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Abstract

In a previous paper [1] the application of the dominance principle was proposed to find the
non-cooperative solution of the two by two general sum game with mixed strategies; in this
way it was possible to choose the equilibrium point among the classical solutions avoiding the
ambiguity due to their non-interchangeability, moreover the non-cooperative equilibrium point
was determined by a new geometric approach based on the dominance principle. Starting from
that result it is here below proposed the extension of the method to two persons general sum
games with n by m moves. The algebraic two multi-linear forms of the expected payoffs of
the two players are studied. From these expressions of the expected payoffs the derivatives
are obtained and they are used to express the probabilities distribution on the moves after the
two definitions as Nash and prudential strategies [1].

The application of the dominance principle allows to choose the equilibrium point between
the two solutions avoiding the ambiguity due to their non-interchangeability and a conjecture
about the uniqueness of the solution is proposed in order to solve the problem of the existence
and uniqueness of the non-cooperative solution of a two persons n by m game. The uniqueness
of the non-cooperative solution could be used as a starting point to find out the cooperative
solution of the game too. Some games from the sound literature are discussed in order to show
the effectiveness of the presented procedure.

Keywords: Dominance principle; General sum game; two persons n by m moves game.
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1 Introduction

The main references for the development of the present paper are my previous paper [1], the master
paper by Nash [2] and the texts of Luce and Raiffa [6], Owen [7], Straffin [8], Maschler et al. [12].

It is proposed to use the dominance principle as the only tool to find the non-cooperative solution
of a two persons game on the basis that a rational player should never play a dominated move [8,
12]. Straffin [8] argues that there is a conflict between the dominance principle and the Pareto-
optimality, but it has to be noted that the dominance principle is cogent for individual rationality
whereas the Pareto-optimality is cogent for the group rationality. The individual rationality is here
considered suitable to find the non-cooperative equilibrium strategies of a two persons game, thus
the dominance principle is applied to find the solution.

This paper is devoted to the study of the non-cooperative solution of a two persons n by m
moves game with no dominated pure strategies, therefore it is not considered the trivial case that
can be solved by the elimination of all the dominated moves.

On the other hand, the maximin [16] value of any particular player is unaffected by the elimina-
tion of his dominated moves, whether those strategies are weakly or strictly dominated; moreover
the iterated elimination of weakly dominated moves does not lead to the creation of new equilibria
(Maschler et al. [12]).

As it is well known the mixed strategies method to find the solution of a game is suitable
only for repeatable games. A mixed strategy for a player is defined as the probability distribution
on the set of his pure strategies [7]; the expected payoff from a mixed strategy is defined as the
corresponding probability-weighted average of the payoffs from its constituent pure strategies [10].
The search of the non-cooperative solution with the mixed strategies could bring to find more
than one equilibrium point, but these equilibrium points represent the acceptable non-cooperative
solution of the game only if they are equivalent and interchangeable [2, 6].

In Part 1 of the paper it is proposed to look for the non-cooperative solution of a two persons
3 by 3 game by applying the dominance principle on the mixed strategies and the relationship
is studied among the two classical mixed strategies, prudential and Nash strategy [1], and the
expected payoff.

In Part 3 seven numerical examples are discussed to show the application of the dominance
principle and the so found solutions are compared and discussed with respect to the literature
solutions.

Part 4 is an extension of the application of the dominance principle to the two persons game
with n by m moves.

In Part 5, in order to show its powerful meaning, the proposed method is applied to two
examples by showing that it is possible to find the equilibrium point of a game also when the
algebraic method fails.

The conclusion summarizes the main features of the proposed method recognizing it as a pow-
erful tool to find the non-cooperative solution of a two person general sum game larger than two
by two moves.

2 Non-cooperative solution of the normal form of two per-
sons 3 by 3 game

2.1 Theory

As it is well known the normal form of the two persons 3-by-3 game is the following one:
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Table 1

Moves of player B
y1 y2 y3

Moves of player A
x1 a11, b11 a12, b12 a13, b13
x2 a21, b21 a22, b22 a23, b23
x3 a31, b31 a32, b32 a33, b33

(x) = (x1, x2, x3) = (x1, x2, 1− x1 − x2) (1)

and
(y) = (y1, y2, y3) = (y1, y2, 1− y1 − y2) (2)

are the vectors of the probability distribution on the moves respectively for player A and B, with
the constraints

0 ≤ xi ≤ 1 (3)

and
0 ≤ yj ≤ 1 (4)

Associated to each possible outcome of the game is a collection of numerical payoffs, one to
each player.

The expected payoff for each player is then given by:

zA = (a11 + a33 − a13 − a31)x1y1 + (a12 + a33 − a13 − a32)x1y2 + (a21 + a33 − a23 − a31)x2y1+

+(a22+a33−a23−a32)x2y2+(a13−a33)x1+(a23−a33)x2+(a31−a33)y1+(a32−a33)y2+a33 =

= A1x1y1 +A2x1y2 +A3x2y1 +A4x2y2 +A5x1 +A6x2 +A7y1 +A8y2 +A0 (5)

zB = (b11 + b33 − b13 − b31)x1y1 + (b12 + b33 − b13 − b32)x1y2 + (b21 + b33 − b23 − b31)x2y1+

+ (b22 + b33 − b23 − b32)x2y2 + (b13 − b33)x1 + (b23 − b33)x2 + (b31 − b33)y1 + (b32 − b33)y2 + b33 =

= B1x1y1 +B2x1y2 +B3x2y1 +B4x2y2 +B5x1 +B6x2 +B7y1 +B8y2 +B0 (6)

These formulas will be used throughout the paper from here on.
In the case of three by three moves in order to find maximum and minimum points [14] it is not

sufficient to calculate the first derivatives of the expected payoffs and to study the Hessian whose
ranking is greater than three, but some more complicated methods should be used.

