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Abstract

In this article we investigate the role of information spillovers in promoting irrigation technology

adoption and diffusion. In particular, we investigate the effect of different channels of information

spillovers, namely informal social learning and formal extension services, while acknowledging that

this effect is a function of farm-specific spatial, environmental and socio-economic characteristics,

the latter including the efficient identification of the farmers’ influential peers. For doing so, we

develop a theoretical model of irrigation technology adoption and diffusion, which we then empiri-

cally apply using duration analysis on a micro-dataset of olive producing farms in Crete. Because

unobserved variables are potentially relevant for quantifying the effect of information provision

(formal and informal) we use observable indicators in a factor analytic model to proxy the un-

observed latent variables used in our econometric estimation of the duration model. To the best

of our knowledge, this is the first paper that brings together, both theoretically and empirically,

three strands of the adoption and diffusion literature: (i) the literature on social learning, (ii) the

literature on extension services, while (iii) proposing an econometric approximation of the involved

unobserved variables that crucially contribute in the identification of informational cascades among

rural population. The paper concludes with policy recommendations based on our empirical re-

sults, which suggest that both formal and informal information spillovers are strong determinants

of technology adoption and diffusion.
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1 Introduction

Modern irrigation technology is often cited as central to increasing water use efficiency and reduc-

ing the use of scarce inputs, while maintaining current levels of farm production, particularly in

semi-arid and arid agricultural areas. The analysis of adoption and diffusion patterns of modern

irrigation technologies has been at the core of several empirical studies in both developed and de-

veloping countries around the world (among others Dinar, Campbell and Zilberman (1992), Dridi

and Khanna (2005), Koundouri, Nauges and Tzouvelekas (2006) and the references cited therein).

These empirical studies provided clear evidence that economic factors like water price, cost of ir-

rigation equipment, crop prices, but also farm organizational and demographic characteristics like

size of farm operation, educational level and experience of household members, together with envi-

ronmental conditions (e.g., soil quality, precipitation), do matter to explain adoption and diffusion

of modern irrigation technologies. This empirical research has provided quite useful results towards

improving our understanding of the driving forces of modern irrigation technology adoption and dif-

fusion. However, another strand of the technology diffusion literature in agriculture argues that the

above economic, structural, demographic and environmental factors cannot explain accurately the

diffusion patterns as they are conditional on what farmers know about the new technology at any

given point in time (Foster and Rosenweig (1995), Besley and Case (1997), Munshi (2004), Bandiera

and Rasul (2006) and Conley and Udry (2010)). In modern agriculture, farmers are informed about

the existence and effective use of any new farming technology mainly through formal communi-

cation with extension personnel (from either private, under fee, or public extension agencies) and

from their informal social interaction and exchange of information with other farmers.

Several studies pinpointed extension agents as the primary source of information about the

existence and merits of any new farming technology including irrigation techniques (for a thorough

discussion see Gisselquist, Nash and Pray (2002), Rivera and Alex (2003), World Bank (2006) and

Larsen, Kim and Theus (2009)). Because the cost of passing the information on the new technology

to a large heterogeneous population of farmers may be high, extension agents usually target specific

farmers who are recognized as being peers exerting a direct or indirect influence on the whole

population of farmers in their respective areas (Birkhaeuser, Evenson and Feder 1991). Farmers may

also observe, exchange information, and learn from individuals with whom they have close social

ties and with whom they share common professional or/and personal characteristics (education,

age, religious beliefs, farming activities etc.); the latter being called homophilic neighbors in Rogers’

(1995) terminology. It is now well recognized in the literature that informational spillover about

the effective use of the new technology may speed up technology adoption rates in rural areas.

Although the distinction made by Rogers defines homophilic population as the reference group

influencing individual choices and the spread of information, this is not always the case. Farmers

may also follow or trust the opinion of those that they perceive as being successful in their farming

operation, even though they occasionally share quite different characteristics. For instance, a young
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farmer with low experience will rather follow and trust more experienced farmers either from their

own social network or from outside. Therefore, what determines the influential reference group

for an individual farmer in the sense of affecting his/her decisions about the profitability of new

technologies is not straightforward but is instead a combination of several factors. Another impor-

tant dimension of effective informational provision is the spatial distribution of peers and farmers’

reference group. In large geographical areas with a low density of farmers, formal communication

channels may be less successful in promoting technology diffusion than in small areas with close

geographical proximity among farmers.

Although there is a lot of literature on technology adoption, the literature on the separate

impacts of information transmitted via extension agents and neighbors, is thin. This is indeed the

result of challenging issues of attribution and identification, and, relevant to these challenges, limited

data availability. Measuring the extent of social learning and identifying its role in technology

diffusion is difficult for two major reasons. First, the set of neighbors from whom an individual can

learn is difficult to define. We believe that a significant contribution to this literature should provide

advancements with regards to definition and identification of peers. As discussed before we need to

go beyond the simplistic definition of peers as (physical) neighbors identified (only) through physical

distance. Second, distinguishing learning from other phenomena (for example, interdependent

preferences and technologies, related unobserved shocks) that may give rise to similar observed

outcomes is problematic (Manski, 1993).

Along these lines, our article aims to quantitatively measure the importance of both formal

and informal communication channels in modern irrigation technology diffusion for a sample of

265 randomly selected olive-growing farms in Crete, Greece. In this paper we argue, in accordance

with the theoretical literature, that peers are farmers with whom a particular farmer interacts.

We use original information collected through our survey on characteristics of the peer group

(age, education, etc.) in conjunction with factor analysis, to build factors that best represent

the unobserved variables that are potentially relevant for quantifying the effect of information

spillovers, both via extension visits and social learning.1 We then use the estimated factor scores

in the hazard function and estimate a duration model in order to predict diffusion rates of modern

irrigation technology. The use of a duration model allows us to determine the diffusion curve of

modern irrigation technology and to provide insights on the impact of social learning (formal or

informal) on this diffusion process. In arid and semi-arid areas where water resources are scarce,

adoption of modern more efficient irrigation technologies is vital for the sustainability of farming

activities. This study sheds new light on factors affecting individual perceptions and on the process

of social learning. Our findings should help identifying appropriate policy measures to promote a

faster diffusion of more effective irrigation technologies.

In section 2 we develop the theoretical model of adoption and diffusion of modern irrigation

1Bandiera and Rasul (2006), Conley and Udry (2010) and Weber (2012) use the same conceptual approach to
overcome identification problems.
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technology and in section 3 we present the econometric model using duration analysis. In section 4,

we discuss the data and we describe the empirical version of the econometric model. In section 5 we

present the informational variables used and the factor analytic model utilized to build factors that

best represent each one of the unobserved variables that are potentially relevant for quantifying

the effect of information provision in the diffusion of drip irrigation technologies. In section 6 we

discuss the estimation results and the last section discusses some relevant policy recommendations

born out from our study and concludes the paper.

2 Theoretical Model

In this section we develop a model that describes the farmer’s decision process regarding new

technology adoption. This model is useful as background framework for simultaneous study of: (a)

formal learning from extension services before and after adoption, (b) informal learning from peers,

before and after adoption, and (c) learning-by-doing after adoption.

We assume that farm’s j technology is represented by the following continuous twice-differentiable

concave production function:

yj = f(xvj , x
w
j , Aj) (1)

where yj denotes crop production, xvj is the vector of variable inputs used in farm production (labor,

pesticides, fertilizers, etc.), xwj represents irrigation water, and Aj denotes a farm technology index.

Crop production is sensitive to the quantity of irrigation water used: we assume that if the quantity

of irrigation water applied is lower than the threshold xwmin the quality of the crop will be too low

for the farmer to sell it on the market. The farmer is thus facing a risk of low (or negative) profit

in case of water shortage.

