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Abstract

We consider cooperative games where the characteristic function is valued in

the space of the fuzzy numbers. By using different fuzzy calculation methods to

transform the game into a crisp cooperative one, we define and characterize an

efficient extension of the Shapley value. This solution is a relevant member of a

wider family of more general, fuzzy calculation method dependent extensions of the

Shapley value.
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1 Introduction

As it often happens in the real world, data could be affected by uncertainty. Uncertainty

can be introduced by a stochastic model, by interval analysis or by fuzzy environment.

In the case of non-cooperative games, we may have uncertainty in the final payoffs. See

for example Mallozzi and Vidal-Puga (2023) and references herein. In case of cooperative

games with transferable utilities (TU games), we may have uncertainty on the coalitions

as well as on the characteristic function values.

In this paper we deal with TU games. Mares (2001) and Mares and Vlach (2004)

introduced cooperative games with fuzzy characteristic function defining the fuzzy coun-

terparts of supperadditivity, convexity, core, and the Shapley value. Later, Yu and Zhang
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(2010) investigated a new class of fuzzy games with fuzzy coalitions and a fuzzy charac-

teristic function and, by using the Hukuhara difference and the Choquet integral, gave

the explicit form of the Shapley value for the considered class of fuzzy games. For a

survey on the Shapley value of cooperative games under fuzzy settings see Borkotokey

and Mesiar (2014).

A different type of solution to a cooperative game with fuzzy characteristic function

has been given by Gallardo and Jiménez-Losada (2020): they defined a value in which

the players’ payoffs are given by real numbers and it is obtained from the classic Shapley

value. A relevant characteristic of Gallardo and Jiménez-Losada (2020)’s value is that it

does not satisfy efficiency, i.e., the sum of the players payoffs does not (in general) sum

up the worth of the grand coalition, even in superadditive games.

In this paper, we also consider cooperative games where the characteristic function is

valued in the space of the fuzzy numbers. Then, we introduce the definition of efficient

Shapley value extending the usual definition of the Shapley value for a crisp cooperative

game. The Efficiency property is an important property of this notion. We compare

and discuss the new concept with Gallardo and Jiménez-Losada (2020)’s value in a fuzzy

environment.

The paper is organized as follows. In Section 2, we present the model and recall some

preliminaries. In Section 3, we define and characterize the efficient Shapley value and a

more general family of efficient extensions of the Shapley value. In Section 4, we present

the conclusions.

2 The model

2.1 Cooperative games

A (crisp) cooperative game is a pair (N, v) where N = {1, . . . , n} is the set of players and

v : 2N → R is a characteristic function that assigns to each subset S ⊆ N a worth v(S)

satisfying v(∅) = 0. The characteristic function describes how much collective payoff a

set of players can gain by forming a coalition. Set N is called the grand coalition. The

set of all characteristic functions on N is denoted by GN .

Several solution concepts have been introduced in the literature. The Shapley value

(Shapley, 1953) Sh(v) of (N, v) ∈ GN is defined as

Shi(v) =
∑
S,i̸∈S

nS · (v(S ∪ {i})− v(S)) (1)
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for each i ∈ N where

nS =
|S|!(n− 1− |S|)!

n!

for each S ⊆ N .

2.2 Fuzzy sets

In this subsection we recall some basic concepts of fuzzy sets (refer to Cunlin and Qiang

(2011); Mares (2001); Zadeh (1978)).

A fuzzy number ã is determined by a mapping µã : R → [0, 1], called the membership

function, satisfying that there exist four (not necessarily distinct) real numbers ã−0 ≤
ã−1 ≤ ã+1 ≤ ã+0 such that

• µã(x) = 0 for all x < ã−0 and all x > ã+0

• µã(x) is (weakly) increasing and right-continuous on the interval (a−0 , a
−
1 )

• µã(x) = 1 for all x ∈ (a−1 , a
+
1 )

• µã(x) is (weakly) decreasing and left-continuous on the interval (a+1 , a
+
0 ).