As mentioned in my previous paper [1], in literature there are two ways to calculate the prob-
ability distribution for each player: a prudential strategy [8] and a Nash strategy [2]. These two
different strategies can be determined by calculating the first derivatives of the expected payoffs
and equating them to zero. First of all the Nash strategies are determined.

∂zA/∂x1 = A1y1 +A2y2 +A5 = 0 (7)

∂zA/∂x2 = A3y1 +A4y2 +A6 = 0 (8)

implies
y1 = (A2A6–A4A5)/(A1A4–A2A3) = yN1 (9)

y2 = (A5A3–A6A1)/(A1A4–A2A3) = yN2 (10)
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and
∂zB/∂y1 = B1x1 +B3x2 +B7 = 0 (11)

∂zB/∂y2 = B2x1 +B4x2 +B8 = 0 (12)

implies
x1 = (B8B3–B7B4)/(B1B4–B2B3) = xN1 (13)

x2 = (B2B7–B1B8)/(B1B4–B2B3) = xN2 (14)

that is the probability distribution for player A and B after Nash.
The meaning of the Nash strategy is that if player B chooses (yN ) then there is no variation

of zA irrespective of the choice of player A; if player A chooses (xN ) there is no variation of zB
irrespective of the choice of player B.

The prudential strategies are following.

∂zA/∂y1 = A1x1 +A3x2 +A7 = 0 (15)

∂zA/∂y2 = A2x1 +A4x2 +A8 = 0 (16)

implies
x1 = (A3A8–A4A7)/(A1A4–A2A3) = xp1 (17)

x2 = (A2A7–A1A8)/(A1A4–A2A3) = xp2 (18)

implies
∂zB/∂x1 = B1y1 +B2y2 +B5 = 0 (19)

∂zB/∂x2 = B2y1 +B4y2 +B8 = 0 (20)

implies
y1 = (B2B6–B4B5)/(B1B4–B2B3) = yp1 (21)

y2 = (B3B5–B1B6)/(B1B4–B2B3) = yp2 (22)

that is the prudential probability distribution for player A and B.
The meaning of the prudential strategy is that if player B chooses (yp) then there is no variation

of zB irrespective of the choice of player A; if player A chooses (xp) there is no variation of zA
irrespective of the choice of player B.

By substituting in the formulas of the expected payoffs of each player respectively the prudential
strategies and the Nash’s strategies it can easily be seen that the expected payoffs are equal in the
two cases, thus the two couples of strategies (xp, yp) and (xN , yN ) are equivalent.

Moreover combining the prudential strategies with the Nash’s strategies it is found that:

zA(xp, yN ) = zA(xp, yp) = zA(xN , yN ) =

= (A2A6A7–A1A6A8 +A3A5A8–A4A5A7)/(A1A4–A2A3) +A0 = z∗A (23)

but
zB(xp, yN ) ̸= zB(xp, yp) = zB(xN , yN ) = z∗B (24)

and

zB(xN , yp) = zB(xp, yp) = zB(xN , yN ) =

= (B2B6B7–B1B6B8 +B3B5B8–B4B5B7)/(B1B4–B2B3) +B0 = z∗B (25)
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but
zA(xN , yp) ̸= zA(xp, yp) = zA(xN , yN ) = z∗A (26)

this means that the two couples of strategies are generally not interchangeable.
It can be concluded that the couple of strategies does not represent a solution of the game be-

cause they are equivalent, but not interchangeable, as it is stated by Nash [2]. The non-cooperative
solution does not take into account the possibility of an agreement between the two players, thus
it is possible that the players choose non homogeneous strategies because they are equivalent, but
this is not optimal because they are not interchangeable.

The outcome of the possible choices of the two players is depicted in the following Table 2.

Table 2

Strategies Expected payoffs
x y zA zB

Nash xN1, xN2 yN1, yN2 z∗A z∗B
Prudential xp1, xp2 yp1, yp2 z∗A z∗B
Nash/Prud. xN1, xN2 yp1, yp2 α z∗B
Prud./Nash xp1, xp2 yN1, yN2 z∗A β

where
α = zA(xN , yp)
β = zB(xp, yN )

It comes out that in order to choose the optimal strategy the player A should look whether
the value of zA(xN , yp) is greater or lower than z∗A: if it is greater, the strategy (xN ) is dominant
irrespective of the choice of player B, if it is lower, the strategy (xp) becomes dominant irrespective
of the choice of player B.

The player B should look whether the value of zB(xp, yN ) is greater or lower than z∗B : if it
is greater, the strategy (yN ) is dominant irrespective of the choice of player A, if it is lower, the
strategy (yp) becomes dominant irrespective of the choice of player A.

The discussion of the first derivatives of the expected payoffs gives a rationale of the two different
ways to calculate the probability distribution on the strategies:

• the prudential strategy

∂zA/∂y = 0 implies (x) = (xp) (27)

∂zB/∂x = 0 implies (y) = (yp) (28)

guarantees that each player receives a payoff irrespective of the choice of the other player:
i.e. (xp) is the best replay of player A whatever it is the strategy of B and (yp) is the best
replay of player B whatever it is the strategy of A; this explains why:

zA(xp, yN ) = zA(xp, yp) = zA(xp, y) = z∗A (29)

zB(xN , yp) = zB(xp, yp) = zB(x, yp) = z∗B (30)

• the Nash’s strategy

∂zB/∂y = 0 implies (x) = (xN ) (31)

∂zA/∂x = 0 implies (y) = (yN ) (32)
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guarantees that each player receives a payoff irrespective of his own choice: i.e. (xN ) makes
indifferent the replay of player B and (yN ) makes indifferent the replay of player A; this
explains why:

zA(xp, yN ) = zA(xN , yN ) (33)

zB(xN , yp) = zB(xN , yN ) (34)

2.2 Remarks about the solution of two persons 3 by 3 games

It is worth to note that the proposed procedure to determine the equilibrium strategies of a game
does not depend upon the value of the payoffs of the bi-matrix, nevertheless the resulting equilib-
rium strategies depend totally upon those values.

