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Abstract

This paper deals with properties of three indirect estimators that
are known to be (�rst order) asymptotically equivalent. Speci�cally,
we examine a) the issue of validity of the formal Edgeworth expan-
sion of an arbitrary order. b) Given a), we are concerned with valid
moment approximations and employ them to characterize the second
order bias structure of the estimators. Our motivation resides on the
fact that one of the three is reported by the relevant literature to be
second order unbiased. However, this result was derived without any
establishment of validity. We provide this establishment, but we are
also able to massively generalize the conditions under which this sec-
ond order property remains true. In this way, we essentially prove
their higher order inequivalence. We generalize indirect estimators
by introducing recursive ones, emerging from multistep optimization
procedures. We are able to establish higher order unbiaseness for es-
timators of this sort.
KEYWORDS: Asymptotic Approximation, Second Order Bias Struc-

ture, Binding Function, Local Canonical Representation, Convex Vari-
ational Distance, Recursive Indirect Estimators, Higher order Bias.
JEL: C10, C13
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1 Introduction
Indirect Inference (hereafter II), usually applied to parametric statistical
models,1 employs a (possibly) "misspeci�ed", auxiliary model for inference
on the parameter value corresponding to the true unknown measure in which
the relevant sample space is equipped. The motivation is largely computa-
tional, hence the choice of the auxiliary model is primarily driven by numeri-
cal cost considerations. Despite this motivational characteristic, II gives rise
to an enrichment of the theory of parametric statistical inference, due to the
fact that it relies on the local inversion of functions that "bind" (possibly)
di¤erent collections of probability measures de�ned on the same probability
space.
These functions essentially describe relations between classes of random

elements de�ned on each collection, that are typically employed for statistical
estimation (e.g. moment conditions). In this respect, a collection of random
elements employed to de�ne an estimation procedure in one model, can be
pulled back to another and therefore used to indirectly facilitate inference.
When these collections of measures have additional structure, the resulting
"binding" can be chosen so that (at least locally) it respects this structure.
Consequently, the central notion of II procedures is the one of the binding
function, denoted by b (�), where � the parameter vector to be estimated.
In pure terms this constitutes a function between the measures involved in
the relevant statistical models. What is usually discussed is not the function
itself, but a parametric representation of it.
This paper is concerned with the approximation of certain �nite sample

properties of three indirect estimators that are known to be (�rst order) as-
ymptotically equivalent. Speci�cally, for each one of them, we examine a) the
validity of the formal Edgeworth expansion of its sequence of distributions,
provided by the inversion of the Taylor expansion of any �nite order, of the
�rst order conditions that it satis�es. b) Given the validity, we explicitly
provide conditions that establish the validity of the approximation of the
�rst moment sequence of the estimator by the relevant sequence of inversion,
and c) we explicitly provide the moment approximation of the second order
expansion and use it in order to characterize the bias structure of the esti-
mators up to this order. Our motivation resides in the fact that one of the
three is reported by the relevant literature to be second order unbiased under
a particular set of conditions. This result, which is cited bellow, was derived
without any establishment of validity. We provide this establishment, but

1Although it can be extended into a semiparametric framework, see Dridi and Renault
[8].
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we also are able to massively generalize the conditions under which this sec-
ond order property remains true. There are no, in the literature, analogous
results for the other two estimators. Validating the expansions at any or-
der and deriving the second order expansion for the remaining estimators,
we show that the previous result does not apply in these cases. Hence we
essentially derive their higher order inequivalence.
The expansions involved concern the so-called delta method of approxi-

mations of moments of estimator sequences widely used in a formal manner
in statistics (e.g. Linton [16] and McCullagh [18]).2 This method proceeds
into deriving approximations of the analytical functional forms of extremum
statistics using the implicit function theorem, and then approximating the
sequence of moments by the moments of the approximations (see e.g. Sargan
[21] and Phillips [20]). Hence the estimator sequence is approximated by a
sequence of random elements (not necessarily de�ned on the same probabil-
ity space), which is generally termed stochastic expansion. These expansions
do not su¢ ce for the approximation of distributional characteristics unless
conditions that ensure some sort of continuity of the map that assigns to a
sequence of random elements the associated sequence of probability distri-
butions are imposed. These conditions usually work through the following
mechanism: both the sequences of distributions of the estimator and the
stochastic expansion sequences are proven to be (in the appropriate manner)
approximated by the same sequence of Edgeworth distributions. Due to the
fact that the underlying space of sequences of distributions is properly topol-
ogized, since both sequences are close to the same sequence of distributions
then a topological form of the triangle inequality must hold: they must also
be close.3

We need some further clari�cation on the notions that we attribute to the
approximations examined. Let M and M� denote arbitrary �nite measures
de�ned on the same measurable topological vector space S. Let BC denote the
collection of convex Borel sets of the space. The convex variational distance
between these is de�ned as

CVD(M;M�) = sup
A2BC

jM (A)�M� (A)j

It can be easily seen that the CVD topologizes the set of �nite measures on
the space (sayMF (S)), as a pseudometrizable (hence �rst countable) non
Hausdor¤ space. Consider now two arbitrary sequences (say Mn and M�

n) of

2The term formal means "purely algebraic, without concern for topological matters of
convergence".

3Note that this type of argument does not hold in general neighborhood spaces that
are not topological.
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the latter space that have the same CVD�limit (say M0). We say that M�
n

provides an asymptotic approximation of order s to Mn i¤

CVD(Mn;M
�
n) = o

�
n�a
�

for some, a = i
2
, i 2 f0; 1; : : :g and s = 2a + 1.4 Hence, the set of sequences

of �nite measures on S that CVD converge to M0, say
�
(MF (S))N ;M0

�
is

topologized by the asymptotic approximation de�nition as a pseudometriz-
able non Hausdor¤ space. In this respect, the s order asymptotic approx-
imation sequence M�

n is simply an element of a closed ball with center Mn

and an radius that depends on a.
Notice that, �rst, if M�

n is a sequence of Edgeworth measures then we
say that Mn has a valid Edgeworth expansion of order s. Remember that
the Edgeworth measures are not probability measures but �nite signed ones.
Second, in a similar construction, we can consider the set of sequences of
elements of a Euclidean space that have the same limit. Due to the fact
that a Euclidean space is metric, then this set can also be topologized as
a pseudometrizable non Hausdor¤ space if, when xn and yn are two such
sequences that converge to x0, we de�ne that yn provides an asymptotic
approximation of order s to xn i¤

kxn � ynk = o
�
n�a
�

Again, yn is simply an element of a closed ball with center xn and an radius
that depends on a. This can be helpful in the issue of moment approxima-
tion (of some order) of sequences of measures that are mutually asymptotic
approximations.
We are essentially concerned on whether given CVD(Mn;M

�
n) = o (n

�a),
it follows that



R
S
f (dMn � dM�

n)


 = o (n�a) for a given f 2 (Rq)S. In the

case of a bounded f , the aforementioned consequence is valid. When however
f is not bounded, then it generally does not hold, either because the functionR
S
fd� on

�
(MF (S))N ;M0

�
does not attain its values in

�
(Rq)N ; x0

�
(e.g.

f is not integrable w.r.t. the limit distribution and/or some elements of the
sequences, or some of the sequence of integrals do not converge), or in the case

that the function
R
S
fd�:

�
(MF (S))N ;M0

�
!
�
(Rq)N ; x0

�
is not in general

distance preserving. This discussion essentially implies that the asymptotic
approximation of distributions does not imply the asymptotic approximation
of moments. We provide conditions that ensure the latter given the former
in the case where S = Rq and f = idRq . These conditions are reminiscent of

4Obviously in this set up this distance could be expressed in the dual notion of measures.
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the uniform integrability ones employed in analogous circumstances, except
that in this case we have to also consider the order of the approximation (i.e.
essentially the value of a).
All three indirect estimators, considered here, essentially involve two step

estimation procedures. In the �rst step, an estimating equation, that is part
of the structure of the auxiliary model, is employed in order for the statistical
information to be summarized into a statistic with values in the auxiliary
parameter space. This statistic is called an auxiliary estimator. Under the
appropriate conditions will (strongly and/or weakly) converge to the value
of the binding function when evaluated at the true parameter value. This
remark motivates the second step. If this function is at least locally invertible,
it is inverted at the value of the auxiliary estimate in order for the indirect
estimate to be computed. The auxiliary estimator is denoted in the paper by
�n whereas �n is the collective notation for the indirect ones, with n being
the sample size.
The auxiliary estimator is de�ned (at least for large n) as the global

minimizer of a distance function on the auxiliary parameter space. This
distance function is represented by a norm, which in turn is represented by a
positive de�nite matrix. Our set up is the outmost general, since we allow for
this matrix to be stochastic and dependent on the auxiliary parameter. This
matrix is possibly computed with respect to an initial estimator, a situation
that mimics the issue of optimal weighting in the GMM estimation theory.
We term this general framework as stochastic weighting.
The �rst indirect estimator considered here minimizes an analogous gen-

eral distance function between the �n and b (�). It is termed GMR1 and
it was proposed by Gourieroux, Monfort and Renault [13] in order for the
numerical burden of the second estimator to be relaxed. The latter is termed
GMR2 and it minimizes the previous distance between �n and E��n. This
is obviously di¤ering from the previous and is the essential reason for the
second order properties of the estimator. The third estimator, called GT,
was proposed by Gallant and Tauchen [10] and minimizes the norm of the
expectation of the auxiliary estimating vector. Its motivation is obvious. In
all three cases we allow for stochastic weighting in the sense described above.
In most realistic cases, the expectations involved and the binding function
are analytically intractable, hence approximated by simulations. It is eas-
ily seen that the simulation counterpart of the GMR2 estimator is the one
involved with the maximal numerical burden among the three.
Gourieroux, Renault and Touzi [14] show that the GMR2 estimator has

null, up to second order bias, since it involves the computation of E��n
(called the small sample binding function), when i) the dimension of the
structural parameter space equals the dimension of auxiliary and ii) the
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binding function is a¢ ne. Notice that ii) is automatically satis�ed, when
the auxiliary coincides with the structural model and the binding function is
approximated by a consistent estimator of the auxiliary parameters. In this
case the particular indirect estimator is said to perform a bias correction of
the �rst step one.5

Notice that each of the indirect estimators, in the framework of stochastic
weighting, are essentially derived from the evaluation of the inverse of a �nite
sample binding function (say bn (�;Wn; �

�
n)), that depends on the weighting

matrix and on an initial estimator (say ��n), evaluated at the auxiliary esti-
mator. Each of these functions generally di¤er across the estimators that are
considered here, but under the appropriate conditions, converge uniformly
on b (�). In the special case where the involved dimensions coincide, and the
weighting is non-stochastic, then bn (�;Wn; �

�
n) = b (�) in the case of GMR1

and GT (see lemma 2.2), while in the case of GMR2 bn (�;Wn; �
�
n) = E��n.

Hence the stochastic weighting, essentially generalizes the structure of the
functions from the inversion of which the Indirect Estimators (IE) are de-
rived.6

As now that IE are derived from the computation of a local di¤eomor-
phism (say f) at the auxiliary estimator, applying a local canonical coor-
dinates theorem, one can always �nd a representation of f , termed local
canonical representation, such that the binding function b is of the form�

�
0q�p

�
. Consequently, the appropriate parameterization of the auxiliary

model is called local canonical parameterization. When this parameteriza-
tion is known the resulting IE posses desirable bias properties. Speci�cally,
we prove that in this case, and under constant weighting, the GMR2 esti-
mator is second order unbiased. However, in most cases of interest the local
canonical representation is not known. Nevertheless, by introducing a recur-
sive multistep procedure for the GMR2 estimator, we prove that this IE can
be unbiased up to given order.
We immediately provide the assumption framework needed for the de�n-

ition of the examined estimators. We then provide, in section 3, assumptions
su¢ cient for and derive the validity of the Edgeworth approximations. Given

5Gourieroux et al. [14] are occupied with the up to third order
�
O
�
n�1

��
bias structure

of the estimator in question. However the complexity of the third order term, does not
lead to general conclusive statements. Hence we choose to examine terms up to order

O
�
n�

1
2

�
as in Gourieroux and Monfort [12] (chapter 4).

6These functions are required to be injective, at least locally. In cases where this is not
true, the inversion can be performed with the use of some measurable choice function the
existence of which resides upon the relevant framework. We do not pursue this approach
here.
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the results of this section, we provide, in the following one, assumptions that
validate the �rst moment approximations and derive the approximations for
a = 1

2
. We also discuss the bias properties of the estimators, present the

local canonical form of the binding function in section 4.2, and provide mul-
tistep extensions of the GMR2 estimator that have desirable bias properties
of general order (section 4.3). In section 5 we conclude. We gather all proofs
in the �rst appendix, whereas in the second one we provide a series of useful
general lemmas.

2 General Assumption Framework
We introduce our general assumption framework that facilitate the following
de�nition of the estimators. Any other assumption will be introduced locally.
The symbol O" (�) will denote the "-ball around � in a relevant metric space,
and let d = max (2a+ 2; 3).

Assumption A.1 The results that will be later presented, lie in the premises
of a well-speci�ed, identi�ed (di¤erentially) parametric, and �nite dimen-
sional statistical model that is consisted of a family of probability distributions
with respect to a dominating measure (say �), de�ned on the measurable space
(Rm;BRm).7 We will denote this family of distributions with D, with a global
Lipschitz parameterization, that is a (kth-order) di¤eomorphism (for k � d),
say par to an open bounded subset of Rp for some p 2 N, which we denote by
�.8 We denote with D0 the unknown true distribution which corresponds to
the true probability measure (say P�0) with which the underlying probability
space is equipped, and with �0 =par(D0).

Remark R.1 Notice that, since � is a bounded subset of a �nite dimensional
Euclidean space it is also totally bounded. Further, D could be extended so
as to be homeomorphic to a compact superset of �, say ��. In this case

7We could easily generalize the form of the underlying measurable space in order to
retain only some desirable structures such as di¤erentiabilty of real functions that are
de�ned on it etc.

8This means that D (which by construction obtains the topology of variation norm)
has the structure of a (of k order) di¤erentiable manifold, that could be among others
inherited by a relevant structure on the underlying measurable space, see the previous
note. Since we are not interested in (almost) any geometric properties of our results, the
assumption of a global parametrization is without loss of generality. It is trivial that par
is not unique, since any other autodi¤eomorphism of the same order on �, will produce
another parametrization by composition with par. For further inquiries on the geometry
of smooth statistical models see among others Amari and Nagaoka [1].
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and in order for the di¤erentiability properties to be retained the previous
assumption could be completed with �0 2Int(��).