Farmers have the option to invest in a modern, more efficient irrigation technology (e.g., drip

or sprinklers). Using a modern irrigation technology instead of the conventional one would allow

the farmer to produce the same level of output (y) using the same quantity of variable inputs xv

and a lower quantity of irrigation water (xw). The increased irrigation effectiveness of the mod-

ern technology is here described through a change in the technology index, i.e., from A0 with the

conventional technology to A∗ with the modern technology.2 We assume that the maximum irriga-

tion effectiveness is reached when the farmer operates adequately the modern irrigation technology,

which corresponds to A = A∗. We also assume that the maximum irrigation effectiveness cannot

be reached with the traditional irrigation technology (A∗ > A0).

The modern technology not only improves irrigation effectiveness but also allows the farmer

to hedge against the risk of drought (and consequently the risk of low profit) in the sense that

using a more efficient irrigation technology reduces the risk of a lack of irrigation water (i.e.,

2The technology index, in the context of irrigation, is best interpreted as a water-efficiency index, the latter being
the ratio of the amount of water used by the crop (sometimes called ‘effective water’) to the total amount of irrigation
water used on the field (sometimes called ‘applied water’ and denoted by xwj in model (1)); see Caswell and Zilberman
(1986) for related discussions on irrigation effectiveness.
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xw < xwmin) that would be detrimental to the crop. We assume that the consequences of adoption

in the new technology are not known with certainty by the farmers: farmers using a traditional

irrigation technology may not be able to precisely quantify the expected water efficiency gains

from switching to a modern irrigation technology and second, if a farmer switches to the modern

irrigation technology, it may require some time before the new technology is operated at its best

(i.e., before the water-efficiency index A reaches its maximum A∗). In this article we consider

that the farmer can reduce this uncertainty through two channels: i) farmers can build knowledge

about the new technology and expected benefits of its adoption before actually adopting it through

interactions with extension services or/and interactions with other farmers (and in particular early

adopters), and ii) farmers can improve operation of the new technology after adoption through

self-experience (or learning-by-using).

In the developed framework the farmer decides whether or not to adopt by forming expectations

about the efficiency of the new technology. We denote by s each production period at the end of

which the farmer will decide whether to adopt the new technology. Each farmer j accumulates

information on the new technology until the end of period s and forms expectations about aggregate

discounted future returns for a set of adoption scenarios; one scenario for each potential adoption

time, τ, where τ > s. We set the time horizon to a fixed T , which implies that s ∈ {0, 1, 2, ...T − 1}
and τ ∈ {s+1, . . . T}. We also assume that the required equipment for the use of the new technology

has a finite life expectancy, denoted by Te. Then, we denote by A∗j the maximum efficiency index for

farmer j when the new technology is adopted, and by Aj,s(t, τ) the expected, at time s, efficiency

index for time period t, under the assumption that the new technology is adopted at time τ . The

time variable t takes values in {τ, τ + 1, τ + 2, ..., T}. For every s, it holds that ∂Aj,s/∂t ≥ 0 and

∂Aj,s/∂τ ≥ 0, where the inequality is strict for t > τ and Aj < A
∗
.

In a nutshell, up to period s the farmer gathers information about the new technology from

extension visits and/or social learning from peers. At the end of s, the farmer uses this information

in order to form expectations about future production (and hence profit) for every t until T . Then,

based on these expectations she decides whether to adopt or not in period s+ 1. If she decides not

to adopt in s+1, she continues to gather additional information about the new technology until the

end of s+ 1 and, once again, based on this information she forms expectations about future profits

with and without adoption. The process is repeated until adoption takes place or until s = T .

Finally, farmers who invest in the modern irrigation technology must incur some fixed cost (c) of

purchasing the equipment which is known to them at period t. We assume that this cost decreases

over time, i.e., ∂cj,t/∂t < 0.

Let us now denote by p, ww and wv the expected discounted crop, irrigation water, and variable

input prices which are assumed, by the farmer, to remain constant over time. Then, just after period

s, if farmer j does not decide to adopt the new technology until period t, her expected discounted
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profit function for period t will be

πj (p,wv, ww, Aj) = max
xv ,xw

{pf(xvj , x
w
j , Aj)−wvxvj − wwxwj }

where πj (p,wv, ww, Aj) is a sublinear (positively linearly homogeneous and convex) in p, wv, and

ww profit function. It is non-decreasing in crop price and irrigation technology index, and non-

increasing in variable input and irrigation water prices. If, on the other hand, farmer j assumes

that she will have already adopted the new technology at a period τ ≤ t, then her conditional

discounted profit function (expected profits given the time, τ, of adoption of new technology) will

be given by (after dropping subscript j for convenience)

πs,τ,t (p,wv, ww, As(t, τ)) = max
xv ,xw

{pf(xvs,τ,t, x
w
s,τ,t, As(t, τ))−wvxvs,τ,t − wwxws,τ,t}.

In this model, we make the simplifying assumption that before actually adopting and while

forming expectations about the level of the technology index, the farmer assumes that this index will

remain constant throughout the period after adoption. In other words, when forming expectations,

the farmer assumes that the technology index As(t, τ) is equal to As for all τ + Te ≥ t ≥ τ .3 This

does not imply that the technology index will in fact remain constant, as learning from others (both

formal and informal) and learning-by-doing might occur after adoption.

To simplify the notation we denote each farmer’s discounted expected profit for period s + 1,

given her current knowledge by: πs,s+1,s+1 (p,wv, ww, As(s+ 1, s+ 1)). Then, each farmer chooses

to adopt the new technology by maximizing over τ his/her temporally aggregated discounted profits:

Vs,τ,T :=
τ−1∑
t=s+1

π − cs,τ +

{τ+Te−1}∧T∑
t=τ

πs +
T∑

t=1+({τ+Te−1}∧T )

π

= (τ − 1− s)π − cs,τ + (({τ + Te − 1} ∧ T )− τ + 1)πs

+ ((T − ({τ + Te − 1} ∧ T )) ∨ 0)π

= [τ − 1− s+ (T − ({τ + Te − 1} ∧ T )) ∨ 0]π

+ ({{τ + Te − 1} ∧ T} − τ + 1)πs − cs,τ (2)

where a ∧ b = min{a, b}, a ∨ b = max{a, b}, cs,τ is the discounted expected equipment cost at time

s. The latter is a decreasing function of τ , while Te is the life expectancy of the equipment for the

3This assumption is not very strong: the farmer considers that the technology efficiency index will remain constant
after adoption mainly because she does not have enough information to predict the evolution of the technology
efficiency after adoption (which is a complex function of learning from others and learning-by-doing). The model
could be extended to allow for the farmers anticipating learning-by-doing. However, we believe that incorporating
these effects on expectations formation is unrealistic and will unnecessarily complicate the model. Specifically, such
an extension would need to incorporate assumptions about farmer-specific learning curves, which will differ between
adopters based on initial adoption time (probably late adopters learn faster) and farmer-specific socio-economic
characteristics (such as education and experience). Such an extension does not alter the learning processes of our
model, neither before, nor after adoption, but it does make the first order conditions less clear.
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application of the new technology, and T is large enough to imply that the contribution of peers’

knowledge in A has reached (approximately) the highest possible level. The last sum of the right

hand side is considered to be zero if τ + Te ≥ T , which implies that 1 + ({τ + Te} ∧ T ) > T . Note

that cj,s,s+1 represents the current equipment cost just after period s for farmer j.

The trade-off that the farmer faces can be described as follows. Consider a farmer in year s who

thinks about investing in the modern technology. Delaying investment by one year would entail

some benefit because the farmer could purchase the modern irrigation technology at a reduced cost

(cs,τ > cs,τ+1). However delaying adoption by one year would also come at a cost: the farmer will

still produce in year t with the conventional technology (and bear a higher risk of water shortage).

