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A closed-form filter for binary time series

Augusto Fasano1 · Giovanni Rebaudo2 · Daniele Durante3 · Sonia Petrone3

Abstract Non-Gaussian state-space models arise in several applications, and within this framework the binary

time series setting provides a relevant example. However, unlike for Gaussian state-space models — where filtering,

predictive and smoothing distributions are available in closed form — binary state-space models require approxi-

mations or sequential Monte Carlo strategies for inference and prediction. This is due to the apparent absence of

conjugacy between the Gaussian states and the likelihood induced by the observation equation for the binary data.

In this article we prove that the filtering, predictive and smoothing distributions in dynamic probit models with

Gaussian state variables are, in fact, available and belong to a class of unified skew-normals (sun) whose parameters

can be updated recursively in time via analytical expressions. Also the key functionals of these distributions are, in

principle, available, but their calculation requires the evaluation of multivariate Gaussian cumulative distribution

functions. Leveraging sun properties, we address this issue via novel Monte Carlo methods based on independent

samples from the smoothing distribution, that can easily be adapted to the filtering and predictive case, thus

improving state-of-the-art approximate and sequential Monte Carlo inference in small-to-moderate dimensional

studies. Novel sequential Monte Carlo procedures that exploit the sun properties are also developed to deal with

online inference in high dimensions. Performance gains over competitors are outlined in a financial application.

Keywords Dynamic probit model · Kalman filter · Particle filter · State-space model · sun.

1 Introduction

Despite the availability of several alternative approaches

for dynamic inference and prediction of binary time se-

ries (MacDonald and Zucchini, 1997), state-space mod-

els are a source of constant interest due to their flexibil-

ity in accommodating a variety of representations and

dependence structures via an interpretable formulation

(West and Harrison, 2006; Petris et al., 2009; Durbin

and Koopman, 2012). Let yt = (y1t, . . . , ymt)
⊺ ∈ {0; 1}m

be a vector of binary event data observed at time t, and

denote with θt = (θ1t, . . . , θpt)
⊺ ∈ Rp the correspond-

ing vector of state variables. Adapting the notation in,

e.g., Petris et al. (2009) to our setting, we aim to pro-

vide closed-form expressions for the filtering, predictive

and smoothing distributions in the general multivariate
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dynamic probit model

p(yt | θt) = Φm(BtFtθt;BtVtBt), (1)

θt = Gtθt−1 + εt, εt ∼ Np(0,Wt), t = 1 . . . , n, (2)

with θ0 ∼ Np(a0,P0), and dependence structure as de-

fined by the directed acyclic graph displayed in Fig. 1.

In (1), Φm(BtFtθt;BtVtBt) is the cumulative distribu-

tion function of a Nm(0,BtVtBt) evaluated at BtFtθt,

with Bt = diag(2y1t − 1, . . . , 2ymt − 1) denoting the

m × m sign matrix associated with yt, which defines

the multivariate probit likelihood in (1).

Model (1)–(2) generalizes univariate dynamic pro-

bit models to multivariate settings, as we will clarify

in equations (3)–(5). The quantities Ft,Vt,Gt,Wt,a0
and P0 denote, instead, known matrices controlling the

location, scale and dependence structure in the state-

space model (1)–(2). Estimation and inference for these

matrices is, itself, a relevant problem which can be ad-

dressed both from a frequentist and a Bayesian perspec-

tive. Yet our focus is on providing exact results for infer-

ence on state variables and prediction of future binary

events under (1)–(2). Hence, consistent with the clas-

sical Kalman filter (Kalman, 1960), we rely on known
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θ0 θ1 θ2 · · · θt · · · θn−1 θn

ε1 ε2 · · · εt · · · εn−1 εn

y1 y2 · · · yt · · · yn−1 yn

Fig. 1: Graphical representation of model (1)–(2). The dashed circles, solid circles and grey squares denote Gaussian errors,
Gaussian states and observed binary data, respectively.

θ0 θ1 θ2 · · · θt · · · θn−1 θn

ε1 ε2 · · · εt · · · εn−1 εn

z1 z2 · · · zt · · · zn−1 zn

y1 y2 · · · yt · · · yn−1 yn

Fig. 2: Graphical representation of model (3)–(5). Dashed circles, solid circles, white squares and grey squares denote Gaussian
errors, Gaussian states, latent Gaussian data and observed binary data, respectively.

system matrices Ft,Vt,Gt,Wt,a0 and P0. Nonethe-

less, results on marginal likelihoods, which can be used

in parameter estimation, are provided in Sect. 3.2.

Model (1)–(2) provides a general representation en-

compassing a variety of formulations. For example, set-

ting Vt = Im in (1) for each t yields a set of standard

dynamic probit regressions, which include the classical

univariate dynamic probit model when m = 1. These

representations have appeared in several applications,

especially within the econometrics literature, due to a

direct connection between (1)–(2) and dynamic discrete

choice models (Keane and Wolpin, 2009). This is due

to the fact that representation (1)–(2) can be alterna-

tively obtained via the dichotomization of an underly-

ing state-space model for the m-variate Gaussian time

series zt = (z1t, . . . , zmt)
⊺ ∈ Rm, t = 1, . . . , n, which is

regarded, in econometric applications, as a set of time-

varying utilities. Indeed, adapting classical results from

static probit regression (Albert and Chib, 1993; Chib

and Greenberg, 1998), model (1)–(2) is equivalent to

yt = (y1t, . . . , ymt)
⊺ = 1(zt > 0)

= [1(z1t > 0), . . . ,1(zmt > 0)]⊺, t = 1, . . . , n,
(3)

with z1, . . . , zn evolving in time according to the Gaus-

sian state-space model

p(zt | θt) = ϕm(zt − Ftθt;Vt), (4)

θt = Gtθt−1 + εt, εt ∼ Np(0,Wt), t = 1 . . . , n, (5)

having θ0 ∼ Np(a0,P0) and dependence structure as

defined by the directed acyclic graph displayed in Fig. 2.

In (4), ϕm(zt − Ftθt;Vt) denotes the density function

of the Gaussian Nm(Ftθt,Vt) evaluated at zt ∈ Rm. To

clarify the connection between (1)–(2) and (3)–(5), note

that if z̃t is a generic Gaussian random variable with

density (4), then it holds p(yt | θt) = pr(Btz̃t > 0) =

pr[−Bt(z̃t − Ftθt) < BtFtθt] = Φm(BtFtθt;BtVtBt),

given that −Bt(z̃t−Ftθt) ∼ Nm(0,BtVtBt) under (4).
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As is clear from model (4)–(5), if z1:t = (z⊺1 , . . . , z
⊺
t )

⊺

were observed, dynamic inference on the states θt, for

t = 1, . . . , n, would be possible via direct application

of the Kalman filter (Kalman, 1960). Indeed, exploit-

ing Gaussian-Gaussian conjugacy and the conditional

independence properties that are represented in Fig. 2,

the filtering p(θt | z1:t) and predictive p(θt | z1:t−1)

densities are also Gaussian and have parameters which

can be computed recursively via simple expressions re-

lying on the previous updates. Moreover, the smooth-

ing density p(θ1:n | z1:n) and its marginals p(θt | z1:n),
t ≤ n, can also be obtained in closed form leveraging

Gaussian-Gaussian conjugacy. However, in (3)–(5) only

a dichotomized version yt of zt is available. Therefore,

the filtering, predictive and smoothing densities of in-

terest are p(θt | y1:t), p(θt | y1:t−1) and p(θ1:n | y1:n),

respectively. Recalling model (1)–(2) and Bayes’ rule,

the calculation of these quantities proceeds by updating

the Gaussian distribution for the states in (2) with the

probit likelihood in (1), thereby providing conditional

distributions which do not have an obvious closed form

(Albert and Chib, 1993; Chib and Greenberg, 1998).

When the focus is on online inference for filtering

and prediction, one solution to the above issue is to rely

on approximations of model (1)–(2) which allow the im-

plementation of standard Kalman filter updates, thus

leading to approximate dynamic inference on the states

via extended (Uhlmann, 1992) or unscented (Julier and

Uhlmann, 1997) Kalman filters, among others. How-

ever, these approximations may lead to unreliable in-

ference in various settings (Andrieu and Doucet, 2002).

Markov chain Monte Carlo (mcmc) strategies (e.g., Car-

lin et al., 1992; Shephard, 1994; Soyer and Sung, 2013)

address this problem but, unlike the Kalman filter, these

methods are only suitable for batch learning of smooth-

ing distributions, and tend to face mixing or scalability

issues in binary settings (Johndrow et al., 2019).

Sequential Monte Carlo methods (e.g., Doucet et al.,

2001) partially solve mcmc issues, and are specifically

developed for online inference via particle-based repre-

sentations of the states’ conditional distributions, which

are then propagated in time for dynamic filtering and

prediction (Gordon et al., 1993; Kitagawa, 1996; Liu

and Chen, 1998; Pitt and Shephard, 1999; Doucet et al.,

2000; Andrieu and Doucet, 2002). These strategies pro-

vide state-of-the-art solutions in non-Gaussian state-

space models, and can be also adapted to perform batch

learning of the smoothing distribution; see Doucet and

Johansen (2009) for a discussion on particles’ degener-

acy issues that may arise in such a setting. Nonetheless,

sequential Monte Carlo is clearly still sub-optimal com-

pared to the case in which p(θt | y1:t), p(θt | y1:t−1) and

p(θ1:n | y1:n) are available in closed form and belong to

a tractable class of known densities whose parameters

can be sequentially updated via analytical expressions.

In Sect. 3, we prove that, for the dynamic multivari-

ate probit model in (1)–(2), the quantities p(θt | y1:t),

p(θt | y1:t−1) and p(θ1:n | y1:n) are unified skew-normal

(sun) densities (Arellano-Valle and Azzalini, 2006) hav-

ing tractable expressions for the recursive computation

of the corresponding parameters. To the best of our

knowledge, such a result provides the first closed-form

filter and smoother for binary time series, and facili-

tates improvements both in online and batch inference.

As we will highlight in Sect. 2, the sun distribution has

several closure properties (Arellano-Valle and Azzalini,

2006; Azzalini and Capitanio, 2014) in addition to ex-

plicit formulas — involving the cumulative distribution

function of multivariate Gaussians — for the moments

(Azzalini and Bacchieri, 2010; Gupta et al., 2013) and

the normalizing constant (Arellano-Valle and Azzalini,

2006). In Sect. 3, we exploit these properties to derive

closed-form expressions for functionals of p(θt | y1:t),

p(θt | y1:t−1) and p(θ1:n | y1:n), including, in particu-

lar, the observations’ predictive density p(yt | y1:t−1)

and the marginal likelihood p(y1:n). In Sect. 4.1, we

also derive an exact Monte Carlo scheme to compute

generic functionals of the smoothing distribution. This

routine relies on a generative representation of the sun

via linear combinations of multivariate Gaussians and

truncated normals (Arellano-Valle and Azzalini, 2006),

and can be also applied effectively to evaluate the func-

tionals of filtering and predictive densities in small-to-

moderate dimensions where mt is of the order of few

hundreds, a common situation in routine applications.

As clarified in Sect. 4.2, the above strategies face

computational bottlenecks in higher dimensions (Botev,

2017), due to challenges in computing cumulative dis-

tribution functions of multivariate Gaussians, and in

sampling from multivariate truncated normals. In these

contexts, we develop new sequential Monte Carlo meth-

ods that exploit sun properties. In particular, we first

prove in Sect. 4.2.1 that an optimal particle filter, in

the sense of Doucet et al. (2000), can be derived analyti-

cally, thus covering a gap in the literature. This strategy

is further improved in Sect. 4.2.2 via a class of partially

collapsed sequential Monte Carlo methods that recur-

sively update via lookahead strategies (Lin et al., 2013)

the multivariate truncated normal component in the

sun generative additive representation, while keeping

the Gaussian part exact. As outlined in an illustrative

financial application in Sect. 5, this class improves ap-

proximation accuracy relative to competing methods,

and includes, as a special case, the Rao–Blackwellized

particle filter proposed by Andrieu and Doucet (2002).