Let B denote a subset of Rq for some q 2 N and a function b : � ! B,
which is hereafter termed as the binding function and we denote with Dr,
the r-derivative operator that maps a function to a function that consists
of the algebraic element containing all the rth-order partial derivatives of
the �rst. When A is a matrix kAk will denote a topologically equivalent
yet submultiplicative matrix norm, such as the Frobenius norm (i.e. kAk =p
trA0A). Also when suprema, with respect to parameters, of derivatives

are discussed these are obviously taken where the di¤erentiated function is
di¤erentiable.

Assumption A.2 b (�0) = b (�) i¤ � = �0, and for some "1 > 0, the re-
striction bjO"1 (�0) : O"1 (�0) ! B is invertible. For some "1 � "2 > 0, the
restriction bjO"2 (�0) : O"2 (�0)! B is a k�di¤eomorphism.

Remark R.2 The invertibility of the particular restriction of the binding
function, implies that �0 is inferable from the knowledge of b (�0) and of the
restricted binding function, a property that is a cornerstone for the concept
of II, hence it is termed as local indirect identi�cation. Furthermore, we
have that q � p and that rank

�
@b
@�0

�
= p, 8� 2 O"2 (�0).

Assumption A.3 b (�) is Lipschitz on � and sup� kDrb (�)k < Mr, 8r =
2; : : : ; d+ 1 for � 2 O"3 (�0), for some "3 � "2, with Mr 2 R+.

We also consider the function c : Rm�B ! Rl for some l 2 N such that:

Assumption A.4 p; q; l are �nite and p � q � l and c(�; �) is jointly mea-
surable with repsect to the product algebra of Rm �B, and c(x; �)jb(O"2 (�0)) is
d�continuously di¤erentiable on b (O"2 (�0)) for ��almost all x 2 Rm with
k � d = max (3; 2a+ 2). Also kc(x; �)� c(x; �0)k � uc (x) k� � �0k, 8�; �0 2
B and sup� E� kuck

q0 ; E� kc(x; �)kq0 < 1, for some q0 � max (2a+ 1; 2)
and, 8� 2 b (O"2 (�0)), and E�c(x; �) = 0l�1, i¤ � = b (�), 8� 2 O"2 (�0).
Also, sup'2O�('0)



 @
@�0E� [c (x; �)]



 and sup'2O�('0) 


 @
@�i@�j

E� [c (x; �)]



 are bounded

8i; j = 1; : : : p for some � > 0, where '0 =
�
b= (�0) ; �

=
0

�=
and the product

topology is considered.

Remark R.3 The previous assumption implies the identi�cation of b (�0),
as the unique solution of E�0c(x; �) = 0l�1, which along with the required
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di¤erentiability implies that the rank
�
E�

@c(x;�)
@�0

�
= q, 8� 2 b (O"2 (�0)),

8� 2 O"2 (�0). Conditions of the form kc(x; �)� c(x; �0)k � uc (x) k� � �0k,
8�; �0 2 B can be termed as global stochastic Lipschitz continuity conditions
and facilitate the convergence of the auxiliary estimators to b (�0).

Remark R.4 The function c and the estimating equations E�c(x; b (�)) =
0l�1 can re�ect part of the structure of an auxiliary model, not necessarily
well speci�ed.

Remark R.5 Similarly, conditions for boundeness of quantities such as
sup�2O�('0)



 @
@�0E� [c (x; �)]



, holding locally on � � B are typically used in
the case of the GT estimator and can be derived from conditions like
limn!1 sup�2O�('0)E� k

p
ncn (�)k2 <1 and limn!1 sup�2O�(�0)E� k

p
nsn (�)k2 <

1 where sn (�) denotes the average score function. Analogously the condition
for the second order derivatives would follow from the condition above and

limn!1 sup�2O�(�0)E�




pnsn (�) s0n (�) +Hn (�)



2 < 1 (see also A.6 and

R.10 for analogous conditions).

Notice that due to the fact that the spaces � and B are separable subsets
of Euclidean spaces, suprema of real random elements over these spaces are
typically measurable (see van der Vaart and Wellner [24], example 1.7.5 p.
47 for ' any map from the closure to the interior which is the identity on the
interior).
The following assumption concerns the weighting matrices and essentially

implies that thee matrices will satisfy a L.L.N. at �0 or b (�0), and even more
evaluated at points that converge to the aforementioned.

Assumption A.5 Let W (x; �), W � (x; �) and W �� (x; �) be l � l, q � q
and l � l �-almost surely positive de�nite random matrices such that d-
di¤erentiable 8� 2 b (O"2 (�0)), 8� 2 O"2 (�0), such that E�0W (x; b (�0)) =
W (b (�0)), E�0W

� (x; �0) = W � (�0) and E�0W
�� (x; �) = W �� (�0) are well

de�ned positive de�nite matrices, and E�0 kW (x; b (�0))kq0 <1,
E�0 kW � (x; �0)kq0 <1 and E�0 kW �� (x; �0)kq0 <1 for q0 de�ned above.

Analogously, in the following let Wn (�), W �
n (�) and W

��
n (�) denote

1
n

P
W (xi; �), 1n

P
W � (xi; �), and 1

n

P
W �� (xi; �) respectively.

2.1 Definition of Estimators
In this section the set of estimators under examination are de�ned. They
are all minimum distance estimators, whose existence is veri�ed (at least
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asymptotically) by the previous assumption framework. In any case their
existence, as well de�ned single valued measurable functions on the relevant
sample space (say 
n), can be facilitated by the use of measurable choice
functions.
Denote with PD (k;R) the vector space of positive de�nite matrices of

dimension k�k (with respect to matrix and scalar multiplication). Consider
the following real function from Rk � PD (k � k) for k 2 N

(x;A)!
�
x=Ax

�1=2
for a given matrix the previous function de�nes a norm on Rk. Denote the
function (�; �) jA with k�kA. We denote by 
n the sample space for sample of
size n.
We next de�ne the auxiliary estimator �n as:

De�nition D.1 The auxiliary estimator �n : 
n ! B is de�ned as

�n = argmin
�2B

kcn (�)kWn(�
�
n)

Given the de�nition of the auxiliary estimator we de�ne the indirect ones.
We collectively denote them with �n, since in the following context there is
not danger of confusion. The �rst and second of thee indirect estimators
were formalized by Gourieroux et al. [13] while the third was introduced by
Gallant and Tauchen [10] (see also Gourieroux and Monfort [12], chapter 4,
for a summary).
The GMR1 estimator is de�ned as:

De�nition D.2 The GMR1 estimator �n : 
n ! B is de�ned as

�n = argmin
�2�

k�n � b (�)kW �
n(�

�
n)

Under assumptions A.1 and A.3, i.e. � is bounded and b (�) is Lipschitz,
B is bounded and the following lemma is trivially true.

Lemma 2.1 Under assumptions A.1 and A.3, kE��nk <1

Given the above lemma, it is possible to de�ne the GMR2 estimator as:

De�nition D.3 The GMR2 estimator �n : 
n ! B is de�ned as

�n = argmin
�2�

k�n � E��nkW �
n(�

�
n)

10



We denote by E� (cn (�n)), the quantity E� (cn (�)) j�=�n for notational
simplicity. Due to assumption A.4 we have that 8� kE� (cn (�n))k < 1.
Consequently, the following minimization procedure can be de�ned.

De�nition D.4 The GT estimator �n : 
n ! B is de�ned as

�n = argmin
�2�

kE� (cn (�n))kW ��
n (��n)

The usual de�nition of the aforementioned estimator is given only when
the auxiliary estimator is the MLE of the auxiliary model. The currently
de�ned one is an obvious extension.

Remark R.6 We implicitly assume that the argmin is non-empty. In case
that this happens, we can compactify � as in remark R.1. On the other
hand, if the argmin is multivalued, one can consider results such as the ones
in Proposition 3.2 in Dupacova and Wets [9]. In fact, any of objective func-
tions are jointly measurable with respect to the relevant product spaces and are
almost everywhere continuous with respect to the relevant parameter spaces.
Given this, any of the objective functions can be extended to random lower
semi-continuous functions with proper domains the relevant spaces. Conse-
quently, the above mentioned Proposition applies, justifying the existence of
any of these estimators as a measurable selection.

Remark R.7 The computation of all three estimators relies on the analytical
knowledge of the binding function or the engaged expectations, which are
usually intractable. Due to this fact in applications approximations of these
estimators are de�ned, in which the unknown elements are approximated by
simulations.

It is known that the three estimators are asymptotically �rst order equiva-
lent (proviso a certain selection of the weighting matrix of GMR1 and GMR2
given the weighting matrix of the GT estimator). However, in the special
case where p = q we have the following lemma (see appendix for a proof).

Lemma 2.2 When GMR1 and GT are consistent and p = q = l, with prob-
ability 1� o (n�a)

GMR1=GT

Notice that the previous lemma makes sense for large enough n, due to
the possibility of non-empty boundaries, and/or non existence of either or
both of the estimators.
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Remark R.8 Notice that in this framework and in analogy to the particular
relationship between the GMR1 and the GT estimators, we could also de�ne
a variant of the latter (it would be homologous to the GMR2 estimator, hence
could be termed as GT2 estimator), as the solution of cn (E� (�n)) = 0p. Ob-
viously, since cn (�n) = 0p by construction, then GMR2=GT2. This provides
another characterization of the distinction between the GMR1 and GMR2 es-
timators in this particular set up. The two estimators are di¤erent because
cn (E� (�)) and E�cn ((�)) have di¤erent roots and therefore their distinction
lies in non commutativity. This observation gives rise to the next lemma.
Furthermore, the GT2 estimator could also be generalized with the introduc-
tion of di¤erences in the relevant dimensions, stochastic weighting etc. In
this respect it would not generally coincide with the GMR2 estimator hence
should be addressed as a distinct case of an indirect estimator, with which we
are not concerned in the present paper.

Lemma 2.3 When p = q = l and c (xi; �) = f (xi)�E�f (xi) = f (xi)�g (�)
then:

1. the GMR1 estimator is essentially a GMM estimator.

2. If g is linear then GMR1=GMR2.

Remark R.9 1. would be valid even if �n = r�g�1� 1nf (!i) for r a bijection.
Hence the GMR1 can be a GMM estimator even in cases that the auxiliary
is an appropriate transformation of a GMM estimator.

3 Validity of Edgeworth Approximations
In this section we expand the assumption framework, in order to validate
the Edgeworth approximations and using this we derive the validity. Recall
that every estimator considered is an extremum one, and the criterion from
which it emerges is at least locally di¤erentiable. Accommodating these facts
we employ the following steps to prove the validity. First, we prove that the
estimators satisfy the �rst order conditions with probability 1�o (n�a). Then
a justi�ed use of the mean value theorem proves o(n�a) asymptotic tightness
of
p
n transformation of the estimators. Third, due to the �rst step a local

approximation of the
p
n transformation is obtained by a Taylor expansion

of the �rst order conditions and using the second step it is proven that the
relevant remainder is bounded by an o (n�a) real sequence with probability
1 � o (n�a). Taking also into account corollary AC.1 we get that if valid,
the

p
n transformation and the approximation have the same Edgeworth

12



expansion. Finally, the validity is established from the validity of the relevant
expansion of the aforementioned approximation.
This methodology coincides with the one in Andrews [2] and is essentially

based on local di¤erentiability, lemma AL.6 and Bhattacharya and Ghosh [4]
which provide a theorem of invariance of validity of Edgeworth approxima-
tions with respect to locally di¤erentiable functions. Notice also that lemma
AL.6 enables the extension of the results in non di¤erentiable case, but this
will not be pursued here.

Assumptions Specific to the Validity of the Edgeworth Approximations

Let f (x; �) denote the vector that contains stacked all the distinct compo-
nents of c (x; �),W (x; �),W � (x; �) andW �� (x; �) as well as their derivatives
up to the order d = max (3; 2a+ 2).

Assumption A.6 sup�2O"4 (�0) kD
rE��nk < M�

r , for 0 < "4 � "2, for r =
2; : : : ; d+ 1, and M�

r > 0.

Remark R.10 Assumption A.6 along with Assumption A.3 imply that for
r = 2; : : : ; d+ 1, sup�2Omin("3;"4)(�0) kD

r (E��n � b (�))k < Mr +M
�
r , which in

turn means thatDr�1 (E��n � b (�)) are uniformly Lipschitz onOmin("3;"4) (�0),
and therefore uniformly equicontinuous on the same ball. This implies the
commutativity of the limit with respect to n and the derivative operator (of
order r � 1) uniformly over Omin("3;"4) (�0). Due to Assumption A.1 for
k � d+ 1, this assumption is veri�ed via conditions of the form
sup�2Omin("3;"4)(�0)

E� k
p
n (�n � b (�))k

2
= O (1) and sup�2Omin("3;"4)(�0)E�



pnln (�)

2 =
O (1) where ln (�) depends on derivatives of the (well de�ned in our set-
ting) average likelihood function. For example for r = 2, we have that
ln (�) = sn (�)s0n (�) +Hn (�).

Assumption A.7 E� kf(x; �)kq1 < 1, 8� 2 O"2 (�0), 8� 2 b (O"2 (�0)) for
q1 = 2a+ 3, kf (x; �)� f (x; �0)k � �
 k� � �0k, 8� 2 b (O"2 (�0)), �-almost
surely for an almost surely positive random variable �
, with E��q1
 < 1,
8� 2 O"2 (�0).9

This condition that could be termed as local stochastic Lipschitz con-
tinuity condition facilitate the Edgeworth approximations of the relevant
sequences of random elements.

9Notice the local nature of the moment existence conditions here and in assumption
A.4. These are stronger that the relevant conditions of Andrews [2], and facilitate mainly
the case of the GT estimator.
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Assumption A.8 The Weak Dependence assumption and the Cramer type
of condition of Andrews [2] or Goetze and Hipp [11] hold for the sequence
ff (xn; b (�0))gn and the sequence of characteristic functions of 1n

P
f (xi; b (�0))

respectively.

Remark R.11 The last two assumptions guarantee that the (unknown) se-
quence of distributions of the sequence of random elementsp
n
�
1
n

P
f (xi; b (�0))� E�0 1n

P
f (xi; b (�0))

�
can be approximated by a se-

quence of Edgeworth distributions of order of error o (n�a) (see Andrews [2]).
Notice that the Cramer condition on the conditional characteristic function of
1
n

P
f (xi; b (�0)) could be implied through controlling the order of magnitude

of tail moments of the relevant partial sum.

Assumption A.9 . The relevant sequences of distributions of the initial
estimators, ��n and �

�
n can be approximated by a sequence of Edgeworth dis-

tributions with an o (n�a) error.

This will be trivially satis�ed when ��n is de�ned via c and the relevant
weighting matrix is independent of � and deterministic. The analogous argu-
ment applies for ��n. We now present the results on the validity of Edgeworth
approximations for any a for any of the four estimators de�ned above. We
begin with the auxiliary estimator.

Auxiliary Estimator

We can prove the following lemma concerning the auxiliary estimator, that
is essentially a direct application of the relevant results in Andrews [2].

