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Periodically homogeneous Markov chains: The discrete

state space case�

Abdelhakim Aknouche

Department of Mathematics, College of Science, Qassim University

Abstract

A uni�ed theory of periodically homogeneous Markov chains on countable state

spaces with periodically time-varying transition probabilities is introduced. The �nite-

dimensional probability distributions of these time-periodic chains are �rst studied

and their correspondence with the marginal distributions and transition probabilities

is shown. Then, the concepts of periodic stability/regularity and limiting behaviors

are proposed. The communicability and classi�cation of states necessary for estab-

lishing periodic stability are then examined. In particular, periodic irreducibility and

the main solidarity/class properties are presented, namely periodic recurrence, peri-

odic positive recurrence, periodic transience, and periodic aperiodicity. Furthermore,

su¢ cient conditions for periodic stochastic stability of time-periodic Markov chains are

derived. Finally, various applications to some operations research models and time se-

ries analysis are considered. In particular, periodic Markov decision processes, periodic

integer-valued time series models, and periodic Markov-switching time series models

are examined.

Keywords Time-periodic Markov chains, Harris periodic ergodicity, periodic irre-

ducibility, periodic recurrence, periodic stability, periodic invariant distributions, pe-

�An earlier version of this manuscript was completed in 2009.
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riodic integer-valued time series models, Markov-switching periodic models, periodic

Markov decision process.

1 Introduction

Most theories, models, methods, and applications concerning Markov chains are dedicated

to the homogeneous case in which the transition probabilities are time-invariant. However,

many random phenomena evolve in a non-homogeneous Markov way with rather time-varying

transition probabilities. Notable examples can be found in applied probability (Seneta, 1980;

Gray, 2001), time series analysis (Bittanti and Colaneri, 2009; Hurd and Miamee, 2007), and

operations research (e.g. White, 1993).

A particularly important case of non-homogeneity appears when the Markov chain has

periodic time-varying transition probabilities. We call this type of chains periodically homo-

geneous or time-periodic as opposed to the term "state-periodic" known for homogeneous

Markov chains. Time-periodic Markov chains are the basis of many periodic statistical mod-

els (Franses, 1996; Ghysels and Osborn, 2001; Franses and Paap, 2004; Hipel and McLeod,

2005), namely Markov-switching periodic autoregressive models (Ghysels et al, 1998; Ghy-

sels, 2000; Bac et al, 2001), periodic Markov decision processes (Carton, 1963; Riis, 1965;

Veugen et al, 1983; Jacobson et al, 2003), and periodic integer-valued time series models

(e.g. Monteiro et al, 2010; Aknouche et al, 2018) to name a few. Although a periodically

homogeneous Markov chain is a special case of inhomogeneous Markov chains whose theory

is well established (Seneta, 1980), it seems that a speci�c theory for the time-varying periodic

case is needed. In fact, while there are many scattered results indirectly addressing some

aspects of time-periodic Markov chains (e.g. Riis, 1965; Veugen et al, 1983; Jacobson et al,

2003; Bittanti and Colaneri, 2009), a general proper theory for time-periodic Markov chains

which parallel that of homogeneous Markov chains seem to be missing.

The aim of this work is to implement a speci�c theory for �nite/countable state-space

Markov chains whose transition probabilities are time-periodic with period S � 1. The case
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S = 1, degenerates into homogeneous Markov chains. Many elements of this theory for

time-periodic chains are similar to those existing of homogeneous Markov chains, but some

aspects that do not appear in the homogeneous case are worth showing. In particular, any

time-periodic chain can be partitioned into S interdependent homogenous sub-chains each

of which is relative to a channel (or season) representing the rest of division of any time by

the period S. Thus, the well-known theory of homogeneous Markov chains can non-trivially

be translated through these S homogeneous sub-chains to time-periodic Markov chains.

The rest of this paper is described as follows. Section 2 explores the �nite-dimensional

distributions of a periodically homogeneous Markov chain. The connection of these distri-

butions with the transition probabilities, the marginal distributions, and a periodic version

of Chapman-Kolmogorov identities are obtained. Section 3 introduces the main stability

concepts for time-periodic Markov chains. In Section 4, periodic irreducibility and the main

solidarity properties, namely periodic recurrence, periodic positive recurrence, periodic null

recurrence, periodic transience, and periodic aperiodicity, are studied. Section 5 establishes

the main periodic stability theorems. Finally, Section 6 provides some applications of the

proposed theory to some famous probability models from operations research and time series

analysis, namely periodic Markov decision processes, periodic integer-valued time series mod-

els, and periodic Markov regime-witching ARMA (autoregressive moving average), GARCH

(generalized autoregressive conditional heteroskedastic), and positive conditional mean mod-

els.

2 Distributions of time-periodic Markov chains: tran-

sition probabilities and marginal distributions

Denote by N = f0; 1; :::g and N� = f1; 2; :::g the sets of nonnegative integers and positive

integers, respectively.

De�nition 2.1 A stochastic process (Xt; t 2 N) de�ned on a probability space (
;F ; P )

and valued in a �nite/countable state-space E = f1; :::; Kg (K can be in�nite) is called a
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periodically homogeneous (or time-periodic) Markov chain of period S 2 N� if:

i) (Xt; t 2 N) is a Markov chain, i.e. for every t 2 N and every i; j; ij 2 E (0 � j � t�1)

P (Xt+1 = jjXt = i;Xt�1 = it�1; :::; X0 = i0) = P (Xt+1 = jjXt = i) := Pij (t) . (2:1)

ii) The so-called transition probability, Pij (t), is periodic over t with period S, i.e. for

all t 2 N

Pij (t) = Pij (t+ S) , (2:2)

where S is the smallest positive integer satisfying (2:2).

To highlight the S-periodic homogeneity of the transition probabilities Pij (t), it is pos-

sible to write any integer t 2 N according to its Euclidean division on S (t = nS + v, with

n 2 N and 0 � v � S � 1) and by the S-periodicity of Pij (t),

Pij (v) = P (Xv+1 = jjXv = i) (2:3)

= P (XnS+v+1 = jjXnS+v = i) ; n 2 N; 0 � v � S � 1.

Thus, Pij (v) represents the probability of transition from a state i at a time multiple of

S modulo v, to a state j at the next time. It is therefore a one-step transition probability

starting from a time whose division remainder on S is equal to v. In other words, Pij (v)

is the (one-step) transition probability from i to j along the channel v, where by channel v

(0 � v � S � 1), it is meant the set of numbers fv; S + v; 2S + v; 3S + v; :::g whose rest of

division on S is equal to v. For S = 1, the chain given by (2:1)-(2:2) is simply homogeneous

where v is omitted in Pij (v), so that Pij (v) = Pij for each v.

It is also possible to represent these (one-step) transition probabilities matrixly via S

matrices P (v) = (P (v))ij (0 � v � S � 1) with

(P (v))ij = Pij (v) .

These matrices are stochastic in the sense that their elements are nonnegative and sum

to unity over each row. It happens that the state space E =
S
t2N

Et is such that Et varies

periodically over time. Thus, we can consider two cases of non-homogeneity:
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- Non-homogeneity with regard to probabilities: The state space E = Et (for all t 2 N) is

time-invariant and only the transition probabilities which vary periodically in time.

- Non-homogeneity with regard to the state-space: Not only the transition probabilities

are periodically time-varying but the state-space Et is S-periodic in t, meaning that Et =

Et+S for all nonnegative integer t. So, in this case, the chain has a system of S state

spaces (Ev)0�v�S�1 each of which is relative to a channel v and whose union is denoted by

E =
S�1[
v=0

Ev. This can lead to rectangular (non-square) one-step transition matrices. The

following example shows this situation.

Example 2.1 i) Assume the evolution of the states of volatility (high (H), calm (C)) of a

certain �nancial asset each half-day can be represented through a periodically homogeneous

Markov chain with period S = 2. The data is twice daily and the observation of the volatility

started on the morning of a certain day the channel of which is v = 0. The transition matrices

are assumed to be

P (0) =

H C

H

C

0@ 0:6 0:4

0:3 0:7

1A P (1) =

H C

H

C

0@ 0:8 0:2

0:1 0:9

1A .
For instance, the transition probability from state C to state H, starting in the morning is

0:3 = PC;H (0) whereas the transition probability for the same states from the afternoon is

0:1 = PC;H (1).

ii) After many years, a weather service has judged that the weather next season only

depends on the current season. The possible states from one season to another vary depen-

dently on the current season. In Winter, the possible states are: Cold (F ) and Very Cold

(TF ) so E0 = fF; TFg. In Spring, the possible states are: Cold (F ), Medium (M) and Hot

(C) with E1 = fF;M;Cg. In Summer, the states are: Hot (C) and Very Hot (TC), and

therefore E2 = fC; TCg, while in Autumn, the possible states are the same as in spring,

E1 = fF;M;Cg. The data are quarterly and the period S is equal to 4. It is assumed that

the observation of the phenomenon began from a certain Winter for which the channel takes
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the value v = 0. The transition probabilities were established for each season.

P (0) =

F M C

F

TF

0@ 0:5 0:3 0:2

0:7 0:25 0:05

1A P (1) =

C TC

F

M

C

0BBB@
0:8 0:2

0:5 0:5

0:3 0:7

1CCCA

P (2) =

F M C

C

TC

0@ 0:5 0:3 0:2

0:4 0:3 0:3

1A P (3) =

F TF

F

M

C

0BBB@
0:2 0:8

0:4 0:6

0:6 0:4

1CCCA .
�
Example i) is a case of a non-homogeneity with respect to the transition probabilities.

For each channel, the states are the same. Example ii) shows, however, that the state-space

itself can vary. This is the case of non-homogeneity with respect to the state-space.

As for the homogeneous case, the so-called weak Markov property (2:1) easily extends as

follows

P (Xt+1 = jt+1; Xt+2 = jt+2; :::; Xt+m = jt+mjXt = it; Xt�1 = it�1; :::; X0 = i0) =

P (Xt+1 = jt+1; Xt+2 = jt+2; :::; Xt+m = jt+mjXt = it)

for each it; jt 2 E. More generally,

P (Xt+1 = jt+1; Xt+2 = jt+2; :::; jXt = it; Xt�1 = it�1; :::; X0 = i0) =

P (Xt+1 = jt+1; Xt+2 = jt+2; :::jXt = it),

roughly meaning that "the future is conditionally independent of the past knowing the present".

2.1 Finite-dimensional distributions

By the Markov property, the probability structure of the chain (Xt; t 2 N) which is repre-

sented by the �nite-dimensional distributions

fPt1;t2;:::;tn (i1; i2; :::; in) ; n 2 N�; tj 2 N; ij 2 E; 1 � j � ng ,
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where Pt1;t2;:::;tn (i1; i2; :::; in) := P (Xt1 = i1; Xt2 = i2; :::; Xtn = in), can be expressed in a

much simpler way.

Proposition 2.1 The �nite-dimensional distributions

fPt1;t2;:::;tn (i1; i2; :::; in) ; n 2 N�; tj 2 N; ij 2 E; 1 � j � ng ,

are entirely determined by:

i) The initial marginal distribution �j (0) = P (X0 = j), and

ii) the S one-step transition probability matrices P (v), (0 � v � S � 1).

Proof First, it is clear that the �nite-dimensional distributions

fPt1;t2;:::;tn (i1; i2; :::; in) ; n 2 N�; tj 2 N; ij 2 E; 1 � j � ng

are entirely determined by the probabilities

fP0;1;:::;n (i0; i1; :::; in) ; n 2 N�; ij 2 E; 0 � j � ng

and vice versa. Second,

P0;1;:::;n (i0; i1; :::; in) := P (X0 = i0; X1 = i1; :::; Xn = in)

= P (X0 = i0)P (X1 = i1jX0 = i0) � � �P (Xn = injXn�1 = in�1; :::; X0 = i0)

= P (X0 = i0)P (X1 = i1jX0 = i0) � � �P (Xn = injXn�1 = in�1)

= �i0 (0)Pi0i1 (0)Pi1i2 (1) � � �Pin�1in (n� 1) ,

establishing the result. �

2.2 n-step transition probabilities

Similarly to the homogeneous case, it is also possible to de�ne the n-step transition proba-

bility, P (n)ij (v), from a state i (at a time v modulo S) to a state j after n steps:

P
(n)
ij (v) = P (Xv+n = jjXv = i)

P
(1)
ij (v) = Pij (v)

P
(0)
ij (v) =

8<: 1 if i = j

0 otherwise.
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By induction on n 2 N, it is easily seen that this transition probability, being a function

of v, is periodic with period S, i.e.

P
(n)
ij (kS + v) = P

(n)
ij (v) , for all k 2 N.

2.3 Non-homogeneous Chapman-Kolmogorov equations

The Chapman-Kolmogorov equations, known for homogeneous Markov chains, can be easily

adapted to the non-homogeneous case and, in particular, to the periodically homogeneous

case.

Proposition 2.2 (Non-homogeneous Chapman-Kolmogorov equations)

For every i; j 2 E; n;m 2 N; and v 2 f0; :::; S � 1g,

P
(n+m)
ij (v) =

X
k2E

P
(n)
ik (v)P

(m)
kj (v + n) (2:4a)

=
X
k2E

P
(m)
ik (v)P

(n)
kj (v +m) . (2:4b)

Proof Just write

P
(n+m)
ij (v) = P (Xv+n+m = jjXv = i)

=
X
k2E

P (Xv+n+m = j;Xv+n = kjXv = i)

=
X
k2E

P (Xv+n+m = j;Xv+m = kjXv = i) .

�

Remark 2.1 i) An important case in which the periodicity can be exploited appears when n

or m are multiples of S. Equations (2:4) are simpli�ed as follows

P
(nS+m)
ij (v) =

X
k2E

P
(nS)
ik (v +m)P

(m)
kj (v) .

ii) For m = 1 and n = 1,

P
(2)
ij (v) =

X
k2E

Pik (v)Pkj (v + 1) .
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In matrix form, this writes as follows

P (2) (v) = P (v)P (v + 1) .

Likewise

P (3) (v) = P (v)P (v + 1)P (v + 2) ,

and so on, for arbitrary m,

P (m) (v) = P (v)P (v + 1) � � �P (v +m� 1) .

iii) When m is a multiple of S (say m = nS), the S-periodicity of the transition matrices

yields

P (nS) (v) = (P (v)P (v + 1) � � �P (v + S � 1))n

and more generally, for l 2 f1; :::; S � 1g,

P (nS+l) (v) = (P (v)P (v + 1) � � �P (v + S � 1))n P (v)P (v + 1) � � �P (v + l � 1) . (2:5)

iv) The matrix Pv =
S�1Y
k=0

P (v + k) plays an important role in the theory of periodically

homogeneous Markov chains and can be considered as the analog of the transition matrix for

homogeneous Markov chains. It is often called the "monodromy" matrix and its elements

are the S-step transition probabilities starting from times that are multiples of S modulo v.

Example 2.1 (Continued) i) The monodromy matrices are

P (0) =

0@ 0:6 0:4

0:3 0:7

1A0@ 0:8 0:2

0:1 0:9

1A =

0@ 0:52 0:48

0:31 0:69

1A
P (1) =

0@ 0:8 0:2

0:1 0:9

1A0@ 0:6 0:4

0:3 0:7

1A =

0@ 0:54 0:46

0:33 0:67

1A .

9



ii) The corresponding monodromy matrices are

P (0) =

0@ 0:5 0:3 0:2

0:7 0:25 0:05

1A
0BBB@
0:8 0:2

0:5 0:5

0:3 0:7

1CCCA
0@ 0:5 0:3 0:2

0:4 0:3 0:3

1A
0BBB@
0:2 0:8

0:4 0:6

0:6 0:4

1CCCA
=

0@ 0:355 6 0:644 4

0:352 0:648

1A ,

P (1) =

0BBB@
0:8 0:2

0:5 0:5

0:3 0:7

1CCCA
0@ 0:5 0:3 0:2

0:4 0:3 0:3

1A
0BBB@
0:2 0:8

0:4 0:6

0:6 0:4

1CCCA
0@ 0:5 0:3 0:2

0:7 0:25 0:05

1A

=

0BBB@
0:630 4 0:267 4 0:102 2

0:628 0:268 0:104

0:626 4 0:268 4 0:105 2

1CCCA ,

P (2) =

0@ 0:5 0:3 0:2

0:4 0:3 0:3

1A
0BBB@
0:2 0:8

0:4 0:6

0:6 0:4

1CCCA
0@ 0:5 0:3 0:2

0:7 0:25 0:05

1A
0BBB@
0:8 0:2

0:5 0:5

0:3 0:7

1CCCA
=

0@ 0:669 4 0:330 6

0:665 8 0:334 2

1A ,

P (3) =

0BBB@
0:2 0:8

0:4 0:6

0:6 0:4

1CCCA
0@ 0:5 0:3 0:2

0:7 0:25 0:05

1A
0BBB@
0:8 0:2

0:5 0:5

0:3 0:7

1CCCA
0@ 0:5 0:3 0:2

0:4 0:3 0:3

1A

=

0BBB@
0:468 2 0:3 0:231 8

0:466 4 0:3 0:233 6

0:464 6 0:3 0:235 4

1CCCA .
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2.4 Marginal distributions

We saw above that the initial distribution �j (0) = P (X0 = j) and the transition probabil-

ities Pij (v) characterize all �nite-dimensional distributions of the time-periodic chain and,

in particular, all marginal distributions

� (nS + v) := (�1 (nS + v) ; �2 (nS + v) ; :::; �K (nS + v)) , 0 � v � S � 1, n 2 N,

where

�j (nS + v) = P (XnS+v = j) , 1 � j � K.

These marginal probabilities can be written in terms of the transition probabilities as follows

�j (nS + v) =
X
k2E

P (XnS+v = j;Xv = k)

=
X
k2E

�k (v)P
(nS)
kj (v) . (2:6)

In matrix form, (2:6) reduces to

� (nS + v) = � (v)P (nS) (v) , 0 � v � S � 1,

and using (2:4), this leads to

� (nS + v) = � (v) (P (v))n , 0 � v � S � 1. (2:7)

From (2:7), the proof of the following result is obvious.

Proposition 2.3 The marginal distributions (� (t))t2N are entirely determined by the S

initial distributions (� (v))0�v�S�1 and the monodromy matrices (P (v))0�v�S�1.