There is thus a loss in expected profit induced by delaying adoption of the modern irrigation

technology.

Note that while τ + Te − 1 ≤ T ,

[τ − 1− s+ (T − ({τ + Te − 1} ∧ T )) ∨ 0]π + ({{τ + Te − 1} ∧ T} − τ + 1)πs

= [τ − 1− s+ T − τ − Te + 1]πj + [τ + Te − 1− τ + 1]πs

= [T − (s+ Te)]π + Teπs

which does not depend on the date of adoption τ . Therefore, since cs,τ is a decreasing function

of τ , each farmer estimates that new technology will be optimally adopted at least for the period

τ∗1 = T − Te + 1, and

max
τ+Te≤T

V s
s,τ,T = V s

s,τ∗1 ,T
= V s

s,T−Te+1,T

This fact implies that new technology will not be adopted before period T − Te + 1. Therefore,

the initial problem is simplified to

max
1≤k≤T−s

V s
s,s+k,T , (3)

where s ≥ T − Te. Then, we have

V s
s,s+k,t = (k − 1)π + (T − s− k + 1)πs − cs,s+k, (4)

which implies that the rate of change of V s
s,s+k,s+Te

as a function of k is

∆V s
s,k+1 := V s

s,s+k+1,T − V s
s,s+k,T = π − πs + cs,s+k − cs,s+k+1 (5)

Therefore, any change on ∆V s
s,k+1 is a result only of a change in ∆cs,k+1 := cs,s+k+1 − cs,s+k .

Now it is time to introduce a simplified assumption on the rate of decrease of the equipment

cost. We assume that at any point in time, s, farmer j assumes a rate of decrease for the discounted

equipment cost as follows,

cs,s+k = (1 + ase
−λc,s(k−1))c0,s, (6)
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where a > 0 and 0 < λc,s. Note that c0,s = cs,s+1/(1 + as). Therefore, (6) becomes

cs,s+k =
(1 + ase

−λc,s(k−1))

1 + as
cs,s+1 (7)

Plugging (7) in (4) we obtain

V s
s,s+k,T = (k − 1)π + (T − s− k + 1)πs −

(1 + ase
−λc,s(k−1))

1 + as
cs,s+1 (8)

We observe that
∂V s

∂k
= π − πs +

asλc,scs,s+1

1 + as
e−λc,s(k−1)

The second order partial derivative in k is

∂2V s

∂k2
= −

asλ
2
c,scs,s+1

1 + as
e−λc,s(k−1) < 0

Therefore, after period s, farmer j decides to adopt new technology starting from period s+ 1

only if

∂V s

∂k

∣∣∣∣
k=1

≤ 0⇐⇒ πs ≥ π + λc,s
ascs,s+1

1 + as
(9)

An equivalent expression of condition (9) uses the fact that as is determined by the relationship

between the final discounted cost c0,s and current cost cs,s+1, because

as =
cs,s+1

c0,s
− 1 (10)

Specifically, each farmer chooses to adopt the new technology right after period s if

πs − λc,s (cs,s+1 − c0,s) ≥ π (11)

Note that in this model the optimal time of adoption depends on output and input prices

(through the profit functions), the water-efficiency index, and the cost of installing the technology.

Heterogeneity in the timing of adoption is explained by heterogeneity in the technology index,

itself driven by different paths of knowledge accumulation across the population of farmers. In the

forthcoming empirical application we assume that the water-efficiency index at each time t depends

on farmers’ characteristics (age, experience in farming, education level), contacts with extension

services, and contact with peers. The threshold (wmin) that defines the minimum level of irrigation

water required for the crop to be marketable is another source of heterogeneity: this threshold will

depend on farms’ environmental conditions such as soil type and aridity index.
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3 Econometric Model

Following Karshenas and Stoneman (1993), Kerr and Newell (2003) and Abdulai and Huffman

(2005), we model the optimal time of drip irrigation technology adoption using duration analysis. A

duration model of irrigation technology adoption and diffusion is based on formulating the problem

in terms of the conditional probability of adoption at a particular period, given that adoption has not

occurred before and given the specific characteristics of individual farmers and the environment in

which they operate. In addition to the intuitive appeal of framing the technology adoption decision

in this way, duration models provide a convenient framework for incorporating data on explanatory

variables that change over time and other elements of the dynamic process of technological change

(i.e., informational cascades including learning-from-others and learning-by-doing). Estimating the

effect of informational variables and other determinants of technology adoption that change over

time (e.g., installation costs, crop and irrigation water prices) is in fact central to our empirical

research interest.

Under the assumption that duration, T , is a positive random variable with a continuous prob-

ability density function, f(t), the cumulative distribution function is given by F (t) =
´ t

0 f(s)ds =

P (T ≤ t). The probability P (T > t) defines the survival function: S(t) = 1−F (t) = 1−
´ t

0 f(s)ds =´∞
t f(s)ds, which represents the probability of survival (in our case, survival of the old technology)

beyond a certain point in time. For an individual farm, 1−S(t) gives the probability that the farmer

will have adopted the innovation by time t, but if one considers the whole population of farmers,

all of whom are present at the date of innovation, it will also represent the expected diffusion of

the innovation through that population of farmers, that is, the share of farmers that has adopted

the innovation. The hazard function or hazard rate h(t), describes the rate at which individuals

will adopt the technology in period t, conditional on not having adopted before t:

h(t) = lim
∆→0

(
F (t+ ∆)− F (t)

∆S(t)

)
=
f(t)

S(t)

which is the empirical counterpart of the optimality condition in (11). In empirical work, it is

common to specify the hazard function as the product of the baseline hazard, which is assumed

to be common to all individuals and to depend only on time and some unknown parameters α,

and a component which depends on adopters’ characteristics, λit: h (t, zit, α, β) = h0 (t, α) · λit,
where λit = exp (−zitβ) can be seen as the empirical counterpart of the arbitrage condition as

defined in the previous section. The vector zit includes variables that are supposed to enter the

arbitrage condition determining farmers’ optimal choice, and β are the corresponding parameters to

be estimated. These variables can vary only across time (e.g., cost of acquiring the new technology),

vary only across farmers (e.g., farm size, soil quality and weather conditions) or vary across both

dimensions (e.g., farmer’s age).

The choice of a specific structure for h0 (t, α) is subject to the peculiarities of each case study.

Here, following the relevant literature, we assume that the random variable T follows a Weibull
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distribution, which is flexible in the sense that it accommodates hazard rates that increase or

decrease exponentially with time.4 Following Greene (2003, p.794), the hazard function under a

Weibull distribution takes the following form:

h (t, zit, α, β) = λitα(λitt)
α−1 (12)

where, α is the shape parameter. The hazard rate either increases monotonically with time if α > 1,

falls monotonically with time if α < 1, or is constant if α = 1.5

Under the Weibull distribution, the set of unknown parameters can be estimated by maximum

likelihood techniques. Since, at the time of the survey, not all farmers have adopted the modern

technology, the likelihood has to account for right-censoring of some observations. The log-likelihood

is written as:

LnL (α, β) =
N∑
i=1

dilnh (t, zit, αβ) +
N∑
i=1

lnS (t, zit, αβ)

where, di = 1 if the ith spell is not censored and di = 0 if censored. In the context of the Weibull

distribution, the mean expected survival (i.e., adoption) time is calculated as:

E(t) =

(
1

λit

)
Γ

(
1 +

1

α

)
where Γ(r) =

´∞
0 xr−1exp(−x)dx = (r − 1)! (the last equality holding if r is a positive integer) is

the Gamma function, and the marginal effects of the kth continuous explanatory variables on the

hazard rate and on the mean expected survival time are calculated from:

h′zk (t, zit, αβ) = −h (t, zit, αβ)
∂(zitβ)

∂zk
α (13)

and

E′zk(t) =
∂(zitβ)

∂zk
E(t) (14)

4 Data Description and Model Specification

The data used in this study come from a detailed survey undertaken in the Greek island of Crete

on the adoption and diffusion of major farming technologies among olive growers. The survey

was undertaken within the context of the Research Program FOODIMA financed by the European

4Karshenas and Stoneman (1993) suggested that the choice of a baseline hazard structure seems to make little
difference as far as parameter estimates and inferences are concerned.