Lemma 3.1 Under assumptions A.1, A.4, A.5, and A.7-A.9 there exists an
Edgeworth distribution EDGa (�) such that

sup
A2BC

��P�0 �pn (�n � b (�0)) 2 A�� EDGa (A)�� = o �n�a� :
Let us now proceed to the validity of the Indirect Estimators

Indirect Estimators

We next present in more details the analogous results for the IE. We pro-
ceed in two steps. In the �rst one we prove the o (n�a)-consistency and
o (n�a)-tightness and in the sequel we prove the existence of the Edgeworth
expansion.

14



Lemma 3.2 i) Under the assumptions of lemma 3.1 and under assumption
A.2 we have that

P�0

 
k�n � �0k > C2

ln1=2 n

n1=2

!
= o

�
n�a
�
for some C2 > 0

where �n is the GT estimator. ii) If additionally assumption A.3 applies,
then �n is the GMR1 estimator. iii) If additionally assumption A.6 applies,
then �n is the GMR2 one.

Existence of Edgeworth Expansions of Indirect Estimators

Lemma 3.3 Under the assumptions of lemmas 3.2 and assumptions A.8-A.9
the GMR1, and GT estimators admit valid Edgeworth expansions of order
s = 2a + 1. Furthermore, if the auxiliary estimator has a valid Edgeworth
expansion of order s = 2a + 2, then the GMR2 admits a valid expansion of
order s = 2a+ 1.

4 Validity of 1st Moment Expansions
Having established the validity of Edgeworth expansions in every case of
the examined estimators, we are concerned with the approximation of their
�rst moment sequences with a view towards the approximation of their bias
structure. We know from section 1 that the validity of the former does not
imply the validity of the latter. We provide a general lemma, which utilizes
the Edgeworth expansions, along with further assumptions that validate the
required approximations. These are integrability assumptions that involve
rate of convergence, and are presented immediately along with remarks that
comment on their applicability.
In the following if A is a measurable set, we denote with Pn (A) =

P (
p
n (�n � �0) 2 A) where �n is any of the examined estimators (auxiliary

or indirect) and Qn a sequence of distributions such that CVD (Pn; Qn) =
o (n�a).

Assumption A.10

9� > 0 : na+ 1
2P
�p
n (�n � �0) 2

p
n (�� �0) nOK(lnn)� (0)

�
= o (1) ;

Remark R.12 The above assumption is valid when
p
n (�n � �0) has a valid

Edgeworth expansion of order s = 2a+ 2 (see Magdalinos [17], Lemma 2).
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Assumption A.11

na
Z
RqnOK(lnn)� (0)

kxk jdQnj = o (1)

Remark R.13 In fact if Qn is the Edgeworth distribution we have that
A = na

R
RqnOK(lnn)� (0)

kxk jdQnj = na
R
RqnOK(lnn)� (0)

kfn (z)k d�+o (1) where �
is the multivariate standard normal cumulative distribution function, and as
fn (z) is a polynomial in z we get: A�o (1) � na

R
RqnOK(lnn)� (0)




P2a
i=0 n

� i
2fi (z)




 d� �P2a
i=0 n

2a�i
2

R
RqnOK(lnn)� (0)

kfi (z)k d� where fi (z) appropriate polynomials in

z. Now n
2a�i
2

R
RqnOK(lnn)� (0)

kfi (z)k d� � Cn
2a�i
2

R
RqnOK(lnn)� (0)

kzk2�i d� =

Cn
2a�i
2

R
RqnOK(lnn)� (0)

�Pq
j=1 z

2
j

��i
d�. Now the lth term in the expansion of

the �thi power will be of the form:
qY
j=1

z
kj;l
j , where

Pq
j=1 kj;l = 2�i.

Hence, A� o (1) � Cn 2a�i
2

Pq�i

l=1

R
RqnOK(lnn)� (0)

qY
j=1

z
kj;l
j d�

= Cn
2a�i
2 (2�)�

q
2
Pq�i

l=1

qY
j=1

R
Rn(�K(lnn)�;K(lnn)�) z

kj;l
j exp

�
� z2j

2

�
dzj

= Cn
2a�i
2

�
�
2

�� q
2
Pq�i

l=1

qY
j=1

R1
K(lnn)�

z
kj;l
j exp

�
� z2j

2

�
dzj as kj;l is even. Now by

a change of variables we get that A� o (1)

� Cn 2a�i
2

�
�
2

�� q
2
Pq�i

l=1

qY
j=1

2
kj;l�1
2

R1
K2(lnn)2�

2

t
kj;l+1

2
�1 exp (�t) dt

= Cn
2a�i
2

�
�
2

�� q
2
Pq�i

l=1

qY
j=1

2
kj;l�1
2 �

�
kj;l�1
2
; K

2(lnn)2�

2

�
where � (�; �) is the in-

complete Gamma function (see e.g. Gradshteyn and Ryzhik [15] formula
8.350). For lnn!1 we have that

�
�
kj;l�1
2
; K

2(lnn)2�

2

�
=
�
K2(lnn)2�

2

� kj;l�3
2
exp

�
�K2(lnn)2�

2

��
1 +O

��
K2(lnn)2�

2

��1��
�
�
K2(lnn)2�

2

� kj;l�3
2
exp

�
�K2(lnn)2�

2

�
(see e.g. Gradshteyn and Ryzhik [15]

formula 8.357). Hence

A � C (�)�
q
2 2

3q
2

Pq�i

l=1

qY
j=1

(lnn)�(kj;l�3)Kkj;l�3 exp
�
(2a�i) lnn�K2(lnn)2�

2

�
+o (1).

Now for � > 1
2
, and K > 0 we have that
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C (�)�
q
2 2

3q
2

Pq�i

l=1

qY
j=1

(lnn)�(kj;l�3)Kkj;l�3 exp
�
(2a�i) lnn�(lnn)2�

2

�
! 0 as n !

1. Hence assumption A.11 applies in this case.

Lemma 4.1 Given the assumptions A.10 and A.11 above then

na




Z

Rq
x (dPn � dQn)





 = o (1) :
Remark R.14 Due to the two previous remarks and Lemma 2 in Magdali-
nos [17], it su¢ ces that

p
n (� � �0) has a valid Edgeworth expansion of order

s = 2a+ 2, since in this case we can choose � > 1
2
and K �

p
2a+ 1 for the

above Lemma to be valid.

Hence we have an analytical procedure that justify the following results
in our assumption framework.

4.1 Valid 2nd order Bias approximation for the Indirect estimators
In this section, given the previous results, we are concerned with the bias
structure of second order for each of the examined estimators. In order to
facilitate the presentation, we make the following de�nition.

De�nition D.5 Let fxng and fyng denote two sequence of random elements
with values in an normed space. We denote the relation xn s

a
yn when

kE (xn � yn)k = o (n�a).

Remark R.15 Due to the positive de�niteness of the norm and the triangle
inequality s

a
is an equivalence relation on the set of sequences of random

elements whose �rst moments converge to the same limit.

We are ready to employ the previous results for the case of a = 1
2
. We

essentially invert the Taylor expansion of the �rst order condition that with
high probability satis�es each one of the estimators considered, and are able
to ignore the remainders due to the results of the previous paragraphs. We
have that supA2BC jEDG (A)� � (An)j = o (n�a) for suitable choice of the
sequence fAng emerging from a bijective correspondence A ! An. Hence
supA2BC jP (xn 2 A)� P (z 2 An)j = o (n

�a) where xn denotes the sequence
of random elements that we wish to approximate in the relevant sense, and
z denotes a standard normal random vector. Then, due to the fact that
P (z 2 An) = P ((gn (z) + o (n�a)) 2 A) = P (gn (z) 2 A)+o (n�a) for a suit-
able choice of a polynomial in z function sequence and the smoothness of �
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(see Magdalinos [17] or footnote 11 for the de�nition of smoothness of a distri-
bution; this is implied by analytical smoothness in the case where a density
exists), we have that supA2BC jP (xn 2 A)� P (gn (z) 2 A)j. We then em-
ploy lemma 4.1 to obtain the needed results on the mean approximations.
Notice also that if there exists a qn (z) such that gn (z) = qn (z) + o (n�a), if
xn s

a
gn (z), then xn s

a
qn (z), in the light of remark R.15, something that will

be needed in the case of GMR2. We also present in the Appendix of General
Lemmas a lemma concerning approximations of inverse matrices that will
be useful in what follows. Finally, the following assumption concerns the
initial estimators, either ��n or �

�
n, and is in the same spirit of assumption

assumption A.9.

Assumption A.12 Any initial estimator has an analogous �rst moment ap-
proximation with the one that it de�nes.

Auxiliary Estimators

We begin with the auxiliary estimator �n. The next lemma summarizes the
results.

Lemma 4.2 If
p
n (�n � b (�0)) has a valid Edgeworth expansion of third

order p
n (�n � b0) s

1=2
k1 +

k2p
n

where
k1 = �Qc=� (b0)W0c (z; b0)

and

k2 = �Qc=� (b0)W0c
� (z; b0)�QAk1 �

1

2
Qc

=
� (b0)W0

n
k
=
1c�;�0 (b0)j k1

o
j=1;:::;l

�Q
h
c
=
� (b0)w (z; b0) + c� (z; b0)W0

i
c (z; b0)

�Q
�
c
=
� (b0)

n
W�= (b0)rj k

�
1

o
r;i=1;:::;l

+
n
k
=
1c�;�0 (b0)j

o
j=1;:::;l

W0

�
[c (z; b0) + c� (b0) k1]

where b0 = b (�0),W0 = W (b0), Q =
h
E�0

@c=(x1;b0)
@�

W0E�0
@c(x1;b0)

@�=

i�1
, Sym[B] =

1
2

�
B +B=

�
, A = 2Sym

"
E�0

@c=(x1;b0)
@�

W0c
=
� (z; b0)

+1
2
E�0

@c=(x1;b0)
@�

w (z; b0)E�0
@c(x1;b0)

@�=

#
, k�1 is the rele-

vant term of the analogous expansion of the initial auxiliary estimator ��n by
assumption A.12, and z � N (0;�) where � depends on the problem at hand.
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Remark R.16 It is easy to see that when l = q the results do not depend
on the weighting matrix as expected.

Remark R.17 E�0k1 is null as this term corresponds to the normal com-
ponent of the estimators which are asymptotically �rst order unbiased. Also
under relevant integrability conditions that are easily derived in the spirit of
lemma 4.1, E�0k2 will depend on the �rst order asymptotic variance ,on the
non linearity of c with respect to �, on the properties of the weighting matrix
and the initial auxiliary estimator as well as on the relation between l and q
(see Newey and Smith [19]).

Indirect Estimators

We proceed to state the main results concerning the expansions of the three
indirect estimators. These reveal a quite di¤erent behavior of GMR2 from the
other two, due to the fact that the computation of the particular estimator
is based upon the term E��n. For this subsection we denote b0 = b (�0), b0;j
is the jth element of b0, W �

0 = W � (�0), W �
0;rj is the (r; j) element of W

�
0 ,

W ��
0 = W �� (�0) and W ��

0;rj is the (r; j) element of W
��
0 .

GMR1 Estimator We begin with the GMR1 estimator. The results reveal
aspects of the previous remark. The estimator is generally second order
biased due to the relation between p and q, the general non linearity of the
binding function, the behavior of the weighting matrix and through this of
the initial estimator ��n.

Lemma 4.3 If
p
n (�n � �0) has a valid Edgeworth expansion of third order,

then p
n (�n � �0) s

1=2
q1 +

q2p
n

where

q1 = �
@b
=
0

@�
W �
0 k1;

q2 = �
@b
=
0

@�
w� (z; �0)

"
Idl�l �

@b0

@�=
�
@b
=
0

@�
W �
0

#
k1

+�
@b
=
0

@�
W �
0

"
k2 �

1

2

�
q
=
1

@2b0;j
@�@�0

q1

�
j=1;:::;l

#

+�

"
@b
=
0

@�

�
@W �

0;rj

@�
q�1

�
r;i=1;:::;l

+

�
q01
@2b0;j
@�@�0

�
j=1;:::;q

W �
0

#
Ak1;
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� =

�
@b
=
0

@�
W �
0
@b0
@�=

��1
, A = Idq�q � @b

=
0

@�
� @b0
@�=
W �
0 , q

�
1 is the relevant term of the

analogous expansion of the initial estimator, ��n, due to assumption A.12,
and k1 and k2 are given in 4.2.

Notice that, when p = q, we have that @b0
@�=

�
@b
=
0

@�
W �
0
@b0
@�0

��1
@b
=
0

@�
W �
0 = Idq�q.

Consequently, the following corollary is trivial.

Corollary 1 When p = q we obtain

q1 =

�
@b0

@�=

��1
k1

q2 =

�
@b0

@�=

��1
k2 �

1

2

�
@b0

@�=

��1�
q01
@2b0;j
@�@�0

q1

�
j=1;:::;l

From the corollary it is evident that in the case where b (�) is a¢ ne and
p = q the estimator essentially retains the structure of the auxiliary one. Note
that a trivial case in which this holds, is when �n is a consistent estimator
of �0. More complex cases in which this is possible are stated below.

GMR2 Estimator We continue with the case of the GMR2 estimator. Al-
though the caveat met before, i.e. the existence of non trivial terms in the
expansion due to non linearities, the expansion contains the term �E�0k2
something that is not present in the other two, a fact that is attributed
to the computation of E��n. Although this result that it is known from
the work of Gourieroux et al. [14] and Gourieroux and Monfort [12] in the
case of equality of dimensions, is signi�cantly generalized here. What is also
generalized in the next subsection is the scope of the representations of the
binding functions that ensure (under appropriate conditions) that the par-
ticular estimator is second order unbiased due to the aforementioned
term.
The next preliminary expansion result concerns the approximation of

derivatives of E��n. It is based on the fcat that under assumption A.6 (see
remark R.10, as well) we have that


Dr

h
E�

�
�n � b (�)�

k1(�)p
n

�i
j�=�0




???? = kDr [E� (�n � b (�))] j�=�0k
�M kE�0 (�n � b0)k = o (1), r = 1; 2.

Lemma 4.4 



 @@�= (E��n) j�=�0 � @b0

@�=





 = o (1)
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@2 (E��n)j@�@�=
j�=�0 �

@2b0;j

@�@�=






 = o (1) , j = 1; : : : ; q
We are now ready to state the expansion.

