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ABSTRACT 

In this paper we develop and apply a stochastic multistage dynamic cooperative game 

for managing transboundary water resources, within the water-food-energy nexus 

framework, under climate uncertainty. The mathematical model is solved for the non-

cooperative and cooperative (Stackelberg “leader–follower”) cases and is applied to 

the Omo-Turkana River Basin in Africa. The empirical application of the model calls for 

sector-specific production function estimations, for which we employ nonparametric 

treatment of the production functions a la Gandhi, Navarro, and Rivers (2017), while 

we extend it to allow for technical inefficiency in production and autocorrelated TFP. 

Bayesian analysis is performed using a Sequential Monte Carlo / Particle-Filtering 

approach. We find that the cooperative solution is the optimal pathway not only for both 

riparian countries, but for the sustainable use of the basin as well, whereas in extreme 

Climate Change circumstances it remains the welfare maximizing option. We argue 

that the detail and sophistication of both the mathematical and econometric models 

are needed for robust policy recommendations towards sustainable management of 

transboundary resources. 

 

Key words: stochasticity, Markov processes, endogenous adaptation, technical 

inefficiency, autocorrelation, copula approach. 

1. THE ECONOMIC MODEL 

There is a substantial body of literature on stochastic water resource management 

from which only few studies exist on the influence of stochastic water resource 

management on transboundary water sharing. Bhaduri et al. (2011) investigated the 

uncertainty in water resource management in a transboundary water sharing problem 

and evaluated the scope and sustainability for a potential cooperative agreement 

between countries. On the other hand, Kim et al. (1989) studied a deterministic 

renewable groundwater optimal management problem in the face of two-sector linear 

demands, while Koundouri and Christou (2006) revisited this problem under the 

presence of a backstop technology. 

Bhaduri et al. (2011) utilized a stochastic differential Stackelberg “leader–follower” 

game to produce qualitative results on the optimal transboundary water allocation 

between an upstream and a downstream area. In their model, the upstream area 

represents the leader and applies his strategy first, a priori knowing that the follower 

downstream area observes its actions and a posteriori moves accordingly. In view of 

Kim et al. (1989) and Koundouri and Christou (2006), this paper extends the 

stochastic game problem of Bhaduri et al. (2011) to capture quantitatively the 

influence of stochastic water resources on transboundary water allocation over 

multiple sectors of the economy, following now a multistage dynamic cooperative 

game framework even in the case of climate change. A main contribution of this 

framework is the introduction of the five core water economic sectors taking into 

account their dependence with the social benefit of water use per country. 

Furthermore, in contrast to Bhaduri et al. (2011) who had to restrict the leader’s 

strategy space to quadratic functions of the state variable in order to obtain a sub-

optimal qualitative solution of the problem, we maximize the leader’s objective 



function, using the follower’s reaction strategy, over all possible strategies to provide 

an optimal solution of our stochastic game problem that is also quantitatively 

tractable. 

We assume that water resources evolve through time and follow a geometric 

Brownian motion. However, the characteristics of Brownian motion in terms of 

variance are different between the upstream and the downstream country, based on 

the assumption that the effects of climate change are regionally different.  

Additionally, we are able to determine how the water abstraction of the riparian 

countries will change in the long run, taking into account the greater variability of 

water availability caused by climate change. In other words, the suggested model 

describes water allocation between the upstream and the downstream country in 

such a case, with and without any cooperation in water sharing, taking into account 

how uncertainty in water supply affects the water abstraction rates of the countries, 

and explores the underlying conditions that may influence decisions on water 

allocations. 

The upstream country has the upper riparian right to unilaterally divert water while 

the freshwater availability of the downstream one partially depends on the water 

usage in the upstream country. We denote the countries by superscripts, where 

Udenotes the upstream country and Dstands for the downstream country.  

Following Bhaduri et al. (2011), we consider at first a complete filtered probability 

space ( , , , )t P   and we assume that water flow is stochastic and uncertainty in 

the flow of water can be attributed to climate change. Then the annual renewable 

water resource due to the river basin, W., evolves through time according to the 

Geometric Brownian motion: 

  ,     0,W W

t t tdW Wdz t= σ  ( 1 ) 

where 
Wz is a standard Wiener process and

Wσ can be considered as the volatility of 

water flow in the upstream country. 

Let us denote by
h

iw  the total freshwater utilization and by
h

iT the exit time of the i-th 

sector, per country h = U, D,and for each sectori= 1, 2, …, 5, together with the 

convention of 0 0T and 5 .T   Then the change in the level of water resources  

available in the upstream country, 
UW , for the j-th exit stage is represented by   

5

1 dt,      ,     1,2,...,5.             U U U U

jt t it j j

i j

dW W w T t T j−

=

 
= −   = 
 

  ( 2 ) 

The water availability in the downstream country depends on the total water 

consumption in the upstream one and runoff, denoted by R., which is also stochastic 

in the model. Thus, the latter can be expressed through another Geometric Brownian 

motion as 

     0,,R R

t t t tdR R dz =σ  ( 3 ) 

where 
Rz is another standard Wiener process independent of

Wz . Thus, the stock of 

water in the downstream area, where agricultural products and fisheries are produced, 



is denoted by S., and is a function of the stochastic water resources and the control 

variables
1 2 5( , , , )h h h hw w w w= per country h = U, D; in fact, for the (j,k)-th exit stage of 

the upstream and downstream countries, respectively, it follows the dynamics: 
5 5

1 1+ ,       and    ,   , 1,2,...,5,U D U U D D

jkt t it lt t t j j k k

i j l k

dS W w w R O dt T t T T t T j k− −

= =

 
= − − −     = 
 

   ( 4 ) 

where S(0)=S0 is an initial condition. Here, Ot denotes the outflow and evaporation of 

water from this area and can be formulated by a third Geometric Brownian motion as 

,     0,O O

t t tdO O dz t= σ  ( 5 ) 

where 
Oz is a third standard Wiener process independent of

Wz and
Rz . 

We assume that the inverse demand function for the water utilization of the j-th exit 

stage, per sector iand country h, is represented by 

1

1
,      ,     , ,...,5,     1,2,...,5,      , ,

h
h h h hi
jt it j jh h

i i

a
p w T t T i j j h U D

b b
−= −    = = =  ( 6 ) 

where h

jp is the price of water at each stage j, which is the same for the different 

sectors, and , 0h h

i ia b  are constant sector-specific demand parameters. The 

sector-specific inverse demand curves are ordered so that

1 1 2 2 5 5/ / / ,h h h h h ha b a b a b   which implies that water demand for each of the five 

sectors reaches zero sequentially over time as the price of water increases over time, 

leading to the endogenously defined exit times ,  1,2,...,5,h

jT j = of the five economic 

sectors per country h = U, D. Here, aggregate water demand turns out to be a 

piecewise linear function. 

Since consumers are the only group deriving benefits from water, the inverse demand 

curve is the marginal social benefit curve. Hence, consider further the benefit of water 

consumption
h

iw per sector i of countryh, namely social benefit (SB), as   

( ) 21 1
( ) ,    , ,

2

h h
h h h h h h hi i

i i i i i i ih h h h

i i i i

a a
SB w w dw w w c h U D

b b b b

 
= −  = −  + = 

 
  ( 7 ) 

where 
h

ic  is a constant that corresponds to other factors of production (variables) such 

as labour, capital, natural capital, etc. (cf. Section 3). It is obvious that the benefit 

function is strictly concave for all possible values of
h

iw .  

Water abstraction from rivers may be taken directly from the flowing waters in the 

channel (surface water abstraction) or can be achieved through inter-basin flow 

transfer schemes. Thus, we may assume that the marginal extraction cost (MC) for the 

j-th exit stage of the upstream country is a decreasing function of the available water 

resources
UW of the form: 

2 1( ) ,      1,2,...,5,U U U U U

j jMC W k k W j= − =  



where 1 2,  0U Uk k  are given constants. In fact, we consider that as water becomes 

increasingly scarce in the economy, the government would exploit water through 

appropriating and purchasing a greater share of aggregate economic output, in terms 

of dams, pumping stations, supply infrastructure, etc. (Barbier, 2000). Given the high 

cost of building infrastructure and expanding supplies, this will lead to a higher marginal 

cost of water. Then the total cost (TC) function of water withdrawing
U

iw from the river 

per sector i =j, …, 5,for the j-th exit stage of the upstream country is given by 

( ) 2 1, ( ) ,      ,...,5,      1,2,...,5,U U U U U U U

j i j iTC W w k k W w i j j= − = =  ( 8 ) 

which is an increasing function of the water extraction variable. On the other hand, the 

downstream country extracts water from its available stock, thus for the (j,k)-th exit 

stage the MC of the downstream country is a decreasing function of the available water 

stock jkS and has the form: 

2 1( ) ,      , 1,2,...,5,D D D

jk jkMC S k k S j k= − =  

where 1 2,  0D Dk k   are given constants. Then the TC function of water withdrawing 
D

lw

from the water stock in the downstream country per sector l = k, …, 5for the (j,k)-th exit 

stage is given by 

( ) 2 1, ( ) ,      ,...,5,D D D D D

jk l jk lTC S w k k S w l k= − =  ( 9 ) 

which is an increasing function of the water extraction variables. 

Finally, the downstream country receives benefits from storing water, as the net 

consumer surplus or economic benefit from food (agricultural product and fisheries) 

production, denoted by the concave quadratic function of water stock jkS per (j,k)-th exit 

stage: 

2

1 2 3( ) , ,      , 1,2,...,5,D D D D

jk jk jkF S S S j k= + + =η η η  (10) 

where 
1 2 30,  ,  D D D  η η η are constants.  

1.1 NON-COOPERATIVE APPROACH 

We present below a non-cooperative framework, where there is no any agreement 

between the two countries regarding either water or food sharing.  