Moreover, as already said in my previous paper [1], there is a possible flaw in the proposed
procedure. The prudential strategy is calculated for each player on the basis of its own matrix of
the payoffs, but the expected payoff for each player is based also on the knowledge of the prudential
strategy of the other player. Something similar happens for the Nash’s way because the strategy
of each player is based on the matrix of the payoffs of the other player, so the expected payoff
of a player is depending upon the matrix of the payoffs of the other. In both cases there is a
possible flaw of the method because also if a player should be able to state precisely his payoffs
matrix corresponding to each of his own pure strategies, he could not be able to state precisely
the payoffs matrix of the competitor. This flaw is overcome by the theorem that every finite n-
person game with perfect information has an equilibrium n-tuple of strategies [7]. Nevertheless the
theorem gives a demonstration of the existence of a solution, but it does not give the way to find it.

The proposed procedure could not work both in the case three by three moves and in the case of
different number of moves between the two players: it depends whether the algebraic requirements
for the existence of a solution of the system of equations are satisfied or not. If the requirements are
not satisfied another procedure should be adopted: this situation will be presented in the following
numerical examples.

3 Numerical solutions of a 3 x 3 game in normal form

3.1 Example 1

As a first example a general sum game published and solved by Owen [7] is shown in Table 3.

Table 3

Moves of player B
y1 y2 y3

Moves of player A
x1 2, 2 1, 1 0, 0
x2 1, 1 0, 0 2, 2
x3 0, 0 2, 2 1, 1

Formulas 17, 18, 21, 22 and 9, 10, 13, 14 give the vectors of the probability distribution on the
moves respectively for player A and B and the expected payoffs are
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zA = 3x1y1 + 0x1y2 + 0x2y1 − 3x2y2 − x1 + x2 − y1 − y2 + 1

zB = 3x1y1 + 0x1y2 + 0x2y1 − 3x2y2 − x1 + x2 − y1 − y2 + 1

The strategies are following:

• first way (prudential strategy)

(xp) = (1/3, 1/3, 1/3) for player A

(yp) = (1/3, 1/3, 1/3) for player B

with zA(xp, yp) = 1 and zB(xp, yp) = 1

• second way (Nash’s strategy)

(xN ) = (1/3, 1/3, 1/3) for player A

(yN ) = (1/3, 1/3, 1/3) for player B

with zA(xN , yN ) = 1 and zB(xN , yN ) = 1

For A it comes out that
zA(xN , yp) = 1 = zA(xp, yN ) = zA(xp, yp) = zA(xN , yN ) = 1
thus (xN ) and (xp) are totally equivalent strategies for A.

For B it comes out that
zB(xp, yN ) = 1 = zB(xN , yp) = zB(xp, yp) = zB(xN , yN ) = 1
thus (yN ) and (yp) are totally equivalent strategies for B.

Moreover for A it comes out that
zA(x, yN ) = 1 = zA(x, yp)
whatever (x) strategy is adopted by player A.

Analogously for B it comes out that
zB(xN , y) = 1 = zB(xp, y)
whatever (y) strategy is adopted by player B.

Nevertheless the non-cooperative solution should be based on an independent choice of the
strategies by each player thus the solution (whatever (x), whatever (y)) is not suitable because
the expected payoff becomes undefined and it cannot be calculated by each of the players and the
only one solution is one of the above determined solution.

Thus the two solutions of the game are equivalent and interchangeable and due to the symmetry
of the game the two players have the same probability distribution on the moves and the same
expected payoff.

This solution is different from that proposed by Owen [7].
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3.2 Example 2

As a second example a zero sum game published and solved by Owen [7] is shown in Table 4.

Table 4

Moves of player B
y1 y2 y3

Moves of player A
x1 0, 0 1,−1 −2, 2
x2 −1, 1 0, 0 3,−3
x3 2,−2 −3, 3 0, 0

Formulas 17, 18, 21, 22 and 9, 10, 13, 14 give the vectors of the probability distribution on the
moves respectively for player A and B and the expected payoffs are

zA = 0x1y1 + 6x1y2 − 6x2y1 + 0x2y2 − 2x1 + 3x2 + 2y1 − 3y2 + 0

zB = 0x1y1 − 6x1y2 + 6x2y1 + 0x2y2 + 2x1 − 3x2 − 2y1 + 3y2 + 0

The strategies are following:

• first way (prudential strategy)

(xp) = (1/2, 1/3, 1/6) for player A

(yp) = (1/2, 1/3, 1/6) for player B

with zA(xp, yp) = 0 and zB(xp, yp) = 0

• second way (Nash’s strategy)

(xN ) = (1/2, 1/3, 1/6) for player A

(yN ) = (1/2, 1/3, 1/6) for player B

with zA(xN , yN ) = 0 and zB(xN , yN ) = 0

For A it comes out that
zA(xN , yp) = 0 = zA(xp, yN ) = zA(xp, yp) = zA(xN , yN ) = 0
thus (xN ) and (xp) are totally equivalent strategies for A.

For B it comes out that zB(xp, yN ) = 0 = zB(xN , yp) = zB(xp, yp) = zB(xN , yN ) = 0
thus (yN ) and (yp) are totally equivalent strategies for B.

Thus the two solutions of the game are equivalent and interchangeable, moreover due to the
symmetry of the game the strategies of the two players are equal, (xN ) = (yN ) and (xp) = (yp),
and the expected payoffs are opposite, in this case both are zero.

This result is in agreement with the finding of a unique equilibrium pair by Owen [7].