Under these conditions, the following sets are well-defined closed intervals:

[ã]α = [ã−α , ã
+
α ] = {x ∈ R : µã(x) ≥ α}

for all α ∈ (0, 1], and

[ã]0 = [ã−0 , ã
+
0 ] = cl{x ∈ R : µã(x) > 0}.

where clA is the clousure of set A.

We also define the center of a fuzzy number ã as

⟨ã⟩ = ã−1 + ã+1
2

∈ R.

Let F denote the set of all fuzzy numbers. The set of real numbers can be embedded

into F. In particular, any p ∈ R can be expressed as a fuzzy number with membership

function µp(x) = 1x=p for all x ∈ R.
A triangular fuzzy number is a particular case of fuzzy number ã ∈ F where a−1 =

a+1 and µã(x) is a linear function increasing on the interval (a−0 , a
−
1 ) and decreasing on

(a+1 , a
+
0 ). We denote such a triangular fuzzy number as (⟨ã⟩ , a−1 − a−0 , a

+
0 − a+1 ).
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The sum of two fuzzy numbers ã, b̃ ∈ F, denoted as ã+ b̃, is given by the membership

function

µã+b̃(x) = sup
y∈R

{min{µã(y), µb̃(x− y)}}

or, equivalently, [
ã+ b̃

]
α
=

[
ã−α + b̃−α , ã

+
α + b̃+α

]
for all α ∈ [0, 1].

Lemma 2.1 Given ã1, . . . , ãk ∈ F with µãi(0) = 1 for all i = 1, . . . , k, we have

µ∑k
i=1 ãi

(0) = 1.

Proof. We proceed by induction on k. For k = 1, the result holds by assumption.

Assume now the result holds for less than k fuzzy numbers. Let b̃ = ã1 + · · · + ãk and

c̃ = ã1 + · · ·+ ãk−1. By the induction hypothesis,

µb̃(0) = µc̃+ãk(0)

= sup
y∈R

{min{µc̃(y), µãk(−y)}}

≥ min{µc̃(0), µãk(0)} = 1.

The difference of two fuzzy numbers ã, b̃ ∈ F, denoted as ã − b̃, is given by the

membership function

µã−b̃(x) = sup
y∈R

{min{µã(y), µb̃(x+ y)}}

or, equivalently, [
ã− b̃

]
α
=

[
ã−α − b̃+α , ã

+
α − b̃−α

]
for all α ∈ [0, 1].

The product of two fuzzy numbers ã, b̃ ∈ F, denoted as ã·b̃, is given by the membership

function

µã·b̃(x) = sup
y,z∈R:yz=x

{min{µã(y), µb̃(z)}}

or, equivalently,[
ã · b̃

]
α
=

[
min{a−α b−α , a−α b+α , a+α b−α , a+α b+α},max{a−α b−α , a−α b+α , a+α b−α , a+α b+α}

]
for all α ∈ [0, 1].
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In particular, given p ∈ R and ã ∈ F, their product is given by the membership

function

µp·ã(x) =

 µa

(
x
p

)
if p ̸= 0

1x=0 if p = 0

or, equivalently,

[p · ã]α =
[
min{pa−α , pa+α},max{pa−α , pa+α}

]
=

{
[pa−α , pa

+
α ] if p ≥ 0

[pa+α , pa
−
α ] if p < 0

for all α ∈ [0, 1].

For the particular case p = −1, we denote −ã = −1 · ã, and so

µ−ã(x) = µa (−x)

or, equivalently,

[−ã]α =
[
−a+α ,−a−α

]
for all α ∈ [0, 1].

Notice that the sum of ã and −ã is, in general, not zero, but a fuzzy number centered

at zero and with symmetric tails. We call these numbers 0-symmetric, i.e.,

Definition 2.1 We say that a fuzzy number ã ∈ F is 0-symmetric if µã(x) = µã(−x) for

all x ∈ R.

We should then work with the following equivalence class: We say that two fuzzy num-

bers are uncertain-equivalent, or u-equivalent for short, if their difference is 0-symmetric.

Notice that this is an equivalence relation because ã = −ã for all 0-symmetric number ã.