Concluding remarks can be found in Sect. 6.
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2 The unified skew-normal distribution

Before deriving filtering, predictive and smoothing dis-

tributions under model (1)–(2), let us first briefly review

the sun family. Arellano-Valle and Azzalini (2006) pro-

posed this broad class to unify different extensions (e.g.,

Arnold and Beaver, 2000; Arnold et al., 2002; Gupta

et al., 2004; González-Faŕıas et al., 2004) of the origi-

nal multivariate skew-normal (Azzalini and Dalla Valle,

1996), whose density is obtained as the product between

a multivariate Gaussian density and the cumulative dis-

tribution function of a standard normal evaluated at a

value which depends on a skewness-inducing vector of

parameters. Motivated by the success of this formula-

tion and of its generalizations (Azzalini and Capitanio,

1999), Arellano-Valle and Azzalini (2006) developed a

unifying representation, namely the sun distribution. A

random vector θ ∈ Rq has unified skew-normal distri-

bution, θ ∼ sunq,h(ξ,Ω,∆,γ,Γ ), if its density func-

tion p(θ) can be expressed as

ϕq(θ−ξ;Ω)
Φh[γ +∆⊺Ω̄

−1
ω−1(θ − ξ);Γ−∆⊺Ω̄

−1
∆]

Φh(γ;Γ )
,

(6)

where the covariance matrix Ω of the Gaussian density

ϕq(θ− ξ;Ω) can be decomposed as Ω = ωΩ̄ω, that is

by re-scaling the q×q correlation matrix Ω̄ via the pos-

itive diagonal scale matrix ω = (Ω⊙ Iq)
1/2, with ⊙ de-

noting the element-wise Hadamard product. In (6), the

skewness-inducing mechanism is driven by the cumula-

tive distribution function of the Nh(0,Γ −∆⊺Ω̄ −1∆)

computed at γ+∆⊺Ω̄ −1ω−1(θ−ξ), whereas Φh(γ;Γ )

denotes the normalizing constant obtained by evaluat-

ing the cumulative distribution function of a Nh(0,Γ )

at γ. Arellano-Valle and Azzalini (2006) added a further

identifiability condition which restricts the matrix Ω∗,

with blocks Ω∗
[11] = Γ , Ω∗

[22] = Ω̄ and Ω∗
[21] = Ω∗⊺

[12] =

∆, to be a full–rank correlation matrix. Note that in

(6) the quantities q and h define the dimensions of the

Gaussian density and cumulative distribution function,

respectively. As clarified by our closed-form sun results

in Sect. 3, q defines the dimension of the states’ vector,

and coincides with p in the sun filtering and predictive

distributions, while it is equal to pn in the sun smooth-

ing distribution. On the other hand, h increases linearly

with time in all the distributions of interest.

To clarify the role of the parameters in (6), we first

discuss a stochastic representation of the sun. Let z̃ ∈
Rh and θ̃ ∈ Rq characterize two random vectors jointly

distributed as a Nh+q(0,Ω
∗), then (ξ + ωθ̃ | z̃ + γ >

0) ∼ sunq,h(ξ,Ω,∆,γ,Γ ) (Arellano-Valle and Azza-

lini, 2006). Hence, ξ and ω control location and scale,

respectively, while Γ , Ω̄ and ∆ define the dependence

within z̃ ∈ Rh, θ̃ ∈ Rq and between these two vectors,

respectively. Finally, γ controls the truncation in the

partially observed Gaussian vector z̃ ∈ Rh. The above

result provides also relevant insights on our closed-form

filter for the dynamic probit model (1)–(2), which will

be further clarified in Sect. 3. Indeed, according to (3)–

(5), the filtering, predictive and smoothing densities in-

duced by model (1)–(2) can be also defined as p(θt |
y1:t) = p[θt | 1(z1:t > 0)], p(θt | y1:t−1) = p[θt |
1(z1:t−1 > 0)] and p(θ1:n | y1:n) = p[θ1:n | 1(z1:n >

0)], respectively, with (zt,θt) from the Gaussian state-

space model (4)–(5) for t = 1, . . . , n, thus highlighting

the direct connection between these densities and the

stochastic representation of the sun.

An additional generative additive representation of

the sun relies on linear combinations of Gaussian and

truncated normal random variables, thereby facilitating

sampling from the sun. In particular, recalling Azzalini

and Capitanio (2014, Sect. 7.1.2) and Arellano-Valle

and Azzalini (2006), if θ ∼ sunq,h(ξ,Ω,∆,γ,Γ ), then

θ
d
= ξ + ω(U0 +∆Γ−1U1), U0 ⊥ U1, (7)

withU0 ∼ Nq(0,Ω̄−∆Γ−1∆⊺) andU1 from a Nh(0,Γ )

truncated below −γ. As clarified in Sect. 4, this result

can facilitate efficient Monte Carlo inference on complex

functionals of sun filtering, predictive and smoothing

distributions under model (1)–(2), leveraging indepen-

dent and identically distributed samples from such vari-

ables. Indeed, although key moments can be explicitly

derived via the differentiation of the sun moment gen-

erating function (Gupta et al., 2013; Arellano-Valle and

Azzalini, 2006), such a strategy requires tedious calcu-

lations when the focus is on complex functionals. More-

over, recalling Azzalini and Bacchieri (2010) and Gupta

et al. (2013), the first and second order moments further

require the evaluation of h-variate Gaussian cumulative

distribution functions Φh(·), thus affecting computa-

tional tractability in large h settings (e.g., Botev, 2017).

In these situations, Monte Carlo integration provides an

effective solution, especially when independent samples

can be generated efficiently. Therefore, we mostly fo-

cus on improved Monte Carlo inference under model

(1)–(2) exploiting the sun properties, and refer to Az-

zalini and Bacchieri (2010) and Gupta et al. (2013) for

a closed-form expression of the expectation, variance

and cumulative distribution function of sun variables.

Before concluding this general overview, we empha-

size that sun variables are also closed under marginal-

ization, linear combinations and conditioning (Azzalini

and Capitanio, 2014). These properties facilitate the

derivation of the sun filtering, predictive and smooth-

ing distributions under model (1)–(2).
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3 Filtering, prediction and smoothing

In Sects. 3.1 and 3.2, we prove that all the distributions

of direct interest admit a closed-form sun representa-

tion. Specifically, in Sect. 3.1 we show that closed-form

filters — meant here as exact updating schemes for pre-

dictive and filtering distributions based on simple recur-

sive expressions for the associated parameters — can be

obtained under model (1)–(2). Similarly, in Sect. 3.2 we

derive the form of the sun smoothing distribution and

present important consequences. The associated com-

putational methods are then discussed in Sect. 4.

3.1 Filtering and predictive distributions

To obtain the exact form of the filtering and predictive

distributions under (1)–(2), let us start from p(θ1 | y1).

This first quantity characterizes the initial step of the

filter recursion, and its derivation within Lemma 1 pro-

vides the key intuitions to obtain the state predictive

p(θt | y1:t−1) and filtering p(θt | y1:t) densities, for any

t ≥ 2. Lemma 1 states that p(θ1 | y1) is a sun density.

In the following, consistent with the notation of Sect. 2,

whenever Ω is a q × q covariance matrix, the associ-

ated matrices ω and Ω̄ are defined as ω = (Ω ⊙ Iq)
1/2

and Ω̄ = ω−1Ωω−1, respectively. All the proofs can be

found in Appendix A, and leverage conjugacy proper-

ties of the sun in probit models. The first result on this

property has been derived by Durante (2019) for static

univariate Bayesian probit regression. Here, we take a

substantially different perspective by focusing on online

inference in both multivariate and time-varying probit

models that require novel and non-straightforward ex-

tensions. As seen in Soyer and Sung (2013) and Chib

and Greenberg (1998), the increased complexity of this

endeavor typically motivates a separate treatment rel-

ative to the static univariate case.

Lemma 1 Under the dynamic probit model in (1)–(2),

the first-step filtering distribution is

(θ1 | y1) ∼ sunp,m(ξ1|1,Ω1|1,∆1|1,γ1|1,Γ 1|1), (8)

with parameters defined by the recursive equations

ξ1|1 = G1a0, Ω1|1 = G1P0G
⊺
1 +W1,

∆1|1 = Ω̄1|1ω1|1F
⊺
1B1s

−1
1 , γ1|1 = s−1

1 B1F1ξ1|1,

Γ 1|1 = s−1
1 B1(F1Ω1|1F

⊺
1 +V1)B1s

−1
1 ,

where s1 = [(F1Ω1|1F
⊺
1 +V1)⊙ Im]1/2.

Hence p(θ1 | y1) is a sun density with parameters that

can be obtained via tractable arithmetic expressions ap-

plied to the quantities defining model (1)–(2). Exploit-

ing the results in Lemma 1, the general filter updates for

the multivariate dynamic probit model can be obtained

by induction for t ≥ 2 and are presented in Theorem 1.

Theorem 1 Let (θt−1|y1:t−1) ∼ sunp,m(t−1)(ξt−1|t−1,

Ωt−1|t−1,∆t−1|t−1,γt−1|t−1,Γ t−1|t−1) be the filtering

distribution at time t − 1 under model (1)–(2). Then,

the one-step-ahead state predictive distribution at t is

(θt | y1:t−1) (9)

∼ sunp,m(t−1)(ξt|t−1,Ωt|t−1,∆t|t−1,γt|t−1,Γ t|t−1),

with parameters defined by the recursive equations

ξt|t−1 = Gtξt−1|t−1, Ωt|t−1 = GtΩt−1|t−1G
⊺
t +Wt,

∆t|t−1 = ω−1
t|t−1Gtωt−1|t−1∆t−1|t−1,

γt|t−1 = γt−1|t−1, Γ t|t−1 = Γ t−1|t−1.

Moreover, the filtering distribution at time t is

(θt | y1:t) ∼ sunp,mt(ξt|t,Ωt|t,∆t|t,γt|t,Γ t|t), (10)

with parameters defined by the recursive equations

ξt|t = ξt|t−1, Ωt|t = Ωt|t−1,

∆t|t = [∆t|t−1, Ω̄t|tωt|tF
⊺
tBts

−1
t ],

γt|t = [γ⊺
t|t−1, ξ

⊺
t|tF

⊺
tBts

−1
t ]⊺,

and Γ t|t is a full-rank correlation matrix having blocks

Γ t|t[11] = Γ t|t−1, Γ t|t[22] = s−1
t Bt(FtΩt|tF

⊺
t+Vt)Bts

−1
t

and Γ t|t[21] = Γ ⊺
t|t[12] = s−1

t BtFtωt|t∆t|t−1, where st

is defined as st = [(FtΩt|tF
⊺
t +Vt)⊙ Im]1/2.

As shown in Theorem 1, online prediction and fil-

tering in the multivariate dynamic probit model (1)–(2)

proceeds by iterating between equations (9) and (10)

as new observations stream in with time t. Both steps

are based on closed-form distributions and rely on an-

alytical expressions for recursive updating of the corre-

sponding parameters as a function of the previous ones,

thus providing an analog of the classical Kalman filter.

We also provide closed-form expressions for the pre-

dictive density of the multivariate binary response data

yt. Indeed, the prediction of yt ∈ {0; 1}m given the data

y1:t−1, is a primary goal in applications of dynamic pro-

bit models. In our setting, this task requires the deriva-

tion of the predictive density p(yt | y1:t−1) which coin-

cides, under (1)–(2), with
∫
Φm(BtFtθt;BtVtBt)p(θt |

y1:t−1)dθt, where p(θt | y1:t−1) is the state predictive

density from (9). Corollary 1 shows that p(yt | y1:t−1)

has an explicit form.