3.3 Example 3

As a third example a general sum game published as exercise by Owen [7] is shown in Table 5.
Formulas 17, 18, 21, 22 and 9, 10, 13, 14 give the vectors of the probability distribution on the

moves respectively for player A and B and the expected payoffs are
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Table 5

Moves of player B
y1 y2 y3

Moves of player A
x1 2, 1 0, 0 1, 2
x2 1, 2 2, 1 0, 0
x3 0, 0 1, 2 2, 1

zA = 3x1y1 + 0x1y2 + 3x2y1 + 3x2y2 − x1 − 2x2 − 2y1 − 2y2 + 2

zB = 0x1y1 − 3x1y2 + 3x2y1 + 0x2y2 + x1 − x2 − y1 + y2 + 1

The strategies are following:

• first way (prudential strategy)

(xp) = (0, 2/3, 1/3) for player A

(yp) = (1/3, 1/3, 1/3) for player B

with zA(xp, yp) = zA(xp, yN ) = 2/3 and zB(xp, yp) = zB(xp, yN ) = 1

• second way (Nash’s strategy)

(xN ) = (1/3, 1/3, 1/3) for player A

(yN ) = (1/3, 1/3, 1/3) for player B

with zA(xN , yN ) = zA(xN , yp) = 2/3 and zB(xN , yN ) = zB(xN , yp) = 1

For A it comes out that
zA(xN , yp) = 2/3 = zA(xp, yN ) = zA(xp, yp) = zA(xN , yN ) = 2/3
thus (xN ) and (xp) are totally equivalent strategies for A.

For B it comes out that zB(xp, yN ) = 1 = zB(xN , yp) = zB(xp, yp) = zB(xN , yN ) = 1
thus (yN ) and (yp) are totally equivalent strategies for B.

Thus the two solutions of the game are equivalent and interchangeable. Owen [7] finds only the
Nash solution.

3.4 Example 4

As a forth example a general sum game, symmetric bimatrix game, published as exercise by
Owen [7] is shown in Table 6.

Table 6

Moves of player B
y1 y2 y3

Moves of player A
x1 1, 1 2, 2 3, 2
x2 2, 2 1, 1 4, 3
x3 2, 3 3, 4 1, 1
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Formulas 17, 18, 21, 22 and 9, 10, 13, 14 give the vectors of the probability distribution on the
moves respectively for player A and B and the expected payoffs are

zA = −3x1y1 − 3x1y2 − 3x2y1 − 5x2y2 + 2x1 + 3x2 + y1 + 2y2 + 1

zB = −3x1y1 − 3x1y2 − 3x2y1 − 5x2y2 + x1 + 2x2 + 2y1 + 3y2 + 1

First of all the Nash strategies are here below determined.

∂zA/∂x1 = −3y1 − 3y2 + 2 = 0

∂zA/∂x2 = −3y1 − 5y2 + 2 = 0

implies

y1 = 1/6 = yN1

y2 = 1/2 = yN2

and

∂zB/∂y1 = −3x1 − 3x2 + 2 = 0

∂zB/∂y2 = −3x1 − 5x2 + 3 = 0

implies

x1 = 1/6 = xN1

x2 = 1/2 = xN2

The Nash strategies are following:

(xN ) = (1/6, 1/2, 1/3) for player A

(yN ) = (1/6, 1/2, 1/3) for player B

with zA(xN , yN ) = 13/6 and zB(xN , yN ) = 13/6

The prudential strategies are here below determined.

∂zA/∂y1 = −3x1 − 3x2 + 1 = 0

∂zA/∂y2 = −3x1 − 5x2 + 2 = 0
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implies

x1 = −1/6 = xp1

x2 = 1/2 = xp2

and

∂zB/∂x1 = −3y1 − 3y2 + 1 = 0

∂zB/∂x2 = −3y1 − 5y2 + 2 = 0

implies

y1 = −1/6 = yp1

y2 = 1/2 = yp2

For the prudential probability distribution the result is not acceptable nor for player A neither for
player B.

Moreover for A it comes out that zA(x, yN ) = 13/16 and it is independent from the strategy
(x) of player A.

Analogously for B it comes out that zB(xN , y) = 13/16 and it is independent from the strategy
(y) of player B.

Nevertheless for A it comes out that zA(xN , y) is depending upon the (y) strategy adopted by
player B and for B it comes out that zB(x, yN ) is depending upon the (x) strategy adopted by
player A.

Thus the only solution is the Nash’s strategy and the prudential strategy is not existing and
due to the symmetry of the game the two players have the same probability distribution on the
moves and the same expected payoff.

3.5 Example 5

As a fifth example a zero sum game, symmetric bimatrix game, published by Gambarelli [14] is
shown in Table 7.

Table 7

Moves of player B
y1 y2 y3

Moves of player A
x1 2,−2 1,−1 0, 0
x2 1,−1 2,−2 1,−1
x3 0, 0 1,−1 2,−2
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First of all the Nash strategies are determined. Formulas 11 and 12 gives the system of
equations to be solved to find the vector of the probability distribution on the moves for player A

∂zB/∂y1 = −4x1 − 2x2 + 2 = 0

∂zB/∂y2 = −2x1 − 2x2 + 1 = 0

The solution of this system of equations is:

x1 = 1/2 = xN1

x2 = 0 = xN2

x3 = 1/2 = xN3

Formulas 7 and 8 gives the system of equations to be solved to find the vector of the probability
distribution on the moves for player B

∂zA/∂x1 = 4y1 + 0y2 − 2 = 0

∂zA/∂x2 = 2y1 + 2y2 − 1 = 0

implies

y1 = 1/2 = yN1

y2 = 0 = yN2

y3 = 1/2 = yN3

The Nash strategies are following:

