain a return of Eqγ from the patent

agent, which represents the expected value of the patent based on the endogenous

distribution of patent quality in the patent market, irrespective of the true quality

of the patent.22 Thereof, there are two distinct types of patent agents in the market:

those holding patents with observable quality, and those representing patents whose

quality cannot be verified, but which may be of either high or low quality.

The parameter s quantifies the extent of information asymmetry on patent quality

within the patent market. In the extreme case where s = 0, the patent’s quality can

be entirely verified, enabling all patents entering the market to be traded as inspec-

tion goods. On the other hand, when s = 1, the patent’s quality cannot be verified at

all. In this scenario, all patents entering the market can only be traded as experience

goods, with their quality privately observed by the inventors and learned by potential

buyers through production processes.

2. Once the patent agents holding patents bought from successful innovators enter the

patent market, they become suppliers. Then, when it comes to the buyers’ side, Fig-

ure 7 below illustrates the sequence of events involving potential buyers’ decision-

22To guarantee the neutrality of the patent agent, they function as an intermediary in this model. On
one hand, the agent is unable to select which patents to take, meaning they cannot choose to handle
high-quality or low-quality patents. On the other hand, they are also unable to choose the circumstances
under which they take a patent. This means that even in cases of information asymmetry, if an innovator
decides to sell a patent, the agent must take that patent regardless.
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Figure 6: The Sequence of Innovation Activities

making within the patent market. To meet with a patent agent, a potential buyer

needs to pay search costs as specified in equation (7). Thus, the potential buyer chooses

the optimal search efforts λ trading off its expected benefit of entering the patent mar-

ket and the search costs. The buyer’s search efforts determine the meeting rate mb for

the potential buyer to meet with a patent agent in equation (10).

3. Finally, when both the firm and the patent agent agree with the patent transaction,

the buyer needs to pay fixed transaction costs, which are equal to F · z̃α.

3.2 Solving Firm Decisions on Patent Production and Transaction

I now characterize firm decisions in each period, which are ordered in the sequence

as depicted by Figure 6. First, the firm determines the intensity of its R&D efforts. Next,

if the firm is successful in obtaining a patent through internal R&D, it must decide

whether to retain or sell the newly acquired patent. However, if the firm’s in-house

invention attempts are unsuccessful, it will then determine the level of search effort it

will exert in the patent market. Subsequently, upon encountering a patent in the mar-

ket, the firm needs to evaluate whether or not to purchase that patent. I will solve the

model through backward induction.

Conditional on Successful Invention: Keep or Sell the New-born Patent. For the

successful inventing firm, it will choose whether to sell the new-born patent or not.

The trade-off in this choice is how much the firm can get from selling that patent or
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keeping that patent. Let Vθ(z; z̃′) denote the expected present value of the θ-type firm

with productivity z at the beginning of the next period. Let V Kθ(z+γxzβ z̃1−β; z̃) denote

the expected value of the firm that invents a new patent in this period and keeps it.

Keeping the patent leads to an increase in the firm’s productivity, leading to higher

profits. V Kθ(z + γxzβ z̃1−β; z̃) can be written as:

V Kθ(z + γxzβ z̃1−β; z̃) = Π(L(z, γ, x; z̃); z̃) + r · (1− δ) · Vθ(L(z, γ, x; z̃); z̃′), (11)

where r is the discount factor and (1 − δ) is the firm’s probability of surviving in the

next period.

If a firm decides to sell its patent as mentioned before, there is a likelihood (s) that

the patent will only be perceived as an experience good in the patent market. In such

cases, the expected value of the firm that invents a new patent in the current period and

sells it as an experience good, denoted as V Sexpθ (z; z̃), can be expressed as follows:

V Sexpθ (z; z̃) = Π(L(z, 0, 0; z̃); z̃) + σEqγ + r · (1− δ) · Vθ(z; z̃′). (12)

Here, Eqγ represents the revenue earned by selling the patent. As an experience good,

the revenue earned from selling high-quality and low-quality patents is the same. This

revenue is determined by the expected value of the patent as perceived by the patent

market and is based on the expected distribution of patent quality among potential

buyers. σ is the patent surviving rate and corresponds to the patent’s term of validity,

as no patents could be alive forever (in China, the patent can be valid for 20 years).

In a different scenario, when the patent is considered an inspection good, the ex-

pected value of a successful innovating firm, V Sinsθ (z; z̃), can be expressed as follows.

V Sinsθ (z; z̃) = Π(L(z, 0, 0; z̃); z̃) + σqγ + r · (1− δ) · Vθ(z; z̃′). (13)

qγ represents the revenue earned from selling a patent with quality γ. It is important to

note that high-quality and low-quality patents generate different levels of revenue. All

other parameters have the same definitions as Equation (12).

Now, define Ik,cθ (z, γ, x; z̃) as the dummy variable indicating the decision of keeping

or selling the new patent when the patent could be traded as an experience good (c =
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Figure 7: The Sequence of Potential Buyers’ Choices in the Patent Market

exp) or inspection good (c = ins) in the patent market:

Ik,cθ (z, γ, x; z̃) =

1(keep) if V Kθ(z + γxzβ z̃1−β; z̃) > V Scθ(z; z̃)

0(sell) otherwise
(14)

Thus, the expected value for a firm that innovates successfully is given by V inn
θ (z; z̃) (the

expectation is taken regarding patent quality and similarity, which are uncertain before

the invention is made):

V inn
θ (z; z̃) = sEγ,x max{V Kθ(z + γxzβ z̃1−β; z̃), V Sexpθ (z; z̃)}

+ (1− s)Eγ,x max{V Kθ(z + γxzβ z̃1−β; z̃), V Sinsθ (z; z̃)}.
(15)

Conditional on Unsuccessful Invention: Search (and Purchase) a Patent. If a firm

fails to create a new patent in a given period, it has the opportunity to explore the

patent market by randomly interacting with a patent agent during that period. In this

scenario, the unsuccessful innovators become potential buyers in the patent market and

are confronted with two decisions. Firstly, they need to decide the level of effort to

search for a suitable patent agent. Secondly, upon meeting a patent agent, they must

decide whether or not to acquire the patent being presented.

Figure 7 illustrates the decision-making process of potential buyers. The red items

in the figure represent the expected discounted present value associated with various
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outcomes when the firm exits the patent market. To determine the optimal search ef-

fort for potential buyers and establish the criteria (marked in blue in Figure 7) for a

successful transaction, I will again use backward induction.

When exiting the patent market, potential buyers can either successfully become

buyers or leave without acquiring any patents. The expected discounted present value

of the buyer, V B1, is:

V B1θ(z + γxzβ z̃1−β; z̃) = Π(L(z, γ, x; z̃); z̃) + r · (1− δ) · Vθ(L(z, γ, x; z̃); z̃′). (16)

The firm leaving without any patent will have the expected value V B0 given by

V B0θ(z; z̃) = Π(L(z, 0, 0; z̃); z̃) + r · (1− δ) · Vθ(z; z̃′). (17)

However, the patent agent that the potential buyer encounters may possess a patent

that is either an inspection good with a probability of 1 − ss, or an experienced good

with a probability of ss. ss is potentially different from s, as the sale speed of inspection

goods’ patents may vary from that of experience goods’ patents. When the patent is an

inspection good with features (γ, x) and it meets a firm with features (θ, z), the price is

determined based on the true quality of the patent, as indicated by

P ins
θ (z, γ, x; z̃) = ω ·

[
V B1θ(z + γxzβ z̃1−β; z̃)− V B0θ(z; z̃)− F z̃α

]
+ (1− ω) · rσA(γ, z̃′),

(18)

where A(γ, z̃′) is the value for the patent agent holding the patent with quality γ, which

is derived in Appendix C.1. The term F z̃α represents fixed transaction costs that can re-

duce the surplus gain of the buyer. For simplicity, I assume that the price is determined

by the Nash bargaining,23 and ω ∈ {0, 1} is the bargaining power of the patent agent.

In the case that the quality of the patent may not be inspected, the price is similarly

determined by the expected surplus of the potential buyer and the patent agent’s value

as follows:

P exp
θ (z, x; z̃) = ω ·Eγ[V B1θ(z+γxzβ z̃1−β; z̃)−V B0θ(z; z̃)−F z̃α] +(1−ω) · rσA(z̃′), (19)

23In the Nash bargaining, the buyer and the patent agent solve maxP (V B1θ(z + γxzβ z̃1−β ; z̃) −
V B0θ(z; z̃) − F z̃α − P )1−ω(P − rσA(γ, z̃′))ω , where V B0θ(z; z̃) and rσA(γ, z̃′) are the outside values
of the patent buyer and the patent agent if they do not participate in the transaction. Solving this leads to
the price in Equation (19).
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where A(z̃′) denotes the value of the patent with an unobserved quality for the patent

agent, as derived in Appendix C.1.

Given the values of the patent agent and the potential buyer, the successful trans-

action of a patent requires the patent price P to be equal or less than the value of the

patent for the patent buyer and equal or more than the outside value for the patent

agent. Specifically, in the case where the quality of the patent can be fully inspected, the

condition for a successful transaction is:

V B1θ(z + γxzβ z̃1−β; z̃)− V B0θ(z; z̃)− F z̃α ≥ rσA(γ, z̃′). (20)

When the patent’s quality (γh or γl) could not be truly verified before putting it into

the production, the condition of the successful transaction is

Eγ
[
V B1θ(z + γxzβ z̃1−β; z̃)− V B0θ(z; z̃)− F z̃α

]
≥ rσA(z̃′). (21)

Now, I can solve the indicator function that specifies whether the patent transaction

happens successfully when the patent belongs to inspection goods and when the patent

belongs to experience goods, respectively:

Ib,insθ (z, γ, x; z̃) =

1, if V B1θ(z + γxzβ z̃1−β; z̃)− V B0θ(z; z̃)− F z̃α ≥ rσA(γ, z̃′)

0, otherwise
(22)

Ib,expθ (z, , x; z̃) =

1, if Eγ
[
V B1θ(z + γxzβ z̃1−β; z̃)− V B0θ(z; z̃)− F z̃α

]
≥ rσA(γ, z̃′)

0, otherwise
(23)

Therefore, the value function for the firm that enters the patent market is
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V buy
θ (z; z̃) = max

λ
mb ·

∫
γ,x



Inspection good︷ ︸︸ ︷
(1− ss) ·


Ib,insθ (z, γ, x; z̃) ·

V B1θ(z + γxzβ z̃1−β; z̃)

− P ins
θ (z, γ, x; z̃)− F · z̃α


+ (1− Ib,insθ (z, γ, x; z̃)) · V B0θ(z; z̃)


+ ss ·


Ib,expθ (z, x; z̃) ·

V B1θ(z + γxzβ z̃1−β; z̃)

− P exp
θ (z, x; z̃)− F · z̃α


+ (1− Ib,expθ (z, x; z̃)) · V B0θ(z; z̃)

︸ ︷︷ ︸
Experience good



dH(γ, x)

+ (1−mb) · V B0θ(z; z̃)

−B(λ; z̃)

(24)

where H(γ, x) denotes the joint distribution of patent quality and similarity in the mar-

ket. In this equation, the value of the potential buyer is composed of three elements. The

first element is the value when the potential buyer meets with a patent in the market,

and that patent is the inspection good, which is captured by the first item in the brace

in equation (24). The second element is the value when the potential buyer meets with

a patent in the market, and that patent is the experience good, which is captured by the

second item in the brace in equation (24). The last element is the value when the poten-

tial buyer does not meet with a patent in the market. Given this value function, I can

solve for the first-order condition regarding the optimal search efforts of the potential

buyer:
∂V buy

θ (z; z̃)

∂λ
= 0. (25)

Solving for Optimal R&D. By utilizing the provided value functions for successful

and unsuccessful inventions, I can determine the firm’s in-house R&D intensity. The

firm has a probability of θ × i to successfully create an invention, and a probability of

(1− θ × i) to fail in inventing a new patent within the period and subsequently explore

the patent market to search for a patent. The R&D cost, denoted as C(i; z̃), is the cost

defined in equation (6). Thus, the expected value of the firm is

Vθ(z; z̃) = max
i

θiV inn
θ (z; z̃) + (1− θi)V buy

θ (z; z̃)− C(i; z̃). (26)

The first-order condition for the optimal R&D intensity of the firm is

∂Vθ(z; z̃)

∂i
= 0. (27)
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3.3 Closing the Model

3.3.1 General Equilibrium

To close the model, I assume that the representative consumer’s utility function

follows a CRRA form,

U =
∑
t

rt−1C(t)1−ζ

1− ζ
. (28)

Thus, I can solve the worker’s consumption C(t) from utility maximization. With

consumption C(t), I can express the good market clearing condition in period t as:

Y (t) = C(t) + Crd,t +Bsearch,t + Fsearch,t, (29)

where Crd,t represents the total costs of R&D for firms doing in-house R&D,Bsearch,t rep-

resents total search costs of potential buyers, and Fsearch,t represents total fixed transac-

tion costs in patents’ transactions.

Given the population normalized to 1, in each time t, the labor market clearing

requires:

N

∫
l∗i di = N

∫ (
1− α
wt

) 1
α

zdPt(z) = 1. (30)

The wage rate in period t can be solved as:

wt = (1− α)(N · z̃t)α. (31)

Here, N is the number of firms that are actively operating and is a constant number

on the balanced growth path (BGP). And z̃t is the average productivity of firms at time

t, which grows at some constant rate as defined below.

