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Shaping the USDA Agriculture Innovation Agenda:

Addressing Agricultural Nonpoint Source Pollution from A

Point Source Perspective

By Linge Yang∗

Draft: October 2024

Agrochemicals are crucial for modern agriculture, but improper

use can cause nonpoint source pollution (NPS), harming water

quality and health. Despite recognizing agriculture as a major

NPS contributor, policies lag in addressing it. Current litera-

ture identifies three main approaches to mitigate NPS: voluntary

programs, economic incentives, and command and control regula-

tions, but lacks empirical studies. This paper introduces a produc-

tion efficiency model inspired by the input-based Best Management

Practices (BMPs) to tackle agrochemical overuse without affecting

yields. It aims to address NPS by providing empirical estimates to

guide evidence-based sustainable farming policies.

JEL: C61, Q15, Q18, Q53, D24

Keywords: Nonpoint Source Pollution, Best Management Prac-

tice, Chemical Runoff, Data Envelopment Analysis

I. Introduction

Chemical agents, formally known as agrochemicals, play a crucial role in modern

agriculture by protecting and enhancing production. About a half million tons of

pesticides, 12 million tons of nitrogen, and 4 million tons of phosphorus fertilizer
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are applied annually to crops in the continental United States (US EPA, 2023).

USDA Economic Research Service also provides statistics that demonstrate the

increasing importance of agrochemicals on U.S. farm operations. As reported by

(Wang et al., 2024), “the estimates of quality-adjusted and unadjusted fertilizer

quantities in 2019 were 2.5 times and 2 times (respectively) their 1948 level and

15 times and 8 times (respectively) for quality-adjusted and unadjusted pesticide

quantities.”

However, agrochemical products applied without consideration of the appropri-

ate dosage, timing and method will lead to chemical runoff, resulting in nonpoint

source pollution (NPS) that has deleterious effects on the environment and hu-

man health. For example, the American National Water Quality Assessment

shows that agricultural runoff is the leading cause of water quality impacts on

rivers and streams, the third leading source for lakes, and the second largest

source of impairments to wetlands (US EPA, 2023).

Nitrate, a compound found in fertilizer, can easily enter drinking water in agri-

cultural areas. A 2010 report on nutrients in ground and surface water by the

U.S. Geological Survey found that nitrates were too high in 64 percent of shallow

monitoring wells in agricultural and urban areas (US EPA, 2013). Once taken

into the body, nitrates are converted into nitrites and high levels of nitrite in

drinking water can cause methemoglobinemia or “blue baby syndrome”. Infants

under six months who drink water with high levels of nitrate can become seriously

ill and die (US EPA, 2024).

Phosphorus is another type of nutrient for soil fertility and crop nutrition,

commonly present in fertilizers. When runoff from landscapes carries phosphorus

into lakes and streams, it can trigger harmful algae blooms that deplete oxygen

in the water, leading to “dead zones” in aquatic ecosystems (O’Brien, 2015).
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II. Literature Review

Agriculture is the leading contributor to nonpoint source pollution in water-

ways (Dowd et al., 2008), yet policymakers have responded slowly and ineffec-

tively. Unlike point source pollution, nonpoint source pollution often discharges

in pulses and is challenging to attribute to specific polluters. Given the complex-

ities of identifying and monitoring nonpoint source pollution, current literature

emphasizes the need for effective policy instruments to mitigate NPS, from the

perspective of a government regulator.

As summarized by the literature survey (Dowd et al., 2008), there are three

primary policy instruments for mitigating NPS: voluntary measures, economic

incentives, and command and control regulations.

The voluntary approach, which aims to enhance environmental quality without

mandatory participation, is often the preferred option for both polluters and reg-

ulators. (Alberini & Segerson, 2002; Lyon & Maxwell, 2002; Segerson & Walker,

2002) have grouped voluntary environmental programs into three types: unilat-

eral action, negotiated agreement, and voluntary government program.

