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Abstract

We develop an endogenous growth model where data drives innovation. In this model, big

data fosters quality improvements by influencing the likelihood and magnitude of successful

quality-enhancing innovations. It also promotes variety innovation through the effi cient

allocation of labor as a fixed cost, ultimately driving long-run economic growth. The social

planner reduces the welfare costs associated with monopoly production and internalizes

the externalities present in decentralized economies. As a result, the optimal growth rate

exceeds the equilibrium growth rates under two data property rights regimes. Data property

rights play a crucial role in determining long-run growth and steady-state welfare, which

depend largely on two key model parameters: the weight for privacy and the frequency of

creative destruction. This model also explores the interactions between quality innovation

and variety innovation.
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1 Introduction

The importance of data in the economy has become increasingly apparent in recent years. Big

data refers to large volumes of data and the accompanied technological innovation used to

gather, store, and process them (Farboodi and Veldkamp, 2023). Data are not only used for

prediction and production but also for innovations, including both variety and quality innova-

tions. As Farboodi and Veldkamp (2023) argue, big data fosters innovation: "By analyzing the

data related to user behavior, companies can discover patterns that can identify the need for

a new product or an upgrade of an existing one. Thus, big data fosters innovation as well."

Many researchers explore how big data affect technological innovations and scientific discoveries

from different perspectives.1 In this paper, we develop an endogenous growth model in which

big data affect quality innovation (by influencing the probability and magnitude of successful

innovations) and variety innovation (through effective labor input), thereby driving long-run

economic growth. We also examine the distortions driven by monopoly and externalities, the

growth effects of data property rights, and the interactions between quality and variety innova-

tions.

This article delivers three key messages. First, we introduce a new perspective on big

data: data as innovation. Current research models data as prediction (Farboodi and Veldkamp,

2019), as production (Jones and Tonetti, 2020; Cong et al. 2022), or as variety innovation

(Cong et al. 2021; Cong et al. 2022). We model data as both quality and variety innovation.

In our model, individual quality innovations follow homogenous Poisson processes, where data

increase both the probability and magnitude of successful quality innovations. Meanwhile, the

creation of new varieties requires a certain amount of effective labor equipped with big data.

This model also generalizes Dinopoulos and Thompson’s (1998) Schumpeterian growth model

without scale effects by incorporating big data. Unlike the exiting literature on data and growth,

we provide an endogenous growth model with a microfoundation that explains how big data

influence innovation and growth in a data-driven economy. Table 1 summarizes the perspectives

of current research on big data and growth.

Table 1: Perspective and literature
1Nielsen (2012) illustrates the myriad ways in which big data and associated technologies are changing the

mechanisms of discovery in science. Cockburn et. al. (2018) examines the implications of artificial intelligence
and machine learning as general-purpose technologies (GPTs) for invention. Agrawal et. al (2018) develop a
model to explore the importance of artificial intelligence in finding useful combinations in complex discovery
spaces. Martin (2020) shows that most benefits of big data and related technologies involve improvements in the
quality of products, services and customer access.
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Perspective Literature

Data as prediction Farboodi & Veldkamp (2019)

Data as production Jones & Tonetti (2020), Cong et al. 2022

Data as variety innovation Cong et al (2021), Cong et al. (2022)

Data as innovation (variety and quality) Our model

Second, optimal growth exceeds equilibrium growth, and data property rights significantly

impact both growth and welfare. In the decentralized economy of the model, there are three

types of distortions: (i) monopoly power over all varieties, (ii) a positive externality of the aver-

age quality level on all individual quality-enhancing innovations, and (iii) a negative externality

on consumers’privacy conerns from firms’data sales when firms own the data, or a negative

externality on firms’ profits from consumers’ data sharing due to creative destruciton when

consumers own the data. When making allocation decisions, the social planner reduces the

welfare cost of monopoly and internalizes all externatlities, thereby improving the equilibrium

growth rate, regardless of whether data are owned by firms or consumers. This result differs

from existing growth models involving data. For example, Jones and Tonetti (2020) shows that

the optimal growth rate equals both equilibrium growth rates, as the long-run effects of market

distortions in decentralized economies may cancel each other out under both data ownership

regimes. Cong et al. (2021) find that the optimal growth rate equals the equilibrium growth

rate when consumers own the data but is lower than the equilibrium growth rate when firms

own the data. Cong et al. (2022) demonstrate that the optimal growth rate is higher than the

equilibrium growth rate when consumers own the data.

We also show that data property rights matter for long-run growth, and the ranks/discrepancies

between these two equilibrium growth rates largely depend on three key parameters: the weight

of privacy concerns κ, the frequency of creative destruction δ0, and the elasticity of substitution

(EIS) for goods θ. Specifically, (1) If the weight for privacy κ is relatively large (small)-for

instance, greater (less) than a critical value-then quality growth with consumers owning data

is higher (lower) than with firms owning data. If the privacy weight κ equals the critical value,

then the two equilibrium growth rates under different data property rights regimes are close to

each other.

Intuitively, when firms own data, privacy concerns κ do not affect the optimizing behaviors

of agents (i.e., consumers, firms, and data intermediaries) and therefore have no significant
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impact on the economy. However, when consumers own data, changes in privacy concerns have

two opposing effects on long-run quality growth. If privacy concerns increase, consumers sell less

data. Fewer data sales and less data sharing reduce the frequency of creative destruction, thereby

mitigating profit losses across varieties. For each variety, more resources are allocated to quality-

enhancing activities, boosting quality growth. On the other hand, reduced data sales lowers

consumers’ revenues, diminishing per capita consumption expenditure and reducing market

demand for each variety. As a result, each variety earns less profit, leading to fewer resources

being devoted to innovation, which dampens quality growth.

Thus, if consumers value their privacy more than the critical threshold, the positive effect

dominates, and the equilibirum growth rate is higher than when firms own data. Conversely,

if consumers care less about privacy, the negative effect prevails, and the growth rate is lower

than when firms own data. Additionally, if privacy concerns approach the critical value, the

opposing effects nearly cancell each other out, and the two equilibrium growth rates converge.

(2) If the frequency of creative destruction δ0 is relatively large (or small)-for example,

greater (or less) than a critical value-then quality growth with consumers owning data is lower

(or higher) than with firms owning data. If the frequecney of creative destruction equals the

critical value, then the two equilibrium growth rates are close to each other.

Intuitively, an increase in the frequency of creative destruction has two opposing effects on

quality growth. Given data sales, an increase in δ0 directly raises the likelihood of creative

destruction, which reduces each variety’s profits or resources allocated to quality innovations,

thus negatively affecting quality growth. On the other hand, an increase in δ0 may decrease

data sales and indirectly lowers the probability of creative destruction, which reduces profit

losses from creative destruction, thereby positively affecting quality growth.

When firms own data, these two opposing effects cancel each other out, so δ0 has no net

effect on quality growth. However, when consumers own data and the frequency of creative

destruction is relatively large, the negative effect dominates, leading to a lower equilibrium

growth rate compared to when firms own data. Conversely, if δ0 is less than its critical value,

the positive effect dominates, and quality growth is higher than when firms own data. When

the frequency of creative destruction equals the critical value, the two effects roughly cancell

out and the two equilibrium growth rates are approximately equal.

(3) When the EIS for goods θ is relatively high, the quality growth associated with consumer-

owned data exceeds that of firm-owned data. Conversely, when θ is relatively low, quality growth
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with consumer-owned data is lower than with firm-owned data.

Intuitively, when firms own data, changes in the EIS for goods have two opposing effects

on quality growth. A larger EIS reduces monopolistic prices, which leads to a decrease in

equilibrium profits for each variety. This reduction in profits means fewer resources are allocated

to quality innovations, negatively impacting quality growth. On the other hand, as product

prices drop, each variety undervalues its original data and sells less of it. Reduced data sharing

lowers the frequency of creative destruction, minimizing profit losses and positively influencing

quality growth. These two opposing forces effectively cancel each other out, meaning that

quality growth remains unaffected by the EIS for goods when firms own data.

When consumers own data, the same opposing effects apply. However, if the EIS for goods

is relatively large, production prices are very low. Concerned about their privacy, consumers

sell even less data, further reducing profit losses from creative destruction. In this case, the

positive effect dominates, resulting in higher quality growth compared to when firms own data.

On the other hand, if the EIS for goods is relatively small, consumers face higher prices for

goods and sell more data. Here, the negative effect dominates, and quality growth is lower than

firm-owned data.

Data property rights also impact welfare. In our model, the Consumers Own Data (COD)

allocation is superior in relatively large parameter ranges, though by a relatively small margin,

while the Firms Own Data (FOD) allocation yields higher welfare in relatively small parameter

ranges, but by a relatively large margin. These results differ significantly from those of Jones and

Tonetti (2020), who find that the COD allocation is generally superior, generating substantially

higher welfare, while the FOD allocation only produces higher welfare in rare instances and by

only a small amount.

Third, we propose an endogenous growth model that incorporates data and population

growth, where quality and variety innovations interact. In this model, population growth has

an expanding effect on the data market (a larger population implies larger market sizes and more

data), which reinforces quality-enhancing innovations for all varieties and accelerates aggregate

quality growth. By introducing big data into the framework of Dinopoulos and Thompson

(1998), our model combines both quality and variety growth in an economy driven by data.

Population growth directly influences variety growth and indirectly affects it through quliaty

growth. Intuitively, higher population growth provides cheaper labor to the economy, directly

facilitating variety innovations. Indirectly, a larger population creates greater market demand
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and more data, promoting quality innovations across all varieties and generating additional

resources (via creative destruction) to support further variety innovations.

The remainder of the paper is organized as follows. Section 2 presents the economic environ-

ment of the model. Section 3 examines the optimal allocation determined by the social planner.

Section 4 analyzes the equilibrium allocation in a decentralized economy when firms own data.

Section 5 explores the equilibrium allcoation when consumers own data. Section 6 develops the

key insights of the model. Section 7 concludes. Section 8 contains the online appendix.

2 Economic environment

The economic environment discussed in this paper is summarized in Table 2. The model ass-

sumes a representative consumer with logarithmic utility over per capita consumption, c (t).

There are m (t) varieties of consumption goods, which contribute to utility through a quality-

adjusted Dixit-Stiglitz aggregator with a constant elasticity of substitution (EIS) θ (where

θ > 1), namely,

c (t) ≡
[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

] θ
θ−1

. (1)

Here, c (i, t) represents the instantaneous per capita consumption of good i ∈ [0,m (t)], and

q (i, t) indicates the nominal quality of variety i, which follows independent homogeneous Poisson

processes. There are l (t) people in the economy, and the population grows exogenously at a

rate of n. The time discount rate of the representative consumer is denoted by ρ ∈ (0,∞).

