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ALLOCATING CAPITAL TO TIME: INTRODUCING CREDIT
MIGRATION FOR MEASURING TIME-RELATED RISKS

HANSJÖRG ALBRECHER AND MICHEL DACOROGNA

Abstract. Assessing time-related risks in long-tailed insurance is challenging. Reg-
ulatory capital allocation rules may underestimate credit deterioration risk by not
requiring insurers to hold solvency capital early, while actuarial practices often al-
locate capital sooner than mandated. We propose a framework to quantify these
time-associated risks and evaluate capital allocation strategies based on time to ul-
timate, aiming to manage long-tail business effectively. By modeling the impact of
exogenous credit migration risk, we evaluate six strategies, including costs associated
with potential company bankruptcy until long-term claims are settled. Using a nu-
merical example of a future heavy-tailed insurance risk, we estimate a Markov chain
credit migration model with insurance market data and analyze liability values from
various capital management strategies. Our findings show that early capital raising is
costly, even with penalties for avoided credit risk, unless the company’s initial credit
rating is poor. In such cases, purchasing protection through a credit derivative may
be more efficient, if available.

1. Introduction

The appropriate management of capital is an important challenge in banking and in-
surance, see e.g. Wilson (2015); Klaassen and Van Eeghen (2009). In the insurance
industry (particularly in Europe), a modern management of a company typically as-
signs capital to particular business lines (or even individual major risks) with the goal
of optimizing the risk/return profile of the portfolio, see e.g. Dacorogna (2018). In this
case, the pricing of the underlying policies needs to take into account the available
capital ’budget’, with the philosophy that the risk margin included in the premiums
together with that capital must suffice for dealing with the underlying risk up to a
defined threshold. The discount factor used to compute the risk margin for pricing is
then the target profit the company wishes to achieve.

In general, it encompasses the cost of capital, which includes the credit-rating-related
spread, along with an extra spread linked to the company’s strategy. When it comes
to risks that only unfold over longer time horizons, one can interpret that the required
capital for those risks are held throughout the entire period, which is an extremely
cautious and costly strategy. In contrast, regulators require solvency capital only for
all the payments/claims that will be due within the next calendar year, implying that
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it overlooks long-term risks. This discrepancy can be costly from both perspectives,
whether due to the extra expense of holding that capital or from underestimating the
risk, as will be discussed. The regulator typically works with the assumption of a fixed
(and known-in-advance) cost-of-capital rate of 6% (recently, this value was reduced
to 4.75% by the European regulators). This may not be realistic. Indeed, following
strictly the regulatory suggestions with the one-year time horizon in mind can have
considerable drawbacks, as raising capital in later years during the management of
the underlying policies may have a severe credit rating risk involved (as mentioned
above, the credit spread is included in the discount factor for pricing the risk margin).
Concretely, the credit rating of the insurance company at the future time when the
capital needs to be raised from a regulatory perspective may be worse than today,
making capital much more costly, so that there is a financial risk involved in that other
extreme approach as well. This is why actuaries often consider the regulatory approach
to be too dangerous, because it implicitly assumes that no capital is allocated to this
risk until one year before it may materialize even though the risk is already on the
book at time t = 0. Undoubtedly, from a management perspective, neither method
proves satisfactory for developing long-tail business. The regulatory approach tends
to be too inexpensive and carries significant risk, whereas the actuarial method makes
long-tail business overly costly.

Beyond regulatory concerns, this study serves a broader twofold purpose: first, to de-
velop a framework for quantifying risks tied to time, and second, to evaluate strategies
for capital allocation as a function of the time to ultimate, aiming to effectively manage
long-tail business without impeding its growth. We identify the time-related risk to the
evolution of the credit rating of the insurance company holding this risk. Therefore,
our method for quantifying it includes using a realistic dynamic model for the credit
migration of an insurance company, as well as evaluating the impacts of progressively
raising (or allocating) portions of the ultimately required capital beforehand. The final
objective is to strike a balance that makes long-tail business appealing while safeguard-
ing the company against risks arising from the time it takes to develop to ultimate.
This paper addresses a gap in actuarial methodology related to the treatment of ’risk-
of-time’ and proposes a solution for this issue. Considering the pressing requirement
for long-term investment in climate change, we view this objective as highly signifi-
cant, timely, and relevant. It may also encourage additional welcomed research into the
risk associated with time. While the focus of this paper is on insurance, the methods
used here can also be applied for evaluating other financial long-term liabilities held
by banks, financial institutions and pension funds. The latter often face even greater
risks tied to time. However, to address the challenges presented by these extended time
horizons, the methodology would require adjustments.

In order to keep the approach transparent and to peel out the characteristics of the
credit migration risk that we want to study and understand here, we will take a number
of simplifying assumptions (many of which can be relaxed in a rather straight-forward
way, but at the expense of an overlay of different factors in the final results that may not
be easy to disentangle, and an increased complexity of calculations). For example, we
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will assume the riskless interest rate to be zero (no discounting), and we will consider
the assets of the company to be invested in a riskless way, so that we can focus on the
liability side.

Our methodology relies on economic valuation of liabilities (see for instance chapter 15
in Koch-Medina and Munari (2020)). It is heavily used by insurers and reinsurers for
valuing their deals besides the fact that it is now required by the European regulations,
being Solvency II or the Swiss Solvency Test. For more general approaches to actuarial
valuation of insurance liabilities in a multi-period setting (to which the considerations
of this paper may be generalized in future work), see for instance Dhaene et al. (2017);
Delong et al. (2019a,b); Barigou and Dhaene (2019); Chen et al. (2021) as well as
Barigou et al. (2022), cf. also Bauer and Zanjani (2021) and Guo et al. (2023) for a
dynamic view. For a recent survey on capital allocation techniques we refer to Guo et al.
(2021) and a recent general account on market-consistent pricing can be found in Koch-
Medina and Munari (2020). For a nice comparison of actuarial and financial valuation
schemes in practice see Vedani et al. (2017), and a general overview of asset-liability
management for long-tailed insurance risk can for instance be found in Albrecher et al.
(2018).

Ever since the Swiss and European Union regulatory bodies introduced their risk-based
solvency directives (Federal Office of Private Insurance (2006); European Union (2009))
there has been an on-going debate about the suitability and interpretation of the re-
quired solvency capital and the implied required risk margin in the technical provisions
(see for instance Eling et al. (2008); Eisele and Artzner (2011); Floreani (2011); as well
as Pelkiewicz et al. (2020) and Korn and Stahl (2024) for recent rejoinders after the
first years of industry experience). Further recent contributions on how to appropri-
ately price insurance risk in a market-consistent way are Salahnejhad Ghalehjooghi
and Pelsser (2023), Engsner et al. (2023) and Artzner et al. (2024). Effects of limited
liability on the cost of capital were for instance addressed in Filipović et al. (2015) and
Albrecher et al. (2022). For a discussion on possible dependencies of the cost of capital
on the risk in traded financial assets, see Schmutz et al. (2023).

In Section 2, we provide a detailed description of the multi-period valuation model
adopted in this paper. The approach used for formalizing the liability valuation is
inspired by Engler and Lindskog (2023), see also Engsner et al. (2020). We focus
our considerations on facing an insurance risk X at a future time point t = n, with
no other insurance risks in between. In Section ??, we first recap the consequences
of deterministic cost-of-capital rates (i.e., the cost of capital applicable later already
being known at the beginning) on the valuation of liabilities, which represents to some
extent the current regulatory practice. Note that while the European Union decided in
December 2023 to reduce the regulatory cost-of-capital rate for Solvency II to 4.75%,
we will still work in this paper with the previously demanded rate of 6%, as that
number is only a minimal requirement (which in part was reduced to boost growth of
the European economy and to free additional capital for green investments, cf. Jones
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(2023)) and big insurance companies will most likely keep the 6% as their target return
on equity in any case, so that it remains the natural benchmark for our study.

After defining the used credit migration model in Section ??, we show in Section ??
how in general a stochastic nature of the future cost-of-capital affects the calculations
of liability values. In particular, we also include the concrete costs of bankruptcy into
the multi-period liability valuation (see e.g. Belkin et al. (1998) for background), and
develop the respective framework in Section 3. In Section 4, we describe and discuss
the six capital management strategies that we compare in this paper, and work out the
concrete ingredients needed for their respective implementations. The focus of Section
5 is then on the practical application of these strategies within a simple framework,
specifically dealing with a Pareto-distributed insurance risk over a five-year period
without encountering any other insurance risks in the interim. For that purpose, we
first determine the parameters of a Markov chain model for the credit migration of an
insurance company from S&P data over the last 40 years and subsequently evaluate
the corresponding credit spreads as a function of credit state. We then determine the
numerical results of initial liability values of the considered long-term insurance risk
for each of the strategies and discuss and interpret the results. Indeed, we see in that
example that the regulatory practice of ignoring credit risk along the way considerably
underestimates the actual value of liabilities, but the actuarial practice of raising the
required capital already at the beginning is very expensive even when the avoided
credit risk is penalized appropriately. Under the assumptions of the paper, buying a
call option (when available) to hedge the credit risk may be an interesting alternative,
yet buying protection through a credit derivative directly seems to be the most efficient
strategy, if such a product can be purchased. Finally, we draw conclusions and outline
potential future research in Section 6.