Economic incentives approach is the most cost-effective method to mitigate

the harmful effects of pollution, as advocated by many economists. In various

parts of the United States, an additional fee on agrochemicals—whether through

a lump-sum or per-unit tax—has been implemented primarily to fund pollution

control programs rather than to limit the use of polluting inputs. For instance,

California has introduced a sales tax of 2.1 cents per dollar on agrochemicals to

generate funds for producer training initiatives (California Department of Pesti-

cide Regulation, 2024).

The concepts of ambient tax and subsidy have been introduced in the literature

following the seminal paper “Uncertainty and Incentives for Nonpoint Pollution

Control” (Segerson, 1988), which offers a theoretical framework for managing non-

point source pollution by monitoring ambient pollutant concentrations. Recent

experimental studies, including those by (Reichhuber et al., 2009), have tested
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this theory through laboratory and field experiments. Under this mechanism, the

government provides targeted subsidies to farmers when observed pollution levels

fall below a specified threshold, while imposing penalties if pollution exceeds that

threshold. An ambient tax can be more effective than traditional input regula-

tion and monitoring, provided that ambient concentrations can be measured at

a lower cost and with acceptable accuracy. However, ambient concentrations can

fluctuate significantly due to weather and other unpredictable events, potentially

leading to unfair treatment of farmers who are genuinely trying to reduce pol-

lution. For instance, if upstream farmers increase their discharges, the efforts of

downstream farmers to lower their emissions may go unrecognized (Shortle et al.,

1998).

The Command and Control (CAC) approach involves the government set-

ting environmental quality standards and imposing penalties for non-compliance.

While there is extensive literature on regulating point source pollution, there is

limited research on the application of CAC policies to mitigate agricultural non-

point source pollution. Generally, CAC policies can be categorized into design

standards, which dictate how polluters manage their operations, and performance

standards, which regulate total emissions. According to (Wu & Babcock, 1999),

design standards are the most commonly used method to address agricultural

pollution, while performance standards are gradually gaining attention, as re-

flected by the Mineral Accounting System (MINAS) in the Netherlands and Best

Management Practice (BMPs) in the United States.

MINAS exemplifies a performance standard that employs economic incentives

to encourage compliance. It follows a “farm-gate balanced approach” (van den

Brandt & Smit, 1998) to track the total nitrogen and phosphorus inputs and

outputs of individual farms. The difference between inputs and outputs represents

the farm surplus, which is assumed to be lost to the environment. This surplus

is then compared to an environmentally safe standard, and farmers incur a per-

kilogram tax penalty for excessive discharges (Ondersteijn et al., 2002). However,
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MINAS has been deemed a failure due to implementation challenges across various

farm types, particularly in poultry farms (OECD, 2005).

The United States has adopted a similar performance- and input-based ap-

proach to address NPS, under the umbrella term Best Management Practices

(BMPs). The goal is to encourage farmers, in collaboration with university ex-

tension programs and farm service agencies, to implement cost-effective and ap-

pealing farming methods tailored to individual farms. According to the USDA

Agricultural Research Service, a single practice rarely resolves pollution issues;

instead, a combination of measures is often necessary. Each farm operator must

determine the most suitable combination of BMPs based on specific soil types, cli-

mate conditions, and management practices. However, the implementation costs

for certain BMPs, such as structural measures like manure storage systems, can

be quite high (Sharpley et al., 2006). As a result, farmers may have financial in-

centives to choose and implement inappropriate or poorly designed BMPs, which

may not yield measurable improvements in environmental performance.