It is worth noting that the S initial distributions (� (v))0�v�S�1 are themselves entirely

determined by the initial distribution � (0) and the transition matrices (P (v))0�v�S�1, hence

Proposition 2.1.

Remark 2.2 For ranks not necessarily having the same division remainder by S, (2:7) ex-

tends to

� (nS + v) = � (r)P (nS+v�r) (v) , 0 � v; r � S � 1.
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In particular,

� (v + 1) = � (0)P (0)P (1) � � �P (v) , 0 � v � S � 1

or also

�j(v) =
X
i02E

� � �
X
iv�12E

�i0(0)Pi0i1(0)Pi1i2(1) � � �Piv�1;j(v � 1); j 2 E. (2:8)

2.5 Connection with homogeneous Markov chains

2.5.1 Dimensionality augmentation approach (connection with S-variate homo-

geneous Markov chains)

It is well known that any dynamical system with S-periodic coe¢ cients (which can be a

di¤erential or di¤erence equation with periodic coe¢ cients, a periodically stationary process,

etc.) can be cast in a S-variate system with constant (matrix) coe¢ cients by means of an

appropriate transformation (S-variate time-invariant di¤erential or di¤erence equations, S-

variate stationary processes, etc.). This transformation most often consists of stacking the

members of the initial time-periodic process into successive vectors each of which is associated

with a quotient of the integer division by S. This dimensionality augmentation technique has

been known since Gladyshev (1961) who studied a periodically correlated process through a

multivariate covariance stationary process whose covariance structure is a function of that of

the original time-periodic process (see also Meyer and Burris, 1975; Pagano, 1978; Aknouche,

2007-2015). A similar but quite di¤erent approach is that proposed by Veugen et al (1983)

for periodic Markov decision processes. Although in what follows, we link a S-periodically

homogeneous Markov chain and its corresponding homogeneous S-variate chain, we prefer,

like Floquet (1883), to develop a theory speci�c to periodically homogeneous Markov chains

rather than going through S-variate homogeneous Markov chains. The reasons are:

i) The probability transition matrix of the augmented homogeneous chain has a more

complex structure as will be seen below.

ii) The results obtained for the dimensionality-augmented homogeneous matrix are not

easily interpretable for the original periodically homogeneous Markov chain.
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iii) In the case of countably in�nite state spaces, the manipulation of in�nite matrices is

formidable.

iv) The complexity is even more pronounced in the case of augmented homogeneous

transition kernels corresponding to uncountable state-space Markov chains.

Assuming that (Xn; n 2 N) is periodically homogeneous with a �nite state-space E, de�ne

on (
;F ; P ) the augmented process (Xn; n 2 N) valued in ES as follows

Xn = (XnS+S�1; XnS+S�2; :::; XnS+1; XnS)
0 . (2:9)

Proposition 2.4 The process (Xn; n 2 N) de�ned by (2:9) is a homogeneous Markov

chain with a multivariate initial distribution �0 and a transition probability P =
�
P i;j

�
i;j2ES

both given in terms of (P (v))0�v�S�1, where

�0
�
j
�
= (�j1 (0) ; �j2 (1) ; :::; �jS (S � 1))

0 (2:10a)

P i;j = PiSj1 (S � 1)Pj1j2 (0)Pj2j3 (1) � � �PjS�2jS�1 (S � 3)PjS�1jS (S � 2) , (2:10b)

i = (i1; i2; :::; iS)
0, and j = (j1; j2; :::; jS)

0 2 ES.

Proof By the Markov property of the chain (Xn; n 2 N), it can be seen that (Xn; n 2 N)

is also a Markov chain on ES, whose transition matrix is given by

P i;j = P
�
Xn+1 = j /Xn = i

�
= P

�
X(n+1)S+S�1 = jS; :::; X(n+1)S = j1jXnS+S�1 = iS; :::; XnS = i1

�
= PiSj1 (nS + S � 1)Pj1j2 (nS + S)Pj2j3 (nS + S + 1) � � �

�PjS�2jS�1 (nS + S � 3)PjS�1jS (nS + S � 2) ,

where by the S-periodicity of (P (v))0�v�S�1, we �nd (2:10b). The correspondence (2:10a)

is trivial. �
Consider the following example.

Example 2.2 i) Let the chain (Xn; n 2 N) be 2-periodically homogeneous and valued in

E = f1; 2g with a system of transition probabilities

P (0) = P (2) =

0@ P11 (2) P12 (2)

P21 (2) P22 (2)

1A and P (1) =

0@ P11 (1) P12 (1)

P21 (1) P22 (1)

1A .
13



The corresponding 2-variate homogeneous Markov chain (Xn; n 2 N) is by Proposition 2.4

de�ned on

E2 = f(1; 1) ; (1; 2) ; (2; 1) ; (2; 2)g

with a transition probability given from (2:10b) by

P =

(1; 1)

(1; 2)

(2; 1)

(2; 2)

(1; 1) (1; 2) (2; 1) (2; 2)0BBBBBB@
P11 (1)P11 (2) P12 (1)P21 (2) P11 (1)P12 (2) P12 (1)P22 (2)

P21 (1)P11 (2) P22 (1)P21 (2) P21 (1)P12 (2) P22 (1)P22 (2)

P11 (1)P11 (2) P12 (1)P21 (2) P11 (1)P12 (2) P12 (1)P22 (2)

P21 (1)P11 (2) P22 (1)P21 (2) P21 (1)P12 (2) P22 (1)P22 (2)

1CCCCCCA .

ii) Now consider a 3-periodically homogeneous Markov chain (Xn; n 2 N) valued in E =

f1; 2g with a system of transition probabilities

P (1) =

0@ P11 (1) P12 (1)

P21 (1) P22 (1)

1A , P (2) =
0@ P11 (2) P12 (2)

P21 (2) P22 (2)

1A ,
P (3) = P (0) =

0@ P11 (3) P12 (3)

P21 (3) P22 (3)

1A .
The corresponding 3-variate homogeneous Markov chain (Xn; n 2 N) is de�ned on E3 =

f(1; 1; 1) ; (1; 1; 2) ; (1; 2; 1) ; (1; 2; 2) ; (2; 1; 1) ; (2; 1; 2) ; (2; 2; 1) ; (2; 2; 2)g with transition prob-
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abilities

P =

0BBBBBBBBBBBBBBBBBB@

P11 (2)P11 (0)P11 (1) P11 (2)P11 (0)P12 (1) P11 (2)P12 (0)P21 (1) P11 (2)P12 (0)P22 (1)

P21 (2)P11 (0)P11 (1) P21 (2)P11 (0)P12 (1) P21 (2)P12 (0)P21 (1) P21 (2)P12 (0)P22 (1)

P11 (2)P11 (0)P11 (1) P11 (2)P11 (0)P12 (1) P11 (2)P12 (0)P21 (1) P11 (2)P12 (0)P22 (1)

P21 (2)P11 (0)P11 (1) P21 (2)P11 (0)P12 (1) P21 (2)P12 (0)P21 (1) P21 (2)P12 (0)P22 (1)

P11 (2)P11 (0)P11 (1) P11 (2)P11 (0)P12 (1) P11 (2)P12 (0)P21 (1) P11 (2)P12 (0)P22 (1)

P21 (2)P11 (0)P11 (1) P21 (2)P11 (0)P12 (1) P21 (2)P12 (0)P21 (1) P21 (2)P12 (0)P22 (1)

P11 (2)P11 (0)P11 (1) P11 (2)P11 (0)P12 (1) P11 (2)P12 (0)P21 (1) P11 (2)P12 (0)P22 (1)

P21 (2)P11 (0)P11 (1) P21 (2)P11 (0)P12 (1) P21 (2)P12 (0)P21 (1) P21 (2)P12 (0)P22 (1)

P12 (2)P21 (0)P11 (1) P12 (2)P21 (0)P12 (1) P12 (2)P22 (0)P21 (1) P12 (2)P22 (0)P22 (1)

P22 (2)P21 (0)P11 (1) P22 (2)P21 (0)P12 (1) P22 (2)P22 (0)P21 (1) P22 (2)P22 (0)P22 (1)

P12 (2)P21 (0)P11 (1) P12 (2)P21 (0)P12 (1) P12 (2)P22 (0)P21 (1) P12 (2)P22 (0)P22 (1)

P22 (2)P21 (0)P11 (1) P22 (2)P21 (0)P12 (1) P22 (2)P22 (0)P21 (1) P22 (2)P22 (0)P22 (1)

P12 (2)P21 (0)P11 (1) P12 (2)P21 (0)P12 (1) P12 (2)P22 (0)P21 (1) P12 (2)P22 (0)P22 (1)

P22 (2)P21 (0)P11 (1) P22 (2)P21 (0)P12 (1) P22 (2)P22 (0)P21 (1) P22 (2)P22 (0)P22 (1)

P12 (2)P21 (0)P11 (1) P12 (2)P21 (0)P12 (1) P12 (2)P22 (0)P21 (1) P12 (2)P22 (0)P22 (1)

P22 (2)P21 (0)P11 (1) P22 (2)P21 (0)P12 (1) P22 (2)P22 (0)P21 (1) P22 (2)P22 (0)P22 (1)

1CCCCCCCCCCCCCCCCCCA

.

iii) We �nally consider a 2-periodically homogeneous Markov chain (Xn; n 2 N) valued

in E = f1; 2; 3g with a transition probability system

P (1) =

0BBB@
P11 (1) P12 (1) P13 (1)

P21 (1) P22 (1) P23 (1)

P31 (1) P32 (1) P23 (1)

1CCCA , P (2) =
0BBB@

P11 (2) P12 (2) P13 (2)

P21 (2) P22 (2) P23 (2)

P31 (2) P32 (2) P23 (2)

1CCCA .
The corresponding homogeneous 2-variate Markov chain (Xn; n 2 N) is then de�ned over

E2 = f(1; 1) ; (1; 2) ; (1; 3) ; (2; 1) ; (2; 2) ; (2; 3) ; (3; 1) ; (3; 2) ; (3; 3)g with a transition proba-
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bility matrix

P =

0BBBBBBBBBBBBBBBBBBBBB@

P11 (1)P11 (2) P11 (1)P12 (2) P11 (1)P13 (2) P12 (1)P21 (2)

P21 (1)P11 (2) P21 (1)P12 (2) P21 (1)P13 (2) P22 (1)P21 (2)

P31 (1)P11 (2) P31 (1)P12 (2) P31 (1)P13 (2) P32 (1)P21 (2)

P11 (1)P11 (2) P11 (1)P12 (2) P11 (1)P13 (2) P12 (1)P21 (2)

P21 (1)P11 (2) P21 (1)P12 (2) P21 (1)P13 (2) P22 (1)P21 (2)

P31 (1)P11 (2) P31 (1)P12 (2) P31 (1)P13 (2) P32 (1)P21 (2)

P11 (1)P11 (2) P11 (1)P12 (2) P11 (1)P13 (2) P12 (1)P21 (2)

P21 (1)P11 (2) P21 (1)P12 (2) P21 (1)P13 (2) P22 (1)P21 (2)

P31 (1)P11 (2) P31 (1)P12 (2) P31 (1)P13 (2) P32 (1)P21 (2)

P12 (1)P22 (2) P12 (1)P23 (2) P13 (1)P31 (2) P13 (1)P32 (2) P13 (1)P33 (2)

P22 (1)P22 (2) P22 (1)P23 (2) P23 (1)P31 (2) P23 (1)P32 (2) P23 (1)P33 (2)

P32 (1)P22 (2) P32 (1)P23 (2) P33 (1)P31 (2) P33 (1)P32 (2) P33 (1)P33 (2)

P12 (1)P22 (2) P12 (1)P23 (2) P13 (1)P31 (2) P13 (1)P32 (2) P13 (1)P33 (2)

P22 (1)P22 (2) P22 (1)P23 (2) P23 (1)P31 (2) P23 (1)P32 (2) P23 (1)P33 (2)

P32 (1)P22 (2) P32 (1)P23 (2) P33 (1)P31 (2) P33 (1)P32 (2) P33 (1)P33 (2)

P12 (1)P22 (2) P12 (1)P23 (2) P13 (1)P31 (2) P13 (1)P32 (2) P13 (1)P33 (2)

P22 (1)P22 (2) P22 (1)P23 (2) P23 (1)P31 (2) P23 (1)P32 (2) P23 (1)P33 (2)

P32 (1)P22 (2) P32 (1)P23 (2) P33 (1)P31 (2) P33 (1)P32 (2) P33 (1)P33 (2)

1CCCCCCCCCCCCCCCCCCCCCA

.

Remark 2.3 i) In Example 2.2 i), the elements of the hyper-matrix P are the terms of the

elements (which are sums of terms) of the monodromy matrix P (1) = P (1)P (2) rearranged

according to a certain order, and are also the terms of the matrix P (2) = P (2)P (1) according

to another order.

ii) The matrix P consists of a block of S rows and KS columns repeated KS�1 times.

iii) We conjecture that when Et = E for all t, the hyper-matrix P and the monodromy matrix

P (v) for a certain v have the same eigenvalues. By the property of invariance of eigenvalues

by circular permutations of product matrices, it can be concluded that P et P (v) have the

same eigenvalues for each v 2 f0; 1; :::; S � 1g.
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Remark 2.4 The inverse problem consisting in �nding a S-periodically homogeneous Markov

chain from a S-variate homogeneous Markov chain has no unique solution, unless the chain

(Xn; n 2 N) is periodically stationary (see the de�nition in Section 3 below and the Appendix

B) or, in an equivalent manner, (Xn; n 2 N) is stationary (Gladyshev, 1961).

Thus, from the link between the periodically homogeneous matrix and the corresponding

homogeneous hyper-matrix, it appears that it is more judicious and even necessary to develop

a speci�c theory for periodically homogeneous Markov chains (Floquet, 1883). However, in

some special cases, it is possible to use augmented homogeneous representations.

2.5.2 Partitioning approach

Instead of the above dimensionality augmentation approach, it is possible to connect a

periodically homogeneous Markov chain with S homogeneous Markov sub-chains, through

the S monodromy matrices.

Let (Xt; t 2 N) be a periodically homogeneous Markov chain with transition probabilities

Pij (v) := P (Xv+1 = jjXv = i) and monodromy probabilities Pij (v) = P (Xv+S = jjXv = i)

(0 � v � S � 1, i; j 2 E). For all 0 � v � S, let (X(v)
n ; n 2 N) be the S sub-chains of

(Xt; t 2 N) de�ned by

X(v)
n = XnS+v; n 2 N. (2:11)

Proposition 2.5 The Markov chain (Xt; t 2 N) is S-periodically homogeneous with tran-

sition probabilities (Pij (v))v if and only if each sub-chain
�
X
(v)
n ; n 2 N

�
is Markov homoge-

neous with a transition probability

P
�
X(v)
n = jjX(v)

n�1 = i
�
= P

�
XnS+v = jjX(n�1)S+v = i

�
= Pij (v) ; 0 � v � S. (2:12)

In the sequel, we will mainly use this approach. Note that the correspondence (2:11)

does not mean that the study of a periodically Markov chain is trivial since the monodromy

(homogeneous) matrices in (2:12) are interdependent. There are actually many properties

that appear for time-periodic Markov chains and not for homogeneous Markov chains.
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2.6 Independent and periodically distributed chains

The simplest case of time-periodic Markov chains is that of independent and S-periodically

(ipdS) distributed sequences. A sequence (Xt; t 2 N) de�ned on a probability space (
;F ; P )

and valued in a �nite/countable set E = f0; 1; :::; Kg (K could be in�nite) is said to be ipdS

if (Xt; t 2 N) is independent and Xt
d
= Xt+S for all t such that t+ S 2 N. When S = 1, an

idp1 sequence is just independent and identically distributed (iid).

Following the dimensionality augmentation view, (Xt; t 2 N) is ipdS if and only if (Xn; n 2

N) is iid, where Xn = (XnS; XnS+1; :::; XnS+S�1)
0. Following the partitioning approach,

(Xt; t 2 N) is ipdS if and only if (XnS+v; n 2 N) is iid for all 0 � v � S � 1.

The transition probability of an ipdS sequence is given by

Pij (t) = P (Xt+1 = jjXt = i) = P (Xt+1 = j) = �j (t+ 1) for all i; j 2 E.

Hence the one-step transition matrix has the form

P (v) =

0BBBBBB@
�1 (v + 1) �2 (v + 1) � � � �K (v + 1)

�1 (v + 1) �2 (v + 1) � � � �K (v + 1)
...

...
. . .

...

�1 (v + 1) �2 (v + 1) � � � �K (v + 1)

1CCCCCCA , 0 � v � S � 1

with identical lines. Thanks to the latter form, the S-step monodromy matrix P (v) is equal

to P (v � S + 1), the last matrix in the factor

P (v) : = P (v)P (v � 1) � � �P (v � S + 1) = P (v � S + 1) = P (v + 1)

=

0BBBBBB@
�1 (v + 1) �2 (v + 1) � � � �K (v + 1)

�1 (v + 1) �2 (v + 1) � � � �K (v + 1)
...

...
. . .

...

�1 (v + 1) �2 (v + 1) � � � �K (v + 1)

1CCCCCCA , 0 � v � S � 1. (2:13)

2.7 The existence problem and stochastic recurrence equations

A periodically homogeneous Markov chain can always be represented via a stochastic recur-

rence equation.
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Theorem 2.1 Let (Xt; t 2 N) be a E-valued random process de�ned by means of the follow-

ing recurrence relation

Xt+1 = ft (Xt; "t+1) ; t 2 N, (2:14)

where E is a countable set, ("t; t 2 N) is an ipdS sequence valued in a countable set F , and

(ft)t is a S-periodic sequence of real functions (i.e. ft+S = fS for all t). Assume that X0 and

("t; t 2 N) are independent. Then, (Xt; t 2 N) is a periodically homogeneous Markov chain.

Proof Iterating (2:14), it follows that there exists a sequence of functions (ht) such that

Xt = ht (X0; "1; "2; :::; "t) .

By (2:14) and the ipdS property of ("t; t 2 N),

P (Xt+1 = jjXt = i) = P (ft (i; "t+1) jht (X0; "1; "2; :::; "t))

= P (ft (i; "t+1))

and

P (Xt+1 = jjXt = i;Xt�1 = it�1; :::; X0 = i0) = P (ft (i; "t+1) jXt = i;Xt�1 = it�1; :::; X0 = i0)

= P (ft (i; "t+1)) .