2. A multi-period valuation model

Let us consider a financial institution (here, concretely, an insurance company) whose
value can be expressed in terms of the economic value of its assets, A, and of its
liabilities, L. Let us assume that the time evolution of these two variables is expressed
in terms of two discrete-time stochastic processes:

A = (At, t = 0, 1, 2, . . .) and L = (Lt, t = 0, 1, 2, . . .)

defined on a probability space (Ω,F ,P), where time t is measured in years. Let us
denote by Ft the σ-algebra generated by all the information available at time t (in-
cluding the realized sequence of A and L up to time t). In the sequel, all random
variables indexed by t are Ft-measurable, i.e. their realization is known at time t (in
mathematical terms, Lt = E(Lt|Ft) for the example of the liability process; although
this notation may look convoluted, it will turn out to be convenient in the sequel, as
we will, in certain cases, look at different times for Lt and the information set Ft).

The value of the institution is then described by the stochastic process

Z = (Zt, t = 0, 1, 2, . . .) defined as Zt = At − Lt.



ALLOCATING CAPITAL TO TIME 5

We denote by ∆Zt+1 = −(Zt+1 − Zt), t = 0, 1, 2, . . . , the negative change in value of
the company over a time horizon of 1 year (from year t to year t+1), which is the time
span relevant for solvency regulations.

In risk-based solvency, both assets and liabilities must be valued economically. This
means that asset valuation should be mark-to-market (market-consistent) as long as
there is a market liquid enough for it; if not they should be valued mark-to-model, while
liabilities should be mark-to-model, as there is no market for insurance liabilities. The
model for valuing economically insurance liabilities is based on the law of one price
(that states that any cash flow has only one market price) and on the concept of a
replicating portfolio: the economic value Lt at time t of the insurance liabilities is then
the present value RPt of the replicating portfolio (at that time t) plus a risk margin
RMt to account for the cost-of-capital needed for the non-hedgeable part (the insurance
risk beyond the expectation):

(1) Lt = E[Lt|Ft] = RPt + RMt, t = 0, 1, 2, . . . .

Note that here and later in the paper, the expectation operator without an index refers
to the one with respect to the physical measure P, i.e. E[X] := EP[X] for any random
variable X. At this point, we would like to clarify a commonly misunderstood term:
‘replicating portfolio’. It is important to note that financial markets do not offer a
true replicating portfolio for insurance liabilities. However, insurance liabilities are
associated with premiums, which are typically determined based on expected payout
patterns. These premiums form the reserves, which are then invested in financial
markets to mimic the projected payouts. Through this investment, insurers effectively
create a ‘replicating portfolio’ that hedges against expected liabilities. In insurance
practice, this is referred to as the replicating portfolio. However, the insurance risk
extends beyond this portfolio and is covered by the insurer’s risk-based capital. This
capital is used to calculate the risk margin added to the replicating portfolio.

Our focus here is on determining the necessary capital over time to support this risk.
Then, Lt can be interpreted as the cash amount that would have to be transferred along
with those liabilities to a third party, so that she would be willing to take over these
liabilities (their run-off and potential associated capital costs). If the insurer wants to
earn Lt as the aggregate premium for these liabilities, one can also interpret RPt as
the expected aggregate claim amount (best estimate of the liabilities) and RMt as the
safety loading on top of this expectation. Clearly, all these quantities are evaluated in
the physical probability space. This economic valuation is central to insurance deals
and is the way insurers have solved the problem of valuing illiquid assets. Similar
ideas have been developed in financial mathematics, see, for instance Froot and Stein
(1998), but other ideas have already been developed by actuaries as early as in the
1940’s by de Finetti (1940) who advocated to use the portfolio to evaluate the risk or
later by introducing a deformation to the physical probability Wang (1996); Denneberg
and Kaplan (1988) for pricing the risk.
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Coming back to the rationale to determine the capital, it can be understood as follows:
At the beginning of each year, the regulator will require the company to hold sufficient
capital

(2) SCRt := ρ(∆Zt+1|Ft),

to safeguard against adverse developments (losses) of both the asset and liability side
during that year, that is to ensure a sufficient amount of safety to meet the obligations
towards the policyholders (see e.g. Federal Office of Private Insurance (2006)). Here
ρ(·) denotes an appropriate risk measure. Solvency II defines this Solvency Capital
Requirements (SCR) as:

(3) ρ(∆Zt+1|Ft) = VaRα(∆Zt+1|Ft) = inf{x ∈ R | P(∆Zt+1 > x|Ft) ≤ 1 − α},
where α = 99.5%. Alternatively, the Swiss Solvency Test defines the SCR through

(4) ρ(∆Zt+1|Ft) = ESα(∆Zt+1|Ft) =
1

1 − α

∫ 1

α

VaRβ(∆Zt+1|Ft) dβ

with α = 99%. If the random variable ∆Zt+1 is continuous, the latter expression is
equivalent to ESα(∆Zt+1|Ft) = E(∆Zt+1|∆Zt+1 ≥ VaRα(∆Zt+1),Ft). In the numerical
illustrations later, we will only use the Value-at-Risk, but the considerations can easily
be generalized to the expected shortfall.

The analysis of this paper will heavily rely on (conditional) translation invariance and
homogeneity of ρ, i.e.

ρ(aX + b|Ft) = a ρ(X|Ft) + b, a > 0, b ∈ R,
which is fulfilled for both the VaR and the ES (see e.g. Pflug and Roemisch (2007)).

This required capital SCRt is to be compared to the available capital ca(t) = At − Lt

at time t to obtain the solvency ratio

ca(t)

SCRt

.

For the company to be considered as solvent by the regulators, the solvency ratio must
obviously be bigger than 1 at time t.

Holding the capital amount SCRt (raising/allocating it, or blocking it from other in-
vestment opportunities on the asset side for shareholders or investors of the insurance
company) is costly, and that cost is quantified by a spread ηt above the risk-free in-
terest rate, compensating for the involved insurance risk. The risk margin RMt can
be interpreted as the amount dedicated to cover these capital costs (it also implicitly
contains information on the amount of capital allocated to this risk at time t). It is
one purpose of the present paper to contribute to the determination and clarification
of this quantity for a multi-period risk, and to examine how its value is affected by the
early allocation of capital, beyond what is mandated by the regulator.

In order to simplify the analysis and focus on the essentials for the present purpose,
we assume in this paper that once the portfolio is set up at time t = 0, there is no new
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business underwritten until the run-off of the portfolio is completed. We also assume
that the risk-free rate is 0 and thus neglect discounting. In addition, we want to focus
on the liability side only (i.e. we ignore the asset risk here; another interpretation
of that assumption is that A0 = A1 = · · · = An, where n is the time horizon of our
considerations). The choice of this time horizon implies Ln = 0, and we will now be
interested in determining Lt for t < n recursively, and particularly L0, which as men-
tioned above can be interpreted as the required premium amount for the policyholders
for being offered the insurance protection underwritten at time t = 0, neglecting costs.
Correspondingly, Lt can be seen as the part of the premium that at time t should still
be reserved for future run-off of the underlying insurance risk.

Let Xt be the random variable representing the claim payment to be paid by the
insurance company in year t (t = 1, . . . , n). The required solvency capital (2) at time
t in this situation then amounts to

(5) SCRt = ρ(∆Zt+1|Ft) = ρ(Xt+1 + Lt+1 − Lt|Ft) = ρ(Xt+1 + Lt+1|Ft) − Lt,

t = 0, 1, . . . , n − 1, using translation-invariance of the risk measure ρ. This amount
is made available by the capital provider for an (excess) expected return ηt on the
provided capital between time t and t + 1. The actual return at time t + 1 is SCRt +
(Lt − Lt+1) −Xt+1, so that

E(SCRt + Lt − Lt+1 −Xt+1|Ft) = (1 + ηt) SCRt,

or equivalently

(6) Lt = ηt SCRt + E(Lt+1 + Xt+1|Ft).

By virtue of (5) this leads to

(7) Lt =
1

1 + ηt
E(Xt+1 + Lt+1|Ft) +

ηt
1 + ηt

ρ(Xt+1 + Lt+1|Ft),

t = 0, . . . , n−1. Equation (7) in fact corresponds to (Engler and Lindskog, 2023, Eq.8),
where the focus is subsequently put on asymptotic considerations.

In practice, at time t = 0, it will not always be easy or even feasible to specify the
distributions of all claim payments (and further cash-flows) Xt of future times t =
1, . . . , n (conditional on the information Ft−1 at the previous time point t−1). However,
if we assume this to be the case, and if further the cost-of-capital rates ηt, t = 0, . . . , n−
1, are known at the beginning as well, then Equation (7) can be used recursively
(starting with Ln = 0) to determine the economic value of the liability L0 at time
t = 0. According to the above derivations, L0 then represents the necessary amount
to handle the run-off of the respective risks (including the financing of the necessary
solvency capital along the way).