(Sharpley et al., 2006) provides a comprehensive report on BMPs aimed at

minimizing the negative impacts of phosphorus (P) on water quality in agricul-

tural production systems. A key method within source BMPs is to prevent the

accumulation of P in the soil beyond levels necessary for optimal crop growth

by regulating P at the farmgate, particularly through effective fertilizer man-

agement. Efficient fertilizer management relies on regular soil testing, selecting

appropriate nutrient application rates to meet realistic crop yield expectations,

and applying commercial fertilizers using recommended methods that enhance

nutrient availability to growing crops (Havlin et al., 2013). By carefully choosing

the rate, method, and timing of P applications, farmers can significantly reduce

the potential for P loss in runoff, thereby mitigating nonpoint source pollution.
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III. Contribution

The literature on agricultural nonpoint source (NPS) pollution is relatively

limited and primarily consists of analytical models. Given the scarcity of empirical

studies in this area, a new approach that can provide quantifiable information

would greatly benefit practitioners, especially in an era that emphasizes evidence-

based policymaking for the public good.

To fill a large gap in the literature, the biggest contribution of this project is

to offer fresh insights into agricultural NPS, particularly from a point source per-

spective. Building upon the input-based Best Management Practices approach,

we propose a two-stage production efficiency model that can offer quantitative

estimates to inform policy formulation and educational training for extension

programs.

By utilizing micro-level farm production data collected through nationwide sur-

veys conducted by the USDA National Agricultural Statistics Service, we can

estimate the amount of agrochemicals that can be reduced on each farm without

compromising yield. Unlike the traditional BMPs where farmers have financial

incentives to choose poorly designed practices, farmers of all types (including

commercial and hobby farmers) have financial incentives to reduce chemical us-

age to lower their operational costs. By tackling excessive agrochemical use and

minimizing pollutant accumulation in the soil, we can decrease chemical runoff

and the resulting diffuse water contamination, thereby reducing NPS.

IV. Estimation Method

The primary estimation method utilized in this study is the Data Envelopment

Analysis (DEA), a nonparametric model used to evaluate the technical efficiency

of one decision-making unit (DMU) compared to the production frontier (Charnes

et al., 1978, 1981). It is the most powerful and useful methodology for the estima-

tion of production functions and has been used extensively to supply new insights
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into activities (and entities) in a range of industries (Cooper et al., 2007). As

explained in (Ray, 2004), DEA employs a linear programming method instead of

the familiar least squares regression analysis that requires an explicit form of the

production function and makes only a minimum number of assumptions about

the underlying technology. Therefore, it produces no standard errors and leaves

no room for hypothesis tests.

A range of DEA models have been developed that measure efficiency in different

ways. These largely fall into the categories of being either input-oriented or

output-oriented. Within input-oriented DEA, the linear programming model is

configured to determine how much input use a firm could contract to achieve the

same amount of output. Output-oriented DEA, on the other hand, is designed to

determine a firm’s potential output given its inputs if it operates efficiently. (Ray,

2004) points out that input- and output-oriented measures of technical efficiency

of a firm will be different in most cases except for the case of constant returns to

scale (CRS) when the average productivity at the projected reference points on

the frontier is the same.

Since the primary objective of this paper is to reduce agricultural nonpoint

source pollution by finding the optimal dosage of agrochemicals applied on each

farm without comprising the yield, the traditional input-oriented DEA model

using cross-sectional data will be the base (näıve) model and the input-oriented

DEA model with fixed input constraints is the extension.

Considering the traditional input-oriented radial DEA model with a cross-

section of N farms, t outputs, and z inputs. The technical efficiency for farm
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i can be measured with θt.

min θT

s. t.
n∑

i=1

λiYit ≥ Yit

n∑
i=1

λiXiz ≤ θTXiz

N∑
i=1

λi = 1

λi ≥ 0

0 ≤ θT ≤ 1

Now we have the extended input-oriented DEA model with fixed input con-

straints. In this case, we consider input O to be the farmers’ freely chosen input

variable. Input F is fixed input that cannot be easily adjusted within the short-run

time frame.

min θa

s. t.
n∑

i=1

λiYit ≥ Yit

n∑
i=1

λiXiO ≤ θaXiO

n∑
i=1

λiXiF ≤ XiF

N∑
i=1

λi = 1

λi ≥ 0

0 ≤ θa ≤ 1

The idea of this model can be easily interpreted through Figure 1 and 2. As

demonstrated by Figure 1 where point A represents a farm that is not operating

efficiently, the input-oriented radial projection of point A onto the isoquant would
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be point B. Thus, the radial technical efficiency measure would be θt = OB/OA.