Table 2: The Economic Environment
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E0

[∫ +∞
t=0 e−(ρ−n)tu (c (t) , d (t)) dt

]
Utility

u (c (t) , d (t)) = log c (t)− κ
2d (t)2 Flow utility

c (t) ≡
[∫m(t)
i=0 q (i, t)

1
θ c (i, t)

θ−1
θ di

] θ
θ−1

with θ > 1 Consumption per person

J (i, t) = c (i, t) l (t) = y (i, t) Data creation

d (i, t) = s (i, t) c (i, t) Variety i data shared

d (t) =
∫m(t)
i=0 d (i, t) di Per capita data shared

y (i, t) = lp (i, t) = c (i, t) l (t) Firm production

dq (i, t) =

 γQ (t) dv (i, t)φ2 , lv (i, t)b dv (i, t)φ1 dt

0, 1− lv (i, t)b dv (i, t)φ1 dt
Quality-enhancing innovations

·
m (t) = lm (t) lh (t)−1 Variety-expanding innovations

µ = dh (t)ψ lh (t)1−ψ Production of effective labor

D (t) ≤ χ
[
m (t)−1/η ∫m(t)

i=0 q (i, t)1/η (l (t) d (i, t))(η−1)/η di
]η/(η−1)

Data bundle∫m(t)
i=0 lv (i, t) di+

∫m(t)
i=0 c (i, t) l (t) di+ lm (t) = l (t) Labor resource allocation

l (t) = l (0) ent Population growth

δ (s (i, t)) = 2−1δ0s (i, t)2 Creative destruction

Privacy considerations on personal data also influence flow utility. Data is a byproduct

of economic activity, as discussed in the literature (Farboodi and Veldkamp, 2019; Jones and

Tonetti, 2020; Cong, et al. 2021; Cong et al. 2022). Each unit of consumption generates one

unit of data as a byproduct. Thus, c (i, t) represents both the per capita consumption of variety

i and the data produced from the consumption of variety i by each person. Let s (i, t) denote the

proportion of variety i data that is shared. Then d (i, t) = s (i, t) c (i, t) represents the amount

of variety i data shared by each agent. For simplicity, we assume that data from all varieties

symmetrically affect utility. Thus, d (t) =
∫m(t)
i=0 d (i, t) di represents the total data shared for

all varieties by each individual. Furthermore, we assume privacy costs follow a quadratic loss

function. Overall, consumers gain utility from the consumption of each good but incur utility

costs from data sharing, with κ (> 0) representing the weight placed on privacy relative to

consumption. Additionally, let J (i, t) = c (i, t) l (t) = y (i, t), where J (i, t) represents the data

created about variety i.

Firm i produces variety i using labor according to a linear production function: y (i, t) =

lp (i, t), where lp (i, t) represents labor. Goods are produced using labor alone but may differ

in two ways. First, there are quality differences, meaning identical quantities of different goods
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can provide varying levels of utility. Second, labor productivity may vary regardless of quality,

meaning identical quantities of different goods may require different amount of labor.

Firms invest in quality-enhancing R&D by hiring labor lv (i, t) and purchasing big data

dv (i, t)) to improve the quality of their products. Innovations in quality occur at random

intervals, with a mean intensity that varies directly with R&D efforts. Specifically, the nominal

quality levels {q (i, t)} follow independent, homogeneous Poisson processes,2 with an intensity

of lv (i, t)b dv (i, t)φ1 and a magnitude of γQ (t) dv (i, t)φ2 , where Q (t) ≡ m (t)−1 ∫m(t)
i=0 q (i, t) di

represents the mean quality level for all varieties at time t, and b, φ1 and φ2 are elasticity

parameters for labor and data, satisfying b, φ1, φ2 ∈ (0, 1) and b + φ1 + φ2 < 1. Quality

increments in this model are proportional to the current average quality level. In other words,

the average quality level generates spillovers or positive externalities on individual quality-

enhancing activities.3 The proportionality feature is familiar from Romer (1990) and others.

This type of externality is necessary to generate a stable distribution of relative quality in the

balanced-growth equilibrium.

In contrast to the technology governing quality improvements, there are no spillovers in the

creation of new varieties: the cost of developing a new variety remains constant, regardless of

how many already exist. As argued by Romer (1990), developing a new variety is equivalent

to incurring a fixed cost, which can be seen as a defining characteristic of the technology. We

assume that a new variety is created upon the payment of a fixed effective labor cost, µ (> 1),

which aligns with the spirit of Romer (1990), Dinopoulos and Thompson (1998), and Jones and

Tonetti (2020). However, unlike their models, the effective labor here is generated by combining

original labor and big data through a production technology:

µ = dh (t)ψ lh (t)1−ψ , ψ ∈ (0, 1) . (2)

Furthermore, after a new variety is created, an initial relative quality is observed, drawn at ran-

dom from the distribution of relative productivities for existing varieties, F (α).4 By definition,

2The intensity of a Poisson process is the first-order approximation to the probability of a jump in the state
variable within the next infinitesimally small interval of time. The mean time between consecutive jumps is the
inverse of the intensity. The magnitude of a Poisson process refer to the size of the jump in the state variable,
conditional on a jump occurring.

3 If the magnitude of quality increments for variety i were proportional to its own quality q (i, t), rather than
Q (t), firms that fall behind would have less incentives to engage in R&D, causing them to fall further behind.
Such dynamics can lead to monopolistic outcomes.

4Thompson (1999) derived the characteristic function for F and showed that F is stationary and nondegenerate
along the balanced growth path.
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we know that E (α) = 1.

The data used by all innovators is a bundle of data. How is this bundle created? Note that

l (t) d (i, t) represents the data about variety i shared by all raw data providers. This shared

data is bundled together through a quality-adjusted CES production function, with an elasticity

of substitution (EIS) denoted by η:

D (t) ≤ χ
[
m (t)−1/η

∫ m(t)

i=0
q (i, t)1/η (l (t) d (i, t))(η−1)/η di

]η/(η−1)

, η > 1. (3)

We assume the existence of a data intermediary sector with a data-aggregating-and-processing

technology.5 For simplicity, we setup the model so that data produced today is used for inno-

vation today. We also assume that data fully depreciates at the end of each period. These two

assumptions imply that data is not a state variable, which significantly simplifies the analysis.

We further assume that the integrated data D (t) can be used repeatedly as a whole and

cannot be divided into different parts, namely,

dv (i, t) = dh (t) = D (t) . (4)

This simplifying assumption has two merits. On one hand, it implies that data is nonrivalrous

and can be sold repeatedly to different innovators. On the other hand, it ensures that the

stationary solutions of the model economy are symmetric.

Labor is allocated among three uses: manufacturing, quality-enhancing innovations for ex-

isting varieties, and developing new varieties:

l (t) =

∫ m(t)

i=0
c (i, t) l (t) di+

∫ m(t)

i=0
lv (i, t) di+

·
m (t)lh (t) . (5)

The first term on the right-hand side of (5) represents the labor allocated to manufacturing.

The second term, lv (t)m (t), denotes the labor devoted to quality-enhancing innovations. The

third term,
·

m (t)lh (t), reflects the labor allocated to creating new varieties. For analytical

convenience, we define Lp ≡ l (t)−1 ∫m(t)
i=0 c (i, t) l (t) di, Lv ≡ l (t)−1 ∫m(t)

i=0 lv (i, t) di, and Lm ≡

l (t)−1
·

m (t)lh (t) as the labor shares employed in these three sectors, respectively.

5Kolanovic and Krishnamachari (2017) identify three types of intermediaries in the financial data market,
based on the services they provide: data intermediaries (who collect data from providers and channel it to
investors), technology intermediaries (who offer technology solutions to clients), and consultants (who advise
firms on integrating big data and managing related legal issues). We assume an aggregate data intermediary
sector that encompasses all three roles.
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Aside from the privacy costs to individuals, data sharing has another downside for the

economy: it increases the rate of creative destruction. The more potential competitors know

about an incumbent firm, the greater the likelihood that the incumbent will be displaced by

entrants. Similar to Jones and Tonetti (2020), we assume that ownership of variety i changes

according to a Poisson process with an arrival rate δ (s (i, t)). Since changes in ownership are

not part of the technology faced by the planner, the social planner does not consider this aspect.

3 The optimal allocation

In this section, we investigate the optimal allocation in our environment. Based on the economic

environment discussed above, we summarize the stochastic optimal control problem that the

social planner solves as follows:

max
{c(i,t),s(i,t)lv(i,t)}

E0

[∫ +∞

t=0
e−(ρ−n)t

(
log c (t)− κ

2
d (t)2

)
dt

]

subject to the quality-enhancing innovation activities:

dq (i, t) =

 γQ (t)D (t)φ2 , lv (i, t)bD (t)φ1 dt

0, 1− lv (i, t)bD (t)φ1 dt
,

and the variety-creating innovation activities:

dm (t) =

(
l (t)−

∫ m(t)

i=0
lv (i, t) di+

∫ m(t)

i=0
c (i, t) l (t) di

)
µ
− 1
1−ψD (t)

ψ
1−ψ dt.

Similar to Dinopoulos and Thompson (1998), we demonstrate in online Appendix 8.1 that

there is no aggregate uncertainty in the model. Consequently, the above stochastic control

problem of the social planner can be reformulated as the following equivalent deterministic

programming problem:

max
{lv ,lp,s,m,Q}

∫ ∞
t=0

e−(ρ−n)t
[
ln
(
lp (t) l (t)−1Q (t)

1
θ−1 m (t)

1
θ−1
)
− κ

2
lp (t)2 l (t)−2 s (t)2

]
dt,
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subject to the technology constraints:

·
Q (t) = γQ (t) lv (t)bD (t)φ1+φ2 ,

·
m (t) = lm (t)µ−1/(1−ψ)D (t)ψ/(1−ψ) ,

D (t) = χs (t) lp (t)Q (t)
1
η ,

and the resource constraint:

l (t) = lv (t)m (t) + lm (t) + lp (t) .