3.3.2 Balanced Growth Path

Stationary Distribution of Firm Productivity. Define P̂θ,t as the distribution of firms’

productivity (relative to average productivity z̃) contingent on its R&D capacity type θ at

the beginning of period t. The dynamics of firms’ relative productivity distribution are

presented in Appendix C.2. In the steady state, firms’ relative productivity distribution

will converge to a stationary distribution.
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Constant Growth Rate. The growth rate on the BGP is defined as

g ≡
∫
z dPt+1(z)∫
z dPt(z)

. (32)

Definition of Stationary Equilibrium. A stationary equilibrium of this economy is a

tuple
{
li, Vθ, iθ, P̂θ(ẑ), w, g

}
, which satisfies:

(1) The labor demand of firm i, li, maximizes profits as in equation (4);

(2) Vθ is given by the value function in equation (26);

(3) iθ is the optimal R&D policy, which is solved according to equation (26);

(4) P̂θ(ẑ) evolves as in equation (40) of Appendix C.2 and remains unchanged over time;

(5) w is consistent with the labor market clearing condition in equation (31); and

(6) g is determined by R&D decisions and patent market decisions.

4 Structural Estimation

In this section, I take the model to the data. I first present the computation algo-

rithm. I then estimate the model using the simulated method of moments and finally

validate the model fit for a set of nontargeted moments.

4.1 Computation of the Balanced Growth Path

To solve the model, I iterate on the following four aggregate variables such that

they converge to a fixed point:

{
Ta|b, A(γ; z̃), gBGP , Vθ(z; z̃)

}
. (33)

The first two variables are the patent market tightness and the patent agent value,

respectively. The third one is the growth of the aggregate TFP on the BGP, and the last

variable is the value of the firm with R&D capacity θ and productivity z.

I first post a conjecture for the variables in vector (33). I initiate the firm’s produc-

tivity to follow a Pareto distribution with the shape parameter 1.1, according to China’s

NBS data. Then, I iterate on the variables in vector (33) according to the following steps:

(i) Based on equations (14), (20), (21), (24), and (26), I compute the individual firm’s
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keep-or-not decisions on patents Ik, optimal patent market search efforts λ, buy-

or-not decisions on patents Ib, and optimal R&D intensity i.

(ii) Using the firm’s patent market decision and R&D decision, I calculate the number

of potential buyers and sellers weighted by their search efforts in the patent market

and thus update Ta|b and A(γ; z̃).

(iii) I update the value function of the firm Vθ(z; z̃).

(iv) The distribution of firms’ productivity evolves according to equation (40), and the

productivity growth gBGP on the BGP is solved according to equation (32).

(v) I iterate based on the above steps until the four aggregate variables in vector (33)

converge.

4.2 Model Estimation

To calibrate the model, I first choose a set of parameters directly from the data and

the literature. Then, I calibrate the remaining parameters using the simulated method

of moments (SMM hereafter).

Externally Calibrated Parameters. Table 2 presents the set of parameters that are ex-

ternally calibrated according to the data and the literature. For example, I estimate

parameter ρ, which governs the elasticity of R&D costs to R&D intensity, by regressing

the logarithm of quality-adjusted patents on the R&D intensity using the Chinese man-

ufacturing firm data. I calibrate the patent surviving rate σ = 1− 1/20, according to the

term of patents in China (20 years). I choose the exogenous exit rate δ according to the

average exit rate of top 1% firms in the NBS database from 2001 to 2013.

I calibrate the share of high-quality patents (h) based on the share of high-quality

patents observed in the data, which is approximately 40% in both China and the US.24

The gap in forward citation numbers between high-quality and low-quality patents

is approximately 8.4 times in both countries. To calibrate the elasticity between for-

ward citation numbers and firm revenue, I regress the logarithm of the firm’s sales

24As mentioned in the empirical section, high-quality patents are defined as those with a forward ci-
tation number higher than the median within their respective technology field and granted year. For
detailed proportions of high-quality and low-quality patents in both countries, please refer to Table G1 in
Appendix G.
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Table 2: Externally Calibrated Parameters

Notation Definition Value Source

α Labor share 0.50 Hsieh and Klenow (2009)
ω Bargaining power 0.50 Akcigit et al. (2016)
ρ R&D cost elasticity 3.00 data
r Discount factor 0.96 literature
σ Patent surviving rate 0.95 data
δ Exogenous exit rate 0.075 data
h High-quality patents share 0.40 data
γgap Gap in step size btw high-quality and low-quality patents 1.16 data
X(x) Distribution of patent-inventing firm similarities Figure 3 data

on the accumulated patent adjusted by forward citation number. This yields an esti-

mated elasticity of 0.069, which can be found in Table G2.25 Thus, I set γgap = γh/γl =

exp(0.069× ln(8.4)) ≈ 1.16 in the estimation.

Simulated Method of Moment. I estimate the remaining 10 parameters using the

SMM. These parameters include: the elasticity of productivity gains to firm size β; step

size of productivity increment γl; constant in R&D costs χ; the share of firms with high

R&D capacity Ip; high-type R&D capacity θh; the gap in R&D capacity between high-

type and low-type firms θgap; constant in search costs η; curvature in search costs µ,

which governs the strength of increasing marginal costs; fixed transaction costs F ; and

the share of patents of which the quality could not be verified in the patent market s.

I iterate on the parameter values to minimize the objective function,

Ω̂ = argmin
Ω
G(Ω)′ŴG(Ω), (34)

where Ω refers to parameters, and G(Ω) is the vector containing moments. I index each

moment by i with Gi(Ω) = |model(i)−data(i)|
1
2
|model(i)|+ 1

2
|data(i)| . SMM searches repeatedly across sets of

parameter values in the model until the model’s moments are as close as possible to the

data moments. In each time, I draw samples of equal size to samples from the 2001 to

2013 NBS balanced data, which contain 14,803 innovative firms.26 The standard errors

of the parameter estimates are from the diagonal elements in V̂ = D̂′Ŵ D̂, where D̂′ is a

gradient matrix equal to ∂G(Ω)
∂Ω
|Ω=Ω̂, and Ŵ is the weighting matrix.

25The regression coefficients for the US range from 0.0559 to 0.0816, while those for China range from
0.0579 to 0.0869. I take the average of those values.

26I define the innovative firm as the firm which had at least one patent from 2001 to 2013, or had R&D
investment during that period.
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Table 3: Parameter Estimated Using SMM

Notation Description Value Standard error

β Elasticity of productivity gains to firm size 0.16 0.00
γl Step size of productivity increment 0.64 0.01
χ Constant in R&D costs 14.81 2.01
Ip Share of firms with high R&D capacity 0.06 0.02
θh High-type R&D capacity 1.01 0.52
θgap Gap in R&D capacity between high-type and low-type firms 0.12 0.00
η Constant in search costs 22.62 0.02
µ Curvature in search costs regarding search efforts 2.25 0.00
F Fixed transaction costs 0.12 0.00
s Share of patents that buyers meet without knowing true type 0.42 0.01

Table 4 presents 11 targeted moments in the SMM. I choose these moments to reflect

firms’ aggregate and heterogeneous innovation patterns. These moments include: the

ratio of R&D over sales; standard deviation of firms’ R&D-to-sales ratios; large firms’

R&D-to-sales ratio; average number of patents of large firms over that of small firms;

share of firms as the buyer; standard deviation of buyer status; average number of pur-

chased patents of large firms over that of small firms; fraction of traded patents; and

the fraction of traded patents among high-quality patents relative to that among low-

quality patents. The details for these moments are shown in Appendix D.

The targeted moments are informative of disciplining the three frictions introduced

into the model. To illustrate this, I report the impact of friction-related parameters on the

moments associated with the patent market in Appendix Figure G13. Panel (a) of Figure

G13 shows that in the absence of fixed transaction costs and information asymmetry, an

increase in search costs (η) results in a decline in the proportion of traded patents. How-

ever, this effect remains consistent across patents of varying quality levels, resulting in

no change in the relative fraction of traded patents across different quality levels. In

Panel (b), I incorporate fixed transaction costs into the patent market. As these fixed

transaction costs rise, there is a notable decrease in the proportion of traded patents.

Additionally, the proportion of traded patents among high-quality patents (relative to

low-quality patents) increases, with low-quality patents experiencing more pronounced

negative effects. In Panel (c), I incorporate information asymmetry on patent quality

into the patent market. As information asymmetry increases, the overall proportion of

traded patents remains relatively stable. However, higher information asymmetry on

patent quality negatively impacts high-quality patents as it becomes more challenging

to differentiate them from low-quality patents. The increased number of transactions in-
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Table 4: Targeted Moments in Data and Model

Description Data Model

1. Ratio of R&D expenditure over sales 0.01 0.01
2. Standard deviation of firms’ R&D-to-sales ratio 0.01 0.01
3. Large firm’s R&D-to-sales ratio 0.01 0.01
4. 75% percentile of R&D-to-sales ratio 0.01 0.02
5. Avg number of patents of large firms over that of small firms 2.12 2.13
6. Fraction of traded patents 0.05 0.05
7. Share of firms as the buyer 0.03 0.02
8. Standard deviation of (buyer=1) 0.16 0.14
9. Avg num of patents purchased by large firms (rel. to small firms) 2.26 2.26
10. Avg num of patents purchased by upper 75% percentile firms (rel. to 50-75% percentile) 1.69 1.68
11. Fraction of traded patents among high-quality patents (rel. to low-quality patents) 1.08 1.07

volving low-quality patents compensates for the decreased transactions of high-quality

patents, resulting in a decrease in the fraction of traded patents among high-quality

patents relative to low-quality patents.

Panels (a)–(c) demonstrate the heterogeneous effects of the three types of frictions

on the fraction of traded patents and the relative trading probability between high-

quality and low-quality patents. Nevertheless, relying solely on these two moments is

insufficient to differentiate between the three frictions (which involve three parameters),

particularly fixed transaction costs and information frictions. To address this limitation,

Panel (d) includes an additional moment: the average number of patents purchased by

large firms compared to that of small firms. This moment is more sensitive to variations

in fixed transaction costs (B) as opposed to information asymmetry (s).27

4.3 Estimation Results

Parameter Values. Table 3 presents the values of the parameters estimated using the

SMM. The parameter values are estimated with small standard errors, indicating good

precision. In the calibrated equilibrium, I find that search costs on average account for

10% of the patent value (evaluated by the sellers), whereas fixed transaction costs are

74% of the patent price, indicating that these two frictions are nontrivial in affecting the

functioning of the Chinese patent market. My estimation also suggests that in China,

27In Table G3, I report the elasticity of the moments discussed in this paragraph to the parameters of
the three types of frictions. This further verifies that search costs, fixed transaction costs, and information
frictions have heterogeneous effects on the fraction of traded patents, the relative trading probability
between high-quality and low-quality patents, and the average number of patents purchased by large
firms compared to that of small firms.
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Table 5: Nontargeted Moments

Description Data Model

1. Aggregate TFP growth 0.03 0.01
2. Sales growth rate for firms with patents (small over large firms) 2.20 2.83
3. Share of firms with R&D-to-sales ratio larger than 0.03 0.02 0.03
4. Share of firms as the seller (large over small firms) 2.12 1.30
5. Sell-invention ratio (large over small firms) 0.77 0.86
6. Share of purchased patents in total owned patents (large over small firms) 0.76 0.66
7. Average duration of a newly-filed patent to be sold 4.44 4.70
8. Standard deviation of duration 2.82 4.28

for 42% of patents faced by potential patent agents, their true quality cannot be verified,

indicating considerable information barriers in China’s technology markets.

Targeted Moments. Table 4 presents the comparison of the targeted moments between

the model and the data. Overall, with the estimated parameter values, the model-

generated moments match the data moments reasonably well.28

Nontargeted Moments. Table 5 reports that my calibrated model successfully cap-

tures various aspects of Chinese firms’ sales growth and R&D patterns, which were not

targeted in the SMM procedure. For example, the average time it takes for a patent to

be sold in China is 4.44 years, whereas my model predicts a similar duration of 4.70

years. Additionally, in line with the data, my model predicts that larger firms are more

likely to engage in in-house R&D rather than purchasing patents from the market, as in-

dicated by the proportion of purchased patents among the total owned patents of large

firms compared to small firms. These findings suggest that my model can effectively

replicate the key characteristics of China’s patent market.29

28The data shows that the ratio of R&D expenditure to sales is 0.012, with its 75th percentile being 0.013.
For large firms, this ratio is 0.010. The model-generated values for these three moments are 0.012, 0.018,
and 0.009 correspondingly. Therefore, the model-generated moments closely match the data-generated
moments, even remaining accurate up to three decimal places.

29My calibrated model predicts a long-run productivity growth rate of 1.2%. As I focus on patents
and abstract from other factors that affect productivity growth (e.g., SOE reform, reductions in migration
barriers, trade liberalization), the model-predicted long-run productivity growth rate is thus lower than
evidence on aggregate TFP growth in China, which is estimated to be 2.8% in Brandt et al. (2012) and
3.2% in Zhu (2012). In principle, my model can match the observed aggregate TFP growth by adding
exogenous productivity growth that reflects other factors. As exogenous productivity growth does not
affect my model predictions on the patent market, I thus abstract from this.
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5 Quantitative Analysis

In this section, I perform four sets of counterfactual exercises. Firstly, to assess the

impact of different frictions on the underdevelopment of the Chinese patent market, I

analyze the effects of eliminating each of the three frictions from the market. However,

it is possible that there are other frictions that may influence the patent market. Thus, in

the second exercise, I expand the baseline model by incorporating additional factors and

analyzing the robustness of my baseline results. These additional factors include patent

quality, the issue of junk patents, lack of IPR protection, and the choice of labor share.