Corollary 1 Under model (1)–(2), the observation pre-

dictive density p(yt | y1:t−1) is

p(yt | y1:t−1) =
Φmt(γt|t;Γ t|t)

Φm(t−1)(γt|t−1;Γ t|t−1)
, (11)

for every time t, with parameters γt|t, Γ t|t, γt|t−1 and

Γ t|t−1, defined as in Theorem 1.
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Hence, the evaluation of probabilities of future events

is possible via explicit calculations after marginalizing

out analytically the states with respect to their predic-

tive density. As is clear from (11), this requires the cal-

culation of Gaussian cumulative distribution functions

whose dimension increases with t andm. Efficient evalu-

ation of such integrals is possible for small-to-moderate

t andm via recent methods (Botev, 2017), but this solu-

tion is impractical for large t and m, as seen in Table 1.

In Sect. 4, we develop novel Monte Carlo strategies to

address this issue and enhance scalability. This is done

by exploiting Theorem 1 to improve current solutions.

3.2 Smoothing distribution

We now consider smoothing distributions. In this case,

the focus is on the distribution of the entire states’ se-

quence θ1:n, or a subset of it, given all data y1:n. The-

orem 2 shows that also the smoothing density p(θ1:n |
y1:n) belongs to the sun family. Direct consequences of

this result, involving marginal smoothing and marginal

likelihoods are reported in Corollaries 2 and 3.

Before stating the result, let us first introduce the

two block-diagonal matrices, D and Λ, with dimensions

(mn)×(pn) and (mn)×(mn) respectively, and diagonal

blocks D[ss] = BsFs ∈ Rm×p and Λ[ss] = BsVsBs ∈
Rm×m, for every time point s = 1, . . . , n. Moreover, let

ξ and Ω denote the mean and covariance matrix of the

multivariate Gaussian distribution for θ1:n induced by

the state equations. Under (2), ξ is a pn × 1 column

vector obtained by stacking the p-dimensional blocks

ξ[s] = E(θs) = Gs
1a0 ∈ Rp for every s = 1, . . . , n, with

Gs
1 = Gs · · ·G1. Similarly, letting Gs

l = Gs · · ·Gl, also

the (pn)× (pn) covariance matrix Ω has a block struc-

ture with (p× p)-dimensional blocks Ω[ss] = var(θs) =

Gs
1P0G

s⊺
1 +

∑s
l=2 G

s
lWl−1G

s⊺
l +Ws, for s = 1, . . . , n,

and Ω[sl] = Ω⊺
[ls] = cov(θs,θl) = Gs

l+1Ω[ll], for s > l.

Theorem 2 Under model (1)–(2), the joint smoothing

distribution is

(θ1:n | y1:n) (12)

∼ sunpn,mn(ξ1:n|n,Ω1:n|n,∆1:n|n,γ1:n|n,Γ 1:n|n),

with parameters defined as

ξ1:n|n = ξ, Ω1:n|n = Ω, ∆1:n|n = Ω̄ωD⊺s−1,

γ1:n|n = s−1Dξ, Γ 1:n|n = s−1(DΩD⊺ +Λ)s−1,

where s = [(DΩD⊺ +Λ)⊙ Imn]
1/2.

Since the sun is closed under marginalization and

linear combinations, it follows from Theorem 2 that the

smoothing distribution for any combination of states is

still a sun. In particular, direct application of the re-

sults in Azzalini and Capitanio (2014, Sect. 7.1.2) yields

the marginal smoothing distribution for any state θt re-

ported in Corollary 2.

Corollary 2 Under the model in (1)–(2), the marginal

smoothing distribution at any time t ≤ n is

(θt | y1:n) ∼ sunp,mn(ξt|n,Ωt|n,∆t|n,γt|n,Γ t|n), (13)

with parameters defined as

ξt|n = ξ[t], Ωt|n = Ω[tt], ∆t|n = ∆1:n|n[t],

γt|n = γ1:n|n, Γ t|n = Γ 1:n|n,

where ∆1:n|n[t] defines the t-th block of p rows in ∆1:n|n.

When t = n, (13) gives the filtering distribution at n.

Another important consequence of Theorem 2 is the

availability of a closed-form expression for the marginal

likelihood p(y1:n), which is provided in Corollary 3.

Corollary 3 Under model (1)–(2), the marginal like-

lihood is p(y1:n) = Φmn(γ1:n|n;Γ 1:n|n), with γ1:n|n and

Γ 1:n|n defined as in Theorem 2.

This closed-form result is useful in several contexts,

including estimation of unknown system parameters via

marginal likelihood maximization, and full Bayesian in-

ference through mcmc or variational inference methods.

4 Inference via Monte Carlo methods

As discussed in Sects. 2 and 3, inference without sam-

pling from (9), (10) or (12) is, theoretically, possible.

Indeed, since the sun densities of the filtering, predic-

tive and smoothing distributions can be obtained from

Theorems 1–2, the main functionals of interest can be
computed via closed-form expressions (Arellano-Valle

and Azzalini, 2006; Azzalini and Bacchieri, 2010; Gupta

et al., 2013; Azzalini and Capitanio, 2014) or by relying

on numerical integration. However, these strategies re-

quire evaluations of multivariate Gaussian cumulative

distribution functions, which tend to be impractical as

t grows or when the focus is on complex functionals.

In such situations, Monte Carlo integration provides

an accurate solution to evaluate the generic functionals

E[g(θt) | y1:t], E[g(θt) | y1:t−1] and E[g(θ1:n) | y1:n] for

the filtering, predictive and smoothing distribution via

1

R

R∑
r=1

g(θ
(r)
t|t ),

1

R

R∑
r=1

g(θ
(r)
t|t−1),

1

R

R∑
r=1

g(θ
(r)
1:n|n),

with θ
(r)
t|t , θ

(r)
t|t−1 and θ

(r)
1:n|n sampled from p(θt | y1:t),

p(θt | y1:t−1) and p(θ1:n | y1:n), respectively. For ex-

ample, if the evaluation of (11) is demanding, the ob-

servations predictive density can be easily computed as∑R
r=1 Φm(BtFtθ

(r)
t|t−1;BtVtBt)/R.
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Algorithm 1: Independent and identically distributed sampling from p(θ1:n | y1:n)

[1] Sample U
(1)
0 1:n|n, . . . ,U

(R)
0 1:n|n independently from a Npn(0, Ω̄1:n|n −∆1:n|nΓ

−1
1:n|n∆

⊺
1:n|n).

[2] Sample U
(1)
1 1:n|n, . . . ,U

(R)
1 1:n|n independently from a tnmn(0,Γ 1:n|n;Aγ1:n|n).

[3] Compute θ
(1)
1:n|n, . . . , θ

(R)
1:n|n via θ

(r)
1:n|n = ξ1:n|n + ω1:n|n(U

(r)
0 1:n|n +∆1:n|nΓ

−1
1:n|nU

(r)
1 1:n|n), for r = 1, . . . , R.

To be implemented, the above approach requires an

efficient strategy to sample from (9), (10) and (12). Ex-

ploiting the sun properties and recent results in Botev

(2017), an algorithm to draw independent and identi-

cally distributed samples from the exact sun distribu-

tions in (9), (10) and (12) is developed within Sect. 4.1.

As illustrated in Sect. 5, such a technique is more accu-

rate than state-of-the-art methods and can be efficiently

implemented in small-to-moderate dimensional time se-

ries. In Sect. 4.2 we develop, instead, novel sequential

Monte Carlo schemes that allow scalable online learning

in high dimensional settings and have optimality prop-

erties (Doucet et al., 2000) which shed new light also

on existing strategies (e.g, Andrieu and Doucet, 2002).

4.1 Independent identically distributed sampling

As discussed in Sect. 1, mcmc and sequential Monte

Carlo methods to sample from p(θt | y1:t), p(θt | y1:t−1)

and p(θ1:n | y1:n) are available. However, the commonly

recommended practice, if feasible, is to rely on indepen-

dent and identically distributed (i.i.d.) samples. Here,

we derive a Monte Carlo algorithm to address this goal

with a main focus on the smoothing distribution, and

discuss direct modifications to allow sampling also in

the filtering and predictive case. Indeed, Monte Carlo

inference is particularly suitable for batch settings, al-

though, as discussed later, the proposed routine is prac-

tically useful also when the focus is on filtering and pre-

dictive distributions, since i.i.d. samples are simulated

rapidly, for each t, in small-to-moderate dimensions.

Exploiting the closed-form expression of the smooth-

ing distribution in Theorem 2, and the additive repre-

sentation (7) of the sun, i.i.d. samples for θ1:n|n from

the smoothing distribution (12) can be obtained via a

linear combination between independent samples from

(pn)-variate Gaussians and (mn)-variate truncated nor-

mals. Algorithm 1 provides the detailed pseudo-code

for this novel strategy, whose outputs are i.i.d. samples

from the joint smoothing density p(θ1:n | y1:n). Here,

the most computationally intensive step is the sampling

from tnmn(0,Γ 1:n|n;Aγ1:n|n), which denotes the multi-

variate Gaussian distribution Nmn(0,Γ 1:n|n) truncated

to the region Aγ1:n|n = {u1 ∈ Rmn : u1+γ1:n|n > 0}. In
fact, although efficient Hamiltonian Monte Carlo solu-

tions are available (Pakman and Paninski, 2014), these

strategies do not provide independent samples. More re-

cently, an accept-reject method based on minimax tilt-

ing has been proposed by Botev (2017) to improve the

acceptance rate of classical rejection sampling, while

avoiding mixing issues of mcmc. This routine is avail-

able in the R library TruncatedNormal and allows ef-

ficient sampling from multivariate truncated normals

with a dimension of few hundreds, thereby providing ef-

fective Monte Carlo inference via Algorithm 1 in small-

to-moderate dimensional time series where mn is of the

order of few hundreds.

Clearly, the availability of an i.i.d. sampling scheme

from the smoothing distribution overcomes the need of

mcmc methods and particle smoothers. The first set of

strategies usually faces mixing or time-inefficiency is-

sues, especially in imbalanced binary settings (Johndrow

et al., 2019), whereas the second class of routines tends

to be computationally intensive and subject to particles

degeneracy (Doucet and Johansen, 2009).

When the focus is on Monte Carlo inference for the

marginal smoothing density p(θt | y1:n) at a specific

time t, Algorithm 1 requires minor adaptations rely-

ing again on the additive representation of the sun in

(13), under similar arguments considered for the joint

smoothing setting. This latter routine can be also used

to sample from the filtering distribution in (10) by ap-

plying such a scheme with n = t to obtain i.i.d. samples

for θt|t from p(θt | y1:t). Leveraging realizations from

the filtering distribution at time t− 1, i.i.d. samples for

θt|t−1 from the predictive density p(θt | y1:t−1), can be

simply obtained via the direct application of (2) which

provides samples for θt|t−1 from Np(Gtθt−1|t−1,Wt).

As a result, efficient Monte Carlo inference in small-to-

moderate dimensional dynamic probit models is possi-

ble also for filtering and predictive distributions.

4.2 Sequential Monte Carlo sampling

When the dimension of the dynamic probit model (1)–

(2) grows, sampling from multivariate truncated Gaus-

sians in Algorithm 1 might yield computational bottle-

necks (Botev, 2017). This is particularly likely to occur

in series monitored on a fine time grid. Indeed, in sev-

eral applications, the number of time series m is typi-
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cally small, whereas the length of the time window can

be large. To address this issue and allow scalable on-

line filtering and prediction also in large t settings, we

first derive in Sect. 4.2.1 a particle filter which exploits

the sun results to obtain optimality properties, in the

sense of Doucet et al. (2000). Despite covering a gap in

the literature on dynamic probit models, as clarified in

Sects. 4.2.1 and 4.2.2, such a strategy is amenable to

further improvements since it induces unnecessary au-

tocorrelation in the Gaussian part of the sun generative

representation. Motivated by this consideration and by

the additive structure of the sun filtering distribution,

we further develop in Sect. 4.2.2 a partially collapsed se-

quential Monte Carlo procedure which recursively sam-

ples via lookahead methods (Lin et al., 2013) only the

multivariate truncated normal term in the sun additive

representation, while keeping the Gaussian component

exact. As outlined in Sect. 4.2.2, such a broad class of

partially collapsed lookahead particle filters comprises,

as a special case, the Rao–Blackwellized particle filter

developed by Andrieu and Doucet (2002). This provides

novel theoretical support to the notable performance of

such a strategy, which was originally motivated, in the

context of dynamic probit models, also by the lack of a

closed-form optimal particle filter for the states.