A special case is the one-period model with a risk X1 = X at time t = 1. In this
situation, with L1 = 0, (7) simplifies to

(8) L0 =
E(X)

1 + η0
+

η0
1 + η0

ρ(X).



8 H. ALBRECHER AND M. DACOROGNA

Indeed, if we interpret this in the setting of Albrecher et al. (2022), then L0 = E(X) +
RM0 is the premium that the insurance company should ask for X from the policyhold-
ers at time t = 0 (neglecting expenses). Using the fact that ρ(X −E(X)−RM0|F0) =
SCR0 or equivalently ρ(X) = E(X) + RM0 + SCR0, Equation (8) then reduces to

RM0 = η0 · SCR0,

which is the natural and well-known interpretation (or even definition) of the cost of
carrying the capital, since the ’safety loading’ RM0 in the premium L0 in expectation
remains as a return at time t = 1 for the investor providing the amount SCR0.

3. Capital management for an insurance risk in the further future

Let us now consider in more detail how to value and manage an insurance liability X
that is only due in the further future, say at time n > 1, i.e. Xn = X (and it is certain
that it will not be faced earlier, like e.g. insuring a building that by contract will only
be built by the end of Year n − 1). Also, the distribution of X is already known at
t = 0, so that E(X|Fn−1) = E(X|F0) := E(X) and E(ρ|Fn−1) = ρ(X|F0) := ρ(X). For
simplicity, we treat it as a stand-alone event, so there are no additional claims from
previous years to consider, and no new information emerges about it until the year it
occurs1, cf. Figure 1.

t = 0 t = 1 t = 2 t = n− 1 t = n

X

Figure 1. Facing a risk X at some future time n (no information in between).

Beyond the regulatory requirements, the broader challenge here is to determine the
appropriate amount of capital to allocate at each step until the ultimate point. In this
section, we propose to explore six strategies, starting with the one required by regula-
tion. We then move on to various strategies that differ in their level of conservativeness
in allocation, and conclude with hedging strategies. Note that our focus here is not on
the issue of capital allocation within a portfolio (refer to Tasche 2007, for example),
but rather on a distinct problem: the allocation of capital over time.

3.1. Deterministic cost-of-capital rate. Let us start with the situation that all
one-year cost-of-capital rates ηt up to time t = n−1 are known at t = 0 (and therefore

1An example of this would be an insurance written for the launching of a satellite. The contract is
signed before the construction starts and the satellite is typically launched several years later.
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deterministic). This is the situation for the solvency requirement where the cost-of-
capital is fixed at 6%. From (7) we first get

(9) Ln−1 =
1

1 + ηn−1

E(X) +
ηn−1

1 + ηn−1

ρ(X).

The quantity Ln−1 is then (already) deterministic at time t = n − 2 (there is no
randomness left), and we get, by applying (7) with Xn−1 = 0 a.s. at t = n− 2,

Ln−2 =
1

1 + ηn−2

E(Ln−1|Fn−2) +
ηn−2

1 + ηn−2

ρ(Ln−1|Fn−2)

=
Ln−1

1 + ηn−2

+
ηn−2

1 + ηn−2

Ln−1 = Ln−1,

assuming that ρ(c) = c for any constant c (which is for instance the case when ρ is
the Value-at-Risk or the Expected Shortfall). Subsequently, one then gets in the same
manner L0 = L1 = · · · = Ln−1. In other words, if the risk-free interest rate is 0, at
time t = 0 one needs to charge as premium (and reserve) only the amount

(10) L0 = Ln−1 = ρ(X) − 1

1 + ηn−1

(ρ(X) − E(X))

needed for raising the additional required solvency capital SCRn−1 = ρ(X − Ln−1) =
ρ(X)−Ln−1 at time t = n−1, satisfying the one-year time horizon view of the regulator.

The above could be interpreted as the regulator’s view on how, at time t = 0, to deal
with the risk X that will lead to possible claim payments between times t = n− 1 and
t = n. In this view, it would not be required to hold capital against this risk before
t = n− 1, one only would have to set aside the capital cost L0−E(X) at t = 0 (needed
later at t = n− 1). However, we reiterate that this approach tacitly assumes that the
value of the cost-of-capital rate ηn−1 is known at time t = 0 already. Indeed, in Solvency
II and in the Swiss Solvency Test a regulatory cost-of-capital rate ηr is assumed and
set at 6%, so under that assumption one can use η0 = . . . = ηn−1 = 0.06 in multi-
period calculations and reserving. For a detailed discussion and possible economic
justifications of this value of 6% in one time period, see e.g. Albrecher et al. (2022).

However, in practice, the insurer would fix the required cost of capital for pricing
purposes every year based on the target profit of the company, which is related to its
credit rating. Thus, on one hand, an actuary may be concerned about the fact that this
value of 6% can perhaps not be realized in the market, in particular when considering
the future uncertainty about the credit rating of the insurance company and, on the
other hand, risk management could be concerned to hold a risk on the books without
capital associated to it. It may therefore be more prudent to already allocate (parts of)
the capital that will be needed at time t = n−1 at earlier time points, when the rating
(and resulting rate) is possibly more favorable. This will clearly be in a trade-off with
the fact that holding capital for longer than the required year (starting at t = n − 1
in the above example) comes at an additional cost, and it is in this direction where we
want to provide some theoretical and practical input in this paper.
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Clearly, η0 is known at time t = 0, but all the future cost-of-capital rates η1, . . . ηn−1

are unknown and it makes sense to model them as random variables, which we will do
in the sequel.

3.2. A Markov chain model for credit migration. The randomness of the cost-of-
capital rate stems from the dynamics (randomness) of the credit rating of the company
at that time, and for future reference we define the model that we use for the credit
migration in this paper. Let the (Ft-measurable) random variable κt denote the credit
rating of the company at time t, which can be one of the eight S&P rating states

AAA, AA, A, BBB, BB, B, CCC/C, D

respectively (we summarize all ± notches within their letter rating). Here AAA refers
to state 1 and D (’default’) is state 8. In this paper we will use a homogeneous
Markov chain transition model to assign probabilities for being in state k at time t.
Let PPP = (pij)1≤i≤8,1≤j≤8 denote the transition probability matrix of this Markov chain,
where pij is the probability to move within one year from state i to state j. Then

P(κm = j|κ0 = i) := p
(m)
ij is the m-step transition probability from state i to state j in

that Markov chain (recall that PPP (m) = PPPm, i.e. p
(m)
ij can be read off the mth power of

the matrix PPP ).

Let η
(k)
t (s) denote the s-period cost-of-capital rate at time t for capital that will be

held by the company (with credit rating k at time t) during the time period [t, t + s].

In this paper we make the further assumption that η
(k)
t (s) does not depend on the time

t, so that solely the rating status k determines the value of η
(k)
t (s) ≡ η(k)(s). In other

words, we assume that for the same maturity and current rating status, the cost-of-
capital rates are constant over time. Then the uncertainty of the company concerning
applicable rates for raising capital in the future only comes from the uncertainty about
its rating status at future time points, governed by the Markov chain model above.

3.3. Random cost-of-capital rate. Consider now the situation where in every sin-
gle year we want to fulfill the regulatory requirement of future obligations and raise
the necessary solvency capital according to the then available one-year cost of capital
(according to our respective credit rating) until the end. The resulting L0 then rep-
resents the value of future liabilities in the situation when (in each year up to expiry)
investors demand a spread for one-year time borrowing and renewing of capital to the
next needed amount, depending on the then applicable credit rating of the company.

To simplify notation, define for any i = 0, . . . , n− 1

δ(κi) :=
1

1 + η(κi)(1)
< 1 and K(X) := ρ(X) − E(X).

Equation (9) at t = n− 1 then reads

(11) Ln−1(κn−1) = E(X) + (1 − δ(κn−1)) ·K(X) = ρ(X) − δ(κn−1) ·K(X),
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where δ(κn−1) is an Fn−1-measurable random variable, i.e. it is only known at time
t = n−1 (when the credit rating at that point in time is known). Under the assumption

(12) X1 = . . . = Xn−1 = 0 a.s.,

one can rewrite (7) for any earlier times t = 0, . . . , n− 2 as

(13) Lt(κt) = δ(κt) · E(Lt+1|Ft) + (1 − δ(κt)) · ρ(Lt+1|Ft).