Third, I study the impact of shifting the search mode from random search (baseline)

to directed search, assessing how this transition could influence the patent market and

analyzing its wider economic implications. Finally, I perform two policy experiments to

understand how the government can improve the efficiency of the patent market.

5.1 Role of Each Type of Friction

To assess the impact of frictions on China’s patent market and productivity growth,

I will begin by eliminating three frictions. However, it is impractical to completely re-

move all the frictions in an underdeveloped market. Instead, aligning the level of fric-

tions with that of a developed market, such as the US patent market, is a more feasible

target. Thus, I estimate the level of frictions observed in the US and apply these frictions

to the Chinese patent market. This analysis will help understand the factors for the un-

derdevelopment of the Chinese patent market in comparison to a developed market.

5.1.1 Eliminations of Frictions in the Patent Market

In Table 6, I present the analysis of how frictions affect the Chinese patent market

when they are removed. The table includes the results in the baseline equilibrium as

well as several counterfactual scenarios. These scenarios involve the economy without

each of the three highlighted frictions and the economy operating with no frictions in

the patent market. However, before highlighting the significance of each type of friction,

it is essential to establish the patent market’s importance to the economy. Accordingly, I

obtain the patent market’s economic impact by comparing the economy with the patent

market to the one without.
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When the patent market is shut down in the model, the long-run productivity

growth rate decreases to 1.09%,30 indicating that the patent market accounts for 5% of

the Chinese productivity growth attributed to patents.31 The patent market improves

productivity growth due to two reasons. Firstly, it serves as a platform to optimize the

utilization of dormant patents. By facilitating the transfer of patent ownership from the

inventor to a more suitable buyer, it enhances the allocative efficiency of patents. Sec-

ondly, the patent market may incentivize firms to engage in greater innovation. This

is because it offers a platform for firms to sell their patents when the patent holds little

value and thus raises the returns to R&D activities. As Table 6 shows, the magnitude

of the second channel is quantitatively small. The average R&D intensity in the econ-

omy without the patent market merely decreases by 0.28% compared with that in the

baseline economy, as similarly found in Akcigit et al. (2016). The slight decline is due

to the offsetting effects of the patent market on innovation: the patent market encour-

ages firms’ innovation by increasing the patent’s value as aforementioned; however, the

patent market also offers firms a substitute for self-innovation through purchasing a

patent from the market, which mitigates firms’ R&D efforts.

Table 6: Counterfactual Exercises: Elimination of Frictions

Aggregate
TFP
growth

Average
R&D
intensity

Average
meeting
rate for
buyers

Share
of high-
quality
patents
in market

Share of
traded
patents

Welfare

(1) Baseline 1.15% 0.11 0.30% 45.59% 4.53% 100.00

(2) No patent market 1.09% 0.11 0.00% -- 0.00% 99.43
(-4.98%) (-0.28%) (-100.00%) (--) (-100%) (-0.57%)

(3) No search costs 1.65% 0.12 3.19% 0.39 51.20% 104.18
(43.50%) (5.05%) (957.05%) (-13.79%) (1031%) (4.18%)

(4) No fixed transaction costs 1.25% 0.12 0.64% 0.39 15.62% 100.98
(8.98%) (2.56%) (113.19%) (-15.19%) (245.03%) (0.98%)

(5) No information asymmetry 1.15% 0.11 0.31% 0.58 4.55% 100.02
(0.13%) (-0.11%) (2.89%) (26.61%) (0.52%) (0.02%)

(6) Frictionless patent market 1.65% 0.13 3.16% 0.40 67.17% 104.64
(43.57%) (10.86%) (947.15%) (-12.26%) (1383.88%) (4.64%)

Note: The bracket represents the percent change relative to the baseline scenario.

30See footnote 29 for the discussion on the level of productivity growth rates in the model.
31In Section 5.1.2, I estimate all these three friction parameters to target the moments in the US patent

market. I find that the US patent market can explain 13% of its productivity growth.
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I then separately remove each type of friction one at a time. By eliminating the

search friction in the model, captured by setting the constant in search costs η to 0, the

fraction of traded patents in China can reach 51.2%. This removal of search friction leads

to a significant increase in the productivity growth rate by 43.5% and an overall welfare

increase by 4.18%.

The impact of fixed transaction costs is more nuanced, as it operates through two

contrasting forces. Firstly, the reduction in fixed transaction costs stimulates an increase

in the number of patents available in the market and consequently raises the fraction

of traded patents. However, on the other hand, this reduction in fixed transaction costs

alters the quality composition of patents within the market. The influx of low-quality

patents aggravates information barriers and diminishes the overall contribution of the

patent market to the economy. In the aggregate, without fixed transaction costs in the

patent market (F = 0), the fraction of traded patents increases to 16%, the productivity

growth rate increases by 9%, and the welfare increases by 0.98%.

Finally, I remove information asymmetry on patent quality (s = 0), so the true

quality of all patents becomes common knowledge. Thus, every high-quality patent

can obtain a high price it deserves in every transaction. However, Table 6 shows that

the effect of removing this friction is almost negligible. The productivity growth rate

even decreases by 0.13%, and there is almost no welfare change. This is because while

promoting the sale of high-quality patents, the reduction in information asymmetry

simultaneously discourages the sale of low-quality patents due to their inability to be

pooled with high-quality patents in the market.32 Nonetheless, trading both low-quality

and high-quality patents between firms can mitigate the mismatch between the patent

and its inventor. Therefore, the opposite effects on high-quality and low-quality patents

offset each other, leading to a negligible aggregate effect.

In the last row of Table 6, I remove all frictions in this market. In the economy with a

frictionless patent market, the aggregate productivity growth rate increases by 44% (0.5

percentage points), and welfare increases by 4.6%. This result suggests a large potential

for the patent market in promoting China’s economic growth.33

32It is worth noting that the trading of patents must overcome fixed transaction costs, which dispro-
portionately affect low-quality patents compared to high-quality ones. Consequently, when low-quality
patents are sold individually in the market rather than being pooled with high-quality patents, their like-
lihood of being traded is lower.

33Given the large impact of search costs on the patent market size, Appendix E discusses the heteroge-
neous impact of varying search costs on two types of firms, namely high- and low-capacity firms.
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5.1.2 Aligning Frictions with the Level of a Developed Country

The previous findings indicate that both search costs and fixed transaction costs

play significant roles in hindering the development of the Chinese patent market. How-

ever, it may be overly optimistic to propose eliminating all frictions within the market,

as certain frictions may serve a necessary purpose. Instead, a more practical approach

would be to align the frictions in the Chinese patent market with those observed in a

developed country, such as the US patent market. With this in mind, I first estimate the

level of frictions present in the US patent market. Subsequently, I consider adjusting all

frictions within the Chinese patent market to match the observed level in the US.

To estimate the magnitude of each friction in the US patent market, I first assem-

ble a dataset using the US patent transaction data merged with the 2001–2013 panel

data of listed firms. Then, holding all other parameters in Table 3 unchanged, I adjust

the parameters related to patent market—costs of search η, fixed transaction costs F ,

and information friction on patent quality s—to target the data moments on the patent

market from the US using the SMM.

According to the estimation results in Table 7, search costs and fixed transaction

costs in the US are respectively 87% and 6% lower than their counterparts in China. The

probability of a buyer not knowing the true patent type is 42 percentage points lower

in the US than in China. By separately adjusting China’s search costs, fixed transac-

tion costs, and information asymmetry to the US levels, the fraction of traded patents

in China can increase from 4.5% to 17%, 4.7%, and 4.55%, respectively. Hence, while

the elimination of search costs and fixed transaction costs both have the potential to

stimulate the growth of the Chinese patent market, search costs play a more prominent

role in explaining the substantial disparity in the proportion of traded patents between

China and the US, compared to other frictions. As demonstrated in Table 7, reducing

search costs to the US levels can also lead to greater welfare improvements compared

to changing fixed transaction costs and information asymmetry to the US levels.

5.2 Additional Factors Influencing the Impact of Existing Frictions

In this subsection, I expand the baseline model by incorporating additional factors

that may affect the patent market and analyzing the robustness of my baseline results

in these model extensions.
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Table 7: Matching the Moments in the US Patent Market

Panel A: Parameter Values

Notation Description Value Standard error

η Costs of search 2.84 0.01
F Fixed transaction cost 0.11 0.00
s Information asymmetry on patent quality 0.01 0.01

Panel B: Targeted Moments Regarding the Patent Market

Description Data Model

Fraction of traded patents 0.15 0.17
Average number of patents purchased by large firms (rel. to small firms) 3.50 3.66
Fraction of traded patents among high-quality patents (rel. to low-quality patents) 1.37 1.23

Panel C: Changing China’s Frictions to the US Level

Scenario Share of traded patents Welfare

(1) Baseline 4.5% 100
(2) Changing China’s search costs to the US level 17.0% 101.37
(3) Changing China’s fixed transaction costs to the US level 4.7% 100.09
(4) Changing China’s share of patents not revealing true type to the US level 4.5% 100.02
(5) Changing all frictions to the US level 18.4% 101.46

5.2.1 Patent Quality

One alternative explanation for the underdevelopment of the Chinese patent mar-

ket is the low quality of Chinese patents (Liang, 2012; Prud’homme and Zhang, 2017).

In recent years, China has made great progress in technological levels, and Chinese

researchers have become preeminent contributors to the scientific enterprise. Although

the importance of Chinese research is still discounted (Xie and Freeman, 2020; Qiu et al.,

2021), the citations of publications from Chinese researchers have been growing rapidly.

These pieces of evidence suggest the increase in China’s patent quality in recent years.

However, Figure 1 shows that the gap in the patent market size between China and the

US has remained persistently large over time, indicating that patent quality cannot fully

explain the underdevelopment of the Chinese patent market. Nevertheless, I will now

use my model to quantitatively understand the impact of lower patent quality.

In light of different possible reasons for low patent quality in China, I perform two

robustness checks. First, I consider that the average level of patent quality is worse in

China than in the US, thus lowering the gains from trading the patents in China. Second,

I consider that a large portion of China’s patents may be junk patents and useless in both

production and patent transactions.
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The Average Level of Patent Quality. To measure patent quality and evaluate the ex-

tent of China’s low-quality patents, it is necessary to establish a benchmark. Therefore, I

utilize US patents as the benchmark for comparison. To estimate the patent quality gap

between China and the US, I employ three estimation methods: comparing the forward

citation number of dual-listed patents, utilizing disparities in stock market returns of

patents, and assuming a significant gap between the two countries.

The conventional method of measuring patent quality relies on the patent’s for-

ward citation number (Hall et al., 2001). However, comparing patent quality between

the US and China directly based on citations is challenging because institutional factors

may generate country-specific citation patterns that do not directly reflect quality. To

address this, I leverage dual-listed patents, which are registered with both the Chinese

and US patent offices, as a means to control for country-specific factors. To be specific,

by using Chinese dual-listed patents as a bridge, I first compare the citation counts of

Chinese patents registered in the US with those of patents registered in the US. Secondly,

I compare the citation counts of Chinese patents registered in the US with those of Chi-

nese patents registered in China. Lastly, I use the results from the previous two steps to

adjust the citation counts received by Chinese patents registered in China, enabling me

to obtain a relative quality index compared to US patents registered in the US. The same

rationale applies when utilizing US dual-listed patents as a bridge. The results show

that the quality of US patents is 10.2% higher than that of Chinese patents. For a more

detailed explanation of the estimation process, please refer to the Appendix F.

In addition to the citation-based measurement of the patent quality gap, a market

value-based measure is proposed by Kogan et al. (2017) by analyzing stock market reac-

tions to patent-related news. This method is utilized by Yang and Wu (2020) to estimate

the market value-based quality of Chinese patents using data from Chinese listed firms

from 1992 to 2020. The average estimated value of US patents, measured by the antic-

ipated stock market return relative to the firm’s market capitalization, is 0.32 (Kogan

et al., 2017). On the other hand, the average estimated value for Chinese patents is 0.27

(Yang and Wu, 2020). Thus, the market value-based quality of US patents is found to be

18.5% higher than that of Chinese patents.

Based on these two estimates of the patent quality gap between China and the US,

I increase the value of Chinese patent quality parameters (both γh and γl) in the model

by 10.2% and 18.5% respectively, as shown in Rows (2) and (3) of Table 8. I also con-
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sider a scenario where the quality of US patents is assumed to be 50% higher than that

of Chinese patents, as indicated in Row (4) of Table 8. When comparing to the baseline

counterfactual (Row (1)), which only removes the three types of frictions in the Chinese

patent market, the share of traded patents only experiences a slight increase to 67.5%,

even when both the frictions are eliminated and the quality of Chinese patents is en-

hanced by 50%. Among the factors contributing to the expansion of the patent market,

search costs still have the largest contribution at approximately 78%. In comparison, the

contribution of increased patent quality is limited, accounting for less than 3%. This is

because the increment in patent quality, on the one hand, stimulates the incentives of

retaining patents for the inventor’s own use, and on the other hand, enhances the gains

of acquiring patents in the patent market. These two effects largely offset each other.