Upstream Case 

The upstream country chooses the economically potential rate of water utilization that 

maximizes its own net benefit (NB)per j-th exit stage, which can be expressed as  

( )
5 5

( ) , .U U U U U U

j i i j i

i j i j

NB SB w TC W w
= =

= −   ( 10 ) 

Thus, the upstream country maximization problem can be formulated as follows: 



 

( )

1

1

5 5

1 1

5 5

1

5
2

2 1

max max

     = max ( ) ,

1
     = max ( ) ( )

2

U
j

UU U
j

U
j

UU
j

U
j

T
U U rt U

j j
Tw w

j j

T
rt U U U U U

i it jt it
Tw

j i j

U
rt U U U U U U Ui

it it i jt itU UTw
i j i i

J J E e NB dt

E e SB w TC W w dt

a
E e w w c k k W w dt

b b

−

−

−

= =

−

= =

−

=

= =

 
 −  

 

 
−  + − − 

 

  

 


1

5

1

,
U
j

U

T

j −=

  
 
  

 

 ( 11 ) 

where U

jJ stands for the upstream country’s net social benefit of the j-th exit stage, 

j=1,2,…,5, and 1 2 5( ,  ,  ...,  )U U U Uw w w w=  is the sectorial water extraction vector process 

for the upstream country, subject to the river basin annual renewable water resource 

equation of (1) and the upstream country water resources (state) equation of(3).  

For thej-exit stage we have the Hamiltonian: 

( )
5 5

2

5 2 1

1
, ,..., , ( ) ( ) ,      1,2,...,5,

2

U
U U U U U U U U U U U U U Ui
j jt jt t jt it it i jt it jt t itU U

i j i ji i

a
H W w w w w c k k W w W w j

b b= =

  
−  + − − + − =  

   
 λ λ  

where U

jλ is the j-exit stage adjoint variable that represents water scarcity rents for the 

upstream country. The necessary conditions for optimality are given as follows: 

2 1

1
( ) 0,     ,...,5,

U U
j U U U U Ui

it jt jtU U U

it i i

H a
w k k W i j

w b b


= −  − − − = =


λ  ( 12 ) 

5

1  .

U

jU U U U U U

jt jt jt it jtU
i jjt

H
d r dt d k w r dt

W =

   
= − +  = − +   

    
λ λ λ λ  ( 13 ) 

 

From the first optimality condition, we have: 

2 1( ) ,     ,...,5.U U U U U U U U

it i i jt i jtw a b k k W b i j= − − − =λ  

Then substituting to the state equation we have: 

5 5 5 5

1 2

U U U U U U U U U

jt i jt i jt t i i

i j i j i j i j

dW k b W b W a k b dt
= = = =

    
= − + + − +    
     

   λ  

while substituting to the adjoint equation we have

( )
5 5 5 5

2

1 1 1 1 2 .U U U U U U U U U U U U

jt i jt i jt i i

i j i j i j i j

d k b W k b r k a k k b dt
= = = =

      
= − + + − +     

       
   λ λ  

Setting 

5
U U

j i

i j

A a
=

 and 

5
U U

j i

i j

B b
=

 we obtain the forward-backward differential 

equations system (FBDEs): 



( ) ( )

1 2

2

1 1 1 1 2

0 0

,

,

,    lim 0,    1, 2,...,5.

U U U U U U U U U

jt j jt j jt t j j

U U U U U U U U U U U U

jt j jt j jt j j

U U

jt
t

dW k B W B W A k B dt

d k B W k B r k A k k B dt

W w j
→

 = − + + − + 

 = − + + − +
  

= = =

λ

λ λ

λ

 

To solve the above system of FBDEs we impose a solution of the form: 

,   ,...,5,U U U U

jt jt jt jtN W M i j= + =λ  

where U

jtN  and U

jtM are functions to be determined. Taking differentials we have: 

( ) 
2

1 2      

U U U U U U

jt jt jt jt jt jt

U U U U U U U U U U U U U U U U U

jt jt jt j jt jt j jt jt j jt jt t j j jt

d W dN N dW dM

W dN dM k B W N B W N B N M w A k B N dt

= + +

 = + + − + + + + 

λ

 

while from the backward equation of the system we have:

( ) ( ) ( )
2

1 1 1 1 1 2 .U U U U U U U U U U U U U U U U

jt j jt j jt jt j jt j jd k B W k B r W N k B r M k A k k B dt = − + + + + − +
  

λ  

A sufficient condition for the latter to be equal 

( ) ( ) ( )
2 2

1 12 ,

lim 0,

U U U U U U U U

jt j j j jt j

U

jt
t

dN B N k B r N k B dt

N
→

 = − + + −
  

=

 

which is a backward Riccatti equation (BRE) that can be solved numerically. 

And 

( ) ( )1 2 1 1 2 ,

lim 0,

U U U U U U U U U U U U U U U

jt j j j jt t j j j j j

U

jt
t

dM B N k B r M w A k B N k A k k B dt

M
→

 = − + + − − + − +
 

=
 

which given the solution of Riccatti for U

jN  is a backward linear first-order ordinary 

differential equation (ODE). 

 

Substituting the linear solution form to the forward equation of the FBSDEs system, 

we have: 

( )1 2

00 0

,

,

U U U U U U U U U U

jt jt jt jt j j t j j

U

dW k N B W B M w A k B dt

W w

 = − + + + − +
 

=
 ( 14 ) 

which is a forward linear ODE. Then the backward adjoint variable follows from the 

linear transformation and the optimal water use follows from the optimality condition. 

Downstream Case 

On the other hand, the downstream country water consumption/production depends 
on the inflow from the upstream country, and the runoff generated within the country’s 
share of the water stock in the downstream area. Based on the given availability of 



water, the downstream country maximizes its NBper exit stage (j,k) quantified as 
follows: 

( ) ( )
5 5

( ) , .D D D D D D

jk l l jk jk l

l k l k

NB SB w F S TC S w
= =

= + −   ( 15 ) 

Hence, the downstream country maximization problem is given by  

   

( )

( )   

1 1

1 1

5 5 5 5

1 1 1 1     

5

5

5
1     

max max

( )

    max

,

D D

U U D D
j j k k

D

U U D D
j j k k

D D rt D

jk jk
w w

k j k j T t T T t T

D D D

l lt jkt

l krt

w
k D DT t T T t T

jkt lt

l k

J J E e NB dt

SB w F S

E e dt

TC S w

− −

− −

−

= = = =     

=−

=     

=

 
 

= =  
  

  
+  

  = 
  −   

    


 



   1 1

5

1

5
2 2

15 5

5
1 1     

2 3 2 1

1
( )

2
    max ,

( )

D

U U D D
j j k k

j

D
D D D Dl
lt lt l jktD D

l krt l l

w
k j D D D D DT t T T t T

jkt jkt lt

l k

a
w w c S

b b
E e dt

S k k S w− −

=

=−

= =     

=








   
−  + +   

   =  
 

 
 + + − −

    




  



η

η η

( 16 ) 

where D

jkJ represents the downstream country’s net social benefit of the (j,k)-thexit 

stage, j, k=1,2,…,5, and 
1 1 5( ,  ,  ...,  )D D D Dw w w w=  is the sectorial water extraction 

vector process for the downstream country, subject to the river basin annual renewable 

water resource equation of (1), the upstream country water resources equation of (2), 

the runoff flow equation of (3), the outflow equation of (5), and the stock of water (state 

variable) in the downstream area equation of (4). 

For the(j,k)-th exit-stage we have the Hamiltonian:  

( )
5

2 2

5 1

5

2 3 2 1

1
, ,..., , ( )

2

                                          ( )

                                           +

D
D D D D D D D Dl
jk jk kt t jkt lt lt l jktD D

l k l l

D D D D D

jkt jkt lt

l k

jk

a
H S w w w w c S

b b

S k k S w


=

=

 
−  + + 

 

+ + − −





η

η η

λ
5 5

,              , 1, 2,...,5,D U D

t t it lt t t

i j l k

W w w R O j k
= =

 
− − + − = 

 
 

 

where D

jkλ  is the (j,k)-thexit stage adjoint variable that represents water scarcity rents 

for the downstream country. The necessary conditions for optimality are given as 

follows:  

2 1

1
( ) 0,    ,...,5,

D D
jk D D D Dl

lt jkt jktD D D

lt l l

H a
w k k S l k

w b b


= −  − − − = =


λ  ( 17 ) 



5

1 1 2          2 .

D

jkD D D D D D D D

jkt jkt jkt lt jkt jkt

l kjkt

H
d r dt d k w S r dt

S =

   
= − +  = − − − +       

λ λ λ η η λ  ( 18 ) 

From (18) we have that 

2 1

1
( ),   ,...,5,

D
D D D Dl
jkt lt jktD D

l l

a
w k k S l k

b b
= −  − − =λ  (20) 

which implies that 

5 5

1

1
= .D D D U D

jkt lt t it lt t tD
i j l kl

d dw k W w w R O dt
b = =

 
−  + − − + − 

 
 λ  

Substituting the last two relationships back to (19) we obtain:                 

5 5

1

5

1 1 2 2 1

1
   

1
2 ( )

D D U D

lt t it lt t tD
i j l kl

D
D D D D D D Dl

lt jkt lt jktD D
l k l l

dw k W w w R O dt
b

a
k w S r w k k S dt

b b

= =

=

 
−  + − − + − 

 

   
= − − − + −  − −  
   

 

 η η

 

which simplifies to 

2 1 1

5

2 1

( ) 2D D D D D D D

lt l jkt l l jkt

D

lt D D D D U

l l t it t t

i j

r w b k k S a b S

dw dt
b b k W w R O

=

  + − − +   
=   

+ + − + −  
   



η

η
  

for l = k, …,5.  