This shows that the chain (Xt; t 2 N) is periodically homogeneous with an initial distribution

�j (0) = P (X0 = j) and a transition probability matrix

Pij (v) = P (fnS+v (i; "nS+v+1))

= P (fv (i; "v+1)) . �

Remark 2.5 In the above theorem, the independence of ("t; t 2 N) can be relaxed under a

broader assumption. It is possible to just assume that "t+1 is conditionally independent of

X0; X1; :::; Xt�1; "1; "2; :::; "t given Xt, i.e.

P ("t+1 = jjXt = i; :::; X0 = i0; "1 = l1; :::; "t = lt) = P ("t+1 = jjXt = i) .
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Under the latter assumption, it can be easily seen that any process satisfying (2:14) is a

periodically homogeneous Markov chain with a transition probability

Pij (v) = P (fnS+v (i; "nS+v+1) jXnS+v)

= P (fv (i; "v+1) jXv) .

The inverse problem which consists of showing that, for any system of S stochastic

matrices (P (v))0�v�S�1, there exists a periodically homogeneous Markov chain having these

matrices as a transition matrix system, is a simple instance of the Kolmogorov existence

theorem (see e.g. Breiman, 1968; Aknouche, 2008).

Theorem 2.2 For any system of stochastic matrices (P (v))0�v�S�1 of dimension K � K

(K can even be in�nite), corresponds a unique periodically homogeneous Markov chain

(Xt; t 2 N) valued in E = f1; 2; :::; Kg and admitting the system (P (v))0�v�S�1 as tran-

sition probability matrices. Furthermore, the chain (Xt; t 2 N) is a solution to a recurrence

equation of the form (2:14).

2.8 Stopping time along a channel and the strong Markov prop-

erty

The strong Markov property valid for homogeneous Markov chains remains true for any

periodic chain even if the latter is not time-homogeneous.

De�nition 2.2 (Stopping time along a channel) Let (Xt; t 2 N) be a periodically S-

homogeneous Markov chain de�ned on a probability space (
;F ; P ). For all v 2 f0; :::S � 1g,

a random time �v de�ned on (
;F ; P ) and valued in N[f1g is called a stopping-time along

the channel v if the event f�v = v + nSg belongs to the �-algebra F (v)
n := � fXv+kS; k � ng

for all n 2 N.

Example 2.3 Let (Xt; t 2 N) be a 2-periodic random walk starting at the origin with

XnS+v = �v + �S+v + :::+ �nS+v, n 2 N�

Xv = 0
, 0 � v � S � 1
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where the so-called step-size sequence (�t; t 2 N) is ipd2 and is valued in f�1; 1g with

P (�0 = 1) =
1
2
and P (�1 = 1) =

1
3
.

Let �v = min fn 2 N� : XnS+v = 0g. Then

f�v = ng =
�
Xv 6= 0; XS+v 6= 0; :::; X(n�1)S+v 6= 0; XnS+v = 0

	
2 F (v)

n .

De�nition 2.3 (Strong Markov property) Let (�v)0�v�S�1 be S stopping times corre-

sponding to a S-periodically homogeneous Markov chain (Xt; t 2 N).

i) The chain (Xt; t 2 N) is said to have the strong Markov property over the channel

v 2 f0; :::; S � 1g if

P (X�vS+v = i�v jX(�v�1)S+v = i�v�1; X(�v�2)S+v = i�v�2; :::; Xv = i0)

= P (X�vS+v = jjX(�v�1)S+v = i�v�1)
(2:15)

for all ik 2 N (k = �v;�v � 1; :::; 0).

ii) The chain (Xt; t 2 N) is said to have the strong Markov property if (2:15) is satis�ed

for all v 2 f0; :::; S � 1g.

Proposition 2.6 Every time-periodic Markov chain satis�es the strong Markov property.

Proof Let (Xt; t 2 N) be a S-periodically homogeneous Markov chain and denote by

(�v)0�v�S�1 the S corresponding stopping times. By periodic homogeneity of the chain

(Xt; t 2 N) we have for all v 2 f0; :::; S � 1g

P
�
X(�v+n)S+v = injX(�v+n�1)S+v = in�1; :::; XS�v+v = i0

�
= P (XnS+v = injX(n�1)S+v = in�1; :::; Xv = i0)

= P (XnS+v = injX(n�1)S+v = in�1)

= P (X�vS+v = injX(�v�1)S+v = in�1)),

establishing the result. �
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3 Periodic stochastic stability

3.1 The problem

Although the conditional (transition) probabilities (Pij (v) = P (Xv+1 = jjXv = i))v are S-

periodic over v, it is not necessarily the case for unconditional (marginal) probabilities

�j (t) = P (Xt = j). Except for a particular choice of the initial distribution �(0) and a

suitable form of the matrices (P (v))0�v�S�1, the distributions � (v), � (v + S), � (v + 2S) ; :::

are in general not equal. However, when the transition probabilities (P (v))0�v�S�1 satisfy

certain suitable properties, even if the distributions for small ranks t are not periodic, there

exists a quite large rank t0, above which

� (v + t) ' � (v + (t+ 1)S) ' � (v + (t+ 2)S) ' : : : ,

for all t � t0, where the latter approximation is understood in the sense that there exist S

probability distributions
�
�(v)
�
0�v�S�1 such that

lim
n!1

� (nS + v) = �(v), (0 � v � S � 1) , (3:1)

where the vector equality (3:1) is component-wise. Equality (3:1) means that from a certain

quite large rank t0, the corresponding marginal distributions (� (t))t�t0 are more and more

approximately periodic with period S, regardless of the initial distribution � (0). This re�ects

a certain periodic stochastic stability. We then say that the chain has moved to a periodically

stable regime, periodically steady state, periodically stationary regime, or also periodically

permanent regime.

3.2 Periodically regular/stable Markov chains

Equality (3:1) also translates in terms of conditional probabilities as follows

lim
n!1

P
(nS)
ij (v) = �

(v)
j , 0 � v � S � 1, i 2 E, (3:2)

meaning that whatever the initial state i from which the chain starts, the nS-step transition

probability tends to a limit �(v)j (as n ! 1) which depends only on the arrival state j. In

22



matrix form, (3:2) writes as follows

lim
n!1

P (nS) (v) = �(v), 0 � v � S � 1

i.e.

lim
n!1

(P (v))n = �(v), 0 � v � S � 1, (3:3)

where �(v) is a stochastic limiting matrix of the form

�(v) =

0BBBBBB@
�
(v)
1 �

(v)
2 � � � �

(v)
K

�
(v)
1 �

(v)
2 � � � �

(v)
K

...
...

. . .
...

�
(v)
1 �

(v)
2 � � � �

(v)
K

1CCCCCCA =

0BBBBBB@
�(v)

�(v)

...

�(v)

1CCCCCCA .

This leads to the following de�nition.

De�nition 3.1 i) A periodically homogeneous Markov chain is said to be regular/stable

along a channel v0 (or v0-regular) if (3:2) is satis�ed for v = v0.

ii) A periodically homogeneous Markov chain is said to be periodically regular if (3:2) is

satis�ed for every v 2 f0; :::; S � 1g.

Since the eigenvalues of a (square) matrix product are invariant under a circular per-

mutation of the product factors (see e.g. Bittanti and Colaneri, 2009 for a proof), the

eigenvalues of monodromy matrices (Pv)0�v�S�1 are all the same for every v 2 f0; :::; S� 1g.

This supposes that periodic homogeneity is only with regards to the transition probabilities

and thus Et = E is time-invariant. Consequently the asymptotic behavior of the matrices

(Pnv )0�v�S�1 (as n ! 1) is the same across v. Thus, if a periodically homogeneous Markov

chain is regular along a certain channel v0 2 f0; :::; S � 1g then it is regular along any other

channel, and hence is periodically regular.

3.3 Periodically stationary (invariant) distributions

The distributions
�
�(v)
�
0�v�S�1 when exist are called periodically stationary (or periodically

invariant). In the case of �nite time-periodic chains, they are determined as follows.
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Proposition 3.1 When the limit limn!1 P
(nS) (v) exists for each v and is equal to �(v),

the lines
�
�(v)
�
0�v�S�1 of this matrix necessarily satisfy the following system of equations

�(v�1)P (v � 1) = �(v); 1 � v � S � 1

�(S�1)P (S � 1) = �(0)

�(v)1 = 1; 0 � v � S � 1

(3:4a)

or in terms of a monodromy transition matrix8<: �(v)P (v) = �(v)

�(v)1 = 1;
0 � v � S � 1, (3:4b)

where 1 is a K-vector whose elements are equal to unity.

Proof The periodic Chapman-Kolmogorov equations (see Remark 2.1, i)) and the S-

periodicity of P (S)kj (v) over v together yield

P
(nS+S)
ij (v) =

X
k2E

P
(nS)
ik (v)P

(S)
kj (v) .

Taking the limit as n ! 1 in both sides of the latter equality (while assuming the limit

exists and is �nite) gives

lim
n!1

P
((n+1)S)
ij (v) =

X
k2E

lim
n!1

P
(nS)
ik (v)P

(S)
kj (v)

i.e.

�
(v)
j =

X
k2E

�
(v)
k P

(S)
kj (v) , j 2 E,

which, in matrix form, is exactly (3:4). �
If the initial distribution � (0) and the transition probabilities (P (v))0�v�S�1 are such

that

� (v) = �(v), 0 � v � S � 1,

then by (3:4) and the law of total probabilities,

�j (v + S) =
X
k2E

P (Xv+S = j;Xv = k)

=
X
k2E

�k (v)P
(S)
kj (v)

=
X
k2E

�
(v)
k P

(S)
kj (v) = �

(v)
j = �j (v) , j 2 E.
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By doing the same for �j (v + 2S) and so on, it follows that for each 0 � v � S � 1,

� (v) = � (v + S) = � (v + 2S) = :::

re�ecting the periodic stability (or periodic stationarity) from the beginning.

3.4 Periodically stationary Markov chains

Thus, when

� (v) = �(v), for all 0 � v � S � 1,

i.e. when the chain is initialized from its S periodically stationary distributions, it can be

seen that the process (Xt; t 2 N) is strictly periodically stationary (hence the name) in the

sense that the �nite-dimensional distributions

fP0;1;:::;n (i0; i1; :::; in) ; n 2 N�; ij 2 E; 0 � j � ng ,

are invariant under a translation multiple of S. Indeed,

P0;1;:::;n (i0; i1; :::; in) = �i0 (0)Pi0i1 (0)Pi1i2 (1) � � �Pin�1in (n� 1)

= �
(0)
i0
Pi0i1 (0)Pi1i2 (1) � � �Pin�1in (n� 1)

= �
(S)
i0
Pi0i1 (S)Pi1i2 (S + 1) � � �Pin�1in (S + n� 1)

= PS;S+1;:::;S+n (i0; i1; :::; in) .

A strictly periodically stationary Markov chain with a �nite state space is also second-

order periodically stationary (or periodically correlated) since, being �nite, its �rst two

moments �t := E (Xt) and e
(t)h = E (XtXt+h) are also �nite and are, thanks to the strict

periodic stationarity property, S-periodic over time.

The expressions of the �rst two moments for a �nite Markov chain valued in E =

f1; 2; :::; Kg are given as

�v : = E (XnS+v) =

KX
k=1

k�
(v)
k

= �(v)11;K
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and

e
(v)h : = E (XnS+vXnS+v+h) =
KX
k=1

KX
l=1

klP (XnS+v = k;XnS+v+h = l)

=

KX
k=1

KX
l=1

kl�
(v)
k P

(h)
kl (v) = �

(v)
1;K11;KP

(h) (v) 11;K ,

where 11;K = (1; 2; :::; K)
0 and 11;K = diag (1; 2; :::; K) stands for the diagonal matrix formed

by the elements 1; :::; K in this order. Thus the autocovariance function is given by



(v)
h : = Cov (XnS+v; XnS+v+h)

= �
(v)
1;K11;KP

(h)
v 11;K � �(v)11;K�

(v+h)11;K .

Remark 3.1 The existence and uniqueness of a system of periodically stationary distribu-

tions
�
�(v)
�
0�v�S�1 and the limit of the marginal distributions to that system, independently of

the initial marginal distribution, depend on certain structural properties of the time-periodic

Markov chain. These properties parallel and extend the properties known for homogeneous

Markov chains, namely irreducibility, recurrence, positive recurrence, and state-periodicity.

We will see that for (3:1) and (3:2) to be satis�ed, it is su¢ cient that the periodically ho-

mogeneous chain is periodically irreducible, periodically positive recurrent, and periodically

aperiodic. These properties will be de�ned in the next section.

When the periodic aperiodicity is not satis�ed, the convergence relations (3:1) and (3:2)

will only be satis�ed in Cesàro sense, i.e.

lim
n!1

1
n

nX
k=1

� (kS + v) = �(v), 0 � v � S � 1 (3:5)

and

lim
n!1

1
n

nX
k=1

P
(kS)
ij (v) = �

(v)
j , 0 � v � S � 1. (3:6)

It is suitable in certain cases to replace the traditional element-wise convergence (3:2) by

the convergence in total variation norm


P (nS)i;: (v)� �(v)



 = 1

2

X
j2E

���P (nS)ij (v)� �
(v)
j

��� , (3:7)
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where the factor 1
2
in the right-hand side of the last equality is put so that the norm is

between 0 and 1. This type of convergence, which is de�ned as

lim
n!1




P (nS)i;: (v)� �(v)



 = 0, (0 � v � S � 1) ; i 2 E, (3:8)

is useful since it can easily be extended to the case of periodically homogeneous Markov

chains with uncountable state-spaces. If (3:8) is satis�ed, we continue to say that the chain

is periodically regular/stable or simply Harris periodically ergodic.

De�nition 3.2 (Harris-periodic ergodicity)

i) A periodically homogeneous Markov chain is called Harris ergodic along a certain chan-

nel v0 2 f0; :::; S � 1g or v0-Harris ergodic (or also v0-stable/ v0-regular) if (3:8) is satis�ed

for v = v0.

ii) A periodically homogeneous Markov chain is called Harris periodically ergodic if it is

v-Harris ergodic along each channel v 2 f0; :::; S � 1g.

iii) A periodically homogeneous Markov chain is called geometrically Harris ergodic along

a channel v0 2 f0; :::; S � 1g or geometrically v0-Harris ergodic (or also geometrically v0-

stable/ v0-regular) if there exists � 2 (0; 1) such that

lim
n!1

��n



P (nS)i;: (v0)� �(v0)




 = 0 for all i 2 E. (3:9)

iv) A periodically homogeneous Markov chain is called geometrically Harris periodically

ergodic if it is geometrically v-Harris ergodic along each v 2 f0; :::; S � 1g.

4 Classi�cation of states and properties of solidarity

A fundamental concept related to periodically homogeneous Markov chains is periodic sto-

chastic stability which can be summarized in the following three questions:

i) (Existence) Do the system of periodically stationary distributions
�
�(v)
�
0�v�S�1 exist?

ii) (Uniqueness) If so, is
�
�(v)
�
0�v�S�1 unique?
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iii) (Convergence) Do the marginal distributions (� (nS + v))v;n converge to the periodi-

cally stationary distributions
�
�(v)
�
0�v�S�1 in the following sense

lim
n!1

� (nS + v) = �(v); 0 � v � S � 1

(which is equivalent to the fact that the relation (3:3) holds)?

Answering these three questions amounts to studying certain structural properties of the

chain (called solidarity, contagion, class) which will be de�ned and analyzed in this Section.

In addition to being auxiliary tools to answer the three theoretical questions above, these

solidarity properties are important in themselves and allow to answer the following practical

questions.

vi) If the chain visits a state i, along a channel v 2 f0; 1; ::::; S � 1g, can it reach any

other state j 2 E in a �nite number of steps multiple of S? If so, is this true for each

v 2 f0; 1; ::::; S � 1g? If not, is there a subset C � E having this property (i.e. when the

chain is in C along a channel v 2 f0; 1; ::::; S � 1g, can it reach any other state j 2 C in a

�nite number of steps multiple of S)?

v) If the chain is at a state i along a channel v 2 f0; 1; ::::; S�1g, "howmany" times does it

passes by another state j in a number of steps multiple of S? Is this number �nite? In�nite?

What is the average number of passages through a state j given that the chain started at

the state i? What is the �rst return time to a state i along a channel v 2 f0; 1; ::::; S � 1g?

What is the corresponding average time? Is it �nite? In�nite?

To formalize these questions, consider the following random variables.

- The number �j (v) of visits of the state j along the channel v is given by

�j (v) =
1X
n=1

1[XnS+v=j], (4:1)

where 1[:] denotes the indicator function.

- The time � j (v) of �rst passage by j, along the channel v, is de�ned by

� j (v) = min fn � 1 : XnS+v = jg (4:2)

2 [1;1]
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(if the chain never visits the state j, along the channel v, then by convention � j (v) =1).

The following related variables which will be used in studying the structure of the time-

periodic chain are considered.

- The expected number of visits to state j along the channel v given that the chain started

from the state i at time v (0 � v � S � 1):

E
�
�j (v) jXv = i

�
= E

�
1[XnS+v=j]jXv = i

�
(4:3)

= E

 1X
n=0

1[XnS+v=jjXv=i]

!

=
1X
n=0

P
(nS)
ij (v) .

- The expected time of passage by j along the channel v given Xv = i,

mij (v) := E (� j (v) jXv = i) . (4:4)

When i = j, mii (v) is simply called the expected time of return to state i along the channel

v.

- The probability that the passage time by j along the channel v is �nite given Xv = i:

Lij (v) := P (� j (v) <1jXv = i) . (4:5a)

Note that (4:5a) can be expressed slightly di¤erently (see also Karlin and Taylor, 1975).