5For α = 1 the Weibull distribution reduces to the exponential distribution. For α = 2 the Weibull distribution
becomes the Rayleigh distribution which has linearly increasing hazard rate as t increases. For α = 3.4 the Weibull
distribution resembles closely the normal distribution whereas for α → ∞, the Weibull distribution asymptotically
approaches the Dirac delta function.
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Commission.6 The final sample consists of 265 randomly selected olive producing farms located in

the four major districts of Crete during the 2005-06 cropping period. Using the Agricultural Census

published by the Greek Statistical Service, olive farms in Crete were classified according to their size

and farming activities. Then, with the assistance of extension agents from the Regional Agricultural

Directorate of Crete a random sample of olive farms was selected. Given the significance of the

olive sector for the regional economy and the state of water resources in the island, special attention

was placed on modern irrigation technologies.7 To that end, farmers were asked to recall the exact

time of adoption of modern irrigation technologies (i.e., drip or sprinklers) together with some key

variables related to their farming operation on the same year (i.e., production patterns, input use,

average yields, gross revenues, water use and cost, structural and demographic characteristics). A

pilot survey run at the beginning of the project showed that none of the surveyed farmers had

adopted drip irrigation technology before 1994. So in the final survey interviewers asked recall data

for the years 1994-2004 (2004 being the last cropping year before the survey was undertaken). All

information was gathered using questionnaire-based field interviews undertaken by the extension

personnel from the Regional Agricultural Directorate of Crete.

The dependent variable in our duration model in (12) is the length of time between the year

of drip irrigation technology introduction (1994) and the year of adoption. Out of the 265 farms

in the sample, 172 (64.9%) have adopted drip irrigation technology between 1994 and 2004. The

mean adoption time is 4.68 years in our sample (see the temporal distribution of adoption times

in Figure 1). Our final choice of the independent variables included in the empirical irrigation

technology diffusion model is dictated by the profitability condition in (11): apart from installation

cost, heterogeneity in the timing of adoption is explained by heterogeneity in the technology index,

itself driven by different paths of knowledge accumulation across the population of farmers. We

further assume that the water-efficiency index and farm profitability at each time t depends on farm

and household characteristics (farm size, age, education level), contacts with extension services, and

contact with peers (i.e., informational incentives). The threshold (wmin) that defines the minimum

level of irrigation water required for the crop to be marketable is another source of heterogeneity:

this threshold will depend on farms’ environmental conditions such as soil type and aridity index

and structural features like tree density on farm plots. Finally, we include in the duration model

the price of olive oil (the farm gate price) as well as the price of irrigation water, both entering

farm’s profitability levels.

The installation cost of drip irrigation technology includes the cost of designing the new irriga-

tion infrastructure, the investment cost (i.e., pipes, hydrometers, drips) and the cost of deployment

in the field (i.e., labor cost). For adopters, installation cost corresponds to the (recalled) cost of

6The FOODIMA project (EU Food Industry Dynamics and Methodological Advances) is financed within the 6th

Framework Programme under Priority 8.1-B.1.1 for the Sustainable Management of Europe’s Natural Resources.
More information on the FOODIMA project can be found in www.eng.auth.gr/mattas/foodima.htm.

7Since the early nineties water sustainability has become a major issue for regional authorities as the quite
flourishing tourism industry also absorbs significant amount of islands’ water resources.
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installing the new equipment during the year it was adopted. For non-adopters the value of in-

stallation cost refers to the last year of the survey (2004). The installation cost per stremma (one

stremma equals 0.1 ha) for the whole sample of farms was 129.3 euros on average, 125.8 euros for

adopters and 135.8 euros for non-adopters (Table 1).8

Concerning the two human capital variables (i.e., farmer’s age and education) we expect more

educated farmers to adopt modern irrigation technologies faster since the associated payoffs from

any innovation are likely to be greater (Rahm and Huffman, 1984). Educated farmers do read

technical bulletins more than their less educated counterparts and highly educated farmers might

be less likely to make allocative errors in applying any farming innovation including irrigation tech-

nologies (Gervais, Lambert and Boutin Dufrense, 2001). The expected impact of age on the timing

of adoption is ambiguous since age is highly correlated with experience. Therefore its effect can be

considered as the composite effect of farming experience and planning horizon. On the one hand,

farming experience, which provides increased knowledge about the environment in which decisions

are made, is expected to affect adoption of modern irrigation technologies positively. On the other

hand, younger farmers with longer planning horizons may be more likely to invest in new irrigation

technologies as they foresee longer future profits arising from efficient water use. In both cases, if

farmers are not faced with significant capital constraints and take future generations’ welfare into

account, the primary effect of age is likely to increase the likelihood of adopting irrigation innova-

tions faster (Huffman and Mercier, 1991). According to our survey, farmers in our sample received

6.3 years of formal education, while the average age of the household head is 53.9 years. Farmers

who adopted modern irrigation technologies are younger and more educated in our sample (49.9

and 8.1 years, respectively) that their non-adopters counterparts (61.3 and 2.9 years, respectively).

The expected impact of farm size on adoption time is also ambiguous. Larger farms may have

a greater potential to adopt modern irrigation technologies because of the high costs involved in

irrigation water. On the other hand, larger farms may have less financial pressure to search for

alternative ways to improve water effectiveness and hence irrigation cost by switching to a modern

irrigation technology (Perrin and Winkelmann, 1976; Putler and Zilberman, 1984). In general, given

that drip irrigation technology is risk-decreasing, if farmers’ preferences exhibit decreasing relative

risk-aversion, then large farms tend to switch faster to the new technology than smaller farms and

vice-versa (Just and Zilberman, 1983). Apart from farm size, tree density also affects irrigation

effectiveness and hence, willingness to adopt modern irrigation techniques (Moriana et al., 2003;

Pereira, Green and Villa Nova, 2006). In olive orchards with low tree density water efficiency using

traditional furrow irrigation is much higher than those with high tree density. Hence, farms having

orchards characterized by high tree density should have an incentive to adopt modern irrigation

technologies faster in order to improve irrigation water use effectiveness. Farmers who adopted the

modern irrigation technology operate farms with an average size of 22.6 stremmas and an average

tree density of 14.7 per stremma, in the year of adoption (Table 1). On the other hand, non-

8All monetary values reported by individual farmers were deflated prior to econometric estimation.
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adopting farms are smaller on average (20.2 stremmas) and have lower tree density (11.5 trees per

stremma).

Next, and as suggested by our theoretical framework, adoption behavior for irrigation technology

diffusion may also be influenced by some environmental characteristics that may affect irrigation

effectiveness. We include in the diffusion model an aridity index, the altitude of the farm, and two

soil dummies as a proxy for soil quality. The aridity index and the altitude of farm location reflect

on-farm weather conditions, whereas the soil quality dummies reflect the water holding capacity of

the soil. The aridity index, defined as the ratio of the average annual temperature over total annual

precipitation, is calculated for the year of adoption in each adopting farm using data provided by

the 36 local meteorological stations located throughout the island (Stallings, 1968). Since the value

of the aridity index is identical for some farms that are located in the same area and adopted drip

irrigation on the same year, we also include the altitude of farm’s location as an additional variable.