Lemma 4.5 If
p
n (�n � �0) has a valid Edgeworth expansion of third order,

then p
n (�n � �0) s

1=2
q1 +

q2p
n

where

q1 = �
@b
=
0

@�
k1;

q2 = �
@b
=
0

@�
w� (z; �0) k1 � �w� (z; �0) �

@b
=
0

@�
k1 + �

�
@2b0;j

@�@�=
q1

�
j=1;:::;q

W �
0Ak1

+�
@b
=
0

@�
W �
0 (k2 � E�0k2)�

1

2
�
@b
=
0

@�
W �
0

�
q
=
1

@2b0;j

@�@�=
q1

�
j=1;:::;q

+�
@b
=
0

@�

�
@W �

0;rj

@�=
q�1

�
r;i=1;:::;q

"
Idq�q �

@b0

@�=
�
@b
=
0

@�
W �
0

#
k1;

� =

�
@b
=
0

@�
W �
0
@b0
@�=

��1
, A = Idq�q � @b0

@�=
�
@b
=
0

@�
W �
0 , q

�
1 is the relevant term of the

initial estimator, ��n, due to assumption A.12, and k1 and k2 are given in
4.2.

Remark R.18 As expected GMR1 and GTMR2 are �rst order equivalent as
their q1 terms coincide.

Remark R.19 The term �
@b
=
0

@�
W �
0 (k2 � E�0k2) is obtained due to the pres-

ence of E��n in the de�nition of the estimator and not of b (�) or something
similar as in the cases of GMR1 and GT estimators.

The following two corollaries are trivial.

Corollary 2 When p = q we obtain

q1 =

�
@b0

@�=

��1
k1

q2 =

�
@b0

@�=

��1
(k2 � E�0k2)�

1

2

�
@b0

@�=

��1�
q
=
1

@2b0;j
@�@�0

q1

�
j=1;:::;l
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Corollary 3 If in addition to the provisions of the previous corollary b (�)
is a¢ ne E�0q2 = 0p.

Remark R.20 In this particular case, the estimator is obviously second
order unbiased a property that is not shared with its other two counterparts.
This result is already known for the case where �n is a consistent estimator of
�0, whence the GMR2 obviously performs a second order bias correction. If in
addition E��n is linear, then the estimator is totally unbiased (see Gourieroux
et al. [14]).

The particular analysis on the properties of the present estimator provided
by the relevant literature restricts to the case of p = q. We extend it in the
most general setup and provide a geometric characterization of the binding
function, in section 4.2, that sheds light to the circumstances under which
this is linear, thereby extending massively the scope of the last result.

GT Estimator We conclude the presentation of the expansions with the last
case of the GT estimator. The expansion is more involved since it is ob-
tained from the second order Taylor expansion of the �rst order conditions
that the estimator satis�es with high probability for large enough n, around
(�0; b (�0)). We shall need the following assumption:

Assumption A.13 Integration with respect to the measures involved in the
statistical model and derivation with respect to � and � are commutative.

Remark R.21 This assumption can be established upon the existence of ran-
dom elements such that the dominated convergence theorem applies for the
elements involved in the integration and derivation procedures (see for exam-
ple Davidson [6], theorem 9.31).

Lemma 4.6 Under assumption A.13 and if
p
n (�n � �0) has a valid Edge-

worth expansion of third order, then

p
n (�n � �0) s

1=2
q1 +

q2p
n

where
q1 = J�W

��
0 E

c
�k1;
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q2 = J�W ��
0 E

c
�k2 + J�

�
@W ��

0;rj

@�=
q�1

�
r;j=1;:::;l

Ec�

�
k1 �

@b0

@�=
q1

�

+J

24�w�� (z; �0) +(@b=0
@�
Ec;j�;�k1

)
j=1;:::;l

W ��
0

35Ec�Ak1
�J

8<:
0@@b=0
@�
Ec;j�;�

@b0

@�=
�
(
@b
=
0

@�r@�
Ec;j�;�

)
r=1;:::p

1A q1
9=;
j=1;:::;l

W ��
0 E

c
�

�
k1 �

@b0

@�=
q1

�

+
1

2
J�W ��

0

8><>:
q
=
1
@b
=
0

@�
Ec;j�;�

�
@b0
@�=
q1 � k1

�
� q=1

h
E�0

@cn(b)j
@�0

@2b0
@�r@�

0

i
r=1;:::p

q1

+

�
k
=
1 � q

=
1
@b
=
0

@�

�
Ec;j�;�k1

9>=>;
j=1;:::;l

;

E�0
@cn(b0)

@�=
= Ec�, E�0

@2cn(b0)j
@�@�0 = Ec;j�;�, J =

�
@b
=
0

@�

�
Ec�
�=
W ��
0 E

c
�
@b0
@�=

��1
, A =

Idq�q � @b0
@�=
J
@b
=
0

@�

�
Ec�
�=
W ��
0 E

c
�, � =

@b
=
0

@�

�
Ec�
�=
, q�1 is the relevant term of the

initial estimator, ��n, due to assumption A.12, and k1 and k2 are given in
4.2.

Remark R.22 Again it is evident that the structure of the second order
terms depends on the relevant structure of the auxiliary estimator, on non
linearities of the auxiliary �rst order conditions, on the stochastic weighting
and on the relation between l, q and p. This estimating procedure does not
produce the term E�0k2 as is also the case for the GMR1 counterpart.

We obtain easily the following corollary that con�rms the already known
�rst order relationship between the three estimators.

Corollary 4 GT estimator s
0
(GMR1 estimator s

0
GMR2 estimator) i¤ the

weighting matrix for the GMR1 and the GMR2 estimators is chosen as

W � (xi; �0) = E�0
@cn (b (�0))

0

@�
W �� (xi; �0)E�0

@cn (b (�0))

@�0

for a given W �� (xi; �0) for the GT estimator.

In the special case of equality among the involved dimensions, i.e. p =
q = l, we obtain the following corollary, which is proven with the help of
lemma AL.3 in the Appendix.
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Corollary 5 When p = q = l we obtain

q1 =

�
@b (�0)

@�0

��1
k1

and

q2 =

�
@b (�0)

@�0

��1
k2 �

1

2

�
@b (�0)

@�0

��1 �
q1
@2bj (�0)

@�@�0
q01

�
j=1;:::;l

Remark R.23 This corollary is in accordance with lemma 2.2. It shows
that neither the GT estimator is second order unbiased under the
appropriate framework.

4.2 Local Canonical Representation of the Binding Function
In this paragraph we assume without loss of generality that � and B are
open. By assumption A.1 the underlying statistical model has the structure
of a Ck-di¤erentiable manifold of dimension p. This manifold is globally
di¤eomorphic to �. Assumption A.4 enables the possibility that c (x; �) lies
on a particular bundle (Hilbert bundle, see among others Amari and Nagaoka
[1]) over an auxiliary statistical model that analogously has the structure of
a Ck-di¤erentiable manifold of dimension q, globally di¤eomorphic to B ,
topologized again by the total variation norm. The function b (�) that is the
crucial element of the inferential procedures, described above, is essentially
a parametric representation of an underlying function (say f) between the
manifolds, which when composed with the aforementioned di¤eomorphisms
gives b (�). That is, using the notation of assumption A.1, if the auxiliary
statistical manifold is denoted by D� and the relevant di¤eomorphism to B is
par�, then b =par� � f�par�1. The function f shares by construction many
properties with its relevant representation. That is there is a open neighbor-
hood of P
 say OP
 , such that f is a di¤eomorphism onto f (OP
). It is easy
to see that b (�) is simply a manifestation of this property which extends to
any other representation of f . That is, if �0 is an open bounded subset of
Rp di¤eomorphic to OP
 by par�, and B0 is an open bounded subset of Rq
di¤eomorphic to B by par�� then the relevant representation b

� : �0 ! B0

restricted as b0jOP
 =par
�
� � f jOP
�par

�1
� is a di¤eomorphism. Furthermore,

by theorem 10.2 of Spivak [23] (p. 44) if p � q, there always exists an open
bounded subset of Rq, say B00 di¤eomorphic to D� by par��� (hence di¤eomor-
phic to B by (say) g), such that the representation b�� : �! B00 restricts as

b��jpar�1(OP
) =par
�
�� � f jOP
�par

�1 =

0@�1; �2; : : : ; �p; 0; : : : ; 0| {z }
q�p

1A. This rep-
resentation is called canonical immersion around P
. Hence, following the
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proof of theorem 10.2 of Spivak [23] and noting that the target of the con-
structed coordinate system of D� that proves the theorem is di¤eomorphic
to the one of the initial coordinate system on the same manifold, the next
lemma is easily proven.

Lemma 4.7 There exists an open bounded subset of Rq, say B00, and a dif-
feomorphism g : B ! B00 such that b��jpar�1(OP
) : O"2 (�0) ! B00 is given

by b�� (�) =
�

�
0q�p

�
8� 2 par�1 (OP
).

Remark R.24 Given �, B can always be chosen so that the binding

function b is of the form
�

�
0q�p

�
at least in a small enough neighborhood

of �0. We call this canonical representation of the binding function around
�0 and, from this point until the end of the present subsection, we denote it
by b (�).10 It is easily seen that when b (�) is on the relevant form, the afore-
mentioned expansions simplify in some extend. We explore some interesting

cases. In every one of these we assume thatW � (x; �0) =W
� =

�
W1 W3

W 0
3 W2

�
where W1 is p � p, W2 is (q � p) � (q � p), and W3 is p � (q � p) and they
are non stochastic independent of �.

Let us consider �rst the expansion of the GMR1 estimator. Noting �rst

that @b(�0)
@�0 =

�
Idp�p
0(q�p)�p

�
and

@b2(�0)j
@�@�0 = 0p�p, 8j = 1; : : : ; q, directly substi-

tuting in the results of lemma 4.3 we trivially get the following corollary.

Corollary 6 Consider lemma 4.3, suppose that b (�) is in local canonical

form and W � (x; �0) =W
� =

�
W1 W3

W 0
3 W2

�
then

q1 =
�
Idp�p W�1

1 W3

�
k1

and
q2 =

�
Idp�p W�1

1 W3

�
k2

Remark R.25 It is evident thatminW3 kE�0q2k =









0B@ (E�0k2)1

...
(E�0k2)p

1CA







 forW3 =

0p�q�p where (E�0k2)i denotes the i
th element of the particular vector.

10This abuse of notation can not create any problem of confusion until the end of the
current subsection. Later on and where needed we will distinguish the notations explicitely.
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The analogous results for the GT estimator are not considered here due
to the fact that they constitute an easy exercise without providing any new
information. The second and �nal case concerns the GMR2 estimator. Again,
direct substitutions on the results of lemma 4.5 and taking into account
@b(�0)
@�0 =

�
Idp�p
0q�p�p

�
, and

@b2(�0)j
@�@�0 = 0p�p, 8j = 1; : : : ; q., we get the obvious

corollary.

Corollary 7 Consider lemma 4.5, suppose that b (�) is in local canonical

form and W � (x; �0) =W
� =

�
W1 W3

W 0
3 W2

�
then

q1 =
�
Idp�p W�1

1 W3

�
k1

and
q2 =

�
Idp�p W�1

1 W3

�
(k2 � E�0k2)

Remark R.26 The GMR2 estimator is second order unbiased even in cases
where q > p, when there is non stochastic weighting given that the binding
function is in local canonical representation. This is a new result. First it ex-
tends the relevant result of the aforementioned literature to allow for cases of
di¤ering dimensions, as long as the Hessian matrices of the binding function
vanish and the weighting is deterministic. Second, since the binding function
can always be in local canonical form, there always exists a parameterization
of c so that the previous statement holds. This says that given an admis-
sible auxiliary statistical model, there always exists an auxiliary
parameterization such that the previous result is valid, proviso the
relevant weighting structure. Hence this result massively generalizes the one
in the relevant literature.

Let us continue with an example. In this, lemma 2.2 holds for any n due
to global invertibility of the corresponding binding functions and the absence
of boundaries.

Example Consider the case in which the true underlying distribution is
described by the following MA(1) speci�cation

xt = ut + �0ut�1; t = :::;�1; 0; 1; :::; ut
iidv N(0; 1)

for some �0 2 (�1; 1), while the auxiliary model is consisted of all the joint
distributions represented by the following parametric AR(1) model

xt = �xt�1 + "t; t = :::;�1; 0; 1; :::; "t
iidv N(0; 1)
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where � 2
�
�1
2
; 1
2

�
. Let �n be the conditional maximum likelihood esti-

mator for the previous model, i.e. �n =
Pn
i=2 xixi�1Pn
i=2 x

2
i�1
, which is easily seen

that converges in probability to b (�0) = �0
1+�20

. Hence in this particular case

p = q = l = 1, c (xi; �) = xixi�1 � �x2i�1, and b : (�1; 1) !
�
�1
2
; 1
2

�
is

globally invertible. We obtain from Demos and Kyriakopoulou [7]

k1 =

�
�20 + 4�

4
0 + �

6
0 + �

8
0 + 1

�2
1� �20

z

k2 = �
�
�40 + 2�

3
0 � 2�20 + 2�0 + 1

� �20 + �0 + 1�
�20 + 1

�3 z2
In the case of the GMR1 estimator equal to GT estimator which is �n =
1�
p
�4�2n+1
2�n

we obtain from corollary 1

q1 =

�
1 + �20

�2 �
�20 + 4�

4
0 + �

6
0 + �

8
0 + 1

�2�
1� �20

�2 z

q2 = �
�
�40 + 2�

3
0 � 2�20 + 2�0 + 1

� �
�20 + �0 + 1

�
1� �40

z2

�
�0
�
�20 � 3

� �
�20 + 4�

4
0 + �

6
0 + �

8
0 + 1

�4�
1� �40

� �
1� �20

�2 z2

Notice that when �0 = 0, then q1 = z, and q2 = z2. Finally, for the GMR2
estimator we obtain from corollary 2 that

q1 =

�
1 + �20

�2 �
�20 + 4�

4
0 + �

6
0 + �

8
0 + 1

�2�
1� �20

�2 z

q2 = �
�
�40 + 2�

3
0 � 2�20 + 2�0 + 1

� �
�20 + �0 + 1

�
1� �40

�
z2 � 1

�
�
�0
�
�20 � 3

� �
�20 + 4�

4
0 + �

6
0 + �

8
0 + 1

�4�
1� �40

� �
1� �20

�2 z2

which implies that the estimator is unbiased at �0 = 0 but not locally un-
biased (see bellow). Now, for the issue of the local canonical form of the
binding function, we obtain that the local parametrization of the AR(1)
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model arises from the re-parametrization given by �� = 1�
p
1�4�2
2�

, and in
this case b� (�) = �, for any �. Notice that a consistent auxiliary estimator

for b� (�0) = �0 is �
�
n =

1�
p
1�4�2n
2�n

, and the GMR2 estimator derived by this
is second order unbiased by lemma 7.

4.3 GMR2 Recursion
In this section we are concerned with the generalization of the previous prop-
erties of the GMR2 estimator to arbitrary order. First we make the distinc-
tion between several notions of unbiaseness of a given order. An estimator
(say �n) admitting a moment expansion (say g

�
z; 1p

n
; �0

�
for g a relevant

function) such as the aforementioned, will be termed sth-order unbiased at

�0, if and only if
p
n (�n � �0) s

(s�1)
2

g
�
z; 1p

n
; �0

�
with E

�
g
�
z; 1p

n
; �0

��
= 0.