Solving this problem yields us the following

Proposition 1 (The Optimal Allocation) If the knife-edge condition holds, i.e.,

φ1 + φ2

b
=

ψ

1− ψ , (6)

then the optimal growth rate of the average quality level, gQ, solves the following algebraic

equation:

(ρ− n) g
1
b
−1

Q −
(
b+ φ1+φ2

η−1

)
g
1
b
Q

(ρ− n) b+
(
b+ φ1+φ2

η−1

)
(z1n+ z2gQ)

= γ
1
bµ

1
1−ψ . (7)

The optimal growth rates for other variables can be expressed as functions of gQ as follows:

gm = z1n+ z2gQ, (8)

gD =
b

φ1 + φ2

[(z1 − 1)n+ z2gQ] , (9)

gc =
1

θ − 1
[z1n+ (z2 + 1) gQ] . (10)

The optimal steady-state values of s (t), d (t), and e (t) are:

s =

√
(φ1 + φ2)

b

1− Lp
Lp

κ−1L−2
p , (11)

d =

√
(φ1 + φ2)

bκ

1− Lp
Lp

, (12)

e =
θ

θ − 1
Lp. (13)

The optimal labor shares employed in the production sector, quality-enhancing innovation
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activities, and variety-expanding innovation activities are:

Lp =
x

x+ y + 1
, Lv =

y

x+ y + 1
, Lm =

1

x+ y + 1
,

where

x = (θ − 1)

[(
ρ− n+ γ−

1
bµ
− 1
1−ψ g

1
b
Q

)
(z1n+ z2gQ)−1 + 1

]
,

y = γ−
1
bµ
− 1
1−ψ g

1
b
Q (z1n+ z2gQ)−1 ,

z1 = 1 +
φ1 + φ2

b
, z2 =

φ1 + φ2

b

1

η − 1
.

Proof The proof is provided in online Appendix 8.1. �

We solve the balanced growth path (BGP) of the model using the knife-edge condition (6).

This condition has an intuitive explanation: the relative importance of the two inputs (i.e.,

labor and data) in both quality and variety innovations is equal. It also implies that two data

elasticities in both innovation activities (i.e., φ and ψ) change in the same direction. To see

this, define φ ≡ φ1 + φ2 and f (ψ) ≡ ψ/ (1− ψ). Equation (6) indicates that both φ and ψ

change in the same direction for any given value of b.

Equation (7) shows that the optimal growth rate is a nonliear function of the population

growth rate, while equation (8) establishes that quality growth and variety growth interact with

each other in our model. These results differ significantly from existing literature and will be

further discussed in the following text.

4 Firms own data

We now explore one possible way to use market mechanisms to allocate resources. In this

equilibrium, we assume that firms own the data and decide how much to sell. Data is bought and

sold via a data intermediary that bundles data from all varieties and resells it to all innovators.

Throughout the paper, data sellers always set prices when they have market power, while data

buyers are always price takers.

4.1 Decision problems

Household problem. Each household supplies one unit of labor inelastically, receiving a wage

w (t) in return. We assume that labor is the numeraire, meaning all prices are expressed in units
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of labor. The household holds assets that yield a return r (t), where these assets represents

claims on the value of the monopolistically competitive firms. The representative household

then solves

max
{c(i,t),a(t)}

E0

[∫ +∞

t=0
e−(ρ−n)t

(
ln c (t)− κ

2
d (t)2

)
dt

]
, (14)

subject to

c (t) ≡
[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

] θ
θ−1

, (15)

da (t) = [(r (t)− n) a (t) + w (t)− e (t)] dt, (16)

where e (t) ≡
∫m(t)
i=0 p (i, t) c (i, t) di denotes per capita consumption expenditure, and p (i, t) is

the price of good i. Note that households do not choose how much data is sold, as firms own

the data in this allocation.

The optimal demand for good i is given by:

c (i, t) =
q (i, t) p (i, t)−θ e (t)∫m(t)
i=0 q (i, t) p (i, t)1−θ di

, (17)

which shows that the optimal demand for good i, c (i, t), increases with its quality, q (i, t), and

per capita consumption expenditure, e (t), while decreasing with its price, p (i, t). Consumers

favor high-quality goods, and high-quality goods generate more data.

The evolution of per capita expenditure follows the Euler equation:

ge (t) ≡
·

e (t)

e (t)
= r (t)− ρ. (18)

Firm problem. Current output has no impact on future profits, so pricing and research

decisions can be analyzed independently. At each point in time, each firm produces one type of

final product to maximize its profits, given its relative quality level. There is one input-labor-

and one unit of labor is required to produce one unit of output of any kind, regardless of quality.

Since labor is the numeraire and wages are set to unity, firm i’s profit-maximizing problem is:

max
{p(i,t),c(i,t)}

[p (i, t)− 1] c (i, t) l (t) ,

subject to the market demand for good i, c (i, t) l (t), where c (i, t) satisfies the demand function

13



(17).

The profit-maximizing monopolistic price is a constant markup over marginal wage costs

(i.e., w (t) = 1), regardless of quality:

p (i, t) =
θ

θ − 1
= p (t) > 1, (19)

which yields instantaneous profits: π (i, t) = α (i, t)λ (t) /θ, where λ (t) ≡ e (t) l (t) /m (t) is the

average level of expenditure per variety, α (i, t) ≡ q (i, t) /Q (t) is the quality of variety i relative

to the mean quality level, and Q (t) ≡
∫m(t)
i=0 q (i, t) di/m (t) is the mean quality level for all

varieties at time t.

Quality-enhancing innovators. At each point in time, owners of existing varieties engage

in quality-enhancing innovations, to maximize the expected present value of their ownership.

Each incumbent firm decides how much data to buy and sell, and how much labor to hire.

Firm i hires labor lv (i, t) and purchases integrated data dv (i, t) from the data intermediary at

the price pvD (t), which it takes as given. However, firm i sells original data d (i, t) to the data

intermediary at a price pd (i, t), that it sets through monopolistic competition. Firms balance

the threat of creative destruction with the revenues from selling data, without considering

potential infringements on consumers’privacy. As a result, firms’data sharing imposes negative

externalities on consumers’utility.

The nominal quality levels of any variety i, q (i, t), follow independent homogeneous Pois-

son processes with intensity lv (i, t)b dv (i, t)φ1 and magnitude γQ (t) dv (i, t)φ2 , where b ∈ (0, 1)

measures the effect of labor on the probability of successful quality-enhancing innovations, and

φ1, φ2 ∈ (0, 1) measure the effects of big data on the probability and magnitude of success-

ful quality-enhancing innovations, respectively. We assume that quality-enhancing innovations

exhibit decreasing returns to scale with respect to both inputs (i.e., labor and data), specifi-

cally, b+ φ1 + φ2 < 1. Under these assumptions, the evolution of firm i’s relative quality level,

α (i, t) (≡ q (i, t) /Q (t)), follows a stationary shot-noise process6 The process is described by the

following stochastic differential equation:

dα (i, t) = −α (i, t) gQ (t) dt+
1

Q (t)
dq (i, t) , (20)

6A shot-noise process is characterized by discrete increments to a variable occurring randomly at irregular
intervals, with each increment decaying deterministically at an exponential rate. In this model, decay is driven
by innovations in other product lines.

14



where gQ (t) ≡
·

Q (t)/Q (t) is the growth rate of the average quality level.

To summarize, the owner of firm i solves the following problem:

J (α (i, t) , t) ≡ max
{lv(i),dv(i),d(i)}

Et

∫ +∞

u=t
e−
∫ u
τ=t r(τ)dτ

 π (i, u)− lv (i, u)− pvD (u) dv (i, u)

+pd (i, u) d (i, u)− δ (s (i, u))π (i, u)

 du

 ,
(21)

subject to the evolutionary process of its relative quality level α (i, t), i.e., equation (20), and

the downward-sloping demand curve for its original data from the data intermediary, which will

be described below:

pd (i, t) =

(
pvD (t)m (t) + phD (t)

·
m (t)

)
χ [Ξ]

1
η−1 m (t)

− 1
η q (i, t)

1
η (d (i, t) l (t))

− 1
η , (22)

where

Ξ ≡ m (t)
− 1
η

∫ m(t)

i=0
q (i, t)

1
η (l (t) d (i, t))

η−1
η di.

Each firm seeks to sell data on its variety to the data intermediary, but this desire is con-

strained by the threat of creative destruction. When more information about a firm’s variety

becomes available to other firms, the firm is vulnerable to innovation activities by its competi-

tors. The term δ (s (i, t))π (i, t) in equation (21) reflects this downside of data sharing. The rate

of creative destruction follows a Poisson process with an arrival rate δ (s (i, t)) = 0.5δ0s (i, t)2,

indicating that the more firm i sells its data, the greater the probability of successful innova-

tions by other firms. When successful innovations occur, existing varieties experience ownership

changes or profit losses due to their lower relative quality. Specifically, we assume that variety

i loses a portion of its production profits, represented by δ (s (i, t))π (i, t). Firms may also wish

to purchase bundles of data from other firms, weighing the cost of such purchases against the

potential gains in relative quality and increased sales.

Following Merton (1971) and Dixit and Pindyck (1994), we write the Bellman equation as:

0 = max
{lv ,dv ,pd,d}



e−
∫ t
u=0 r(u)du

 (1− δ (s (i, t)))π (i, t)− lv (i, t)−

pvD (t) dv (i, t) + pd (i, t) d (i, t) l (t)


−Jα (α (i, t) , t)α (i, t) gQ (t) + Jt (α (i, t) , t) +

lv (i, t)b dv (i, t)φ1
[
J
(
α (i, t) + γdv (i, t)φ2 , t

)
− J (α (i, t) , t)

]


, (23)

where J (α (i, t) , t) is the expected discounted present value of firm i, and Jt (α, t) and Jα (α, t)
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denote the partial derivatives of J with respect to time t and relative quality α, respectively.

Following Dinopoulos and Thompson (1998), we focus on balanced growth solutions, from which

we know that J (α (i) , t) = e−rtV (α (i) , λ (t) , pvD (t)) on the balanced growth path (BGP). We

conjecture the following form for the value funtion:

V (α (i) , λ (t) , pvD (t)) = y1α (i)λ (t) + y2p
v
D (t)x1 λ (t)x2 , (24)

where x1, x2, y1, y2 are four undetermined coeffi cients. From this, we derive the following opti-

mality conditions:

lv (i, t) =
[
γby1λ (t) dv (t)φ1+φ2

] 1
1−b

= lv (t) , (25)

dv (i, t) =

[
φ1 + φ2

b
(bγy1λ (t))

1
1−b pvD (t)−1

] 1−b
1−b−(φ1+φ2)

= dv (t) , (26)

pd (i, t) =

(
pvD (t)m (t) + phD (t)

·
m (t)

)
χQ (t)

1
η−1 = pd (t) , (27)

s(i, t) = δ−1
0

(
1− 1

η

)
(θ − 1) pd (t) . (28)

Equations (25)-(28) establish that all product lines use the same levels of labor and data for

quality-enhancing innovations, sell the same amount of their original data, and set a uniform

price level for their data.