4.2.1 “Optimal” particle filter

The first proposed strategy belongs to the class of se-

quential importance sampling-resampling (sisr) algo-

rithms which provide default strategies in particle filter-

ing (e.g., Doucet et al., 2000, 2001; Durbin and Koop-

man, 2012). For each time t, these routines sample R

trajectories for θ1:t|t from p(θ1:t | y1:t), known as parti-
cles, conditioned on those produced at t− 1, by iterat-

ing, in time, between the two steps summarized below.

1. Sampling. Let θ
(1)
1:t−1|t−1, . . . ,θ

(R)
1:t−1|t−1 be the tra-

jectories of the particles at time t− 1, and denote with

π(θt | θ1:t−1,y1:t) the proposal. Then, for r = 1, . . . , R

[1.a] Sample θ̄
(r)
t|t from π(θt | θ(r)

1:t−1|t−1,y1:t) and set

θ̄
(r)
1:t|t = (θ

(r)⊺
1:t−1|t−1, θ̄

(r)⊺
t|t )⊺.

[1.b] Set w
(r)
t = wt(θ̄

(r)
1:t|t), with

wt(θ̄
(r)
1:t|t) ∝

p(yt | θ̄
(r)
t|t )p(θ̄

(r)
t|t | θ(r)

t−1|t−1)

π(θ̄
(r)
t|t | θ(r)

1:t−1|t−1,y1:t)
,

and normalize the weights, so that their sum is 1.

2. Resampling. For r = 1, . . . , R, sample updated par-

ticles’ trajectories θ
(1)
1:t|t, . . . ,θ

(R)
1:t|t from

∑R
r=1 w

(r)
t δ

θ̄
(r)

1:t|t
.

From these particles, functionals of the filtering den-

sity p(θt | y1:t) can be computed using the terminal

values θt|t of each particles’ trajectory for θ1:t|t. Note

that in point [1.a] we have presented the general for-

mulation of sisr, where the importance density π(θt |
θ1:t−1,y1:t) can, in principle, depend on the whole tra-

jectory θ1:t−1 (Durbin and Koopman, 2012, Sect. 12.3).

As is clear from the above steps, the performance of

sisr relies on the choice of π(θt | θ1:t−1,y1:t). Such a

density should allow tractable sampling along with effi-

cient evaluation of the importance weights, and should

be also carefully specified to propose effective candidate

samples. Recalling Doucet et al. (2000), the optimal

proposal is π(θt | θ1:t−1,y1:t) = p(θt | θt−1,yt), with

importance weights wt ∝ p(yt | θt−1). Indeed, condi-

tioned on θ1:t−1|t−1 and y1:t, this choice minimizes the

variance of the weights, thus limiting degeneracy issues

and improving mixing. Unfortunately, in several dy-

namic models, tractable sampling from p(θt | θt−1,yt)

and the direct evaluation of p(yt | θt−1) is not possible

(Doucet et al., 2000). As outlined in Corollary 4, this is

not the case for dynamic probit models. In particular,

by leveraging the proof of Theorem 1 and the closure

properties of the sun, sampling from p(θt | θt−1,yt) is

straightforward and p(yt | θt−1) has a simple form.

Corollary 4 For every time t = 1, . . . , n, the optimal

importance distribution under model (1)–(2) is

(θt | θt−1,yt) (14)

∼ sunp,m(ξt|t,t−1,Ωt|t,t−1,∆t|t,t−1,γt|t,t−1,Γ t|t,t−1),

whereas the importance weights are

p(yt | θt−1) = Φm(γt|t,t−1;Γ t|t,t−1), (15)

with parameters defined by the recursive equations

ξt|t,t−1 = Gtθt−1, Ωt|t,t−1 = Wt,

∆t|t,t−1 = Ω̄t|t,t−1ωt|t,t−1F
⊺
tBtc

−1
t ,

γt|t,t−1 = c−1
t BtFtξt|t,t−1,

Γ t|t,t−1 = c−1
t Bt

(
FtΩt|t,t−1F

⊺
t+Vt

)
Btc

−1
t ,

where ct =
[
(FtΩt|t,t−1F

⊺
t +Vt)⊙ Im

]1/2
.

As clarified in Corollary 4, the weights p(yt | θt−1)

for the generated trajectories are available analytically

in (15) and do not depend on the sampled values of

the particle at time t. This allows the implementation

of the more efficient auxiliary particle filter (auf) (Pitt

and Shephard, 1999) by simply reversing the order of

the sampling and resampling steps, thereby obtaining

a performance gain (Andrieu and Doucet, 2002). Algo-

rithm 2 illustrates the pseudo-code of the proposed “op-

timal” auxiliary filter, which exploits the additive repre-

sentation of the sun and Corollary 4. Note that, unlike
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Algorithm 2: “Optimal” particle filter to sample from p(θt | y1:t), for t = 1, . . . , n [auf version]

for t from 1 to n do

[1] Compute the weights w
(r)
t = p(yt | θt−1 = θ

(r)
t−1|t−1) for r = 1, . . . , R, by applying equation (15).

[2] Resample updated particles θ̄
(1)
t−1|t−1, . . . , θ̄

(R)
t−1|t−1 from

∑R
r=1 w

(r)
t δ

θ
(r)

t−1|t−1

.

for r from 1 to R do

[3] Set ξ
(r)
t|t,t−1 = Gtθ̄

(r)
t−1|t−1 and γ

(r)
t|t,t−1 = c−1

t BtFtξ
(r)
t|t,t−1. Then, simulate θ

(r)
t|t from (14), as follows:

[3.1] Sample U
(r)
0 t|t from a Np(0, Ω̄t|t,t−1 −∆t|t,t−1Γ

−1
t|t,t−1∆

⊺
t|t,t−1).

[3.2] Sample U
(r)
1 t|t from a tnm(0,Γ t|t,t−1;Aγ

(r)

t|t,t−1

).

[3.3] Compute θ
(r)
t|t = ξ

(r)
t|t,t−1 + ωt|t,t−1(U

(r)
0 t|t +∆t|t,t−1Γ

−1
t|t,t−1U

(r)
1 t|t).

for Algorithm 1, such a sequential sampling strategy re-

quires to sample at each step from a truncated normal

whose dimension does not depend on t, thus facilitating

scalable sequential inference in large t studies. Samples

from the predictive distribution can be obtained from

those of the filtering as discussed in Sect. 4.1.

Despite having optimality properties, a close inspec-

tion of Algorithm 2 shows that the states’ particles at

t− 1 affect both the Gaussian component, via ξt|t,t−1,

and the truncated normal term, via γt|t,t−1, in the sun

additive representation of (θt | y1:t). Although the au-

tocorrelation in the multivariate truncated normal sam-

ples is justified by the computational intractability of

this variable in high dimensions, inducing serial depen-

dence also in the Gaussian terms seems unnecessary, as

these quantities are tractable and their dimension does

not depend on t; see Theorem 1. This suggests that a

strategy which sequentially updates only the truncated

normal term, while maintaining the Gaussian part ex-

act, could further improve the performance of Algo-

rithm 2. This new particle filter is derived in Sect. 4.2.2,

inheriting also lookahead ideas (Lin et al., 2013).

4.2.2 Partially collapsed lookahead particle filter

As anticipated within Sect. 4.2, the most computation-

ally intensive step to draw i.i.d. samples from the filter-

ing distribution is sampling from the multivariate trun-

cated normal U1 1:t|t ∼ tnmt(0,Γ 1:t|t;Aγ1:t|t) in Algo-

rithm 1. Here, we present a class of procedures to se-

quentially generate these samples, which are then com-

bined with realizations from the exact Gaussian compo-

nent in the sun additive representation, thus producing

samples from the filtering distribution. With this goal

in mind, define the region Ays:t
= {z ∈ Rm(t−s+1) :

(2ys:t − 1)⊙ z > 0} for every s = 1, . . . , t, and let V1:t

be the (mt)×(mt) block-diagonal matrix having blocks

V[ss] = Vs, for s = 1, . . . , t. Moreover, denote with

Bs:t and Fs:t two block-diagonal matrices of dimension

[m(t−s+1)]×[m(t−s+1)] and [m(t−s+1)]×[p(t−s+

1)], respectively, and diagonal blocks Bs:t[ll] = Bs+l−1

and Fs:t[ll] = Fs+l−1 for l = 1, . . . , t − s + 1. Exploit-

ing this notation and adapting results in Sect. 3.2 to

the case n = t, it follows from standard properties of

multivariate truncated normals (Horrace, 2005) that

U1 1:t|t
d
= −γ1:t|t + s−1

1:t|tB1:tz1:t|t, (16)

with z1:t|t ∼ tnmt(F1:tξ1:t|t,F1:tΩ1:t|tF
⊺
1:t+V1:t;Ay1:t

)

and s1:t|t = [(DΩ1:t|tD
⊺+Λ)⊙Imt]

1/2, where D and Λ

are defined as in Sect. 3.2, setting n = t. Note that the

multivariate truncated normal distribution for z1:t|t ac-

tually coincides with the conditional distribution of z1:t
given y1:t under model (3)–(5). Indeed, by marginaliz-

ing out θ1:t in p(z1:t | θ1:t) =
∏t

s=1 ϕm(zs−Fsθs;Vs) =

ϕmt(z1:t−F1:tθ1:t;V1:t) with respect to its multivariate

normal distribution derived in the proof of Theorem 2,

we have p(z1:t) = ϕmt(z1:t − F1:tξ1:t|t;F1:tΩ1:t|tF
⊺
1:t +

V1:t) and, as a direct consequence, we obtain

p(z1:t | y1:t) ∝ p(z1:t)p(y1:t | z1:t),
∝ p(z1:t)1[(2y1:t − 1)⊙ z1:t > 0],

which is the kernel of a tnmt(F1:tξ1:t|t,F1:tΩ1:t|tF
⊺
1:t+

V1:t;Ay1:t) density.

The above analytical derivations clarify that in or-

der to sample recursively from U1 1:t|t it is sufficient to

apply equation (16) to sequential realizations of z1:t|t
from the joint conditional density p(z1:t | y1:t), induced

by model (3)–(5), after collapsing out θ1:t. While basic

sisr algorithms for p(z1:t | y1:t), combined with the ex-

act sampling from the Gaussian component U0 t|t, are

expected to yield an improved performance relative to

the particle filter developed in Sect. 4.2.1, here we adapt

an even broader class of lookahead particle filters (Lin

et al., 2013) — which includes the basic sisr as a special

case. To introduce the general lookahead idea note that

p(z1:t | y1:t) = p(zt−k+1:t | z1:t−k,y1:t)p(z1:t−k | y1:t),

where k is a pre-specified delay offset. Moreover, as a di-

rect consequence of the dependence structure displayed

in Fig. 2, we also have that p(zt−k+1:t | z1:t−k,y1:t) =
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p(zt−k+1:t | z1:t−k,yt−k+1:t) for any generic k. Hence,

to sequentially generate realizations of z1:t|t from p(z1:t |
y1:t), we can first sample z1:t−k|t from p(z1:t−k | y1:t) by

extending, via sisr, the trajectory z1:t−k−1|t−1 with op-

timal proposal p(zt−k | z1:t−k−1 = z1:t−k−1|t−1,yt−k:t),

and then draw the last k terms in z1:t|t from p(zt−k+1:t |
z1:t−k = z1:t−k|t,yt−k+1:t). Note that when k = 0 this

final operation is not necessary, and the particles’ up-

dating in the first step reduces to basic sisr. Values of k

in {1; . . . ;n− 1} induce, instead, a lookahead structure

in which at the current time t the optimal proposal for

the delayed particles leverages information of response

data yt−k:t that are not only contemporaneous to zt−k,

i.e., yt−k, but also future, namely yt−k+1, . . . ,yt. In

this way, the samples from the sub-trajectory z1:t−k|t
of z1:t|t at time t are more compatible with the sam-

pling density p(z1:t | y1:t) of interest and hence, when

completed with the last k terms drawn from p(zt−k+1:t |
z1:t−k = z1:t−k|t,yt−k+1:t), produce a sequential sam-

pling scheme from p(z1:t | y1:t) with improved mixing

and reduced degeneracy issues relative to basic sisr. Al-

though the magnitude of such gains clearly grows with

k, as illustrated in Sect. 5, setting k = 1 already pro-

vides empirical evidence of improved performance rela-

tive to basic sisr, without major computational costs.