De�ne

f
(nS)
ij (v) := P (XnS+v = j;XmS+v 6= j, m = 1; :::; n� 1jXv = i) (4:5b)

(n 2 N) to be the probability of the �rst passage by the state j along the channel v at time

nS, given Xv = i. Obviously, f (0)ij (v) = 0 and f (S)ij (v) = P
(S)
ij (v). Then Lij (v) can be

expressed as

Lij (v) =

1X
n=1

f
(nS)
ij (v) . (4:5c)

When i = j, f (nS)ii (v) is simply called the probability of the �rst return to state i along the

channel v, at the nSth transition. On a �nal note,

mii (v) = E (� i (v) jXv = i) =

1X
n=1

nf
(nS)
ij (v) . (4:5d)
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4.1 Communication and classi�cation of states

4.1.1 Communication

Due to the inhomogeneity of the time-periodic Markov chain and in particular to its pe-

riodicity in terms of both dimensionality and structure, it is only possible to study the

accessibility from one state to another along a given channel. Thus, we extend the notions

of accessibility, communication, and irreducibility, known in the homogeneous case, to the

case of periodically homogeneous Markov chains, by studying each of these properties along

each channel v 2 f0; :::; S � 1g.

De�nition 4.1 i) A state j is said to be accessible from a state i along the channel v,

which writes

i
v j,

if there exists n := nv > 0 such that P
(nS)
ij (v) > 0.

ii) If i
v j and j

v i then i communicates with j along the channel v, and we write

i
v! j.

In other words, there exist n = nv > 0 and m = mv > 0 such that P (nS)ij (v) > 0 and

P
(mS)
ji (v) > 0.

There are other characterizations of communication, expressed in terms of Lij (v) and

Ei
�
�j (v)

�
de�ned, respectively, by (4:5) and (4:3).

Proposition 4.1 The following assertions are equivalent.

i) i
v! j.

ii) Lij (v) > 0 and Lji (v) > 0.

iii)
1P
n=0

P
(nS)
ij (v) > 0 and

1P
n=0

P
(nS)
ji (v) > 0.

Proof The fact that i) is equivalent to iii) is obvious. Now, in view of (4:5b), if i) holds

then ii) follows. Finally, iii) implies ii). �
Proposition 4.2 The relation "

v!" on E is an equivalence relation for each v 2

f0; :::; S � 1g.
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Proof The relation " v!" is re�exive on E since by convention P (0)ii (v) = 1 > 0 for every

i 2 E and v 2 f0; :::; S � 1g. It is symmetric by de�nition. To show transitivity, note that

if for i; j, k 2 E, P (nS)ij (v) > 0 and P (mS)jk (v) > 0 then by Chapman-Kolmogorov equations

(cf. Remark 2.1, i))

P
((n+m)S)
ik (v) � P

(nS)
ij (v)P

(mS)
jk (v) > 0,

meaning that i
v k. A similar argument shows that k

v i. �

4.1.2 Classi�cation of states and associated v-graphs

The equivalence relation "
v!" induces p (p � 1) equivalence classes (Ck (v) ; k = 1; :::; p) on

E =
S�1[
v=0

Ev such that

Ck (v) =
n
j 2 Ev : j

v! k
o
.

Remark 4.1 By classi�cation of states of a periodically homogeneous Markov chain, we

mean highlighting the classes of communication for each channel v 2 f0; :::; S � 1g.

It is possible to represent a (�nite) periodically homogeneous Markov chain by means of

a system of S oriented graphs (G(v); U(v))0�v�S�1 with

G (v) = Ev

and

(i; j) 2 U (v) if and only if Pij (v) > 0.

However, these graphs do not directly re�ect the periodic communication between states,

especially in the case where the chain is not homogeneous with respect to the state-space,

where the matrices are even not square. The above graphs are called �one-step transi-

tion graphs�. To better represent communication, we instead use the monodromy matrices

(P(v))0�v�S�1. Thus, a periodically homogeneous Markov chain can also be represented with

a system of S oriented graphs ((G (v) ;U (v)))0�v�S�1 such that

G (v) = Ev
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and

(i; j) 2 U (v) if and only if Pij (v) > 0.

We call (G (v) ;U (v)) the S-step transition graph along the channel v, or v-graph. From

now on, only the S-step graphs are considered. From the S-step v-graph, a v-communication

class is assimilated to a "strongly connected component".

Example 2.1 (Continued) Let us return to Example 2.1, ii). The S-step graphs

associated with the chain are represented as follows.

TFF

G (0)

MF

C

G (1)

MF

C

G (2)

TCC

G (3)

4.2 Periodic irreducibility

A remarkable communication property arises when the chain has only one equivalence class

for the relation
v!. In this case, all states communicate along the channel v.

De�nition 4.2 A periodically homogeneous Markov chain is said to be irreducible along
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a channel v or simply v-irreducible if the relation
v! induces a single equivalence class C (v)

which is Ev itself. If the chain is not v-irreducible, then it is called v-reducible.

When E is �nite, there exists another characterization of v-irreducibility, rather based

on the monodromy transition matrices (see, e.g. Cox and Miller, 1965 and Cinlar, 1975 in

the case of homogeneous Markov chains).

Theorem 4.1 The following assertions are equivalent:

i) The chain is v-reducible.

ii) There is a way to number the states so that the corresponding monodromy matrix P (v)

can be written in the following form

P (v) =

0@ A B

0 C

1A ,
where A, B, and C are non-null matrices with compatible dimensions.

Remark 4.2 A remarkable (if not surprising) result regarding the communication of peri-

odically homogeneous Markov chains is the following: A periodically homogeneous chain can

be irreducible along some channel v 2 f0; :::; S � 1g and reducible along some other channel

v0 6= v.

Example 4.1 Let S = 2, E1 = E2 = E = f1; 2g,

P (0) =

0@ 1 0

1 0

1A and P (1) =

0@ 1
2

1
2

1 0

1A .
Then the monodromy transition matrices of the chain are

P (0) = P (0)P (1) =

0@ 1 0

1 0

1A0@ 1
2

1
2

1 0

1A =

0@ 1
2

1
2

1
2

1
2

1A
P (1) = P (1)P (2) =

0@ 1
2

1
2

1 0

1A0@ 1 0

1 0

1A =

0@ 1 0

1 0

1A .
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The corresponding 2-step transition graphs are

21 21

G (0) G (1)

and clearly show that the chain is 0-irreducible and 1-reducible.

From this, follows the property of periodic irreducibility.

De�nition 4.3 A periodically homogeneous Markov chain is said to be periodically irre-

ducible if it is v-irreducible for every v 2 f0; :::; S � 1g.

Remark 4.3 If a time-periodic chain is initialized from its system of periodically station-

ary distributions (and hence it is strictly periodically stationary) then the concept of periodic

irreducibility introduced here is synonymous with that of periodic ergodicity for strictly period-

ically stationary processes (cf. Appendix B). Thus, "periodic irreducibility" is a more general

property which arises even for stochastic processes that are not necessarily periodically sta-

tionary. However, for a homogeneous Markov chain, the word "ergodic" is rather reserved to

a stricter notion. A homogeneous Markov chain is called ergodic if it is irreducible, positive

recurrent, and aperiodic (e.g. Karlin and Taylor, 1975). Some authors rightly qualify the

latter ergodic property as regularity and we adopt this view here. Kemeny and Snell (1976)

aptly employed the term "ergodicity" to refer to the concept of irreducibility. Note �nally that

Harris-periodic ergodicity introduced in (3:8)-(3:9) is rather a "limiting" property (like the pe-

riodic regularity (3:2)) and not a "communication" property like "periodic irreducibility" and

also "periodic ergodicity" for periodically stationary processes (cf. Aknouche, 2008-2014).

4.3 Solidarity/contagion/class properties along a channel

We now study some class properties also called solidarity properties since the states in the

same class along some channel share the same properties.
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4.3.1 Periodic recurrence, periodic transience, periodic positive recurrence, and

periodic null recurrence

De�nition 4.4 i) A state i is called recurrent along a channel v (or v-recurrent) if the

expected number of returns to state i along the channel v is in�nite, i.e.

E(�i(v)jXv = i) =1.

ii) If i is not v-recurrent then it is called transient along v or simply v-transient and

hence E(�i(v)jXv = i) <1.

In reference to (4:3), de�ne for each v 2 f0; :::; S � 1g

E
�
�j (v) jXv = i

�
=

1X
n=0

P
(nS)
ij (v).

Then v-recurrence is a solidarity property along v.

Proposition 4.3 i) If a periodically homogeneous Markov chain is irreducible along some

channel v, then for all i; j 2 E either E
�
�j (v) jXv = i

�
=1 or E

�
�j (v) jXv = i

�
<1.

ii) If a periodically homogeneous Markov chain is periodically irreducible, then for all

i; j 2 E and all v 2 f0; � � � ; S�1g, either E
�
�j (v) jXv = i

�
=1 or E

�
�j (v) jXv = i

�
<1.

Proof i) If
1P
n=0

P
(nS)
ij (v) = 1 for some i; j 2 E, then by v-irreducibility of the chain,

r
v i and j

v s for all r; s 2 Ev. So there exist positive integers k and l such that

P
(kS)
ij (v) > 0 and P (lS)ij (v) > 0. Consequently,

1X
n=0

P ((k+l+n)S)rs (v) > P (kS)rs (v)

 1X
n=0

P
(nS)
ij (v)

!
P
(lS)
js (v), (4:6)

so that E
�
�j (v) jXv = i

�
and E (�s (v) jXv = r) together converge or together diverge.

ii) For each v 2 f0; � � � ; S � 1g, the inequality (4:6) is satis�ed. �
Proposition 4.4 i) If a periodically homogeneous Markov chain is v-irreducible, then

either all states are v-recurrent or they are all v-transient.

ii) If a periodically homogeneous chain is periodically irreducible, then either all states

are v-recurrent or they are all v-transient for all v 2 f0; :::; S � 1g.
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Proof i) If the chain is v-irreducible, then Proposition 4.3 implies that for each i 2 E,

either E
�
�j (v) jXv = i

�
<1 or E

�
�j (v) jXv = i

�
=1, i.e. all states are either v-recurrent

or v-transient.

ii) A consequence of i). �
Proposition 4.4 simply states that if i and j are in the same class along a channel v,

then i is v-recurrent if and only if j is v-recurrent. We thus speak of a v-recurrent (or v-

transient) class rather than a v-recurrent state. A special case appears when a v-recurrent

class contains a single element.

De�nition 4.5 A state i is called absorbing along a channel v (or v-absorbing) if the

singleton fig is a v-recurrent class.

It is possible to characterize v-recurrence and v-transience using the probabilities of return

Lii(v) := P (� i (v) <1jXv = i)

along a channel v.

For n � 1, consider the event fXnS+v = kg which is the union of pairwise disjoint events

de�ned by fXnS+v = k; � k(v) = jg, j = 1; � � � ; n. For n � 1 and i 2 E,

P
(nS)
ik (v) = P (� k(v) = njXv = i) +

n�1X
j=1

P (XnS+v = k; � k(v) = jjXv = i)

= P (� k(v) = njXv = i) +
n�1X
j=1

P (� k(v) = jjXv = i)P
((n�j)S)
kk (v). (4:7)

De�ne the probability generating functions

U
(z)
ik (v) =

1X
n=1

P
(nS)
ik (v)zn; jzj < 1 (4:8)

L
(z)
ik (v) =

1X
n=1

P (� k(v) = njXv = i)zn; jzj < 1. (4:9)

Multiplying (4:7) by zn and summing over n, gives

U
(z)
ik (v) = L

(z)
ik (v)L

(z)
ik (v) + L

(z)
ik (v)U

(z)
ii (v). (4:10)

Proposition 4.5 The following assertions are equivalent.
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i) i is v-recurrent.

ii)
1X
n=0

P
(nS)
ii (v) =1.

iii) Lii (v) := P (� i (v) <1jXv = i) =
1P
n=1

f
(nS)
ii (v) = 1.

Proof From (4:10) with i = k,

U
(z)
kk (v) =

L
(z)
kk (v)

1�L(z)kk (v)

so when z tend to 1, it follows that Lkk(v) = 1 is equivalent to Ukk(v) =
X
i2E

P
(nS)
ii (v) =1.

�
Proposition 4.6 i) If a periodically homogeneous Markov chain is v-irreducible, then

for all i; j 2 E, either Lij(v) = 1 or Lij(v) < 1.

ii) If a periodically homogeneous Markov chain is periodically irreducible, then for all

i; j 2 E and v 2 f0; � � � ; S � 1g, either Lij(v) = 1 or Lij(v) < 1.

Proof i) If the chain is v-irreducible, then Propositions 4.3-4.5 imply that for every

i 2 E either Lii(v) = 1 or Lii(v) < 1. Assume that Lii(v) = 1 for each i 2 E. If there

exist i; j 2 E such that Lij(v) < 1, then since the chain is v-irreducible, it follows that

E
�
�j (v) jXv = i

�
> 0 and there exists n � 1 such that

P (XnS+v = j; � j(v) > njXv = j) > 0,

so
1X
n=1

P (XnS+v = j; � j(v) > njXv = j) = Ljj(v) < 1.

Hence, Lii(v) = 1 for each i entails Lij(v) = 1 for each i; j 2 E.

i) The same argument shows that for every v 2 f0; � � � ; S� 1g, if Lii(v) = 1 for all i 2 E

then Lij(v) = 1 for all j 2 E. �

Remark 4.4 i) The probability of �rst return to state i along the channel v at the nSth

transition f (nS)ii (v) (see (4:5b)) can be expressed recursively as

f
(nS)
ii (v) =

nX
k=0

f
(kS)
ii (v)P

((n�k)S)
ii , n � 1
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See also Karlin and Taylor (1975, p. 62) when S = 1.

ii) A state i can be recurrent along a channel v and transient along another channel v0.

Consider a 2-periodically homogeneous Markov chain valued in E = f1; 2g with transition

matrices

P (0) =

0@ 0 1

1 0

1A and P (1) =

0@ 0 1

0 1

1A .
The corresponding monodromy matrices take the form

P (0) =

0@ 0 1

1 0

1A0@ 0 1

0 1

1A =

0@ 0 1

0 1

1A
P (1) =

0@ 0 1

0 1

1A0@ 0 1

1 0

1A =

0@ 1 0

1 0

1A ,
and from the 2-step transition graphs

21 21

G (0) G (1)

it is clear that the state 1 is 0-transient and 1-recurrent.

iii) For a periodically irreducible Markov chain, however, v-recurrence becomes a solidarity

property along all channels f0; :::; S � 1g provided Et = E for all t 2 N. In other words:

Theorem 4.2 A periodically irreducible Markov chain with a time-invariant state-space is

recurrent along some v if and only if it is recurrent along all v0 2 f0; 1; :::; S � 1g.

Proof Since the chain is periodically irreducible, it follows that for each i; j 2 E and

v 2 f0; :::; S � 1g, P nSij (v) > 0 and PmSij (v) > 0 for some n;m 2 N. If a state i is v-recurrent

and v0-transient then
1X
n=0

P
(nS)
ii (v) = 1 and

1X
n=0

P
(nS)
ii (v0) < 1. Assume without loss of

generality that v0 = v + 1. Then the Chapman-Kolmogorov equations entail P (nS)ii (v0) =
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P
k2E

P
(S�1)
ik (v0)P

(nS+1�S)
ki (v) and hence

1P
n=0

P
(nS)
ii (v0) �

1P
n=0

P
(S�1)
ii (v0)P

(nS+1�S)
ii (v). Repeat-

ing the same argument as many times as necessary, it follows that 1 >
1P
n=0

P
(nS)
ii (v0) �

1P
m=0

P
(mS)
ii (v) =1, which is a contradiction. �

Thus, as for periodic irreducibility, we speak of periodic recurrence.

De�nition 4.6 A periodically irreducible Markov chain is called periodically recurrent if

it is v-recurrent for every v 2 f0; 1; ::::; S � 1g. Similarly, it is called periodically transient

if it is v-transient for every v 2 f0; 1; ::::; S � 1g.

Remark 4.5 i) When E is �nite, checking whether a chain is v-recurrent can be simpli�ed

using the corresponding S-step v-graph: A communication class is v-recurrent if its corre-

spondence in the S-step v-graph is closed, i.e. the exterior degree of the class in the reduced

v-graph is null.

ii) When E is countable, checking v-recurrence or v-transience is more involved. However,

in the case of periodic irreducibility, there exist recurrence criteria based on stochastic Lya-

punov (drift) functions as in the homogeneous case (see Karlin and Taylor, 1975, Theorem

4.2 of Chapter 3).

Theorem 4.3 Let (P(v))0�v�S�1 be a system of monodromy matrices of a periodically irre-

ducible Markov chain valued in N.

i) The chain is periodically recurrent if for every v (0 � v � S � 1), there exists a sequence

of positive functions (Vj(v))j2N satisfying Vj(v)!1 as j !1 and a �nite positive integer

N(v) such that
1X
j=0

Pij (v)Vj(v) � Vi(v); i > N (v) .

ii) The chain is periodically transient if and only if for all v (0 � v � S � 1) there exists a

bounded non-constant function V (v)(j) (j 2 N) and a �nite positive integer N(v) such that
1X
j=0

Pij (v)Vj(v) = Vi(v), i > N (v) .
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Proof Similar to that of Theorem 4.2 of Karlin and Taylor (1975, Chapter 3). �
Another important solidarity property is that of positive recurrence along a channel.

When i is v-recurrent, then (in view of Proposition 4.5, ii))
X
i2E

P
(nS)
ii (v) =1, which implies

that either P (nS)ii (v) ! �i (v) > 0 or P
(nS)
ii (v) ! �i (v) = 0 as n ! 1. In the former case,

the state i is called positive recurrent along v, or just v-positive recurrent. In the latter, i is

called null recurrent along the channel v, or simply v-null recurrent. Based on the fact that

�i (v) =
1

mii(v)
as will be shown in Theorem 5.1 below, another characterization of positive

recurrence is given by the following de�nition.

De�nition 4.7 A state i is said to be positive recurrent along the channel v (or v-positive

recurrent) if the average time to return to i is �nite, i.e.

mii (v) = E (� i (v) jXv = i) <1.

Otherwise, i.e. if mii (v) =1 then it is called v-null recurrent.

There is an obvious relationship between v-positive recurrence and v-recurrence.

Proposition 4.7 If a state i is v-positive recurrent then it is v-recurrent.

Proof Just write down the de�nitions while using Proposition 4.5, iii). �
v-Positive recurrence is also a solidarity/class property.

Proposition 4.8 If i v! j then

i is v-positive recurrent if and only j is.

As for v-recurrence, v-positive recurrence for a periodically irreducible chain becomes a

property of solidarity across all channels v 2 f0; 1; ::::; S � 1g.

Theorem 4.4 A periodically irreducible Markov chain with a time-invariant state-space is

positive recurrent along some channel v, if and only if it is positive recurrent along any other

channel v0 2 f0; 1; :::; S � 1g.