Variety-expanding innovators. To produce any variety i, the variety-expanding sector pur-

chases labor and data, solving the following cost-minimization problem:

min
{lh(t),dh(t)}

lh (t) + dh (t) phD (t) , s.t., µ = dh (t)ψ lh (t)1−ψ . (29)

Combining the first-order conditions with respect to lh (t) and dh (t) leads to:

phD (t) =
ψ

1− ψ
lh (t)

dh (t)
, (30)

which shows that the marginal productivities of the two inputs (labor and data) in generating

effective labor equal their price ratios. Combining (30) and the production technology of effective

labor (i.e., µ = dh (t)ψ lh (t)1−ψ) yields optimal amounts of the two inputs:

lh (t) = µ

(
1− ψ
ψ

)ψ
phD (t)ψ , dh (t) = µ

(
ψ

1− ψ

)1−ψ
phD (t)ψ−1 . (31)
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After a new variety is created, its initial relative quality is drawn at random from the

distribution of relative productivities for existing varieties, F (α).7 Thus, we know that E (α) =

1. Additionally, new entrants benefit from business stealing: they capture profit flows from

existing varieties affected by creative destruction. Since V is linear in α, a zero-profit condition

for variety-expanding R&D implies:

lh (t) + dh (t) phD (t) = V (1, λ (t) , pvD (t)) +

( ·
m (t)

)−1 ∫ m(t)

i=0
δ (s (i, t))π (i, t) di, (32)

where V (1, λ (t) , pvD (t)) is defined in (24).

Combining (30) and (32) gives rise to

V (1, λ (t) , pvD (t)) =
1

1− ψµ
1

1−ψ dh (t)
− ψ
1−ψ −

( ·
m (t)

)−1 ∫ m(t)

i=0
δ (s (i, t))π (i, t) di (33)

=
1

1− ψ lh (t)−
( ·
m (t)

)−1 ∫ m(t)

i=0
δ (s (i, t))π (i, t) di

=
1

ψ
dh (t) phD (t)−

( ·
m (t)

)−1 ∫ m(t)

i=0
δ (s (i, t))π (i, t) di.

Data intermediary. The non-rivalrous nature of data makes a perfectly competitive data

intermediary sector impossible. Following Jones and Tonetti (2020), we assume that the data

intermediary operates as a monopolist, subject to free entry at a vanishingly small cost. Actual

and potential data intermediaries take the price at which they buy data from firms, pd (i, t), as

given. This setup results in a limit pricing condition under which the data intermediary earns

zero profits, despite the non-rival nature of data.

The data intermediary accepts its purchase price of data, pd (i, t), as given and maximizes

profits by choosing the quantity of data to purchase from each variety (d (i, t) l (t)), the quantity

of the integated data to sell to the two kinds of innovators (dv (i, t) , dh (t)), and the price at

which it sells bundles of data to innovators (pvD (t) , phD (t)):

max
{d(i),dv(i),dh(t),pD(t)}

∫ m(t)

i=0
pvD (t) dv (i, t) di+

·
m (t)dh (t) phD (t)−

∫ m(t)

i=0
pd (i, t) d (i, t) l (t) di,

7Thompson (1999) derived the characteristic function for F , showing that F is stationary and non-degenerate
along the balanced growth path.
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subject to

D (t) ≤ χ
[
m (t)−1/η

∫ m(t)

i=0
q (i, t)1/η (l (t) d (i, t))(η−1)/η di

]η/(η−1)

, η > 1, (34)

dv (i, t) = dh (t) = D (t) , (35)

pvD (t) ≤ p∗D (t) , phD (t) ≤ p∗D (t) , (36)

where p∗D (t) is the limit price associated with the zero-profit condition arising from free entry.

The first two terms in the profit expression incorporate the fact that the data intermediary can

buy data once and sell it multiple times, reflecting the non-rivalrous nature of data. For example,

location data from consumers can, technologically, be sold to each firm in the economy, not just

to the store where consumers happen to be shopping at the moment. Equation (34) displays

the data processing and intergrating technology, which also serves as the resource constraint

on data. Furthermore, we assume that the intergrated data D (t) can be sold as a whole and

cannot be divided into different parts, as implied in equation (35).

Substituting (35) into the objective function, we can rewrite the data intermediary’s problem

as follows:

max
{pD(t),d(i,t)}

(
pvD (t)m (t) + phD (t)

·
m (t)

)
D (t)−

∫ m(t)

i=0
pd (i, t) d (i, t) l (t) di,

subject to (34) and (36). Solving the first-order condition with respect to d (i, t) leads to (22):

pd (i, t) =

(
pvD (t)m (t) + phD (t)

·
m (t)

)
χ [Ξ]

1
η−1 m (t)

− 1
η q (i, t)

1
η (d (i, t) l (t))

− 1
η .

Free entry results in zero profit in the data intermediary sector, namely:

(
pvD (t)m (t) + phD (t)

·
m (t)

)
D (t) = pd (t) l (t) s (t) e (t)

θ − 1

θ
. (37)

4.2 Equilibrium and the balanced growth path (BGP)

In equilibrium, labor is allocated among three uses: manufacturing, quality-enhancing innova-

tions for existing varieties, and developing new varieties:

l (t) =

∫ m(t)

i=0
c (i, t) l (t) di+

∫ m(t)

i=0
lv (i, t) di+

·
m (t)lh (t) .
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The market-clearing condition for the asset market is

a (t) l (t) =

∫ m(t)

i=0
V (α (i) , λ (t) , pvD (t)) di (= m (t)V (1, λ (t) , pvD (t))) .8 (38)

This condition establishes that the stock of total assets equals the present value of total profits

earned by quality-enhancing innovators.

We then solve the balanced growth path (BGP) of the market economy, where some variables

(r (t) , e (t) , d (t) , s (t) , pd (t)) have constant values (r, e, d, s, pd), and other variables (Q (t) ,m (t) , pD (t) , D (t) , c (t) , λ (t))

exhibit constant growth rates (gQ, gm, gpD , gD, gc, gλ).

As argued in Dinopoulos and Thompson (1998), the change in Q (t) over the interval

[t, t+ dt] is given by the product of the intensity of the Poisson process, lv (t)bD (t)φ1 dt, and

its magnitude, γQ (t)D (t)φ2 . Thus, we have dQ (t) = lv (t)bD (t)φ1 dt ∗ γD (t)φ2 . Rearranging

gives us

gQ (t) ≡
·

Q (t)

Q (t)
= γlv (t)bD (t)φ1+φ2 . (39)

Then, we have the following

Proposition 2 (Firms own data) 9 If the knife-edge condition holds, i.e., (6), the BGP growth

rate of average quality level, gQ, is determined by the following algebraic equation:

(
1

bgQ
+

(1− b− (φ1 + φ2))

b [ρ+ (z1 − 1)n+ z2gQ]

)
γ−

1
b g

1
b
Q =

µ
1

1−ψ

1− ψ−
(η − 1)ψ

2η (1− ψ)

 γ−
1
b g

1
b
Q

(z1n+ z2gQ)
+ µ

1
1−ψ

 .

(40)

The BGP growth rates of all other variables can be expressed in terms of gQ as follows:

gm = z1n+ z2gQ, (41)

gD = n+
1

η − 1
gQ, (42)

gc =
1

θ − 1
[z1n+ (1 + z2) gQ] , (43)

gpD = −z1

(
n+

1

η − 1
gQ

)
, (44)

gλ = −φ1 + φ2

b

(
n+

1

η − 1
gQ

)
, (45)

8The second equality follows from the linearity of V (·) with respect to α (i).
9 If there is no big data (i.e., φ1 = φ2 = ψ = 0), our model degenerates to Dinopoulos and Thompson (1998).
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where

z1 ≡ 1 +
φ1 + φ2

b
, z2 ≡

φ1 + φ2

b

1

η − 1
.

The steady-state value of the equilibrium interest rate is:

r = ρ.

The steady-state value of e is determined by the following equation:

begQ

1 + (θ − 1)
[
1− 1

2

(
1− 1

η

)]
φ1+φ2
b

(1− θ−1
θ
e)

θ−1
θ
e

θ [ρ+ (z1 − 1)n+ (z1 + 1) gQ]
=

1− θ−1
θ e

1 + (z1n+ z2gQ) g
−1/b
Q γ1/bµ1/(1−ψ)

.

(46)

The steady-state values of pd, s, and d are:

s =

√
θ − 1

δ0

η − 1

η

φ1 + φ2

b

(
e−1

θ

θ − 1
− 1

)
, (47)

pd =
δ0

θ − 1

η

η − 1
s, (48)

d = s
θ − 1

θ
e. (49)

The steady-state labor shares employed in the production sector, the quality-enhancing

innovation activities, and the variety-expanding innovation activities are:

Lp =
θ − 1

θ
e, Lv =

1− θ−1
θ e

1 + (z1n+ z2gQ) g
−1/b
Q γ1/bµ1/(1−ψ)

, Lm = 1− Lp − Lv. (50)

Proof The proof is provided in online Appendix 8.2. �

In Section 6, we compare this equilibrium allocation with the optimal allocation and al-

ternative equilibrium allocations. Before doing so, we define another equilibrium allocation in

which consumers own data, enabling us to effi ciently make all comparisons at once. Therefore,

we now turn to the equilibrium where consumers own data.

5 Consumers own data

We now consider an allocation in which consumers own data associated with their purchases.

They can sell data to a data intermediary and choose how much data to sell to balance the gain
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in income versus the cost to privacy. Firms own zero data as it is created but can purchase data

from the data intermediary.

5.1 Decision problems

Changing the data property rights alters the optimization problems of households and quality-

enhancing innovators, while leaving unchanged the problems of producers, variety-expanding

innovators, and data intermediaries. Therefore, we now present the details of these changes.