To implement the aforementioned strategy it is first

necessary to ensure that the lookahead proposal belongs

to a class of random variables which allow efficient sam-

pling, while having a tractable closed-form expression

for the associated importance weights. Proposition 1

shows that this is the case under model (3)–(5).

Proposition 1 Under the augmented model in (3)–(5),

the lookahead proposal mentioned above has the form

p(zt−k | z1:t−k−1,yt−k:t)

=

∫
p(zt−k:t | z1:t−k−1,yt−k:t)dzt−k+1:t,

(17)

where p(zt−k:t | z1:t−k−1,yt−k:t) is the density of a trun-

cated normal tnm(k+1)(rt−k:t|t−k−1,St−k:t|t−k−1;Ayt−k:t
)

with parameters rt−k:t|t−k−1 = E(zt−k:t | z1:t−k−1) and

St−k:t|t−k−1 = var(zt−k:t | z1:t−k−1). The importance

weights wt = w(z1:t−k) are, instead, proportional to

p(yt−k:t | z1:t−k−1)

p(yt−k:t−1 | z1:t−k−1)
=

Φm(k+1)(µt;Σt)

Φmk(µ̄t; Σ̄t)
, (18)

where the mean vectors are µt = Bt−k:trt−k:t|t−k−1 and

µ̄t = Bt−k:t−1rt−k:t−1|t−k−1, whereas the covariance

matrices are defined as Σt = Bt−k:tSt−k:t|t−k−1Bt−k:t

and Σ̄t = Bt−k:t−1St−k:t−1|t−k−1Bt−k:t−1.

To complete the procedure for sampling from p(z1:t |
y1:t) we further require p(zt−k+1:t | z1:t−k,yt−k+1:t).

As clarified in Proposition 2, also such a quantity is the

density of a multivariate truncated normal.

Proposition 2 Under model (3)–(5), it holds

(zt−k+1:t | z1:t−k,yt−k+1:t) (19)

∼ tnmk(rt−k+1:t|t−k,St−k+1:t|t−k;Ayt−k+1:t
),

with parameters rt−k+1:t|t−k = E(zt−k+1:t | z1:t−k) and

St−k+1:t|t−k = var(zt−k+1:t | z1:t−k).

Note that the expression of the importance weights

in equation (18) does not depend on zt−k, and, hence,

also in this case the resampling step can be performed

before sampling from (17), thus leading to an auf rou-

tine. Besides improving efficiency, such a strategy allows

to combine the particle generation in (17) and the com-

pletion of the last k terms of z1:t|t in (19) within a single

sampling step from the joint [m(k + 1)]-variate trun-

cated normal distribution for (zt−k:t | z1:t−k−1,yt−k:t)

reported in Proposition 1. The firstm-dimensional com-

ponent of this vector yields the new delayed particle for

zt−k|t from (17), whereas the whole sub-trajectory pro-

vides the desired sample from p(zt−k:t | z1:t−k−1,yt−k:t)

which is joined to the previously resampled particles

for z1:t−k−1|t to form a realization of z1:t|t from p(z1:t |
y1:t). Once this sample is available, one can obtain a

draw of θt|t from the filtering density p(θt | y1:t) of in-

terest by exploiting the additive representation of the

sun and the analogy between U1 1:t|t and z1:t|t in (16).

In practice, as clarified in Algorithm 3, the updating of

U1 1:t|t via lookahead recursion on z1:t|t and the exact

sampling from the Gaussian component of the sun fil-

tering distribution for θt can be effectively combined in

a single online routine based on Kalman filter steps.

To clarify Algorithm 3, note that p(θt | z1:t) is the

filtering density of the Gaussian dynamic linear model

defined in (4)–(5), for which the Kalman filter can be di-

rectly implemented, once the trajectory z1:t|t has been

generated from p(z1:t | y1:t) via the lookahead filter. Let

at−k−1|t−k−1 = E(θt−k−1 | z1:t−k−1), Pt−k−1|t−k−1 =

var(θt−k−1|z1:t−k−1) and at−k|t−k−1= E(θt−k|z1:t−k−1),

Pt−k|t−k−1 = var(θt−k | z1:t−k−1) be the mean vec-

tor and covariance matrices for the Gaussian filtering

and predictive distributions produced by the standard

Kalman filter recursions at time t− k − 1 under model

(4)–(5). Besides being necessary to draw values from

the states’ filtering and predictive distributions, condi-

tioned on the trajectories of z1:t|t sampled from p(z1:t |
y1:t), such quantities are also sufficient to update online

the lookahead parameters rt−k:t|t−k−1 and St−k:t|t−k−1

that are required to compute the importance weights in

Proposition 1, and to sample from the [m(k+1)]-variate

truncated normal density p(zt−k:t | z1:t−k−1,yt−k:t) un-

der the auxiliary filter. In particular, the formulation of

the dynamic model in (4)–(5) implies that rt−k:t|t−k−1 =

E(zt−k:t | z1:t−k−1) = E(Ft−k:tθt−k:t | z1:t−k−1), and,
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Algorithm 3: Lookahead particle filter to draw from p(θt | y1:t), for t = 1, . . . , n [auf version with kf
steps]

Set k, and initialize a
(r)
0|0 = a0 for r = 1, . . . , R and P0|0 = P0.

for t from 1 to k do

[1] Sample θ
(1)
t|t , . . . , θ

(R)
t|t from Algorithm 1 [this can be done efficiently in an exact manner since k is usually

small].

for t from k + 1 to n do

[2] Define the vectors and matrices that are required to perform steps [3] and [4].
[2.1] Set Pt−k|t−k−1 = Gt−kPt−k−1|t−k−1G

⊺
t−k +Wt−k [kf] and compute St−k:t|t−k−1 as in Sect. 4.2.2.

[2.2] Set Pt−k|t−k = Pt−k|t−k−1 −Pt−k|t−k−1F
⊺
t−kS

−1
t−k|t−k−1Ft−kPt−k|t−k−1 [kf] .

[2.3] For r = 1, . . . , R, set a
(r)
t−k|t−k−1 = Gt−ka

(r)
t−k−1|t−k−1 [kf] and compute r

(r)
t−k:t|t−k−1 as in Sect. 4.2.2.

[3] Implement the resampling step under the auf version.

[3.1] For r = 1, . . . , R, calculate the importance weight w
(r)
t via (18).

[3.2] Sample (ā
(1)
t−k|t−k−1, r̄

(1)
t−k:t|t−k−1), . . . , (ā

(R)
t−k|t−k−1, r̄

(R)
t−k:t|t−k−1) from

∑R
r=1 w

(r)
t δ

(a
(r)

t−k|t−k−1
,r

(r)

t−k:t|t−k−1
)
.

for r from 1 to R do

[4] Update the delayed particle z
(r)
t−k|t and sample θ

(r)
t|t .

[4.1] Sample (z
(r)⊺
t−k|t, z̄

(r)⊺
t−k+1:t|t)

⊺ from a tnm(k+1)(r̄t−k:t|t−k−1,St−k:t|t−k−1;Ayt−k:t
).

[4.2] Set a
(r)
t−k|t−k = ā

(r)
t−k|t−k−1 +Pt−k|t−k−1F

⊺
t−kS

−1
t−k|t−k−1(z

(r)
t−k|t − r̄

(r)
t−k|t−k−1) [kf].

[4.3] Compute a
∗(r)
t|t and P

∗(r)
t|t by performing k recursions of the kf updates applied to (4)–(5) from

t− k + 1 to t with observations zt−k+1:t = z̄
(r)
t−k+1:t|t and starting moments a

(r)
t−k|t−k and Pt−k|t−k.

[4.4] Sample θ
(r)
t|t from the Np(a

∗(r)
t|t ,P

∗(r)
t|t ).

therefore, rt−k:t|t−k−1 can be expressed as a function of

at−k|t−k−1 via the direct application of the law of the

iterated expectations by stacking the m-dimensional

vectors Ft−kat−k|t−k−1, Ft−k+1Gt−k+1at−k|t−k−1, . . . ,

FtG
t
t−k+1at−k|t−k−1, with Gs

l defined as in Sect. 3.2.

A similar reasoning can be applied to write the co-

variance matrix St−k:t|t−k−1 = var(zt−k:t | z1:t−k−1) as

a function ofPt−k|t−k−1. In particular letting l− = l−1,

the m×m diagonal blocks of St−k:t|t−k−1 can obtained

sequentially after noticing that

St−k:t|t−k−1[ll] = var(zt−k+l− | z1:t−k−1)

= Ft−k+l−Pt−k+l−|t−k−1F
⊺
t−k+l−

+Vt−k+l− ,

for every l = 1, . . . , k + 1, where the states’ covariance

matrixPt−k+l−|t−k−1 at time t−k+l− can be expressed

as a function of Pt−k|t−k−1 via the recursive equations

Pt−k+l−|t−k−1 = Gt−k+l−Pt−k+l−−1|t−k−1G
⊺
t−k+l−

+

Wt−k+l− , for every l = 2, . . . , k + 1. Moreover, letting

l− = l − 1 and s− = s− 1, also the off-diagonal blocks

can be obtained in a related manner, after noticing that

the generic block of St−k:t|t−k−1 is defined as

St−k:t|t−k−1[sl] = S⊺
t−k:t|t−k−1[ls]

= cov(Ft−k+s−θt−k+s− ,Ft−k+l−θt−k+l− | z1:t−k−1)

= Ft−k+s−G
t−k+s−
t−k+l Pt−k+l−|t−k−1F

⊺
t−k+l−

,

for every s = 2, . . . , k+1 and l = 1, . . . , s−1, where the

matrix Pt−k+l−|t−k−1 can be expressed as a function of

Pt−k|t−k−1 via the recursive equations reported above.

According to these results, the partially collapsed

lookahead particle filter for sampling recursively from

p(θt | y1:t) simply requires to store and update, for each

particle trajectory, the sufficient statistics at−k|t−k−1

and Pt−k|t−k−1 via Kalman filter recursions applied to

the model (4)–(5), with every zt replaced by the par-

ticles generated under the lookahead routine. As previ-

ously discussed, also this updating requires only the mo-

ments at−k|t−k−1 and Pt−k|t−k−1 computed recursively

as a function of the delayed particles’ trajectories. This

yields to a computational complexity per iteration that

is constant with time, as it does not require to compute

quantities whose dimension grows with t. In addition, as

discussed in Remark 1, such a dual interpretation com-

bined with our sun closed-form results, provides novel

theoretical support to the Rao–Blackwellized particle

filter introduced by Andrieu and Doucet (2002).

Remark 1 The Rao–Blackwellized particle filter by An-

drieu and Doucet (2002) for p(θt | y1:t) can be directly

obtained as a special case of Algorithm 3, setting k = 0.

Consistent with Remark 1, the Rao–Blackwellized

idea (Andrieu and Doucet, 2002) actually coincides with

a partially collapsed filter which only updates, without

lookahead strategies, the truncated normal component
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in the sun additive representation of the states’ filter-

ing distribution, while maintaining the Gaussian term

exact. Hence, although this method was originally mo-

tivated, in the context of dynamic probit models, also

by the apparent lack of an “optimal” closed-form sisr

for the states’ filtering distribution, our results actu-

ally show that such a strategy is expected to yield im-

proved performance relative to the “optimal” particle

filter for sampling directly from p(θt | y1:t). In fact, un-

like this filter, which is actually available according to

Sect. 4.2.1, the Rao–Blackwellized idea avoids the un-

necessary autocorrelation in the Gaussian component of

the sun representation, and relies on an optimal par-

ticle filter for the multivariate truncated normal part.