Table 8: Counterfactual Exercises: Patent Quality

Share of
traded
patents

Contribution
of search

costs

Contribution
of fixed

transaction
costs

Contribution
of

information
asymmetry

Contribution
of quality
increment

Aggregate
TFP growth Welfare

Panel A. Baseline counterfactual
(1) Baseline
(remove all three types frictions)

67.17% 78.19% 21.81% 0.00% – 1.65% 104.64

Panel B. Patent quality increment
(2) Quality gap estimated by dual-listed patents
(quality increase by 10.2%)

67.02% 78.61% 21.06% -0.07% 0.40% 1.88% 106.65

(3) Quality gap estimated by stock return
(quality increase by 18.5%)

67.05% 78.72% 20.36% -0.08% 1.00% 2.08% 108.30

(4) A assumed large quality gap
(quality increase by 50%)

67.50% 78.25% 18.93% 0.06% 2.76% 2.86% 114.22

Panel C. Problem of junk patent
(5) Junk patent share=10%
(junk patent share decrease to 0%)

68.03% 81.37% 15.58% -0.32% 3.36% 3.83% 117.07

(6) Junk patent share=13%
(junk patent share decrease to 0%)

77.34% 78.68% 18.96% -0.01% 2.37% 5.70% 126.17

Note: The "contribution" columns in the table show the specific factor’s contribution to the overall increment of the share
of traded patents in each respective counterfactual exercise.

Problem of Junk Patents. Another issue about China’s patent quality is the presence

of junk patents that hold zero value in the patent market. To study this quantitatively,

I introduce junk patents into the benchmark model (a portion of invented patents are

junk patents), and junk patents have a quality level (γ) of 0. In contrast to the US, firms

in China are incentivized to produce junk patents due to the rewards associated with

patent grants. As a result, I assume that there are no junk patents in the US.

I calibrate the proportion of Chinese patents that are junk patents in two ways.

Firstly, I use the relative proportion of patents that receive no citations within five years
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of being filed in China, compared to the US, to indicate the share of patents lacking

any value in China. For patents filed and granted by domestic firms between 1998 and

2013, 31% of patents filed in the US received zero citations, whereas 41% received zero

citations in China. This indicates that 10% of patents in China hold no value to be

learned by others and are defined as junk patents. In the second approach, I use the

renewal rate as another measure of patent quality. In the US, 100% of patents granted

to inventing firms were renewed within three years from the grant date. In contrast,

only 87% of patents granted to inventing firms in China were renewed within the same

timeframe, a rate 13% lower than that in the US.

In Panel C of Table 8, I first introduce junk patents with patent quality γ = 0, where

the share of junk patents is either 10% in Row (5) or 13% in Row (6). I then re-estimate

all the parameters in the baseline model to match the moments displayed in Table 4.

Secondly, I perform a counterfactual analysis on the Chinese patent market in which

I remove all three types of frictions while simultaneously reducing the share of junk

patents from 10% or 13% to zero. Rows (5) and (6) in the table reveal that the share

of traded patents can increase at most to 77%, which is 10 percentage points higher

than that in the baseline counterfactual scenario where there are no junk patents and I

eliminate all three types of frictions in the Chinese patent market. The primary factor

driving the expansion of the patent market remains the contribution of search costs.

5.2.2 Patent Infringement

Apart from the patent quality problem, a high rate of infringement could be an-

other factor contributing to the small patent market in China. The China Patent Survey

conducted by the Chinese patent office indicates that the infringement rate for Chinese

firms was 36% in 2010 and decreased to 19% in 2013.34 The study by Zhang (2022) fo-

cuses on the analysis of 377 litigated patents and estimates that the patent infringement

hazard in China is 40%. This finding aligns with the research by Molnar and Xu (2019),

which states that larger firms (with more than 1000 employees) are more likely to face

infringement issues, with an infringement rate of around 40% in both modern and tra-

ditional manufacturing sectors, compared to 19% for small firms.

Owing to the high infringement rate reported in previous surveys and literature in

34The data is from China Patent Survey Report 2015, which can be accessed in https://www.cnipa.
gov.cn/art/2016/7/1/art_88_40230.html.
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China, I incorporate a patent infringement probability into the baseline model. Specif-

ically, whenever potential buyers and patent agents meet, there is a probability ψ that

potential buyers can successfully and surreptitiously steal the patent without purchas-

ing it. I calibrate ψ based on the infringement rates estimated by the prior research,

testing values of 19%, 36%, and 40%. Under each value, I then re-estimate all parame-

ters listed in Table 3 to correspond with the data moments presented in Table 4. Lastly,

I perform counterfactual analyses in which I eliminate all three types of frictions in the

Chinese patent market while simultaneously reducing the infringement probability ψ

from 19%, 36%, and 40% to zero, respectively.

Table 9: Counterfactual Exercises: Patent Infringement

Share of
traded
patents

Contribution
of search

costs

Contribution
of fixed

transaction
costs

Contribution
of informa-

tion
asymme-

try

Contribution
of zero in-
fringement

Aggregate
TFP

growth

Welfare

(1) Baseline counterfactual 67.17% 78.19% 21.81% 0.00% – 1.65% 104.64
(2) Infringement rate = 19% 80.77% 79.19% 8.33% 0.02% 12.45% 3.05% 112.24
(3) Infringement rate = 36% 80.07% 73.65% 8.19% -0.03% 18.19% 2.53% 110.51
(4) Infringement rate = 40% 79.71% 73.91% 6.92% -0.02% 19.18% 2.71% 111.53

Note: Row (1) presents the counterfactual exercise where, in the baseline model without patent infringement, all three
types of frictions are removed. The columns remain the same as those in Table 8. Rows (2) to (4) extend the baseline model
by introducing patent infringement rates of 19%, 36%, and 40% respectively. I then re-estimate all parameters listed in
Table 3 to align with the data moments provided in Table 4. Row (2) illustrates the counterfactual scenario where, in an
economy with a 19% patent infringement rate, I eliminate all three types of frictions as well as the patent infringement
itself. Similarly, Rows (3) and (4) depict the conditions under patent infringement rates of 36% and 40% respectively.

Table 9 reports the results. It shows that in a patent market where patent infringe-

ment is a possibility, eliminating all three types of frictions along with patent infringe-

ment can increase the share of traded patents from 4.5% to approximately 80%. This

is a 13-percentage-point improvement compared to the counterfactual exercises where

only the three types of frictions were eliminated based on the baseline model. Proper

intellectual property protection that guarantees zero patent infringement can play a sig-

nificant role in expanding the size of the patent market, as shown in Table 9 where the

contribution of zero infringement ranges from 12.45% to 19.18%. However, the impact

of patent infringement on the share of traded patents occurs through complex channels.

On one hand, a higher infringement rate reduces the expected benefits for innovators in

the patent market, leading to a higher inclination for innovators to retain their patents

rather than trading them. This decreases the share of traded patents. On the other hand,

a higher probability of acquiring technology without cost during a meeting can increase

the expected value of search for potential buyers in the patent market, resulting in an
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overall increase in the meeting rate. However, as indicated by the results in Table 9, the

former channel outweighs the latter. Nevertheless, search costs still make the largest

contribution, accounting for 74% to 79% of the increase in the patent market size.

5.2.3 Additional Robustness Checks

Apart from considering low patent quality and patent infringement, I conduct two

additional robustness checks in this subsection.

Firstly, in the baseline model, I calibrate 1 − α = 0.5 according to labor share. As

my model does not consider capital, this value implies that the share of payments for

intangible assets in total production costs is 0.5, higher than the value used in the liter-

ature (e.g., Holmes et al., 2015). As a robustness check, I calibrate 1 − α to labor share

plus capital share (equivalent to treating labor as equipped labor), which implies that

1 − α = 0.85 (Akcigit et al., 2016). I then re-estimate the baseline model. Table 10 indi-

cates that when calibrating α to 0.15, eliminating three types of frictions would increase

the share of traded patents from 4.5% to 67.5%, which closely aligns with the baseline re-

sults. Additionally, the relative contributions of the three types of frictions to the larger

market size remain almost unchanged.

Secondly, in the previous subsection, I have already introduced the patent infringe-

ment rate as a means to address concerns about the small market size in China being

linked to poor IPR protection. However, the patent infringement rate, as a proxy for

IPR protection, may not fully capture the level of IPR protection. Therefore, to further

investigate this issue, I also examine the fraction of traded patents among dual-listed

patents. Theoretically, these dual-listed patents are protected in both China and the US.

Among the dual-listed patents applied for and granted between 1998 and 2013, I find

that 3.5% of Chinese-invented dual-listed patents were sold to other domestic firms in

the Chinese patent market during this period. In comparison, 13.9% of US-invented

dual-listed patents were sold to other domestic firms in the US patent market during

the same period. This 10.4-percentage-point gap aligns with the 10.1-percentage-point

gap in patent market size between China and the US, as observed in the descriptive

facts. This additional piece of evidence also suggests that poor IPR protection cannot

fully explain the gap in the patent market size between China and the US.
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Table 10: Counterfactual Exercise: the Change of Labor Share

Share of
traded patents

Contribution
of search costs

Contribution
of fixed

transaction
costs

Contribution
of information

asymmetry

Aggregate
TFP growth

Welfare

(1) Baseline counterfactual 67.17% 78.19% 21.81% 0.00% 1.65% 104.64
(2) α = 0.15 67.53% 78.09% 22.25% -0.35% 3.40% 103.18

5.3 Directed Search

The baseline model is a random search model, where the patent and the potential

buyer meet randomly. I now consider an alternative scenario where the potential buyer

can always meet with the patent it needs most, indicating the patent-buyer similarity al-

ways equals 1. In Table 11, I compare the following situations with the baseline model:

directed search with China’s search costs, random search with US-level search costs,

and directed search with US-level search costs. I find that changing random search to

directed search largely increases productivity growth, as patent buyers can now obtain

the most suitable patents. If these two adjustments of search costs (from China’s level to

the US level) and the search mode (from random to directed search) happen simultane-

ously, the welfare can increase by 4.7%, and the productivity growth rate will increase

by 49% (0.56 percentage points).

Table 11: Counterfactual Exercises: Search Mode and Search Costs

Aggregate

TFP

growth

Average

R&D

intensity

Average

meeting

rate for

buyers

Share of

high-quality

patents in

market

Share of

traded

patents

Welfare

Baseline model 1.15% 0.113 0.30% 45.59% 4.53% 100.00

Directed search 1.40% 0.116 0.56% 39.59% 19.78% 102.25

China-level search costs (21.64%) (2.11%) (85.86%) (-13.16%) (336.88%) (2.25%)

Random search 1.31% 0.11 1.11% 40.72% 18.40% 101.46

US-level search costs (13.93%) (1.27%) (267.04%) (-10.69%) (306.56%) (1.46%)

Directed search 1.71% 0.12 1.00% 41.72% 49.81% 104.72

US-level search costs (48.8%) (6.25%) (230.75%) (-8.5%) (1000.36%) (4.72%)

Note: The bracket represents the percent change relative to the baseline scenario.
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5.4 Policy Experiment

I perform two policy experiments to understand how the government can improve

the efficiency of the patent market. First, I consider the size-independent R&D subsidy

financed by a lump-sum tax paid by firms. A higher R&D subsidy would lead to a

higher growth rate because of more innovation, but may also trigger lower consumption

in every period because of more innovation costs. As shown in the left-hand panel of

Figure 8, compared with the baseline model, with a 60% R&D subsidy, the productivity

growth rate will increase by 0.4 percentage points, and the welfare will increase by 1.5%.

However, R&D subsidy has a slightly negative impact on the fraction of traded patents,

as it leads to an increase in the supply of patents in the patent market.

Figure 8: R&D Subsidy

Another policy instrument is subsidizing the firms that search in the patent market.

The search subsidy will decrease search costs and increase firms’ search intensity in the

patent market. As the possibility of successfully selling the patent increases in the patent

market, this will also incentivate in-house innovation. Therefore, firms will devote more

resources to innovation. As shown in Figure 9, the optimal subsidy rate of search costs

is 0.9, which means the government covers 90% of the search costs of firms. This leads

to a 0.9% increase in welfare and a 0.17-percentage-point increase in the productivity

growth rate, compared with the baseline results. Under the optimal subsidies to search

costs, the fraction of traded patents will increase from 4.5% to 20%.
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Figure 9: Subsidies to Search Costs

6 Conclusion

This paper studies the frictions prevailing in the Chinese patent market. Using

information on all Chinese patent transactions, I document that in China, only 4.5% of

domestic patents were traded, whereas in the US, this share was 14.6%. I also document

that the gap in the fraction of traded patents between the US and China was much larger

among high-quality patents than among low-quality patents. To understand these facts

and perform a quantitative analysis, I develop an endogenous growth model featuring

firms’ patent production and transactions. I model three types of frictions in the patent

market—search costs, fixed transaction costs, and information asymmetry on patent

quality. By targeting relevant data moments using the SMM, I estimate the magnitude

of these three frictions in the Chinese patent market as well as in the US patent market.

My findings indicate that both reductions in search costs and fixed transaction costs can

contribute to the expansion of the patent market in China. However, the primary factor

causing the significant disparity in the size of the patent market between China and the

US is the high search costs within the Chinese patent market.

There are many promising avenues for future research. For instance, this paper

manifests that the search friction is the primary factor that impedes patent transactions
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in China. By obtaining additional data on meetings between patent buyers and sell-

ers, we can gain insights into the underlying factors causing search frictions, ultimately

enhancing our understanding of policy tools that can effectively reduce search frictions.
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A Data Details

A.1 Chinese Patent Transaction Data

Structure of Patent Transaction Data Within the CNIPA database, each filed patent

contains detailed information on reassignments, including the date of patent right trans-

fer and the names of buyers (assignors) and sellers (assignees). To facilitate research, I

have constructed a patent-assignor-assignee-transaction date panel using the original

data. This panel contains 284,639 observations, where each observation in this panel

represents a specific patent transaction between a particular assignor and assignee.