This implies the farm operator can reduce both inputs and still produce the

output level y = y0 using the input bundle B.

Following the extension fixed-input model, Point A’s fixed input radial projec-

tion onto the isoquant would be point C. In this case, input 2 is held constant

while input 1 is our target input. Therefore, θa would be CD/AD and input 1

can be reduced by 1− θa without decreasing output.

Figure 2 mirrors Figure 1 by representing the linear programming model in a

3D plot with origin O. In this diagram, the production technology set (produc-

tion possibility curve) is represented by plane ABCD. Point F represents the

inefficient farm with output level measured by the length of segment IF. The

quantity for input 1 can be measured by the length of OH and the the quantity

for input 2 can be measured by the length of OF. Point E is the reference point

on the production frontier for when we hold input 2 constant and only reduce

input 1. Point G is the reference point for the simultaneous input reduction. In

both cases, the output level is held constant.

V. Dataset

Given that this paper aims to address agricultural nonpoint source pollution

from a point source perspective, micro-level farm production information is essen-

tial for our analysis. The USDA National Agricultural Statistics Service (NASS)

provides two valuable micro-level survey datasets that can be used for this pur-

pose. The first dataset is the Census of Agriculture, a nationwide survey con-

ducted every five years that collects information on farmland use and ownership,

production practices, and financial information. The second dataset is the Agri-

cultural Resource Management Survey (ARMS), which is the primary and only

source of information available for objectively evaluating many critical issues re-

lated to production practices in the U.S. agricultural system.
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Figure 1. Projection Diagram with Two Inputs and Isoquant

Figure 2. Projection Diagram with Two Inputs and One Output
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VI. Estimation Example

As a demonstration of the estimation model proposed in this project, I randomly

generated some fake observations based on the information available from the

requested variable list of the Ag Census. The purpose of the self-generated pseudo-

dataset is to demonstrate the mathematical model/algorithm that can be applied

directly to the actual dataset to answer the proposed research problem. Using 35

hypothetical data observations representing 2017 Ag Census Connecticut berry

farms, the list of requested variables is summarized in Table 1. 1

Table 2 provides the unweighted summary statistics for the variables based on

35 self-generated observations. We utilized our background knowledge of Con-

necticut’s small and medium-sized berry farms to ensure the numbers accurately

reflect reality. Note that we used the cost of commercial fertilizer, agricultural

chemicals, seeds, and fuel instead of their actual quantities, as the survey ques-

tionnaire did not explicitly ask for this type of information in quantity volume.

It is reasonable to assume that the prices of these inputs do not vary significantly

within a particular state in a given year. Therefore, in a cross-sectional analysis,

the cost of each input serves as a good proxy for this quantity to do a production

efficiency analysis.

In addition, the biggest advantage of constructing the technology frontier using

cross-sectional data is that it eliminates the effects of changes in input quality

over time. As detailed by Wang et al. (2024), fertilizers used in American agricul-

tural production include more than 50 different combinations of major elements,

such as nitrogen (N), phosphorus (P), and potassium (K), and have experienced

significant quality changes over time. Similarly, pesticides have altered in terms

of potency, persistence, toxicity, absorption rate, and application rate.

Table 3 presents unweighted summary statistics from the radial input-oriented

1We opted to use labor quantity rather than labor cost as an input variable to ensure the inclusion
of unpaid farm workers in our model. Given that New England farms are often small to medium-sized
family businesses, typically operated by a husband and wife, it is crucial to account for family workers
when defining labor input.
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DEA and the fixed-inputs models. Column 1 indicates that, on average, CT

berry farms need only 86.6% of their inputs to achieve the same output. Column

2 shows that a typical CT berry farm can maintain crop yields by reducing com-

mercial fertilizer use by 4% without changing other inputs. Column 3 reveals that

these farms can use 74.5% of their current agricultural chemicals while keeping

other inputs constant, without reducing output. Lastly, column 4 suggests that

CT berry farms, on average, can apply 83.5% of their current chemical levels,

maintaining the same output while holding other inputs constant.