In addition, Remark 1 and the derivation of the whole

class of partially collapsed lookahead filters suggest that

setting k > 0 is expected to yield further gains relative

to the Rao–Blackwellized particle filter; see Sect. 5 for

quantitative evidence supporting these results.

5 Illustration on financial time series

Recalling Sects. 1–4, our core contribution in this arti-

cle is not on developing innovative dynamic models for

binary data with improved ability in recovering some

ground-truth generative process, but on providing novel

closed-form expressions for the filtering, predictive and

smoothing distributions under a broad class of routine-

use dynamic probit models, along with newMonte Carlo

and sequential Monte Carlo strategies for accurate learn-

ing of such distributions and the associated functionals

in practical applications.

Consistent with the above discussion, we illustrate

the practical utility of the closed-form results for the fil-

tering, predictive and smoothing distributions derived

in Sect. 3 directly on a realistic real-world dataset, and

assess the performance gains of the Monte Carlo strate-

gies developed in Sect. 4. The focus will be on the accu-

racy in recovering the whole exact sun distributions of

interest, and not just pre-selected functionals. In fact,

accurate learning of the entire exact distribution is more

challenging and implies, as a direct consequence, accu-

racy in approximating the associated exact functionals.

These assessments are illustrated with a focus on a real-

istic financial application considering a dynamic probit

regression for the daily opening directions of the French

cac40 stock market index from January 4th, 2018 to

March 29th, 2019. In this study, the variable yt is de-

fined on a binary scale, with yt = 1 if the opening value

of the cac40 on day t is greater than the corresponding

closing value in the previous day, and yt = 0 otherwise.

Financial applications of this type have been a source

of particular interest in past and recent years (e.g., Kim

and Han, 2000; Kara et al., 2011; Atkins et al., 2018),

with common approaches combining a wide variety of

technical indicators and news information to forecast

stock markets directions via complex machine learning

methods. Here, we show how a similar predictive perfor-

mance can be obtained via a simple and interpretable

dynamic probit regression for yt, which combines past

information on the opening directions of cac40 with

those of the nikkei225, regarded as binary covariates

xt with dynamic coefficients. Since the Japanese mar-

ket opens before the French one, xt is available prior to

yt and, hence, provides a valid predictor for each day t.

Recalling the above discussion and leveraging the

default model specifications in these settings (e.g., Soyer

and Sung, 2013), we rely on a dynamic probit regres-

sion for yt with two independent random walk processes

for the coefficients θt = (θ1t, θ2t)
⊺. Letting Ft = (1, xt)

and pr(yt = 1 | θt) = Φ(θ1t + θ2txt; 1), such a model

can be expressed as in equations (1)–(2) via

p(yt | θt) = Φ[(2yt − 1)Ftθt; 1],

θt = θt−1 + εt, εt
i.i.d.∼ N2(0,W), t = 1, . . . n,

(20)

where θ0 ∼ N2(a0,P0), whereas W is a time-invariant

diagonal matrix. In (20), the element θ1t of θt mea-

sures the trend in the directions of the cac40 when the

nikkei225 has a negative opening on day t, whereas θ2t
characterizes the shift in such a trend if the opening of

the nikkei225 index is positive, thereby providing an

interpretable probit model with dynamic coefficients.

To evaluate performance in smoothing, filtering and

prediction, we split the time window in two parts. Ob-

servations from January 4th, 2018 to May 31st, 2018 are

used as batch data to study the smoothing distribution

and to compare the particle filters developed in Sect. 4.2

with other relevant competitors. In the subsequent time

window, spanning from June 1st, 2018 to March 29th,

2019, the focus is instead on illustrating performance

in online filtering and prediction for streaming data via

the lookahead routine derived in Sect. 4.2.2 — which

yields the highest approximation accuracy among the

online filters evaluated in the first time window.

Figure 3 shows the pointwise median and interquar-

tile range of the smoothing distribution for θ1t and θ2t,

t = 1, . . . , 97, based on R = 105 samples from Algo-

rithm 1. To implement this routine, we set a0 = (0, 0)⊺

and P0 = diag(3, 3) following the guidelines in Gelman

et al. (2008) and Chopin and Ridgway (2017) for probit

regression. The errors’ variances in the diagonal matrix

W are instead set equal to 0.01 as suggested by a graph-

ical search of the maximum for the marginal likelihood

computed under different combinations of (W11,W22)

via the analytical formula in Corollary 3.
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Fig. 3: Pointwise median and interquartile range for the smoothing distributions of θ1t and θ2t in model (20), for the time
window from January 4th, 2018 to May 31st, 2018. The quartiles are computed from 105 samples produced by Algorithm 1.

As shown in Fig. 3, the dynamic states θ1t and θ2t
tend to concentrate around negative and positive val-

ues, respectively, for the entire smoothing window, thus

highlighting a general concordance between cac40 and

nikkei225 opening patterns. However, the strength of

this association varies in time, supporting our proposed

dynamic probit over static specifications. For example,

it is possible to observe a decay in θ1t and θ2t on April–

May, 2018 which reduces the association among cac40

and nikkei225, while inducing a general negative trend

for the opening directions of the French market. This

could be due to the overall instability in the Eurozone

on April–May, 2018 caused by the uncertainty after the

Italian and British elections during those months.

To clarify the computational improvements of the

methods developed in Sects. 4.1 and 4.2, we also com-

pare, in Fig. 4 and in Table 1, their performance against

the competing strategies mentioned in Sect. 1. Here,

the focus is on the accuracy and computational cost in

approximating the exact filtering distribution at time

t = 1, . . . , 97, thereby allowing the implementation of

the filters discussed in Sect. 1. The competing methods

include the extended Kalman filter (Uhlmann, 1992)

(ekf), the bootstrap particle filter (Gordon et al., 1993)

(boot), and the Rao–Blackwellized (rao-b) sequential

Monte Carlo strategy by Andrieu and Doucet (2002),

which has been discussed in Sect. 4.2.2 and exploits the

hierarchical representation (3)–(5) of model (1)–(2). Al-

though being a popular solution in routine implementa-

tions, the extended Kalman filter relies on a quadratic

approximation of the probit log-likelihood which leads

to Gaussian filtering distributions, thereby affecting the

quality of online learning when imbalances in the data

induce skewness. The bootstrap particle filter (Gordon

et al., 1993) provides, instead, a general sisr that relies

on the importance density p(θt | θt−1), thus failing to

account effectively for information in yt, when propos-

ing particles. Rao–Blackwellized sequential Monte Carlo

(Andrieu and Doucet, 2002) aims at providing an alter-

native particle filter, which also addresses the apparent

unavailability of an analytic form for the “optimal” par-

ticle filter (Doucet et al., 2000). The authors overcome

this issue by proposing a sequential Monte Carlo strat-

egy for the Rao–Blackwellized density p(z1:t | y1:t) of

the partially observed Gaussian responses z1:t in model

(3)–(5) and compute, for each trajectory z1:t|t, relevant

moments of (θt | z1:t|t) via classical Kalman filter up-

dates — applied to model (4)–(5) — which are then

averaged across the particles to obtain Monte Carlo es-

timates for the moments of (θt | y1:t). As specified in

Remark 1, this solution, when adapted to draw sam-

ples from p(θt | y1:t), is a special case of the sequential

strategy in Sect. 4.2.2, with no lookahead, i.e., k = 0.

Although the above methods yield state-of-the-art

solutions, the proposed strategies are motivated by the

apparent absence of a closed-form filter for (1)–(2), that

is, in fact, available according to our findings in Sect. 3.

Consistent with this argument, we evaluate the accu-

racy of efk, boot and rao-b in approximating the ex-

act filtering distribution obtained, for each t = 1, . . . , 97,

via direct evaluation of the density from (10). These

performances are also compared with those of the new

methods proposed in Sect. 4. These include the filtering

version of the i.i.d. sampler (i.i.d.) in Sect. 4.1, along

with the “optimal” particle filter (opt) presented in

Sect. 4.2.1, and the lookahead sequential Monte Carlo

routine derived in Sect. 4.2.2, setting k = 1 (la-1).

For the two dynamic state variables θ1t and θ2t, the

accuracy of each sampling scheme is measured via the

Wasserstein distance (e.g., Villani, 2008) between the

empirical filtering distribution computed, for every time

t = 1, . . . , 97, from R = 103, R = 104 and R = 105 par-

ticles produced by that specific scheme and the one ob-

tained via the direct evaluation of the associated exact
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Fig. 4: For the states θ1t and θ2t, barplots representing the relative frequencies of global rankings for the six sampling schemes,
in terms of accuracy in approximating the exact sun filtering distributions over the time window analyzed. For each scheme and
time t = 1, . . . , 97, the accuracy is measured via the median Wasserstein distance (over 100 replicated experiments) between
the empirical filtering distribution computed from 103, 104 and 105 particles, respectively, and the one obtained by direct
evaluation of the associated exact density from (10) on two grids of 2000 equally spaced values for θ1t and θ2t. This allows to
compute, for every t = 1, . . . , 97, the ranking of each sampling scheme in terms of accuracy in approximating the exact filtering
density at time t, and to derive the associated barplot summarizing the distribution of the rankings over the whole window.

accuracy

θ1t [R = 103] θ2t [R = 103] θ1t [R = 104] θ2t [R = 104] θ1t [R = 105] θ2t [R = 105]

i.i.d. 0.01917 [1] 0.02362 [1] 0.00606 [1] 0.00748 [1] 0.00199 [1] 0.00245 [1]

la–1 0.02558 [2] 0.03588 [2] 0.00838 [2] 0.01133 [2] 0.00273 [2] 0.00379 [2]

rao–b 0.02700 [3] 0.03700 [3] 0.00885 [3] 0.01201 [3] 0.00278 [3] 0.00383 [3]

opt 0.06642 [5] 0.09063 [4] 0.02196 [4] 0.03077 [4] 0.00687 [4] 0.00958 [4]

boot 0.07237 [6] 0.10021 [5] 0.02325 [5] 0.03225 [5] 0.00728 [5] 0.00992 [5]

ekf 0.06108 [4] 0.10036 [6] 0.05853 [6] 0.09824 [6] 0.05829 [6] 0.09802 [6]

computational cost

i.i.d. O(tp3 + t3m3 +R[p2 + t2m2C(mt)])

la–1 O(t(p3 +m3) + tR[p2 + pm+m2C(2m)] + tM [m2 +Rm])

rao–b O(t(p3 +m3) + tR[p2 + pm+m2C(m)] + tM [m2 +Rm])

opt O(t(p3 +m3) + tR[p2 + pm+m2C(m)] + tM [m2 +Rm])

boot O(t(p3 +m3) + tR(p2 + pm) + tM [m2 +Rm])

ekf O(t[p3 +m3 +Mm2])

Table 1: For the states θ1t and θ2t, averaged accuracy in approximating the exact sun filtering distribution at t = 1, . . . , 97,
and computational cost for obtaining a sample of dimension R from such a filtering distribution at time t. For each scheme, the
accuracy is measured via the Wasserstein distance between the empirical filtering distribution computed from 103, 104 and 105

particles, respectively, and the one obtained via direct evaluation of the associated exact sun density from (10) on two grids of
2000 equally spaced values for θ1t and θ2t. For each t, we first compute the median Wasserstein distance from 100 replicated
experiments, and then average such quantities across time. Numbers in square brackets denote the ranking in each column.
The costs are derived for the case in which the importance weights are evaluated via Monte Carlo based on M samples. For
the ekf, we provide the cost of the kf recursions, when the probit likelihood is evaluated via M Monte Carlo samples.

density from (10) on two grids of 2000 equally spaced

values for θ1t and θ2t. For the sake of clarity, with a lit-

tle abuse of terminology, the term particle refers both to

the samples of the sequential Monte Carlo methods and

to those obtained under i.i.d. sampling from the sun.