Analogously it will be termed sth-order unbiased locally around �0, if the rele-
vant expansion is valid, and

p
n (�n � �) s

(s�1)
2

g
�
z; 1p

n
; �
�
withE

�
g
�
z; 1p

n
; �
��
=

0 in an open ball with center �0. Finally, it will be termed sth-order un-
biased if the relevant expansion is valid in every neighborhood of �0, andp
n (�n � �) s

(s�1)
2

g
�
z; 1p

n
; �
�
with E

�
g
�
z; 1p

n
; �
��

= 0 everywhere. Notice

that up to the previous section we were essentially concerned with the �rst
notion.
Now, the set up enabling lemma 4.7, concerning the local canonical rep-

resentation of the binding function b (�), implies that if co�nitely E��n is
a local di¤eomorphism, there exists a sequence of local auxiliary parameter-
izations, for which E� (�n) are in canonical form in a neighborhood of �0.
In this case the GMR2 estimator is unbiased, i.e. if 8� 2 O" (�0) we have

that bn (�) = E��
�
n =

�
�
0q�p

�
, the GMR2 is given by �n = b�1n � ��n and

we have that E�0�n = E�0 (b
�1
n � ��n) = b�1n � E�0 (��n) = b�1n � bn (�0) = �0.

Consequently, a natural question arises whether it is possible to retrieve this
sequence. This question is out of the scope of the present paper.
For an indirect answer to the aforementioned question, we de�ne recursive

indirect estimation procedures as follows. Let �(0n denote either the GT or
the GMR1 estimator.

De�nition D.6 Let r 2 N, the recursive r�GMR2 estimator (�(rn ) is de�ned
in the following steps:
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1. �(1n = argmin�



�(0n � E��(0n 


,

2. for r > 1 �(rn = argmin�



�(r�1n � E��(r�1n




.
Remark R.27 In the case where r = 1 we essentially obtain equivalent
results to the ones of the canonical representation paragraph, due to the fact
that this procedure imitates the expression of the binding function in local
canonical form. Hence the case of r = 1 can be perceived as "practically"
equivalent to the procedure described in the previous section. Furthermore,
when p = q, then this equivalence is actually an equality.

In order to establish the validity of the results to be presented, we need
to strengthen in some sense assumptions A.3 and A.6.

Assumption A.14 E (ki (�; z)) are d-di¤erentiable at �0 and
na


Dr

�
E��n � b (�)�

P2a+1
i=1

1
ni=2
E (ki (�; z))

�

 j�=�0 = o (1), r = 1; : : : ; d.
Remark R.28 The assumption above is satis�ed if E��n = b (�)+

P1
i=1

1
ni=2
E (ki (�; z)),

8� 2 O"5 (�0), for some "5 > 0,
P1

i=1 kDrE (ki (�; z)) j�=�0k < M��
r , for

M��
r > 0, since in this case we have that na



E��n � b (�)�P2a+1
i=1

1
ni=2
E (ki (�; z))



 =

P1
i=2a+2

1
ni=2�a

E (ki (�; z))


 and therefore

na


Dr

�
E��n � b (�)�

P2a+1
i=1

1
ni=2
E (ki (�; z))

�

 j�=�0 = 

P1
i=2a+2

1
ni=2�a

DrE (ki (�; z))


 �P1

i=2a+2
1

ni=2�a
kDrE (ki (�; z))k = o (1). Notice that E��n = b (�)+

P1
i=1

1
ni=2
E (ki (�; z))

will follow if the assumptions depending on a are strengthened in order to hold
for any a, due to the fact that �0 is arbitrary, while the derivative summabil-
ity condition will follow from relevant arguments concerning the derivation
of series.

Now, we can prove the following proposition. Notice that the validity
of the approximations rely on the relevant results addressed in the previous
sections and the previous assumption, hence we do not explicitly describe
them.

Proposition 8 With the above notation, let lemma 4.5 or lemma 4.6 hold
locally around �0 , then the r�GMR2 estimator, is of order 2r+ 1 unbiased
at �0.

Remark R.29 Consider again the case where r = 1. Then 1�GMR2 is
actually third order unbiased at �0 hence the previous results are essentially
expanded if �(0n has a local moment approximation.
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Remark R.30 Proposition 8 essentially holds locally at �0 due to the prop-
erties of open balls as basic sets of neighborhoods (see also the example below).

It is worth mentioning that the recursive GMR2 procedure is a general-
ization of iterated bootstrap. To elaborate on this, consider the case that we
have the GMR1 estimator of �. Bootstrapping this estimator is equivalent
to 1-step GMR2 estimation (1-step in the spirit of Andrews [2]) on GMR1
(see Gourieroux et al. [14] section 1.5). Bootstrapping the bootstrapped
GMR1 is equivalent to 1-step GMR2 on 1-step GMR2 on GMR1 etc. Con-
sequently, the iterated bootstrap estimator is a recursive 1-step GMR2, on
every recursion.
Let us now return to our example.

Example (continued) Now, from the local canonical form of the binding
function, section 4.2, we obtained that the local parametrization as the re-

parametrization given by �� = 1�
p
1�4�2
2�

. The particular reparameterization
and the employment of GMR2 on it, coincides (see remark R.27) with the
de�ned 1�GMR2. The analogous expansion of the auxiliary estimator (or
equivalently of �(0n ) coincides with the one of the GMR1 presented above. For
the bias corrector GMR2 (or equivalently �(1n ) we have that

q1 =

�
1 + �20

�2 �
�20 + 4�

4
0 + �

6
0 + �

8
0 + 1

�2�
1� �20

�2 z

q2 = �
�
�40 + 2�

3
0 � 2�20 + 2�0 + 1

� �
�20 + �0 + 1

�
1� �40

�
z2 � 1

�
�
�0
�
�20 � 3

� �
�20 + 4�

4
0 + �

6
0 + �

8
0 + 1

�4�
1� �40

� �
1� �20

�2 �
z2 � 1

�
establishing the second order unbiaseness. Notice that due to the global
(hence local) nature of the moment approximation of Demos and Kyri-

akopoulou [7], proposition 8 holds globally, establishing that
p
n
�
�(1n � �

�
s
1

q1 +
q2p
n
, which is also in accordance with the third order approximation

actually employed in Demos and Kyriakopoulou [7].

5 Conclusions
In this section we �rst provide a brief review of our results. First, we provide
conditions that ensure the validity of the formal Edgeworth approximation of
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the auxiliary and the three IE for any �nite order. The aforementioned val-
idation was previously unattained by the relevant literature. Second, given
the validity, we provide integrability conditions that validate moment ap-
proximations of the aforementioned estimators. These conditions validate
the partial results of the relevant literature. Third, we provide a general de-
�nition of estimators as the GT one, even when the auxiliary criterion is not
of the likelihood type. Note that this type of estimators are eligible to more
general de�nitions. Fourth, we provide new results on the issue of second or-
der properties of the three indirect estimators, i.e. the expansions of GMR1
and GT estimators are new and reveal a higher order asymptotic inequiva-
lence with the GMR2. Fifth, we massively generalize the GMR2 expansion.
We are able to generalize the conditions under which the GMR2 is second
order unbiased (at �0) even in this set up. Sixth, we characterize the fact
that due to the notion of the local canonical form of the binding function,
there always exists a parameterization of the auxiliary model, under which
the GMR2 is second order unbiased under constant weighting. Finally, in
response to the issue of higher order bias correction, we de�ne indirect esti-
mators that emerge from multistep optimization procedures. Strengthening
the previous results, with a view towards local validity of the relevant mo-
ment approximations, we are able to provide recursive indirect estimators
that are locally unbiased at any given order.
An application of the Edgeworth approximations could lay in the deriva-

tion of properties of indirect testing procedures. Furthermore, the extension
of the previous results in a semiparametric setup or in non-standard cases,
i.e. when b (�0) is in the boundary of B even if �0 is in the interior of �,
could be of interest. Additionally, the determination of invariant parts of
the expansions with respect to reparameterizations could be very fruitful.
An application of the results in Andrews [2] on the iterated bootstrap could
make possible a detailed examination of the relation between this estimator
and the recursive GMR2 one. Our results, could also be extended in the
more general case, where the auxilliary parametric space is naturally or arbi-
trarily restricted with equality and/or inequality restrictions (see Calzolari,
Fiorentini and Sentana [5]). We leave all these questions for future work.
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Appendices

A Proofs of Lemmas and Corollaries.
Proof of Lemma 2.2. When p = q = l due to consistency, the GT
estimator satis�es with probability 1� o (n�a)

E�ncn (�n) = 0p

yet from assumption A.4 we have that

E�ncn (�) = 0p i¤ � = b (�n)

hence the estimator equivalently satis�es

�n � b (�n) = 0p

which de�nes the GMR 1 estimator in these special circumstances.
Proof of Lemma 2.3. In the �rst case we have that �n = g

�1 � 1
n
f (xi),

b (�) = g�1 � E�f (xi) = g�1 �m (�), GMR1= m�1 � g � �n = m�1 � 1
n
f (xi).

For the second case, if g is linear then E��n = g
�1�E� 1nf (xi) = g

�1�m (�) =
b (�), and the result follows.
Proof of Lemma 3.1. Notice that assumptions 1-4 in Andrews [2] corre-
spond to assumptions A.1, A.4, A.5, and A.7-A.9. The result follows from
Lemmas 5 and 9 of Andrews [2].
Proof of Lemma 3.2. i) (GT) We denote by E� (cn (�n)), the quantity
E� (cn (�)) j�=�n. Let, in the de�nition of �n (D.4), W ��

n denote the weighting
matrix W ��

n (�
�
n). By Lemma AL.1 we have that P�0 (kW ��

n �W ��
0 k > ") =

o (n�a), for " > 0 and W ��
0 = W �� (�0), and it follows that for K > 0 we

have:
P�0 (kW ��

n k > K) = o
�
n�a
�

(1)

where K � kW ��k+". Notice that this result is true forW �
n (�

�
n), the matrix

employed in either GMR1 or GMR2. Further, due to lemma 3.1 and by
assumption A.4 we have

P�0

�
sup
�
kE�cn (�n)� E�cn (b0)k > "

�
= o

�
n�a
�
for " > 0; (2)

where b0 = b (�0) Consequently, the consistency of �n follows from Lemma 5 of
Andrews [2]. Hence �n is in the interior of � and

@Jn(�n)
@�

= 0 with probability
1 � o (n�a). It follows that element by element mean value expansions of
@Jn(�n)
@�

around �0 and rearrangement gives: �n� �0 = �
�
@2Jn(�+n )
@�@�=

��1
@Jn(�0)
@�
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with probability 1 � o (n�a), where �+n lies between �n and �0 and may be
di¤erent across rows. Hence it su¢ ces to show that there are C� and K+

positive reals such that

P�0

 



 @@�Jn (�0)




 > C� ln1=2 nn1=2

!
= o

�
n�a
�

(3)

and

P

 





�

@2

@�@�=
Jn
�
�+n
���1




 > K+

!
= o

�
n�a
�
: (4)

We have that



@Jn(�0)@�




 = 



2@E�0 [c=(�n)]@�
W ��
n E�0 [c (�n)]





. First, notice that by
equation (1) there isK > 0 such that P�0 (kW ��

n k > K) = o (n�a). Second, as
E�0 [c (b0)] = 0, due to assumption A.4 and by lemma 3.1 P�0

�
kE�0 [c (�n)]k > C ln1=2 n

n1=2

�
�

P�0

�
k�n � b0k > C

E�0kuc(xi)k
ln1=2 n
n1=2

�
= o (n�a). Finally, by assumption A.4

8" > 0 we have that
P�0

�



@E�0 [c=(�n)]@�
� @E�0 [c

=(b0)]
@�





 > "� � P�0 (M� kE�0 [c (�n)]� E�0 [c (b0)]k > ") =

o (n�a). Hence, there is K�� > 0 such that P�0

�



@E�0 [c=(�n)]@�





 > K��
�
=

o (n�a). Applying now lemma AL.2 the proof of equation (3) is complete.

Now to prove equation (4) notice, �rst, that P�0

�



2@E�+n [c=(�n)]@�
W ��
n

@E
�+n
[c(�n)]

@�=





 > K+

2

�
� P�0

 



@E�+n [c=(�n)]@�





2 kW ��
n k > K+

4

!

� P�0 (kW ��
n k > K�) + P�0

 



@E�+n [c=(�n)]@�





2 kW ��
n k > K�

4
\ kW ��

n k � K�

!

� o (n�a) + P�0

 



@E�+n [c=(�n)]@�





2 kW ��
n k > K�

4
\ kW ��

n k � K�

!
= o (n�a) + P�0

�



@E�+n [c=(�n)]@�





 > K++

�
where K++ �

q
K+

4K� .

Now denoting that for 'n =
�
�=n;
�
�+n
�=�=

and '0 =
�
b
=
0; �

=
0

�=
we have that

P�0
�

 @

@�
E�+n

�
c= (�n)

�

 > K++
�

� P�0

�
sup�2O�('0)





@E�+n [c=(�n)]@�





 > K++

�
+ P�0 ('n =2 O� ('0))

� P�0
�
f�n =2 O� (b (�0))g [

�
�+n =2 O� (�0)

	�
35



� P�0 (�n =2 O� (b (�0)))+P�0 (�n =2 O� (�0)) = o (n�a) whereK++ can be cho-

sen asK++ � max
�q

K+

4K� ;�

�
where � is an upper bound of sup�2O�('0)





@E�[c=(�)]@�






(by assumption A.4). Hence

@E
�+n
[c=(�n)]
@�

W ��
n

@E
�+n
[c(�n)]

@�=
! @E�0 [c

=(b0)]
@�

W ��
0
@E�0 [c(b0)]

@�=

with probability o (n�a) and
@E�0 [c

=(b0)]
@�

W ��
0
@E�0 [c(b0)]

@�=
non-singular. This fol-

lows from the fact that 8� 2 � we have that E� [c (b (�))] = 0 and by the

Implicit Function Theorem we have that
@E�[c=(b(�))]

@�
= �@b=(�)

@�

@E�[c=(b(�))]
@�

.

Now @b=(�)
@�

is a p�q matrix and rank
�
@b=(�)
@�

�
= p, by assumption A.2 above,

whereas
@E�[c=(b(�))]

@�
is an q � l matrix with rank

�
@E�[c=(b(�))]

@�

�
= q, by as-

sumption A.4 above, and it follows that rank
�
@E�[c=(b(�))]

@�

�
= p. It follows

that asW ��
0 is non-singular, by assumption A.5 above, rank

�
@E�0 [c

=(b0)]
@�

W ��
0
@E�0 [c(b0)]

@�=

�
=

p.