Each fuzzy number can be then represented as the sum of a unique canonical fuzzy

number and a unique 0-symmetric number. Notice that all real numbers are canonical,

and 0 is the only 0-symmetric canonical number. We denote as κ̃(ã) the unique canonical

fuzzy number associated to a fuzzy number ã, and as ρ̃(ã) the unique 0-symmetric number

such that ã can be uniquely written as the sum:

ã = κ̃(ã) + ρ̃(ã).

Obviously, ã and κ̃(ã) are u-equivalent.

2.3 Cooperative games with fuzzy environment

A cooperative game with fuzzy environment is a pair (N, ṽ) where N = {1, . . . , n} is the

set of the players and ṽ : 2N → F is the (fuzzy) characteristic function such that ṽ(∅) = 0.

The set of all (fuzzy) characteristic functions on N is denoted by G̃N .
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A fuzzy numbers calculation method is a function M : F → R such that M(x) = x for

all x ∈ R. Given (N, ṽ) ∈ G̃, one can consider solutions of the cooperative crisp game(
N, ṽM

)
where the characteristic function is given as ṽM(S) = M(ṽ(S)) for all S ⊆ N .

This procedure allows a defuzzification of a cooperative fuzzy game.

Classical examples of fuzzy numbers calculation methods are the Center of Gravity

(CoG), the Bisector of Area (BoA), the Maxima Methods and others (see Sivanandam

and Deepa (2019)).

Given ã ∈ F with membership function µã, the CoG is defined as the real number

CoG(ã) =

∫
R xµã(x) dx∫
R µã(x) dx

while the BoA as the real number BoA(ã) such that∫ BoA(ã)

−∞
µã(x) dx =

∫ +∞

BoA(ã)

µã(x) dx.

We consider in the following one of the Maxima Methods: if µã(x) = 1 for all x ∈
(a−1 , a

+
1 ), we call

• First of Maxima (FoM) the real number FoM(ã) = a−1 .

• Last of Maxima (LoM) the real number LoM(ã) = a+1 .

• Mean of Maxima (MoM) the real number MoM(ã) =
a−1 +a+1

2
.

The mean of maxima coincides with the center of the fuzzy number, i.e.,MoM(ã) = ⟨ã⟩.

Example 2.1 Consider the fuzzy number ã given by

µã(x) =


x
3

if x ∈ [0, 3]

1 if x ∈ [3, 4]

0 otherwise.

This fuzzy number is depicted in Figure 1 with its respective CoG(ã) = 13
5
, BoA(ã) =√

15
2
, FoM(ã) = 3, LoM(ã) = 4, and MoM(ã) = 7

2
.

1
ã

BoA
CoG

FoM

MoM
LoM

Figure 1: Some fuzzy numbers calculation methods.
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We say that a fuzzy numbers calculation method M is additive if M(ã+ b̃) = M(ã)+

M(b̃) for all ã, b̃ ∈ F. In particular, FoM, LoM, and MoM are additive.

We say that a fuzzy numbers calculation method M is 0-maximal if M(ã) = 0 implies

µã(0) = 1. In particular, FoM, LoM and MoM are 0-maximal, whereas CoG and BoA

are not.

3 Cooperative values with fuzzy environment

A natural extension of the Shapley value to cooperative games with fuzzy environments

is due to Gallardo and Jiménez-Losada (2020) and named the fuzzy Shapley value:

Shi(ṽ) :=
∑

S⊆N,i̸∈S

nS · (ṽ(S ∪ {i})− ṽ(S)) (2)

for all (N, ṽ) ∈ G̃N and i ∈ N. In the following Ψ : G̃N → FN denotes a generic solution

for cooperative games with fuzzy environment.

The natural extension of the Efficiency property to cooperative games with fuzzy

environment is:

Efficiency For each (N, ṽ) ∈ G̃N , ∑
i∈N

Ψi(ṽ) = ṽ(N).

We cannot expect, in general, the fuzzy Shapley value to be efficient, as next example

shows.