To accurately reflect the broader population of CT berry farms, such as com-

pensating for sampling and non-response bias of the survey, the results of the first

stage DEA model should be weighted. As demonstrated by Table 4, the second

stage summary statistics table of technical efficiency, Column 1 suggests that on

average, CT berry farms only need to use 85.4% of all its input to achieve the

same output level. Column 2 shows that a typical CT berry farm can maintain

the same amount of output by reducing 3.4% of its commercial fertilizer without

any change of its other inputs. Similarly, as shown by column 3, a typical CT

berry farm can apply 72.8% of its current level of agricultural chemicals and hold

other input levels constant without decreasing its output. Lastly, column 4 indi-

cates that CT berry farm, on average, can apply 82% of its current level of all

chemicals given the same amount of input.
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Table 1—Requested Ag Census Variable List

Variable Name Variable Meaning Master varname 2017
POID Farm ID ID for Farm
K60 State State of Farm
K1330 Berries Sales Value Berries Sales Value
K1501 Commercial Fertilizer Cost Operator (+LL) Expenditure for Commercial Fertilizer
K1502 Ag Chemical Cost Operator (+LL) Expenditure for Agricultural Chemicals
K1503 Seed Cost Operator (+LL) Expenditure for Seeds, Bulbs, Etc
K3401 Unpaid Labor Quantity Unpaid farm workers, number
K941+k942 Paid Labor Quantity Hired Workers less than 150 Days + Hired Workers 150

Days or More
K1510 Labor Cost (hired farm

and ranch labor)
Operator (+LL) Expenditure hired labor

K1511 Labor Cost (contract la-
bor)

Operator (+LL) Expenditure for contract labor

K1507 Fuels Cost Operator (+LL) Expenditure Dollars for Fuels and Oils
K46 Operational Acres Total Acres of Land in This Place, Acres
Survey Weight Ag Census Weight Ag Census Weight
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Table 2—Unweighted Summary Statistics of Variables

Unweighted
Summary
Stat

Weight Berry
Sales
Value

Total
Labor

Commercial
Fertilizer
Cost

Ag
Chemi-
cal Cost

Seed
Cost

Fuel
Cost

Operation
Acres

Mean 3.51 39728.23 10.83 11879.74 27.40 24.54 476.11 116.51
Standard Er-
ror

0.19 13329.33 1.18 2544.14 2.40 2.58 32.72 24.06

Median 4 7000.00 8 6300 32 25 492 70
Mode 4 1000 5 10000 43 5 736 76
Standard De-
viation

1.15 78857.38 6.99 15051.32 14.22 15.28 193.56 142.35

Kurtosis -0.91 9.53 -0.71 2.02 -1.41 -1.04 -1.12 2.20
Skewness -0.29 3.08 0.76 1.72 -0.40 0.09 -0.10 1.79
Range 4 349960 24 54996 43 50 688 490
Minimum 1 40 2 4 3 0 106 1
Maximum 5 350000 26 55000 46 50 794 491
Sum 123 1390488 379 415791 959 859 16664 4078
Count 35 35 35 35 35 35 35 35
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(1) (2) (3) (4)
Unweighted
Summary Stat

InputOrientedTE CFOrientedTE CHEOrientedTE FECHEOrientedTE

Symbol θt θCF θCHE θFECHE

Mean 0.87 0.96 0.75 0.84
Standard Error 0.03 0.02 0.06 0.05
Median 1.00 1.00 1.00 1.00
Mode 1.00 1.00 1.00 1.00
Standard Devia-
tion

0.19 0.11 0.35 0.27

Sample Variance 0.04 0.01 0.12 0.07
Kurtosis -0.21 5.90 -0.95 0.64
Skewness -1.08 -2.64 -0.88 -1.43
Minimum 0.40 0.58 0.10 0.17
Maximum 1.00 1.00 1.00 1.00
Sum 30.31 33.57 26.08 29.24
Count 35 35 35 35