Note that according to this representation the value of the future liabilities at time
t can be interpreted as a convex combination of its expected value at time t + 1 and
its risk measure at time t + 1, with the weights being given by the current one-year
’discount rate’ due to the cost of capital. A little calculation, using the translation-
invariance and the homogeneity of the risk measure ρ, now shows that (13) applied at
t = n− 2 gives

(14) Ln−2(κn−2) = ρ(X) + fn−2(κn−2) ·K(X),

where

(15) fn−2(κn−2) := δ(κn−2) · E(−δ(κn−1)|Fn−2) + (1 − δ(κn−2)) · ρ(−δ(κn−1)|Fn−2)

is (solely) a function of the credit rating κn−2 of the insurance company at time t = n−2.
Moreover, this function is again simply the convex combination of expected value and
risk measure of the future cost-of-capital discount rate, with the weights composed by
its current value, just one time unit earlier. Iterative application of the same principle
then gives for any t = 0, . . . , n− 2

(16) Lt(κt) = ρ(X) + ft(κt) ·K(X),

where

(17) ft(κt) = δ(κt) · E(ft+1(κt+1)|Ft) + (1 − δ(κt)) · ρ(ft+1(κt+1)|Ft)

is determined recursively, and, in view of (15), starting with fn−1(κn−1) = −δ(κn−1).
Note that all these factors ft(κt) are negative, so the liability values Lt(κt) are all
smaller than ρ(X). The final goal is the value of the future liabilities as a function of
the credit rating κ0 of the company at time t = 0, and we get

(18) L0(κ0) = ρ(X) + f0(κ0) ·K(X).

When comparing the latter expression to (10), one sees that −1/(1+ηn−1) got replaced
by f0(κ0), which depends on the initial credit rating and the Markov chain dynamics
of the credit rating model. However, we have not yet properly included the event of
bankruptcy into this approach, which we will do next.

3.4. The inclusion of bankrupty costs. In this paper we focus on a stand-alone
risk X at a future time t = n, and it is natural to assume that X is small compared
to the overall assets and liabilities of the insurance company (outside our considered
portfolio), and correspondingly that the credit rating of the company at each point
in time is determined exogeneously. Under that assumption, bankruptcy (then caused
by other business lines or more generally other events in the company) could occur at
any point in time, and we would like to explicitly include the bankruptcy costs in the
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considerations of this paper. If bankruptcy occurs at time t, a potential buyer of the
bankrupt company would provide the solvency capital to run-off the portfolio in the
future, but ask (immediately at that time t) for the available reserves Lt−1 plus the
capital costs for the remaining needed amount ρ(X)−Lt−1 (under the then unfavorable
conditions, which is the ’penalty’ of the bankruptcy scenario), see e.g. Bohn and Hall
(1998). If that indeed happens, the trajectory stops there (i.e. Xt+1 = . . . = Xn = 0),
as the portfolio is liquidated. If bankruptcy occurs, we assume for simplicity that
one can still raise capital at conditions as if one were in state CCC/C (i.e., state 7).
Recall that η(7)(n− t) denotes the cost-of-capital rate at time t for the remaining n− t
time units. According to the above assumptions, bankruptcy at time t leads to overall
liquidation costs

Lt−1 + η
(7)
t (n− t) · ρ(X − Lt−1|Ft) = Lt−1(1 − η

(7)
t (n− t)) + η

(7)
t (n− t) · ρ(X)

at that time, which we can include in our model as costs Xt at time t. For each
t = 0, . . . , n − 1, we then get from (7) and the abbreviation Yt+1 := Xt+1 + Lt+1 that
under the inclusion of bankruptcy costs we have
(19)

Yt+1|κt =

{
Lt(κt)(1 − η(7)(n− t− 1)) + η(7)(n− t− 1) · ρ(X) with prob. pκt,D

Lt+1(j) with prob. pκt,j for j = 1, . . . , 7.

4. Six strategies under a Markov chain credit migration model

We now discuss six different strategies how to cope with that risk X appearing in time
period n (cf. Figure 1). In order to distinguish the liability values resulting from each

strategy, we will define L
(i)
t as the liability value at time t under Strategy i.

4.1. Strategy 1: The coarse regulatory approach. To provide a benchmark, let
us start with the classical (but somewhat inaccurate2 that is why we call it ”coarse”)
regulatory approach to assume the cost-of-capital rate in the future is known at time
t = 0 and equal to ηn−1 = ηr = 0.06. In that case, from (10) we get

(20) L
(1)
0 = E(X) +

ηr
1 + ηr

(ρ(X) − E(X)) = E(X) + 0.0566 ·K(X).

As mentioned before, according to modern risk management the actuaries would use a
value of the cost-of-capital that is higher than 6%, taking into account the credit spread
and the profit target. Moreover, even in cases where regulators do not mandate capital
reserves for this risk at time t = 0, it could be risky from a risk management perspective
to maintain such a risk on the books without assigned capital. This situation may
encourage underwriters to engage extensively in long-tail business, as these risks do
not require additional capital returns in the following year. However, in the long run,
these risks will require capital, potentially more than initially anticipated. Thus, there

2because not taking into account the credit risk of the company. Once the risk is recorded on the
books, even if it is expected to materialize only in the future, the company bears it and is required to
determine a cost of capital at time t = n, which may differ from the current one.
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is a need to explore other ways of allocating capital to long-tail business. Like in the
case of equalization reserves, we see here the opposition between the short and long
term perspective as discussed in Dacorogna et al. (2013).

4.2. Strategy 2: The consequent regulator’s rationale. If the company follows
the regulator’s approach, then it will indeed not allocate solvency capital for dealing
with X before time t = n− 1 and at that point will raise the needed solvency capital
SCRn−1 for the last year. However, in the presence of credit rating risk, there is a
need for extra capital to protect against adverse developments of the credit rating and
correspondingly reserves need to be sufficient to afford the potentially higher costs of
raising SCRn−1 at t = n−1 (here ’sufficiency’ is again w.r.t. the risk measure ρ imposed
by the regulator. However, we could choose any capital. The formalism is valid for any
risk measure that presents transitional invariance and homogeneity). In addition, we
also take into account the possibility of bankruptcy according to the approach outlined
in Section 3.4 that is why we call it the ”consequent” approach.

Since Ln = 0 and Xn = X, we get from Equation (7)

L
(2)
n−1(κn−1) = δ(κn−1)E(X) + (1 − δ(κn−1)) ρ(X)

= ρ(X) − δ(κn−1) (ρ(X) − E(X)),(21)

the liability value for each credit state κn−1 at time t = n− 1. Note that at that time,
potential future bankruptcy does not any more influence the liability value. For earlier
time periods, it becomes more complex now. Concretely, for any time t = 0, . . . , n− 2,
using (19),

L
(2)
t (κt) = δ(κt)E(Xt+1 + L

(2)
t+1|κt) + (1 − δ(κt)) ρ(Xt+1 + L

(2)
t+1|κt)

= δ(κt)E(Yt+1|κt) + (1 − δ(κt)) ρ(Yt+1|κt),(22)

cf. (19). Under the rather natural assumption
(23)

L
(2)
t+1(1) < L

(2)
t+1(2) < . . . < L

(2)
t+1(7) < η(7)(n− t− 1) ·ρ(X) +L

(2)
t (κt)(1− η

(7)
t (n− t− 1))

for all κt (which will be empirically checked in the calculations later on), the quantity

ρ(Yt+1|κt) can easily be determined for each credit state κt. Starting with L
(2)
n−1(κn−1)

from (21), the implicit equation (22) then leads to a simple way of calculating L
(2)
n−2(κn−2)

for each credit state κn−2. This recursive procedure can be applied for all smaller val-

ues of t as well, eventually arriving at L
(2)
0 (κ0) for any initial credit state κ0. More

details on how to compute these quantities concretely will be given along the numerical
illustrations in Section 5.

Note that another way to think about (21) is that

L
(2)
n−1(κn−1) = E(X) + η(κn−1)(1) ·

(
ρ(X) − L

(2)
n−1(κn−1)

)
,

the liability value at time t = n−1, is the expected loss at t = n plus the cost of raising

the remaining required capital at t = n− 1. In turn, the difference L
(2)
n−1(κn−1)−E(X)
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is the expected return for the investor on the provided capital ρ(X) − L
(2)
n−1(κn−1). In

contrast, if the company goes bankrupt at t = n − 2, then according to (19) the cost
of bankruptcy, seen from time t = n− 2 with present credit rating κn−2, is

Yn−1(κn−2) = L
(2)
n−2(κn−2) + η(7)(1) ·

(
ρ(X) − L

(2)
n−2(κn−2)

)
,

so all the reserves L
(2)
n−2(κn−2) plus the (expensive) capital cost for raising the remaining

needed capital ρ(X) − L
(2)
n−2(κn−2) for the last time period are due (no ’updating’ of

the liability value is possible at the time of bankruptcy). One observes that replacing
the expected claim cost E(X) by the available reserves is an additional ’penalty’ of
bankruptcy, that the buyer of the bankrupt company receives as a bonus for being
willing to buy it (this principle of ”Vae Victis”, or cost of financial distress, is indeed
observed in insurance practice).