The Wasserstein distance is computed via the R func-

tion wasserstein1d. Note also that, although ekf and

rao-b focus, mostly, on moments of (θt | y1:t), such

strategies can be adapted to sample from an approxi-

mation of the filtering distribution. Figure 4 displays,

for the two states and for varying number of particles,

the frequencies of the global rankings of the different

schemes, out of the 97 time instants. Such rankings

are computed according to the median Wasserstein dis-

tance obtained, for each t = 1, . . . , 97, from 100 repli-

cated experiments. The overall averages across time of

these median Wasserstein distances are reported in Ta-

ble 1, along with computational costs for obtaining R

samples from the filtering at time t under each scheme;

see Appendix B for detailed derivations of such costs.

Figure 4 and Table 1 confirm that the i.i.d. sampler

in Sect. 4.1 over-performs the competitors in accuracy,

since the averaged median Wasserstein distances from

the exact filtering distribution are lower than those of
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Fig. 5: Median and interquartile range of the filtering and predictive distributions for Φ(θ1t + xtθ2t; 1) computed from 105

particles produced by the lookahead particle filter in Algorithm 3 for the second time window. Black and grey segments denote
days in which xt = 1 and xt = 0, respectively.

the other schemes under all settings, and the ranking of

the i.i.d. is 1 in almost all the 97 times. This improved

performance comes, however, with a higher computa-

tional complexity, especially in the sampling from (mt)-

variate truncated normals in the sun additive represen-

tation, which yields a cost depending on C(mt), i.e., the

average number of proposed draws required to accept

one sample. While the improved accuracy of i.i.d. jus-

tifies such a cost in small-to-moderate dimensions, as t

increases the i.i.d. becomes progressively impractical,

thus motivating scalable particle filters with linear cost

in t, such as boot, rao-b, opt and la-1. In our basic R

implementation, we found that the proposed i.i.d. sam-

pler has reasonable runtimes (of a couple of minutes)

also for larger series with mt ≈ 300. However, in much

higher dimensions the particle filters become orders of

magnitude faster and still practically effective.

As expected, the opt filter in Sect. 4.2.1 tends to

improve the performance of boot, since this strategy

is optimal within the class where boot is defined. How-

ever, as discussed in Sects. 4.2.1 and 4.2.2, both meth-

ods induce unnecessary autocorrelation in the Gaussian

part of the sun filtering distribution, thus yielding sub-

optimal solutions relative to particle filters that perform

sequential Monte Carlo only on the multivariate trun-

cated normal component. The accuracy gains of rao-b

and la-1 relative to boot and opt in Fig. 4 and Table 1

provide empirical evidence in support of this argument,

while displaying additional improvements of the looka-

head strategy derived in Sect. 4.2.2 over rao-b, even

when k is set just to 1, i.e., la-1. As shown in Table 1,

the complexities of la-1 and rao-b are of the same or-

der, except for sampling from bivariate truncated nor-

mals under la-1 instead of univariate ones as in rao-b.

This holds for any fixed k, with the additional sampling

cost being C(m[k + 1]). However, consistent with the

results in Fig. 4 and Table 1 it suffices to set k quite

small to already obtain some accuracy gains, thus mak-

ing such increments in computational cost affordable in

practice. The ekf is, overall, the less accurate solution

since, unlike the other methods, it relies on a Gaussian

approximation of the sun filtering distribution. This

is only beneficial relative to boot and opt when the

number of particles is small, due to the reduced mix-

ing of such strategies induced by the autocorrelation in

the Gaussian component of the sun additive represen-

tation. All these results remained consistent also when

comparing other quantiles of the Wasserstein distance

across experiments and when studying the accuracy in

approximating pre-selected functionals of interest.

Motivated by the accurate performance of the novel

lookahead strategy in Sect. 4.2.2, we apply la-1 to pro-
vide scalable online filtering and prediction for model

(20) from June 1st, 2018 to March 29th, 2019. Following

the idea of sequential inference, the particles are initial-

ized exploiting the marginal smoothing distribution of

May 31, 2018 from the batch analysis. Figure 5 outlines

median and interquartile range for the filtering and pre-

dictive distribution of the probability that cac40 has a

positive opening in each day of the window considered

for online inference. These two distributions can be eas-

ily obtained by applying the function Φ(θ1t + xtθ2t; 1)

to the particles of the states filtering and predictive

distribution. In line with Fig. 3, a positive opening of

the nikkei225 provides, in general, a high estimate for

the probability that yt = 1, whereas a negative opening

tends to favor the event yt = 0. However, the strength of

this result evolves over time with some periods showing

less evident shifts in the probabilities process when xt

changes from 1 to 0. One-step-ahead prediction, lever-

aging the samples of the predictive distribution for the

probability process, led to a correct classification rate
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of 66.34% which is comparable to those obtained under

more complex procedures combining a wide variety of

inputs to predict stock markets directions via state-of-

the-art machine learning methods (e.g., Kim and Han,

2000; Kara et al., 2011; Atkins et al., 2018).

6 Discussion

This article shows that filtering, predictive and smooth-

ing densities in multivariate dynamic probit models have

a sun kernel and the associated parameters can be com-

puted via tractable expressions. As discussed in Sects. 3–

5, this result provides advances in online inference and

facilitates the implementation of tractable methods to

draw i.i.d. samples from the exact filtering, predictive

and smoothing distributions, thereby allowing improved

Monte Carlo inference in small-to-moderate settings.

Filtering in higher dimensions can be, instead, imple-

mented via scalable sequential Monte Carlo which ex-

ploits sun properties to provide novel particle filters.

Such advances motivate future research. For exam-

ple, a relevant direction is to extend the results in Sect. 3

to dynamic tobit, binomial and multinomial probit mod-

els, for which closed-form filters are unavailable. In the

multinomial setting a viable solution is to exploit the

results in Fasano and Durante (2021) for the static case.

Joint filtering and prediction of continuous and binary

time series is also of interest (Liu et al., 2009). A natu-

ral state-space model for these data can be obtained by

allowing only the sub-vector of Gaussian variables as-

sociated with the binary data to be partially observed

in (3)–(5). However, also in this case, closed-form filters

are unavailable. By combining our results in Sect. 3 with

classical Kalman filter, this gap may now be covered.

As mentioned in Sects. 1 and 3.2, estimation of pos-

sible unknown parameters characterizing the state-space

model in (1)–(2) is another relevant problem, that can

be addressed by maximizing the marginal likelihood de-

rived in Sect. 3.2. This quantity can be explicitly eval-

uated as in Corollary 3 for any small-to-moderate n.

A more scalable option in large n settings is to rely on

equations (62) and (66) in Doucet et al. (2000) which al-

low to evaluate the marginal likelihood leveraging sam-

ples from particle filters. In this respect, the improved

lookahead filter developed in Sect. 4.2.2 is expected to

yield accuracy gains also in parameter estimation, when

used as a scalable strategy to evaluate marginal likeli-

hoods. This routine can be also adapted to sample from

the joint smoothing distribution via a backward recur-

sion. However, unlike the i.i.d. sampler in Algorithm 1,

this approach yields an additional computational cost

which is quadratic in the total number of particles R

(e.g., Doucet et al., 2000). Since R is much higher than

n in most applications, the i.i.d. sampler developed in

Algorithm 1 is preferable over particle smoothers in rou-

tine studies having small-to-moderate dimension, since

it also yields improved accuracy by avoiding sequential

Monte Carlo. Finally, additional quantitative studies

beyond those in Sect. 5 can be useful for obtaining fur-

ther insights on the performance of our proposed algo-

rithms relative to state-of-the-art strategies, including

recent ensemble sampling (Deligiannidis et al., 2020).

Data and Codes. The dataset considered in Sect. 5 is avail-

able at Yahoo Finance. Pseudo-codes that can be easily im-

plemented with any software are provided in Algorithms 1–3.
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Appendix A: Proofs of the main results

Proof of Lemma 1. To prove Lemma 1, note that, by

applying the Bayes’ rule, we obtain

p(θ1 | y1) ∝ p(θ1)p(y1 | θ1),

where p(θ1) = ϕp(θ1−G1a0;G1P0G
⊺
1+W1) and p(y1 |

θ1) = Φm(B1F1θ1;B1V1B1). The expression for p(θ1)

can be easily obtained by noting that θ1 = G1θ0 + ε1
in (2), with θ0 ∼ Np(a0,P0) and ε1 ∼ Np(0,W1). The

form for the probability mass function of (y1 | θ1) is

instead a direct consequence of equation (1). Hence,

combining these expressions and recalling (6), it is clear

that p(θ1 | y1) is proportional to the density of a sun

with suitably–specified parameters, such that the ker-

nel of (6) coincides with ϕp(θ1 − G1a0;G1P0G
⊺
1 +

W1)Φm(B1F1θ1;B1V1B1). In particular, letting

ξ1|1 = G1a0, Ω1|1 = G1P0G
⊺
1 +W1,

∆1|1 = Ω̄1|1ω1|1F
⊺
1B1s

−1
1 , γ1|1 = s−1

1 B1F1ξ1|1,

Γ 1|1 = s−1
1 B1(F1Ω1|1F

⊺
1 +V1)B1s

−1
1 ,

we have that

γ1|1 +∆⊺
1|1Ω̄

−1
1|1ω

−1
1|1(θ1 − ξ1|1)

= s−1
1 B1F1ξ1|1 + s−1

1 B1F1(θ1 − ξ1|1) = s−1
1 B1F1θ1,

Γ 1|1−∆⊺
1|1Ω̄

−1
1|1∆1|1

= s−1
1 [B1(F1Ω1|1F

⊺
1+V1)B1 −B1(F1Ω1|1F

⊺
1)B1]s

−1
1

= s−1
1 B1V1B1s

−1
1 .

with s−1
1 as in Lemma 1. Note that this term is intro-

duced to make Γ 1|1 a correlation matrix, as required in

the sun parametrization (Arellano-Valle and Azzalini,
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2006). Recalling Durante (2019), and substituting these

quantities in the kernel of the sun density (6), we have

ϕp(θ1 −G1a0;G1P0G
⊺
1 +W1)

· Φm(s−1
1 B1F1θ1; s

−1
1 B1V1B1s

−1
1 )

= ϕp(θ1−G1a0;G1P0G
⊺
1+W1)Φm(B1F1θ1;B1V1B1)

= p(θ1)p(y1 | θ1) ∝ p(θ1 | y1),

thus proving Lemma 1. To prove that Ω∗
1|1 is a correla-

tion matrix, replace the indentity Im with B1V1B1 in

the proof of Theorem 1 by Durante (2019). ⊓⊔

Proof of Theorem 1. Recalling equation (2), the proof

for p(θt | y1:t−1) in (9) requires studying the variable

Gtθt−1 + εt, given y1:t−1, where

(θt−1 | y1:t−1) ∼ sunp,m(t−1)(ξt−1|t−1,Ωt−1|t−1,

∆t−1|t−1,γt−1|t−1,Γ t−1|t−1),

and εt ∼ Np(0,Wt), with εt ⊥ y1:t−1. To address this

goal, first note that, by the closure properties of the sun

under linear transformations (Azzalini and Capitanio,

2014, Sect. 7.1.2), we have that (Gtθt−1 | y1:t−1) is

still a sun with parametersGtξt−1|t−1,GtΩt−1|t−1G
⊺
t ,

[(GtΩt−1|t−1G
⊺
t )⊙Ip]

− 1
2Gtωt−1|t−1∆t−1|t−1, γt−1|t−1

and Γ t−1|t−1. Hence, to conclude the proof of equa-

tion (9), we only need to obtain the distribution of the

sum among this variable and the noise εt ∼ Np(0,Wt).