Patent Assignor’s and Assignee’s Type The original CNIPA patent transaction database

lacks crucial information on the types of buyers (assignees) and sellers (assignors) in

patent trading. To identify this information, I utilized extra data, including the CNIPA

patent basic information database, which records the type of all patent applicants, namely

firms (C), individuals (P), government (G), research institutions (R), university (U), and

others (N). By merging this data with the buyers and sellers in the patent transaction

dataset, I was able to identify the types of buyers and sellers who had previously been

patent applicants. Additionally, I used the Chinese Firm Registration Database (SAIC),

which contains information on all firms registered in China before 2016, to identify all

Chinese firms. For the rest of unidentifiable assignors and assignees, I used linguistic

information. Based on the book of family names in China, I define assignors (assignees)

with two to three characters beginning with a common Chinese family name as individ-

uals. Furthermore, the Chinese name of a Japanese firm contains the phrase "株式会"

(Zhūshìhuì), meaning "corporate" in Japanese. Using this feature, I could easily identify

Japanese firms. Figure A1 below displays the type structure on both the assignor and

assignee side.

Shareholding Relationships In the case of a large corporate group, different sub-

sidiaries may have different functions; some may focus on research and development

while others may primarily engage in production. Subsidiaries may produce distinctive

goods, but complementary technologies are used in their production. In such scenarios,

technology may be transferred or allocated within the corporate group. However, this

behavior is not covered in this paper. I utilize two steps to exclude such transactions.
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Table A1: Types of Assignor and Assignee in Patent Transactions

Assignor Assignee

Num Share Num Share

Firm 214,115 75.22% 274,034 96.27%
Individual 53,876 18.93% 7,858 2.76%
University & research institute 14,168 4.98% 1,668 0.59%
Government 687 0.24% 290 0.10%
Others 1,793 0.63% 789 0.28%
Total 284,639 100% 284,639 100%

Note: The column labeled "num" in the dataset indicates the count of assignor-assignee-patent transactions in which the
assignor or assignee belongs to a specific type1. This column provides valuable information about the frequency of trans-
actions involving specific types of assignors or assignees.

Firstly, the SAIC database contains the shareholder information of Chinese regis-

tered firms in 2016.35 This allows me to easily identify the shareholding relationships

between the assignor and assignee in each transaction record. According to the defini-

tion mentioned earlier, if firm A is a shareholder of firm B, or if firm B is a shareholder of

firm A, or if both A and B are subsidiaries of firm C, then the patent transaction between

firm A and B is not included in my sample.

Secondly, the first step may not uncover certain relationships between two firms

due to factors such as name changes, name mismatches, or changes in shareholding

after registration.36 To address this limitation, I standardize firms’ name and employ

text analysis techniques to assess the similarity between the names of the assignor and

assignee.37 I exclude transactions where the assignee and assignor’s names are highly

similar, as these are likely to be transactions between related firms.

A.2 The US Patent Transaction Data

Structure of Patent Transaction Data The primary difference between the US and Chi-

nese patent transaction databases lies in the structure of the original data. As previously

mentioned, in the Chinese dataset, the record is based on the patent level, whereas the

35SAIC includes all firms that existed and were registered in China before 2016.
36For example, in SAIC database, there is no relationship between易能乾元（北京）电力科技有限公

司(Yinengqianyuan(beijing)) and易能（中国）电力科技有限公司(Yineng(zhongguo)) when they estab-
lished, but the latter began to be an investor in the former in 2012.

37The standardization of firms’ names involves removing province/city names and normalizing the
names of limited liability companies, firms, factories, etc. To assess the similarity between firms’ names,
I utilize the Levenshtein distance and the Jaro–Winkler distance.
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US reassignment database is independent of the USPTO registered patent data and is

based on every transaction event. The original US reassignment dataset contains records

of 17,930,924 patent transactions that occurred prior to 2018. Marco et al. (2015) provides

a comprehensive introduction to the US patent reassignment database, which includes

various conveyance types such as assignment, employer assignment, change of name,

security agreement, and more.38 To meet the requirements of this paper, I only con-

sider transactions where the conveyance type is assignment. Moreover, similar to the

Chinese data, I only include transactions where the transacted patents were applied for

and granted between 1998 and 2013, and the transaction year falls within this period.

Patent Assignor’s and Assignee’s Type Similar to the Chinese patent transaction dataset,

the US reassignment database also lacks information on the assignee’s and assignor’s

type. To determine their type, I first utilize the NBER patent applicant’s type identifica-

tion method.39 Additionally, I merge the US reassignment database with the Patentview

database, which contains the applicant’s type for all patents registered in the USPTO.40

Furthermore, the location information of the assignee can be used to identify their na-

tionality.

A.3 Rule for Name Matching

In this paper, I combine the CNIPA patent basic information and transaction dataset

with the NBS database to analyze the Chinese data. To ensure accurate name matching,

I implement a name matching method that involves standardizing firms’ names. The

specific steps for standardization are as follows:41

• Step 1: I standardize the firm’s name by making the following adjustments: (1)

38The conveyances are classified into 7 types: assignment, employer assignment, change of name, secu-
rity agreement, government interest agreement, merger, release, and correction. The specific definitions
of these types can be found in Marco et al. (2015). Only the assignment type of conveyance is associated
with firm-to-firm patent transfer and not correlated with M&A, which is essential for the purpose of this
paper.

39The code for this method can be found at this link: https://sites.google.com/site/
patentdataproject/Home/posts/namestandardizationroutinesuploaded.

40In the Patentview database, applicants are categorized into six types: US Company or Corporation,
Foreign Company or Corporation, US Government, Foreign Government, US Individual, and Foreign
Individual.

41I would like to express my gratitude to Doctor Xin Wang from CUHK for generously sharing his name
matching code with me. I have adopted and learned most of the name adjustment and standardization
methods from him.
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I replace "gu fen you xian gong zi" and "you xian ze ren gong si" with "you xian

gong si" in the firm’s name; (2) I replace "chang you xian gong si" and "chang qi

ye" with "chang" in the firm’s name; (3) I remove terms such as "dai qing li," "ge

zhuan qi," "si ying zhuan he huo," and so on from the firm’s name.

• Step 2: I convert all uppercase letters to lowercase and transform full-width char-

acters into half-width characters.

• Step 3: I remove various special symbols from the data, such as, "*",">","《》", etc.

For the US data, I merge the Patentview database, which contains basic information

on US patents, with the USPTO patent reassignment data. The name matching method

used is similar to the one described above, following the name standardization rule

provided by the NBER patent database.42

A.4 Technology Field

In this paper, I mainly use IPC technology field classification, which was estab-

lished by the Strasbourg Agreement in 1971, and offers a hierarchical system of language-

independent symbols for patent and utility model classification based on their respec-

tive areas of technology. Up to now, the IPC classification has undergone eight ver-

sions of revisions. This paper primarily utilizes 3-digit level IPC codes, and significant

changes have not occurred at this level from version 1 to 8.

The IPC code in the CNIPA is original, which is published in a patent publication

document. Thus, for the patents in the CNIPA database, their IPC codes may come from

different IPC versions. However, in this paper, I do not make any concordance when I

use IPC classification because in the 3-digit level IPC code, there exists no large changes

from version 1 to 8. The following shows the changed classes from version 1 to 8:43

• IPC1→IPC2: A01,A21-A24(d); B44 (r); C25 (+); E21(+).

• IPC2→IPC3: B09(+); B26(r); C02(r); C12(r); C30(+); E21(r); F16(r); G09(+).
42https://sites.google.com/site/patentdataproject/Home/posts/

namestandardizationroutinesuploaded.
43In items below,(d) means this class is re-divided and a new definition is given; (r) means the definition

of this class changes, including adding some frontier concepts in this class; (+) means this class is newly
added; (-) means this class is deleted in the new version.
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• IPC3→IPC4: B25(r); B29(r); C23(r); G03(r).

• IPC4→IPC5: B67(r); B03(r); F25(r).

• IPC5→IPC6: B09(r).

• IPC6→IPC7: B81(+).

• IPC7→IPC8(2006.1): A21(r); A99(+); B99(+); C40(+); C99(+); D99(+); E99(+); F03(r);

F99(+); G99(+); H99(+).

• IPC8(2006.1)→IPC8(2008.4): no changes.

• IPC8(2008.4)→IPC8(2009.1): A61-A63,A99(r).

• IPC8(2009.1)→IPC8(2010.1): A47(r).

• IPC8(20010.1)→IPC8(2014): no changes.

• IPC8(2014)→IPC8(2015): B31(r); B31(+).

• IPC8(2015)→IPC8(2016): no changes.

B Patent Market Patterns

B.1 Background: Basic Statistics of Chinese Technology Market

Detailed official data on Chinese patent transactions is scarce. One of the few

sources that provides aggregate-level descriptions and statistics for the Chinese tech-

nology market is the Annual Reports on Statistics of China Technology Market from

2003 to 2019. These reports can assist us in acquiring a more comprehensive under-

standing of technology trading in China at the aggregate level. However, it is important

to note that the technology market encompasses a broader definition that includes tech-

nology services, development, consulting, and transfer. Patent transactions, specifically,

represent a subset of technology transfer activities.

The Following figures provide data on the share of four types of technology con-

tract amounts and the participation of four types of technology market players in China.

The data used in these figures is just sourced from Annual Reports on Statistics of China
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technology market spanning from 2003 to 2019. As previously mentioned, the tech-

nology market encompasses technology services, development, consulting, and trans-

fer contracts. Figure B1 demonstrates that technology service contracts constitute the

largest share, while technology transfer contracts accounted for 10%-20% of the Chi-

nese technology market from 2002 to 2018. Figure B2 displays the participant structures

from the perspective of buyers and sellers. It reveals that firms are the dominant play-

ers in the patent market, representing approximately 80% of both buyers and sellers in

most years.

Figure B1: Shares of the Four Types of
Technology Contract Amount

Figure B2: Shares of the Three Types of
Technology Market Participants

B.2 Patent-firm Similarity

B.2.1 Constructing Distribution of Patent-firm Similarity

In line with Akcigit et al. (2016), I construct the measurement of the patent-firm

similarity in two steps. First, I define the distance between technology fields as below:

D(X, Y ) = 1− Num(X ∩ Y )

Num(X ∪ Y )
(35)

where D(X, Y ) is the distance between technology fields X and Y ;44 Num(X ∩ Y ) is

the number of patents that cite the patent in technology fields X and Y simultaneously;

and Num(X ∪ Y ) is the number of patents that cite the patent in technology field X

and/or Y .45 Second, based on the distance between technology fields, I then calculate

the d(p, f), the patent-firm-specific distance between patent p and firm f . In equation

44Here, I use the 3-digit IPC code to define the technology field that the patent belongs to.
45In an extreme case where all the patents that cite the patent in technology field X will cite the patent

in technology field Y as well, and vice versa, the distance between technology fields X and Y is zero.
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(36), Pf represents the patent package of firm f , and D(Xp, Yp′) indicates the distance

between patent p’s field and patent p′’s field.46 Both of patent p and patent p′ are in Pf .

On the basis of the distance, 1 − d(p, f) indicates the similarity between patent p and

firm f .

d(p, f) =

 1

||Pf ||
∑
p′∈Pf

D(Xp, Yp′)
ι

 1
ι

, ι =
2

3
(36)

Obviously, this definition will cause the new-born patent, whose inventing firm

locates on diversified technology fields, to have a lower patent-firm similarity. And

diversified firms are found to be prevalent in emerging market economies like China, for

reasons such as government expropriation (Du et al., 2015). To deal with this concern, to

begin with, I count the technology field concentration of Chinese and US firms through

the lens of the number of technology fields that the firm’s patents locate on. It is the

firm’s knowledge scope. In the US, the average firms’ knowledge scope is 1.75, which

is close to 1.66 in China.47 Then, I calculate the distribution of the patent-firm similarity

for each knowledge scope in the US and obtain a weighted-average distribution across

knowledge scopes based on the distribution of Chinese firms’ knowledge scopes. The

comparison of unweighted distributions is illustrated in panel Figure B3 (a). As the

US firms’ average knowledge scope is slightly larger, the difference in the weighted

distribution of the patent–firm similarity between these two countries is much smaller.

B.2.2 Additional Results

The purpose of the patent market is to reconcile the mismatch between the patent

and its initial inventor. Figure B3 (a) depicts the distribution of similarity between

patents and their initial inventors, as calculated by the raw data from China and the

US. However, differences in the similarity distribution between China and the US could

be influenced by the disparity in the IPC distance matrix D(X, Y ) between the two

countries, as per the definition of patent-firm similarity presented in Equation (36). To
46Citation practices vary depending on the country, for example, citation is voluntary in China, but it

is mandatory in the US. Thus, apart from the knowledge scope difference, the technology field distance
matrix D(X,Y ) will also differ in the US and China. The Pearson correlation coefficient of D(X,Y )
between the US and China is 0.68. To ensure comparability of the similarity distribution, I useDUS(X,Y )
in both countries to calculate the patent-firm distance and similarity. I also use the Chinese distance
matrix to calculate the patent-firm distance in both countries, with a result that is nearly similar to that
shown in Figure B3 (b) in Appendix B.2.2.