4.3. Strategy 3: The conservative actuary. In order to avoid the uncertainty
about the credit state of the company at time t = n − 1 completely, a conservative
actuary may instead prefer to ’purchase’ (allocate) the capital needed at time t = n−1
already at time 0, and hold it throughout the entire time period [0, n]. The conservative
actuary would argue that since the risk is on the book, the capital to support it should
also be on it.3 In that case, one can log in the current credit rating κ0 for the entire

period. Whatever the economic value of the resulting liability value L
(3)
0 at time t = 0

is, this value is reserved at the beginning (typically this amount will be asked as the
premium), and at time n − 1 this amount needs to be complemented by the required
solvency capital

SCRn−1 = ρ(X) − L
(3)
0 ,

which under this strategy is already raised at the beginning. The cost for this at time
t = 0 is

η(κ0)(n) · (ρ(X) − L
(3)
0 ),

which leads to

(24) L
(3)
0 (κ0) = E(X) +

η(κ0)(n)

1 + η(κ0)(n)
(ρ(X) − E(X)).

This will typically be considerably larger than (20), see the numerical illustrations in
Section 5. It is evident that the longer the time until ultimate, the more penalizing
this strategy becomes, as it ties up capital for the entire period.

4.4. Strategy 4: The prudent actuary. As Strategy 3 will typically be too costly,
it may be interesting to target for a compromise: raise (allocate) every year already
some part of the eventually needed capital until the time t = n − 1 when it is finally
required by the regulator. In this way, the credit migration risk is improved in a cheaper
way than under Strategy 3, while still maintaining an initial allocation of capital. To
differentiate between strategy 3 and strategy 4, we describe the actuary in strategy

3Another benefit of this approach, from a risk management standpoint, is that it removes the
temptation for underwriters to engage in long-term business without considering future implications.
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4 as ”prudent” because he raises some capital, though he is less conservative than
the actuary in strategy 3. However, mathematically this leads to a considerably more
complex procedure than for the previous strategies: SCRn−1 now not only depends on
κn−1, but also on all other earlier credit states κ0, .., κn−2, since the capital costs at
t = n− 1 depend on all the previously visited credit states. For our proposed recursive
backward approach, this means that instead of evaluating Ln−1 once for each of the
7 possible values of κn−1 as before, we now need to do it for all 7n−1 possible sample
paths of the Markov chain up to time point n− 1.

Concretely, assume that at the times t = 0, . . . , n − 2 one already raises capital Ct,
respectively, so that at t = n−1 one only needs to raise the remaining amount SCRn−1−∑n−2

i=0 Ci. Let us assume that all values Ct are already fixed at time t = 0 (and may
depend on the initial credit state κ0).

In that case, at time t = n− 1 we have:

L
(4)
n−1(κ0, .., κn−1) = E(X) +

n−2∑
j=0

(s
(κj)
1 + ηr)Cj(κ0)

+ η(κn−1)(1)

(
ρ(X) −

n−2∑
i=0

Ci(κ0) − L
(4)
n−1(κ0, .., κn−1)

)
,

where s
(k)
j denotes the annual spread for remaining maturity j with current credit

rating k (cf. Section 5 for details). This translates into

(25) L
(4)
n−1(κ0, .., κn−1) =

E(X) +
∑n−2

j=0 (s
(κj)
1 + ηr)Cj + η(κn−1)(1)

(
ρ(X) −

∑n−2
i=0 Ci

)
1 + η(κn−1)(1)

.

For any t = 0, . . . , n− 2, interpreting the capital costs
∑t

j=0(s
(κj)
n−t + ηr)Cj due at time

t + 1 as a ’claim cost’ Xt+1, we can adapt (19) to the present situation to obtain for

Yt+1 = Xt+1 + L
(4)
t+1:

(26)

Yt+1|Ft =


L
(4)
t (κ0, . . . , κt) + η(7)(n− t− 1) · (ρ(X) −

∑t
j=0Cj − L

(4)
t (κ0, . . . , κt))

+
∑n−t

l=1

∑t
j=0(s

(κj)
l + ηr)Cj with prob. pκt,D∑t

j=0(s
(κj)
n−t + ηr)Cj + L

(4)
t+1(κ0, . . . , κt, j) with prob. pκt,j for j = 1, . . . , 7.

That is, in case of bankruptcy at time t + 1, the buying company will demand the

liability value L
(4)
t , the remaining (present and future) capital costs of the already

raised capital
∑t

j=0Cj as well as the capital cost for the remaining required capital
amount at t = n, but raised immediately, and charged at the rate of a credit state
CCC/C. With (5) adapted to

(27) SCRt = ρ(Yt+1|Ft) − L
(4)
t (κ0, . . . , κt) −

t−1∑
j=0

Cj,
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we get from (6)

L
(4)
t (κ0, . . . , κt) = E(Yt+1|Ft) + η(κt)(1)

(
ρ(Yt+1|Ft) − L

(4)
t (κ0, . . . , κt) −

t−1∑
j=0

Cj

)
or equivalently,

(28) L
(4)
t (κ0, . . . , κt) = E(Yt+1|Ft) + (1− δ(κt))

(
ρ(Yt+1|Ft) −

t−1∑
j=0

Cj − E(Yt+1|Ft)

)
,

for t = 0, . . . , n−2 (with the convention
∑−1

j=0Cj = 0). For the calculation of ρ(Yt+1|Ft)

in (28), we again pose an intuitive monotonicity assumption, that we then verify in the
numerical illustrations in Section 5, which here is

(29) L
(4)
t+1(κ0, . . . , κt, 1) < . . . < L

(4)
t+1(κ0, . . . , κt, 7) < η(7)(n− t− 1) · (ρ(X) −

t∑
j=0

Cj)

+ L
(4)
t (κ0, . . . , κt)(1 − η(7)(n− t− 1)) +

n−t−1∑
l=1

t∑
j=0

(s
(κj)
l + ηr)Cj.

Note that L
(4)
t (κ0, . . . , κt) also appears on the right-hand side of (28) in the expression

E(Yt+1|Ft) and (potentially) in ρ(Yt+1|Ft) (depending on the credit state κt), so that
for each combination (κ0, . . . , κt) this equation needs to be considered separately. Since

L
(4)
t+1(κ0, . . . , κt+1) also appears on the right-hand side, (28) can now be used recursively,

starting with L
(4)
n−1 from (25). From the latter equation it also becomes clear, however,

that every path (κ0, .., κn−1) leads to another value of L
(4)
n−1(κ0, .., κn−1), and the latter is

the starting point of the recursion (28), so that its value intrinsically affects the earlier

liability values. Consequently, in order to determine L
(4)
0 (κ0) we have to calculate the

respective future liability values along each possible sample path starting in κ0, see
Section 5 for details.

To simplify the analysis, it is somewhat natural to assume that we allocate the same
capital level C0 = . . . = Cn−2 = C(κ0) for all t = 0, . . . , n − 2 (at time n − 1 we
then raise the actually needed remaining amount), and its value is determined at the
beginning according to the credit state κ0. An intuitive choice for raising a constant
amount is

(30) C(κ0) = (ρ(X) − L
(2)
0 (κ0))/n,

where L
(2)
0 (κ0) is the initial liability value under Strategy 2 (the rationale being that

at each time point up to t = n− 2 an equal fraction of the (initially and very roughly
estimated) eventually needed SCR under Strategy 2, namely without early capital, is
allocated.

However, any other fixed choice

(31) C0(κ0) = c0, . . . , Cn−2(κ0) = cn−2
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of not necessarily equal values c0, . . . , c2 can be handled in the analysis as well. One may
even wonder whether it is feasible to determine the capital amounts Ct, t = 0, . . . , n−2
adaptively and in an optimal fashion along the credit rating path, i.e., using the full
information Ft: Ct = Ct(κ0, .., κt) (the strategy of an optimizing actuary). A priori,
this is also feasible, but with the recursive nature of the proposed method, one will have
to optimize over 74+73+72+74+7 = 2800 variables, which we consider a computational
overkill for the purpose at hand. Moreover, the solution would be path-dependent, thus
not general enough to be easily implemented in practice.
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Figure 2. Capital held at each time t as a function of
initial credit rating: Strategy 3 (left) and Strategy 4 (right).

In Figure 2, we illustrate the differentiation in capital allocation over time for strategies
3 and 4, corresponding to each initial credit rating. The left graph of Figure 2 shows
that capital is allocated at the beginning and sustained throughout to the ultimate.
This approach represents the strategy of a conservative actuary. In the right graph of
Figure 2, the strategy of a prudent actuary is depicted, where capital is incrementally
built up linearly over time, culminating in the full amount in the final year

4.5. Strategy 5: Buying a call option. Another alternative we consider here is to
buy a (capped) call option on the excess of the eventual loss over the expected value
of risk X (the excess needed is bounded from above by ρ(X) − E(X), so it is in fact a
bull spread in financial terms), see for instance Dacorogna et al. (2013) for details on
such a financial product in the context of equalization reserves. The price of this call
option together with E(X) then constitutes the initial liability value

(32) L
(5)
0 = E(X) + EQ((min(X, ρ(X)) − E(X))+).