Example 3.1 Consider n = 2 and the fuzzy cooperative game (N, ṽ) given by ṽ({1}) = 0,

ṽ({2}) = (1, 1, 2) and ṽ(N) = (3, t, 0) for a real parameter t ≥ 0. See top picture

in Figure 2. In this game, Sh(ṽ) =
((
1, 1 + t

2
, 1
2

)
,
(
2, 1

2
+ t

2
, 1
))

is not efficient since

Sh1(ṽ) + Sh2(ṽ) =
(
3, 3

2
+ t, 3

2

)
. See middle picture in Figure 2. Note that for t ≥ 0,

Sh1(ṽ) + Sh2(ṽ) is u-equivalent to ṽ(N).

Gallardo and Jiménez-Losada (2020) characterize the fuzzy Shapley value using a

property of Central Efficiency:

Central Efficiency For each (N, ṽ) ∈ G̃N , there exists a 0-symmetric fuzzy number d̃ã

such that ∑
i∈N

Ψi(ṽ) = ṽ(N) + d̃ã.
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Gallardo and Jiménez-Losada (2020) argue that it “would not be reasonable to require

that the players’ payoffs sum up to v(N).” (page 103). Their reasoning is that efficiency

would lead to provide no uncertainty when v(N) ∈ R, even when that uncertainty is

present in other coalitions.

We argue that sharing no uncertainty when it is not present in the grand coalition

can be perfectly reasonable and even advisable. Assume, for example, that one of the

players, say player 1, is an investment partner that provides insurance. Hence, uncertainty

is removed wherever player 1 is present, i.e., ṽ(S∪{1}) ∈ R for all S ⊆ N \{i}. It is then
reasonable that any coalition containing player 1 (including the grand coalition) should

share a payoff allocation without uncertainty.

We present the following alternative extension of the Shapley value.

Given a cooperative game with fuzzy numbers (N, ṽ), we define the cooperative game

(N, ⟨ṽ⟩) as ⟨ṽ⟩ (S) = ⟨ṽ(S)⟩ for all S ⊆ N.

Definition 3.1 We define the efficient Shapley value as

S̃hi(ṽ) = Shi(⟨ṽ⟩) +
1

n
· (ṽ(N)− ⟨ṽ(N)⟩)

or, equivalently,

S̃hi(ṽ) = Shi

(
ṽMoM

)
+

1

n
·
(
ṽ(N)− ṽMoM(N)

)
for each (N, ṽ) ∈ G̃N and each i ∈ N.

This value assigns to each player a payoff with two parts. Firstly, the Shapley value

of the center, where uncertainty has been removed. Secondly, an equal division of the

uncertainty of the grand coalition, given by ṽ(N)− ⟨ṽ(N)⟩ .

Example 3.2 Consider n = 2 and the fuzzy cooperative game ṽ defined in Example 3.1.

In this game, S̃h(ṽ) =
((
1, t

2
, 0
)
,
(
2, t

2
, 0
))

and efficiency is satisfied. See bottom picture

in Figure 2.
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ṽ({1}) ṽ({2}) ṽ(N)

Sh1(ṽ) Sh2(ṽ) Sh1(ṽ) + Sh2(ṽ)

S̃h1(ṽ) S̃h2(ṽ) S̃h1(ṽ) + S̃h2(ṽ) = ṽ(N)

Figure 2: Fuzzy cooperative game (top) in Example 3.1 for t = 1
3
, its fuzzy Shapley value

(middle), and its efficient Shapley value (bottom).

Equal division is a basic principle in allocation problems. In crisp cooperative games,

it results in the application of the equal division value (axiomatized in van den Brink

(2007)). Another options are the equal surplus division, which results in the application

of the equal surplus division value (axiomatized in van den Brink and Funaki (2009)) and

the proportional share, which result in the application of values such as the proportional

value (Ortmann, 2000), the proportional Shapley value (Béal et al., 2018; Besner, 2019)

and the proper Shapley value (Vorob’ev and Liapounov, 1998; van den Brink et al., 2015).

However, only the equal division value assures a non-negative payoff when the worth of

the grand coalition is also non-negative. Hence, neither the equal surplus division nor

the proportional principle can be applied to uncertainty.1

We will use the following properties:

Additivity For each (N, ṽ), (N, w̃) ∈ G̃N , Ψ(ṽ+ w̃) = Ψ(ṽ) +Ψ(w̃), where (N, ṽ+ w̃) ∈
G̃N is defined as (ṽ + w̃)(S) = ṽ(S) + w̃(S) for all S ⊆ N .