Higher altitude is more likely to be associated with lower temperatures and therefore less stressed

olive trees. As shown in Table 1, the average value of the aridity index is 0.982, whereas the average

altitude is 341.8 meters. Finally, farms were classified according to two different soil types based

on their water holding capacity: sandy and limestone soils exhibit a lower holding capacity than

marls and dolomites soils. The majority of farms in the sample are cultivating olive-trees in sandy

and limestone soils (56.6%).

To control for economic conditions faced by olive growers, we include the price of olive oil

sold and the price of irrigation water (as reported by the farmers), since they directly influence

farm profitability levels. Crop price highly depends on the quality of olive oil and thus exhibits

a significant variation across olive growers. On average, olive oil was priced at 2.80 euros per

kilogram varying between 2.38 and 3.56 euros for adopters and non-adopters, respectively (Table

1). Irrigation water is supplied by regional water authorities under different price schemes that

reflect the local cost of extraction. Therefore the price of irrigation water also exhibits significant

variation with the average ranging between 25.7 and 11.2 euro cents per m3 for adopters and

non-adopters, respectively (see Table 1). Both prices were converted to constant prices using the

producer price index published by the Greek Ministry of Agriculture.

Finally, since our analysis refers to a semi-arid area of the Mediterranean basin, farmers face

some uncertainty in terms of water availability. As a consequence they may face production risk in

the sense that expected production and profit levels may become random as they are both functions

of exogenous climatic conditions (Saha, Love and Schwart, 1994). Hence, risk-averse olive growers

might consider adoption of drip irrigation technology in order to hedge against risk during periods of

water shortage or high water prices. In order to capture the impact of this uncertainty on farmers’

adoption decision we follow Koundouri, Nauges and Tzouvelekas (2006) in utilizing moments of the

profit distribution as determinants of adoption. Using recall data on olive-oil revenues, variable

inputs (labor, fertilizers, irrigation water, pesticides), and fixed (land) input categories provided by

farmers in the year of adoption, we estimated the following linear profit function for olive-growers
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in the island (corresponding standard errors in parentheses):

πi = 2.341
(0.423)

+ 0.657
(0.104)

pOi − 0.321
(0.098)

wLi − 0.107
(0.054)

wFi − 0.076
(0.032)

wWi − 0.034
(0.021)

wPi + 0.431
(0.125)

xAi + ui

where pOi is the farm gate price of olive oil, wji is the price of the jth variable input (i.e., labor,

fertilizers, irrigation water, and pesticides), xAi is the acreage under olive trees cultivation, and

ui is a usual iid error term.9 The residuals have been used to estimate the kth central moments

(k = 1, . . . , 4) of farm profit conditional on variable and fixed input use (Koundouri, Nauges and

Tzouvelekas, 2006, p. 664). Descriptive statistics of the estimated first four moments of the profit

distribution are shown in Table 1.

5 Informational Variables and the Factor Analytic Model

As for informational variables, we distinguish between formal and informal communication channels

that are likely to affect individual adoption decisions. The first channel is linked to communication

sources emanating from extension services. A farmer’s exposure to extension agencies includes

not only his/her direct contacts with extension agents but also contacts between extension agents

and the farmers’ influential peers. The second channel is related to the farmer’s interactions with

other farmers who have already acquired experience with the new technology. We consider that

the likelihood of a farmer adopting the irrigation technology depends on the adoption behavior of

farmers who interact with him/her or, in other words, on the existing stock of adopters in a farmer’s

group of influential farmers. Moreover we assume that the strength of the above mentioned channels

will depend on the geographical distance between the farmers and extension agencies, and between

the farmers and their influential peers.

Although each farmer in our sample provided information about the number of extension visits

on his farm prior to the year of adoption together with some key characteristics of his reference

group (within which he/she exchanges information about his farming operation), this is not suf-

ficient to identify the full impact of formal and informal communication channels on individual

adoption behavior. Indeed, we have four unobserved (or latent) variables that are potentially rel-

evant for quantifying the effect of information provision (formal and informal) in the diffusion of

drip irrigation technologies: i) the total number of adopters in the respondent’s reference group,

ii) the average distance of the farmer to his reference group, iii) the overall exposure to extension

services and, iv) the distance of the farmer’s reference group (including himself) to extension ser-

vices. Because these variables cannot be observed, we suggest using observable indicators in a factor

analytic model to proxy the unobserved latent variables. Specifically, we apply factor analysis to

build factors that will best represent each of these four latent variables.10

9We have also tried to fit a linear quadratic or a more flexible translog specification but unfortunately econometric
estimates were not satisfactory.

10Woittiez and Kapteyn (1998) face a similar problem in their study of female labor supply, where they postulate
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For the first latent variable (the total number of adopters in the respondent’s reference group)

we consider the following three observable indicators:

1. The stock of adopters in the sample during the year the farmer adopted modern irrigation

technology. Using the reported year of adoption by individual respondents, we calculated the

total number of adopters in the sample for each year during the 1994-2004 period. These

values have been used to define the stock of adopters in the year each respondent adopted

modern irrigation technology.

2. The stock of homophilic adopters. Given our data availability and Rogers (1995) definitions,

we defined homophilic farmers as those having the same age and education level. Using

information on farmer’s age and educational level for the year of adoption reported in the

questionnaires and the stock of adopters, we calculated the homophilic stock of adopters for

each respondent. Age groups cover six years: for example, if a farmer is 38 years old, farmers

aged 35 to 41 will be considered as homophilic. As for education, we consider a two-year

range.

3. The stock of farmers’ indicated homophilic adopters. In running the survey, farmers were

asked to provide some basic characteristics (age and educational level) of other farmers in

the area with whom they regularly exchange information about their farming operations in

an attempt to identify intra-farm communication. Using this information and respondents’

age and educational levels, we calculated the stock of adopters in the reference group for each

individual respondent in the year of adoption.

Once the different adopters’ groups have been defined and measured, we used the location of the

farm to calculate the following road distances (in kilometers) that were utilized to proxy the second

latent variable, the distance of the farmer to the adopters in his reference group: (i) the average

distance to the stock of adopters, (ii) the average distance to the stock of homophilic adopters and,

(iii) the average distance to the stock of farmers’ indicated homophilic adopters.

As for formal information channels, namely direct and indirect contacts with extension person-

nel, we consider the following three observable indicators:

1. The number of extension visits on farm to capture the direct effect of informational provision.

Farmers were asked to recall data on the number of extension visits (public or private) in their

farm for each year during the 1994-2004 period. This information was used to calculate the

cumulative number of extension visits on farm up to adoption year.

that the number of hours a person chooses to work may depend on the number of hours the members of their reference
group choose to work. They also proposed to use observable indicators on the reference group in a factor analytic
model to proxy their unobserved latent variable.
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2. The number of extension visits on homophilic farms to capture the indirect effect of informa-

tional incentives among similar farmers. This indicator has been calculated using the above

definition of homophilic farmers and data on extension visits for each respondent.

3. The number of extension visits on farmers’ identified homophilic farms to capture any poten-

tial heterogeneity in the indirect effect of information provision by extension personnel. The

different reference groups for each individual have been defined as for the stock of adopters.

Finally, spatial differences in formal information provision (fourth latent variable) have been

proxied by the following three distance indicators: (i) the distance of the respondent to the nearest

extension agency (private or public), (ii) the average distance of homophilic farmers to the nearest

extension agency and, (iii) the average distance of farmers’ identified homophilic farms to the

nearest extension agency. Again all distances were measured as road distances in kilometers. Table

1 presents the descriptive statistics for these twelve observable indicators.