Household problem. The household problem is similar to the case where firms own the

data, except that the household now decides how much data to sell. Consumers balance their

privacy concerns against the economic benefits of selling data to intermediaries, regardless of

the business-stealing effects this might have on firms. As a result, consumers’data sales impose

negative externalities on firms’behavior. The representative household solves:

max
{c(i),d(i),a}

E0

[∫ +∞

t=0
e−(ρ−n)t

(
ln c (t)− κ

2
d (t)2

)
dt

]
, (51)

subject to

c (t) ≡
[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

] θ
θ−1

, (52)

da (t) =

[
(r (t)− n) a (t) + w (t)− e (t) +

∫ m(t)

i=0
pd (i, t) d (i, t)

]
dt (53)

=

[
(r (t)− n) a (t) + w (t)−

∫ m(t)

i=0
p̃ (i, t) c (i, t)

]
dt,

where p̃ (i, t) ≡ p (i, t)− pd (i, t) s (i, t) is the effective price of consumption, accounting for the

fact that the fraction s (i, t) of each good consumed generates income when the associated data

is sold.

The optimal demand function and the Euler equation remain the same as in the scenario

where firms own data. Additionally, we derive a first-order necessary condition with respect to

d (i, t):

pd (i, t) = κd (t) e (t) = pd (t) , (54)

which implies that the equilibrium prices for all original data are identical.

Quality-enhancing innovators. While the production of each variety remains unchanged,
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firms own no data to sell when engaging in quality-enhancing innovation activities. Firm i hires

labor, lv (i, t), and purchases integrated data, dv (i, t), to solve:

J (α (i, t) , t) ≡ max
{lv(i),dv(i)}

Et

∫ +∞

u=t
e−
∫ u
τ=t r(τ)dτ

 π (i, u)− lv (i, u)−

pvD (u) dv (i, u)− δ (s (i, u))π (i, u)

 du

 ,
(55)

subject to the evolutionary equation of its relative quality level α (i, t), i.e., (20). The Bellman

equation is modified accordingly:

0 = max
{lv ,dv}



[1− δ (s (i))]π (i, t)− lv (i, t)− pD (t) dv (i, t)

− (ρ+ ge)V (α (i) , λ (t) , pvD (t)) + Vλ (α (i) , λ (t) , pvD (t)) gλλ (t)

+VpvDgpDpD (t)− α (i) gQVα+

lv (i, t)b dv (i, t)φ1
[
V
(
α (i) + γdv (i, t)φ2

)
− V (α (i))

]


. (56)

Conjecture that the value function takes the following form:

V (α (i) , λ (t) , pvD (t)) = y1α (i)λ (t) + y2p
v
D (t)x1 λ (t)x2 , (57)

where x1, x2, y1, and y2 are undetermined coeffi cients. The first order conditions are:

lv (i, t) =
[
γby1λ (t) dv (t)φ1+φ2

] 1
1−b

, (58)

pvD (t) dv (i, t) =
φ1 + φ2

b

[
bγy1λ (t) dv (t)φ1+φ2

] 1
1−b

=
φ1 + φ2

b
lv (i, t) . (59)

To proceed, substituting (57)-(59) into the Hamilton-Jacobi-Bellman equation (56) to solve for

the desired expressions:

x1 = − φ1 + φ2

1− b− (φ1 + φ2)
, x2 =

1

1− b− (φ1 + φ2)
, (60)

y1 =
1− δ (s (i))

θ (ρ− n+ gm + gQ)
, y2 =

1−b−(φ1+φ2)
b (γby1)x2

(
φ1+φ2
b

)−x1
ρ+ ge − x2gλ − x1gpvD

. (61)
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5.2 The equilibrium when consumers own data

Proposition 3 (Consumers own data) 10If the knife-edge condition holds, i.e., (6), the steady-

state levels of the growth rate of average quality level gQ and per capita consumption

expenditure e are determined by the following two algebraic equations:

[
1

bgQ
+

1− b− (φ1 + φ2)

b (ρ+ (z1 − 1)n+ z2gQ)

]
γ−

1
b g

1
b
Q =

µ
1

1−ψ

1− ψ−
δ0ψ

(
θ
θ−1

)2

2 (1− ψ)κe2

µ 1
1−ψ +

γ−
1
b g

1
b
Q

z1n+ z2gQ

 ,

(62)

bgQe
1− δ0

2

(
θe−1

θ−1

)2 (
e−1 − θ−1

θ

) ψκ−1
1−ψ

θ [ρ+ (z1 − 1)n+ (z2 + 1) gQ]
=

(
1− θ−1

θ e
)

1 + γ
1
b g
− 1
b

Q µ
1

1−ψ (z1n+ z2gQ)
. (63)

The BGP growth rates of all other variables can be expressed as functions of gQ as follows:

gm = z1n+ z2gQ, (64)

gD = n+
1

η − 1
gQ, (65)

gc =
1

θ − 1
[z1n+ (1 + z2) gQ] , (66)

gpD = −z1

(
n+

1

η − 1
gQ

)
, (67)

gλ = −φ1 + φ2

b

(
n+

1

η − 1
gQ

)
, (68)

where

z1 = 1 +
φ1 + φ2

b
, z2 =

φ1 + φ2

b

1

η − 1
.

The steady-state value of the equilibrium interest rate is

r = ρ.

The steady-state values of d, s, and pd are expressed as functions of e as follows:

d =

√
1

κ

ψ

1− ψ

(
1

e
− θ − 1

θ

)
, s =

θ

θ − 1

d

e
, pd = κde.

10Similar to the case with firms owning data, if there is no big data (i.e., φ1 = φ2 = ψ = 0), the model also
degenerates to the Dinopoulos and Thompson (1998) model.
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The steady-state labor shares employed in the production sector, the quality-enhancing

innovation activities, and the variety-expanding innovation activities are given by:

Lp =
θ − 1

θ
e, Lv = begQy1, Lm = 1− Lp − Lv,

where

y1 =
1− δ0

2 s
2

θ [ρ+ (z1 − 1)n+ (z2 + 1) gQ]
.

Proof The proof is provided in online Appendix 8.3. �

6 Key insights and model implications

6.1 Economic growth

In this subsection, we present growth performances under three different allocations and com-

pare them with the existing literature. By combining the theoretical results from Proposition

1, Propostion 2, and Proposition 3, we arrive at the following theorem.

Theorem 1 In our model with data as innovation, the long-run growth rates differ under three

allocations: the optimal allocation, the equilibrium allocation when firms own data, and

the equilibrium allocation when consumers own data. Under benchmark parameter values,

the optimal growth rate exceeds both equilibrium growth rates. The comparison of growth

rates under the two data property right regimes depends critically on the parameter pair

governing privacy concerns and creative destruction (i.e., (κ, δ0)) as well as the elasticity

of substitution between goods (i.e., θ).

6.1.1 Optimal growth and equilibrium growth

As shown in equations (7), (40), and (62), the average quality growth rates under the three

allcoations differ. Specifically, the optimal growth rate is distinct from the equilibrium growth

rates, whether data are owned by firms or by consumers.11 Under benchmark parameter values,

Figure 1 shows that the optimal growth rate (dotted dashed red line) is higher than both the

equilibrium growth rate when firms own data (dashed green line) and when consumers own

11 In online Appendix 8.5, we examine the growth effects of subsidies and taxes when firms own data. It is
demonstrated that quality growth depends not on subsidies for data inputs in both innovation activities, but on
subsidies for labor inputs. We also explore the optimal interventions that enable equilibrium growth to reach
optimal growth.
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data (solid green line). Intuitively, this is due to three types of distortions in decentralized

allocations:

(1) The monopoly power over varieties results in welfare losses.

(2) Positive externalities from the average quality level benefit quality-enhancing innovations

for all varieties.

(3) There are negative externalities associated with data sales: firms’data sales negatively

impact consumers’privacy when firms own data, and consumers’data sales reduce firms’profits

when consumers own data.

The social planner can mitigate welfare losses due to monopoly power and effectively inter-

alize the externalities related to the average quality level and data sales, thus enhancing the

equilibrium growth rates. As a result, the optimal growth rate exceeds the two equilibrium

growth rates.12

Table 3: Benchmark parameter values13

Description Parameter Value

Time preference rate ρ 0.025

Population growth rate n 0.02

Elasticity of substitution (goods) θ 4

Weight of privacy κ 0.2

Elasticity of labor in quality-enhancing R&D b 0.7

Elasticity of data in quality-enhancing R&D φ 0.1

Size of innovations γ 0.1

Frequency of creative destruction δ0 0.4

Elasticity of substitution (data) η 50

Cost of developing a new variety µ 10

[Insert Figure 1 here.]

6.1.2 Impact of data ownership on quality growth

We further examine the growth performances under different data property rights regimes.

Propositions 2 and 3 establish that the average growth rate crucially depends on the parameter

12 In online Appendix 8.2, we further analyze how subsidies and taxes influence equilibrium growth and inves-
tigate the optimal interventions in the decentralized equilibrium when firms own data.
13This should not be viewed as a formal calibration that can be compared quantitatively to facts about the

US economy.
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pair (κ, δ0) and the elasticity of intertemporal substitution (EIS) parameter θ among goods

when consumers own data, whereas quality growth does not depend on either parameter when

firms own data. As a result, average quality growth rates differ between the two data property

rights regimes.

To analyze how model parameters-especially (κ , δ0) and θ-affect growth under the two data

property rights regimes, we simulate the model and present the results in Figures 2-6. These

figures demonstrate that the ranking of quality growth between the two regimes largely hinges

on the parameter pair (κ , δ0) and the parameter θ, while being relatively insensitive to other

model parameters.

Impact of weight for privacy (κ) on quality growth. Given the benchmark parameter val-

ues in Table 3, we identify a pair of critical values for the parameter pair (κ, δ0): (κ∗, δ∗0) =

(0.1636, 0.4874). Given the benchmark value for δ0 = 0.4, the weight for privacy κ significantly

(κ) influences quality growth, depending on its relationship to the critical value (κ∗). If the

weight for privacy κ is relatively large (i.e., κ = 0.2 > κ∗), the quality growth associated with

data owned by consumers exceeds that of data owned by firms (gcQ > gfQ) for any given values

of φ, b, γ, µ, ρ, and n. This relationship is illustrated in Figure 2. Conversely, if κ is relatively

small (i.e., κ = 0.1 < κ∗), then the quality growth with consumer-owned data is lower than that

with firm-owned data (gcQ < gfQ), as depicted in Figure 3. When the weight for privacy κ equals

its critical value (i.e., κ = κ∗), the quality growth under both data property rights regimes be-

comes nearly equal (gcQ ≈ g
f
Q), as shown in Figure 4. Overall, these observations underscore the

critical role that the parameter (κ, δ0) play in determining growth performances, particularly

how ownership of data influences quality growth.