From the first optimality condition, we have that: 

2 1( ) ,     ,...,5.D D D D D D D

lt l l jkt l jktw a b k k S b l k= − − − =λ  

Then substituting to the state equation we have: 

5 5 5 5 5

1 2

D D D D U D D D

jkt l jkt l jkt t it t t l i

l k l k i j l k l k

dS k b S b W w R O a k b dt
= = = = =

    
= − + + − + − − +    

    
    λ  

while substituting to the adjoint equation we have 

( )
5 5 5 5

2

1 1 1 1 1 2 22D D D D D D D D D D D D D

jkt l jkt l jkt l l

l k l k l k l k

d k b S k b r k a k k b dt
= = = =

        
= − − + + − + −       

        
   λ η λ η  

Setting 

5
U U

j i

i j

A a
=

   and  

5
U U

j i

i j

B b
=

  we obtain the system of FBDEs: 



( ) 

5

1 2

2

1 1 1 1 1 2 2

000 0

,

2 ,

,    lim 0,      , 1, 2,...,5.

D D D D U D D D

jkt k jkt k jkt t it t t k k

i j

D D D D D D D D D D D D D

jkt k jkt k jkt k k

D

jkt
t

dS k B S B W w R O A k B dt

d k B S k B r k A k k B dt

S s j k

=

→

 
= − + + − + − − + 
 

   = − − + + − + −   

= = =

λ

λ η λ η

λ

 

To solve the above system of FBDEs we impose a solution of the form: 

,D D D

jkt jkt jkt jktN S M= +λ  

where D

jkN  and D

jkM  are functions to be determined. Taking differentials, we have: 

( )
5

2

1 2

        

       ,

D D D D

jkt jkt jkt jkt jkt jkt

D D

jkt jkt jkt

D D D D D D D D U D D D D

k jkt jkt k jkt jkt k jkt jkt t it t t k k jkt

i j

d S dN N dS dM

S dN dM

k B S N B S N B N M W w R O A k B N dt
=

= + +

= +

   
+ − + + + − + − − +  
   



λ

 

while from the backward equation of the system we have: 

( ) 2

1 1 1 1 1 1 2 22 .D D D D D D D D D D D D D D D D

jkt k jkt k jkt jkt k jkt k kd k B S k B r S N k B r M k A k k B dt     = − − + + + + − + −     
λ η η  

A sufficient condition for the latter to be equal is given by 

( ) ( ) ( )
2 2

1 1 12 2 ,

lim 0,

D D D D D D D D D

jkt k jkt k jkt k

D

jkt
t

dN B N k B r N k B dt

N
→

 = − + + − −
  

=

η
 

which is a BRE that can be solved numerically. 

Also 

( )
5

1 2

1 1 2 2

,

                                     

lim 0,

D D D D D U D D D D

k jkt k jkt t it t t k k jktD
i jjkt

D D D D D D

k k

D

jkt
t

B N k B r M W w R O A k B N
dM dt

k A k k B

M

=

→

  
− + + − − + − − +  

=   
 

− + − 

=



η
 

which given the solution of Riccatti for D

jkN  is a backward linear first-order ordinary 

differential equation (ODE). 

Substituting the linear solution form to the forward equation of the FBSDEs system, 

we have: 

( )
5

1 2

000 0

,

,

D D D D U D D D

jkt jkt jkt k jkt t it t t k k

i j

dS k N S B M W w R O A k B dt

S s

=

 
= − + + + − + − − + 
 

=


 ( 19 ) 



which is a forward linear ODE. Then the backward adjoint variable follows from the 

linear transformation and the optimal water use follows from the optimality condition. 

1.2 COOPERATIVE APPROACH 

The 2016 power sharing agreement provides a mandate for the Kenya-Ethiopia 

Electricity Highway Project (or the Eastern Electricity Highway Project), which will let 

the construction of a 1,000km power line to run from Ethiopia to Kenya to be completed 

by 2018.1 The agreement is built upon an MoU signed in 2006 between the Ethiopian 

Electric Power Corporation and the Kenya Electricity Transmission Company for the 

joint development of the project.2 The environmental and social impact assessment 

report was approved in 2012, although it has been criticised as it was conducted after 

any objection could be made.3 Following a World Bank loan of US$684 million,4 

construction began in June 2016.5 While the 2016 agreement is not yet publicly 

available, it is reported that the agreement will allow Ethiopia to supply Kenya with 400 

megawatts of hydro-power at less than 1 US cent/kwh.6 However, the hydro-power 

source (or sources) that will supply this transmission line is not officially stated, 

although the World Bank modified an official project report specifying that power would 

be sourced “from Ethiopia’s Gilgel Gibe hydropower scheme”,7 changing the reference 

to the dam in its next report instead to “Ethiopia’s power grid”.8 

In this section, we present the model of the inter-sectoral water sharing strategy 

between the upstream and downstream country in a cooperative setting. In particular, 

the downstream country offers a discounted price for food exports to the upstream 

country, in exchange for greater transboundary water flow that results in a higher water 

reserve accumulation and sequentially in a higher production of food. In what follows, 

we utilize a differential Stackelberg “leader–follower” game to determine the inter-

sector optimal water allocation between the upstream and downstream country. The 

conditions for stability in water sharing are explored with respect to increasing variance 

in water flow due to climate change. The upstream country represents the leader and 

applies his strategy first, a priori knowing that the follower downstream country, 

observes its actions and a posteriori moves accordingly. First, we find the solution to 

the follower’s problem of maximizing a payoff function, and then, using the follower’s 

reaction strategy, we maximize the leader’s objective function. 

Since all the model coefficients are deterministic functions of time, we assume that the 

respective countries use Markovian perfect strategies.  These strategies are decision 

rules that dictate optimal action of the respective players, conditional on the current 

values of the state variables (upstream level of water resources, level of water stock 

reserves downstream, etc), that summarize the latest available information of the 

dynamic system. The Markovian perfect strategies determine a subgame perfect 

equilibrium and define an equilibrium set of decisions dependent on previous actions. 

                                                

1(“Ethiopia, Kenya to enhance cooperation on energy sector.,” n.d.) 
2(“Kenya-Ethiopia Electricity Highway, Kenya,” n.d.) 
3(Abbink, 2012) 
4(“AFCC2/RI-The Eastern Electricity Highway Project under the First Phase of the Eastern Africa Power Integration Program,” 

n.d.) 
5(“Kenya-Ethiopia Electricity Highway, Kenya,” n.d.) 

6(“Ethiopia, Kenya to enhance cooperation on energy sector.,” n.d.) 
7(Resettlement Action Plan (RAP) Final Report 2012, n.d.) 
8(Resettlement Policy Framework Draft Report 2012, n.d.) 



Downstream Case 

Given the intersectoral water abstraction policy ( )1 5,...,U U Uw w w= that is announced by 

the upstream country, the downstream country is faced with the same maximization 

problem with the one of the non-cooperative case, i.e., maximize (16)subject to the 

state equations (2) - (6). For every j,k=1,2,…,5, the (j,k)-th exit stage Hamiltonian of 

the system is also given by (17) and its necessary conditions for optimality by (18)

and(19). From (18) the optimal response policy of the downstream country is 

represented by 

2 1( ) ,     ,...,5,      1,...,5,D D D D D D D

lt l l jkt l jktw a b k k S b l k j= − − − = =λ  ( 20 ) 

which together with(18) we have that 

2 1

1
( ),   ,...,5,      1,...,5,

D
D D D Dl
jkt lt jktD D

l l

a
w k k S l k j

b b
= −  − − = =λ  ( 21 ) 

which implies that 

5 5

1

1
= .D D D U D

jkt lt t it lt t tD
i j l kl

d dw k W w w R O dt
b = =

 
−  + − − + − 

 
 λ  

Substituting the last two relationships back to (20) we obtain:                 

5 5

1

5

1 1 2 2 1

1
   

1
2 ( ) ,

D D U D

lt t it lt t tD
i j l kl

D
D D D D D D Dl

lt jkt lt jktD D
l k l l

dw k W w w R O dt
b

a
k w S r w k k S dt

b b

= =

=

 
−  + − − + − 

 

   
= − − − + −  − −  
   

 

 η η

 

which simplifies to 

2 1 1

5

2 1

( ) 2

,      ,...,5.

D D D D D D D

lt l jkt l l jkt

D

lt D D D D U

l l t it t t

i j

r w b k k S a b S

dw dt l k
b b k W w R O

=

  + − − +   
= =  

+ + − + −  
   



η

η
 ( 22 ) 

The second optimality condition may be written   

5

1 2 1 1 2( ) 2 ,D D D D D D D D D D D

jkt l l jkt l jkt jkt jkt

l k

d k a b k k S b S r dt
=

 
 = − − − − − − +  

 
λ λ η η λ  

which implies to 

5 5 5

1 2 1 1 2 1( ) 2 .D D D D D D D D D D D

jkt l l jkt jkt l jkt

l k l k l k

d k a b k k S S r k b dt
= = =

  
= − − − − − + +  

  
  λ η η λ  ( 23 ) 

Also, the stock of the water state equation can be written as 

5 5 5 5

2 1( ) .U D D D D D D

jkt t it t t l l jkt l jkt

i j l k l k l k

dS W w R O a b k k S b dt
= = = =

 
= − + − − + − + 
 

    λ  ( 24 ) 



 

Upstream Case 

The upstream country receives now food benefits from the downstream country 

denoted by the concave quadratic function of water stock jkS  per (j,k)-th exit stage: 

2

1 2 3( ) , ,      , 1,2,...,5,U U U U

jk jk jkF S S S j k= + + =η η η  

where 
1 2 30,  ,  U U U  η η η  are constants, and its NB function is given by  

( ) ( )
5 5

( ) , ,      , 1,2,...,5.U U U U U U U

jk i it jkt jt it

i j i j

NB SB w F S TC W w j k
= =

= + − =   ( 25 ) 

Therefore, the upstream country, anticipating the downstream country’s optimal 

response as analysed in the previous case, chooses the optimal water abstraction 

vector process 1 2 5( ,  ,  ...,  )U U U Uw w w w=  under cooperation by solving the following 

maximization problem: 

   

( )

( )   

1 1

1 1

5 5 5 5

1 1 1 1     

5

5

5
1     

max max

( )

    max

,

U U

U U D D
j j k k

U

U U D D
j j k k

U U rt U

jk jk
w w

j k j k T t T T t T

U U U

i it jk jkt

i jrt

w
j U U UT t T T t T

jt it

i j

J J E e NB dt

SB w F S

E e dt

TC W w

− −

− −

−

= = = =     

=−

=     

=

 
 

= =  
  

  
+  

  = 
 
− 
 

    


 



   1 1

5

1

5
2

5 5

5
1 1 2    

1 2 3 2 1

1
( )

2
    max ,

, ( )

U

U U D D
j j k k

k

U
U U Ui
it it iU U

i j i irt

w
j k U U U U U U UT t T T t T

jkt jkt jt it

i j

a
w w c

b b
E e dt

S S k k W w− −

=

=−

= =     

=






 
 



   
−  +   

   =   
  + + + − −
    




  

η η η

 ( 26 ) 

subject to the state equation of the (j,k)-th exit stage (3) and Hamiltonian system of 

the downstream country, i.e. (25) and (26). 