1Notice that this restriction may vanish in certain classes of games, such as those uncertain-monotonic,

i.e., games in which uncertainty never decreases (or never increases) with the size of the coalition, once

a suitable notion of uncertainty of a fuzzy number is considered.
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Symmetry For each (N, ṽ) ∈ G̃N , if i, j ∈ N satisfy ṽ(S ∪ {i}) = ṽ(S ∪ {j}) for all

S ⊆ N \ {i, j}, then Ψi(ṽ) = Ψj(ṽ).

Weak null player For each (N, ṽ) ∈ G̃N , if i ∈ N is such that ṽ(S ∪ {i}) = ṽ(S) for all

S ⊆ N \ {i}, then µΨi(ṽ)(0) = 1.

Additivity and Symmetry are, as Efficiency, natural extensions of the respective prop-

erties used in crisp games to characterize the Shapley value. About Weak null player, it

extends the Null player property used in crisp games to characterize the Shapley value.

Another extension is the property defined in Gallardo and Jiménez-Losada (2020) and

also named Null player. Weak null player is a weak version of Gallardo and Jiménez-

Losada (2020)’s Null player in the general setting. That’s it, any rule satisfying Gallardo

and Jiménez-Losada (2020)’s property will also satisfy Weak null player. However, they

both generalize the property of Null Player in crisp games.

The last property is also defined by Gallardo and Jiménez-Losada (2020):

Zero solution Given (N, ṽ) ∈ G̃N , if µṽ(S)(0) = 1 for all S ⊆ N, then µΨi(ṽ)(0) = 1 for

all i ∈ N.

Zero solution says that “if it is possible (at the maximum possibility level) that the

payments of all the coalitions in a game are equal to zero, then it is possible (at the

maximum possibility level) that the payoffs of all the players in the game are equal to

zero” (Gallardo and Jiménez-Losada, 2020, page 103).

Zero solution generalizes the property for crisp games that says that the solution in

the null game (game (N, v) such that v(S) = 0 for all S ⊆ N) is the null payoff allocation

(Ψi(v) = 0 for all i ∈ N).

Theorem 3.1 The efficient Shapley value S̃h is the only solution in the set of fuzzy

cooperative games satisfying Efficiency, Additivity, Symmetry, Weak null player, and

Zero solution.

Proof. We first check that the efficient Shapley value satisfies these properties. Under the

definition of the efficient Shapley value and Theorem 1 in Gallardo and Jiménez-Losada

(2020), it is straightforward to check that the efficient Shapley value satisfies Additivity,

Symmetry, and Zero solution. The next step is to check Efficiency. Given (N, ṽ) ∈ G̃N ,∑
i∈N

S̃hi(ṽ) =
∑
i∈N

Shi(⟨ṽ⟩) + (ṽ(N)− ⟨ṽ(N)⟩)

= ⟨ṽ⟩ (N) + (ṽ(N)− ⟨ṽ(N)⟩) = ṽ(N).
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The next step is to check Weak null player. Given (N, ṽ) ∈ G̃N and i ∈ N such that, for

all S ⊆ N \ {i}, ṽ(S ∪ {i}) = ṽ(S), it is straightforward to check that that player i is a

null player in the crisp game (N, ⟨ṽ⟩) given by ⟨v⟩(S) = ⟨ṽ(S)⟩ for all S ⊆ N . Under the

null player property of the Shapley value:〈
S̃hi(ṽ)

〉
= Shi(⟨ṽ⟩) +

1

n
· ⟨ṽ(N)− ⟨ṽ(N)⟩⟩ = 0

and hence µS̃hi(ṽ)
(0) = 1.

We now check uniqueness. Let Ψ be a rule satisfying these properties. Given ṽ ∈ G̃N ,

we have ṽ = ⟨ṽ⟩+ ũN + w̃ where, for each S ⊆ N,

ũN(S) =

{
0 if S ̸= N

ṽ(N)− ⟨ṽ(N)⟩ if S = N.

w̃(S) =

{
ṽ(S)− ⟨ṽ(S)⟩ if S ̸= N

0 if S = N.