(xN ) = (1/2, 0, 1/2) for player A

(yN ) = (1/2, 0, 1/2) for player B

with zA(xN , yN ) = 1 and zB(xN , yN ) = −1

The prudential strategies are here below determined. Formulas 15 and 16 gives the system of
equations to be solved to find the vector of the probability distribution on the moves for player A

∂zA/∂y1 = 4x1 − 2 = 0

∂zA/∂y2 = 2x1 + 2x2 − 1 = 0

The solution of this system of equations is:

x1 = 1/2 = xp1

x2 = 0 = xp2

x3 = 1/2 = xp3
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Formulas 19 and 20 gives the system of equations to be solved to find the vector of the probability
distribution on the moves for player B

∂zB/∂x1 = −4y1 − 2y2 + 2 = 0

∂zB/∂x2 = −2y1 − 2y2 + 2 = 0

implies

y1 = 1/2 = yp1

y2 = 0 = yp2

y3 = 1/2 = yp3

The prudential strategies are following:

(xp) = (1/2, 0, 1/2) for player A

(yp) = (1/2, 0, 1/2) for player B

with zA(xp, yp) = 1 and zB(xp, yp) = −1

It can be concluded that:

zA(xp, yp) = zA(xN , yN ) = zA(xp, yN ) = 1

zB(xp, yp) = zB(xN , yN ) = zB(xN , yp) = −1

moreover

zA(xN , yp) = 1

zB(xp, yN ) = −1

Therefore the two solutions are equivalent and interchangeable, moreover due to the symmetry
of the game the strategies of the two players are equal, (xN ) = (yN ) and (xp) = (yp), and the
expected payoffs are opposite.

3.6 Example 6

As a sixth example a zero sum game published by Dixit and Skeath [10] to show the application
of the mixed strategy concept is shown in Table 8.
The game is a simplified representation of a penalty kick in soccer; both players have just three
pure strategies: the kicker, row player A, can kick to his left, center or right and the goalie, column
player B, can move to left, center or right (left and right are referred for both to the kicker).

Table 8

Moves of player B
y1 y2 y3

Moves of player A
x1 45,−45 90,−90 90,−90
x2 85,−85 0, 0 85,−85
x3 95,−95 95,−95 60,−60
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First of all the Nash strategies are determined. Formulas 11 and 12 gives the system of
equations to be solved to find the vector of the probability distribution on the moves for player A

∂zB/∂y1 = 80x1 + 35x2 − 35 = 0

∂zB/∂y2 = 35x1 + 120x2 − 35 = 0

The solution of this system of equations is:

x1 = 119/335 = 0, 355 = xN1

x2 = 63/335 = 0, 188 = xN2

x3 = 153/335 = 0, 457 = xN3

Formulas 7 and 8 gives the system of equations to be solved to find the vector of the probability
distribution on the moves for player B

∂zA/∂x1 = −80y1 − 35y2 + 30 = 0

∂zA/∂x2 = −35y1 − 120y2 + 25 = 0

implies

y1 = 109/335 = 0, 325 = yN1

y2 = 38/335 = 0, 113 = yN2

y3 = 188/335 = 0, 562 = yN3

The Nash strategies are following:

(xN ) = (119/335, 63/335, 153/335) for player A

(yN ) = (109/335, 38/335, 188/335) for player B

with zA(xN , yN ) = 75, 4 and zB(xN , yN ) = −75, 4

The prudential strategies are here below determined. Formulas 15 and 16 gives the system of
equations to be solved to find the vector of the probability distribution on the moves for player A

∂zB/∂y1 = −80x1 − 35x2 + 35 = 0

∂zB/∂y2 = −35x1 − 120x2 + 35 = 0

The solution of this system of equations is:

x1 = 119/335 = 0, 355 = xp1

x2 = 63/335 = 0, 188 = xp2

x3 = 153/335 = 0, 457 = xp3
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Formulas 19 and 20 gives the system of equations to be solved to find the vector of the probability
distribution on the moves for player B

∂zA/∂x1 = 80y1 + 35y2 − 30 = 0

∂zA/∂x2 = 35y1 + 120y2 − 25 = 0

implies

y1 = 109/335 = 0, 325 = yp1

y2 = 38/335 = 0, 113 = yp2

y3 = 188/335 = 0, 562 = yp3

The prudential strategies are following:

(xp) = (119/335, 63/335, 153/335) for player A

(yp) = (109/335, 38/335, 188/335) for player B

with zA(xp, yp) = 75, 4 and zB(xp, yp) = −75, 4

It can be concluded that:

zA(xp, yp) = zA(xN , yN ) = zA(xp, yN ) = 75, 4

zB(xp, yp) = zB(xN , yN ) = zB(xN , yp) = −75, 4

moreover

zA(xN , yp) = 75, 4

zB(xp, yN ) = −75, 4

Therefore the two solutions are equivalent and interchangeable because in the zero sum games
the Nash and the prudential strategies are equal and the expected payoffs are opposite.

The same solution is given by Skeath [10].

3.7 Example 7

As a seventh example a tricky zero sum game published by Dixit and Skeath [10] Rock-Scissors-
Paper is shown in Table 9. For both player the first move is Rock, the second one is Scissors and
the third one is Paper; Paper wins against Rock, but it looses against Scissors and Scissors loses
against Rock; if two players choose the same object, they tie.