For the (j,k)-th exit stage we have the augmented Hamiltonian: 

( )
5

2

5 2 1

5
2

1 2 3

1
, , , ,..., , , , ( ) ( )

2

                                               +

   

U
U U D U U U U U U U U Ui
jk jt jkt jkt jt t j t j t j t it it i jt itU U

i j i i

U U U U

jkt jkt jkt t it

i j

a
H W S w w w w c k k W w

b b

S S W w

  
=

=

 
−  + − − 

 

 
+ + + − 

 





λ μ ν ξ

η η η μ

5 5 5 5

2 1

5 5

1 2 1

                                            ( )

                                               + (

U D D D D D D

jkt t it t t l l jkt l jkt

i j l k l k l k

D D D D D

jkt l l

l k l k

W w R O a b k k S b

k a b k k S

= = = =

= =

 
+ − + − − + − + 

 

− − −

   

 

ν λ

ξ
5

1 2 1) 2 ,D D D D D

jkt jkt l jkt

l k

S r k b
=

    
− − + +   

    
η η λ

 

where ( ), ,j j j  μ ν ξ  is the vector of the associated adjoint variables. The necessary 

conditions for optimality are given below: 



2 1

1
( ) 0,      ,...,5,

U U
jk U U U Ui

it jt jkt jktU U U

it i i

H a
w k k W i j

w b b


= −  − − − − = =


μ ν ( 27 )

   

5

1          ,

U

j U U

jkt jkt jkt it jktU
i jjt

H
d r dt d k w r dt

W



=

   
= − +  = − +   

    
μ μ μ μ  ( 28 ) 

( )
5 5

2

1 2 1 1 1

    

2 2 ,

U

j

jkt jkt

jkt

U U D D D D D

jkt jkt l jkt l jkt jkt

l k l k

H
d r dt

S

d S k b k b r dt





= =

 
= − +  

  

    
= − − + + + +    

    
 

ν

η η ν η ξ ν

( 29 )

5 5

1         ,        (0) 0.

U

j D D D

jkt jkt jkt l jkt l jktD
l k l kjt

H
d r dt d b k b dt



= =

   
= − +  = − − =       

 ξ ξ ξ ν ξ ξ
λ

 ( 30 ) 

From the first optimality condition we have 

2 1( ) ,   ,...,5,U U U U U U U U

it i i jt i jkt i jktw a b k k W b b i j= − − − − =μ ν  

which implies to 

2 1

1
( ),       ,...,5,

U
U U U Ui

jkt jkt it jtU U

i i

a
w k k W i j

b b
+ = − − − =μ ν  ( 31 ) 

and 

( )
5

1

1
.U U U

jkt jkt it t itU
i ji

d dw k W w dt
b =

 
+ = − + − 

 
μ ν  

Adding by parts (28), (29) and (31) and substituting in the resulting equation the last 

two relationships, we get that 

( )

5

1

5 5 5
2

1 1 2 1 1 1

2 1

1
   

2 2

,
1

( W )

U U U

it t itU
i ji

U U U U D D D D D

it jkt l jkt l jkt

i j l k l k

U
U U U Ul
it jtU U

l l

dw k W w dt
b

k w S k b k b

dt
a

r w k k
b b

=

= = =

 
−  + − 

 

  
− − − + + +  

  
=  

  + −  − −  
  



  η η ν η ξ  

which simplifies to 

( )

2 1 1 1 2

5 5
2

1 1 1

( W ) 2

,      ,...,5.

     2

U U U U U U U U U U U U

it i jt i i t i jkt i

U

it

D U D U D D D

i l jkt i l jkt

l k l k

r w b k k a k b W b S b

dw dt i j

k b b b k b
= =

 
  + − − + + +  
 

= = 
 

    − − +        
 

η η

ν η ξ

 ( 32 ) 



The relationships in (32) forms a system of differential equations to be solved for the 

optimal water abstraction 
U

iw per each sector i =1, 2, …, 5 by the upstream country, 

in the leader-follower cooperative setting explained above, and the respective 

endogenous switching times U

jT , j =1, 2, …, 5. 

From the first optimality condition we have: 

2 1( ) ,   ,...,5U U U U U U U U

it i i jt i jkt i jktw a b k k W b b i j= − − − − =μ ν .  ( 33 ) 

Then the state equation may be written as 

2 1( W )U U U U U U U U

jt t j j jt j jkt j jktdW W A B k k B B = − + − + + μ ν  

which implies that 

1 2

00 0

,

.

U U U U U U U U U

jt j jt j jkt j jkt t j j

U U

dW k B W B B W A k B dt

W w

 = − + + + − + 

=

μ ν
 ( 34 ) 

Similarly, 

 

1 1 2

2

000 0

,

,

U U U D D D U U U U U

j jt k jkt j jkt j jkt j jkt t j j

jkt D D D

t t k k

k B W k B S B B B W A k B
dS dt

R O A k B

S s

 − − + + + + − +
=  

+ + − +  

=

λ μ ν

( 35 ) 

and  

( ) ( ) 2

1 1 1 1 1 2 22 ,

lim 0.

D D D D D D D D D D D D D

jkt k jkt k jkt k k

D

jkt
t

d k B S r k B k A k k B dt

→

 = − + + + − + −
  

=

λ η λ

λ

η
 ( 36 ) 

Furthermore, the adjoint equation may take the equivalent form 

( ) ( )
2

1 1 1 1 1 2 ,

lim 0.

U U U U U U U U U U U U

jkt j jt j jkt j jkt j j

jkt
t

d k B W r k B k B k A k k B dt

→

 = − + + + − +
  

=

μ μ ν

 μ
 

( ) ( ) 2

1 1 1 1 22 2 ,

lim 0.

U D D D D D U

jkt jkt k jkt k jkt

jkt
t

d S r k B k B dt

→

 = − + + + + −
  

=

ν η ν η ξ η

ν
 

1

0

,

0.

D D D

jkt k jkt k jkt

jk

d B k B dt = − − 

=

ξ ν ξ

ξ
 

Assume that 1 2 3 0D D D= = =η η η  and 1 0U =η . We are looking for solutions of the form 

jkt jkt jkt jktN M= +ν ξ  ( 37) 

where 
jkN  and 

jkM are functions to be determined. 

Taking differentials, we have  



( )1 ,D D D

jkt jkt jkt jkt jkt jkt jkt jkt jkt k jkt jkt k jkt jktd N d dN dM dN dM B N k B N dt= + + = + + − −ν ξ ξ ξ ν ξ  

while the relationship for 
jkν may be written equivalently  

( ) ( ) ( ) 2

1 1 1 2 .D D D D D D U

jkt k jkt k jkt k jktd r k B N k B r k B M dt = + + + + −
  

ν ξ η  

A sufficient condition for the latter to be equivalent to  

( ) ( ) ( )
2 2

1 12 ,

lim 0

D U D D U D D

jkt k jk k jkt k

jkt
t

dN B N k B r N k B dt

N
→

 = − + + +
  

=

 

which given the solution of the Riccati for 
jkN  is a backward linear first order ODE. 

Substituting the linear solution form to the forward equation for 
jkξ we have 

1

0

,

0,

D D D

jkt k jkt jkt k jkt

jk

d B N k B M dt  = − + −  

=

ξ ξ

ξ
 

which is a forward linear ODE. Then the backward variable 
jkν  follows from the 

linear transformation. 

Given that 
jkν and 

jkξ  are known to be the previous scheme. impose the following 

linear transformation between the variables: 

U

jkt jkt jt jktW= +μ Λ Ξ  

where 
jkΛ  and 

jkΞ  are functions to be determined. 

Taking differentials, we have 

 2

1 2

       

         

U U

jkt jkt jt jt jkt jkt

U

jt jkt jkt

U U U U U U U U U

j jkt j jkt jt j jkt jkt j jkt jkt t j j jkt

d dW W d d

W d d

B k B W B B W A k B dt

= + +

= +

   + − + + + − +   

μ Λ Λ Ξ

Λ Ξ

Λ Λ Λ Ξ ν Λ Λ

 

while the relationship for 
jkμ may be formulated as  

( ) ( ) ( ) 2

1 1 1 1 1 1 2

U U U U U U U U U U U U U U

jkt j j jkt jt j jkt j jkt j jd k B k B r W k B r k B k A k k B dt = − + + + + + − +
  

μ Λ Ξ ν

. 