The pair-wise correlations between the twelve observed indicators are presented in Table 2. Even

though correlations between some indicators are low they are all statistically significant, therefore

all indicators are used in the definition of each latent variable. Denoting by x the vector of the

twelve indicator variables and by ξ the vector of the four latent variables, we assume that the

relationship between the manifest (or observed) and latent variables is given by,

x = µ+ Γξ + v (15)

where, v is a (12x1) random vector with zero mean and variance-covariance matrix given by Ψ =

diag
(
ψ2

1 . . . ψ
2
12

)
, ξ is a (4x1) random vector also with zero mean and variance-covariance matrix

I, Γ is a (12x4) matrix of constants and µ is a vector of constants corresponding to the mean of x.

Equation (15) is a factor analysis model consisting of twelve manifest variables and four factors

which can be estimated using a number of commercial software packages. Principal components

method with varimax rotation has been used to estimate the factor loadings which are presented in

Table 3. The main variables contributing to factor 1 are the ones related to the stock of adopters

and factor 1 is thus labeled as stock of adopters in the true reference group. The heaviest loadings

for factor 2 are those for the variables related to the average distance to adopters; so factor 2

can be interpreted as average distance to the stock of adopters in true reference group. The main

contributors to factor 3 are the variables related to the number of extension visits ; the corresponding

factor is labeled exposure to extension. Finally, the variables related to the average distance to

extension services display again the heaviest loadings for factor 4, allowing us to conclude that

factor 4 represents the average distance to extension.

Under the assumption of multivariate normality of x and ξ, the expected value of the latent

vector for a given value of the vector of manifest variables is given by (Krzanowski, 2000):

E[ξ|x] = Γ′
(
ΓΓ′ + Ψ

)−1
(x− µ)
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Therefore an obvious estimator of the factor scores ξi for the ith respondent is given by

ξ̂′i = Γ̂′
(
Γ̂Γ̂′ + Ψ̂

)−1
(xi − µ̂)

Our analysis is based on a proportional hazard model, where some of the regressors are not

observed (our latent variables defined above) but instead we observe some indicators that can help

us predict the missing explanatory variables. Many of the proportional hazard models used in the

literature including the Weibull used in the present article assume that the conditional hazard rate

in (12) can be written as:

h (t|z, ξ;α,b) = αtα−1
(
exp

(
−
(
z′b1 + ξ′b2

)))α
= αtα−1exp

(
−
(
z′b∗1 + ξ′b∗2

))
(16)

where b∗j = αbj , j = 1, 2, z is the matrix of farm-specific economic, demographic, structural

and environmental characteristics discussed in the previous section and ξ are the four latent vari-

ables that are not observed. Several procedures have been proposed in the literature for the

proportional hazards model with missing covariates (see for example Kalbfleisch and Prentice,

(2002)). Regression Calibration uses the fact that E [exp (− (z′b∗1 + ξ′b∗2))] can be approximated

by exp (−z′b∗1 − E [ξ|z,x] b∗2) and therefore estimates of E [ξ|z,x] could be used in the hazard rate

when ξ is not available (Carroll, Rupert and Stefanski, 1995). By further assuming that conditional

on the twelve indicators, the four latent variables are uncorrelated with the observed explanatory

variables z, i.e., E [ξ|z,x] = E [ξ|x], we can use the estimated factor scores from the factor analytic

model in the hazard function.

6 Empirical Results and Policy Implications

The maximum likelihood parameter estimates of the hazard function in (16) along with their cor-

responding t-statistics are shown in Table 4. The dependent variable in the diffusion model is the

natural logarithm of the length of time variable (measured in years) from first availability of the

drip irrigation technology to when the farmer adopted it. In this framework, a negative coefficient

estimate in the hazard function implies a negative marginal effect on duration time before adoption,

that is, faster adoption. In order to examine the robustness of our approach in measuring infor-

mational spillovers, we have also fitted econometrically the hazard function without the four latent

informational variables (Model A.2): h (t|z, ξ;α,b) = αtα−1 (exp (−z′b∗1))α. Parameter estimates

of the reduced model together with their corresponding t-ratios are also presented in Table 4. All

the key explanatory variables in both models are found statistically significant.

Comparing the two model specifications, the signs of estimated parameters are remarkably

stable between models, nevertheless the reduced model underestimates the effects of age and tree

density on mean adoption time while it overestimates the effect of education, crop price and mean

profit. Moreover, both the Akaike and the Bayesian information criteria indicate that the full
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model (ModelA.1) is more adequate in explaining variability in farmers’ adoption times. Predicted

mean adoption times also do not statistically differ, 5.76 and 5.74 in the full and reduced model,

respectively. The shape parameter of the Weibull hazard function is statistically significant and

well above unity in both models suggesting the existence of epidemic effects in irrigation technology

adoption. According to Karshenas and Stoneman (1993) these epidemic effects relate to endogenous

learning as a process of self-propagation of information about the new technology that grows with

the spread of that technology. More explicitly, they identify three sources for these effects: (a)

the pressure of social emulation and competition, which is not highly relevant for farming business

(b) the learning process and its transmission through human contact, which our model captures

explicitly via the latent information variables, and (c) the reductions in uncertainty resulting from

extensive use of the new technology, which are relevant in farming and capture learning-by-doing

effects, as modelled in the theoretical section of this paper. In a nutshell, our empirical model

provides evidence on the existence of epidemic effects, which capture learning-by-doing and imply

an acceleration of the rate of adoption as time passes.

Using the parameter estimates from Table 4 we calculated the marginal effects of the explanatory

variables on the hazard rate and mean expected adoption time of drip irrigation technology using

relations (13) and (14) (see Table 5). Our results indicate that exposure to extension services has

a strong positive and very significant effect on the hazard rate and that it considerably reduces

adoption time (marginal effect estimated at -0.306), which confirms the hypothesis that formal

information dissemination reduces time before adoption of the new technology. Surprisingly the

distance from extension outlets results in a negative parameter estimate and hence marginal effect

on mean expected time, implying that the further the farm from the extension outlet, the shorter

the time before adoption. Looking carefully into the data set, this counterintuitive empirical result

can be explained by the targeting of farmers in remote areas by extension services. Farmers closer

to extension outlets are more likely to be informed about new farming technologies either from

their interaction with market agents or by simply visiting extension outlets. Therefore, extension

services are mainly directed to farmers located far away from market centers to counterweight the

lack of informational incentives. These results provide support for subsidizing extension services.

Moreover, spatial dispersion of extension outlets could also be designed away from market centers

in a way that allows, for example, minimization of the average distance between outlets and peer

farms in remote areas.

Informational spillovers occur not only through formal channels, but also between farmers them-

selves: a larger stock of adopters in the farmer’s reference or influential group induces faster adop-

tion (-0.293 years), while a larger distance between adopters increases time before adoption (0.172

years), which confirms that social interaction between farmers is a significant factor driving the

diffusion of irrigation technologies. Unlike with exposure to extension, geographical proximity is

an important factor determining informational incentives among the population of farmers. Mean

adoption times are reduced significantly in small high populated rural areas due to intra-farm com-
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munication and exchange of information. On the other hand, the stock effect of adoption behavior

clearly enhances the diffusion of modern irrigation technologies among Cretan olive growers. The

passage of information among farmers is proved equally important with that initiated by extension

personnel (mean marginal effects on adoption times are -0.293 and -0.306 for the stock of adopters

and exposure to extension services, respectively).

Finally, concerning the relationship between informational variables, the

interaction term between the two channels of information provision resulted in a statistically

significant negative parameter estimate. This result indicates that formal and informal communica-

tion channels are complementary in information provision to olive growers. According to Evenson

and Westphal (1995) if a technology is characterized by tacitness or circumstantial sensitivity,11 the

passage of information cannot be made using rules of thumb mainly utilized by extension person-

nel, but instead it also requires strong social networks from growers engaged in learning-by-doing.