Proof The result follows using the same argument as in the proof of Theorem 4.2. �
Like periodic irreducibility and periodic recurrence, we speak of periodic positive recur-

rence.
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De�nition 4.8 A periodically irreducible Markov chain is said to be periodically positive

recurrent if it is v-positive recurrent for each v 2 f0; :::; S � 1g.

Thus, in a periodically irreducible Markov chain, all the states share the same properties.

Proposition 4.9 i) For a periodically irreducible Markov chain all states are either

periodically null recurrent, periodically positive recurrent or periodically transient.

ii) For a �nite v-irreducible Markov chain all states are v-positive recurrent.

iii) For a �nite periodically irreducible Markov chain all states are periodically positive

recurrent.

Thus for �nite time-periodic chains, periodic irreducibility implies periodic positive re-

currence.

4.3.2 Periodic periodicity and periodic aperiodicity

De�nition 4.9 i) The period of a state i along a channel v is a positive integer di (v) 2

N� [ f1g satisfying

di (v) = gcd
n
n � 1 : P (nS)ii (v) > 0

o
.

ii) If di (v) = 1, the state i is called v-aperiodic.

iii) If i is not accessible from itself, then by convention di (v) =1.

Thus, in the context of periodically homogeneous Markov chains, there are two types

of periodicity: periodicity regarding time (time-periodicity) and periodicity regarding states

(state-periodicity).

Remark 4.6 A state i can have di¤erent periods along di¤erent channels. For example, if

a time-periodic chain is de�ned with a system of one-step transition probabilities

P (0) =

0@ 1 0

1 0

1A and P (1) =

0@ 1
2

1
2

1 0

1A ,
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then the monodromy matrices are

P (0) =

0@ 1 0

1 0

1A0@ 1
2

1
2

1 0

1A =

0@ 1
2

1
2

1
2

1
2

1A
P (1) =

0@ 1
2

1
2

1 0

1A0@ 1 0

1 0

1A =

0@ 1 0

1 0

1A .
Hence the period of the state 2 along the channel 0 is d2 (0) = 1 and the period of the same

state 2 along the channel 1 is d2 (1) =1. �

This leads to the following de�nition.

De�nition 4.10 The period di of a state i along all channels is the number di 2 N�[f1g

given by

di = gcdfn � 1 : P (nS)ii (v) > 0; 0 � v � S � 1g,

with the convention that gcdfn;1g =1 for n � 1.

Naturally, De�nition 4.10 implies that di = di (v) for each 0 � v � S � 1. Note that

v-periodicity is also a class property.

Proposition 4.10 i) If i and j belongs to the same communication class along a channel

v, then di (v) = dj (v).

ii) If a state i has a period di and i
v! j for all v, then dj = di.

Proof i) Since i v! j, there exist two positive integers nv andmv such that P
(nvS)
ij (v) > 0

and P (mvS)
ji (v) > 0. By the Chapman-Kolmogorov equations,

P
((nv+mv)S)
ii (v) � P

(nvS)
ij (v)P

(mvS)
ji (v) > 0, (4:11)

showing that nv+mv is a multiple of di(v). Let k be a positive integer that is not a multiple

of di(v). Then k + nv +mv is not a multiple of di(v) so

P
(nvS)
ij (v)P

(kS)
jj (v)P

(mvS)
ji (v) � P

((nv+mv+k)S)
ii (v) = 0. (4:12)

Hence P (kS)jj (v) = 0, implying that dj(v) � di(v). The same argument, interchanging i and

j in (4:12), yields di(v) � dj(v).
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ii) Since i
v! j for each 0 � v � S� 1, there exist nv and mv such that P

(nS)
ki (v) > 0 and

P
(mS)
jk (v) > 0. Using the same argument as i), it follows that di = dj. �
De�nition 4.11 A periodically irreducible Markov chain is said to be periodically d-

periodic if it is di-periodic for each i 2 E with d = di for all i 2 E. If d = 1 the chain is

called periodically aperiodic.

For each non-empty subset D � E, denote by P (nS)i;D (v) :=
P
j2D

P
(nS)
ij (v).

Proposition 4.11 i) If a periodically homogeneous Markov chain is irreducible along a

channel v and d(v) is the period of all states in E along the channel v, then there exists

a partition D1; :::; Dd(v) of E (E =
d(v)S
l=1

Dl) such that P
(S)
i;Dl+1

(v) = 1 for each i 2 Dl; l =

1; :::; d(v).

ii) If a periodically homogeneous Markov chain is periodically irreducible and (d(v))0�v�S�1

are the periods of the states of E along all channels, then for each v there exists a partition

D1; � � � ; Dd(v) of E such that result i) is satis�ed.

Proof i) Let i; j 2 E. Since the chain is v-irreducible, there exist nv and mv such that

P
(nvS)
ji (v) > 0 and P (mvS)

ij (v) > 0. The Chapman-Kolmogorov equations entail P ((nv+mv)S)
ii (v)

> 0 and hence nv+mv = ld(v) for some l � 1. Since P (mvS)
ij (v) > 0, it follows thatmv can be

written as mv = ld(v) + r for some l 2 N, where r 2 f1; :::; d(v)g. For each r 2 f1; :::; d(v)g,

set

Dr = fj 2 E : P ((ld(v)+r)S)ij (v) > 0g; l 2 N.

Note that i 2 Dd(v) and P
(S)
i;Dc

1
(v) = 0 together imply that P (S)i;D1

(v) = 1, where Dc
1 is the

complement of the set D1. Likewise, it is easily seen that for each j 2 D1, P
(S)
j;Dc

2
(v) = 0 so

that P (S)j;D2
(v) = 1, and so on.

ii) If the chain is periodically irreducible, then it is irreducible along each channel v 2

f0; :::; S � 1g and thus the property i) is satis�ed for each v 2 f0; :::; S � 1g. �
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5 Convergence to periodically stationary distributions

and ergodic theorems

In this Section we will answer the questions of periodic stochastic stability raised in Section

3, namely the existence and uniqueness of the system of periodically stationary distributions

and the convergence of the marginal distributions to this system independently of the initial

distribution. The approach adopted for periodically homogeneous Markov chains consists in

generalizing known proof techniques in the homogeneous case where three major approaches

can be distinguished.

i) The approach based on the Perron-Frobenius theorem (e.g. Cox and Miller, 1965;

Cinlar, 1975, Appendix; Seneta, 1980).

ii) The approach based on the coupling method (e.g. Lindvall, 1982; Norris, 2002).

iii) The approach based on the discrete renewal theorem (e.g. Karlin and Taylor, 1975,

Theorem 1.1 and Theorem 1.2 of Chapter 3; Cinlar, 1975, Theorem 5.2.3 and (2:28) of

Chapter 9).

The �rst approach can be recommended for �nite Markov chains. However, it is of

limited interest for countably in�nite Markov chains and seems di¢ cult to adapt in the

inhomogeneous Markov case (see Seneta, 1980, Chapters 5, 6, and 7). The second approach

seems the most elegant one because it is easily generalizable to the case of Markov chains

with a general state space (Meyn and Tweedie, 2009). However, the third approach appears

to be the simplest one in our context, which we adopt here.

The following results show that v-recurrence and v-aperiodicity together imply the exis-

tence of lim
n!1

Pnij (v) independently of the state i while v-positive recurrence guarantees the

positivity and hence the uniqueness of lim
n!1

Pnij (v). Finally, periodic irreducibility together

with the above two properties ensure the existence and uniqueness of the above limit along all

channels and all states, and hence the existence and uniqueness of the system of periodically

stationary distributions.

Theorem 5.1 i) Let (Xt; t 2 N) be a v-irreducible, v-aperiodic, and v-recurrent S-periodically
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homogeneous Markov chain (0 � v � S � 1). Then for each i 2 E

lim
n!1

P
(nS)
ii (v) = 1

1P
n=0

nf
(nS)
ii (v)

= 1
mii(v)

. (5:1)

ii) If (Xt; t 2 N) is periodically irreducible, periodically aperiodic, and periodically recurrent,

then (5:1) holds for each i 2 E and each v 2 f0; :::; S � 1g.

Proof i) In view of Remark 4.3, i), the probability P (nS)ii (v) satis�es the following renewal

equation

P
(nS)
ii (v) =

nX
k=0

f
(kS)
ii (v)P

((n�k)S)
ii + 1[n=0], n 2 N. (5:2)

Applying Theorem A.1 (see Appendix A) with un = P
(nS)
ii (v), an = f

(nS)
ii (v), and bn = 1[n=0]

gives

lim
n!1

P
(nS)
ii (v) =

1P
k=0

bk

1P
n=0

nan

= 1
mii(v)

where mii (v) =
1P
n=0

nf
(nS)
ii (v) is the expected time of return to state i along the channel v.

ii) The result is a simple consequence of i). �
The following Theorem shows that under the same conditions of Theorem 5.1, the limit

lim
n!1

P
(nS)
ij (v) exists independently of the initial state i.

Theorem 5.2 i) Under the same conditions of Theorem 5.1, i),

lim
n!1

P
(nS)
ij (v) = lim

n!1
P
(nS)
jj (v) for every i; j 2 E. (5:3)

ii) Under the same conditions of Theorem 5.1, ii), (5:3) holds for all 0 � v � S � 1.

Proof i) From Remark 4.3, i), it follows that

P
(nS)
ij (v) =

nX
k=0

f
(kS)
ij (v)P

((n�k)S)
jj for i 6= j, n � 0. (5:4)

Hence, applying Theorem A.1, ii) with yn = P
(nS)
ij (v), an = f

(nS)
ij (v), and xn = P

(nS)
jj gives

the desired result.
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ii) The result is an obvious consequence of i). �
For a �nite time-periodic chain, periodic irreducibility implies that all states are period-

ically positive recurrent. If, in addition, the chain is periodically aperiodic then P (nS)ij (v) =

�j (v) > 0 exists and is positive of all v 2 f0; :::; S � 1g, and all i; j 2 E. Thus, the system

of periodically stationary distributions (�j (v))0�v�S�1;j2E is uniquely determined by (3:4).

When the chain is in�nite, the following result extends (3:4).

Theorem 5.3 i) For a v-irreducible, v-aperiodic, and v-positive recurrent time-periodic

Markov chain (Xt; t 2 N) valued in N,

lim
n!1

P
(nS)
jj (v) = �

(v)
j , (5:5)

where the
�
�
(v)
j

�
j2N

are uniquely determined from the equations

�
(v)
j =

1X
i=0

�
(v)
i P

(S)
ij (v) , (5:6a)

1X
j=0

�
(v)
j = 1, �

(v)
j > 0. (5:6b)

ii) If (Xt; t 2 N) is periodically irreducible, periodically aperiodic, and periodically positive

recurrent with states in N then (5:5) and (5:6) are satis�ed for every v 2 f0; :::; S � 1g.

Proof i) Given positive integers n and K, we have
1P
j=0

P
(n)
ij (v) = 1 �

KP
j=0

P
(n)
ij (v). Taking

the limit as n!1 while using Theorem 5.1, we obtain
KP
j=0

�
(v)
j � 1 for every K and hence

1P
j=0

�
(v)
j � 1. On the other hand, the Chapman-Kolmogorov equations yield

P
(nS+S)
ij (v) =

1X
k=0

P
(nS)
ik (v)P

(S)
kj (v) (5:7)

�
KX
k=0

P
(nS)
ik (v)P

(S)
kj (v) ,

and by taking the limit as n!1,

�
(v)
j �

KX
k=0

�
(v)
k P

(S)
kj (v) for every K

46



so that

�
(v)
j �

1X
k=0

�
(v)
k P

(S)
kj (v) . (5:8)

Multiplying both sides of (5:8) by P (S)ji (v) and summing over j gives

�
(v)
j �

1X
k=0

�
(v)
k P

(2S)
kj (v)

and repeating this argument yields

�
(v)
j �

1X
k=0

�
(v)
k P

(nS)
kj (v) for each n. (5:9)

If the strict inequality in (5:9) holds, i.e.

1X
k=0

�
(v)
k P

(nS)
kj (v) < �

(v)
j

then

1X
j=0

�
(v)
j >

1X
j=0

1X
k=0

�
(v)
k P

(nS)
kj (v)

=
1X
k=0

�
(v)
k

1X
j=0

P
(nS)
kj (v)

=
1X
k=0

�
(v)
k

leading to a contradiction. Hence (5:9) becomes

�
(v)
j =

1X
k=0

�
(v)
k P

(nS)
kj (v) for each n. (5:10)

Taking n!1 in (5:10) and using the convergence of
1P
k=0

�
(v)
k and the uniform boundedness

of (P (nS)kj (v))n we get

�
(v)
j =

1X
k=0

�
(v)
k lim

n!1
P
(nS)
kj (v)

= �
(v)
j

1X
k=0

�
(v)
k . (5:11)
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Since the chain is v-irreducible and v-positive recurrent, it follows that �(v)j > 0 for all j, so

(5:11) entails
1P
k=0

�
(v)
k = 1, proving (5:6b). The proof of the existence of (�(v)j ) in (5:6b) is

thus completed while taking n!1 in (5:7), giving �(v)j =
1P
i=0

�
(v)
i P

(S)
ij (v).

To prove the uniqueness of (�(v)j )j, let (�
(v)
j )j be a sequence of real numbers satisfying

(5:6). Then

�
(v)
j =

1X
i=0

�
(v)
i P

(S)
ij (v)

=

1X
i=0

�
(v)
i lim

n!1
P
(nS)
ij (v)

= �
(v)
j

1X
i=0

�
(v)
i

= �
(v)
j for all j.

ii) A consequence of i). �
The limiting results introduced so far concern the distributions of the time-periodic chain

(ensemble average) and not its sample paths (sample average). We now examine the behavior

of the sequence of sample means of the time-periodic chain. We �rst consider the case where

the chain is initialized from its periodically stationary distributions (i.e. the chain is strictly

periodically stationary) and is periodically irreducible (i.e. periodically ergodic in the sense

of Appendix B).

Let �(n)j (v) = 1
n

nP
k=1

1[Xv+kS=j] be the mean number of visits of state j along the channel

v up to time nS + v. If the chain (Xt; t 2 N) is periodically stationary then

E
�
�
(n)
j (v)

�
= 1

n

nX
k=1

P (XkS+v = j)

= �
(v)
j for all v and j. (5:12)

If, in addition, (Xt; t 2 N) is periodically irreducible then the point-wise ergodic theorem

(e.g. Aknouche, 2008) entails

1
n

nX
k=1

1[Xv+kS=j]
a:s:!
n!1

E
�
1[Xv+kS=j]

�
= P (Xv+kS = j) = �

(v)
j . (5:13)
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An extension of (5:13) is given by the following result.

Theorem 5.4 For a S-periodically irreducible and periodically stationary time-periodic Markov

chain (Xt; t 2 N) valued in N,

1
n

nX
k=1

f (Xk)
a:s:!
n!1

1
S

SX
v=1

1X
j=0

f (j)�
(v)
j , (5:14)

where f is a measurable bounded real-valued function and a:s:!
n!1

denotes the almost sure con-

vergence as !1.

Proof For every n 2 N�, setting n = v +mS (1 � v � S), we have

1
n

nX
k=1

f (Xk) = 1
n

nX
k=1

1X
j=0

f (j) 1[Xk=j]

= 1
mS+v

mX
k=1

SX
v=1

1X
j=0

f (j) 1[XkS+v=j] +
1

mS+v

vX
v0=1

1X
j=0

f (j) 1[XkS+v=j]

= mS
mS+v

1X
j=0

1
S

SX
v=1

1
m

mX
k=1

f (j) 1[XkS+v=j] +
1

mS+v

vX
v0=1

1X
j=0

f (j) 1[XkS+v=j].(5:15)

Letting n!1 and m!1 so mS
mS+v

! 1, we obtain

1
mS+v

vX
v0=1

1X
j=0

f (j) 1[XkS+v=j]
a:s:!
n!1

0.

By periodic stationarity and periodic ergodicity of (Xt; t 2 N) and hence of (f (Xt) ; t 2 N)

(cf. Appendix B), the ergodic theorem yields

1
m

mX
k=1

f (j) 1[XkS+v=j]
a:s:!
n!1

E
�
f (j) 1[XkS+v=j]

�
= f (j)�

(v)
j . (5:16)

Hence in view of (5:15) and (5:16), it follows that

1
n

nX
k=1

f (Xk) =
1X
j=0

1
S

SX
v=1

1
m

mX
k=1

f (j) 1[XkS+v=j]

a:s:!
n!1

1
S

SX
v=1

1X
j=0

f (j)�
(v)
j ,
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which proves the desired result. �
Theorem 5.4 does not require periodic aperiodicity and periodic positive recurrence since

the chain has already been assumed to be periodically stationary and periodically irreducible

(hence periodically ergodic). However, when the chain is not periodically stationary, periodic

irreducibility is no longer synonymous with periodic ergodicity (in the sense of Appendix B)

and the point-wise ergodic theorem can no longer be applicable. In this situation, periodic

aperiodicity and positive periodic recurrence are required to obtain a variant of Theorem 5.4

where convergence is instead valid for the means of the sample means.

Theorem 5.5 If (Xt; t 2 N) is periodically irreducible, periodically aperiodic, and periodi-

cally positive recurrent with states in N then

1
n

nX
k=1

E (f (Xk))! 1
S

SX
v=1

1X
j=0

f (j)�
(v)
j as n!1

where f is a measurable bounded real-valued function.

Proof Using the same arguments in the proof of Theorem 5.4 (see (5:15)) we have

1
n

nX
k=1

f (Xk) =
1X
j=0

1
S

SX
v=1

1
m

mX
k=1

f (j) 1[XkS+v=j] +Rn, (5:17)

where Rn is a term satisfying E (Rn)! 0 as n!1.