A sufficient condition for the latter to be equivalent is 

( ) ( )
2

2

1 12 ,

lim 0,

U U U U U

jkt j jkt j jkt j

jkt
t

d B k B r k B dt

→

 = − + + −
  

=

Λ Λ Λ

Λ
 

which is a backward Riccati that can be solved numerically. And 



( )1 2

1 1 1 2

,

lim 0,

U U U U U U U

j jkt j jkt j jkt jkt t j j jkt

jkt
U U U U U U U

j jkt j j

jkt
t

B k B r B W A k B
d dt

k B k A k k B

→

    − + + − − − +   =  
+ − +  

=

Λ Ξ ν Λ Λ
Ξ

ν

Ξ

 

which given the solution of the above Riccati for 
jkΛ is a backward linear first order 

ODE. 

Substituting the linear transformation to the forward equation for U

jW  we have 

 1 2

00 0

,

,

U U U U U U U U U U

jt j j jkt jt j jkt j jkt t j j

U U

dW k B B W B B W A k B dt

W w

 = − + + + + − + 

=

Λ Ξ ν
 

which is a forward SDE. 

Then the backward variable 
jkμ follows from the linear transformation. 

Given now that U

jW and 
jkμ are also known variables we impose again a similar 

linear transformation 

,D

jkt jkt jkt jktS= +λ Π Σ  

where 
jkΠ  and 

jkΣ  are functions to be determined. 

Taking differentials, we have 

2

1 1

2 2

       ,

D

jkt jkt jkt jkt jkt jkt

D D D D U U U

k jkt k jkt jkt k jkt jkt j j jkt

jkt jkt jkt U U U U U D D D

j jkt j jkt t j j t t k k jkt

d dS S d d

B k B S B k B W
S d d dt

B B W A k B R O A k B

= + +

  − + −  
= + +  

 + + + − + + − − +   

λ Π Π Σ

Π Π Π Σ Π
Π Σ

μ ν Π

 

while the relationship for D

jkλ  may be written equivalently 

( ) ( ) ( ) 2

1 1 1 1 1 2 .D D D D D D D D D D D D

jkt k k jkt jkt k jkt k kd k B r k B S r k B k A k k B dt = − + + + − +
  

λ + Π Σ . 

A sufficient condition for the latter to be equivalent is 

( ) ( ) ( )
2 2

1 12 ,

lim 0,

D U D D U D D

jkt k jk k jkt k

jkt
t

d B k B r k B dt

→

 = − + + −
  

=

Π Π Π

Π
 

which is a backward Riccati that can be solved numerically. 

And 



( )1

1 2 2

1 1 2

,

lim 0,

D D D

k jkt k jkt

U U U U U U U U D D D

jkt j j j jkt j jkt t j j t t k k jkt

D D D D D

k k

jkt
t

B k B r

d k B W B B W A k B R O A k B dt

k A k k B

→

  − + +
  
 

 = − − + + + − + + − − +  
 
− + 
 

=

Π Σ

Σ μ ν Π

Σ

 

which given the solution of the above Riccati for 
jkΠ is a backward linear first order 

ODE. 

Substituting the linear transformation to the forward equation for 
jkS  we have 

1 1

2 2

000 0

,

.

D D D U U U U U

k jkt jkt k jkt j jt j jkt j jkt

jkt U U U D D D

t j j t t k k

B k S B k B W B B
dS dt

W A k B R O A k B

S s

  − + − + +  
=  

+ − + + − − +  

=

Π Σ μ ν

 ( 38 ) 

Then the backward variable D

jkλ  follows from the linear transformation. 

In the following section, we aim to estimate the main components of our model using 

a stochastic frontier model and a quadratic production function, the form of which 

remains unknown. In order to identify the production function, we need to estimate the 

sample coefficients of its main variables, which in order to be a good reflection of their 

real values, they need to be unbiased, consistent and efficient.  

 

2. THE ECONOMETRIC MODEL 

 

Estimation of production functions has always been a difficult exercise. The reason is 

that inputs like capital and labor are correlated with the error term for at least three 

reasons. First, decisions about inputs depend on overall productivity. The second 

source is measurement errors in the right-hand-side variables. The third source is from 

profit maximization, i.e., the firms choose inputs and output simultaneously to 

maximize profit. 

Olley and Pakes [OP] (1996) use investment as a proxy for such unobservable 

shocks, while Levinsohn and Petrin [LP] (2003) use intermediate inputs as a better 

proxy that may respond more smoothly to unobserved productivity shocks. Both 

approaches which are widely used in the literature have been subject to criticism. This 

paper presents a new estimation method of firm-level productivity dealing with the 

endogeneity problem which is pervasive in production function estimation. 

Neither OP nor LP are devoid of problems (see Gandhi, Navarro, and Rivers[GNR] 

(2017), Ackerberg, Caves and Fraser [ACF] (2015), and Doralzeski and Jaumendreu 

(2013)). GNR (2017) show that, besides the collinearity problem pointed out by ACF 

(2015), both the OP and LP estimators suffer from the lack of relevant instruments for 

the endogenous inputs in the model. Ackerberg, Caves and Frazer (2006) have shown 



that the OP and LP approaches to estimating TFP have a problem of collinearity if 

labor and intermediate inputs depend on TFP just like investment. GNR (2017) also 

propose a nonparametric treatment of the production function. There could also be 

non-linearity due to capital-labour substitution in the sense that when labour input is 

costly, capital could be substituted to replace labour, making the relationship 

endogenous and non-linear.  

In a substantive extension of the model, we introduce technical inefficiency in 

production and we allow for autocorrelated TFP. Bayesian analysis is performed using 

a Sequential Monte Carlo / Particle-Filtering approach.  

Consider the following stochastic frontier model: 

( , ; ) , 1, , , 1,...,
it it it it it

y x z v u i n t Tj b= + - = =K  ( 39 ) 

where 
it

y  is the output of  firm i  and date t  , ()j  is an unknown functional form,
it

z  

is a 1p  vector of exogenous inputs, 
it

x  is a 1p  vector of endogenous inputs, b  is 

a 1d   vectors of unknown parameters, 
it

v  is a symmetric random error,
it

u  is the one-

sided random disturbance representing technical inefficiency. We assume that 
it

z  is 

uncorrelated with 
it

v  and 
it

u  but 
it

x  is allowed to be correlated with 
it

v  and possibly 

with 
it

u .  This, of course, generates an endogeneity problem. We also assume that 

it
u  and 

it
v  are independent and leave the form of 

it
u  unrestricted. The model can 

be easily extended to the case of exogenous (environmental) variables are included in 

the distribution of technical inefficiency (see for example, Battese and Coelli (1995) 

and Caudill, Ford and Gropper (1995)). 

 

To address the endogeneity problem, we propose an approach which does not require 

the use of instrumental variables, which can often be weak or unreliable, is based on 

copula functions to determine the joint distribution of the endogenous regressors and 

the composed errors that effectively capture the dependency between them. 

We first assume that 
2. . . (0, )it vv i i d N σ   and 2. . . (0, )it uu i i d N σ  . Then the density of 

( , ; )it it it it it itv u y x z= − = −ε φ β   is given by: 

0

2
( ) ( ) ( ) it it

it v it it u it itg f u f u du
    

= + = −   
   


ε λε

ε ε
σ σ σ

φ Φ   ( 40 ) 

where 
2 2 2

v u= +σ σ σ  , /u v=λ σ σ  , ( )φ  and ( )Φ  are the probability density function 

and cumulative distribution function of a standard normal random variable, 

respectively. To avoid the non-negativity restrictions we make use of the following 

transformation: log( )=λ λ and 
2 2log( )=σ σ . Let 

2 ) θ=(β , λ,σ   then it follows that 

the conditional pdf of y   given x  and z   is 

( , ; )2
( | , ) ( ( , ; ))it it it

it it it it it

v

y x z
f y x z y x z

 − 
= − −  

   

φ β λ
φ β

σ σ σ
φ Φ   ( 41 ) 

and conditional log-likelihood is then given by 



1 0

log ( ) log ( ; | , ).
n T

it

i t

L f y x z
= =

=θ θ                                   ( 42 ) 

 

2.1 COPULA APPROACH 

In this subsection, we propose an approach that models the dependence between the 

endogenous regressors and the composed error terms directly via a copula function 

which does not require the use of instruments. At this stage, e do not introduce 

dynamic latent productivity, which is left for subsection 2.2. For rigorous treatment on 

copulas, see for example Nelsen (2006). We take the function ()j  as given and 

provide its construction in subsection 2.2. 

To this end, let 
1

( , , , )
p

F x x eK  be the joint distribution of 
1

( , , )
p

x xK  and 
i

e . Now since 

the information contained in the correlation between 
1

( , , )
p

x xK  and 
i

e  is also 

contained in its joint distribution, and if this is known to belong to a class of parametric 

density, then consistent estimates of the model parameters can be obtained by simply 

maximizing the log-likelihood function derived from 
1

( , , , )
p

F x x eK . Thus, there is no 

need for resorting to instruments nor to consistently estimate the parameters of the 

model.  

In practice, however, 
1

( , , , )
p

F x x eK  is typically unknown. To address this problem, we 

follow Park and Gupta (2012) and suggest a copula approach to determine this joint 

density. The copula essentially captures the dependence in the joint distribution of the 

endogenous regressors and the composed errors. For exposition purpose, suppose 

we have a joint distribution of 1( , , , )px x ε   with joint density 1( , , , )pf x x ε , and let 

( )
j j

f x , ( )j jF x , for 1, ,j p= , ( )g ε  and ( )G ε   denote the marginal density and CDF 

of jx   and ε , respectively.  

Also, let C denotes the “copula function” defined for 1

1 1( , , ) [0,1]p

p

+

+ ξ ξ   by 

1 1 1 1 1 1( , , ) ( ( ) , , ( ) , ( ) )p p p p pC P F x F x G+ +=   ξ ξ ξ ξ ε ξ   

, so that the copula function is itself a CDF.  