Table 9

Moves of player B
y1 y2 y3

Moves of player A
x1 0, 0 10,−10 −10, 10
x2 −10, 10 0, 0 10,−10
x3 10,−10 −10, 10 0, 0
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First of all the Nash strategies are determined. Formulas 11 and 12 gives the system of
equations to be solved to find the vector of the probability distribution on the moves for player A

∂zB/∂y1 = 0x1 + 30x2 − 10 = 0

∂zB/∂y2 = −30x1 + 0x2 + 10 = 0

The solution of this system of equations is:

x1 = 1/3 = xN1

x2 = 1/3 = xN2

x3 = 1/3 = xN3

Formulas 7 and 8 gives the system of equations to be solved to find the vector of the probability
distribution on the moves for player B

∂zA/∂x1 = 0y1 + 30y2 − 10 = 0

∂zA/∂x2 = −30y1 + 0y2 + 10 = 0

implies

y1 = 1/3 = yN1

y2 = 1/3 = yN2

y3 = 1/3 = yN3

The Nash strategies are following:

xN = (1/3, 1/3, 1/3) for player A

yN = (1/3, 1/3, 1/3) for player B

with zA(xN , yN ) = 0 and zB(xN , yN ) = 0

The prudential strategies are here below determined. Formulas 15 and 16 gives the system of
equations to be solved to find the vector of the probability distribution on the moves for player A

∂zB/∂y1 = 0x1 − 30x2 + 10 = 0

∂zB/∂y2 = 30x1 + 0x2 − 10 = 0

The solution of this system of equations is:

x1 = 1/3 = xp1

x2 = 1/3 = xp2

x3 = 1/3 = xp3
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Formulas 19 and 20 gives the system of equations to be solved to find the vector of the probability
distribution on the moves for player B

∂zA/∂x1 = 0y1 − 30y2 + 10 = 0

∂zA/∂x2 = −30y1 + 0y2 + 10 = 0

implies

y1 = 1/3 = yp1

y2 = 1/3 = yp2

y3 = 1/3 = yp3

The prudential strategies are following:

xp = (1/3, 1/3, 1/3) for player A

yp = (1/3, 1/3, 1/3) for player B

with zA(xp, yp) = 0 and zB(xp, yp) = 0

It can be concluded that:

zA(xp, yp) = zA(xN , yN ) = zA(xp, yN ) = 0

zB(xp, yp) = zB(xN , yN ) = zB(xN , yp) = 0

moreover

zA(xN , yp) = 0

zB(xp, yN ) = 0

The equilibrium strategies are trivial, as it could be expected: the two solutions are equivalent
and interchangeable because in the zero sum games the Nash and the prudential strategies are
equal and the expected payoffs are opposite and in this case both are equal to zero.
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4 Non-cooperative solution of the normal form of two per-
sons n by m game

4.1 Theory

As it is well known the normal form of the two persons n-by-m game is the following one:

Table 10

Moves of player B
y1 ...yj ... ym

Moves of player A

x1 a11, b11 ...a1j , b1j ... a1m, b1m
... ..., ... ..., ... ..., ...
xi ai1, bi1 ...aij , bij ... aim, bim
... ..., ... ..., ... ..., ...
xn an1, bn1 ...anj , bnj ... anm, bnm

being
n∑

i=1

xi = 1 (35)

and
m∑
j=1

yj = 1 (36)

with the constraints
0 ≤ xi ≤ 1 (37)

and
0 ≤ yj ≤ 1 (38)

the raw vectors of the probability distribution on the moves respectively for player A and B are
following:

x = (x1, xi, xn) = (x1, xi, 1−
n−1∑
i=1

xi) (39)

and

y = (y1, yj , ym) = (y1, yj , 1−
m−1∑
j=1

yj) (40)

Associated to each possible outcome of the game is a collection of numerical payoffs, one to
each player.

The expected payoff for each player is then given by:

zA = (x)(H)A(y)
T (41)

zB = (x)(H)B(y)
T (42)

where (x) is the vector probability distribution of player A, (H) is the matrix of the payoff of
A and B, and (y)T is the transposed of vector (y). These formulas will be used throughout the
paper from here on.
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As mentioned in my previous paper [1], in literature there are two ways to calculate the prob-
ability distribution for each player: a prudential strategy [8] and a Nash strategy [2]. These two
different strategies can be determined by calculating the first derivatives of the expected payoffs
and equating them to zero. First of all the Nash strategies are determined.

∂zA/∂xi =

m−1∑
k=1

(aik − aim − ank + anm)yk + aim − anm = 0 (43)

these partial derivatives equated to zero are n− 1 equations in m− 1 yj unknowns and

∂zB/∂yj =

n−1∑
k=1

(bkj − bnj − bkm + bnm)xk + bnj − bnm = 0 (44)

these are m− 1 equations in n− 1 xi unknowns.

The solution of the two systems gives the probability distribution for player B and A after Nash.

The meaning of the Nash strategy is that if player B chooses (yN ) there is no variation of zA
irrespective of the choice of player A; if player A chooses (xN ) there is no variation of zB irrespec-
tive of the choice of player B.

The prudential strategies are following.

∂zB/∂xi =

m−1∑
k=1

(bik − bim − bnk + bnm)yk + bim − bnm = 0 (45)

these partial derivatives equated to zero are n− 1 equations in m− 1 yj unknowns and

∂zA/∂yj =

n−1∑
k=1

(akj − anj − akm + anm)xk + anj − anm = 0 (46)

these are m− 1 equations in n− 1 xi unknowns.

The solution of the two systems give the prudential probability distribution for player B and
A.

The meaning of the prudential strategy is that if player B chooses (yp) there is no variation
of zB irrespective of the choice of player A; if player A chooses (xp) there is no variation of zA
irrespective of the choice of player B.

By substituting in the formulas of the expected payoffs of each player respectively the prudential
strategies and the Nash’s strategies it can easily be seen that the expected payoffs are equal in the
two cases, thus the two couples of strategies (xp, yp) and (xN , yN ) are equivalent.