Note that this strategy circumvents any credit migration risk, as the call option serves
as a complete hedge up to the amount required by the regulator (although a fee for a
protection against counterparty default risk may have to be added). Here we introduce
classically the call option price as EQ (expectation under the risk neutral measure)
since we assume that, contrary to insurance liabilities, there would be a market for
these options. However, a crucial question in the implementation of such a strategy



18 H. ALBRECHER AND M. DACOROGNA

in practice will be the availability of an option seller as well as the specification of
an appropriate price. Since a respective market is clearly not liquid, it will not be
realistic to infer the pricing measure Q from a market, but its choice is important for
any quantitative comparison of this solution to the above alternatives. In this paper,
the simple pricing kernel

(33) EQ(·) = (1 + θ(5))EP(·)

for some θ(5) > 0, where P is the physical measure (other choices of Q are of course
easily possible), see e.g. Hansen and Renault (2010). In particular, we will look for
the limiting value of relative ’safety loading’ θ(5) in the price so that this solution is
still attractive relative to its alternatives. Note also that due to our assumption of
a zero risk-less interest rate in this paper, we do not have to consider discounting in
formula (32), although the maturity of this option is n years. The longer maturity of
this option will in fact lead to a smaller value of θ(5), as the option seller can invest the
paid price over the longer time, which might tradeoff with a fee for protection against
counterparty default risk of the option seller, resulting in some final value of θ(5). While
a priori the payoff of this option is independent of the credit rating of the company,
in the numerical illustrations in Section 5 we will still choose θ(5) as a function of
initial credit state, to reflect that option sellers might typically have a preference for
going into a trade with a company with better credit rating (for instance because of
the better reputation, the specification of the distribution of the risk X possibly being
more trustworthy, general liquidity of the market for this rating, etc.).

One could also interpret (32) as a reinsurance cover with a bounded layer above a
retention E(X), priced with an expected value principle with relative safety loading θ
according to an expected value premium principle. Although reinsurance is typically
written for one-year periods, reinsurance contracts with liabilities beyond one year do
of course exist, although, in most cases, the underlying risk materializes in the first
year (accident year), which is not the situation here. Also, the above coverage would
correspond to an elimination of all the insurance risk by reinsurance, which a regulator
will usually not accept (if X were the insurer’s only risk, this contract would turn the
insurer merely into a management firm). In any case, the market for such a product is
clearly not liquid, and such a coverage is currently not available in the market at all,
but it could emerge if there is a clear recognition of its necessity.

Finally, note that in case the call option is extremely expensive (for instance in view
of the above reasons), one may think of reserving an additional amount c in the initial
liability and buy a (cheaper) option with a suitably raised strike value, which would
replace (32) by

E(X) + c + EQ((min(X, ρ(X)) − E(X) − c)+).

However, for all reasonable magnitudes in numerical illustrations, it turns out that
c = 0 is optimal.
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4.6. Strategy 6: Buying credit rating protection. Yet another (and, as it turns
out, attractive) alternative to manage the risk of a worsening of the credit state of

the company is the following. One can lock in the liability L
(1)
0 of Strategy 1 (which

the regulator requires), and – instead of any other measures – buy a credit derivative,
which protects the company against any adverse future developments (i.e., against a
bad credit state at time n− 1 when the allocation of the capital is due4). In addition,
one then also needs to add protection against the costs of bankruptcy which might
occur at any point in time up to t = n − 1. This results in a financial product whose
payoff at time n− 1 is contingent on the credit state of the company at that time and
of the form

(34) W (κ0) =

{
s
(j)
1 · (ρ(X) − L

(1)
0 ) with prob. p̂

(n−1)
κ0,j

for j = 1, . . . , 7.

η(7)(n− t) · ρ(X − L
(1)
0 ) with prob. p̂

(t)
κ0,D

.

Note that, if there is no bankruptcy, this payoff will exactly provide the additional
cost (expressed through the credit spread) when at time n − 1 the required capital

ρ(X) − L
(1)
0 is more expensive than ηr (the rate for AAA, as s

(1)
1 = 0), because one

is in a worse credit state. The latter happens with the above (n − 1)-step transition
probabilities (p̂ signifies that these are the transition probabilities conditional on the
event that bankruptcy has not occurred up to t = n − 1, which one can ensure by
using the transition probability matrix PPP restricted to its first 7 lines and columns,

e.g. p̂
(2)
i,j =

∑7
k=1 pi,kpk,j). On the other hand, in case of bankruptcy at some time

t, in alignment with the above assumptions for that case, the buyer of the bankrupt

company will require L
(1)
0 +η(7)(n−t) ·ρ(X−L

(1)
0 ), so that the second summand should

be the payoff in (34) for that case. Here, accordingly p̂
(t)
κ0,D

=
∑7

k=1 p̂
(t−1)
κ0,j

pj,D refers to
the probability that bankruptcy occurs at time t. Clearly, this payoff (and therefore
the price of this financial product) depends on the initial credit state κ0.

This credit derivative fully hedges the future cash-flows in excess of L
(1)
0 that may be

needed under worsening of the credit state or bankruptcy. The fact that the bankruptcy
costs are being paid by the product only at the potentially later time n − 1 does not
matter under our assumption of a zero riskless interest rate. One can expect the
existence of a market for this credit derivative (in particular for larger insurers), and in
that case one may be able to determine a price from traded credit spreads. However,
for simplicity of exposition, in this paper we choose to price this credit derivative using
again EQ and the same pricing kernel as for the call option under Strategy 5, i.e.

(35) L
(6)
0 = L

(1)
0 + EQ(W (κ0)) = L

(1)
0 + (1 + θ(6))EP(W (κ0)),

where in comparison to Strategy 5 a lower value for θ(6) may be realistic here, as the
market for credit derivatives is quite liquid.

4The drawback of this technique is the lack of initial capital allocation. This creates the wrong
incentives for underwriters, as they are not required to generate a return on risk capital in the first
year.
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5. Numerical Illustration

A major challenge with multi-step models is their numerical complexity, particularly
when using Monte Carlo simulations. The necessity for nested simulations results in a
dramatically increased number of simulations required, escalating exponentially to the
nth power in our scenario. However, we develop in this section an analytical approach
that eliminates the need for Monte Carlo simulations. All findings are derived from
the analytical solutions detailed in this section.

5.1. Transition probabilities for the Markov chain migration model. Let us
start by estimating actual transition probabilities for the Markov chain model from
market data. Denzler et al. (2006) have developed a model to link credit spread to
default probability which fits market data very well by including fat-tailed jumps. We
use their Formula (5) for the credit spread to infer the respective η-values:

(36) sj,i = (1 + Ȳj,i)

[
1

[R + (1 −R)(1 − qj,i)]1/j
− 1

]
is the (annual) spread for maturity j (in years) at time i, R is the recovery rate, Ȳj,i

is the default free yield and qj,i is the default probability up to maturity j at time
i. While among all financial institutions a recovery of 40% is considered typical (cf.
Denzler et al. (2006)), for insurance companies a recovery rate of 60% (R = 0.6) seems
more appropriate, and leads to resulting numbers that match empirical magnitudes.
We want to concentrate on the cost of capital and not mix this with the effect of
discounting, so we choose Ȳj,i = 0 for the risk-free rate in this paper. Recall that we
assume that the spread depends on time i only through the credit rating k at that time
point, so that we can reformulate this formula for our purposes in the following way:
The annual spread for remaining maturity j with current credit rating k is given by

(37) s
(k)
j =

1

[0.6 + 0.4(1 − q
(k)
j )]1/j

− 1,

where q
(k)
j is the probability to default within the next j years, given a current credit

rating of k. To compute these values, we use our Markov chain assumption for the
annual development of the rating. For the one-year transition matrix, we choose a
recent study of the rating agency S&P (Nick W Kraemer, S&P (2021), Table 21) that
extends over 40 years from 1981 to 2020. In that table, for each rated state there
is also a probability given for the transition to a non-rated (NR) status. However,
empirically, becoming non-rated is not a concern for insurance companies, so that for
our considerations we remove that category and reweight the remaining transition rates
accordingly, leading to the transition probability matrix given in Table 1. From this

we simply derive q
(k)
j (restricting to maturities of 5 years) as given in Table 2, and

using (37) this leads to the credit spreads given in Table 3 (here and in the sequel,
all depicted values are rounded to four digits after the comma, although the actual
calculations are done with larger precision).
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Table 1. S&P Global Corporate Average Transition Rates (1981-2020) for
1 year in percentage

From/to AAA AA A BBB BB B CCC/C D

AAA 89.85 9.35 0.55 0.05 0.11 0.03 0.05 0
AA 0.50 90.77 8.08 0.49 0.05 0.06 0.02 0.02
A 0.03 1.67 92.61 5.23 0.27 0.12 0.02 0.05
BBB 0 0.10 3.45 91.93 3.78 0.46 0.11 0.17
BB 0.01 0.03 0.12 5.03 85.99 7.51 0.61 0.70
B 0 0.02 0.08 0.17 5.18 85.08 5.66 3.81
CCC/C 0 0 0.12 0.20 0.65 14.72 50.90 33.41

Table 2. Default probabilities q
(k)
j within the next j years by current credit

rating class k

j = 1 j = 2 j = 3 j = 4 j = 5

AAA 0 0.0002 0.0005 0.0010 0.0015
AA 0.0002 0.0005 0.0010 0.0016 0.0022
A 0.0005 0.0012 0.0021 0.0032 0.0047
BBB 0.0017 0.0041 0.0071 0.0109 0.0152
BB 0.0070 0.0179 0.0324 0.0497 0.0691
B 0.0381 0.0897 0.1440 0.1969 0.2457
CCC/C 0.3341 0.5098 0.6069 0.6645 0.7017

Table 3. Credit spreads s
(k)
j for maturity j and credit rating class k (in

basis points)

j = 1 j = 2 j = 3 j = 4 j = 5

AAA 0 0.4307 0.7528 1.0106 1.2301
AA 0.8325 1.0893 1.3263 1.5557 1.7849
A 2.0914 2.4645 2.8607 3.2812 3.7266
BBB 6.8074 8.1601 9.5122 10.8829 12.2699
BB 27.9231 36.047 43.6120 50.36 56.2201
B 154.73 184.521 200.077 207.149 209.116
CCC/C 1542.65 1207.93 971.341 803.063 681.051

The over-all cost of capital η(k)(j) for a maturity of j years is then given by

(38) η(k)(j) =

j∑
i=1

(s
(k)
i + ηr).