Now, periodic irreducibility, periodic aperiodicity, and periodic positive recurrence to-

gether imply

lim
m!1

E

 
1
m

mX
k=1

f (j) 1[XkS+v=j]

!
= lim

m!1
1
m

mX
k=1

f (j)E
�
1[XkS+v=j]

�
= lim

m!1
1
m

mX
k=1

f (j)P (XkS+v = j)

= lim
m!1

1
m

mX
k=1

f (j)�
(v)
j

= f (j)�
(v)
j ,
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so

lim
m!1

E

 
1
n

nX
k=1

f (Xk)

!
= 1

S

SX
v=1

1X
j=0

f (j)�
(v)
j

and thus 1
n

nP
k=1

Ef (Xk) converges to 1
S

SP
v=1

1P
j=0

f (j)�
(v)
j as n!1. �

6 Applications

6.1 Periodic Markov decision process

A periodic Markov decision process (PMDP in short) is a stochastic process ((Xt; Dt; Ct) ; t 2

N) de�ned on a probability space (
;F ; P ) where the triple (Xt; Dt; Ct) is described as

follows:

i) Xt is a random variable valued in a �nite set Et (t 2 N) and represents the state of a

system of interest at time t. The whole state-space of the system is E =
S
t2N

Et = f1; :::; Kg

and is supposed to be �nite.

ii) Dt (t 2 N) is a decision rule specifying at each time t which action a to be taken in

a �nite set of actions Ai (t) when Xt = i for some i 2 Et. The action space is denoted by

A =
S

t2N;i2Et
Ai (t) and its number of elements by jAj. Thus, Dt is a At-valued measurable

function of Xt.

iii) Ct (t 2 N) is a random variable representing the cost (or reward) incurred by choosing

an action a 2 A when the system moves from a certain state at time t to another state at

the following time. Hence, Ct is a measurable function of Xt, Xt+1 and Dt. Given Xt = i,

Xt+1 = j, and Dt = a, the value of the reward Ct at time t is denoted by Cij (t; a), i.e.

Cij (t; a) = Ctj [Xt = i;Xt+1 = j;Dt = a] . (6:1a)

Likewise, denote by

C
(n)
ij (t; a) = Ctj [Xt = i;Xt+n = j;Dt = a] (6:1b)

the cost incurred by choosing an action a 2 A when the system moves from state i at time

t to state j at time t+ n.
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We further assume that the model is a periodically homogeneous Markov chain in the

sense that:

a) (Xt; t 2 N) is a �nite S-periodically homogeneous, periodically regular, and periodi-

cally stationary Markov chain with transition probabilities

Pij (t; a) := P (Xt+1 = jjXt = i;Dt = a) := Pij (t+ kS; a) ; k 2 N (6:2a)

and S-periodically stationary marginal distribution

P (Xt+1 = ijDt = a) = �i (t; a) , (6:2b)

where (�i (t; a))i;t is S-periodic in t and satis�es (3:4) for each a 2 A. Since (Xt; t 2 N) is

�nite, its periodic regularity is ensured by just assuming that it is periodically irreducible

and periodically aperiodic.

b) The parameters Ai (t) and Cij (t; a) are S-periodic over t 2 N. So letting t = kS + v

(v 2 f0; :::; S � 1g, k 2 N), Et, Ai (t), Cij (t; a), and �i (t; a) can be rewritten as Ev, Ai (v),

Cij (v; a), and �i (v; a), respectively. In particular, C
(S)
ij (v; a) := Cij (v; a) denotes the cost

incurred by choosing an action a 2 A when the system moves from the state i at time nS+v

to the state j at time (n+ 1)S + v.

A policy � is a sequence of decision rules and is nothing but the decision process

� := (Dt; t 2 N). By periodic homogeneity of the model, � can be described by a S � K

matrix such that� (v; i) denotes the action to be taken when the system is in the state i at a

time multiple of S modulo v 2 f0; :::; S � 1g. A policy� is called pure when the probability

at each time to take a given action is either 0 or 1. If not, it is called randomized. A pure

policy is called periodically stationary if whenever the system is in the state i at the time

period kS + v (0 � v � S � 1; k 2 N), the same action a 2 Ai (v) is taken independently of

k. Obviously, the number of periodically stationary policies is �nite and is equal to

S�1Y
v=0

Y
i2Ev

jAi (v)j . (6:3)

As long as a periodically stationary policy � is involved, the transition probability
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Pij (t; a) in (6:2a) as well as the marginal distribution (6:2b) will be simply denoted by

Pij (t;�) and �i (t;�), respectively.

The aim is to determine the optimal periodically stationary policy in the sense of a

certain criterion. The most used criterion for non-periodic MDPs is to minimize the long-

term expected cost per a time-unit. In the periodic context, this criterion takes the form

g(�) = 1
S

S�1P
v=0

KP
i=1

�i(v;�)C(S)i (v;�), (6:4)

where C(S)i (v;�) =
KP
j=1

P
(S)
ij (v;�)C

(S)
ij (v;�). In fact, C

(S)
i (v;�) is interpreted as being the

expected cost over the next S time-units if the system is in state i at a time multiple of S

modulo v. Optimal policy determination is thus expressed through the following discrete

optimization problem

�� = argmin
�2�

g(�), (6:5)

where � is the set of all periodically stationary policies.

Problem (6:5) can be solved by enumerating all possible periodically stationary policies

and choosing the one with minimum g(�). However, the number of periodically stationary

policies can be extremely large and this solution is in general very time-consuming. Carton

(1963) and Riis (1965) extended Howard�s algorithm to solve (6:5). Other approaches using

linear programming could also be used (cf. Aknouche and Kahoul, 2010).

On a �nal note, when the decision process � := (Dt; t 2 N) degenerates at a singleton

fag for some action a, the PMDP process ((Xt; Dt; Ct) ; t 2 N) reduces to (Xt; t 2 N) which

is a periodically homogeneous Markov chain as de�ned in Section 2. Thus a PMDP is a

strict extension of a time-periodic Markov chain.
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6.2 Periodic integer-valued time series models

6.2.1 Periodic binomial AR(1)

A time-periodic extension of the �rst-order binomial integer-valued autoregressive (BINAR(1))

model proposed by McKenzie (1985) is de�ned as

Xt = �t �Xt�1 + �t � (n�Xt�1) , t 2 N� (6:6)

=

Xt�1X
l=1

�
(t�1)
l +

n�Xt�1X
l=1

�
(t�1)
l ,

where X0 is a random variable. The sequences
�
�
(t�1)
l

�
and

�
�
(t�1)
l

�
are ipdS Bernoulli dis-

tributed with S-periodic means (�t) and (�t), respectively, i.e. E(�
(t�1)
l ) = �t = �t+S 2 (0; 1)

and E(�(t�1)l ) = �t = �t+S 2 (0; 1) for all integer t. The symbol � stands for the binomial

random sum operator (Steutel and van Harn, 1978) de�ned as �t �Xt�1 :=
Xt�1P
l=1

�
(t�1)
l , where�

�
(t�1)
l

�
are independent of Xt�1.

Clearly, (Xt; t 2 N) is a periodically homogeneous Markov chain on the �nite state

space E := f0; :::; ng. Given i; j 2 E, the one-step transition probabilities Pij (t) :=

P (Xt+1 = jjXt = i) have the form

Pij (t) = P

 
XtX
l=1

�
(t)
l +

n�Xt�1X
l=1

�
(t�1)
l = jjXt = i

!

=

min(i;j)X
k=max(0;i+j�n)

�
i
k

��
n�i
j�k
�
�kt (1� �t)

i�k �j�kt (1� �t)
n�i�j+k . (6:7)

Since Pij (t) > 0 for all t 2 N and all i; j 2 f0; :::; ng, so are the monodromy probabilities

Pij (v) := P (Xv+S = jjXv = i) for all i; j 2 E and v 2 f0; :::; S � 1g. Consequently, the

chain (Xt; t 2 N) is v-irreducible and v-aperiodic for each v 2 f0; :::; S � 1g and thus is

periodically irreducible and periodically aperiodic. This implies that

lim
n!1

P
(nS)
ij (v) = �

(v)
j exists (6:8)

for all v and i; j 2 f0; :::; ng. Since (Xt; t 2 N) is �nite and periodically irreducible, all states

are v-positive recurrent along each v 2 f0; :::; S � 1g and therefore (Xt; t 2 N) is periodically
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positive recurrent, implying that �(v)j > 0 for every j and v. Consequently, (Xt; t 2 N) is

periodically regular (stable) and therefore the limit in (6:8) is unique and positive. The

system of periodically stationary distributions
�
�
(v)
j ; j 2 f0; :::; ng

�
0�v�S�1

thus satis�es

�
(v)
j =

nX
k=0

�
(v)
k P

(S)
kj (v) ; 0 � v � S � 1, (6:9)

which is simply (3:4), where

P
(S)
kj (v) = Pkj (v) := P (Xv+S = jjXv = k)

can be obtained from (6:7) by iterating (6:6) S times.

6.2.2 Periodic integer-valued ARCH(1) model

The �rst-order periodic Poisson integer-valued ARCH(1) (PINARCH) process (Grunwald et

al, 2000) is given by

XtjXt�1 � P (!t + �tXt�1) , t 2 N� (6:10)

where X0 is a given random variable, !t > 0; �t � 0 and P (�) stands for the Poisson

distribution with mean � > 0. It is assumed that (!t) and (�t) are periodic with period

S � 1 in the sense !t = !t+S and �t = �t+S for all t. When S = 1, model (6:10) reduces to the

Poisson INARCH introduced by Grunwald et al (2000). It is also a particular instance of the

Poisson INGARCH studied by Aknouche, Bendjeddou and Touche (2018) and Aknouche et

al (2022b). Clearly, (Xt; t 2 N) is a time-periodic Markov chain with transition probabilities

Pij (v) = P (Xv+1 = jjXv = i)

= e�(!v+�vi) (!v+�vi)
j

j! , i; j 2 N, 0 � v � S � 1. (6:11)

The monodromy transition probability has a complicated expression and we give it �rst for

the case S = 2,

Pij (v) = P (Xv+2 = jjXv = i) =
1X
k=0

Pik (v)Pkj (v + 1)

=

1X
k=0

e�(!v+�vi) (!v+�vi)
k

k! e�(!v+1+�v+1k) (!v+1+�v+1k)
j

j! . (6:12)
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Since !v > 0, the chain (Xt; t 2 N) is periodically irreducible and periodically aperiodic. To

show its periodic recurrence, we use Theorem 4.3. Taking Vj (v) = j for all v as a Lyapunov

function, it is clear that

Vj (v) !
j!1

1.

In addition,

1X
j=0

Pij (v)Vj(v) =

1X
k=0

e�(!v+�vi) (!v+�vi)
k

k! e�(!v+1+�v+1k) (!v+1 + �v+1k)
1X
j=1

(!v+1+�v+1k)
j�1

(j�1)!

=

1X
k=0

e�(!v+�vi) (!v+�vi)
k

k! (!v+1 + �v+1k)

= !v+1 + �v+1 (!v + �vi)

1X
k=0

e�(!v+�vi) (!v+�vi)
k�1

(k�1)!

= !v+1 + �v+1!v + �v+1�vVi(v).

If

�v+1�v < 1, (6:13)

then
1X
j=0

Pij (v)Vj(v) < Vi(v)

as long as

i >
!v+1 + �v+1!v
1� �v+1�v

:= Ni (v) .

Therefore, the chain (Xt; t 2 N) is periodically recurrent under (6:13). For general S, using

the same argument, simple but tedious computations show that under

S�1Y
v=0

�v < 1, (6:14)

1X
j=0

Pij (v)Vj(v) < Vi(v)

provided that

i >

SP
j=1

j�1Q
i=0

�v+S�1�i!v+S�j

1�
S�1Q
v=0

�v

:= Ni (v) .
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If the chain were periodically null recurrent, then limn!1 P
nS
ij (v) = �

(v)
j = 0 for all

0 � v � S � 1 and i; j 2 N, so taking S = 2, the equations

�
(v)
j =

1X
k=0

e�(!v+1+�v+1k) (!v+1+�v+1k)
j

j!

1X
i=0

�
(v)
i e�(!v+�vi) (!v+�vi)

k

k! (6:15)

1X
j=0

�
(v)
j = 1; �

(v)
j > 0,

would have no solution. Since !v > 0 for every v, (6:15) has a unique solution and hence

the chain is periodically regular.

Condition (6:14) coincides with the periodic ergodicity condition for the periodic INARCH(1)

as proposed by Aknouche et al (2018).

6.2.3 Periodic integer-valued autoregressive (INAR(1)) model

The periodic INAR(1) (PINARS (1)) model proposed by Monteiro et al (2010) is given by

Xt = �t �Xt�1 + "t, t 2 N� (6:16)

=

Xt�1X
l=1

�
(t�1)
l + "t,

where X0 is a random variable, ("t; t 2 N) is a Poisson distributed ipdS sequence with mean

�t > 0, and (�
(t�1)
l )l is an ipdS Bernoulli distributed sequence with S-periodic mean �t. It is

assumed that (�(t�1)l )l is independent of ("t; t 2 N) and Xt�1, and that �t is S-periodic in t.

For every i; j 2 N, Pij (t) := P (Xt+1 = jjXt = i) has the form

Pij (t) =

min(i;j)X
k=0

�
i
k

�
�kt (1� �t)

i�k e��t
�j�kt

(j�k)! > 0. (6:17)

Thus the chain is periodically irreducible and periodically aperiodic. In addition, Monteiro

et al (2010) showed that for all v 2 f0; :::; S � 1g the homogeneous chain (XnS+v; n 2 N) is

positive recurrent. So the chain (Xt; t 2 N) is periodically regular.

6.2.4 Periodic integer-valued RCA(1) model

Let (�t; t 2 Z) and ("t; t 2 Z) be mutually independent N-valued ipdS sequences where

E (�t) = �t > 0, V ar (�t) = �2t � 0, E ("t) = �t > 0, and V ar ("t) = �2t > 0 are all S-
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periodic in t. A N-valued process (Xt; t 2 Z) is said to be a periodic integer-valued random

coe¢ cient AR(1) model, in short PINRCAS(1), if Xt admits the representation

Xt = �tXt�1 + "t, t 2 Z. (6:18a)

A N-evolution version of (6:18a) is

Xt = �tXt�1 + "t; t 2 N� (6:18b)

for a given integer-valued initial variable X0. Model (6:18) is a time-periodic extension of

the RMINAR model introduced by Aknouche et al (2023). The distribution of the input

sequences (�t; t 2 N�) and ("t; t 2 N�) can be speci�ed (binomial, Poisson, negative binomial,

etc.). Note that the PINRCA(1) process (Xt; t 2 N) de�ned by (6:18) is a periodically

homogeneous Markov chain with an initial distribution

�j (0) = P (X0 = j) , j 2 N

and transition probabilities given by

Pij (t) = P (Xt+1 = jjXt = i) (6:19)

=

8><>:
P

0�k�j; j�k
i
2N0

P ("t+1 = k)P
�
�t+1 =

j�k
i

�
i > 0

P ("t+1 = j) i = 0,

where t; i; j 2 N. For instance, when �t and "t are Poisson distributed so that �2t = �t and

�2t = �t,

Pij (t) =

8>><>>:
P

0�k�j; j�k
i
2N
e��t+1

�kt+1
k!
e��t+1

�
j�k
i

t+1

( j�ki )!
i > 0

e��t+1
�jt+1
j!

i = 0.

Equation (6:18b) can be rewritten as

XnS+v = AnS+vXv+(n�1)S + "nS+v; n 2 N�; 0 � v � S � 1, (6:20a)

where for each v 2 f0; :::; S � 1g,

AnS+v =
S�1Y
l=0

�nS+v�l and "nS+v =
S�1X
k=0

k�1Y
l=0

�nS+v�l"nS+v�k. (6:20b)
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Hence the monodromy transition probabilities are given by

Pij (v) = P (Av+SXv + "v+S = jjXv = i) (6:21)

=

8>><>>:
P

0�k�j; j�k
i
2N0

P ("v = k)P

 
S�1Y
l=0

�nS+v�l =
j�k
i

!
; i > 0

P ("v = j) ; i = 0.

Instead of studying (6:21), it is much easier to consider the asymptotic behavior of the solu-

tion of the (monodromy) recurrence equations (6:20). Since the sequence ((AnS+v; "nS+v) ; n 2

N) is iid for each v 2 f0; :::; S � 1g, the S monodromy equations (6:20) are standard sto-

chastic recurrence equations with iid inputs (e.g. Aknouche and Guerbyenne, 2009; Bibi and

Aknouche, 2010). We are interested in the convergence in distribution of XnS+v (as n!1)

to a random variable X(v) (0 � v � S � 1), independently of the initial variable X0, i.e.

XnS+v
d!

n!1
X(v) 8X0; 8v 2 f0; :::; S � 1g , (6:22)

where the limiting variables
�
X(v)

�
v
, also called circular distributional �xed points of (6:18),

satisfy the following circular system

X(v) d
= �vX

(v�1) + "v; f1; :::; S � 1g

X(0) d
= �0X

(S�1) + "0
(6:23)

X(v) and (�v; "v) are independent for each v 2 f0; :::; S � 1g .

The S circular distributional �xed points
�
X(v); 0 � v � S � 1

	
given by (6:23) also satisfy

the following identities in distribution

X(v) d
= AvX(v) + "v

X(v) and (Av; "v) are independent
0 � v � S � 1, (6:24)

meaning that
�
X(v); 0 � v � S � 1

	
are also distributional �xed points of the monodromy

equation (6:20) in the standard sense (Goldie and Maller, 2000).

Iterating (6:20) S times gives

XnS+v =
nY
i=1

AiS+vXv +
nX
j=1

nY
i=j+1

AiS+v"jS+v; 0 � v � S � 1, (6:25)
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where the S variables fXv; 1 � v � S � 1g are such that Xv = AvXv�1+Bv, 1 � v � S� 1.

To study the limit behavior of XnS+v as n!1, it is important to emphasize that from the

iid property of the sequence ((AnS+v; "nS+v) ; n 2 N), (0 � v � S � 1) it follows that
nX
j=1

nY
i=j+1

AiS+v"jS+v
d
=

nX
j=1

j�1Y
i=1

AiS+v"jS+v; 0 � v � S � 1. (6:26)

In addition, if (�nS+v = 0) > 0 for all v, as happens for most usual discrete distributions

such as Poisson, Binomial, negative binomial, etc., then Brandt�s (1986) theorem (see also

Vervaat, 1979) implies that under the condition

P (AnS+v = 0) > 0, (6:27)

nX
j=1

j�1Y
i=1

AiS+v"jS+v
a:s:!
n!1

1X
j=1

j�1Y
i=1

AiS+v"jS+v; 0 � v � S � 1, (6:28)

where the in�nite series in (6:28) converges absolutely almost surely. Taking

X(v) d
=

1X
j=1

j�1Y
i=1

AiS+v"jS+v,

it follows that under (6:27),

XnS+v
a:s:!
n!1

X(v)

for all 0 � v � S � 1, where
�
X(v)

�
v
satis�es (6:23) and (6:24). This indirectly shows that

the Markov chain (Xt; t 2 N) is periodically regular. The distribution of the system
�
X(v)

�
v

is the periodically stationary (or periodically invariant) distribution of the Markov chain

(Xt; t 2 N). Such a system of distributions exists provided condition (6:27) is satis�ed.