In these instances informational channels are complements to each other, which implies that ex-

tension agents may pass the new technology’s ”hardware” aspects (the equipment that embodies

the technology) while farmers are getting familiar with the new technology’s ”software” aspects

(how to use the technology effectively) through their social networks. In our case study, although

a single crop is cultivated in a small geographical, tacitness and circumstantial sensitivity may de-

rive from varying environmental conditions (aridity, soil type, altitude) and farmer’s characteristics

(risk attitudes, education, age). The complementarity between the two communication channels in

enhancing irrigation technology diffusion among olive growers in Crete, points to the need of re-

designing the extension provision strategy towards internalizing the structure and effects of farmers’

social networks.

Our results also indicate that human capital variables (age and education) have a significant

impact on adoption behavior of individual farmers. First, we find that the time of adoption of drip

irrigation technologies is significantly shorter for old farmers. Duration time decreases with age up

to 60 years and then follows an increasing trend, which is an indication that both planning horizon

and farming experience have a combined effect on adoption of modern irrigation technologies.

The marginal effect of farmer’s age on adoption time is -0.010 years (see Table 5). On the other

hand, farmer’s education level is positively related with adoption times up to a certain level of

schooling and then follows a decreasing trend. More precisely duration time increases with education

whenever education level is less than nine years (elementary schooling). For those farmers who have

more than 9 years of education, higher educational levels lead to faster adoption rates implying

that only highly educated farmers are more likely to benefit from modern technologies. These

results identify education and age criteria on which a subsidy-based adoption-inducing policy can

11A farming technology is tacit, if it is not fully embodied in a set of artefacts like manuals or blueprints. For
instance, modern irrigation technologies do not evenly apply in all crops and areas with the same manner that can be
described uniformly by any manual. The performance of any irrigation technology exhibits circumstantial sensitivity,
if it is sensitive to the local conditions (environmental, cultural, demographic, etc) that affect its use by individual
farmers.
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be structured.

Risk attitudes are also found to be important determinants of adoption behavior of Cretan olive

growers. Parameter estimates of the sample profit moments turned to highly statistically significant

values for the first two of them (i.e., expected profit and profit variance). The third and fourth

moments approximating skewness and kurtosis of profit distribution are not statistically significant

(see Table 4). These results indicate that the higher the expected profit the greater the probability

that a farmer decides to adopt modern irrigation technology faster, as he/she expects to be able to

afford the cost of new water saving technologies. Moreover, the greater the variance of profit the

greater will be the probability to adopt new irrigation technologies sooner. These findings confirm

that olive growers in Crete are risk averse and adversely affected by a high variability in returns.

The adoption of the modern irrigation technology allows these farmers to reduce production risk in

periods of water shortage, which confirms earlier findings of Koundouri, Nauges, and Tzouvelekas

(2006). The role that risk preferences play in adoption decision is quite important: the marginal

effect of the profit variance on mean adoption time is -1.009 years. Finally the insignificance

of the third and fourth moments of the profit distribution indicate that farmers are not taking

downside yield uncertainty into account when deciding whether to adopt new irrigation technology.

In other words, irrigation technology does not seem to affect exposure to downside risk. The results

presented in this paragraph highlight the importance of accommodating a correct understanding

of risk preferences in the evaluation of policy formation in the agricultural sector. That is, when

policy-makers consider policy options affecting input and technology choices, they should take into

account the level of farmers’ risk-aversion and the fact that the farmers exhibit no down-side risk-

aversion, in order to correctly predict the technology adoption and diffusion effects, as well as the

magnitude and direction of input responses (Groom et al., 2008). Accurate predictions of these

effects and responses, will enable accurate prediction of the magnitude of the policy-induced welfare

changes, as well as efficient provision of agricultural insurance policy.

We also find evidence that adverse weather conditions, as proxied by farm’s altitude and aridity

index, induce faster irrigation technology adoption, although the magnitude of the effect is small.

This may indicate that farmers who can exert a better control on the quantity of water used

for production purposes see the innovative irrigation technology as an insurance against adverse

(here drier) weather conditions. This result should also be integrated in future revisions of the

agricultural input and insurance policy. Neither soil type nor farm size have an impact on the

timing of adoption (see Table 4). However, our results show that olive farms with high tree density

are adopting the new efficient irrigation technology faster than farms engaged in more extensive

olive tree cultivation. The marginal effect of tree density on mean adoption time is -0.073 years.

The price of olive oil and the price of irrigation water have an important impact on adoption

rates. An increase of one euro cent in the water price has a very significant effect on both the hazard

and the mean time, speeding up the diffusion of new irrigation technology (0.145 and -0.95, respec-

tively). On the other hand, a higher crop price delays adoption rates as farmers are less motivated
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to change irrigation practices as means of increasing farms expected returns. Mean adoption time

is increased by 0.343 years when the price of olive oil is getting higher. Finally, installation costs

do not affect diffusion of the new technology: the corresponding parameter estimate is positive

but not statistically significant (the t-statistic though is greater than one). Intuitively, a higher

water price speeds up the diffusion of water efficient irrigation technology, whereas a higher crop

price delays adoption rates as farmers are less motivated to change irrigation practices as means

of increasing farms’ expected returns. These results highlight the importance of efficient pricing of

water resources in order to transmit the correct scarcity signals to the farmers and incentivize its

efficient use as an input in agricultural production. Efficient water pricing is also one of the major

targets of the implementation of the EU Water Framework Directive. Moreover, our results point

to the need for an efficient crop product market, which again enters the farmer-specific cost-benefit

analysis, which informs the farmer’s decision on technology adoption.

7 Concluding Remarks

Our theoretical and empirical models, together with the developed econometric approach, are gen-

eral enough to have worldwide relevance and applicability. Our approach can be applied in varying

agricultural setting and produce results that inform basic understanding of the ways in which learn-

ing processes (both formal and informal) about new agricultural technologies can be used to bring

benefits to individual farmers in an agricultural community and as a result increase private and

social welfare. In particular, our approach allows identification of these learning processes, identifi-

cation of the variables that influence them and identification of their respective effects on farmers’

adoption decision and profitability. These information can be integrated in relevant policies towards

incentivizing welfare increasing technology adoption. Such policies are particularly policy relevant

nowadays, given EU agricultural policy reform and almost worldwide tight government budgets.

Our discussion in Section 6 suggests how these processes, now identified for the case-study un-

der consideration, can be better integrated in relevant policy making. To sum up, both formal and

informal informational channels, are found to be strong determinants of technology adoption and

diffusion while the effectiveness of each type of informational channel is enhanced by the presence

of the other. This means that the provision of extension services will be more effective speeding

up the adoption process in areas where there is already a critical mass of adopters. Water and

crop prices also affect technology adoption and diffusion, hence efficient pricing of agricultural in-

puts and outputs should become an explicit target of the reformed agricultural policy. Farmer’s

characteristics (risk attitudes, education, age) and environmental variables (aridity, soil type, alti-

tude) are also found to be important drivers of farmers’ technology adoption decisions and resulting

technology diffusion and as such should be integrated in relevant policies. For instance in the case

of education, our results show that there is a threshold level of education after which additional

schooling enhances faster adoption, but the opposite happens before this threshold. This could be
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due to the fact that as farmers become more educated but still remain below the threshold level,

they have more access to information that they are unable to process and thus extension services

could assist them in this task.