47Here I consider the firms that had invented patents from 1998 to 2013. The 99% percentile of knowl-
edge scope is 11 in the US, which is 9 in China, respectively.
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address this, Figure (b) below compares the patent-inventor similarity distribution be-

tween China and the US, where the Chinese IPC distance matrix D(X, Y ) is replaced

with that of the US during the calculation of Chinese patent-inventor similarity. No-

tably, there is minimal disparity observed between sub-figure (a) and (b) in Figure B3,

indicating that using a different distance matrix has a negligible impact on the results.

(a) No Adjustment (b) Adjusted by the US Matrix

Figure B3: Empirical Patent-inventor Similarity Distribution

Note: (1) Samples of patents are patents filed and granted from 1998 to 2013. (2) Given that every firm’s first patent’s

similarity with the firm is absolutely zero, I drop observations of patents which are the firms’ first patent applications.

B.3 Benefits from Patents, Characteristics of Traded Patents, and Pur-

chasers

The study by Akcigit et al. (2016) uncovers a mismatch between patents and the

firms that invent them in the US. In response, the patent market aims to allocate these

mismatched patents to more suitable firms, ultimately increasing the market value for

patent buyers. This raises three key questions when considering the Chinese patent

market. Firstly, it examines how firms can benefit from patents that exhibit higher sim-

ilarities, thereby incentivizing their participation in the patent market. Secondly, it ex-

plores which patents are more likely to be sold by their inventors. Lastly, it delves into

the characteristics of patent buyers in the Chinese patent market.
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Benefits from Patents To address the first question, a regression analysis similar to

the approach used by Akcigit et al. (2016) is conducted. This analysis examines the

relationship between a firm’s revenue and its patent stock, considering both quality and

similarity. Firm and industry-year fixed effects are included in the analysis. The basic

results of this analysis are presented in Table B1. In this analysis, the firm’s revenue

is measured using the logarithm of sales or value-added. The firm’s patent stock is

evaluated by adjusting the logarithm of the accumulated number of patents based on

similarity and quality.48 Columns (1) to (3) gradually introduce controls for the firm’s

labor, capital, and age.49 These controls are based on NBS firm-level data from 2001 to

2013. In column (2), capital is included to account for the complementarity between a

firm’s capital and the technology it utilizes. This inclusion reduces the coefficient of the

accumulated patents adjusted for similarity and quality. To provide a robustness check,

column (4) utilizes value-added as a proxy for firms’ revenue.50 To address the issue of

firm entry and exit, column (5) restricts the samples to a balanced NBS firm-level panel

from 2001 to 2013. In columns (7) and (8), the samples are further restricted to innovative

firms that had invented patents or R&D investment from 2001 to 2013 (Inn=1), and

to patenting firms that must have invented patents during the sample period (Pat=1).

The results indicate that an increase in patent stock, particularly patents with higher

quality and similarity, is associated with higher firm revenue. Additionally, the impact

of similarity, which measures the level of matching between patents and firms, is more

or less equal in importance to patent quality in influencing firm revenue.

Is there a difference in the utilization efficiency of patents between small and large

firms? It is possible that larger firms, with their larger market share and greater ad-

vertising experience or expenditures, are better positioned to leverage new patents to

48Firstly, the accumulated number of patents adjusted by similarity (Lnpat_sim_adj), denoted as∑
p∈Pf

Similaritypf , represents the sum of similarities between firm f and each patent p in the
firm’s patent portfolio Pf . Similarly, the accumulated number of patents adjusted by quality
(Lnpat_quality_adj), denoted as

∑
p∈Pf

Qualityp, represents the sum of individual patent qualities
Qualityp in the firm’s patent portfolio. Here, p refers to a specific patent belonging to firm f , and Pf
represents the collection of patents owned by firm f . Secondly, since the patent data is merged with NBS
firm-level data, the calculation of the accumulated patent numbers begins from the year 2001. In other
words, the accumulated patent number for a given year t is the total count of patents invented by the firm
from 2001 up to year t.

49The variable "Lnlabor" indicates the logarithm of the total employment of the firm. The variable
"Lncapital" represents the logarithm of the net value of the firm’s fixed assets. The variable "Lnage"
denotes the age of the firm.

50Since the reporting of value-added is not mandatory after 2007 in the NBS database, the regression
analysis in column (4) is restricted to samples prior to 2007.
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Table B1: Firm’s Revenue, Growth, and Patent Stock

(1) (2) (3) (4) (6) (7) (8)
Unbalanced Unbalanced Unbalanced Unbalanced Balanced Inn=1 Pat=1

Lnsales Lnsales Lnsales Lnva Lnsales Lnsales Lnsales

Lnpat_sim_adj 0.0382*** 0.0222*** 0.0343*** 0.0322** 0.0528*** 0.0547*** 0.1000***
(0.0045) (0.0044) (0.0043) (0.0145) (0.0072) (0.0054) (0.0072)

Lnpat_quality_adj 0.0449*** 0.0354*** 0.0403*** 0.0196* 0.0428*** 0.0382*** 0.0191***
(0.0035) (0.0034) (0.0033) (0.0111) (0.0057) (0.0041) (0.0058)

Lnlabor 0.3537*** 0.3227*** 0.3051*** 0.4744*** 0.2893*** 0.3365*** 0.2223***
(0.0008) (0.0008) (0.0008) (0.0016) (0.0018) (0.0015) (0.0029)

Lncapital 0.1247*** 0.1174*** 0.1091*** 0.1887*** 0.1818*** 0.1212***
(0.0004) (0.0004) (0.0009) (0.0012) (0.0010) (0.0017)

Lnage 0.0978***
(0.0010)

Firm FE Yes Yes Yes Yes Yes Yes Yes
Ind-year FE Yes Yes Yes Yes Yes Yes Yes

Obs 2486713 2466114 2391081 1552700 309480 512497 124130
R square 0.8966 0.9019 0.9092 0.8498 0.8971 0.9156 0.9464

Note: (1) "Firm FE" denotes the firm fixed effect, while "Ind-year FE" indicates the industry-year fixed effect. (2) Stan-
dard errors are in parentheses. *** denotes significance at the 1% level; ** denotes significance at the 5% level; * denotes
significance at the 10% level.

promote new products, resulting in a higher surplus of patents in these firms (Arko-

lakis, 2010). To explore this further, I examine the heterogeneous impact of patents on

firms’ revenue and growth rate, which are known to be correlated with firm size. The

results, shown in B2, demonstrate that after controlling for firm and industry-year fixed

effects and considering firms with the same patent value, an additional accumulated

patent in a large firm has a larger positive effect on revenue than in a small firm.
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Table B2: Sales, Patent Stock, and Firm Size

(1) (2) (3) (4)

Lnsales Lnsales Lnsales Lnva

Lnacmpat 0.0392*** 0.0292*** 0.0550*** 0.0347**

(0.0041) (0.0082) (0.0060) (0.0169)

Large_dy 0.3675*** 0.5056*** 0.4907*** 0.2067***

(0.0013) (0.0032) (0.0048) (0.0023)

Lnacmpat*Large_dy 0.0199*** 0.0345*** 0.0177*** 0.0439***

(0.0038) (0.0080) (0.0057) (0.0144)

Firm FE Yes Yes Yes Yes

Ind-year FE Yes Yes Yes Yes

Obs 1764073 275513 120749 1067736

R square 0.9209 0.9073 0.9272 0.8692

Note: (1) To measure the revenue of firm i in year t, I utilize salesit from columns (1) to (3), as well as value_addedit
from column (4). (2) The variable Ln(acmpati,2001,t) represents the accumulated number of patents acquired by firm i

from 2001 to year t. (3) In order to define a firm i as large firm in year t, I compare its sales to the average sales within the

industry in the previous year (year t − 1). The dummy variable Large_dyit equals one if the firm meets the criteria for

being a large firm based on its sales in year t − 1. (4) All regressions in the table control for the average value of patents

up to year t, which are constructed by combining patent quality and similarity. Additionally, I account for labor, capital,

firm fixed effects, and industry-year fixed effects. (5) The coefficient of the interaction term indicates that, given the same

patent value for owner firms, the revenue increases to a greater extent when one more accumulated patent is held by a large

firm compared to a small firm. (6) Standard errors are in parentheses. *** denotes significance at the 1% level; ** denotes

significance at the 5% level; * denotes significance at the 10% level.

Characteristics of Traded Patents The correlation between revenue increment and

similarity provides a rationale for the establishment of a patent market. Inventor firms

may choose to sell patents with low patent-firm, while potential buyers may search for

patents with high patent-firm similarity. Consequently, the second question is to in-

vestigate on the seller side, whether patents with lower patent-firm similarity are more

likely to be sold within a firm. To address this question, I use the dependent variable

sell_dy, which equals one if the patent is to be sold and zero otherwise, and estimate

a regression model as shown in Equation (37) to identify the factors that determine a

firm’s decision to sell a patent.

Sell_dypist = β0 + β1Similaritypi + β2Qualityp + δscope,t + δs + δt + δi (37)
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In the equation above, the variable sell_dypist indicates whether the patent p be-

longing to technology field s and invented by firm i in period t is sold (=1) or not (=0).

The variable Similaritypi represents the patent-firm specific similarity, which is calcu-

lated by comparing patent p to all the patents owned by firm i prior to year t (including

patents invented by firm i and patents purchased by firm i). The variable Qualityp rep-

resents the quality of patent p. To control for the effect of the inventing firm’s knowledge

scope in year t, which is associated with the patent-firm similarity, I include a fixed ef-

fect for the number of patents owned by the inventing firm in year t, denoted as δscope,t.

Additionally, the regression controls for the 3-digit IPC technology class (δs) fixed effect,

patent application year(δt) fixed effect, and patent’s inventing firm(δi) fixed effect. The

empirical results are presented in Table B3.

Table B3: Firm’s Selling Decision: Whether Sell or Not

(1) (2) (3) (5) (6) (7)

All Samples NBS Samples

Sell_dy Sell_dy Sell_dy Sell_dy Sell_dy Sell_dy

Similarity -0.6496*** -0.5638*** -0.6451*** -0.9409*** -0.7941*** -0.7029***

(0.1293) (0.1291) (0.1130) (0.1474) (0.1470) (0.1404)

Quality 0.0104 0.0732*** 0.0305*** 0.0623*** 0.1067*** 0.0254*

(0.0157) (0.0157) (0.0115) (0.0183) (0.0183) (0.0148)

Scope FE Yes Yes Yes Yes Yes Yes

IPC FE Yes Yes Yes Yes Yes Yes

Year FE Yes Yes Yes Yes

Firm FE Yes Yes

Obs 323090 323090 314948 185176 185176 181133

R square 0.0171 0.0249 0.6190 0.0166 0.0239 0.5155

Note: (1) The dependent variable is a dummy variable, denoted by "Sell_dy", which indicates whether a patent was traded

(Sell_dy=1) or not (Sell_dy=0). For clarity, "Sell_dy" is multiplied by 100 for clarity. (2) Scope FE, IPC FE, Year FE, and Firm

FE correspond to δscope,t,δs,δt, and δi in Equation (37). (3) Standard errors are in parentheses. *** denotes significance at

the 1% level; ** denotes significance at the 5% level; * denotes significance at the 10% level.

In Table B3, I conduct regressions separately for patents invented by Chinese firms

and patents invented by NBS firms. Columns (1) to (3) progressively include several

fixed effects as controls. The coefficient of patent-firm similarity indicates that, while

controlling for patent quality, firms tend to sell patents that are mismatched with them.
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Characteristics of Patents Buyers Lastly, I examine the characteristics of buyers on the

buyer side. Specifically, I investigate which types of firms are more inclined to purchase

patents from other innovators. Are they large or small firms? Are they innovative firms

or non-innovative firms? To address these questions, I conduct regression analyses, the

results of which are presented in Table B4. I define a firm as a patent buyer (Buyer_dy=1)

if it has purchased at least one patent between 2001 and 2013. Using whether a firm is

a patent buyer or not as the dependent variable, I examine its correlation with several

firm characteristics in Table B4, such as whether the firm is a large firm (Large_dy=1),

an innovative firm (Inn_dy=1), or a patenting firm (Pat_dy=1).51 In columns (1) to (3),

I introduce the dummy variables for large firms, innovative firms, and patenting firms

separately. In column (4), I include all three variables in the regression. In columns

(5) and (6), I further restrict the samples to only innovative firms or patenting firms,

respectively, to examine whether large firms are more likely to be patent buyers within

these subsets. To account for industry, location, and ownership factors, all regressions

in Table B4 control for the industry fixed effect, province fixed effect, and ownership

fixed effect. The positive coefficients in Table B4 indicate that large firms, innovative

firms, and patenting firms, particularly large firms with patents, are more likely to be

buyers in the patent market.

51I classify a firm as a large firm (Large_dy=1) if its sales surpass the industry average in the initial
year, which is 2001. The definitions of innovative firms and patenting firms are the same as those used in
Table B1, where an innovative firm (Inn_dy=1) indicates a firm that invented patents or invested in R&D
between 2001 and 2013, and a patenting firm (Pat_dy=1) indicates a firm that must have invented patents
during the same period.
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Table B4: The Characteristics of Patent Buyers

(1) (2) (3) (4) (5) (6)

All firms All firms All firms All firms Inn=1 Pat=1

Buyer_dy Buyer_dy Buyer_dy Buyer_dy Buyer_dy Buyer_dy

Large_dy=1 0.0098*** 0.0072*** 0.0151*** 0.0519**

(0.0014) (0.0014) (0.0027) (0.0207)

Inn_dy=1 0.0123*** 0.0052***

(0.0014) (0.0014)

Pat_dy=1 0.0850*** 0.0817***

(0.0033) (0.0034)

Ind FE Yes Yes Yes Yes Yes Yes

Prov FE Yes Yes Yes Yes Yes Yes

Ownership FE Yes Yes Yes Yes Yes Yes

Obs 30720 30720 30720 30720 13055 1037

R square 0.0537 0.0548 0.0725 0.0738 0.0649 0.2478

Note: (1) "Ind FE" represents the industry fixed effect at the 4-digit level, while "Prov FE" refers to the province fixed effect.