Since ṽ = ⟨ṽ⟩+ ũN + w̃ , it is enough to prove that Ψ(⟨ṽ⟩), Ψ(ũN), and Ψ(w̃) are unique

(and hence their sum coincides with the efficient Shapley value).

1. Ψ(⟨ṽ⟩) is unique by Efficiency, Additivity, Symmetry and Weak null player (equiv-

alent to Null player in crisp games). The proof is equivalent to that of Shapley

(1953) taking into account the additivity of MoM and that there is no uncertainty

in ṽ(N).

2. All players i, j ∈ N satisfy ũN(S ∪ {i}) = 0 = ũN(S ∪ {j}) for all S ⊆ N \ {i, j}.
Under Symmetry, there exists some ã ∈ F such that Ψi(ũN) = ã for all i ∈ N . Under

Efficiency, ṽ(N) =
∑

i∈N Ψi(ũN) = n·ã and hence ã = ṽ(N)
n

, so that Ψi(ũN) =
ṽ(N)
n

is unique for each i ∈ N .

3. It is enough to prove that, for each i ∈ N , Ψi(w̃) = 0, i.e., µΨi(w̃)(x) = 1x=0 for all

x ∈ R, so that Ψ(w̃) is unique. For each coalition S ⊆ N , we have that µw̃(S)(0) = 1.

Under Zero Solution, µΨi(w̃)(0) = 1 for all i ∈ N . Let ã =
∑

i∈N Ψi(w̃). By

Efficiency, ã = 0 and hence µã(x) = 1x=0 for all x ∈ R. Given i ∈ N , let b̃ =

11



∑
j∈N\{i}Ψj(w̃). Under Lemma 2.1, µb̃(0) = 1. Hence, for each x ∈ R,

1x=0 = µã(x)

= µb̃+Ψi(w̃)(x)

= sup
y∈R

{
min{µb̃(y), µΨi(w̃)(x− y)}

}
≥ min{µb̃(0), µΨi(w̃)(x)}

= min{1, µΨi(w̃)(x)}

= µΨi(w̃)(x)

and thus Ψi(w̃) = 0.

The properties in Theorem 3.1 are independent.

• The fuzzy Shapley value (Gallardo and Jiménez-Losada, 2020) satisfies all the prop-

erties but Efficiency.

• The efficient fuzzy nucleolus given by

Ñui(ṽ) = Nui(⟨ṽ⟩) +
1

n
· (ṽ(N)− ⟨ṽ(N)⟩)

for each (N, ṽ) ∈ G̃N and i ∈ N , where Nu(v) is the nucleolus (Schmeidler, 1969)

of (N, v) ∈ GN , satisfies all the properties but Additivity.

• Fix ω ∈ RN
++ vector of positive real numbers. The efficient fuzzy weighted Shapley

value given by

S̃h
ω

i (ṽ) = Shω
i (⟨ṽ⟩) +

ωi∑
j∈N ωj

· (ṽ(N)− ⟨ṽ(N)⟩)

for each (N, ṽ) ∈ G̃N and i ∈ N , where Shω(v) is the weighted Shapley value (Kalai

and Samet, 1987) of (N, v) ∈ GN with weights given by ω, satisfies all the properties

but Symmetry.

• The fuzzy egalitarian value given by

Egi(ṽ) =
ṽ(N)

n

for each (N, ṽ) ∈ G̃N and i ∈ N satisfies all the properties but Weak null player.
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• The First of Maxima Shapley value given as

ShFoM
i (ṽ) = Shi

(
ṽFoM

)
+

1

n
·
(
ṽ(N)− ṽFoM(N)

)
for each (N, ṽ) ∈ G̃N and i ∈ N , satisfies all the properties but Zero solution.

In the last rule, the First of Maxima can be replaced by any other additive and

0-maximal fuzzy numbers calculation method.

Definition 3.2 Given M : F → R an additive and 0-maximal fuzzy numbers calculation

method, we define the M-Shapley value as

ShM
i (ṽ) = Shi

(
ṽM

)
+

1

n
·
(
ṽ(N)− ṽM(N)

)
for each (N, ṽ) ∈ G̃N and i ∈ N .