That is, in each year i the regulatory cost of capital for one year, ηr, is augmented

by the annual credit spread s
(k)
i for the remaining maturity i at that point. Note that

since the arrangement is settled j years before maturity, the current credit rating state
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k is secured throughout. This approach leads to the numbers given in Table 4.

Table 4. Cost of capital η(k)(j) as a function of maturity j and current
credit rating state k

j = 1 j = 2 j = 3 j = 4 j = 5

AAA 0.06 0.1200 0.1801 0.2402 0.3003
AA 0.0601 0.1202 0.1803 0.2405 0.30079
A 0.0602 0.1205 0.1807 0.2411 0.3014
BBB 0.0607 0.1215 0.1824 0.2435 0.3048
BB 0.0628 0.1264 0.1908 0.2558 0.3214
B 0.0755 0.1539 0.2339 0.3146 0.3956
CCC/C 0.2143 0.3951 0.5522 0.6925 0.8206

5.2. A Pareto risk with a time horizon of 5 years and VaR. To assess the
different strategies, it is necessary to choose a distribution for the risk X and a time
horizon. These will be used to determine the value of the liability and to calculate
and compare the values of the six strategies. Let us now assume that the risk X is
Pareto distributed with distribution function FX(x) = 1 − (x/x0)

−αP , x > x0, where
we choose the parameters to be x0 = 1 and αP = 1.8, which is fat tailed with a
non-converging second moment. We furthermore choose n = 5 years and the risk
measure ρ to be the Value-at-Risk at safety level α = 99.5% (cf. (3)), leading to
E(X) = x0αP/(αP − 1) = 2.25 and ρα(X) = x0(1 − α)−1/αP = 18.9824 (note that any
other choice of a distribution for X would lead to the same analysis, all that is needed
here is the specification of E(X) and ρ(X)). Under Strategy 1 (where a constant
ηr = η4 = 0.06 is assumed and applied), (20) yields

L
(1)
0 = E(X) + 0.0566K(X) = 3.19705.

This represents the liability value required by the regulators, but neglecting the risk
of credit migration as we have seen earlier. Accordingly, this value underestimates
the appropriate liability value (an effect that is further exacerbated by the recent

replacement of the 6% by 4.75%, which here would lead to the even lower value L
(1)
0 =

2.9705) and does not allocate any capital at time t = 0, for a risk that is on the books.

For Strategy 2, one first calculates L
(2)
4 (κ4) according to (21). Subsequently, we use

(22) for t = 3 to calculate L
(2)
3 (κ3) for all credit ratings κ3 at time t = 3. Note that

Y4|κ3 =

{
L
(2)
4 (j) with prob. pκ3,j for j = 1, . . . , 7

η(7)(1) · ρ(X) + (1 − η(7)(1))L
(2)
3 (κ3) with prob. pκ3,8,

so that

E(Y4|F3) = E(Y4|κ3) =
7∑

j=1

pκ3,jL
(2)
4 (j) + pκ3,8(η

(7)(1) · ρ(X) + (1 − η(7)(1))L
(2)
3 (κ3))
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and

ρ(Y4|F3) = ρ(Y4|κ3) = inf {x : P (Y4 > x|κ3) ≤ 0.005} .
Under the monotonicity assumption (23), for the latter one needs to look for the

smallest value j∗ such that
∑j∗

l=1 pk,l ≥ 0.995 and then ρ(Y4|κ3 = k) = L
(2)
4 (j∗) for

j∗ < 8 and η(7)(1) · (ρ(X)−L
(2)
3 (k)) +L

(2)
3 (k) if j∗ = 8. For the transition probabilities

of Table 1 this yields j∗ = {3, 4, 4, 6, 8, 8, 8} as a function of k = 1, . . . , 7. This approach

leads to linear equations for the values L
(2)
3 (κ3). One can then proceed analogously to

obtain the values L
(2)
2 (κ2).

The iterative and analogous application of the above procedure eventually leads to

L
(2)
0 (κ0). One indeed can verify that Assumption (23) is fulfilled for all t = 0, . . . , 3.

Table 5 depicts the resulting values for our concrete numerical example, in particular

the final value L
(2)
0 as a function of the initial credit rating. Indeed, for all κ0 the

resulting value L
(2)
0 (κ0) is higher than the one for Strategy 1. The difference is much

smaller for the best rating from 0.6% to 2% for A-ratings, while it jumps at more
than 10% for a BBB rating and prohibitive percentages for the non-investment grade
ratings (inferior to BBB). For the good ratings, the difference might appear too small.
However, in this case, credit risk is accounted for in terms of expected changes in the
credit spread, without including it in the risk-adjusted capital, which is evidently a
minimal requirement. These outcomes are expected, since the consideration of credit
risk leads to larger capital costs in each scenario. It is interesting to see by how much

the value L
(1)
0 under Strategy 1 underestimates the ’true’ value of L

(2)
0 depending on

the credit rating of the company. The monotonicity of L
(2)
t as a function of the credit

rating at any time t and also as a function of time to maturity matches the intuition
and quantifies it for the concrete example.

Table 5. Liability values for Strategy 2

L
(2)
4 (κ4) L

(2)
3 (κ3) L

(2)
2 (κ2) L

(2)
1 (κ1) L

(2)
0 (κ0)

AAA 3.1971 3.1985 3.2013 3.2065 3.2150
AA 3.1984 3.2003 3.2047 3.2148 3.2344
A 3.2002 3.2034 3.2113 3.2289 3.2623
BBB 3.2073 3.2289 3.2926 3.4211 3.6276
BB 3.2386 3.4961 3.9506 4.5663 5.3078
B 3.4242 3.8997 4.7184 5.8035 7.0463
CCC/C 5.2025 6.9108 9.3333 11.5922 13.3924

Next, let us turn to Strategy 3, which can be interpreted as actuarial practice of a
conservative actuary, as well as cautionary risk management practice. Equation (24)

together with Table 4 leads to the values of L
(3)
0 (κ0) given in Table 6. It is not surprising

that holding the capital for the entire period of 5 years is typically more costly than
only anticipating the credit rating risk via regulatory measures as in Strategy 2, when
the credit rating is rather good. However, we observe that if the initial credit rating is
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rather low (B or CCC/C), then raising the capital immediately is in fact cheaper than
dealing with the possible bankruptcy risk along the way.

Table 6. Result for Strategy 3

L
(3)
0 (κ0)

AAA 6.1147
AA 6.1178
A 6.1256
BBB 6.1583
BB 6.3199
B 6.9926
CCC/C 9.7918

We now turn to Strategy 4. To get a feeling for the effects of allocating capital earlier,
we first consider the choice (30). The respective values are depicted in the left column

of Table 7. Next, one has to evaluate L
(4)
4 using (25) for each of the possible 74 possible

Markov chain sample paths up to this point. Then one calculates L
(4)
3 using (28) for

each of the 73 possible combinations κ0, .., κ3, using the previously obtained L
(4)
4 -values.

This is quite a complex task, as for each of the values κ3 one needs to separately solve
a linear equation, for all possible values of κ0, .., κ2. One can continue along these

lines and finally arrive at the result L
(4)
0 (κ0) (which is the last column in Table 7).

For illustration, in the additional columns in Table 7 we depict liability values L
(4)
t

for the specific credit migration paths κ0 = · · · = κt (which are named κt∗ in the

table), but of course all 75 = 16807 paths enter the calculation of L
(4)
0 (κ0). Note that

we numerically verified that assumption (29) indeed holds for all t and credit state
combinations, and therefore the j∗-calculations for Strategy 2 apply here as well. We
observe that the benefit of allocating all the capital upfront now drops to the lowest
rating of CCC/C, and otherwise could be considered too expensive in comparison
with this strategy. Moreover, the latter offers an interesting alternative to the most
conservative one (Strategy 3), while still adhering to the risk management principle of
allocating capital for each risk present in the books.