Further we have to prove that P�0

 




2
�
@2E

�+n
[c=(�n)]

@�i@�j
W ��
n E�+n [c (�n)]

�
i;j=1;:::;p






 > K+

2

!
=

o (n�a). In fact we can prove that for " > 0 we have that

P�0

�����@2E�+n [c=(�n)]@�i@�j
W ��
n E�+n [c (�n)]

���� > "� = o (n�a). But
P�0

�����@2E�+n [c=(�n)]@�i@�j
W ��
n E�+n [c (�n)]

���� > "�
� P�0

�



@2E�+n [c=(�n)]@�i@�j





 kW ��
n k


E�+n [c (�n)]

 > "�

� P�0 (kW ��
n k > K)+P�0

�



@2E�+n [c=(�n)]@�i@�j





 kW ��
n k


E�+n [c (�n)]

 > " \ kW ��

n k � K
�

= o (n�a) + P�0

�



@2E�+n [c=(�n)]@�i@�j





 kW ��
n k


E�+n [c (�n)]

 > " \ kW ��

n k � K
�

� o (n�a) + P�0
�



@2E�+n [c=(�n)]@�i@�j







E�+n [c (�n)]

 > "�� where "� = "
K

To prove that P�0

�



@2E�+n [c=(�n)]@�i@�j







E�+n [c (�n)]

 > "�� = o (n�a) it su¢ ces

to prove that for �+ > 0 P�0

�



@2E�+n [c=(�n)]@�i@�j





 > �+� = o (n�a) and for

"�� > 0 P�0
�

E�+n [c (�n)]

 > "��� = o (n�a). For the second order deriva-

tives we have that 8i; j = 1; : : : ; p P�0
�



@2E�+n [c(�n)]@�i@�j





 > �+�
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� P�0

�
sup�2O�('0)





@2E�+n [c(�n)]@�i@�j





 > �+� + P�0 ('n =2 O� ('0))

� P�0
�
f�n =2 O� (b (�0))g [

�
�+n =2 O� (�0)

	�
� P�0 (�n =2 O� (b (�0))) + P�0 (�n =2 O� (�0)) = o (n�a) where again �+ can

be chosen as an upper bound of sup�2O�('0)



@2E�[c(�)]@�i@�j




 which exists due to as-
sumption A.4. Further, for "�� � "2 P�0

�

E�+n [c (�n)]

 > "��� asE�+n [c (�n)]!
E�0 [c (b0)] = 0 as E� [c (b (�))] = 0 8� 2 O"2 (�0) due to continuous mapping.

It follows that
@2E

�+n
[c=(�n)]

@�i@�j
W ��
n E�+n [c (�n)]! 0 with probability o (n�a).

Hence @2

@�@�=
Jn
�
�+n
�
! 2

@E�0 [c
=(b0)]

@�
W ��
0
@E�0 [c(b0)]

@�=
, a non-singular matrix, with

probability o (n�a). It follows that
�
@2Jn(�+n )
@�@�=

��1
!
�
2
@E�0 [c

=(b0)]
@�

W ��
0
@E�0 [c(b0)]

@�=

��1
with probability o (n�a) and, the proof of equation (4) is complete. Conse-
quently, the result follows by Lemma 5 of Andrews [2].
ii) (GMR1) Notice that p lim (�n � b (�)) = b0 � b (�). Hence 8� 2 � and
8" > 0
P�0 (sup�2� k�n � b (�)� [b0 � b (�)]k > ") = P�0 (k�n � b0k > ") = o (n�a)
from Lemma 3.1 and consequently, the consistency of �n follows from Lemma
5 of Andrews [2].
Hence �n is in the interior of � and

@Jn(�n)
@�

= 0 with probability 1� o (n�a),
where Jn (�) = (�n � b (�))

=W �
n (�n � b (�)), and W �

n = W �
n (�

�
n). With the

same logic as in i) it su¢ ces to show that

P�0

 



 @@�Jn (�0)




 > C� ln1=2 nn1=2

!
= o

�
n�a
�

(5)

and

P

 





�

@2

@�@�=
Jn
�
�+n
���1




 > K

!
= o

�
n�a
�
: (6)

and apply Lemma 5 of Andrews [2]. For equation (5) notice that @Jn(�0)
@�

=

�2@b
=
0

@�
W �
n (�n � b0) and consequently

P�0

 



 @@�Jn (�0)




 > C� ln1=2 nn1=2

!
� P�0

 
kW �

nk k�n � b0k > C
ln1=2 n

n1=2

!

where C = C�

2






 @b=0@�






by the submultiplicative property of the norm and by as-

sumption A.3. Now we have that for K� > 0 we have P�0 (kW �
nk > K�) =
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o (n�a), which is true from Lemma AL.1 (see also equation (1)), and P�0
�
k�n � b0k > C ln1=2 n

n1=2

�
by Lemma 3.1 and the result follows by lemma AL.2.

Further,
@2Jn(�+n )
@�@�=

= 2
@b(�+n )

=

@�
W �
n

@b(�+n )
@�=

�2
�
@2b(�+n )

=

@�i@�j
W �
n

�
�n � b

�
�+n
���

i;j=1;:::;p

.

It su¢ ces to show that for K > 0 we have that P�0

�



@2Jn(�+n )@�@�=





 > K� =

o (n�a). But

P�0

 




@2Jn
�
�+n
�

@�@�=






 > K
!

� P�0

 




2@b=
�
�+n
�

@�
W �
n

@b
�
�+n
�

@�=






 > K

2

!
(7)

+P�0

0@





2
"
@2b=

�
�+n
�

@�i@�j
W �
n

�
�n � b

�
�+n
��#

i;j=1;:::;p







 > K

2

1A
Now we have from above that P�0 (kW �

nk > K�) = o (n�a). Consequently, we
have

P�0

 




2@b=
�
�+n
�

@�
W �
n

@b
�
�+n
�

@�=






 > K

2

!
� o

�
n�a
�
+P�0

0@




@b=
�
�+n
�

@�







2

> K��

1A
where K�� = K

4K� . Further, for "� > 0 and due to consistency of �
+
n we have

that P�0

 



@b=(�+n )@�





2 > K�

!
� o (n�a)+P�0

 



@b=(�+n )@�





2 > K� \


�+n � �0

 � "�

!
Now as



�+n � �0

 � "� and choosing "� � "4 we have that �+n 2 O"4 (�0) with
probability 1 � o (n�a), due to assumption A.6. Hence by choosing K� �
max

�
M�
1 ;

K
4K�

�
we have that P�0

�

 @
@�
b=
�
�+n
�

2 > K� \



�+n � �0

 � "�� =
o (n�a). Consequently

P�0

 




2@b=
�
�+n
�

@�
W �
n

@b
�
�+n
�

@�=






 > K

2

!
= o

�
n�a
�

(8)

Now for any " > 0 we have that P
�

�n � b ��+n �

 > "� � P �k�n � b0k > "

2

�
+

P
�

b0 � b ��+n �

 > "

2

�
= o (n�a) as the �rst probability is o (n�a) due to

Lemma 3.1, and the second is also o (n�a) due to assumption A.2 and the con-

sistency of �+n . Further by assumption A.2, for "
�� > 0, P�0

�



@2b(�+n )@�i@�j
� @2b0

@�i@�j





 > "��� =
o (n�a) for any i; j = 1; :::; p. Consequently, 9K > 0 such that

P�0

0@






"
@2b=

�
�+n
�

@�i@�j
W �
n

�
�n � b

�
�+n
��#

i;j=1;:::;p







 > K

2

1A = o
�
n�a
�
: (9)
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Hence by equations (8) and (9) we have that the probability in equation (7)
in o (n�a). Consequently, equation (6) is true and the proof is complete by
applying Lemma 5 of Andrews [2].
iii) (GMR2) Notice that p lim (�n � E��n) = b0 � b (�). Hence 8� 2 � and
8" > 0
P�0 (sup�2� k�n � E��n � [b0 � b (�)]k > ")
� P�0 (k�n � b0k+ sup�2� kE��n � b (�)k > ").
Now we know from Lemma 3.1 above that P�0

�
k�n � b0k > "

2

�
= o (n�a).

Hence it su¢ ces to prove that for

8" > 0; 9 n� 2 N : sup
�2�

kE��n � b (�)k < "; 8n > n�:

For this we need to prove that �rst, kE��n � b (�)k ! 0, pointwise on a
dense subset of �, and second kE��n � b (�)k is asymptotically uniformly
equicontinuous (due to Arzella-Ascoli Theorem). For the �rst one notice that
P�0 (k�n � b (�0)k > ") = o (n�a) and �0 is arbitrary. Hence, P� (k�n � b (�)k > ") =
o (n�a) for any � 2 �. Furthermore, as B is bounded the series �n � b (�)
is uniformly integrable, and as kE��n � b (�)k � E� k�n � b (�)k we get
kE��n � b (�)k ! 0, i.e. kE��n � b (�)k = o (1)
For the second it su¢ ces to prove thatE��n�b (�) is uniformly Lipschitz. But
k[E��n � b (�)]� [E���n � b (��)]k � kE��n � E���nk+ kb (�)� b (��)k, and
kb (�)� b (��)k � k k� � ��k by assumption A.3. Further, kE��n � E���nk =
k[E��n � b (�)]� [E���n � b (�)]k
=


R

Rn (�n � b (�)) dP� �
R
Rq (�n � b (�)) dP��




� qmaxi=1;:::;q

R
Rn j(�n � b (�))ij jdP� � dP��j

� qM1

R
Rn jdP� � dP��j = qM1TV D (P�; P��) � qM1C k� � ��k where M1 is

the diameter of B, and TV D (P�; P��) is the Total Variation Distance be-
tween the two measures and the last inequality follows from the smoothness
of the parametrization of the statistical model (assumption A.1).11 Hence
k[E��n � b (�)]� [E���n � b (��)]k � [k + qM1C] k� � ��k and consequently,
P�0 (sup�2� k�n � E��n � [b (�0)� b (�)]k > ") = o (n�a), which proves the
o (n�a) consistency of the GMR2 estimator. Now, as Jn (�) = (�n � E��n)

=W �
n (�n � E��n),

whereW �
n = W

� (��n), with the same logic as in i) and ii), it su¢ ces equations
(5) and (6) apply to the GMR2 and follow Lemma 5 of Andrews [2].

Now @Jn(�)
@�

���
�=�0

= �2@E��
=
n

@�
W �
n (�n � E��n)

���
�=�0

and into account that, for

a > 0 we have that kE�0�n � b0k � E�0 k�n � b0k
�M1P�0

�
k�n � b0k > C3 ln

1=2 n
n1=2

�
+C3

ln1=2 n
n1=2

P�0

�
k�n � b0k � C3 ln

1=2 n
n1=2

�
=M1o (n

�a)+

11Recall that a distribution 	 is smooth i¤ for every set A, � > 0, and A� =
fx 2 S : miny2A kx� yk < �g,

��	 �A���	(A)�� = o (�), A collection of distributions is
called smooth if every member of it is smooth.
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C3
ln1=2 n
n1=2

(1� o (n�a)) = o (n�a) + C3 ln
1=2 n
n1=2

= O
�
ln1=2 n
n1=2

�
, we have that

P�0

�
k�n � E�0�nk > C1 ln

1=2 n
n1=2

�
� P�0

�
k�n � b0k+ kE�0�n � b0k > C1 ln

1=2 n
n1=2

�
� P�0

�
k�n � b0k+ o

�
ln1=2 n
n1=2

�
> C1

ln1=2 n
n1=2

�
� P�0

�
k�n � b0k > C4 ln

1=2 n
n1=2

�
=

o (n�a) (see lemma 3.1). For a = 0 we have that the GMR2 is asymptotically
equivalent to GMR1 (Gourieroux et al. [13]). Hence for a � 0 we have that
P�0

�
k�n � E�0�nk > C1 ln

1=2 n
n1=2

�
= o (n�a). Further, due to assumption A.6

equation (1) and lemma AL.2 it follows that equation (5) holds.

Now notice that
@2Jn(�+n )
@�@�=

= 2
@E

�+n
�
=
n

@�
W �
n

@E
�+n
�n

@�=
�2
�
@E

�+n
�
=
n

@�i@�j
W �
n

�
�n � E�+n �n

��
i;j=1;:::;p

and 2
@E

�+n
�
=
n

@�
W �
n

@E
�+n
�n

@�=
�2
�
@E

�+n
�
=
n

@�i@�j
W �
n

�
�n � E�+n �n

��
i;j=1;:::;p

! 2
@E�0�

=
n

@�
W �
0
@E�0�n

@�=

with probability 1 � o (n�a), where rank
�
@E�0�

=
n

@�
W �
0
@E�0�n

@�=

�
= p. To prove

this employ the consistency of �+n , the assumption A.6 and lemma AL.2. This
proves equation (6) and completes the proof.
Proof of Lemma 3.3. i) For GMR1 we apply lemma AL.5 where

�n =GMR1, 'n =
�
�=n; (�

�
n)
=
�
and the application is justi�ed by the fact

that provision 1 holds due to 3.1, 3.2, and A.9, 2 follows from A.3, A.5,
A.7 and A.9 and 3 follows from lemma 5 of Andrews [2] and A.9. Let

Sn =
�
f
=
n; �

=
n � b= (�0)

�=
, where fn = 1

n

Pn
i=1 f (xi; b (�0) ; �0) and f is de�ned

in A.7, and S =
�
Ef

=
n;01�q

�=
. By remark R.11 and lemma 3.1

p
n (Sn � S)

has an Edgeworth expansion of order s = 2a + 1. Hence �� (R�n) = G (Sn)
where G (:) smooth. and G (S) = 0 and from Bhattacharya and Ghosh [4]p
nG (Sn) has an Edgeworth expansion of the same order.

ii) For GT the proof is analogous to (i) apart from the fact that 3.2 has
to be evoked instead of 3.2. The only thing di¤erent is Jn which obeys the
provisions of AL.5 additionally due to assumption A.4.

iii) For GMR2 we apply again lemma AL.5 where �n =GMR2, 'n =
�
�n
��n

�
and the application is justi�ed by the fact that that provision 1 holds due to
3.1, 3.2, and A.9, 2 follows from A.6, A.5, A.7 and A.9 and 3 follows from
lemma 5 of Andrews [2] and A.9. Notice that in this case R�n is expanded by�
D1E�0�

=
n; : : : D

d�1E�0�
=
n

�=
. Now de�ne

S�n =
�
f
=
n; �

=
n � E�0�=n; D1E�0�

=
n; : : : D

d�1E�0�
=
n

�=
then

p
n (S�n � E�0S�n) =
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p
n
�
f
=
n � E�0f

=
n; �

=
n � E�0�=n; 0 : : : 0

�=
has an Edgeworth expansion

of order s = 2a + 1. This is justi�ed by assumptions A.7 and A.8 for
p
n
�
f
=
n � E�0f