Given M : F → R a fuzzy numbers calculation method, we consider the following

property:

M-solution For each (N, ṽ) ∈ G̃N , if M(ṽ(S)) = 0 for all S ⊆ N, then M(Ψi(ṽ)) = 0 for

all i ∈ N.

Analogously to Zero solution, and independently of the chosen M , M -solution also

generalizes the property for crisp games that says that the solution in the null game is

the null payoff allocation.

We then characterize the M -Shapley value as follows:

Theorem 3.2 For any additive and 0-maximal fuzzy numbers calculation method M , the

M-Shapley value ShM is the only solution in the set of fuzzy cooperative games satisfying

Efficiency, Additivity, Symmetry, Weak null player, and M-solution.

Proof. We first check that the M -Shapley value satisfies these properties.

We first check efficiency. Given (N, ṽ) ∈ G̃N ,∑
i∈N

ShM
i (ṽ) =

∑
i∈N

Shi(ṽ
M) +

(
ṽ(N)− ṽM(N)

)
= ṽM(N) +

(
ṽ(N)− ṽM(N)

)
= ṽ(N).

We now check Additivity. Given ṽ, w̃ ∈ G̃N , additivity of M implies

(ṽ + w̃)M(S) = M((ṽ + w̃)(S)) = M(ṽ(S)) +M(w̃(S)) = ṽM(S) + w̃M(S)

13



and hence

ShM
i (ṽ + w̃) = Shi

(
(ṽ + w̃)M

)
+

1

n

(
(ṽ + w̃)(N)− (ṽ + w̃)M(N)

)
= Shi

(
ṽM

)
+ Shi

(
w̃M

)
+

1

n

(
ṽ(N) + w̃(N)− (ṽM(N) + w̃M(N))

)
= ShM

i (ṽ) + ShM
i (w̃).

We now check Symmetry. Given (N, ṽ) ∈ G̃N and i, j ∈ N such that ṽ(S ∪ {i}) =

ṽ(S ∪ {j}) for all S ⊆ N \ {i, j}, then ṽM(S ∪ {i}) = ṽM(S ∪ {j}) for all S ⊆ N \ {i, j}
and symmetry of the Shapley value implies

ShM
i (ṽ) = Shi

(
ṽM

)
+

1

n
·
(
ṽ(N)− ṽM(N)

)
= Shj

(
ṽM

)
+

1

n
·
(
ṽ(N)− ṽM(N)

)
= ShM

j (ṽ).

The next step is to check Weak null player. Given (N, ṽ) ∈ G̃N and i ∈ N such that,

for all S ⊆ N \{i}, ṽ(S∪{i}) = ṽ(S), it is straightforward to check that player i is a null

player in the crisp game (N, ṽM). Under the additivity of M and null player property of

the Shapley value:

M
(
ShM

i (ṽ)
)
= M

(
Shi

(
ṽM

))
+

1

n
·M

(
ṽ(N)− ṽM(N)

)
= M(0) + 0 = 0

and, since M is 0-maximal, µShM
i (ṽ)(0) = 1.

The next step is to check M -solution. Let (N, ṽ) ∈ G̃N with M(ṽ(S)) = 0 for all

S ⊆ N. Hence ṽM(S) = 0 for all S ⊆ N and thus Shi(ṽ
M) = 0 for all i ∈ N. Then,

M
(
ShM

i (ṽ)
)
= M

(
Shi

(
ṽM

))
+

1

n
·M

(
ṽ(N)− ṽM(N)

)
= M(0) + 0 = 0

for all i ∈ N.

We now check uniqueness. Let Ψ be a rule satisfying these properties. Given ṽ ∈ G̃N ,

we have ṽ = ṽM + ũM
N + w̃M where, for each S ⊆ N,

ũM
N (S) =

{
0 if S ̸= N

ṽ(N)− ṽM(N) if S = N.

w̃M(S) =

{
ṽ(S)− ṽM(S) if S ̸= N

0 if S = N.