Table 3—Unweighted Summary Statistics of Technical Efficiency
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(1) (2) (3) (4)
Weighted Sum-
mary Stat

InputOrientedTE CFOrientedTE CHEOrientedTE FECHEOrientedTE

Symbol θt θCF θCHE θFECHE

Mean 0.854 0.966 0.728 0.82
Count 123 123 123 123

Table 4—Weighted Summary Statistics of Technical Efficiency
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VII. Policy Implication

This study aligns well with the USDA Agriculture Innovation Agenda (AIA),

which aims to increase U.S. agricultural production by 40% while reducing the

environmental footprint by 50% by 2050. This study also echoes the Next Gen-

eration Fertilizer Challenges, a joint EPA-USDA initiative that encourages re-

searchers to develop advanced fertilizer formulations to enhance crop yields and

environmental outcomes. The empirical model presented in this study serves as a

valuable tool for determining optimal fertilizer application dosage for each farm,

thereby promoting sustainable agricultural practices. Unlike the Next Genera-

tion Fertilizer Challenge, which focuses on fertilizer quality, the model proposed

in this study emphasizes the application quality at individual farms. By deter-

mining the extent to which agrochemical use can be reduced without impacting

output, we can enhance environmental benefits while sustaining agricultural pro-

ductivity. In addition, this study also helps to sustain the economic viability of

American farm operations. Many farmers apply more agrochemicals than neces-

sary, leading to waste and economic inefficiency, which significantly undermines

the competitiveness of U.S. agricultural producers.

Additionally, the two-stage estimation model of this project can be used to

estimate the theoretical chemical input reduction for other crop type, not just for

berry production demonstrated in the example. Corn, the largest consumer of

fertilizer in the United States and globally, is a primary crop of interest in the Next

Gen Fertilizers Challenge. When applying the empirical model to corn farms, the

input choices will differ from those for berries; for instance, corn tractors may be

included in the technology set construction. Ultimately, this input-based, data-

driven approach to addressing agricultural nonpoint source pollution provides

a new solution that can enhance environmental sustainability and support the

economic viability of U.S. agriculture.



18 OCTOBER 2024

REFERENCES

Alberini, A., & Segerson, K. (2002). Assessing Voluntary Programs to Improve

Environmental Quality. Environmental and Resource Economics, 22(1), 157–184.

https://doi.org/10.1023/A:1015519116167

California Department of Pesticide Regulation. (2024). Mill Assessment Office.

https://www.cdpr.ca.gov/docs/mill/masesmnu.htm

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of

decision making units. European Journal of Operational Research, 2(6), 429–444.

https://doi.org/10.1016/0377-2217(78)90138-8

Charnes, A., Cooper, W. W., & Rhodes, E. (1981). Evaluating Program and

Managerial Efficiency: An Application of Data Envelopment Analysis to Pro-

gram Follow Through. Management Science, 27(6), 668–697.

Cooper, W. W., Seiford, L. M., & Tone, K. (2007). General Discussion. In W. W.

Cooper, L. M. Seiford, & K. Tone (Eds.), Data Envelopment Analysis: A Com-

prehensive Text with Models, Applications, References and DEA-Solver Software

(pp. 1–20). Springer US. https://doi.org/10.1007/978-0-387-45283-8_1

Dowd, B. M., Press, D., & Huertos, M. L. (2008). Agricultural nonpoint source

water pollution policy: The case of California’s Central Coast. Agriculture,

Ecosystems & Environment, 128(3), 151–161. https://doi.org/10.1016/j.

agee.2008.05.014

Havlin, J. L., Tisdale, S. L., Nelson, W. L., & Beaton, J. D. (2013). Soil Fertility

and Fertilizers. Pearson Higher Ed.