Table 7. Allocated capital and liability values for Strategy 4 under (30)

C(κ0) L
(4)
4 (κ4∗) L

(4)
3 (κ3∗) L

(4)
2 (κ2∗) L

(4)
1 (κ1∗) L

(4)
0 (κ0)

AAA 3.1536 3.1971 3.4193 3.6314 3.8347 4.0342
AA 3.1500 3.1984 3.4207 3.6334 3.8386 4.0399
A 3.1446 3.2002 3.4233 3.6381 3.8476 4.0576
BBB 3.0726 3.2072 3.4336 3.6689 3.940 4.2773
BB 2.7352 3.2386 3.5872 4.0761 4.7305 5.5598
B 2.3872 3.4242 3.9597 4.7551 5.8496 7.1952
CCC/C 1.1180 5.2025 7.3630 9.9331 12.1862 13.9259
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Table 8. Allocated capital and liability values for Strategy 4 under (31)

C(κ0) L
(4)
0 (κ0)

AAA c1 3.2150 + 0.2586 c1
AA c2 3.2344 + 0.2557 c2
A c3 3.2623 + 0.2529 c3
BBB c4 3.6276 + 0.2114 c4
BB c5 5.3078 + 0.0921 c5
B c6 7.0463 + 0.0624 c6
CCC/C c7 13.3924 + 0.4772 c7

Table 8 presents the values of L
(4)
0 (κ0) for an arbitrary choice (31). Notably, when

c0 = · · · = c3 = 0, we recover the values of Strategy 2, as expected. Specifically, the
initial liability values are minimal when no capital is allocated before time t = n− 1 =
4. From this numerical implementation and under the expected value perspective, it
appears that the penalization for credit risk does not justify the extra expenses of
raising capital earlier than regulatory requirements.

However, two considerations arise: First, prudent risk management suggests that even
if not mandated by regulators, it is unwise to avoid allocating capital to a risk already
on the books. Second, our approach does not link the company’s credit rating to its
capital allocation strategy for long-tail business. One could argue that a company’s
credit rating should improve with more conservative strategies. Without a mechanism
to reflect the potentially improved rating for each strategy (e.g., via a model for im-
proved credit transition rates), we can still evaluate liability values under the fixed
transition matrix. We might assume that adopting a more conservative strategy would
enhance the initial credit rating by some notches, especially if such prudent capital
management is applied across all company portfolios. Conversely, adopting less con-
servative strategies could increase credit risk and degrade the rating. Thus, Strategy
4 (or a variant) can still offer advantages over Strategy 2.

For ratings below BBB, Strategy 4 is equivalent to Strategy 2; for example, the liability
value with initial credit state BB under Strategy 2 is 5.3065. If Strategy 4 improves
the credit state by one notch from BB to BBB, according to Table 7 the new liability

value is L
(4)
0 (4) = 4.2773. If we can specify how earlier allocated capital amounts affect

credit rating improvements, we can use Table 8 to refine the analysis and optimize the
situation.

Next, let us consider Strategy 5 (buying a call option, cf. (32)). As mentioned earlier,
that call option may typically not be available in the market, so specifying values of θ
involves some arbitrariness. For the purpose of this illustration, we choose values that
become higher for worse initial credit rating in the following way. Starting with a base
value of θ(5)(AAA) = 0.5, we use the ratio of 1-year spreads between consecutive credit
states to proportionally increase the values θ accordingly (and as an approximation of
the spread ratio between AA and AAA we halve the one between state A and AA),
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Table 9. Liability values for Strategy 5 (using (39)) and Strategy 6 with
θ(6) = 0.5

L
(5)
0 (κ0) L

(6)
0 (κ0) θ

(6)
∗ (κ0)

AAA 3.0521 3.2108 0.9040
AA 3.1206 3.2186 1.4637
A 3.4564 3.2427 1.0428
BBB 3.6550 3.3475 3.2112
BB 3.8815 3.8739 3.6749
B 4.2663 5.7787 1.2364
CCC/C 5.4504 12.5692 0.6317

leading to

(39) θ(5)(κ0) = {0.5, 0.6280, 1.2560, 1.6275, 2.0510, 2.7707, 4.9850}.

Table 9 presents the resulting liability values. We observe that Strategy 5 is quite
attractive if such a call option is available. By varying θ, the liability value remains

below L
(2)
0 (1) (the liability value of Strategy 2 with an initial credit rating of AAA)

as long as θ < 0.804. However, since the market for this call option is illiquid, it’s
unclear whether such a magnitude of θ is realistic compared to other strategies; if not,
this reinsurance-type solution may not be more advantageous than previous strategies
when purely evaluating liability value. The second column in Table 9 shows the liability
values under Strategy 6, according to equations (34) and (35), with θ(6) = 0.5. Under
this choice, the result is more attractive than Strategy 2 for any initial credit rating. We

also calculate the critical value θ
(6)
∗ (κ0) that leads to L

(6)
0 (κ0) = L

(2)
0 (κ0), depicted in the

third column of Table 9. Compared to Strategy 2, the credit derivative is particularly
interesting for initial credit states between AA and B, as Strategy 6 yields a lower
liability value even if the safety loading in the credit derivative price exceeds 100%
(and actual values may be lower in the often liquid credit market). However, while this
strategy covers credit migration risk, it leaves unresolved the risk management issue of
allocating capital to every risk on the books.

Figure 3 presents a graphical comparison of liability values for each strategy across
initial credit states. Recall that Strategy 1 completely disregards credit migration
risk, while Strategy 2 acknowledges this risk but does not involve early capital raising.
Strategy 3 proactively raises all required capital at the outset, whereas Strategy 4
incrementally raises portions of the necessary capital at each time point, as shown
in Figure 3. Strategies 5 and 6 explore alternative approaches: purchasing a call
option (Strategy 5) and buying a credit derivative to hedge against credit risk (Strategy
6). However, these last two strategies depend on the existence of a market for these
financial derivatives, and their pricing is relatively speculative, making comparison
with the other strategies less straightforward. Nevertheless, under our hypothesis,
they could be viable alternatives worth exploring.
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Figure 3. Resulting liability values for each strategy and
each initial credit rating.

6. Conclusion and Outlook

Effectively handling time in risk estimation and management remains one of the funda-
mental challenges for actuarial mathematics and risk management, despite not being
widely addressed in the literature. This paper advances the issue by developing a frame-
work for evaluating capital allocation over time, focusing on using a liability valuation
methodology to assess various capital allocation strategies. The approach is illustrated
with a simple long-tail liability problem, highlighting the challenges involved. We find
that the regulator-recommended approach overlooks both the credit risk on capital
cost and the fundamental principles of prudent risk management, which advocate allo-
cating capital for every risk on the books. Our study addresses credit risk migration,
demonstrating that lower initial ratings significantly affect valuation—an aspect over-
looked by current regulatory requirements. Different strategies for incorporating time
in liability valuation and risk are examined. Allocating full capital at the start of a
contract makes the liability excessively costly, exceeding regulatory requirements by
over 90% in all cases. Therefore, we explore other strategies, and gradually building
up capital emerges as a compromise, reducing the liability cost while requiring some
capital at the onset of the contract. Additionally, we consider transferring the entire
liability risk to another institution and hedging the credit migration risk. While risk
transfer appears cost-effective, practical difficulties exist due to regulatory constraints
and market reluctance. Hedging credit migration risk (Strategy 6) emerges as a viable
alternative to Strategy 2 under our assumptions. However, it does not address the risk
management issue of not allocating risk capital at the start of the contract and may
encourage overly liberal underwriting of long-term risk, piling up liabilities that may
be hard to manage—a problem observed in insurance practice, such as in professional
liability in the U.S. in the early 2000s.

A potential area for future research is formalizing how prudent capital strategies could
improve credit ratings, extending the current model. This would involve moving from
an exogenous to an endogenous framework, where uniform application of a capital
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strategy across portfolios influences the company’s overall credit rating. Technically,
this could be implemented by assuming capital strategy choices impact the credit mi-
gration model’s transition matrix, penalizing long-term risk underwriting without suf-
ficient early capital allocation. While this extension would significantly increase model
complexity and be sensitive to assumed transition probability changes, it could provide
valuable insights into capital strategy effectiveness. Ultimately, this could help design
optimal strategies balancing prudent risk management and regulatory requirements
without penalizing insurers for holding long-tail business.

Other interesting extensions of the present work will be to relax the assumptions on the
Markov chain to allow for time-inhomogeneous features that include market dynam-
ics, to adapt and generalize the considered liability structure towards accommodating
more complex claims run-off patterns of different business lines, to introduce stochastic
discounting of the risk-free reference asset, to merge the present considerations with
a general stochastic model for the asset side of the company as well as to study the
effects of credit migration on a fully dynamic multi-period portfolio balancing premium
risk and reserve risk over long time horizons.

In any case, we hope that the methodology introduced in this paper paves the way for
extensive research opportunities aimed at better understanding how to integrate the
time component in risk measurements. This is crucial in an era increasingly character-
ized by our growing awareness of the long-term impacts of human actions.
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