Finally, if the initial variables Xv are such that Xv
d
= X(v) for each v 2 f0; :::; S � 1g,

i.e. the time-periodic chain is initialized from its periodically invariant distributions, then

(Xt; t 2 N) given by (6:18) is strictly periodically stationary and periodically ergodic.

6.3 Markov-switching periodic time series models

Markov-switching time series models have attracted increasing interest in recent years. These

models can be broadly classi�ed into two categories, namely Markov-switching conditional
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mean models (MS-ARMAmodels; e.g. Hamilton, 1989-1990, Francq and Zakoïan, 2001; Yao,

2001; Aknouche and Rabehi, 2010; Aknouche and Demmouche, 2019; Aknouche and Francq,

2022) and Markov-switching conditional variance models (MS-GARCH models; e.g. Cai,

1994; Hamilton and Susmel, 1994; Gray, 1996; Francq et al, 2001; Klaassen, 2002; Hass et

al, 2004; Francq and Zakoian, 2005-2008-2019; Aknouche et al, 2024). Most existing Markov-

switching formulations concern stationary and ergodic inputs depending on the states of a

�nite homogeneous Markov chain which is assumed to be regular and stationary.

This Subsection describes three Markov-switching periodic time series models, namely

a Markov-Switching periodic ARMA (MS-PARMA) model, a Markov-Switching periodic

GARCH (MS-PGARCH) model, and a more general Markov-Switching positive conditional

mean model. For the three models, the inputs are S-periodically distributed and depend

upon the (�nite) states of a periodically homogeneous Markov chain which is assumed to be

periodically regular and periodically stationary. Special cases of Markov-switching periodic

autoregressive (MS-PAR) models have already been examined by Ghysels et al (1998), Ghy-

sels (2000), and Bac et al (2001). The MS-PARMA model we present here was previously

proposed by Aknouche et al (2008) and was named Markov-mixture periodic ARMA.

6.3.1 A Markov-switching periodic ARMA model

A real-valued random sequence (Yt; t 2 Z) de�ned on a probability space (
;F ; P ) is said

to be a Markov-switching periodic ARMA (MS-PARMA) with period S � 1 and orders

p; q 2 N if it is a solution to the following equation

Yt = �0t(Xt) +

pX
i=1

�it(Xt)Yt�i + "t �
qX
j=1

�jt(Xt)"t�j, t 2 Z, (6:29)

where ("t; t 2 Z) is a sequence of ipdS random variables with mean zero and variance V ar("t) =

�2t (Xt) > 0. The parameters �it(Xt), �jt(Xt), and �2t (Xt) are S-periodic in t in the sense

�i;t(Xt) = �i;t+S(Xt) for all t and so on. When q = 0, the MS-PARMA model reduces to

the Markov-switching periodic autoregressive (MS-PAR) model proposed by Ghysels et al

(1998) and Ghysels (2000), and subsequently studied by Bac et al (2001). For S = 1, the
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model (6:29) reduces to the MS-ARMA speci�cation studied by Francq and Zakoian (2001).

The sequence (Xt; t 2 N) is assumed to be a �nite periodically homogenous Markov chain

with state-space E = f1; :::; Kg and transition probability matrices (P (v))0�v�S�1 given by

Pij (v) = P (XnS+v+1 = jjXnS+v = i)

= P (Xv+1 = jjXv = i); n 2 N; i; j 2 E; 0 � v � S � 1.

P
(l)
ij (t) = P (Xt+l = jjXt = i).

We assume further that (Xt; t 2 N) is periodically irreducible and periodically aperiodic.

Since the chain (Xt; t 2 N) is �nite, it is therefore periodically positive recurrent and hence

periodically regular (or periodically Harris-ergodic). In addition, we assume that (Xt; t 2 N)

is periodically stationary in the sense P (Xv = j) := �j (v) = �
(v)
j for 0 � v � S�1, where the

system of periodically invariant distributions
�
�(v)
�
0�v�S�1 uniquely satis�es (3:4). Finally,

the sequence (Xt; t 2 N) �guring in (6:29) is a (strictly) periodically stationary Z-version

of (Xt; t 2 N) (cf. Aknouche, 2008). Due to the moving-average part in (6:29), the MS-

PARMA model is characterized by path dependence, making the estimation of the model

quite involving.

A fundamental question concerning model (6:29) is to search for conditions ensuring the

existence of periodically stationary and periodically ergodic solutions with �nite logarithmic

or higher-order moments. For this, the model (6:29) can be rewritten in the following Markov

vector form

Zt = At(Xt)Zt�1 +Bt(Xt), (6:30)

where

Zt = (Yt; :::; Yt�p+1; "t; :::; "t�q+1)
0
(p+q)�1

Bt(Xt) = (�0t(Xt) + "t; 0; :::; 0; "t; 0; :::; 0)
0
(p+q)�1 ;
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and

At(Xt) =

0BBBBBBBBBBBBBBBBBB@

�1t(Xt) � � � �p�1;t(Xt) �pt(Xt) �1t(Xt) � � � �q�1;t(Xt) �qt(Xt)

1 � � � 0 0 0 � � � 0 0
...

. . .
...

...
...

. . .
...

...

0 � � � 1 0 0 � � � 0 0

0 � � � 0 0 0 � � � 0 0

0 � � � 0 0 1 � � � 0 0
...

. . .
...

...
...

. . .
...

...

0 � � � 0 0 0 � � � 1 0

1CCCCCCCCCCCCCCCCCCA

,

Note that the sequence of matrices ((At; Bt); t 2 Z) is strictly periodically stationary and

periodically ergodic by model�s assumptions. LetMr be the space of square real matrices

of dimension r := p + q and k:k be an arbitrary operator norm in Mr. The largest Lya-

punov exponent for the sequence of matrices (At; t 2 Z) is given by (e.g. Aknouche, 2008;

Aknouche, Al-Eid and Demouche, 2018)


S (A) = inf
n2N�

1
n
E flog kAnS (XnS)AnS�1 (XnS�1) :::A1 (X1)kg (6:31)

= inf
n2N�

S
n
E flog kAn (Xn)An�1 (Xn�1) :::A1 (X1)kg .

Proposition 6.1 A su¢ cient condition for model (6:29) to have a causal strictly peri-

odically stationary solution given by

Zt =
1X
j=0

j�1Y
i=0

At�i (Xt�i)Bt�j (Xt�j) ; t 2 Z, (6:32)

where the latter series converges absolutely a:s., is that


S (A) < 0. (6:33)

Furthermore, this solution is unique and periodically ergodic.

Proof By model�s assumption we �rst have
SX
v=1

E
�
log+ kAv (Xv)k

�
�

SX
v=1

E (kAv (Xv)k) <1

SX
v=1

E
�
log+ kBv (Xv)k

�
�

SX
v=1

E (kBv (Xv)k) <1.
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Therefore, (6:33) implies 





j�1Y
i=0

At�i (Xt�i)






 kBt�j (Xt�j)k
!1=j

= exp

 
1
j
log







j�1Y
i=0

At�i (Xt�i)






+ 1
j
log kBt�j (Xt�j)k

!
!
j!1

exp
�
1
S

S
	
< 1; a.s.

Therefore, the Cauchy rule implies that the series (6:32) converges absolutely a.s., and the

process given by (6:32) is a solution to (6:30). This solution is strictly periodically stationary

and periodically ergodic in view of the periodicity of the model�s coe¢ cients and the periodic

homogeneity of the chain (Xt). �
We now give a su¢ cient condition for the existence of a strictly periodically stationary

solution (6:29) satisfying E (Y 2
v ) < 1, 0 � v � S � 1. Let 
 be the Kronecker product,

�(A) be the spectral radius of the matrix A (i.e. the maximum absolute eigenvalues of A),

vec(A) be the column vector stacking operator for the matrix A, and A
m be the product

A
 A
 � � � 
 A of m factors. De�ne the matrix �(d)v (d 2 N�, 0 � v � S � 1) by

�(d)v =

0BBBBBB@
P11 (v)Av (1)


d P21 (v)Av (1)

d : : : PK1 (v)Av (1)


d

P12 (v)Av (2)

d P22 (v)Av (2)


d : : : PK2 (v)Av (2)

d

...
...

. . .
...

P1K (v)Av (K)

d P2K (v)Av (K)


d : : : PKK (v)Av (K)

d

1CCCCCCA .

Proposition 6.2 A su¢ cient condition for model (6:29) to have a causal strictly peri-

odically stationary and periodically ergodic solution (Yt; t 2 Z) with a �nite second moment

E (Y 2
v ), for all 0 � v � S � 1, is that

�

 
S�1Y
v=0

�
(2)
S�v

!
< 1. (6:34)

Moreover, the solution is unique and is given by (6:32), where the series in (6:32) converges

in mean square.
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Proof Iterating (6:30) yields

Zt =

mX
k=1

k�1Y
i=0

At�i (Xt�i)Bt�j (Xt�j) +

m�1Y
i=0

At�i (Xt�i)Bt�m+1 (Xt�m+1)Zt�m

=
mX
k=1

�t;k +
m�1Y
i=0

�t;mZt�m,

where �t;k =
k�1Q
i=0

At�i (Xt�i)Bt�j (Xt�j). The result thus follows if

E(k�t;kk2) � c�k, for all k � 1, (6:35)

where c > 0, and � 2 (0; 1). For every t 2 Z, de�ne the sequence of r � 1-vectors (Wt;k)k�0

by

Wt;k = At (Xt)Wt�1;k�1 k � 1

for some �xed Wt�k;0, and let Vt;k (i) be a r2 � 1-vector de�ned for all i = 1; :::; K by

Vt;k (i) = E
�
vec
�
Wt;kW

0
t;k

�
1[Xt=i]

�
.

Then

Vt;k (i) =
KX
j=1

E
�
vec
�
At (Xt)Wt�1;k�1W

0
t�1;k�1At (Xt)

�
1[Xt=i;Xt�1=j]

�
=

KX
j=1

Pji (t� 1)At (i)
2 Vt�1;k�1 (j)

so that

Vt;k = �
(2)
t�1Vt�1;k�1, (6:36)

where Vt;k =
�
V 0
t;k (1) ; :::; V

0
t;k (K)

�0
is Kr2 � 1-vector. Iterating (6:36) gives

Vt;k = �
(2)
t�1�

(2)
t�2 � � ��

(2)
t�kVt;0, k � 1.

By the S-periodicity of the model coe¢ cients and the S-periodic homogeneity of the chain

(Xt), it can be seen that under (6:34),


�(2)t�1�(2)t�2 � � ��(2)t�k


 = 


�(2)t�1 � � ��(2)t�S


lk 


�(2)t�S�1 � � ��(2)t�S��k


 !
k!1

0
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at an exponential rate, where k = lkS + � k is written in terms of its Euclidian division by

S. From the multiplicity of the norm, we �nally get

E(k�t;kk2) � kVt;kk �



�(2)t�1�(2)t�2 � � ��(2)t�k


 kVt;0k � c�k,

proving the result. �
Following the same lines of the proof of Proposition 6.2, it can be seen that a su¢ -

cient condition for the existence of a strictly periodically stationary and periodically ergodic

solution of (6:29) satisfying E
�
Y d
v

�
<1 (d 2 N�, 0 � v � S � 1), is that

�

 
S�1Y
v=0

�
(r)
S�v

!
< 1,

provided that E
�
j"tjd

�
<1.

6.3.2 A Markov-switching periodic GARCH model

Consider a Markov Switching periodic GARCH (MS-PGARCH) process de�ned as

Yt = �t�t

�2t = !t (Xt) +
qP
i=1

�it (Xt)Y
2
t�i +

pP
j=1

�jt (Xt)�
2
t�j, t 2 Z

(6:37)

where (�t; t 2 Z) is an ipdS sequence of mean zero and unit variance, and (Xt) is a time-

periodic �nite Markov chain satisfying the same assumptions as the above MS-PARMA

model. It is assumed that (�t; t 2 Z) and (Xt; t 2 Z) are independent, and for all 1 � l � K,

the functions !t (l) > 0, �it (l) � 0, and �jt (l) � 0 are S-periodic in t.

Model (6:37) is a Markov Switching extension of the periodic GARCH (PGARCH) model

of Bollerslev and Ghysels (1996). It is also a time-periodic extension of the MS-GARCH of

Francq and Zakoian (2005, 2008) and thus is also characterized by path dependence.

To study the properties of the model, consider its Markov vectorial form

Zt = Ct(Xt)Zt�1 +Dt(Xt), (6:38)
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where

Zt =
�
Y 2
t ; :::; Y

2
t�p+1; �

2
t ; :::; �

2
t�q+1

�0
(p+q)�1

Dt(Xt) =
�
!t(Xt)�

2
t ; 0; :::; 0; !t(Xt); 0; :::; 0

�0
(p+q)�1 ,

and

Ct(Xt) =

0BBBBBBBBBBBBBBBBBB@

�1t(Xt)�
2
t � � � �qt(Xt)�

2
t �1t(Xt)�

2
t � � � �2t�pt(Xt)

1 � � � 0 0 � � � 0
...

. . .
...

...
. . .

...

0 � � � 0 0 � � � 0

�1t(Xt) � � � �qt(Xt) �1t(Xt) � � � �pt(Xt)

0 � � � 0 1 � � � 0
...

. . .
...

...
. . .

...

0 � � � 0 0 � � � 0

1CCCCCCCCCCCCCCCCCCA

.

Let 
S (C) be the top Lyapunov exponent given by (6:31) while replacing the sequence

(At; t 2 Z) by (Ct; t 2 Z).

Proposition 6.3 If


S (C) < 0

then model (6:37) admits a unique causal strictly periodically stationary and periodically

ergodic solution given by

Zt =
1X
j=0

j�1Y
i=0

Ct�i (Xt�i)Dt�j (Xt�j) ; t 2 Z, (6:39)

where the latter series converges absolutely a:s.

Proof The proof is similar to that of Proposition 6.1. �
We now derive a su¢ cient condition for the existence of a strictly periodically stationary

and periodically ergodic solution with a �nite second moment. Let eCt (Xt) = E (Ct (Xt) jXt)
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be the matrix obtained by replacing �2t by 1 in Ct (Xt) and set

�(d)v =

0BBBBBB@
P11 (v) eCv (1)
d P21 (v) eCv (1)
d : : : PK1 (v) eCv (1)
d
P12 (v) eCv (2)
d P22 (v) eCv (2)
d : : : PK2 (v) eCv (2)
d

...
...

. . .
...

P1K (v) eCv (K)
d P2K (v) eCv (K)
d : : : PKK (v) eCv (K)
d

1CCCCCCA , d 2 N
�.

Proposition 6.4 If

�

 
S�1Y
v=0

�
(2)
S�v

!
< 1, (6:40)

then model (6:37) has a unique causal strictly periodically stationary and periodically ergodic

solution (Yt; t 2 Z) given by (6:39) with E (Y 2
v ) <1 (0 � v � S � 1). Moreover, the series

in (6:39) converges in mean square.

Proof The proof is similar to that of Proposition 6.2. �
It can be seen that a su¢ cient condition for the existence of a periodically stationary

solution with E
�
Y 2d
t

�
<1 is that E

�
�2dt
�
<1 and

�

 
S�1Y
v=0

�
(2d)
S�v

!
< 1.

Remark 6.1 i) The second-order periodic stationarity condition (6:40) can be further sim-

pli�ed by using a simpler matrix instead of �(2)v . For 1 � l � r = max (p; q), de�ne the

K �K matrix N (l)
t as

N
(l)
t (i; j) = P

(l)
ji (t� l) (�lt (i) + �lt(i)) , (6:41a)

where P (l)ij (t) = P (Xt+l = jjXt = i) is the l-step transition probability. For example,

N
(1)
t =

0BBB@
P11 (t� 1) (�1t(1) + �1t(1)) � � � PK1 (t� 1) (�1t(1) + �1t(1))

...
. . .

...

P1K (t� 1) (�1t(K) + �1t(K)) � � � PKK (t� 1) (�1t(K) + �1t(K))

1CCCA . (6:41b)
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De�ne the companion block-matrix �t as

�t =

0BBBBBBBBB@

N
(1)
t N

(2)
t�1 � � � N

(r�1)
t�r+2 N

(r)
t�r+1

IK 0K�K � � � 0K�K 0K�K

0K�K IK � � � 0K�K 0K�K
...

...
. . .

...
...

0K�K 0K�K � � � IK 0K�K

1CCCCCCCCCA
, (6:41c)

where 0K�K and IK stand for respectively the K � K zero matrix and the K � K identity

matrix.

Note that

E
�
�2t jXt

�
= E (YtjXt) (6:42)

and

�j (t)E
�
�2t jXt = j

�
=

KX
k=1

P
(l)
kj (t� l)�k (t� l)E

�
�2t�ljXt�l = k

�
, 1 � l � r (6:43)

which is a time-varying extension of Lemma 3 in Francq and Zakoian (2005). Hence from

(6:37) we obtain

�j (t)E
�
�2t jXt = j

�
=

�j (t)!t (j) +
rX
l=1

KX
k=1

P
(l)
kj (t� l) (�lt (j) + �lt(j))�k (t� l)E

�
�2t�ljXt�l = k

�
. (6:44a)

The latter equality can be embedded as

ht = dt + �tht�1, (6:44b)

where

hjt = �j (t)E
�
�2t jXt = j

�
; ht = (h1t; :::; hKt)

0; ht =
�
h0t; :::; h

0
t�r+1

�0
dt = (�1 (t)!t (1) ; :::; �K (t)!t (K))

0, and dt =
�
d0t; 0

0
K�1; :::; 0

0
K�1

�0
rK�1 .