This can be accomplished by considering the moment

generating function of such a sum — as done by Az-

zalini and Capitanio (2014, Sect. 7.1.2) to prove clo-

sure under convolution. Indeed, it is straightforward to

note that the product of the moment generating func-

tions for εt and (Gtθt−1 | y1:t−1) leads to the mo-
ment generating function of a sun having parameters

ξt|t−1 = Gtξt−1|t−1, Ωt|t−1 = GtΩt−1|t−1G
⊺
t + Wt,

∆t|t−1 = ω−1
t|t−1Gtωt−1|t−1∆t−1|t−1, γt|t−1 = γt−1|t−1

and Γ t|t−1 = Γ t−1|t−1. To prove (10) note that

p(θt | y1:t) ∝ Φm(BtFtθt;BtVtBt)p(θt | y1:t−1)

coincides with the posterior density in the probit model

having likelihood Φm(BtFtθt;BtVtBt), and sun prior

p(θt | y1:t−1) from (9). Hence, (10) can be derived from

Corollary 4 in Durante (2019), replacing matrix Im in

the classical probit likelihood with BtVtBt. ⊓⊔

Proof of Corollary 1. To prove Corollary 1, re-write∫
Φm(BtFtθt;BtVtBt)p(θt | y1:t−1)dθt as∫
Φm(BtFtθt;BtVtBt)K(θt | y1:t−1)dθt

Φm(t−1)(γt|t−1;Γ t|t−1)
,

withK(θt|y1:t−1) = p(θt|y1:t−1)Φm(t−1)(γt|t−1;Γ t|t−1)

denoting the kernel of the predictive density from (9).

Consistent with this result, Corollary 1 follows by not-

ing that Φm(BtFtθt;BtVtBt)K(θt | y1:t−1) is the ker-

nel of the filtering density from (10), whose normalizing

constant
∫
Φm(BtFtθt;BtVtBt)K(θt | y1:t−1)dθt is

equal to Φmt(γt|t;Γ t|t). ⊓⊔

Proof of Theorem 2. First notice that p(θ1:n | y1:n) ∝
p(θ1:n)p(y1:n | θ1:n). Therefore, p(θ1:n | y1:n) can be

seen as the posterior density in the Bayesian model with

likelihood p(y1:n | θ1:n) and prior p(θ1:n) for the vector

θ1:n = (θ⊺
1 , . . . ,θ

⊺
n)

⊺. As pointed out in Sect. 3.2, it fol-

lows from (2) that θ1:n ∼ Npn(ξ,Ω), with ξ and Ω de-

fined in Sect. 3.2. The form of p(y1:n | θ1:n) can be ob-

tained from (1), by noticing that y1, . . . ,yn are condi-

tionally independent given θ1:n, thus providing the joint

likelihood p(y1:n | θ1:n) =
∏n

s=1 Φm(BsFsθs;BsVsBs).

This quantity can be re-written as Φmn(Dθ1:n;Λ) with

D and Λ as in Sect. 3.2. Combining these results and

recalling the proof of Lemma 1, if follows that p(θ1:n |
y1:n) ∝ ϕpn(θ1:n − ξ;Ω)Φmn(Dθ1:n;Λ), which coin-

cides with the kernel of the sun in Theorem 2. ⊓⊔

Proof of Corollary 3. The expression for the marginal

likelihood follows by noting that p(y1:n) is the normaliz-

ing constant of the smoothing density. Indeed, p(y1:n) =∫
p(y1:n|θ1:n)p(θ1:n)dθ1:n. Hence, the integrand coin-

cides with the kernel of the smoothing density, so that

the whole integral is equal to Φmn(γ1:n|n;Γ 1:n|n). ⊓⊔

Proof of Corollary 4. The proof of Corollary 4 is

similar to that of Lemma 1. Indeed, the proposal p(θt |
θt−1,yt) is proportional to the product between the

likelihood p(yt | θt) = Φm(BtFtθt;BtVtBt) and the

prior p(θt | θt−1) = ϕp(θt − Gtθt−1;Wt). To derive

the importance weights in (15), it suffices to notice that

the marginal likelihood p(yt | θt−1) coincides with the

normalizing constant of the sun in (14). ⊓⊔

Proof of Proposition 1. To derive the form of the

proposal, first notice that p(zt−k:t | z1:t−k−1,yt−k:t) ∝
p(zt−k:t | z1:t−k−1)p(yt−k:t | z1:t). Recalling model (3)–

(5) and Sect. 4.2.2, we have that (zt−k:t | z1:t−k−1) ∼
Nm(k+1)(rt−k:t|t−k−1,St−k:t|t−k−1) and p(yt−k:t|z1:t) =
1(zt−k:t ∈ Ayt−k:t

). Hence, p(zt−k:t | z1:t−k−1)p(yt−k:t |
z1:t) is the kernel of the [m(k + 1)]-variate truncated

normal in Proposition 1. The form of the weights in (18)

follows from their general expression (e.g., Andrieu and

Doucet, 2002, Sect. 2.2.1), combined with the sequential

formulation of the model. Note also that, when written

as a function of zs from the proposal, p(ys | zs) = 1,

for any s = 1, . . . , t− k. Therefore, with the convention
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that p(z1 | z0) = p(z1), the weights are proportional to

p(z1:t−k | y1:t)

p(z1:t−k−1 | y1:t−1)p(zt−k | z1:t−k−1,yt−k:t)

∝ p(y1:t | z1:t−k)p(z1:t−k)/p(z1:t−k−1)

p(y1:t−1 | z1:t−k−1)p(zt−k | z1:t−k−1,yt−k:t)

=
p(y1:t | z1:t−k)p(zt−k | z1:t−k−1)

p(y1:t−1 | z1:t−k−1)p(zt−k | z1:t−k−1,yt−k:t)

=
p(y1:t | z1:t−k)p(yt−k:t | z1:t−k−1)

p(y1:t−1 | z1:t−k−1)p(yt−k:t | z1:t−k)

=
p(yt−k:t | z1:t−k−1)

p(y1:t−1 | z1:t−k−1)
=

p(yt−k:t | z1:t−k−1)

p(yt−k:t−1 | z1:t−k−1)
,

where the last equality follows from the fact that p(y1:t |
z1:t−k) = p(yt−k:t | z1:t−k). To obtain the final form

of equation (18) if suffices to notice that p(yt−k:t |
z1:t−k−1) = pr(Bt−k:tz̃ > 0) = Φm(k+1)(µt;Σt), where

z̃∼Nm(k+1)(rt−k:t|t−k−1,St−k:t|t−k−1), with rt−k:t|t−k−1,

St−k:t|t−k−1, andBt−k:t defined as in Sect. 4.2.2. A sim-

ilar argument holds for the denominator of (18). ⊓⊔

Appendix B: Derivation of computational costs

In this section we derive the computational costs of the

algorithms discussed in Sects. 4 and 5. Let us first con-

sider Algorithm 1 with an initial focus on the smoothing

distribution. For this routine, the matrix computations

to obtain the parameters of interest require O(n3[p3 +

m3]) operations. Regarding the sampling cost to obtain

R draws, step [1] requires O(p3n3 +Rp2n2) operations

since we have to first compute the Cholesky decompo-

sition of Ω̄1:n|n −∆1:n|nΓ
−1
1:n|n∆

⊺
1:n|n in O(p3n3), and

then multiply each independent sample for the resulting
lower triangular matrix, at O(Rp2n2) total cost. Step

[2] requires, instead, to obtain a minimax exponentially-

tilted estimate at O(m3n3) cost (Botev, 2017) and then

perform O(n2m2C(mn)) operations for each indepen-

dent sample, where C(d) denotes the average number of

proposed draws required per accepted sample in Botev

(2017), when the dimension of the truncated normal is

d. Hence, the overall cost of Algorithm 1 is O(n3(p3 +

m3) +Rn2[p2 +m2C(mn)]). If the interest is in the fil-

tering distribution, which coincides with the marginal

smoothing at n = t, it is sufficient to sample U0 n|n in-

stead of U0 1:n|n. Hence, the overall cost for R samples

reduces to O(tp3 + t3m3 +R[p2 + t2m2C(mt)]).

We now consider the computational costs of the par-

ticle filters considered in Sect. 4 and 5. For each t, the

cost is due to computation of parameters, sampling and

evaluation of the importance weights. Starting with the

“optimal” particle filter in Sect. 4.2.1, the matrix oper-

ations for computing the quantities in steps [3.1]–[3.3]

of Algorithm 2 have an overall cost for the R samples of

O(m3 + pm2 + p2m+Rpm+Rp2). The sampling costs

are, instead,O(p3+Rp2) andO(m3+Rm2C(m)) for the

Gaussian and truncated normal terms, respectively. To

conclude the derivation of the computational costs, it is

necessary to derive those associated with the evaluation

of the importance weights. For all the particle filters

analyzed, such weights are obtained by evaluating in R

different points the cumulative distribution function of

a zero mean multivariate normal with fixed covariance

matrix. To facilitate comparison, we assume that this

evaluation relies on a Monte Carlo estimate based onM

samples in all the particle filters. For the “optimal” par-

ticle filter, this step requires O(m3 +Mm2) operations

to obtain the samples, plus O(MRm) for computing

the Monte Carlo estimate. Combining these results, the

overall cost for the “optimal” particle filter at time t is

O(t(p3+m3)+tR[p2+pm+m2C(m)]+tM [m2+Rm]).

Let us now derive the cost of the Rao–Blackwellized

algorithm by Andrieu and Doucet (2002). In this case,

adapting the notation of the original paper to the one of

Sect. 4.2.2, it can be noticed that one kf step requires

O(p3+Rp2+Rpm+m3) operations for the computation

of Pt|t−1,at|t−1,St|t−1, rt|t−1, Pt|t and at|t, at any t. As

for the sampling part, it first requires R draws from an

m-variate truncated normal. Exploiting the same argu-

ments considered for the previous algorithms, this step

has an O(m3+Rm2C(m)) cost. The sampling from the

final Gaussian filtering distribution p(θt | z1:t = z1:t|t)

of direct interest requires instead O(p3 + Rp2) opera-

tions. Leveraging again the derivations for the previous

algorithms, the computation of the importance weights

has cost O(m3 +Mm2 + RMm). Therefore, the over-

all cost of the sequential filtering procedure at time t is

O(t(p3+m3)+tR[p2+pm+m2C(m)]+tM [m2+Rm]).

The above derivations for the Rao–Blackwellized al-

gorithm directly extend to the partially collapsed looka-

head particle filter shown in Algorithm 3. In fact, while

at each t the Rao–Blackwellized solution requires one

kf recursion combined with sampling from m-variate

truncated normals and evaluation of cumulative distri-

bution functions of m-variate Gaussians, the lookahead

routine relies on samples from [m(k+1)]-variate trun-

cated normals along with k+1 kf steps, and computa-

tion of cumulative distribution functions for [m(k+1)]-

dimensional Gaussians. Hence, adapting the cost of the

Rao–Blackwellized algorithm to this broader setting, we

have that the overall cost of Algorithm 3 at time t is

O(t(k+p
3+k3+m

3)+tR[k+p
2+k+pm+k2+m

2C(k+m)]+

tM [k2+m
2 + Rk+m]), where k+ = k + 1. Note that, in

practice, k is set equal to a pre-specified small constant

and, therefore, the actual implementation cost reduces

to O(t(p3+m3)+ tR[p2+pm+m2C(k+m)]+ tM [m2+

Rm]), where k+ only enters in C(k+m).
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The bootstrap particle filter leverages the proposal

p(θt | θt−1), with importance weights given by the like-

lihood in equation (1). Hence, exploiting similar argu-

ments considered for the previous routines yields a cost

O(t(p3 +m3) + tR(p2 + pm) + tM [m2 +Rm]).

Finally, note that the cost of the extended Kalman

filter (Uhlmann, 1992) is lower than the one of the par-

ticle filters since no sampling is involved, except for the

Monte Carlo evaluation of the multivariate probit like-

lihood. In particular, at each t, one has to invert a p×p

and an m × m matrix, plus computing the likelihood,

which yields a total cost at t of O(t[p3 +m3 +Mm2]).
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