Firms in the sample are classified into five different ownership types: state-owned, collective, private, foreign-invested,

and other. The variable "Ownership FE" captures the fixed effect associated with ownership. (2) Standard errors are in

parentheses. *** denotes significance at the 1% level; ** denotes significance at the 5% level; * denotes significance at the

10% level.

C Additional Theoretical Results

C.1 Value of the Patent Agent

I now turn to the value function of the patent agent. There are two types of patent

agents—the patent agent with inspection goods and the patent agent with experienced

goods. As aforementioned, a 1− ss share of patent agents in the patent market are pos-

sessing patents of which the quality could be observed. They buy the patent from the in-

venting firm at the competitively determined price qγ . With probability Ta a patent agent

will meet with a potential buyer on the patent market, and with 1−Ta probability it will

not. Conditional on the meeting with a potential buyer, the function Ib,insθ (z, γ, x; z̃)

serves as an indicator that determines whether a successful transaction occurs between

a firm with R&D capacity θ and productivity z, and a patent agent whose patent has a

quality level γ and patent-buyer similarity x, in the case when the patent is an inspec-
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tion good.52 H(x) is the patent-firm similarity distribution in the market. The value for

a patent agent whose patent quality is equal to γ is thus given by

A(γ, z̃) =Ta ·
∫∫
x;θ,z

Ib,insθ (z, γ, x; z̃)P ins
θ (z, γ, x; z̃)+

(1− Ib,insθ (z, γ, x; z̃))rσA(γ, z̃′)

 · Γ(θ, z)dH(x)dF (θ, z)

+ (1− Ta) · rσA(γ, z̃′)

(38)

A (1 − ss) share of patent agents in the patent market are possessing patents of

which the quality is unobservable. The value for these specific patent agents A(z̃′) can

be calculated in a similar manner as the equation presented above, resulting

A(z̃) =Ta ·
∫∫

γ,x;θ,z

Ib,expθ (z, γ, x; z̃)P ins
θ (z, γ, x; z̃)+

(1− Ib,expθ (z, γ, x; z̃))rσA(z̃′)

 · Γ(θ, z)dH(γ, x)dF (θ, z)

+ (1− Ta) · rσA(z̃′)

(39)

where Ib,expθ (z, γ, x; z̃) is the indicator function that specifies whether the patent trans-

action happens successfully between the firm with R&D capacity θ, productivity z and

the patent agent whose patent is of quality γ and patent-buyer similarity x when the

patent is an experience good. The joint distribution of patent quality and similarity in

the market, denoted as H(γ, x), is determined endogenously by the decisions of suc-

cessful inventors on whether to keep or discard their newly created patents, but these

patents cannot be traded as inspection goods.

By the free entry condition of the patent agent, in equilibrium, qγ = A(γ; z̃) and

Eqγ = A(z̃).

C.2 Firm Productivity Distribution Dynamics

The following equation demonstrates the firm’s relative productivity ẑ = z
z̃

distri-

bution dynamics, where invention means that the firm has in-house invention in the t

period. "sell" means that the firm sells the new invention in the t period to the patent

agent; "meet" means that the firm meets with a patent agent randomly; "patent pur-

chase" means that the firm buys the patent from the patent agent successfully.

52It equals 1 if the transaction happens at the end, and otherwise, it equals 0.
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Pθ,t+1(ẑt+1 = ẑ) =

ĝθ,t · (ẑ = gẑ) · (1− θi∗θ) · (1−mb)︸ ︷︷ ︸
no invention,no meet

+

∫
γ,x

ĝθ,t · (ẑ = gẑ)(1− θi∗θ) ·mb ·

ss ·
(

1− Ib,expθ (ẑ, γ, x)
)

+

(1− ss) ·
(

(1− Ib,insθ (ẑ, x)
)
 dH(γ, x)

︸ ︷︷ ︸
no invention, meet, no purchase

+

∫
x

ĝθ,t(ẑ = gẑ) · θi∗θ ·

h ·
(
s · (1− Ik,expθ (ẑ, γh, x)) + (1− s) · (1− Ik,insθ (ẑ, γh, x))

)
+

(1− h) ·
(
s · (1− Ik,expθ (ẑ, γl, x)) + (1− s) · (1− Ik,insθ (ẑ, γl, x))

)
 dX(x)

︸ ︷︷ ︸
invention, sell

+

∫∫
ẑ,x


h · ĝθ,t(ẑ : ẑ + γhxẑ

β = gẑ) · (1− θi∗θ) ·mb ·
∫
γ,x

ss · Ib,expθ (ẑ, γ, x)+

(1− ss) · Ib,insθ (ẑ, x)

 dH(γ, x)+

(1− h) · ĝθ,t(ẑ : ẑ + γlxẑ
β = gẑ) · (1− θi∗θ) ·mb ·

∫
γ,x

ss · Ib,expθ (ẑ, γ, x)+

(1− ss) · Ib,insθ (ẑ, x)

 dH(γ, x)


dX(x)dẑ

︸ ︷︷ ︸
no invention, meet, purchase

+

∫∫
ẑ,x

h · ĝθ,t(ẑ : ẑ + γhxẑ
β = gẑ) · θi∗θ · (s · I

k,exp
θ (ẑ, γh, x) + (1− s) · Ik,insθ (ẑ, γh, x))+

(1− h) · ĝθ,t(ẑ : ẑ + γhxẑ
β = gẑ) · θi∗θ · (s · I

k,exp
θ (ẑ, γl, x) + (1− s) · Ik,insθ (ẑ, γl, x)

 dX(x)dF (ẑ)

︸ ︷︷ ︸
invention,keep

(40)

D Construction of Data Moments

D.1 Targeted Moments

Large firms’ R&D-to-sales ratio, 75 percentile of the R&D-to-sales ratio. The av-

erage of large firms’ R&D-to-sales ratios is 1.0%, and the 75 percentile of large firms’

R&D-to-sales ratios is 1.3%. These ratios are affected by the same parameter χ, same

with the third moment, the ratio of R&D expenditure over sales. Moreover, to what

extend the high-type firm’s R&D capacity θh is and the proportion of firms with high

R&D capacity Ip are positively correlated with this moment as well.

Average number of patents of large firms over that of small firms. On average,
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the number of patents of large firms is 2.116 times more than that of small firms in

China. The parameters β and θgap will affect this ratio. The larger the differences in

the invention surplus and R&D capacity between large and small firms are, the higher

value this ratio will be.

Fraction of traded patents and its ratio (high-quality over low-quality patents).

According to Table 1, 4.5% of patents filed and granted by Chinese firms between 1998

to 2013 were sold to other Chinese firms. This fraction of traded patents serves as an

indicator of the level of frictions in the patent market. More specifically, the matching

function is governed by η, which determines the ease of finding a patent in the mar-

ket. Additionally, the presence of high fixed transaction costs (F ) can impede potential

buyers and sellers from reaching a deal if the expected transaction surplus is not sub-

stantial. Thus, high fixed transaction costs tend to have a greater impact on the trad-

ing of low-quality patents compared to high-quality patents. Therefore, alongside the

fraction of traded patents, this paper considers its ratio (high-quality over low-quality

patents) in the analysis. The 11th moment presented in Table 4 is consistent with Figure

4, which demonstrates that high-quality patents are traded more frequently than low-

quality patents. This observation is crucial in providing motivation for the existence of

fixed transaction costs.

The final friction incorporated into the model is information asymmetry on patent

quality (s), which leads patent owners to only receive a price based on the expected

value of the patent if information asymmetry on patent quality happens. This informa-

tion friction discourages owners of high-quality patents from trading, while encourag-

ing the patents trading of owners of low-quality patents. Consequently, the total impact

of this information friction on the fraction of traded patents is ambiguous. However, it

will decrease the ratio of traded patents (high-quality over low-quality), which operates

in the opposite direction of fixed transaction costs with regards to this ratio. As these

two moments are insufficient in isolating the three types of frictions introduced in the

model, Table 4 incorporates additional moments associated with the purchase behavior

of firms.

Share of firms as the buyer and standard deviation of buyers. From 2001 to 2013,

there were approximately 2.5% manufacturing firms that had been buyers in the patent

market during this period. In addition, if I define an indication function Ib(buyer = 1)

as an indicator for whether the firm was a buyer or not, then the standard deviation
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will be 0.155. Similar to the fraction of traded patents, the parameters governing the

matching function, η and µ, are important to this moment. The parameters connected

with the firms’ heterogeneity, β, θgap and Ip are also significant to the variance of Ib.

Average number of purchased patents of large firms over that of small firms,

upper 75 percentile firms over 50-75 percentile firms. These two ratios reflect the cur-

vature of the distribution of firms’ search efforts. I compare the number of purchased

patents in the large firm group with the small firm group, as well as firms of which

the size is upper 75 percentile and 50-75 percentile. These moments provide extra in-

formation for identifying key frictions in the patent market, especially facilitating the

identification of fixed transaction costs B and .

D.2 Nontargeted Moments

Firms’ growth rate. Table 5 presents abundant information on aggregate TFP growth

rate as well as a comparison of sales growth rates between firms with patents (small

firms) and larger firms. The model predicts an average sales growth rate of 1.2%. How-

ever, it should be noted that the model only captures growth induced by innovation,

while other crucial factors such as imitation and knowledge spillovers, which have

been proven to significantly contribute to growth (Bloom et al., 2013; Perla and Tonetti,

2014), are not considered. Consequently, there exists a considerable disparity between

the model-generated growth rate and the actual data moments. Moreover, small firms

demonstrate a higher average sales growth rate compared to larger firms, albeit slightly

higher than what is observed in the data. Aside from the limitation of ignoring imitation

as a potential avenue for growth, another plausible explanation is the model’s restriction

on obtaining multiple patents within a single period. If these constraints were relaxed,

allowing larger firms to engage in more imitations or secure a greater number of patents

compared to smaller firms, the model would produce a higher sales growth ratio than

what is observed in the data.

R&D-to-sales ratio. The share of firms of which the R&D-to-sales ratio is larger

than 3% is 0.02 in the data; this moment predicted by my model fits well with the data.

Firm’s participation in the patent market on the seller side. To reduce the com-

putation load, this paper transforms the firm-to-firm patent transaction into the firm-to-
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patent agent-to-firm patent transaction. Correspondingly, I mainly match the moments

on the buyer side, especially the extensive margin of the buyer side. However, in rows 5

and 6 in Table 5, I check the fit of this model regarding the firm’s participation patterns

on the seller side. In the extensive margin, the share of firms as sellers in the large firm

group is higher than that in the small firm group. In the intensive margin, for the firm as

the seller, our model predicts that as large firms can generate more surplus, conditional

on the patent’s quality and similarity, the proportion of inventions to be sold in large

firms is lower than that in small firms. It means that the sell-invention ratio is larger in

small firms,53 which is consistent with the data.

Intensive margin on the buyer side. In Table 5, I also check the buyer side pattern

in the intensive margin (row 6): the buy-own ratio, which is equal to the number of

patents purchased by the firm over the number of patents owned by the firm. On aver-

age, this is lower for larger firms in the data. My model predicts the same result because

large firms account for for a much higher proportion of inventors than do small firms,

even if the number of their purchases is higher than that of small firms; however, the

market is small in China. As a result, the buy-own ratio (large firms over small firms) is

smaller than 1.

Sales Duration. The sales duration of patent is equal to the year when the patent is

sold less the year when the patent is filed. It takes 4.44 years on average for a patent to

be sold in China, and the model prediction is 4.71.

E Heterogeneous Impact of Search Costs Decline on Two

Types of Firms

In this section, I examine the heterogeneous impact of varying search costs on these

two types of firms. Figure E4 illustrates that as search costs decrease, both high-capacity

and low-capacity firms invest more effort into searching for patents in the market. Con-

sequently, the share of firms as the buyer increases in both groups. However, high-

capacity firms, being more likely to be large firms, benefit more from purchasing patents

and thus experience a greater increase in their participation in the patent market com-

pared to low-capacity firms.

53It is equal to the number of the patents sold by the firm over the number of the patents invented by
the firm.
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Regarding in-house innovation, the decline in search costs has both positive and

negative effects. On one hand, lower search costs lead to higher meeting rates and an

expected surplus for potential buyers in the patent market. As a result, firms allocate

fewer resources to in-house R&D and instead opt to purchase patents from the market.

On the other hand, lower search costs also make it easier to trade patents, increasing the

value of each in-house invented patent. These two effects counterbalance each other,

resulting in minimal changes in the in-house innovation numbers of both types of firms,

as depicted in subfigure (c) of Figure E4.

Lastly, with more firms participating in the patent market, the TFP growth rates of

both high-capacity and low-capacity firms experience substantial increases. However,

the TFP growth rate of low-capacity firms tends to increase more due to their initially

lower TFP levels.

F Patent Quality Gap between the US and China

For the protection of patents globally, large quantities of patents will be not only

registered in their home country but also in foreign countries. Those patents represent

the same underlying intellectual property across different countries, which could be

used to control for country-specific factors and then estimate quality from citations.