Moreover, since ( )j jF x   and ( )G    are marginal distribution function, each component 

( )j j jU F x=   and ( )U G=ε ε   has a uniform marginal distribution (see for example Li 

and Racine, 2007 in Theorem A.2). Let 1( , , )pc ξ ξ   denotes the pdf associated with 

1( , , )pC ξ ξ , then by Sklar’s theorem (Sklar,1959), we have 

( )1 1 1

1

( , , , ) ( ), , ( ), ( ) ( ) ( ).
p

p p p j j

j

f x x c F x F x G g f x
=

= ε ε ε  ( 43 ) 

Thus, equation (41) shows that the copula function completely characterizes the 

dependence structure of 
1

( , , , )
p

x x eK , and  
1

( , , ) 1
p

c x x =K  if and only if 
1

( , , , )
p

x x eK  

are independent of each other.  



To obtain the joint density in (41), we need to specify the copula function. One 

commonly used copula function is the Gaussian copula. Other copula functions such 

as Frank, Placket, Clayton, and Farlie-Gumbel-Morgenstern can also be used. The 

Gaussian copula is generally robust for most application (Song, 2000) and has many 

desirable properties (Danaher and Smith, 2011).  

Let , 1p+ΣΦ  denote a ( 1)p + -dimensional CDF with zero mean and correlation matrix Σ

. Then the ( 1)p + -dimensional CDF with correlation matrix Σ  is given by 

   ( )1 1 1

, 1 1( ; ) ( ), , ( ), ( )p pC w U U U− − −

+= Σ εΣ Φ Φ Φ Φ   

, where 
1 1 1

( , , , ) ( ( ), , ( ), ( ))
p p p

w U U U F x F x G
e

e= =K K .  

The copula density is:  

( )

( ) ( )( )

1/2

'
1 1 1 1 1 1 1

1 1 1

( ; ) det( )

1
exp ( ), , ( ), ( ) ( ), , ( ), ( ) .

2
p p p

c w

U U U I U U U 

−

− − − − − − −

+

= 

 
−  − 
 

Σ Σ

Φ Φ Φ Φ Φ Φ
     ( 44 ) 

The log-likelihood function corresponding to (3) is:  

1 1, , ,

1 1 1

log ( , ) ln ( ( ), , ( ), ( ; ); ) ln ( ) ln ( ; ) ,
pn T

it p p it it j j it it

i t j

L c F x F x G f x g
= = =

 
= + + 

 
 θ Σ ε θ Σ ε θ  ( 45 ) 

where 
2 ) θ=(β , λ,σ  and the form of (.)c  is given in (42). Notice that the first term in the 

summation in (45) is derived from the copula density and this term reflects the 

dependence between the endogenous variables and the composed errors. In addition, 

since the marginal density ( )
j j

f x  does not contain any parameters of interest, the 

second term in the summation in (45) can be dropped from the log-likelihood function. 

Finally, it is clear from (43) that if there is no endogeneity problem, (45) collapses to 

the log-likelihood function of the standard stochastic frontier models. 

 

By maximizing the log-likelihood function in (43), consistent estimates of (θ, Σ)  can be 

obtained, and this can be done as we describe below. 

 

1. Estimation of ( ), 1, ,
j j

F x j p= K ; and ( ; )G ε θ  

Since ( )
j ji

F x  are unknown and we have an observed sample of 

, 1, , ; 1, ,
ji

x j p i n= =K K ; in the first step, we can estimate ( )
j ji

F x by  

, 0

1

1
1( ), 1, , ,

1

n

nj j it j

i

F x x j p
nT =

=  =
+
  ( 46 ) 

where 1(.)  is an indicator function. Note that in (8), we have used the rescaling factor 

1 / ( 1)nT +  rather than 1 / nT  to avoid difficulties arising from the potential 

unboundedness of the ( )1 1, ,ln ( ), , ( ), ( ; );it p p it itc F x F x G ε θ Σ  as some of the ( )
j j

F x  tend 

to one. To estimate ( ; )
it

G e q , note that its density ( ; )itg ε  θ  is given in (1) and by 



definition, ( ; ) ( ; )
it

itG g s ds
−

= 
ε

ε θ θ , thus ( ; )G ε θ  can be estimated using numerical 

integration, and let denotes the estimator of ( ; )G ε θ .  

 

2. Maximization of the log-likelihood function 

Maximization of the log-likelihood function in (5) with ( )
j j

F x  and ( ; )
it

G ε  θ  are replaced 

( )j jF x  and , respectively, i.e., by their estimates 

 1 1

1

ˆ ˆ( , ) arg max ln ( ( ), , ( ), ( ; ); ) ln ( ; )
n

i p pi i i

i

c F x F x G g
 =

=  +
θ Θ,Σ

θ Σ ε θ ε θ  ( 47 ) 

 

3. Estimating Technical Inefficiency 

Once the parameters have been estimated, the ultimate goal is to predict the values 

of the technical inefficiency term iu , and this can be calculated based on Jondrow et 

al. (1982): 

2

ˆ ˆˆ ˆ ˆˆˆ ( / )ˆˆ ( | ) ,
ˆ ˆ ˆˆ ˆ1 1 ( / )

it it
it it it

it

u E u
 

= = − 
+ −  

λε σ λεσλ
ε

σλ λε σ

φ

Φ
  ( 48 ) 

where ˆˆ ( , ; )it it it ity x z= −ε φ β   and � �β, λ  and 2σ̂  are the parameter estimates obtained 

from the approach discussed above. 

 

2.2 LOCAL LIKELIHOOD ESTIMATION 

 

The functional form ( , ; )
it it

x zφ β   was left unspecified so far. Of course, any parametric 

form can be used but here we focus on non-parametric estimation by the local 

likelihood method. We use the simpler notation ( ; )itxφ β as the extension to the case 

of exogenous covariates is straightforward. Since we have a multivariate covariate, we 

use the method of local linear estimation. This means that all parameters of the model 

become functions of x , and they are denoted by ( )xθ . We denote the conditional 

density of y  given x  by ( | ) ( ; ( )),p y x g y x= θ   where ( ) kx θ  is unknown and we 

define ( ; ( )) log ( ; ( ))q y x g y x=θ θ . For example, a standard frontier would take the 

form: 

( ) ,it it it ity m x v u= + −    ( 49 ) 

where ( ) ( )2 2| ~ 0, ( ) ,  | ~ 0, ( )it it v it it it u itv x N x u x N xσ σ  . Then we have 

2 2( ) ( ), ( ), ( )v ux m x x x
 =  θ σ σ . 



 

Our fundamental departure from the standard model is the introduction of 

productivity: 

= + + −( , ) ,
it it it it it it

y m x z v u                                                    ( 50 ) 

where the productivity process is as follows: 

                                ( )
    

− − −

2

, 1 , 1 , 1
| , ~ ( , , ), ( , , ) .

it it i t i t it it i t it it
x N r x z x z   

In this specification, 
−, 1

( , , )
i t it it

r x z  is a non-parametric productivity mean process, 

and 


 
−

2

, 1
( , , )

i t it it
x z  is the variance. For ease in notation we omit explicit dependence 

on z and we continue to denote ( ) kx   with  

2 2 2

1 1( ) ( ), ( , ), ( ), ( ), ( , ) ,v ux m x r x x x x− −

 =  ωθ ω σ σ σ ω  

where 
1

w
-

 denotes the lagged value of productivity. As productivity is latent special 

problems are introduced into the analysis. 

There is a multivariate kernel which satisfies: 

2
( ) 1,   ( ) .

d
K u du uu K u du I= =   

To fix notation, we start with the analysis of the simpler model in (11). The conditional 

local linear log-likelihood is given by9 

( ) ( )1 11 1
log ( , ) ( , ) ,

n T

o it o it H iti t
L q y x x K x x 

= =
 = +  − −                                        ( 51 ) 

where   
1

,
o
   is a vector ( 1k   ) and matrix (k d  ) respectively, H  is a bandwidth 

matrix which is symmetric, positive definite and ( ) ( )
1

1

H
K u H K H u

−
−= . We choose 

a multivariate product kernel so that 
1

( ) ( )
d

j jj
K u K u

=
=   in which case 

( )2

1 1 1 1
( ) ( ) .

d
uu K u du u K u du I =   

The local linear estimator is ˆ ˆ( ) ( )ox x=θ θ   where ˆ ( )o xθ   and ( )1
ˆ xΘ  maximize the log-

likelihood 1( , )oL θ Θ   with respect to 1,oθ Θ . Computational details are in Kumbhakar et 

al.  (2007), (Sections 3.1 and 3.2) and we follow this paper closely. 

For the model with latent productivity 
it

w  as in (12) the likelihood function is  

 ( ) ( ) 1 11 1
( , ) ( , , ) ,

nT

n T

o it it o it H iti t
L g y K d   

= =
 = +   −    −     ( 52 )          

where , 1,it it i tx −

 =  Λ ω  ,  1,x −
=Λ ω , and  

                                                
9 In fact we include zit in the kernel functions because, in this instance, they represent important 

environmental variables that help in modeling heterogeneity. For ease in notation we redefine x=[x’, 

z’]’. 



 

 

( )

, 1 1

1 1

( ; ( ))2 ( )
, ; ( ) ( ( ; ( )))

( ) ( ) ( )

( , ; ( , ))1
                        .

( , ) ( , )

it it it
it it

v

it it i t

y x x x
g y y x x

x x x

r x x

x x

− −

− −

  − −
=  − − −  

   

− 
  

 ω ω

φ β ω λ
ω θ Λ φ β ω

σ σ σ

ω ω γ ω

σ ω σ ω

φ

φ

 ( 53 ) 

  

Moreover, ( )1,x −γ ω denotes the localized parameters in the r() function in (12). For 

ease in notation we define ( ) ( ) ( )1 1, , , kx x x− −

  = 
  

θ ω β γ ω .  

In (52) there is an nT -  dimensional integral which we cannot evaluate analytically, 

which is obvious from the definition of (53). The computation relies in two steps. 

Step 1: Integrate out  itω  from (14) using a Sequential Monte Carlo algorithm (Pitt 

and Shephard, 1997). 

Step 2: Maximize the resulting expression using numerical optimization techniques. 