Therefore, in view of the latter equality and the nonnegativity of the model coe¢ cients, an

equivalent condition to (6:40) for second-order periodic stationarity (and periodic ergodicity)

69



is

�

 
S�1Y
v=0

�S�v

!
< 1.

ii) Instead of the vectorial Markov equation (6:38), an equivalent representation inspired by

Francq et al (2021) could be used to get equivalent periodic stationarity conditions.

6.3.3 A Markov-switching periodic positive conditional mean model

Let F� be a cumulative distribution function (cdf) with nonnegative support and mean

� =
R +1
0

xdF� (x) > 0. An nonnegative-valued process (Yt; t 2 Z) is said to be a periodic

positive conditional mean (PPCM) of orders p and q, and period S � 1, if its conditional

distributions are given by

YtjFt�1 � Ft;�t, t 2 Z, (6:45a)

where Ft�1 is the �-algebra generated by fYt�u; u � 1g and the conditional mean �t is given

by

�t = !t +

qX
i=1

�itYt�i +

pX
j=1

�jt�t�j; t 2 Z. (6:45b)

The parameters !t > 0; �ti � 0 (i = 1; :::; q) and �tj � 0 (j = 1; :::; p) are S-periodic in t in

the sense !t = !t+S, �it = �i;t+S and �jt = �j;t+S for every t 2 Z. Assume that Ft;�t := F�t

satis�es the following property (cf. Aknouche and Francq, 2021)

� � �� ) F�� (u) � F���(u); 8u 2 (0; 1), (6:46)

where F�� is the quantile function associated with F�. The class of distributions satisfying

(6:46) is quite large and encompasses, for instance, the one-parameter exponential family.

Model (6:45) is a time-periodic extension of the positive linear conditional mean model in

Aknouche and Francq (2021, 2023). It encompasses, in particular, the periodic autoregressive

conditional duration model (PACD, Aknouche et al, 2022a) and the periodic INGARCH

(integer-valued GARCH) model (see e.g. Aknouche et al, 2018; Almohaimeed, 2024) with

various distributions in the class (6:46).
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We now consider a Markov-Switching extension of the PPCMmodel (6:45). Let (Xt; t 2 N)

be a periodically stationary and periodically regular Markov chain de�ned as in the above

subsections and let (Xt; t 2 Z) its Z-extended copy. A random sequence (Yt; t 2 Z) is said

to be a Markov-Switching periodic positive conditional mean (henceforth MS-PPCM(p; q))

if it satis�es

YtjFY;X
t�1 � Ft;Xt;�t (6:47a)

�t : = �Xt;t = !t (Xt) +

qX
i=1

�it (Xt)Yt�i +

pX
j=1

�jt (Xt)�t�j, (6:47b)

where F� := Ft;j;� satis�es (6:46) and FY;X
t�1 denotes the �-algebra generated by fYt�u; Xt�u+1;

u � 1g. The coe¢ cients !t (Xt) > 0, �it (Xt) � 0 and �jt (Xt) � 0 are S-periodic in t.

Equation (6:47b) can be rewritten as

�nS+v = !v (XnS+v)+

qX
i=1

�iv (XnS+v)YnS+v�i+

pX
j=1

�jv (XnS+v)�nS+v�j, n 2 Z, 0 � v � S�1;

where, for instance, !v (j) (0 � v � S � 1, 1 � j � K) represents the value of the intensity

intercept at channel v and regime j. As in the above Markov-Switching models, the past

recent values of �Xt;t depend on the past values of the regime variable Xt so the likelihood

of the model depends on the whole path history of Xt. When K = 1, the MS-PPCM model

(6:47) is simply the PPCM(p; q) model (6:45), and when the chain is ipdS, model (6:47)

reduces to the model considered by Almohaimeed (2023).

As in Aknouche and Francq (2022), we assume that Xt contains all the information of

the �-algebra It = �f(Uu;�u) ; u � tg, as stated by the following assumption.

A0 P (Xt = jjXt�1 = i; A) = Pij (t� 1) for every event A 2 It�1.

We now give periodic stationarity and periodic ergodicity conditions for the MS-PPCM

model (6:47). Let the K �K matrix M (l)
t be given as in (6:41a),

M
(l)
t (i; j) = P

(l)
ji (t� l) (�lt (i) + �lt (i)) , 1 � i; j � K, l = 1; :::; r = max(p; q) (6:48a)
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(t 2 Z) and de�ne the companion block-matrix 
t by


t =

0BBBBBBBBB@

M
(1)
t M

(2)
t�1 � � � M

(r�1)
t�r+2 M

(r)
t�r+1

IK 0K�K � � � 0K�K 0K�K

0K�K IK � � � 0K�K 0K�K
...

...
. . .

...
...

0K�K 0K�K � � � IK 0K�K

1CCCCCCCCCA
. (6:48b)

The following result gives a necessary and su¢ cient periodic ergodicity condition for the

MS-PPCM model (6:47).

Proposition 6.5 Let F� = Ft;j;� (� > 0) be a family of cdf�s satisfying (4:46). There

exists a periodically stationary and periodically ergodic sequence (Yt; t 2 Z) whose conditional

distribution is given by (4:47a) where �t satis�es (4:47b) if

�

 
S�1Y
v=0


S�v

!
< 1. (6:49)

Conversely, if there exists a sequence (Yt; t 2 Z) satisfying (6:47a) such that E (Yt) <1 (for

all t), and the periodically irreducible and periodically stationary Markov chain (Xt; t 2 Z)

satis�es A0, then (6:49) holds true.

Proof The proof mainly follows the lines of the proof of Theorem 3.1 in Aknouche and

Francq (2022) with a slight adaptation to time-varying settings.

Assume that (Yt; t 2 Z) is a strictly periodically stationary process satisfying (6:47) with

E (Yt) <1 and E (�t) <1 for all t 2 Z. Under A0, similarly to (6:42) and (6:43), we have

E (�tjXt = j) = E (YtjXt = j)

and

�j (t)E (�tjXt = j) =

KX
i=1

P
(l)
ij (t� l)�i (t� l)E (�t�ljXt�l = i) , for all 1 � l � r. (6:50)

As for (6:44a), equality (6:50) entails

�j (t)E (�tjXt = j) =

�j (t)!t (j) +
rX
l=1

KX
k=1

P
(l)
kj (t� l) (�lt (j) + �lt(j))�k (t� l)E (�t�ljXt�l = k) . (6:51a)
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Taking

vjt = �j (t)E (�tjXt = j) ; vt = (h1t; :::; hKt)
0; vt =

�
h0t; :::; h

0
t�r+1

�0
dt = (�1 (t)!t (1) ; :::; �K (t)!t (K))

0, and dt =
�
d0t; 0

0
K�1; :::; 0

0
K�1

�0
rK�1 ,

equality (6:51a) can be embedded in a block-matrix form

vt = dt + 
tvt�1. (6:51b)

Iterating (6:51b) S times we obtain

vt =
S�1X
j=0

j�1Y
i=0


t�idt�j +

 
S�1Y
v=0


t�v

!
vt�S. (6:51c)

The S-periodicity of the PPCM model (6:47) therefore implies that vt = vt�S so (6:51c)

writes as a periodic �xed-point (monodromy) identity

vt = Ht +Gtvt,

that is

vt = Ht;K +GKt vt, (6:51d)

where

Gt =
S�1Y
v=0


t�v, Ht =
S�1X
j=0

j�1Y
i=0


t�idt�j, and Ht;K = Ht +GtHt + � � �+GK�1t Ht > 0.

By the positivity of the coe¢ cients of Ht;K and GKt in (6:51d), and since

�(GKt ) = (�(Gt))
K ,

Lemma A.1 in Aknouche and Francq (2022) and Corollary 8.1.29 of Horn and Johnson (2013)

show that condition (6:49) holds. This complete the necessity part.

Now, let (Ut; t 2 Z) denote an ipdS sequence of uniformly distributed variables in [0; 1]

and independent of (�t; t 2 Z). For every t 2 Z set

�
(k)
t =

8><>:
!t (Xt) +

qP
i=1

�it (Xt)Y
(k�i)
t�i +

pP
j=1

�jt (Xt)�
(k�j)
t�j if k � 1

0 if k � 0
(6:52)
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and

Y
(k)
t =

8<: F�
t;Xt;�

(k)
t

(Ut) if k � 1

0 if k � 0.
(6:53)

When k � 2, (6:52) and (6:53) together yield

�
(k)
t =  kt(Ut�1; : : : ; Ut�k+1; Xt; :::; Xt�k+1),

where  kt : [0; 1]
k�1 � f1; :::; Kgk ! [0;1) is a measurable S-periodic function in t, in the

sense  k;t =  k;t+S for all t; k 2 Z. Hence,
�
�
(k)
t ; t 2 Z

�
and

�
Y
(k)
t ; t 2 Z

�
are periodically

stationary and periodically ergodic for every k 2 Z.

Let Fk;X
t�1 andF�

t�1 be the �-�elds generated by
n
Y
(k�i)
t�i ; Xt�i+1; i > 0

o
and fUu; Xu+1; u <

tg, respectively. Since F�t;j;�(U) has the cdf Ft;j;� when U is uniformly distributed in [0; 1],

we have

E
�
Y
(k)
t j Fk;X

t�1

�
= E

�
Y
(k)
t j F�

t�1

�
= �

(k)
t

P
�
Y
(k)
t � y j Fk;X

t�1

�
= P

�
F�
t;Xt;�

(k)
t

(Ut) � y j F�
t�1

�
= F

t;Xt;�
(k)
t
(y).

The existence of a process satisfying (6:47a) with F�
t�1 replacing F

Y;X
t�1 follows if we show

lim
k!1

�
(k)
t = �t a.s. (6:54)

so that taking the limit on both sides of (6:52) and (6:53) as k !1, this gives

Yt = lim
k!1

Y
(k)
t = F�t;Xt;�t(Ut) a.s.

Since �t is FY;X
t�1 -measurable, we have

YtjF�
t�1

d
= YtjFX;Y

t�1 .

To show (6:54) under (6:49), let us prove that for all positive integer k,

0 � �
(k�1)
t � �

(k)
t a.s. (6:55)

and

E
�
Y
(k)
t � Y

(k�1)
t

�
= E

�
�
(k)
t � �

(k�1)
t

�
2 [0;1). (6:56)
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Clearly, (6:55) and (6:56) hold true when k � 0. Assume (6:55) holds up to k. In view

of (6:46) we have

�
(k)
t = !t (Xt) +

qX
i=1

�it (Xt)F
�
t;Xt�i;�

(k�i)
t�i

(Ut�i) +

pX
j=1

�jt (Xt)�
(k�j)
t�j

� !t (Xt) +

qX
i=1

�it (Xt)F
�
t;Xt�i;�

(k+1�i)
t�i

(Ut�i) +

pX
j=1

�jt (Xt)�
(k+1�j)
t�j = �

(k+1)
t .

Hence (6:55) and (6:56) are satis�ed by induction. From (6:46), (6:52), (6:53), (6:55) and

(6:56) we have

E
����Y (k)

t � Y
(k�1)
t

��� j Xt = j
�
= E

�
Y
(k)
t � Y

(k�1)
t jXt = j

�
= E

�����(k)t � �
(k�1)
t

��� jXt = j
�

and

�j (t)E
�����(k)t � �

(k�1)
t

��� jXt = j
�

=
rX
l=1

KX
i=1

p
(l)
ij (t� l) (�lt (j) + �lt (j))�i (t� l)E

�����(k�l)t�l � �
(k�l�1)
t�l

��� jXt�l = i
�
, (6:57)

for all 1 � i � K. Thus, (6:57) can be embedded in

h
(k)
t = 
th

(k�1)
t�1 , (6:58)

where h(k)t =
�
h
(k)0
t ; :::; h

(k�r+1)0
t

�0
, h(k)t =

�
h
(k)
1t ; :::; h

(k)
Kt

�0
, and h(k)jt = E

�����(k)t � �
(k�1)
t

��� jXt = j
�
.

Iterating (6:58) S times gives

h
(k)
t = (
t � � �
t�S+1)h(k�S)t�S

= (
t � � �
t�S+1)h(k�S)t

where the latter equality stems from the S-periodicity of the model. Under (6:49), we �nally

get

u
(k)
t ! 0, as k !1

exponentially fast as k !1 so
�
�
(k)
t

�
k
converges in L1 and a.s. In addition, since

�t =  t(Ut�1; Ut�2; : : : ;Xt; Xt�1; :::),
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where  t : [0; 1]
1 � f1; ::; Kg1 ! [0;1) is a measurable function, the sequence (�t; t 2 Z)

is strictly periodically stationary and periodically ergodic and hence so is (Yt; t 2 Z) (cf.

Aknouche, 2008). �

7 Conclusion

We presented a basic theory regarding countable periodically homogeneous Markov chains

and the stochastic equations that involve them as inputs. Such processes constitute a rather

general class of dynamic stochastic models and have occupied an important part of the

literature of the last three decades. For these processes, we have studied two main classes of

properties, namely:

- Communication properties such as v-irreducibility, v-recurrence, v-positive recurrence

v-periodicity, v-ergodicity, etc.

- Asymptotic stability properties such as periodic ergodic theorems, v-regularity, periodic

Harris-ergodicity, periodic geometric ergodicity, etc.

It is worth mentioning the following two points:

i) Communication properties for a periodically homogeneous Markov chain are relative to

a given channel. Thus, a property may hold along one channel and not along another. This

is especially re�ected on solidarity properties such as v-irreducibility, v-recurrence, v-positive

recurrence, state-v-periodicity, and v-ergodicity.

ii) On the contrary, periodic stability, when it occurs for a time-invariant state space E,

is satis�ed along all channels. Indeed, we have seen that the periodic ergodic theorem, the

periodic regularity and the periodic Harris ergodicity are each satis�ed for all channels under

the same conditions.

Finally, Markov chains on uncountable state spaces with time-periodic transition kernels

are worth exploring.
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8 Appendix

A. Discrete renewal theorem

Theorem A.1 (e.g. Karlin and Taylor, 1975)

i) Let (uk)k2N, (ak)k2N, and (bk)k2N be sequences of non-negative real numbers satisfying:
1P
k=0

ak = 1, 0 <
1P
k=0

kak < 1,
1P
k=0

bk < 1, and gcd fk 2 N : ak > 0g = 1. If the renewal

equation

un =

nX
k=0

an�kuk + bn, n 2 N

or equivalently

un =
nX
k=0

akun�k + bn, n 2 N

has a bounded solution (uk)k2N, then

lim
n!1

un =

1P
k=0

bk

1P
k=0

kak

.

If
1P
k=0

kak =1 and
1P
k=0

bk <1, then lim
n!1

un = 0.

ii) Let (yk)k2N, (ak)k2N, and (xk)k2N be sequences of non-negative real numbers satisfying:
1P
k=0

ak = 1, lim
n!1

xn <1, and

yn =
nX
k=0

an�kxk, n 2 N.

Then

lim
n!1

yn = lim
n!1

xn.

�

B. Periodic stationarity and periodic ergodicity

Let (Yt; t 2 Z) be a random sequence de�ned on a probability space (
;F ; P ) and valued

in the measurable space (R;B (R)), where B (R) denotes the Borel �-algebra of R. Let
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also PY �1 be the corresponding push-forward probability measure de�ned on (R;B (R)) as

PY �1 (A) = P (Y �1 (A)) for all A 2 B
�
RZ
�
, where B

�
RZ
�
stands for the Borel �-algebra of

RZ := f(:::; x�1; x0; x1; :::) : xi 2 R; i 2 Zg

and

Y �1 (A) = f! 2 
 : Y (!) := (:::; Y�1 (!) ; Y0 (!) ; Y1 (!) ; :::) 2 Ag.

For all v 2 f0; :::; S � 1g, de�ne Tv : RZ ! RZ to be the right-shift transformation given

for each xv = (:::; xv�S; xv; xv+S; :::) 2 RZ by

Tvxv = (:::; xv�S+1; xv+1; xv+S+1; :::) := xv+1.

Denote by TSv the S-step (monodromy) right-shift transformation given by

TSv = Tv � Tv+1 � ::: � Tv+S�1,

so that

TSvxv = (:::; xv; xv+S; xv+2S; :::) .

The sequence (Yt; t 2 Z) is said to be strictly S-periodically stationary if for all v 2 f0; :::; S � 1g,

TSv preserves the probability measure PY �1 (:) in the sense

PY �1 �T�Sv (A)
�
= PY �1 (A) for all A 2 B

�
RZ
�
,

where T�Sv (A) =
�
xv 2 RZ : TSvxv 2 A

	
.

Thus the in�nite-dimensional distributions of a strictly S-periodically stationary sequence

are invariant by a translation multiple of the period. An equivalent but simpler de�nition of

strict periodic stationarity can be given in terms of the �nite-dimensional distributions. A

sequence (Yt; t 2 Z) is strictly S-periodically stationary if and only if

(Yv; YS+v; :::YnS+v)
d
= (Yv+h; Y2S+v+h; :::YnS+v+h)

for all v 2 f0; :::; S � 1g, n 2 N and h 2 Z. The latter equality can be replaced by

(Yt1 ; Yt2 ; :::Ytn)
d
= (Yt1+h; Yt2+h; :::Ytn+h)
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for all n 2 N� and t1; :::; tn; h 2 Z.

A Borel set Cv 2 B
�
RZ
�
of the form

Cv = fxv = (:::; xv�S; xv; xv+S; :::) : xv+kS 2 R; k 2 Zg

is said to be S-shift invariant along the channel v if

T�Sv (Cv) = Cv.

A strictly periodically stationary sequence (Yt; t 2 Z) is said to be S-periodically ergodic if

P (f:::; Yv�S; Yv; Yv+S; :::g 2 Cv) = 0 or 1,

for each v 2 f0; :::; S � 1g and each Borel set Cv, S-shift-invariant along the channel v (cf.

Boyles and Gardner, 1983; Aknouche, 2008; Aknouche et al, 2020).

The simplest strictly S-periodically stationary and S-periodically ergodic process is an

ipdS sequence.

Let ft : RZ ! R be a measurable time-periodic sequence of functions (i.e. ft = ft+S for

all t 2 Z). If (Yt; t 2 Z) is strictly S-periodically stationary and S-periodically ergodic and

if (Zt; t 2 Z) is de�ned as

Zt = ft (:::; Yt�1; Yt; Yt+1; :::) ; t 2 Z,

then fZt; t 2 Zg is also strictly S-periodically stationary and S-periodically ergodic (Aknouche,

2008).
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