In this paper, I analyze two types of dual-listed patents: those invented by the US

and dual-listed in both the US and China, and those invented by Chinese firms and

dual-listed in both China and the US. To identify these patents, I utilize patent family

data. Patent families consist of patents or applications filed in multiple countries that are

related through common priority filings. This indicates that patents within a family con-

tain similar techniques and are filed by the same assignee (Zuniga et al., 2009). By lever-

aging the patent family information obtained from the USPTO and CNIPA databases, I

can accurately determine the number of dual-listed patents invented in the US as well as

those invented in China, and their registration in both CNIPA and USPTO. According to

the CNIPA report, between 1985 and 2013, a total of 123,852 US-invented patents were

granted in CNIPA, and my methodology successfully identifies 111,380 of them. Simi-

larly, the USPTO report states that from 1985 to 2013, 23,181 Chinese-invented patents

were granted in the USPTO, and my approach identifies 17,772 of them. The annual

number of granted US-invented and Chinese-invented dual-listed patents, as reported
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(a) Search efforts (b) Share of firms as the buyer

(c) Patents number (d) Aggregate TFP growth

Figure E4: Impact of Decline in Search Costs on High-capacity and Low-capacity Firms

Note: (1) These four figures illustrate the heterogeneous impact of varying search costs (ranging from 22.6 to 1) on the search
efforts, the share of firms acting as buyers, the number of patented inventions, and the overall growth rate of aggregate
TFP of high-capacity firms and low-capacity firms. (2) In subfigure (c), I normalize the number of patents for both types of
firms to one when search costs are equal to 22.6.

by official sources and identified by this paper, is depicted in Figure F5. Please note that

the figure displays the official report’s data alongside the data identified through the

methodology outlined in this paper.

To maintain consistency with the limitations on patent trading data, I only consider

dual-listed patents that were filed and granted between 1998 and 2013 by firms.

To quantify the quality gap between patents in China and the US, I follow these

steps. Firstly, for US- and Chinese-invented dual-listed patents, I calculate the forward

citation numbers compared to all the other domestic patents within each home coun-

try’s patent office. I also normalize the forward citation number of these dual-listed
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Figure F5: Annual Numbers of Granted US-invented and Chinese-invented
Dual-Listed Patents

Notes: The solid lines in the figure represent the annual numbers of granted dual-listed patents identified using the data
employed in this paper, while the dashed line represents the numbers provided by the official report. Specifically, the red
solid line depicts the statistics of Chinese-invented patents, while the blue solid line represents the statistics of US-invented
patents.

patents to one.54 Secondly, I calculate the forward citation numbers of those dual-listed

patents compared to foreign patents within the foreign country’s patent office and nor-

malized the forward citation number to one as well. Panel A of Table F5 showcases

the US-invented dual-listed patents, where the average forward citation number of US

domestic patents is 38% lower than that of the US-invented dual-listed patents within

the USPTO. Also, within the CNIPA, the average forward citation number of Chinese

domestic patents is 43% higher than that of the US-invented dual-listed patents. Panel

B presents the results of Chinese-invented dual-listed patents.

As shown in Table F5, the forward citation numbers of US domestic patents versus

that of Chinese domestic patents are different when US- and Chinese-invented dual-

listed patents are used as the bridge, respectively. This difference could be influenced

by the home bias problem in patent citation when dual-listed patent citations are com-

pared with the forward citation numbers of foreign patents within a foreign country.

To address this problem, I assume that there exists a home bias that could discount the

citations of dual-listed patents in a foreign country and exaggerate the forward citation

54To control for the technology class and application year fixed effect, I performed all comparisons
within the same 3-digit level IPC class and application year.
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Table F5: Estimation of Patent Quality Gap Utilizing Dual-listed Patents

Panel A. US-invented dual-listed patents as the bridge

Forward citation comparison in home country Forward citation comparison in foreign country
USPTO CNIPA

(1) Forward citation
number of

US domestic patents

(2) Forward citation
numbers of

Dual-listed patents

(3) Forward citation
number of

CN domestic patents

(4) Forward citation
number of

Dual-listed patents

0.72 1.00 1.43 1.00

Panel B. Chinese-invented dual listed patents as the bridge

Forward citation comparison in home country Forward citation comparison in foreign country
CNIPA USPTO

(1) Forward citation
number of

CN domestic patents

(2) Forward citation
number of

Dual-listed patents

(3) Forward citation
number of

US domestic patents

(4) Forward citation
number of

Dual-listed patents

0.95 1.00 2.29 1.00

numbers of foreign country’s domestic patents by a factor of ξ ∈ [1,+∞]. For instance,

when I use US-invented dual-listed patents as a bridge and compare their forward ci-

tation numbers with those of Chinese domestic patents, the forward citation number

of Chinese domestic patents should be enlarged due to the home bias problem. Using

the ratios qUS
qCN
|bridge=US and qUS

qCN
|bridge=CN to represent the observed patent quality gap

between the US and China, with US-invented and Chinese-invented dual-listed patents

as bridges, respectively, as presented in Table F5. Here, q̃US and q̃CN represent the true

quality of US and Chinese domestic patents, respectively. Based on these considera-

tions, the following equation can be derived:

qUS
qCN
|bridge=US =

0.72

1.43
=

q̃US
q̃CN · ξ

qUS
qCN
|bridge=CN =

2.29

0.95
=
q̃US · ξ
q̃CN

(41)

Hence, I can estimate the actual patent quality gap between the United States and

China as q̃US
q̃CN
≈ 1.102.
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G Appendix Figures and Tables

Figure G1: Logarithm of annual granted patents number in China and the US

Figure G2: Annual fraction of traded patents in China and the US

Notes: All definitions for these two figures are same with the definitions below the Figure 1.
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Figure G3: CNIPA: Patent Applications 1985-2015

Figure G4: CNIPA: Patent Grant Lag across Different Cohorts
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Figure G5: CNIPA: Patent Application Share of Each Technology Field, 1998–2013

Figure G6: USPTO, Patent Application Share of Each Technology Field, 1998–2013
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Figure G7: Patent Quality and Similarity (NBS Firm Inventions, Balanced, 2001–2013)

Note: (1) Patent quality equals the forward citation number divided by the mean of forward citation number within the

technology field (IPC 3-digit code) and granted year. (2) Large firm: within the t year innovating firm in the same industry

(Industrial Classification for National Economic Activities), whether the firm’s sales is larger than the industrial and year’s

median value. (3) The inventions in this figure include the patents invented by firms belonging to the NBS 2001–2013

balanced data. (4) Outside values are excluded in this box graph.

Figure G8: Patent Quality Distribution in China and the US

Note:(1) Patent quality equals the forward citation number divided by the mean of forward citation number within the

technology field (IPC) and granted year. (2) Large firm: within the t year innovating firm in the same industry (Industrial

Classification for National Economic Activities), whether the firm’s sales is larger than the industrial and year’s median

value. (3) The inventions included in the figure on the left-hand side contain the patents invented by firms belonging to the

NBS 2001–2013 unbalanced data, and the inventions included the right hand side of this figure included in the figure on

the right-hand side contain the patents invented by firms belonging to the US listed firm 2001–2013 unbalanced data.
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Figure G9: Change in the Provincial Fraction of Traded Patents and Marketization
Index

(1998–2006 vs. 2007-2013)

Note: (1) Change in one variable in province i equals to the average value of that variable in province i from 2007 to 2013 less

the average value of that variable in province i from 1998 to 2006; (2) X variable indicates the change in the marketization

index in a province between two periods. The marketization index 1998–2013 comes from marketization index in Fan et al.

(2019), which measures the development level of marketization in different provinces in China; and (3) Y variable indicates

the change in the fraction of traded patents in a province between two periods.

Figure G10: Change in the Provincial Fraction of Traded Patents and the Development
of Market Intermediaries & Legal Environment

(1998–2006 vs. 2007-2013)

Note: (1) The definition of the change in one variable in province i is same with the definition in Figure G9; (2) X variable

indicates the change in the development of market intermediaries & legal environment index in a province between two

periods. This index is a sub-index of the marketization index above; and (3) Y variable is same with Figure G9.
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Figure G11: The Lag Time of Forward Citation and Sales in China

Note: (1) The lag time of forward citation equals the citing patent’s application year less the cited patent’s application year;

(2) The lag time of sales equals the year when the patent is traded less the patent’s application year; (3) The red pillars

document the distribution of the lag time of forward citations in Chinese patent data; (4) The black dash line indicates the

median value of the lag time of sales in Chinese patent transaction data.

Figure G12: The Lag Time of Forward Citation and Sales in the US

Note: (1) The lag time of forward citation equals the citing patent’s application year less the cited patent’s application year;

(2) The lag time of sales equals the year when the patent is traded less the patent’s application year; (3) The blue pillars

document the distribution of the lag time of forward citations in the US patent data; (4) The black dash line indicates the

median value of the lag time of sales in the US patent transaction data.
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(a) Search costs (b) Fixed transaction costs

(c) Information asymmetry (d) Fixed transaction costs & Information asymmetry

Figure G13: The Impacts of Frictions on Moments

(1) Subfigure (a) depicts the relationship between the fraction of traded patents and the ratio of high-quality patents to

low-quality patents, as the value of search costs (η) ranges from 0 to 50. This analysis assumes no fixed transaction costs

(B = 0) and no information asymmetry regarding patent quality (s = 0). (2) Building upon subfigure (a), subfigure (b) adds

fixed transaction costs and examines how the fraction of traded patents and the ratio of high-quality patents to low-quality

patents change as the value of fixed transaction costs (B) varies from 0 to 0.17. Again, this analysis assumes no information

asymmetry on patent quality (s = 0) and sets the value of search costs (η) to 23. (3) Moving to a patent market with both

search costs (η) and fixed transaction costs (B), subfigure (c) demonstrates the impact of varying the value of information

asymmetry on patent quality (s) from 0 to 1 on the fraction of traded patents and the ratio of high-quality patents to low-

quality patents. (4) Subfigure (d) focuses on the relationship between the average number of purchased patents by large

firms and small firms, varying either fixed transaction costs (B) or information asymmetry on patent quality (s) in a patent

market with search costs (η = 23). (5) For the values of other parameters, please refer to Table 3.
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Table G1: Shares of Low-quality and High-quality Patents and Forward Citation
Number Gap in China and the US

Technology class Statistics CN US

IPC 3-digit class
High-quality patents share 40% 47%

Forward citation number gap
(high-quality patents over low-quality patents)

7.23 8.41

IPC 4-digit class
High-quality patents share 42% 46%

Forward citation number gap
(high-quality patents over low-quality patents)

7.07 8.57

Note: (1) Low-quality patents are identified as those with forward citation numbers lower than the median value within
their respective technology field and granted year. High-quality patents, on the other hand, are those with forward citation
numbers higher than the median value within their respective technology field and granted year. (2) To ensure compara-
bility of forward citation numbers across years, I define the forward citation number as the number of citations received by
a patent within 5 years after being granted. (3) While this paper primarily uses the IPC 3-digit class to categorize patents, I
conduct a robustness check by employing a more detailed classification – the IPC 4-digit level class – to ascertain that the
shared characteristics of high-quality patents and the forward citation gap between high-quality and low-quality patents
are not sensitive to the chosen digit level.
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Table G2: Sales of Firms and Forward Citation Numbers of Accumulated Patents

US listed firms 1998–2013 CN NBS firms 2001–2013 CN listed firms 1998–2013

Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced

Lnsales Lnsales Lnsales Lnsales Lnsales Lnsales

Ln(acm_fwct) 0.0569*** 0.0816*** 0.0868*** 0.0579*** 0.0036 -0.0146
(0.0179) (0.0209) (0.0057) (0.0092) (0.0095) (0.0225)

Ln(labor) 0.5292*** 0.4603*** 0.1576*** 0.1446*** 0.3207*** 0.2844***
(0.0405) (0.0484) (0.0041) (0.0078) (0.0131) (0.0293)

Ln(capital) 0.0570* 0.0914** 0.0924*** 0.1559*** 0.2452*** 0.4081***
(0.0350) (0.0435) (0.0023) (0.0059) (0.0111) (0.0273)

Firm FE Yes Yes Yes Yes Yes Yes
Ind-year FE Yes Yes Yes Yes Yes Yes

Obs 10452 6332 60862 15160 5022 1120
R square 0.9022 0.9084 0.9601 0.9693 0.9782 0.9655

Note:(1) US listed firm data come from the Compustate database, and the Chinese listed firm data come from the CSMAR
database. (2) Sales is the operating revenue. (3) acm_fwct is the firm’s accumulated patent number adjusted by patent’s for-
ward citation number within 5 years after being granted. (4) Labor is measured by the firm’s employment number; Capital
is measured by the firm’s fixed asset; (5) Firm fixed effect and industry-year fixed effect are controlled in all regressions, and
industry of the US listed firm is classified by SIC 2-digit code. The industry of Chinese NBS firm is classified by Industrial
Classification for National Economic Activities, and the industry of Chinese listed firm is classified by Guidelines for the
Industry Classification of Listed Companies (2012).
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Table G3: The Elasticity between Frictions-related Parameters and Moments

η F s

Fraction of traded patents -0.21 -0.14 -0.01
Avg num of bought patents of large firms (rel. to small firms) -0.05 0.65 0.02
Fraction of traded patents among high-quality patents (rel. to low-quality patents) 0.05 0.09 -0.10

Note: This table presents the elasticity between parameters that represent patent market frictions and corresponding mo-
ments that aid in identifying these frictions. The parameters included are search costs (η), fixed transaction costs (F ), and
information asymmetry related to patent quality (s).
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