Moreover combining the prudential strategies with the Nash’s strategies it is found that:

zA(xp, yp) = zA(xN , yN ) = zA(xp, yN ) = z∗A (47)

and
zB(xp, yp) = zB(xN , yN ) = zB(xN , yp) = z∗B (48)
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but in general
zB(xp, yN ) ̸= zB(xp, yp) = zB(xN , yN ) = z∗B (49)

and
zA(xN , yp) ̸= zA(xp, yp) = zA(xN , yN ) = z∗A (50)

this means that in general the two couples of strategies are not interchangeable.
It can be concluded that the couple of strategies does not represent a solution of the game be-

cause they are equivalent, but not interchangeable, as it is stated by Nash [2]. The non-cooperative
solution does not take into account the possibility of an agreement between the two players, thus
it is possible that the players choose different strategies because they are equivalent, but this is
not optimal because they are not interchangeable.

The outcome of the possible choices of the two players is depicted in the following Table 11.

Table 11

Strategies Expected payoffs
x y zA zB

Nash xN yN z∗A z∗B
Prudential xp yp z∗A z∗B
Nash/Prud. xN yp α z∗B
Prud./Nash xp yN z∗A β

where
α = zA(xN , yp)
β = zB(xp, yN )

It comes out that in order to choose the optimal strategy the player A should look whether
the value of zA(xN , yp) is greater or lower than z∗A: if it is greater, the strategy (xN ) is dominant
irrespective of the choice of player B, if it is lower, the strategy (xp) becomes dominant irrespective
of the choice of player B.

The player B should look whether the value of zB(xp, yN ) is greater or lower than z∗B : if it
is greater, the strategy (yN ) is dominant irrespective of the choice of player A, if it is lower, the
strategy (yp) becomes dominant irrespective of the choice of player A.

The discussion of the first derivatives of the expected payoffs gives a rationale of the two different
ways to calculate the probability distribution on the moves:

• the prudential strategy

∂zA/∂y = 0 implies x = xp (51)

∂zB/∂x = 0 implies y = yp (52)

guarantees that each player receives a payoff irrespective of the choice of the other player;
this explains why:

zA(xp, yN ) = zA(xp, yp) = zA(xp, y) = z∗A (53)

zB(xN , yp) = zB(xp, yp) = zB(x, yp) = z∗B (54)
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• the Nash’s strategy

∂zB/∂y = 0 implies x = xN (55)

∂zA/∂x = 0 implies y = yN (56)

guarantees that each player receives a payoff irrespective of his own choice; this explains why:

zA(xp, yN ) = zA(xN , yN ) (57)

zB(xN , yp) = zB(xN , yN ) (58)

4.2 Remarks about the solution of two persons n by m games

The remarks in section 2.2 are totally applicable to the solution of two persons and n by m moves
games: it is known that a solution of the game exists [7], but there are a lot of different ways to
find out that solution. The proposed procedure is very simple for finding the solution also if in
some cases it fails and some other ways should be used such as the search of the Nash equilibria.
The application of the geometric approach, proposed [1] to find the non-cooperative solution of
the two by two general sum game with mixed strategies, is not recommended in the case of n by
m moves games, because it becomes too much troublesome in the n by m dimensions space.

5 Numerical solutions of some games larger than 3 by 3
moves

5.1 Example 1

As a first example a general sum game published as exercise by Maschler [12] is shown in Table 12.

Table 12

Moves of player B
y1 y2 y3 y4

Moves of player A

x1 3, 7 0, 13 4, 5 5, 3
x2 5, 3 4, 5 4, 5 3, 7
x3 4, 5 3, 7 4, 5 5, 3
x4 4, 5 4, 5 4, 5 4, 5

First of all the Nash strategies are determined. Formula 44 gives the system of equations to be
solved to find the vector of the probability distribution on the moves for player A

∂zB/∂y1 = 2x1 − 2x2 + 2x3 = 0

∂zB/∂y2 = 4x1 − 4x2 + 2x3 = 0

∂zB/∂y3 = 10x1 − 2x2 + 4x3 = 0
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This is a homogeneous system and the trivial solution is

x1 = 0 = xN1

x2 = 0 = xN2

x3 = 0 = xN3

x4 = 1 = xN4

Formula 43 gives the system of equations to be solved to find the vector of the probability distri-
bution on the moves for player B

∂zA/∂x1 = −2y1 − 5y2 − y3 + 1 = 0

∂zA/∂x2 = 2y1 + y2 + y3 − 1 = 0

∂zA/∂x3 = −y1 − 2y2 − y3 + 1 = 0

implies

y1 = 0 = yN1

y2 = 0 = yN2

y3 = 1 = yN3

y4 = 0 = yN4

The Nash strategies are following:

(xN ) = (0, 0, 0, 1) for player A

(yN ) = (0, 0, 1, 0) for player B

with zA(xN , yN ) = 4 and zB(xN , yN ) = 5

The prudential strategies are here below determined. Formula 46 gives the system of equations
to be solved to find the vector of the probability distribution on the moves for player A

∂zA/∂y1 = −2x1 + 2x2 − x3 = 0

∂zA/∂y2 = −5x1 + x2 − 2x3 = 0

∂zA/∂y3 = −x1 + x2 − x3 = 0

This is a homogeneous system and the trivial solution is the prudential strategy for player A:

x1 = 0 = xp1

x2 = 0 = xp2

x3 = 0 = xp3

x4 = 1 = xp4
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Formula 45 gives the system of equations to be solved to find the vector of the probability distri-
bution on the moves for player B

∂zB/∂x1 = 4y1 + 10y2 + 2y3 − 2 = 0

∂zB/∂x2 = −4y1 − 2y2 − 2y3 + 2 = 0

∂zB/∂x3 = 2y1 + 4y2 + 2y3 − 2 = 0

implies

y1 = 0 = yp1

y2 = 0 = yp2

y3 = 1 = yp3

y4 = 0 = yp4

The prudential strategies are following:

(xp) = (0, 0, 0, 1) for player A

(yp) = (0, 0, 1, 0) for player B

with zA(xp, yp) = 4 and zB(xp, yp) = 5

It can be concluded that:

zA(xp, yp) = zA(xN , yN ) = zA(xp, yN ) = 4

zB(xp, yp) = zB(xN , yN ) = zB(xN , yp) = 5

moreover

zA(xN , yp) = 4

zB(xp, yN ) = 5

Therefore the two solutions are equal, equivalent and interchangeable, therefore there is only
one solution:

(x) = (0, 0, 0, 1) for player A

(y) = (0, 0, 1, 0) for player B

with zA(x, y) = 4 and zB(x, y) = 5.