Greece is among the biggest beneficiaries of the Common Agricultural Policy (CAP) and it

continues to defend a large CAP budget and a strong first pillar. In Greece, CAP reforms and

especially the transition to decoupled farm payments, instability in world agricultural commod-

ity prices and contradicting agricultural policy signals, are the major causes of changing farming

practices. Technology diffusion efforts are strongly influenced by a piecemeal policy framework and

institutional rigidities. These need to change if Greek agriculture is to adopt a sustainable path,

especially in the light of the current financial and economic crisis. On the 18 November 2010, the

European Commission published the Communication Paper on the future of the CAP.12 The re-

form aims at making the European agricultural sector more dynamic, competitive, and effective in

responding to the Europe 2020 vision of stimulating sustainable growth, smart growth and inclusive

growth. Our results can provide fruitful input to this reform.
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Tables and Figures

Figure 1: Diffusion of Drip Irrigation by Cretan Olive Farms
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Table 1: Definitions and Summary of the Variables

Variable All Farms Adopters Non Adopters

Number of Farms 265 172 93

Duration length (in years) – 4.68 –

Farm Characteristics

Farmer’s age (in years) 53.9 49.9 61.3

Farmer’s education (in years of schooling) 6.3 8.1 2.9

Farm size (in stremmas) 21.8 22.6 20.2

Tree density (in trees per stremma) 13.6 14.7 11.5

Installation cost (in euros per stremma) 129.3 125.8 135.8

Irrigation water price (in cents per m3) 20.6 25.7 11.2

Olive-oil price (in euros per kg) 2.80 2.38 3.56

Profit moments:

1st moment 1.132 1.422 0.596

2nd moment 0.569 0.702 0.323

3rd moment 0.582 0.738 0.293

4th moment 3.566 4.073 2.629

Aridity index 0.982 1.152 0.668

Altitude (in meters) 341.8 167.6 664.1

Soil type (in % of farm land):

Sandy and Limestone 56.6 62.8 55.2

Marls and Dolomites 43.4 37.2 54.8

Information Variables

Stock of adopters 31.3 35.4 23.6

Stock of homophilic adopters 12.6 15.0 8.1

Stock of farmers’ indicated homophilic adopters 4.6 5.4 3.2

Distance from the adopters 49.4 44.3 58.7

Distance from homophilic adopters 17.4 15.2 21.6

Distance from farmers’ indicated homophilic adopters 10.1 8.9 12.5

No of extension visits in the area 6.4 8.7 2.2

No of extension visits in homophilic farms 3.3 4.8 0.6

No of visits in farmers’ indicated homophilic farms 2.0 2.9 0.2

Distance of extension outlets:

from farms in the area 111.2 87.6 154.9

from homophilic farms 52.3 34.9 84.3

from farmers’ indicated homophilic farms 23.6 17.0 35.6

All data refer to the year of adoption as those have been recalled by individual farmers. Monetary values have

been deflated prior to econometric estimations.
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Table 3: Estimation Results of the Factor Analytic Model for Informational
Variables

Variable Stock of Distance between Exposure to Distance from
Adopters Adopters Extension Extension Outlets

(ξ1) (ξ2) (ξ3) (ξ4)

Stock 0.8188 -0.0873 0.2280 -0.2955
HStock 0.7729 -0.2465 0.3509 -0.2454
RStock 0.6801 -0.2574 0.6080 -0.1772
Dista -0.2850 0.7143 -0.3478 0.2061
HDista -0.1290 0.9022 -0.2288 0.2234
RDista -0.0858 0.9270 -0.1767 0.1758
Ext 0.2762 -0.2554 0.8562 -0.2160
HExt 0.2311 -0.2324 0.8818 -0.2537
RExt 0.2359 -0.2489 0.8667 -0.2343
Distx -0.1854 0.2420 -0.3565 0.7465
HDistx -0.2519 0.1683 -0.2311 0.8847
RDistx -0.2032 0.2051 -0.1216 0.8687

where Stock is the stock of adopters, HStock is the stock of homophilic adopters, RStock is
the stock of farmers’ indicated homophilic adopters, Dista is the distance from the stock of
adopters, HDista is the distance from the stock of homophilic adopters, RDista is the distance
from the stock of farmers’ indicated homophilic adopters, Ext is the No of extension visits in
the area, HExt is the No of extension visits in the homophilic farms, RExt is the No of extension
visits in the farmers’ indicated homophilic adopters, Distx is the distance of extension outlets
from farms in the area, HDistx is the distance of extension outlets from the homophilic farms,
RDistx is the distance of extension outlets from the farmers’ indicated homophilic adop! ters.
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Table 4: Maximum Likelihood Parameter Estimates of Alternative Specifications of the
Hazard Function for the Adoption of Drip Irrigation Technology by Cretan Olive Farms

Variable Model A.1 Model A.2
Estimate t-ratio Estimate t-ratio

Constant 1.5617 1.8077 1.4303 1.5633
Farmer’s age -0.0168 -2.4766 -0.0106 -1.3404
Farmer’s age-squared 0.0001 2.1568 0.0001 1.1931
Farmer’s education 0.0182 1.1456 0.0347 2.2150
Farmer’s education-squared -0.0010 -1.5354 -0.0021 -3.0807
Installation cost 0.0089 1.0786 0.0099 1.1629
Farm size -0.0048 -0.3848 -0.0117 -0.8617
Tree density -0.0127 -3.7991 -0.0109 -2.9231
Water price -0.0164 -10.892 -0.0205 -13.694
Crop price 0.0596 1.8796 0.0658 1.8465
1st profit moment -0.0943 -2.5987 -0.1132 -2.7071
2nd profit moment -0.1752 -2.4884 -0.1611 -1.8807
3rd profit moment 0.0292 0.9414 0.0770 1.6685
4th profit moment -0.0024 -0.3167 -0.0125 -1.0554
Aridity index -0.0389 -1.1718 -0.0412 -1.3601
Farm altitude 0.0006 3.3071 0.0005 2.9544
Sandy and limestone soils -0.0002 -0.0075 0.0265 0.7475
Stock of adopters -0.0509 -1.9745 - -
Distance between adopters 0.0299 1.6498 - -
Exposure to extension -0.0531 -2.7988 - -
Distance from extension outlets -0.0238 -1.6691 - -
(Stock of adopters)X(Exposure to extension) -0.0554 -3.5119 - -

Scale parameter (α) 9.1085 15.075 8.0932 16.420

Log-Likelihood 107.709 86.834
Akaike Information Criterion -0.639 -0.520
Bayesian Information Criterion -0.329 -0.276
Mean Adoption Time 5.76 5.74
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Table 5: Marginal Effects of the Explanatory Variables on the Hazard Rate
and Mean Adoption Time of Drip Irrigation Technology Adoption

Variable Model A.1 Model A.2
Hazard Adoption Hazard Adoption
Rate Time Rate Time

Farmer’s age 0.015 -0.010 0.007 -0.006
Farmer’s education -0.047 0.031 -0.058 0.047
Installation Cost -0.079 0.051 -0.070 0.057
Farm size 0.043 -0.028 0.082 -0.067
Tree Density 0.112 -0.073 0.077 -0.063
Water Price 0.145 -0.095 0.145 -0.118
Crop Price -0.525 0.343 -0.464 0.378
1st profit moment 0.831 -0.543 0.798 -0.650
2nd profit moment 1.544 -1.009 1.136 -0.925
3rd profit moment -0.258 0.168 -0.543 0.442
4th profit moment 0.021 -0.014 0.088 -0.072
Aridity Index 0.343 -0.224 0.291 -0.237
Altitude -0.005 0.003 -0.004 0.003
Sandy-Limestone soils 0.002 -0.001 -0.190 0.152
Stock of adopters 0.449 -0.293 – –
Distance between adopters -0.264 0.172 – –
Extension services 0.468 -0.306 – –
Distance from extension outlets 0.210 -0.137 – –

Marginal effects are computed at the means values of explanatory variables. For the case
of dummy variables, they are computed as the difference between the quantity of interest
when the dummy takes the value 1 and when it takes a 0 value.
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