Intuitively, when firms own data, privacy concerns do not significantly influence the optimiz-

ing behaviors of all agents (i.e., consumers, firms and data intermediaries), resulting in negligible

effects on the economy. However, when consumers own their data, an increase in privacy con-

cerns produces two opposing effects on long-term quality growth. Increased privacy concerns

lead consumers to sell less data. Reduced data sales and sharing diminish the frequency of

creative destruction, thereby lowering profit losses across all varieties. Consequently, for each

variety, more resources can be allocated to quality-enhancing activities, positively influencing

quality growth. Conversely, reduced data sales also decrease consumers’ revenues from data

sales. This decline diminishes per capita consumption expenditure, leading to a reduced market

demand for each variety. As a result, each variety experiences lower profits, resulting in fewer
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resources being devoted to innovation activities, which negatively impacts quality growth.

When consumers place a higher value on privacy than the critical threshold, the positive

effect on quality growth prevails, leading to an equilibirum growth rate greater than that of

firm-owned data (gcQ > gfQ). Conversely, if consumers prioritize privacy less than this critical

value, the negative effect dominates, resulting in a lower growth rate compared to firm ownership

(gcQ < gfQ). Finally, as privacy concerns approach the critical value, the two opposing effects

nearly cancell each other out, resulting in equilibrium growth rates that are close to one another

(gcQ ≈ g
f
Q).

[Insert Figure 2, Figure 3, and Figure 4 here.]

Impact of frequency of creative destruction ( δ0) on quality growth. Given the benchmark

value for κ = 0.2, the frequency of creative destruction (δ0) significantly influences quality

growth, depending on its relationship to the critical value (δ∗0). When δ0 is relatively large

(i.e., δ0 = 0.6 > δ∗0), quality growth with data owned by consumers is lower than that with

firms owning data (gcQ < gfQ) for any given values of φ, b, γ, µ, ρ, and n. This relationship is

illustrated in Figure 5. Conversley, if δ0 is relatively small (i.e., δ0 = 0.4 < δ∗0), quality growth

with consumer-owned data exceeds that of firm-owned data (gcQ > gfQ), as shown in Figure 2.

If δ0 equals its critical value (i.e., δ0 = δ∗0), the quality growth under both data property rights

regimes is nearly equal (gcQ ≈ g
f
Q), as depicted in Figure 6. Overall, these observations highlight

the critical role of the frequency of creative destruction in determining the dynamics of quliaty

growth based on data ownership.

Intuitively, when firms own data, an increase in the frequency of creative destruction (δ0)

has two opposing effects on quality growth: direct (negative) effect and indirect (positive) effect.

Given constant data sales (s remains unchanged), an increase in δ0 directly raises the likeli-

hood of creative destruction (δ (s (i)) ↑), which reduces profits for each variety and decreases

the resources allocated to quality innovations. This negatively impacts quality growth. Con-

versely, in response to a higher frequency of creative destruction, each variety reduces its data

sales (s (i) ↓), which in turn decreases the occurance of creative destruction (δ (s (i)) ↓). This

reduction in profit losses from creative destruction positively influences quality growth.

When firms own data, these two opposing effects exactly cancel each other out, leaving

δ0 with no net impact on quality growth, as shown in Proposition 2. When consumers own

data, the same two opposing effects are present. However, the balance between these effects

changes depending on the magnitude of δ0. If δ0 exceeds its critical value, the direct, negative
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effect dominates, resulting in a lower equilibrium growth rate compared to firm-owned data

(gcQ < gfQ). If δ0 is below its critical value, the indirect, positive effect prevails, leading to a

higher growth rate than with firm-owned data (gcQ > gfQ). When δ0 = δ∗0, the two effects roughly

cancel each other out, making the equilibrium growth rates under both data ownership regimes

approximately equal ((gcQ ≈ g
f
Q)).

[Insert Figure 5 and Figure 6 here.]

To further examine the impact of data property rights on quality growth, we plot Figure

7, which illustrates the differences in average quality growth rates under two data ownership

regimes: consumer-owned data (gcQ) and firm-owned data (g
f
Q). The difference is measured

as gcQ − g
f
Q, and its dependence on the parameter pair (κ, δ0) is shown. When this difference

is greater than zero, quality growth with consumer-owned data exceeds that with firm-owned

data (gcQ > gfQ). In Figure 7, this occurs over relatively large parameter ranges, indicating

that consumer data ownership is more likely to result in higher quality growth in such cases.

Conversely, when the difference is less than zero, quality growth with firm-owned data surpasses

that with consumer-owned data , which occurs in relatively small parameter ranges. This

suggests that firm data ownership is less likely lead to higher growth, but when it does, the effect

is more pronouced. Moreover, for different values of φ (i.e., 0.05, 0.1, and 0.2), the maximum

differences observed are 0.0032, 0.0095, and 0.0489, respectively, while the minimum differences

are -0.0263, -0.0357, and -0.1014, respectively. These results indicate that: Consumer-owned

data tends to generate higher growth in larger parameter ranges, though the differences are

relatively small; Firm-owned data generates higher growth in smaller parameter ranges, buth

the differences are relatively large.

[Insert Figure 7 here.]

Notes: Growth and data property right. The plots depict the difference in average quality

growth rates, gcQ − g
f
Q, across various combinations of κ and δ0. The Consumers Own Data

allocation produces higher growth in relatively large parameter ranges, where the difference

gcQ − g
f
Q is positive. In constrast, the Firms Own Data allocation leads to higher growth in

relatively small parameter ranges, where the difference gcQ − g
f
Q is negative. Additionally, the

plots provide the largest, smallest, and average values of gcQ − g
f
Q in each case.
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φ Maximum Minimum Mean

0.05 0.0032 -0.0263 4.35E-04

0.10 0.0095 -0.0357 0.0023

0.20 0.0489 -0.1014 0.0150

Impact of elasticity of intertemporal substitution ( θ) on quality growth. Equation (62)

demonstrates that quality growth depends on the EIS for goods when consumers own data,

whereas equation (40) shows that quality growth is independent of the EIS when firms own

data. This contrast in dependencies is visually supported by Figures 2-6. When the EIS for

goods (θ) is relatively high, the quality growth associated with consumer-owned data exceeds

that of firm-owned data (gcQ > gfQ). This suggests that consumer data ownership leads to

stronger growth under conditions of greater substitutability between goods. Conversely, if θ is

relatively low, the quality growth with consumer-owned data falls below that with firm-owned

data (gcQ < gfQ), indicating that firm ownership of data results in better growth outcomes when

the EIS is lower.

Intuitively, when firms own data, changes in the EIS for goods have two opposing effects

on quality growth. A larger EIS reduces the monopolistic price (p ↓), leading to a decrease in

the equilibrium profit for each variety (π ↓). This reduction in profits leads to fewer resources

being allocated toward quality innovations, negatively impacting quality growth (gQ ↓). On the

other hand, as prices for each product drop, each variety undervalues its original data (pd ↓)

and consequently sells less of it (s ↓). Reduced data sharing lowers the frequency of creative

destruction (δ (s) ↓), which minimizes profit losses and positively influences quality growth

(gQ ↑). These two opposing forces cancel each other out, resulting in quality growth that does

not depend on the EIS for goods when data is owned by firms, as demonstrated in equation

(40).

When consumers own data, the same two opposing effects are present. However, if the EIS

for goods is relatively large, production prices are very low. Concerned about their privacy,

consumers sell even less data, further reducing profit losses from creative destruction. In this

scenario, the positive effect dominates, and quality growth is higher than when firms own data.

Conversely, if the EIS for goods is relatively small, consumers face higher prices for goods and,

as a result, sell more data than firms. In this case, the negative effect dominates, and quality

growth is lower than when firms own data.
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6.1.3 Comparing with the literature

We now compare our findings with the existing literature. In Jones and Tonetti (2020)’s model,

the optimal growth rate is equal to the equilibrium growth rate under both data property rights

regimes (consumer-owned and firm-owned). They argue that, compared to optimal growth,

the ineffi ciencies of equilibrium growth only affect labor allocation and data usage, without

impacting long-run growth. Moreover, they posit that data property rights are neutral for

long-run growth. That is, while data property rights influence labor allocation, data usage, and

welfare in the long run, they do not affect the long-run growth rate itself. Cong et al. (2021)

show that the optimal growth rate equals the equilibrium growth rate when data is owned by

consumers, while the equilibrium growth rate is higher when data is owned by firms. This

suggests that firm-owned data yields greater growth in equilibrium than consumer-owned data

or the optimal growth rate. In a subsequenct study, Cong et al. (2022) demonstrate that the

equilibrium growth rate with consumers-owned data is lower than the optimal growth rate,

implying an ineffi ciency in this regime.

In contrast to Jones and Tonetti (2020), we find that ineffi ciencies in equilibrium growth

manifest not only in labor reallocation and data usage but also in long-run growth. Additionally,

unlike the neutral stance of Jones and Tonetti, our results indicate that data property rights

do matter for long-run growth. The relative ranking of growth outcomes under different data

property regimes depends on key model parameters such as the weight on privacy (κ), the

frequency of creative destruction (δ0), and the EIS for goods (θ). Furthermore, our model shows

that the social planner reduces welfare losses from monopoly pricing and effectively internalizes

the externalities arising from aggregate quality and data sharing. As a result, the optimal

growth rate in our model is higher than the equilibrium growth rate under both data property

right regimes. We summarize the key comparisons among the literature in the following Table

4.