Since ṽ = ṽM + ũM
N + w̃M , it is enough to prove that Ψ(ṽM), Ψ(ũM

N ), and Ψ(w̃M) are

unique (and hence their sum coincides with the M -Shapley value).
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1. Ψ(ṽM) is unique by Efficiency, Additivity, Symmetry and Weak null player (equiv-

alent to Null player in crisp games). The proof is equivalent to that of Shapley

(1953) taking into account the additivity of M and that there is no uncertainty in

ṽ(N).

2. All players i, j ∈ N satisfy ũM
N (S ∪ {i}) = 0 = ũM

N (S ∪ {j}) for all S ⊆ N \ {i, j}.
Under Symmetry, there exists some ã ∈ F such that Ψi(ũ

M
N ) = ã for all i ∈ N . Under

Efficiency, ṽ(N) =
∑

i∈N Ψi(ũ
M
N ) = n·ã and hence ã = ṽ(N)

n
, so that Ψi(ũ

M
N ) = ṽ(N)

n

is unique for each i ∈ N .

3. For each coalition S ⊆ N , we have that M(w̃M(S)) = 0. Under M -solution,

Ψi(w̃
M) = 0 is unique for all i ∈ N .

The properties in Theorem 3.2 are independent. Fix M additive and 0-maximal fuzzy

numbers calculation method.

• The null value Ψ0 given by Ψ0
i (ṽ) = 0 for all (N, ṽ) ∈ G̃N and i ∈ N satisfies all the

properties but Efficiency.

• The M -nucleolus given by

NuM
i (ṽ) = Nui

(
ṽM

)
+

1

n
·
(
ṽ(N)− ṽM(N)

)
for each (N, ṽ) ∈ G̃N and i ∈ N , satisfies all the properties but Additivity.

• Fix ω ∈ RN
++ vector of positive scalars. The M -weighted Shapley value given by

ShMω(ṽ) = Shω
i

(
ṽM

)
+

ωi∑
j∈N ωj

·
(
ṽ(N)− ṽM(N)

)
for each (N, ṽ) ∈ G̃N and i ∈ N , satisfies all the properties but Symmetry.

• The fuzzy egalitarian value satisfies all the properties but Weak null player.

• The M ′-Shapley value, where M ′ ̸= M is also additive and 0-maximal, satisfies all

the properties but M -solution.

Clearly, S̃h = ShMoM . Hence, Theorem 3.2 allows us deduce a new characterization

of the efficient Shapley value:

Corollary 3.1 The efficient Shapley value is the only solution in the set of fuzzy coop-

erative games satisfying Efficiency, Additivity, Symmetry, Weak null player, and MoM-

solution.
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Zero solution and MoM-solution are not related, i.e., there are values that satisfy Zero

solution but not MoM-solution, and there are values that satisfy MoM-solution but not

Zero solution. Hence, Theorem 3.1 is not deduced from Corollary 3.1, nor vice versa.

A value that satisfies Zero solution but not MoM-solution is

Ψ1
i (ṽ) = (inf{|x| : µṽ({i})(x) = 1}, 1, 2)

for all (N, ṽ) ∈ G̃N and i ∈ N . A value that satisfies MoM-solution but not Zero solution

is

Ψ2
i (ṽ) =

1 if ∃S ⊆ N : ⟨ṽ(S)⟩ ≠ 0

0 otherwise

for all (N, ṽ) ∈ G̃N and i ∈ N .

4 Conclusion

In games with fuzzy valued characteristic function, finding real valued solution concepts

is a relevant tool to solve the uncertainty. In this article, we define a new value for

cooperative games where the characteristic function takes values in the space of the

fuzzy numbers. In particular, we introduce the definition of the efficient Shapley Value

extending the usual definition of the Shapley value for crisp cooperative games. The

proposed solution concept saves the efficiency property that, together with other relevant

properties, characterize the solution. We illustrate the difference of the new concept with

a previous generalization of the value in a fuzzy environment by means of an examples.

We also show that the efficient Shapley value is a particular member of a wider family

of efficient generalizations of the Shapley value. We also provide a characterization of

this family of rules. A future work is to extend this analysis to cooperative games with

a graph structure and fuzzy environment.
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