=
n

�=
and by lemma AL.6 for

p
n (�n � E�0�n) which is valid ifp

n (�n � b (�0)) has a valid Edgeworth expansion of order s = 2a + 2 (due
to Lemma 4.1 below and remarks R.12 and R.13). S� =

�
S= 0 : : : 0

�=
and �� (R�n) = G (S

�
n) where G (S

�) = 0. Hence again due to the analogous
result of Bhattacharya and Ghosh [4]

p
nG (S�n) has an Edgeworth expansion

of the same order.
Proof of Lemma 4.1. Assume now that supA2BC jPn (A)�Qn (A)j =
O (n�a��), where BC denote the collection of convex Borel sets of Rq and
� > 0. Now na



R
Rq x (dPn � dQn)




� na




RB(0;K(lnn)�) x (dPn � dQn)


+na 


RRqnB(0;K(lnn)�) xdPn


+na 


RRqnB(0;K(lnn)�) xdQn



� naK (lnn)�

R
B(0;K(lnn)�)

jdPn � dQnj+ na
R
RqnB(0;K(lnn)�) kxk (dPn + jdQnj)

� K (lnn)� supA2BC n
a jPn (A)�Qn (A)j+na

R
RqnB(0;K(lnn)�) kxk (dPn + jdQnj)

Let Pn be the distribution of
p
n (�n � �0). Then na

R
RqnB(0;K(lnn)�) kxk dPn =

na
R
[RqnB(0;K(lnn)�)]\

p
n(���0) kxk dPn+n

a
R
[RqnB(0;K(lnn)�)]\(

p
n(���0))

C kxk dPn =

= na
R
[RqnB(0;K(lnn)�)]\

p
n(���0) kxk dPn as the support of Pn is

p
n (�� �0).

na
R
[RqnB(0;K(lnn)�)]\

p
n(���0) kxk dPn = na

R
p
n(���0)nB(0;K(lnn)�) kxk dPn for n

large enough.
Hence na

R
RqnB(0;K(lnn)�) kxk dPn � n

a+ 1
2�
R
p
n(���0)nB(0;K(lnn)�) dPn where � is

such that O� (0) � ���0 and � exists as � is bounded by assumption. Hence
na


R

Rq x (dPn � dQn)


 � K (lnn)� supA2BC na jPn (A)�Qn (A)j

+na+
1
2�P (

p
n (�n � �0) 2

p
n (�� �0) nB (0; K (lnn)�))+na

R
RqnB(0;K(lnn)�) kxk jdQnj.

As supA2BC n
a jPn (A)�Qn (A)j = O (n��) for � > 0, we have that

K (lnn)� supA2BC n
a jPn (A)�Qn (A)j = o (1) and the result follows due to

assumptions A.10 and A.11 above.
Proof of Lemma 4.2. To conserve space we shall only sketch the proof (for
an analytic one see Arvanitis and Demos [3]). As �n = argmin�2B c

=
n (�)Wncn (�),

where Wn = Wn (�
�
n), it follows that

@
@�
c
=
n (�n)Wn

p
ncn (�n) = 0q. Expand-

ing cn (�n) and Wn around b0 and keeping the relevant terms we get and
expression for

p
n (�n � b0). Employing now the moment approximations

for the analogous terms of 1
n

Pn
i=1 (f (xi; b0; �0)� E (f (xi; b0; �0))), due to

remark R.11 and lemma 4.1 and holding terms up to the relevant order,
@c
=
n(b0)
@�

= c
=
� (b0)+

1p
n
c
=
� (z; b0),Wn (b0) =W0+

1p
n
w (z; b0), and 1p

n

P
c (xi; b0) =

c (z; b0) +
1p
n
c� (z; b0) where z � N (0;�), the elements of c� (z; b0), w (z; b0)

and c (z; b0) are �nite polynomials in z withO (1) coe¢ cients andE�0c (z; b0) =
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E (c� (z; b0)) = 0, we get that
h
@
@�

1
n

P
c0 (xi; b0)

1
n

P
W (xi; b0)

@

@�=
1
n

P
c (xi; b0)

i�1
=

Q�1� 1p
n
Q�1AQ�1+ o

�
n�

1
2

�
due to lemma AL.4 where Q, and A are given

in the declaration of the lemma (see Corollary 1 Magdalinos [17], as well).

Further, with an o
�
n�

1
2

�
error we have

@c
=
n(b(�0))
@�

Wn (b0) = c
=
� (b0)W0 +

1p
n

h
c
=
� (b0)w (z; b0) + c

=
� (z; b0)W0

i
;

@2

@�@�=
1
n

P
cj (xi; b0) = c�;�0 (b0) +

1p
n
c�;�0 (z; b0) and

@

@�=
1
n

P
Wrj (xi; b0) =

W�= (b0)rj +
1p
n
w�= (z; b0)rj due to remark R.11 and lemma 4.1.

Hence, employing
p
n (��n � b0) s

1=2
k�1+

k�2p
n
(see assumption A.9) and collect-

ing terms we get the result.
Proof of Lemma 4.3. Utilizing assumption A.12 we have that �n satis�es
the following equation:
@b=(�n)
@�

W �
n (�

�
n)
p
n (�n � b (�n)) = 0p. Expanding

@b=(�n)
@�

,W �
n (�

�
n) and

p
n (�n � b (�n))

around �0 keeping the relevant terms we can solve for
p
n (�n � �0). Employ-

ing now the moment approximations for the analogous terms of
1
n

Pn
i=1 (f (xi; b0; �0)� E (f (xi; b0; �0))), due to remark R.11, lemma 4.1 and

due to lemma AL.4 we get:�
@b
=
0

@�
1
n

P
W � (xi; �0)

@b0
@�=

��1
= �� 1p

n
�
@b
=
0

@�
w� (z; �0)

@b0
@�=
�

where � is given in the declaration of the lemma. Further�
@b
=
0

@�
1
n

P
W � (xi; �0)

@b0
@�=

��1
@b
=
0

@�
1
n

P
W � (xi; �0)

= �
@b
=
0

@�
W �
0 +

1p
n
�
@b
=
0

@�
w� (z; �0)� 1p

n
�
@b
=
0

@�
w� (z; �0)

@b0
@�=
�
@b
=
0

@�
W �
0

It follows that substituting in the expression of
p
n (�n � �0) the above terms

and collecting terms we get the result.
Pro¤ of Lemma 4.5. Employing again the procedure as in the relevant
proofs before and utilizing assumption A.12, remark R.11, lemmas 4.1, AL.4

and 4.4 we have that �n satis�es the condition:
@E�n

�
�
=
n

�
@�

W �
n (�

�
n)
p
n (�n � E�n�n) =

0p. Expanding
@E�n

�
�
=
n

�
@�

, W �
n (�

�
n) and

p
n (�n � E�n�n) around �0 and b (�0),

and keeping the relevant terms we can solve for
p
n (�n � �0). Now taking

into account that �rst,
@E�0�

=
n

@�
=

@b
=
0

@�
+ o (1) =

@b
=
0

@�
+ Bn with kBnk = o (1),

second, W �
n (�0) = W

�
0 +

1p
n
w� (z; �0), where z � N (0;�) and the elements

of w� (z; �0) are O (1) �nite polynomials in z, and third,��
@b
=
0

@�
+Bn

��
W �
0 +

1p
n
w� (z; �0)

��
@b0
@�=
+B

=
n

���1
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= �+Kn� 1p
n
�w� (z; �0) � where kKnk = o (1), � =

�
@b
=
0

@�
W �
0
@b0
@�=

��1
. Notic-

ing now that





��Bn +Kn

�
@b
=
0

@�
+Bn

��
W �
0





 = o (1) we get the result.
Proof of Lemma 4.6. Let sn (�) and Hn (�) denote the gradient (score)
and the Hessian of the loglikelihood function of D respectively. First, notice
that for all � in O"2 (�0) the identity E�cn (b (�)) = 0l is well de�ned by
assumptions A.3, A.4. Due to assumption A.13 and taking derivatives with
respect to �= @E�cn(b(�))

@�=
= 0l�p and it follows that

E�
@cn (b (�))

@�=
@b (�)

@�=
= �E�cn (b (�)) s=n (�) : (10)

Also, since @E�cn(�)

@�=
= E�

@cn(�)

@�=
(assumption A.13), we have

E�
@2cn (b (�))j

@�@�=
@b (�)

@�=
= E�

@2cn (b (�))j

@�@�=
@b (�)

@�=
= �E�

@cn (b (�))j
@�

s=n (�) :

(11)

Then
@2E�cn(b(�))j

@�@�=
= E�

@2cn(b(�))j
@�@�0 +E�

@cn(b(�))j
@�

s
=
n (�)+E�sn (�)

@cn(b(�))j

@�=
+E�cn (b (�))j Hn (�)+

E�cn (b (�))j sn (�) s
=
n (�)

= �@�=(�)
@�

�
E�

@2cn(b(�))j

@�@�=

�
@b(�)

@�=
+
h
E�

@cn(b(�))j

@�=
@2�(�)
@�@�r

i
r=1;:::;p

+E�cn (b (�))j Hn (�)+

E�cn (b (�))j sn (�) s
=
n (�) by equation (11) and since

@2E�cn(b(�))j

@�@�=
= 0p�p we get

@�= (�)

@�

 
E�
@2cn (b (�))j

@�@�=

!
@� (�)

@�=
�
�
E�
@cn (b (�))j

@�0
@2b (�)

@�@�r

�
r=1;:::;p

(12)

= E�cn (b (�))j Hn (�) + E�cn (b (�))j sn (�) s
=
n (�) :

Now utilizing assumption A.12, remark R.11, lemmas 4.1, AL.4, equations
(10), (11), (12), expanding

p
nE� (cn (�)) around �0 and b0, taking into ac-

count thatW ��
n (�

�
n) =W

��
n (�0)+

1p
n

h
@

@�=
W ��
n (�0)rj

p
n (��n � �0)

i
r;j=1;:::;l

and
p
n (�n � b0) s

1=2
k1 +

1p
n
k2 we get an expression which involves the quan-

tities sn (�0), Hn (�0), and W ��
n (�0). Employing equations (11), (12) and

W ��
n (�0) =W

�� (�0)+
1p
n
w�� (z; �0), where z � N (0;�), we are able to solve

for
p
n (�n � �0) and the result follows.

Proof of Corollary 5. By direct substitution we obtain that q1 =�
@b(�0)
@�0

��1
k1, and q2 =�

@b(�0)
@�0

��1
k2�1

2

�
@b(�0)
@�0

��1 �
E�0

@cn(b(�0))
@�0

��1 �
trq1q

=:
1

h
E�0

@cn(b(�0))j
@�0

@2b(�0)
@�r@�

0

i
r=1;:::p

�
j=1;:::;l
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=
�
@b(�0)
@�0

��1
k2�1

2

�
@b(�0)
@�0

��1 �
E�0

@cn(b(�0))
@�0

��1 �P
r E�0

@cn(b(�0))j
@�0 trq1q

=
1

h
@2br(�0)
@�@�0

i
r=1;:::p

�
j=1;:::;l

,

and by lemma AL.3 we have q2 =
�
@b(�0)
@�0

��1
k2� 1

2
p
n

�
@b(�0)
@�0

��1 h
trq1q

=
1
@2bj(�0)

@�@�0

i
j=1;:::;l

.

Proof of Proposition 8. We prove the proposition by induction (detailed
proof can be found in Arvanitis and Demos [3]). Let the ith element of a
vector x be denoted by xi. Then assume that, in the assumed neighborhood
of �0, the proposition is true for r = h, i.e. assume that, for i = 1; ::p we
have:p
n
�
�(hn � �0

�
i
= (k1)i +

1

n
1
2
(k2)i + :::+

1

n
2h+3
2
(k2h+4)i + o

�
n�

2h+3
2

�
;

with
E� (k1)i = E� (k2)i = :: = E� (k2h+1)i = 0; (13)

i.e. �(hn is O
�
n�

2h+1
2

�
�0 � unbiased. Now for any � 2 O" (�0), and any

i; j;m; l; r = 1; :::p, we have that�
E��

(h
n

�
i
= �i +

1

n
2h+2
2
E� (k2h+2)i +

1

n
2h+3
2
E� (k2h+3)i +

1

n
2h+4
2
E� (k2h+4)i +

o
�
n�

2h+4
2

�
;

@
�
E��

(h
n

�
i

@�j
= �ij+

1

n
2h+2
2

@E�(k2h+2)i
@�j

+ 1

n
2h+3
2

@E�(k2h+3)i
@�j

+ 1

n
2h+4
2

@E�(k2h+4)i
@�j

+o
�
n�

2h+4
2

�
and all higher order derivatives are of O

�
n�

2h+2
2

�
(the same applies for

@
�
E��

(h
n

�
i

@�j
, for i 6= j).

Then the h+1st�stepGMR2 estimator is de�ned as �(h+1n = argmin�

�
�(hn � E��(hn

�2
.

Hence we have that �(hn � E�(h+1n
�(hn = 0. Taking into account the previous

equation, expanding E
�
(h+1
n
�(hn around �0, and noticing that

�
@
�
E��

(h
n

�
i

@�i

��1
=

1 � 1

n
2h+2
2

@E(kh+2)i
@�j

� 1

n
2h+3
2

@E�(kh+3)i
@�j

� 1

n
2h+4
2

@E�(kh+4)i
@�j

+ o
�
n�

2h+4
2

�
we get

p
n
�
�(h+1n � �0

�
i
as a function of terms that have zero expectation (due to

equation (13)), terms that involve the product (k1)i (k1)j and have non-zero

expectation, and an error of o
�
n�

2h+3
2

�
. It follows that

E�0

�
�(h+1n

�
i
= (�0)i�1

2
1

n
2h+4
2

Pp
j=1

Pp
m=1

@2E�0 (k2h+2)i
@�m@�j

E�0

h
(k1)j (k1)m

i
+o
�
n�

2h+4
2

�
;

which establishes the proposition due to the fact that i is arbitrary.
Proof of Lemma 2.2. When p = q = l due to consistency, the GT
estimator satis�es with probability 1 � o (n�a) E�ncn (�n) = 0p. Yet from
assumption A.4 we have that E�ncn (�) = 0p i¤ � = b (�n). Hence the
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estimator equivalently satis�es �n � b (�n) = 0p, which de�nes the GMR1
estimator in these special circumstances.
Proof of Lemma 2.3. In the �rst case we have that �n = g

�1 � 1
n
f (xi),

b (�) = g�1 � E�f (xi) = g�1 �m (�), GMR1= m�1 � g � �n = m�1 � 1
n
f (xi).

For the second case, if g is linear then E��n = g
�1�E� 1nf (xi) = g

�1�m (�) =
b (�), and the result follows.

B Proofs of General Lemmas
The following are a collection of helpful lemmas that are frequently referenced
in the proofs of the main results. The �rst concerns weighting matrices and
initial estimators in general, hence it is directly connected to assumptions
A.5 and A.7.