Table 4: Comparisons with the literature
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Farboodi & Veldkamp (2019) ∆Ωf = 0, i.e., no long-run growth

Jones & Tonetti (2020)
gsp

 = gc

= gf

gc = gf

Cong et al (2021)
gsp

 = gc

< gf

gc < gf

Cong et al. (2022) gsp > gc

Our model
gsp

 > gc

> gf

gc S gf hinges on (δ0, κ) and θ

6.2 Welfare and data property rights

In this section, we compare the steady-state welfare under the consumers-own-data and firms-

own-data property right regimes. Consumers value both consumption and privacy, and the

steady-state welfare accounts for both factors. Along a balanced growth path, steady-state

welfare is given by

W alloc
ss =

1

ρ̃

(
log c (0)alloc − κ

2
d2
alloc +

1

ρ̃
gallocc

)
, (69)

where ρ̃ ≡ ρ− n, and gallocc = (θ − 1)−1
(
gallocQ + gallocm

)
. The difference in steady-state welfare

between the two data property rights regimes is given by:

W c
ss −W f

ss = ρ̃−1
(

log c (0)c − log c (0)f
)

︸ ︷︷ ︸
Level term

− ρ̃−1κ

2

(
d2
c − d2

f

)
︸ ︷︷ ︸

Privacy term

+ ρ̃−2
(
gcc − gfc

)
︸ ︷︷ ︸
Growth term

. (70)

This expression shows that the welfare discrepancies between the two data property rights

regimes can be decomposed into three terms, reflecting differences in the level of consumption,

the degree of privacy, and the consumption growth rate.

Figure 8 shows the discrepancies in steady-state welfares,W c
ss−W

f
ss, for various combinations

of φ (where φ = φ1 + φ2), κ and δ0. When this difference is less than zero, the steady-state

welfare with data owned by firms is higher than that with data owned by consumers. In

relatively large parameter value ranges, this difference is greater than zero, indicating that the

Consumers Own Data (COD) allocation is more likely to be superior. Conversely, the Firms
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Own Data (FOD) allocation generates higher welfare in relatively small parameter value ranges,

where this difference is less than zero. Furthermore, when φ =0.05, 0.10, and 0.20, the largest

differences are 0.4290, 0.7867, and 3.2701, while the smallest differences are -1.5576, -2.1559,

and -6.6942. Taken together, in the relatively large ranges where the COD allocation generates

higher welfare, it does so by a relatively small amount; whereas in the relatively small ranges

where the FOD allocation generates higher welfare, it does so by a relatively large amount.

[Insert Figure 8 here.]

Note: The plots display the differences in steady-state welfares, W c
ss − W f

ss, across vari-

ous combinations of κ and δ0. The Consumers Own Data allocation is superior in relatively

large parameter ranges, whereas the Firms Own Data allocation is superior in relatively small

parameter ranges. The largest, smallest and average values of W c
ss −W

f
ss in each plot are as

follows:

φ Maximum Minimum Mean

0.05 0.4290 -1.5576 0.0418

0.10 0.7867 -2.1559 0.1593

0.20 3.2701 -6.6942 0.9773

These results differ significantly from those in Jones and Tonetti (2020). Jones and Tonetti

(2020) show that the Consumers Own Data allocation is generally superior and typically gen-

erates substantially higher welfare, while the Firms Own Data allocation only generates higher

welfare in relatively rare instances, and by a small amount. The key reason for this discrepancy

between our model and Jones and Tonetti (2020) relates to the growth term in the welfare de-

composition (i.e., equation (70)). In Jones and Tonetti (2020), the growth term disappears, and

the welfare comparisons depend on the level and privacy terms, since the BGP growth rates

under the three allocations are equal. However, in our model, the growth term persists and

dominates the other two terms, as shown in Figures 7 and 8. We summarize the comparisons

with Jones and Tonetti (2020) in Table 5.

Table 5: Comparison with Jones & Tonetti (2020)
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Literature Welfare and property rights

Jones&Tonetti (2020)

 U css > Ufss for the majority of the plot, substantially higher

U css < Ufss for relatively rare instances, only small amounts

Our model

 W c
ss > W f

ss in relatively large ranges, relatively small amounts

W c
ss < W f

ss in relatively small ranges, relatively large amounts

6.3 Endogenous growth with interactions of quality and variety R&Ds

6.3.1 Endogenous growth with population growth

In the endogenous growth literature, a major issue is whether long-run growth driven by R&D is

endogenous or semi-endogenous. Semi-endogenous growth means that (i) technological change

is endogenous, and (ii) long-run growth is determined by exogenous population growth. Based

on this definition, Jones and Tonetti (2020) and Cong et al. (2021) present semi-endogenous

growth models with data. In these models, the long-run growth rate is proportional to popula-

tion growth. This implies that if the population growth rate is zero, the long run growth rate

will also be zero. In constrast, Cong et al. (2022) propose an endogenous growth model, which

incorporates data and assumes no population growth. Building on Dinopoulos and Thomp-

son (1998), we develop an endogenous growth model where population growth positively and

nonlinearly affects long-run economic growth by incorporating the role of big data.

Proposition 4 (Endogenous growth) If the population growth rate is zero, then the average

quality growth rate is positive. If the population growth rate is positive, then the average

quality growth rate is a nonlinear function of the population growth rate.

In Dinopoulos and Thompson (1998), long-run growth is independent of population growth.

In our extended model with big data, quality growth (i.e., gQ) is an increasing and nonlinear

function of the population growth rate (i.e., n), as shown in Figure 9.14 Unlike the existing

literature (e.g., Jones, 1995; Kortum, 1997; Segerstrom, 1998; Jones and Tonetti, 2020; Cong

et al., 2021), quality growth in our model is not proportional to population growth. Intuitively,

population growth in our model induces an expansion in the data market: a larger population

implies greater market demand/size and thus more data (c (i, t) l (t) or D (t)), which drives

quality-enhancing innovations for all varieties and accelerates aggregate quality growth. For

14When firms own data, we can prove that the average quality growth rate increases with the population
growth rate.
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ease of comparison, Table 6 summarizes the growth models with data and their nature of

growth.

[Insert Figure 9 here.]

Table 6: Semi-endogenous or endogenous growth models with data

Model Growth rate Nature of growth

Jones & Tonetti(2020) gsp = gc = gf =
(

1
σ−1 + η

1−η

)
gL Semi-endogenous

Cong et al.(2021) gsp = gc =
(

σ
(1−ζ)σ−ξ(1−γ)

)
n, gf =

(
ξ+φ

φ(1−ζ)−ξ

)
n Semi-endogenous

Cong et al.(2022) gsp = (γ − 1) ρξ−1
(
κd2

sp − η
)
, gc =

ρ[κd2c−(1−γ−1)η]
ξΓ−[κd2c−(1−γ−1)η]

Endogenous

Our model gsp, gf , gc are increasing and nonlinear in n Endogenous

6.3.2 Interactions between quality and variety growth

In the Dinopoulos and Thompson (1998) model without data, quality growth is independent of

population growth, while variety growth equals population growth. This implies that there is

no connection between quality growth and variety growth. By introducing big data into both

quality and variety innovations in the Dinopoulos and Thompson (1998) model, our approach

integrates quality growth with variety growth in a data-driven growth economya. Equations

(8), (41), and (64) illustrate this relationship:

gm = z1n︸︷︷︸
direct effect

+ z2gQ︸︷︷︸
indirect effect

, (71)

where z1 = 1+(φ1 + φ2) /b and z2 = (φ1 + φ2) /b (η − 1). Equation (71) establishes that variety

growth positively depends on both population growth and quality growth. Using Propostion

4 and equation (71), we can decompose the effect of population growth on variety growth into

two components: a direct, linear effect via population growth itself, and an indirect, nonlinear

effect through quality growth. Intuitively, higher population growth provides cheaper labor,

which directly facilitates variety innovations. Indirectly, a larger population implies greater

market demand/size and more data, promoting quality innovations for existing varieties, thereby

supplying more resources for variety innovations (via creative destruction). Figure 10 illustrates

the interaction between quality growth and variety growth: both increase with population

growth. However, the direct, linear effect of population growth dominates the indirect, nonlinear

effect through quality growth. If the population growth rate is zero, the direct effect disappears,

but the indirect effect remains. Additionally, if we assume lower elasticity of substitution for
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original data, the indirect effect becomes more pronounced.

Most researchers in endogenous growth theory assume no, or at most very limited, knowledge

spillovers between quality and variety R&D (e.g., Aghion and Howitt, 1998; Dinopulos and

Thompson, 1998; Howitt, 1999; Peretto, 1998; Peretto and Smulders, 1998). Li (2000) combines

quality growth with variety growth by introducing knowledge spillovers in both R&D sectors.

Unlike Li (2000), we introduce nonrival data into both innovation activities, connecting quality

and variety innovations in a different way.

[Insert Figure 10 here.]

7 Conclusions

In this paper, we develop an endogenous growth model that treats data as innovations, where

big data promotes quality-enhancing innovations by increasing the possibility and magnitude

of successful quality innovations, and variety-creating innovations through effective labor forces

as a fixed cost. The social planner mitigates the welfare cost of monopolistic pricing and

internalizes externalities present in the decentralized economy, resulting in an optimal growth

rate that is larger than the equilibrium growth rates under both data property right regimes.

Data property rights significantly influence equilibrium growth and steady-state welfare. The

comparisons for growth and welfare under the two property rights largely hinge on several

key model parameters: the weight for privacy, the frequency for creative destruction, and the

elastiticy of substitution among goods. Introducing non-rival data in both variety and quality

innovations, our model combines variety growth and quality growth in the long run.

Online appendix: Proofs

7.1 Appendix 8.1 Proof of Proposition 1

Proof of Proposition 1. The stochastic optimal control problem faced by the social planner is

summarized as follows:

maxE0

[∫ +∞

t=0
e−(ρ−n)t

(
ln c (t)− κ

2
d (t)2

)
dt

]
,

35



subject to

c (t) ≡
[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

] θ
θ−1

, d (t) ≡
∫ m(t)

i=0
d (i, t) di =

∫ m(t)

i=0
s (i, t) c (i, t) di,

dq (i, t) =

 γQ (t)D (t)φ2 , lv (i, t)bD (t)φ1 dt

0, 1− lv (i, t)bD (t)φ1 dt
,
·

m (t) =
lm (t)

lh (t)
, µ = lh (t)1−ψD (t)ψ ,

D (t) = χ

[
m (t)−1/η

∫ m(t)

i=0
q (i, t)1/η (s (i, t) c (i, t) l (t))(η−1)/η di

]η/(η−1)

, η > 1, (72)

l (t) =

∫ m(t)

i=0
c (i, t) l (t) di+

∫ m(t)

i=0
lv (i, t) di+ lm (t) .

Define the value function V (m (t) , {q (i, t) , i ∈ [0,m (t)]}). The Bellman equation is written

as

(ρ− n)V

= max
{c,s,lv}

 ln c (t)− κ
2d (t)2 + Vm

[
l (t)−

∫m(t)
i=0 c (i, t) l (t) di+

∫m(t)
i=0 lv (i, t) di

]
µ
− 1
1−ψD (t)

ψ
1−ψ +∫m(t)

i=0 lv (i, t)bD (t)φ1
[
V
(
m, q (i, t) + γQ (t)D (t)φ2 , q (k, t)k 6=i

)
− V

(
m, q (i, t) , q (k, t)k 6=i

)]
di

 .