5.2 Example 2

As a second example a general sum game published by Dixit and Skeath [10] to show the application
of the rationalizability concept is shown in Table 13. This concept by Skeath is based on the
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Table 13

Moves of player B
y1 y2 y3 y4

Moves of player A

x1 0, 7 2, 5 7, 0 0, 1
x2 5, 2 3, 3 5, 2 0, 1
x3 7, 0 2, 5 0, 7 0, 1
x4 0, 0 0,−2 0, 0 10,−1

identification of strategies that are never a best response and it is deemed that this property is
stronger than the simple dominance principle.

It can be seen that there are no dominances. First of all the Nash strategies are determined.
Formula 44 gives the system of equations to be solved to find the vector of the probability distri-
bution on the moves for player A

∂zB/∂y1 = 0x1 + 0x2 + 5x3 = −1

∂zB/∂y2 = 5x1 + 0x2 − 2x3 = −1

∂zB/∂y3 = 5x1 + 3x2 + 5x3 = 1

The solution of the system of equations is

x1 = −7/25 < 0

x2 = 1/5

x3 = −1/5 < 0

x4 = 32/25 > 1

The solution is not acceptable because the probabilities should be non negative and lower than
one. Formula 43 gives the system of equations to be solved to find the vector of the probability
distribution on the moves for player B

∂zA/∂x1 = 10y1 + 12y2 + 17y3 − 10 = 0

∂zA/∂x2 = 15y1 + 13y2 + 15y3 − 10 = 0

∂zA/∂x3 = 17y1 + 12y2 + 10y3 − 10 = 0

implies

y1 = −10/9 < 0

y2 = 10/3 > 1

y3 = −10/9 < 0

y4 = 19/9 > 1
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The solution is not acceptable because the probabilities should be non negative and lower than
one.
There is no Nash strategy and the equilibrium strategy should be found among the pure strategies.

The prudential strategies are here below determined. Formula 46 gives the system of equations
to be solved to find the vector of the probability distribution on the moves for player A

∂zA/∂y1 = 10x1 + 15x2 + 17x3 − 10 = 0

∂zA/∂y2 = 12x1 + 13x2 + 12x3 − 10 = 0

∂zA/∂y3 = 17x1 + 15x2 + 10x3 − 10 = 0

The solution of the system of equations is

x1 = 20/9 > 1

x2 = −20/9 < 0

x3 = 20/9 > 1

x4 = −11/9 < 0

The system has negative solutions, therefore the solutions are not acceptable.

Formula 45 gives the system of equations to be solved to find the vector of the probability
distribution on the moves for player B

∂zB/∂x1 = 5y1 + 5y2 − 2y3 + 2 = 0

∂zB/∂x2 = 0y1 + 0y2 + 3y3 + 2 = 0

∂zB/∂x3 = −2y1 + 5y2 + 5y3 + 2 = 0

implies

y1 = 4/9

y2 = −2/3 < 0

y3 = 4/9

y4 = 11/9 > 1

The system has negative solutions, therefore the solutions are not acceptable. There are no
mixed strategies solutions either Nash or prudential and the equilibrium strategy should be found
among the pure strategies.
Looking at the bimatrix of the game it can be seen that there is a Nash equilibrium:

(x) = (0, 1, 0, 0) for player A

(y) = (0, 1, 0, 0) for player B
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Therefore in this case the mixed strategies solution does not exist, nevertheless the solution of
the game can still be found and it is the above found Nash equilibrium with:
zA(x, y) = 3 and zB(x, y) = 3. This is the same solution identified by Skeath [10].

Nevertheless the rationalization concept provides a possible way of solving games that do not
have a Nash equilibrium [10].

6 Conclusions

The proposed non-cooperative solution of two persons n by m games is based on the application
of the dominance principle, therefore the paper is dealing only with games with no dominances
on the pure strategies and the dominance principle is applied to find the solution on the mixed
strategies too.

The main conclusions holding independently from the specific values of the payoff matrix are
following:

A) The value of the expected payoff corresponding to the prudential distribution for a player is
not only independent either from the prudential or the Nash’s distribution of the other player,
but it is independent from every distribution of the other player; moreover when a player
chooses the Nash’s distribution the expected payoff of the other player is not depending upon
his own strategy distribution;

B) Generally speaking the couples of prudential and Nash’s strategies are not interchangeable,
but by applying the dominance principle it is possible to choose the right equilibrium strate-
gies avoiding the bad consequences due to the non-interchangeability of the strategies;

C) It is worth noting that in the case of zero sum game the prudential and the Nash strategy
are coincident and they are the unique mixed strategies solution of the game; as it can easily
be understood the zero sum game is a special case of the general sum games;

D) On the basis of the dominance principle the dominant mixed strategy is given by the point
that has the greatest expected payoff: on the basis of point B) the so found equilibrium pair
is candidate to be a perfect equilibrium pair [7];

E) A conjecture of the proposed way of solution is that the so found solution is unique (Nash [4]).
In this case the so found equilibrium pair of the non-cooperative solution gives the perfect
equilibrium pair of the game and the corresponding expected payoff could be the starting
point for finding the cooperative solution of the game too [7].
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