Lemma AL.1 Suppose thatWn (!; �
�
n),W (�0), �

�
n are de�ned as in assump-

tions A.5 and A.9, then

P
 (kWn (!; �
�
n)�W (�0)k > ") = o

�
n�a
�
; 8" > 0

and

P

�

DrWn (!; �) j�=��n �D

rW (�) j�=�0


 > "� = o �n�a� ; 8" > 0; and r < d+1:

Proof. Under assumptions A.5 and A.9, Lemmas 3 and 5 of [2], and due the
triangle inequality we have that P
 (kWn (!; �

�
n)�W (�0)k > ")

� P

�
kWn (!; �0)�W (�0)k > "

2

�
+ P


�
kWn (!; �

�
n)�Wn (!; �0)k > "

2

�
� o (n�a) + P


�
un k��n � �0k > "

2

�
= o (n�a) and

P

�

DrWn (!; �) j�=��n �DrW (�) j�=�0



 > "�
� P


�

DrWn (!; �) j�=��n �DrWn (!; �) j�=�0


 > "

2

�
+ P


�
kDrWn (!; �) j�=�0 �DrW (�) j�=�0k > "

2

�
� P


�
uDn k��n � �0k > "

2

�
+ o (n�a) = o (n�a).

In the following lemma ! (n) is a deterministic function of n. In most

cases ! (n) = ln
1
2 n

n
1
2
, but ! (n) = 1 is also allowed.

Lemma AL.2 Let P
 (kank > K) = o (n�a), for someK > 0 and P
 (k�nk > C! (n)) =
o (n�a), for some C > 0. Then

P
 (kan�nk > C�! (n)) = o
�
n�a
�
, for some C� > 0

Proof. By the submultiplicativity property P
 (kan�nk > C�! (n))
� P
 (fkank k�nk > C�! (n)g \ fkank > Kg)
+ P
 (fkank k�nk > C�! (n)g \ fkank � Kg)
� P
 (kank > K) + P
 (K k�nk > C�! (n)) = o (n�a) for C� � CK.
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Lemma AL.3 For A;M 2Mq�q, and M invertible�
tr

�
A
@2b (�0)i
@�@�0

��
i=1;:::;q

=M�1

(
qX
j=1

Mi;jtr

 
A
@2b (�0)j
@�@�0

!)
i=1;:::;q

Proof. Let u =
h
tr
�
A@2bi(�0)

@�@�0

�i
i=1;:::;q

, and v = M�1
h
tr
�
A
@2bj(�0)

@�@�0

�i
i=1;:::;q

.

Then vi =
qP
j=1

qP
m=1

M i;mMm;jtr
�
A
@2bj(�0)

@�@�0

�
=

qP
j=1

�i;jtr
�
A
@2bj(�0)

@�@�0

�
= tr

�
A@2bi(�0)

@�@�0

�
=

ui, 8i = 1; : : : q.

Lemma AL.4 Let X and Yi (z) be square matrices, with X being non-
singular and Yi (z) has elements of �nite degree polynomials in z, and z �
N (0;�). Then 

X +
2aX
i=1

1

n
i
2

Yi (z)

!�1
= X�1 +

2aX
i=1

1

n
i
2

Ki (z) +Rn (z)

where Rn (z) is such that P (kRn (z)k > 
n) = o (n�a) and 
n = o (n�a).

Proof. For n � n� we have that kRn (z)k � 1

na+
1
2
kR (z)k where the ele-

ments of R (z) are �nite polynomials of z. Then it su¢ ces to �nd c > 0
and " > 0 such that naP (kRn (z)k > cn�a�") = o (1). However, notice

that naP (kRn (z)k > cn�a�") � naP
�

1

na+
1
2
kR (z)k > cn�a�"

�
� na�

k
2
+k"m

where EkR(z)kk
ck

= m and any k 2 N, due to the Markov inequality and the
normality of z. Hence we need a� k

2
+ k" < 0) " < 1

2
� a

k
and " > 0. This

is satis�ed for any k > 2a.
Let us denote as �n any of the examined (auxiliary or indirect) estimators.

We denote with 'n either �
�
n or

�
�n
��n

�
as these are de�ned in the section

concerning the de�nition of the examined estimators. We �nally denote with
Jn any of the criteria that are involved in the aforementioned de�nitions, i.e.
Jn (�; ') = Q

=
n (�; ')W (')Qn (�; '), and J is its probability limit. Our next

lemma concerns the derivation of the validity of the Edgeworth expansion in
all examined cases. It essentially determines that the local approximation ofp
n (�n � �0) obtained by the inversion of a polynomial approximation of the

�rst order conditions, has an error that is not greater that any o (n�a)-real
sequence with probability 1�o (n�a). This result, along with the provisions of
corollary AC.1 that follows, establish that these two sequences have the same
Edgeworth expansions if any one of them has a valid Edgeworth expansion.
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Lemma AL.5 If 1. P�0
�


n 1

2 (�n � �0)



 > C� ln1=2 n� = o (n�a),

P�0

�


n 1
2 ('n � '0)




 > C' ln1=2 n� = o (n�a) and P�0 �


n 1
2Qn (�0; '0)




 > CQ ln1=2 n�
for C�; C'; CQ > 0,
2. @Jn(�;')

@�
is di¤erentiable of order d�1 in a neighborhood of (�0; '0) and the

d� 1 order derivative is Lipschitz in this neighborhood (or in a subset of it)
the Lipschitz coe¢ cient is bounded with probability 1� o (n�a), and @J2(�0;'0)

@�@�0

is positive de�nite,
3. P�0

�


n 1
2 ('n � '0)� n

1
2� (Rn)




 > !�n� = o (n�a) with �,Rn, and !�n
analogous to the relevant quantities of the present lemma (see below) that
are derived in an analogous manner with a potentially di¤erent Jn,
then there exists a smooth function �� : Rm ! Rp, that is independent of n
such that

P�0

�


n 1
2 (�n � �0)� n

1
2�� (R�n)




 > !n� = o �n�a�
where R�n is the sequence of random elements with values on Rm, with compo-
nents the distinct components of @Jn(�0;'0)

@�
, and

n
Dj1;j2

�
@Jn(�;')

@�

�
j(�=�0;'='0)

o
j1+j2=i;i=1;::;d�1

,

where Dj1;j2

�
@Jn(�;')

@�

�
= Dj2

' � D
j1
�

�
@Jn(�;')

@�

�
, m = dim (R�n) and !n =

o (n�a) deterministic.

Proof. Denoting �n = �n � �0, 'n = 'n � '0, a (d� 1)-Taylor expansion
about (�0; '0) on the conditions

@Jn(�n;'n)
@�

= 0p would obtain

@Jn(�0;'0)
@�

+
Pd�1

i=1
j1+j2=i
j1;j2�0

1
i!

�
i
j1

�
Dj1;j2

�
@Jn((�0;'0))

@�

��
�n
j1

'n
j2

�
+r�n = 0p where

0BB@
�n; � � � ; �n| {z }
j1 times

'n; � � � ; 'n| {z }
j2 times

1CCA =

�
�n
j1

'n
j2

�
and the remainder is

r�n =
Pd�1

j1=0

1
(d�1)!

�
d�1
j1

�
Dj1;d�1�j1

�
@Jn(�+n ;'+n )

@�
� @Jn((�0;'0))

@�

��
�n
j1

'n
j2

�
, where

eachDi1;i2

�
@Jn(�0;'0)

@�

�
is an i1+i2 tensor de�ned onRp 
 � � � 
 Rp| {z }

i1 times


Rq 
 � � � 
 Rq| {z }
i2 times

with values in Rp, with coe¢ cients the ith1 derivatives of
@Jn(�;�)
@�

with respect
to the components of the initial � and the ith2 derivatives of @Jn(�;')

@�
with

respect to the components of the �nal ' at (�0; '0), and �
+
n , '

+
n between

�n and �0, and 'n and '0, respectively. Hence the previous can be rewrit-
ten as (Andrews [2], Lemma 8) v� (�n � �0; 'n � '0; R�n + ��n) = 0p where
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v : Rp � Rq � Rm ! Rm is smooth and ��n =
�

r�n
0m�p

�
. If we denote with

R� the probability limit of R�n, and with R the probability limit of Rn, then
it is trivial that v (0p;0q; R�) = 0p, and that

@v(z;x;y)
@z0 j(0p;0q ;R�) =

@J2(�0;'0)
@�@�0

which is positive de�nite by 2. Hence the implicit function theorem ap-
plies and dictates that 9U0p � Rp an open neighborhood of Rp, 9V(0q ;R) �
Rq � Rm an open neighborhood of (0q; R�), and a unique smooth function
�� : V(0q ;R�) ! U0p such that v (�

� (x; y) ; x; y) = 0p 8 (x; y) 2 V(0q ;R�).
Given that P�0

�
�n � �0 2 U0p

�
= 1 � o (n�a), P�0

�
'n � '0 2 U0q

�
= 1 �

o (n�a) P�0 (R
�
n + �

�
n �R� 2 U0m) = 1 � o (n�a), 'n � '0 = � (Rn) + �n,

P�0 (
p
n k�nk > !�n) = o (n�a), !�n = o (n�a) and � (:) is smooth, we obtain

that for large enough n
�n � �0 = �� ('n � '0; R�n + ��n) = �� (� (Rn) + �n; R�n + ��n)
with �� (0q; R�) = 0p. Consequently, we have to �nd C > 0 such that for
!n = Cn

1
2
� d
2 ln

d
2 n = o (n�a) we have

P�0

�
n
1
2 k�� (� (Rn) + �n; R�n + ��n)� �� (� (Rn) ; R�n)k > !n

�
= o

�
n�a
�

and

P

 
p
n






Dj1;j2

 
@Q

=
n (�0; '0)

@�
W ('0)

!�
�n
j1

'n
j2

�
Qn (�0; '0)






 > !n
!
= o

�
n�a
�
:

Following the proof of Andrews [2], Lemma 8, we conclude that for C >
K (C')

j2 (C�)
j1 CQ, where C', C�, and CQ are as in the declaration of the

lemma, and K is an asymptotic bound in probability of the Lipschitz coef-
�cient of the highest order derivative of @Jn(�;')

@�
, both equations above are

ful�lled.
The next two results are of great importance in both the validity of Edge-

worth expansions as well as in the validation of moment approximations. In
fact the lemma below represents an extension of Lemma 8 in Andrews [2].

Lemma AL.6 Suppose that
p
n (�n � b (�0)) admits a valid Edgeworth ex-

pansion of order s = 2a + 1. Let fxng denote a sequence of random vectors
and there exists an " > 0 and a real sequence fang, such that an = o (n�")
and P (

p
n kxnk > an) = o (n�a). Then

p
n (�n � b (�0) + xn) admits a valid

Edgeworth expansion of the same order.

Proof.
By de�nition supA2BC

���P (pn (�n � b (�0)) 2 A)� RA �1 +P2a
i=1 n

� i
2�i (z)

�
� (z) dz

��� =
o (n�a) where BC denotes the collection of convex Borel sets of Rq and
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�i (z) = O (1). Then, P (
p
n (�n � b (�0) + xn) 2 A)

� P (
p
n (�n � b (�0)) 2 A� an) + o (n�a). Also,

supA2BC

���P (pn (�n � b (�0) + xn) 2 A)� RA�an �1 +P2a
i=1 n

� i
2�i (y)

�
� (y) dy

��� �
supA2BC

���P (pn (�n � b (�0)) 2 A� an)� RA�an �1 +P2a
i=1 n

� i
2�i (y)

�
� (y) dy

���+
o (n�a) = o (n�a) as A� an is convex.
Now,

R
A�an

�
1 +

P2a
i=1 n

� i
2�i (y)

�
� (y) dy =

R
A

�
1 +

P2a
i=1 n

� i
2�i (z � an)

�
� (z � an) dz.

Therefore, if Hk (z) denotes the kth order Hermite multivariate polynomial,
L (Hk (z) ; an; i) and i-linear function of an with coe¢ cients from Hk (z), and
� (z � an) = � (z)

PK
k=0

1
k!
L (Hk (z) ; an; k) + �n (z) where

�n (z) =
1

(2K+1)!
(�1)K+1 L (Hk (z � a�n) ; an; K + 1)� (z � an), and a�n lies be-

tween an and zero. If a � " set K = 0, else, choose some natural K � a
"
� 1.

Then,
�
1 +

P2a
i=1 n

� i
2�i (z � an)

�
� (z � an)

= � (z)
�
1 +

P2a
i=1 n

� i
2��i (z)

�
+ qn (z) where the ��i (z)

0 s are O (1) polyno-

mials in z and qn (z) =
�
1 +

P2a
i=1 n

� i
2�i (z � an)

�
�n (z).

Hence
R
A

�
1 +

P2a
i=1 n

� i
2�i (z � an)

�
� (z � an) dz

=
R
A
� (z)

�
1 +

P2a
i=1 n

� i
2��i (z)

�
dz

+
R
A
� (z) qn (z) dz and supA2BC

��R
A
qn (z) dz

��
� supA2BC

R
A
� (z � an)

����1 +P2a
i=1 n

� i
2�i (z � an)

�
�n (z)

��� dz
�
R
Rq � (z � an)

����1 +P2a
i=1 n

� i
2�i (z � an)

�
�n (z)

��� dz � C
na+�

= o (n�a) for
some C; � > 0. Hence,
supA2BC

��Rn � RA qn (z) dz�� = o (n�a), and therefore supA2BC ��Rn � RA qn (z) dz��
� supA2BC

��Rn � ��RA � (z) qn (z) dz���� � ��supA2BC jRnj � supA2BC ��RA � (z) qn (z) dz���� =
o (n�a) and supA2BC

���P (pn (�n � b (�0) + xn) 2 A)� RA � (z)�1 +P2a
i=1 n

� i
2��i (z)

�
dz
��� =

o (n�a) due to the fact that the transformation from �i (z) to ��i (z) does not
depend on A but only on an and Rn = P (

p
n (�n � b (�0) + xn) 2 A)

�
R
A
� (z)

�
1 +

P2a
i=1 n

� i
2��i (z)

�
dz.

Corollary AC.1 If a � " then �i (z) = ��i (z), 8i, and therefore the resulting
Edgeworth distribution coincides with the initial.

49


	Introduction
	General Assumption Framework
	Definition of Estimators

	Validity of Edgeworth Approximations
	Assumptions Specific to the Validity of the Edgeworth Approximations
	Auxiliary Estimator
	Indirect Estimators
	Existence of Edgeworth Expansions of Indirect Estimators


	Validity of 1st Moment Expansions
	Valid 2nd order Bias approximation for the Indirect estimators
	Auxiliary Estimators
	Indirect Estimators

	Local Canonical Representation of the Binding Function
	GMR2 Recursion

	Conclusions
	Proofs of Lemmas and Corollaries.
	Proofs of General Lemmas