Lyon, T. P., & Maxwell, J. W. (2002). “Voluntary” Approaches to Environmental

Regulation. In Economic Institutions and Environmental Policy. Routledge.

O’Brien, D. (2015, September 1). Using Gypsum to Help Reduce

Phosphorus Runoff. https://www.usda.gov/media/blog/2015/09/01/

using-gypsum-help-reduce-phosphorus-runoff

OECD. (2005). Manure Policy and MINAS: Regulating Nitrogen and Phos-



VOL. VOLUME NO. ISSUE AGRICULTURAL NONPOINT SOURCE POLLUTION 19

phorus Surpluses in Agriculture of the Netherlands. OECD Papers, 5(5), 1–47.

https://doi.org/10.1787/oecd_papers-v5-art18-en

Ondersteijn, C. J. M., Beldman, A. C. G., Daatselaar, C. H. G., Giesen, G. W.

J., & Huirne, R. B. M. (2002). The Dutch Mineral Accounting System and the

European Nitrate Directive: Implications for N and P management and farm

performance. Agriculture, Ecosystems & Environment, 92(2), 283–296. https:

//doi.org/10.1016/S0167-8809(01)00288-2

Ray, S. C. (2004). Data Envelopment Analysis: Theory and Techniques for Eco-

nomics and Operations Research. Cambridge University Press.

Reichhuber, A., Camacho, E., & Requate, T. (2009). A framed field exper-

iment on collective enforcement mechanisms with Ethiopian farmers. Environ-

ment and Development Economics, 14(5), 641–663. https://doi.org/10.1017/

S1355770X09005178

Segerson, K. (1988). Uncertainty and incentives for nonpoint pollution control.

Journal of Environmental Economics and Management, 15(1), 87–98. https:

//doi.org/10.1016/0095-0696(88)90030-7

Segerson, K., & Walker, D. (2002). Nutrient pollution: An economic perspective.

Estuaries, 25(4), 797–808. https://doi.org/10.1007/BF02804906

Sharpley, A., Daniel, T., Gibson, G., Bundy, L., Cabrera, M., Sims, T., Stevens,

R., Lemunyon, J., Kleinman, P., & Parry, R. (2006). Best Management Practices

To Minimize Agricultural Phosphorus Impacts on Water Quality (ARS-163).

United States Department of Agriculture. https://www.ars.usda.gov/is/np/

bestmgmtpractices/best%20management%20practices.pdf

Shortle, J. S., Horan, R. D., & Abler, D. G. (1998). Research issues in nonpoint

pollution control. Environmental and Resource Economics, 11(3–4), 571–585.

Scopus. https://doi.org/10.1023/a:1008276202889

US EPA, O. (2013, March 12). The Effects: Human Health [Overviews and Fact-

sheets]. https://www.epa.gov/nutrientpollution/effects-human-health



20 OCTOBER 2024

US EPA, O. (2023, December 20). Nonpoint Source: Agriculture [Overviews and

Factsheets]. https://www.epa.gov/nps/nonpoint-source-agriculture

US EPA, O. (2024, January 26). Potential Well Water Contaminants and Their

Impacts [Overviews and Factsheets]. https://www.epa.gov/privatewells/

potential-well-water-contaminants-and-their-impacts

van den Brandt, H. M. P., & Smit, H. P. (1998). Mineral accounting: The way

to combat eutrophication and to achieve the drinking water objective. Environ-

mental Pollution, 102(1, Supplement 1), 705–709. https://doi.org/10.1016/

S0269-7491(98)80102-4

Wang, S. L., Nehring, R., Mosheim, R., & Njuki, E. (2024). Measurement of

Output, Inputs, and Total Factor Productivity in U.S. Agricultural Productivity

Accounts (Technical Bulletin 1966).

Wu, J., & Babcock, B. A. (1999). The Relative Efficiency of Voluntary vs Manda-

tory Environmental Regulations. Journal of Environmental Economics and Man-

agement, 38(2), 158–175. https://doi.org/10.1006/jeem.1999.1075