 

For reasons of computational convenience and without sacrificing generality we 

assume  

  2

, 1 ,  ~ . . . (0, ).it i t it it i i d N−= + ξω ρω ξ ξ σ ( 54 )We will still need the SMC algorithm in 

step 1. For the SMC algorithm we use 106 particles per likelihood evaluation and a 

standard conjugate gradients algorithm for maximization. Our results were insensitive 

to using 105 or 107 particles per likelihood evaluation. 

3. EMPIRICAL RESULTS 

In this section we perform a simple nonparametric estimation of the production function 

per sector in each country, Ethiopia and Kenya, based on the econometric model 

described in Subsection 3.3.1. Our dataset includes 16 observations for each sector 

of these countries from 2000 to 2015. This methodology takes into account the regional 

differences in productivity between the upstream and downstream countries, which is 

a necessary categorization of these countries due to the formulation of the water 

resources management problem investigated in Section 1.2. 

Data preparation is a critical first step for building high performance predictive models. 

At first, we convert all the monetary variables to constant 2010 prices, since the prices 

we had available for each year of our period could not be used for comparisons thanks 

to inflation effects. Additionally, we perform all the necessary transformations of the 

variables to end up either with the same units of measurement or with suitably scaled 

data, so as to standardize predictions subject to the units of the regression coefficients.   

The results of the nonparametric estimation are reported in Table 1 and Table 2. Input 

and output variables were transformed to their corresponding log values and were 

normalized by their respective sample means. From the estimated production function 



for each of the two countries we can easily obtain their corresponding marginal product 

function, which is connected with the water use input variable via the relationship: 
= + α βMarginal product water use  ( 55 ) 

Both coefficients for each country turn out to have the expected signs. As explained at 

section 2.2, inverse demand function and it is expected to be equal to the marginal 

contribution of the water to the output of each sector given by equation (55). 

Consequently, the derived demand curve for water of the producer is represented at 

equation (56) showing producer’s demand for an input, i.e. the water, as a result of the 

demand for another related good, i.e. energy.  
a b= + Water use price  ( 56 ) 

where a  is the intercept of water demand of each sector and b the price elasticity of water 

demand. 

In order to calculate the price elasticities, we used the formula (57). In alignment with 

Figure 1, it is noticed that all sectors are exceptionally inelastic to a price change for 

water use, i.e. relatively large changes in price cause very small changes in demanded 

quantity of water. In particular, Agriculture seems to be perfectly inelastic to any price 

change, which means that in both countries the demanded quantity will remain stable 

for any price change and so the price cannot influence the water use. This implies an 

extremely strong relationship between the input, in this case water, and the 

corresponding output of each sector such as the seed-producing crops, since the 

producer lacks alternatives and so values highly the use of water. The elasticities for 

both countries are presented in Table 3. 

( )

( )

d

d
= 

water use price
price elasticity

price water use
 ( 57 ) 

  
Table 1 - Empirical results: β parameter for each Sector 

 Mining  Energy Tourism   Residential Agriculture 

Ethiopia -0.0010 -0.0014 -0.0012 -0.0013 -0.0000321 

Kenya -0.0011 -0.0013 -0.0010 -0.0015 -0.0000319 

 
Table 2 - Empirical results: α parameter for each Sector 

 Mining  Energy Tourism   Residential Agriculture 

Ethiopia 1.80 1.73 1.48 1.65 1.48 

Kenya 1.54 1.70 1.56 1.77 1.56 

 
Table 3 - Price elasticity for each Sector 

 Mining  Energy Tourism   Residential Agriculture 

Ethiopia -0.099 -0.131 -0.096 -0.116 -0.003 

Kenya -0.092 -0.120 -0.085 -0.143 -0.003 

 

Finally, the different demand curves, coming from equation (56)  for all 5 sectors of the 

OTB riparian countries, provide us with an ordering of these sectors via their demand 



function intercepts. Sequential exits from the market are defined by the relative 

importance of sector-specific demand parameter ratio a , with a =    . As water 

demand for each of these economic sectors reaches zero sequentially, its price 

increases revealing so producers’ preferences for water use. At these prices, in 

Ethiopia Tourism sector should exit the market first followed by the Residential and the 

Energy sector, while in Kenya Mining sector would exit the market first trailed by the 

Tourism sector. However, in both cases, in case of river/lake depletion, agriculture 

sector should be the last one to exit the market, since it is valuing water use more than 

any other sector.   

Figure 1 illustrates the derived demand for water of each sector in each country. In 

both cases, the agriculture sector is almost inelastic in water use declaring so, an 

intense connection between water use and crops, which is caused by the existence of 

large irrigation schemes in the basin. Moreover, producers in mining sector in Kenya 

values higher the water than in Ethiopia, and that happens because Kenya relies 

strongly on groundwater for mining production.   

 

 

 
 Figure 1 - Curves of the demand function of All Sectors for the Upstream and Downstream Country 



As presented at Figure 2, sampling distributions of water elasticities tend to not vary 

significantly between them. In particular, only the distribution for the residential sector 

in Ethiopia (upper panel) is shown to look like Normal distribution, while the others 

show disorders at their extreme cases. None of these means is the mode of the 

distribution as well, although the chasm between those values is not notable. In 

economic terms, the elasticities for water demand in each sector do not deviate 

remarkably, letting so similar behavioural patterns to be observed in each sector 

across the two countries of interest.  

 

 

 

Figure 2 - Sampling distributions of water elasticities by sector for Ethiopia (upper panel) and Kenya 
(lower panel) 

The second parameter of the inverse demand curve is the constant term, which is 

responsible for the starting point of the demand curve, revealing so the willingness to 

pay (WTP) of the stakeholders in each sector. Figure 3 shows the distributions of 

constant terms of the inverse demand functions and interestingly we can see that in 

most cases the WTP for water use in energy sector is greater than the corresponding 

one in agriculture and tourism, which implies greater profitability in energy sector. 

Additionally, in terms of WTP, mining sector in Ethiopia, which follows a leptokurtic 

distribution seems to be the most stable one. 

 



  

Figure 3 - Sampling distributions of constant terms by sector for Ethiopia (left) and Kenya (right) 

 

  

Figure 4- Sampling distributions of technical inefficiency by sector for Ethiopia (left) and Kenya 
(right) 

 

Figure 4 presents technical inefficiency parameter by sector for the two countries of 

interest. A zestful outcome is the fact that Mining and Residential sectors in Ethiopia 

follow exactly the same distribution with a positive skew to the right. In Energy and 

Tourism sector in both countries, uit has two district peaks (bimodal distribution), which 

indicates that in these sectors there are two groups of producers, some of them 

achieve to maximize their outputs given their inputs, while some others do not with 

technical inefficiency taking greater values than the former group. However, it is 

noteworthy that Energy sector is more technical efficient in comparison with Tourism, 

since the lowest peak of Tourism is as great at the biggest one of Energy sector 

Another important indicator is the technical change by sector as presented in Figure 5. 

Residential, Agriculture, Energy and Tourism in Ethiopia. distributions resemble 

Normal distribution, while Mining sector’s distribution has two peaks. However, in 

Kenya the peak of most distributions is in zero declaring so, that the majority of sectors 

remains stable without being engaged to innovative changes. 



 

  

Figure 5 - Sampling distributions of technical change by sector for Ethiopia (left) and Kenya 
(right) 

 

Figure 6 presents productivity growth by sector with more particular case the 

multimodal distribution of the Residential sector in Ethiopia. In this case, there are three 

district peaks, with zero growth rate. Agriculture sector in Ethiopia also formulates two 

peaks, with the most common having zero mean as well revealing so lack in developing 

new technologies and making so production more efficient. Additionally, the Tourism 

sector of Kenya also formulates two peaks, with the most common one lying in the 

positive side, which underlines the development advantage of the Tourism sector in 

comparison with the other sectors in both countries. 

 

  

Figure 6 - Sampling distributions of productivity growth (%) by sector for Ethiopia (left) and 
Kenya (right) 
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APPENDIX. SEQUENTIAL MONTE CARLO 

The particle filter methodology can be applied to state space models of the general 

form:  

 1( ) ( )T t t t t ty p y x s p s s −     (1) 

where ts  is a state variable. For general introductions see Gordon (1997), Gordon et 

al. (1993), Doucet et al (2001) and Ristic et al. (2004).  

Given the data tY  the posterior distribution ( )t tp s Y  can be approximated by a set of 

(auxiliary) particles  ( ) 1i

ts i N =   with probability weights  ( ) 1i

tw i N =   where 

( )

1
1

N i

ti
w

=
= . The predictive density can be approximated by:  

 
( ) ( )

1 1 1

1

( ) ( ) ( ) ( )
N

i i

t t t t t t t t t t

i

p s Y p s s p s Y ds p s s w+ + +

=

 =       (2) 

and the final approximation for the filtering density is:  

 
( ) ( )

1 1 1 1 1 1 1

1

( ) ( ) ( ) ( ) ( )
N

i i

t t t t t t t t t t t

i

p s Y p y s p s Y p y s p s s w+ + + + + + +

=

        (3) 

 

The basic mechanism of particle filtering rests on propagating  ( ) ( ) 1i i

t ts w i … N  =    to 

the next step, viz.  ( ) ( )

1 1 1i i

t ts w i … N+ +  =    but this often suffers from the weight degeneracy 

problem. If parameters k   are available, as is often the case, we follow Liu 

and West (2001) parameter learning takes place via a mixture of multivariate normals:  

 
( ) ( ) 2

1

( ) ( (1 ) )
N

i i

tt t t t

i

p Y w N a a b V   
=

  + −    (4) 

where ( ) ( )

1

N i i

t t ti
w  =

= , and ( ) ( ) ( )

1
( )( )

N i i i

t tt t t ti
V w   =

= − − . The constants a  and 

b  are related to shrinkage and are determined via a discount factor (0 1)    as 

2 1 2(1 )a b = −  and 
2 21 [(3 1) 2 ]b  = − −    See also Casarin and Marin (2007).  

Andrieu and Roberts (2009), Flury and Shephard (2011) and Pitt et al. (2012) provide 

the Particle Metropolis-Hastimgs (PMCMC) technique which uses an unbiased 

estimator of the likelihood function ˆ ( )
N

Yp   as ( )p Y   is often not available in 

closed form.  

Given the current state of the parameter ( )j  and the current estimate of the likelihood, 

say 
( )ˆ ( )j j

N
L Yp =  , a candidate c  is drawn from 

( )( )c jq    yielding 

ˆ ( )c c

N
L Yp =   . Then, we set ( 1)j c + =  with the Metropolis - Hastings probability:  



 
( )

( ) ( )

( ) (
min 1

( ( )

c c j c

j j c j

p L q
A

p L q

  

  

 
=   

 
 (5) 

otherwise we repeat the current draws: ( 1) 1 ( )j j j jL L + +   
   
   

 =  .  

Hall, Pitt and Kohn (2014) propose an auxiliary particle filter which rests upon the idea 

that adaptive particle filtering (Pitt et al., 2012) used within PMCMC requires far fewer 

particles that the standard particle filtering algorithm to approximate ( )p Y  . From 

Pitt and Shephard (1999) we know that auxiliary particle filtering can be implemented 

easily once we can evaluate the state transition density 1( )t tp s s − . When this is not 

possible, Hall, Pitt and Kohn (2014) present a new approach when, for instance, 

1( )t t ts g s u−=   for a certain disturbance. In this case we have:  

 
1 1( ) ( ) ( )t t t t t t tp y s p y s p s s ds− − =     (6) 

 

 1 1 1 1( ) ( ) ( ) ( )t t t t t t t t t tp u s y p y s u p u s p y s− − − −  =        (7) 

If one can evaluate 1( )t tp y s −  and simulate from 1( )t t tp u s y−   the filter would be fully 

adaptable (Pitt and Shephard, 1999). One can use a Gaussian approximation for the 

first-stage proposal 1( )t tg y s −  by matching the first two moments of 1( )t tp y s − . So in 

some way we find that the approximating density 

( )1 1 1( ) ( ) ( )t t t t t tp y s N E y s V y s− − − =    . In the second stage, we know that 

1 1( ) ( ) ( )t t t t t t tp u y s p y s u p u− −      . For 1( )t t tp u y s −   we know it is multimodal so 

suppose it has M  modes are ˆ
m
tu , for 1m … M=   . For each mode we can use a 

Laplace approximation. Let  1( ) ( ) ( )t t t t tl u log p y s u p u−=    . From the Laplace 

approximation we obtain:  

 
21

2
( ) ( ) ( ) ( )( )ˆ ˆ ˆ ˆ

m m m m
t t t tt t tl u l u l uu u u u+ −  −   (8) 

 

Then we can construct a mixture approximation:  

  2 1 2 11
1 2

1

( ) (2 ) exp ( ) (ˆ ˆ
M

d m m
t tt t t m m t m t

m

g u x s u uu u  −  −  −

−

=

  =    −  −   (9) 

where m = − 1
2 ( )ˆ

m
tl u

−

    and  exp ( )m

m tl u   with 
1

1
M

m=
= . This is done for each 

particle 
i

ts   This is known as the Auxiliary Disturbance Particle Filter (ADPF).  

An alternative is the independent particle filter (IPF) of Lin et al. (2005). The IPF forms 

a proposal for ts  directly from the measurement density ( )t tp y s  although Hall, Pitt 



and Kohn (2014) are quite right in pointing out that the state equation can be very 

informative.  

In the standard particle filter of Gordon et al. (1993) particles are simulated through the 

state density 1( )i i

t tp s s −  and they are re-sampled with weights determined by the 

measurement density evaluated at the resulting particle, viz. ( )i

t tp y s .  

The ADPF is simple to construct and rests upon the following steps:  

For 0 1t … T=   −   given samples 1( )k

t t ts p s Y    with mass 
k

tπ   for 1k … N=   .  

1) For 1k … N=     compute 1 1( )k k k

t t t t tg y s + +=  ω π    
1 1 11

Nk k i

t t t t t ti +  +  +=
= π ω ω   .  

2) For 1k … N=    draw 
11

( )
t

N i ik
t t t s ti

dss  += π δ  .  

3) For 1k … N=    draw 1 1 1( )k k
tt t tu g u ys+ + +     and set 1 1( )k k k

t t ts h s u+ +=    .  

4) For 1k … N=    compute  

1 1 1 1
1 1

1 1 1 11

( ) ( )
         

( ) ( )

k k k
k kt t t t
t t Nk k k i

tt t t t ti

p y s p u

g y s g u ys

+ + + +
+ +

+ + + +=


=  = 

   

ω
ω π

ω
                                          (10) 

It should be mentioned that the estimate of likelihood from ADPF is: 

1

1 1

1 11

( )
T N N

i i

T t t t

i it

p Y N
   
   −
    − 
   

= ==    

=   ω ω  (11) 

PARTICLE METROPOLIS ADJUSTED LANGEVIN FILTERS 

Nemeth et al. (2014) provide a particle version of a Metropolis Adjusted Langevin 

algorithm (MALA). In Sequential Monte Carlo we are interested in approximating

( )1t tp s Y  θ  . Given that: 

1 1 1 1 1 1( ) ( ) ( ) ( )t t t t t t t t tp s Y g y x f s s p s y ds    − −  − −           (12) 

where 1 1 1( )t tp s y −  −   is the posterior as of time 1t − . If at time 1t −  we have a set set 

of particles  1 1i

ts i … N−  =    and weights  1 1i

tw i …N−  =    which form a discrete 

approximation for 1 1 1( )t tp s y −  −   then we have the approximation:  

 1 1 1 1 1

1

ˆ ( ) ( )
N

i i

t t t t t

i

p s y w f s s −  − − −

=

       (13) 

 

See Andrieu et al. (2010) and Cappe at al. (2005) for reviews. From (13) Fernhead 

(2007) makes the important observation that the joint probability of sampling particle 

1

i

ts −  and state ts  is:  



 1 1

1

( ) ( )

( )

i i

t t t t
t i i

t t t t

w g y s f s s

q s s y

 


 
− −

−

   
= 

  
 (14) 

where 1( )i

t t tq s s y −    is a density function amenable to simulation and  

 1 1( ) ( ) ( )i i i

t t t t t t t tq s s y cg y s f s s   − −         (15) 

and c  is the normalizing constant in (12).  

In the MALA algorithm of Roberts and Rosenthal (1998)10 we form a proposal:  

 
2( ) ( )

12
log ( )c s s

Tz p Y    = + +     (16) 

where (0 )z N I  which should result in larger jumps and better mixing properties, 

plus lower autocorrelations for a certain scale parameter  . Acceptance probabilities 

are:  
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  




  
 =   

  
 (17) 

Using particle filtering it is possible to create an approximation of the score vector using 

Fisher’s identity:  

  1 1 1 1log ( ) log ( )T T T Tp Y E p s Y Y       =        (18) 

which corresponds to the expectation of:  

 1 1 1 1 1 1 1log ( ) log ( ) log ( ) log ( )T T T T T T T Tp s Y p s Y g y s f s s      −  − −   =     +   +      

over the path 1Ts  . The particle approximation to the score vector results from replacing 

1 1( )T Tp s Y     with a particle approximation 1 1
ˆ ( )T Tp s Y     . With particle i at time t-1 

we can associate a value 
1 1 1 1 1log ( )i i

t t tp s Y −  −  −=    which can be updated recursively. 

As we sample i  in the APF (the index of particle at time 1t −  that is propagated to 

produce the i th particle at time t) we have the update:  

 
1 1log ( ) log ( )ii i i i

t t t t t ta g y s f s s
  − −= +   +     (19) 

To avoid problems with increasing variance of the score estimate 1log ( )tp Y    we 

can use the approximation:  

 1 1 1( )i i

t t tN m V − − −   (20) 

The mean is obtained by shrinking 1

i

t −  towards the mean of 1t −  as follows:  

                                                
10The benefit of MALA over Random-Walk-Metropolis arises when the number of 

parameters n  is large. This happens because the scaling parameter   is 
1 2( )O n− 

for 

Random-Walk-Metropolis but it is 
1 6( )O n− 

 for MALA, see Roberts et al. (1997) and 

Roberts and Rosenthal (1998)  



 1 1 1 1

1

(1 )
N

i i i i

t t t t

i

m w  − − − −

=

= + −   (21) 

where (0 1)    is a shrinkage parameter. Using Rao-Blackwellization one can avoid 

sampling 
i

t  and instead use the following recursion for the means:  

 1 1 1 1

1

(1 ) log ( ) log ( )i i

N
i i i i i

t t t t t t t t

i

m m w m g y s f s s
    − − − −

=

= + − +   +   

 (22) 

which yields the final score estimate:  

 1

1

ˆlog ( )
N

i i

t t t

i

p Y w m

=

  =   (23) 

 

As a rule of thumb Nemeth, Sherlock and Fearnhead (2014) suggest taking 0 95 =  . 

Furthermore, they show the important result that the algorithm should be tuned to the 

asymptotically optimal acceptance rate of 15.47% and the number of particles must be 

selected so that the variance of the estimated log-posterior is about 3. Additionally, if 

measures are not taken to control the error in the variance of the score vector, there is 

no gain over a simple random walk proposal.  

Of course, the marginal likelihood is:  

 1 1 1 1

2

( ) ( ) ( )
T

T t t

t

p Y p y p y Y    −

=

 =      (24) 

where  

 
1 1 1 1 1 1 1( ) ( ) ( ) ( )t t t t t t t T t tp y Y g y s f s s p s Y ds ds   − − −  − −  =         (25) 

provides, in explicit form, the predictive likelihood.  
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