The first-order necessary conditions for c (i, t) , s (i, t) , lv (i, t) are

0 =

[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

]−1

q (i, t)
1
θ c (i, t)−

1
θ − κd (t) s (i, t)− Vmµ−

1
1−ψD (t)

ψ
1−ψ + (73)

Vm

(
l (t)−

∫m(t)
i=0 c (i, t) l (t) di−

∫m(t)
i=0 lv (i, t) di

)
µ
− 1
1−ψ ψ

1−ψD (t)
ψ

1−ψ−1

+φ1D (t)φ1−1 ∫m(t)
j=0 lv (j, t)b

[
V
(
q (j, t) + γQ (t)D (t)φ2

)
− V (q (j, t))

]
dj+

γQ (t)φ2D (t)φ1+φ2−1 ∫m(t)
j=0 lv (j, t)b Vq(j,t)+γQ(t)D(t)φ2

(
q (j, t) + γQ (t)D (t)φ2

)
dj

 ∂D (t)

∂c (i, t)
,

0 = −κd (t) c (i, t) + (74)
Vm

(
l (t)−

∫m(t)
i=0 c (i, t) l (t) di−

∫m(t)
i=0 lv (i, t) di

)
µ
− 1
1−ψ ψ

1−ψD (t)
ψ

1−ψ−1

+φ1D (t)φ1−1 ∫m(t)
j=0 lv (j, t)b

[
V
(
q (j, t) + γQ (t)D (t)φ2

)
− V (q (j, t))

]
dj+

γQ (t)φ2D (t)φ1+φ2−1 ∫m(t)
j=0 lv (j, t)b Vq(j,t)+γQ(t)D(t)φ2

(
q (j, t) + γQ (t)D (t)φ2

)
dj

 ∂D (t)

∂s (i, t)
,

0 = −Vmµ−
1

1−ψ
ψ

1− ψD (t)
ψ

1−ψ + blv (j, t)b−1
[
V
(
q (i, t) + γQ (t)D (t)φ2

)
− V (q (i, t))

]
, (75)
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where

∂D (t)

∂c (i, t)
= χ

η

η − 1
[Ξ]

η
η−1−1

m (t)
− 1
η q (i, t)

1
η (s (i, t) c (i, t) l (t))

η−1
η s (i, t) l (t) ,

∂D (t)

∂s (i, t)
= χ

η

η − 1
[Ξ]

η
η−1−1

m (t)
− 1
η q (i, t)

1
η (s (i, t) c (i, t) l (t))

η−1
η c (i, t) l (t) ,

Ξ ≡ m (t)−1/η
∫ m(t)

i=0
q (i, t)1/η (l (t) d (i, t))(η−1)/η di.

Combining (73) and (74) leads to

c (i, t) =

[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

]−θ (
Vmµ

− 1
1−ψD (t)

ψ
1−ψ
)−θ

q (i, t) ≡ Γ (t) q (i, t) . (76)

Plugging (76) in c (t) gives rise to

c (t) = Γ (t)m (t)
θ
θ−1 Q (t)

θ
θ−1 . (77)

Putting (76) in lp (t) gives us

lp (t) =

∫ m(t)

i=0
c (i, t) l (t) di = Γ (t) l (t)m (t)Q (t) . (78)

Combining (77) and (78) turns out to

c (t) = lp (t) l (t)−1m (t)
1
θ−1 Q (t)

1
θ−1 . (79)

Dividing both sides of (74) by c (i, t) and using (76), we obtain

κd (t)

χ [Ξ]
η
η−1−1

m (t)
− 1
η Γ
− 1
η s (i, t)

− 1
η l (t)

=


Vmlm (t)µ

− 1
1−ψ ψ

1−ψD (t)
ψ

1−ψ−1
+

φ1D (t)φ1−1 ∫m(t)
j=0 lv (j, t)b

[
V
(
q (j, t) + γQDφ2

)
− V (q (j, t))

]
dj

+γQ (t)φ2D (t)φ1+φ2−1 ∫m(t)
j=0 lv (j, t)b Vq+γQDφ2

(
q + γQDφ2

)
dj

 ,

which implies that s (i, t) = s (t) is independent of i. Then, substituting (78) into both d (t)

and D (t) gives us

d (t) = lp (t) l (t)−1 s (t) , D (t) = χs (t) lp (t)Q (t)
1

η−1 . (80)
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Therefore, there is no aggregate uncertainty in the economy, and the optimal solution is

also symmetric. For convenience, we convert the original stochastic problem into an equivalent

deterministic problem as follows:

max
{lp,lv ,s,m,Q}

∫ ∞
t=0

e−(ρ−n)t
[
ln
(
lp (t) l (t)−1Q (t)

1
θ−1 m (t)

1
θ−1
)
− κ

2
lp (t)2 l (t)−2 s (t)2

]
dt,

subject to

·
Q (t) = γQ (t) lv (t)b

(
χs (t) lp (t)Q (t)

1
η

)φ1+φ2
, (81)

·
m (t) = (l (t)− lv (t)m (t)− lp (t))µ

− 1
1−ψ

(
χs (t) lp (t)Q (t)

1
η

) ψ
1−ψ

. (82)

To solve the above problem, we define the Hamitonian:

H = e−(ρ−n)t
[
ln
(
lp (t) l (t)−1Q (t)

1
θ−1 m (t)

1
θ−1
)
− κ

2
lp (t)2 l (t)−2 s (t)2

]
+λ1 (t)

·
Q (t)+λ2 (t)

·
m (t),

where λ1 (t) and λ2 (t) are two Hamiltonian multipliers. The first-order necessary conditions

for lp (t), lv (t), s (t), Q (t), and m (t) are

e−(ρ−n)t
(

1− κlp (t)2 l (t)−2 s (t)2
)

+ λ1 (t) (φ1 + φ2)
·

Q (t) + λ2 (t)
·

m (t)

(
ψ

1− ψ −
lp (t)

lm (t)

)
= 0,

(83)

bλ1 (t)
·

Q (t) = λ2 (t)
·

m (t)
lv (t)m (t)

l (t)− lv (t)m (t)− lp (t)
, (84)

−e−(ρ−n)tκlp (t)2 l (t)−2 s (t)2 + λ1 (t) (φ1 + φ2)
·

Q (t) + λ2 (t)
·

m (t)
ψ

1− ψ = 0, (85)

e−(ρ−n)t 1

θ − 1
+

(
1 +

φ1 + φ2

η − 1

)
λ1 (t)

·
Q (t) +

ψ

1− ψ
1

η − 1
λ2 (t)

·
m (t) = −λ1 (t)

·
Q (t), (86)

e−(ρ−n)t 1

θ − 1
− λ2 (t)

·
m (t)

lv (t)m (t)

l (t)− lv (t)m (t)− lp (t)
= −λ2 (t)

·
m (t). (87)

Putting (85) in (83) and using (84) lead to

e−(ρ−n)t = λ2 (t)
·

m (t)
lp (t)

l (t)− lv (t)m (t)− lp (t)
=
bλ1 (t)

·
Q (t)lp (t)

lv (t)m (t)
, (88)

38



which is

e−(ρ−n)t = λ2 (t) gm (t)
lp (t)m (t)

l (t)− lv (t)m (t)− lp (t)
=
bλ1 (t) gQ (t) lp (t)Q (t)

lv (t)m (t)
. (89)

Putting (84) and (88) in (86) and dividing both sides by λ1 (t)Q (t), we obtain

[
b

θ − 1

lp (t)

lv (t)m (t)
+ 1 +

φ1 + φ2

η − 1
+

ψ

1− ψ
b

η − 1

l (t)− lv (t)m (t)− lp (t)

lp (t)m (t)

]
gQ (t) = −gλ1 (t) .

(90)

We conjecture that (i) the BGP growth rates of m (t), Q (t), λ1 (t), and λ2 (t) are constant,

i.e., gm (t) = gm, gQ (t) = gQ, gλ1 (t) = gλ1 , gλ2 (t) = gλ2; and (ii) the labor employment shares

Lp (t) ≡ lp (t) /l (t), Lv (t) ≡ lv (t)m (t) /l (t), and Lm (t) ≡ lm (t) /l (t) are constant, namely,

Lp (t) = Lp, Lv (t) = Lv, Lm (t) = Lm. Thus, on the BGP, the labor employment ratios between

production and horizontal/vertical innovation, lp(t)
lm(t) and

lp(t)
lv(t)m(t) , are also constant. Taking time

derivatives on both sides of equation (89), we know that on the BGP,

− (ρ− n) = gλ2 + gm = gλ1 + gQ. (91)

On the BGP, equation (90) is changed as

[
b

θ − 1

lp (t)

lv (t)m (t)
+ 1 +

φ1 + φ2

η − 1
+

ψ

1− ψ
b

η − 1

l (t)− lv (t)m (t)− lp (t)

lp (t)m (t)

]
gQ = −gλ1 . (92)

Putting (92) in (91), we solve for

gQ =
ρ− n

b
θ−1

lp(t)
lv(t)m(t) + φ1+φ2

η−1 + ψ
1−ψ

b
η−1

l(t)−lv(t)m(t)−lp(t)
lv(t)m(t)

. (93)

Substituting (88) into (87), dividing both sides of the resulting equation by λ2 (t)m (t), and

using equation (90), we know that

gm =
ρ− n

1
θ−1

lp(t)
l(t)−lv(t)m(t)−lp(t) −

lv(t)m(t)
l(t)−lv(t)m(t)−lp(t) − 1

. (94)

Equation (81) tells that at any time t,

gQ (t) = γlv (t)bD (t)φ1+φ2 = γ

(
lv (t)m (t)

l (t)

)b
m (t)−b l (t)bD (t)φ1+φ2 , (95)
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which implies that on the BGP,

n− gm +
φ1 + φ2

b
gD = 0. (96)

Equation (82) tells that at any time t,

gm (t) =
l (t)− lv (t)m (t)− lp (t)

l (t)
l (t)m (t)−1 µ

− 1
1−ψD (t)

ψ
1−ψ , (97)

which implies that on the BGP,

n− gm +
ψ

1− ψgD = 0. (98)

The Knife edge condition (i.e., φ1+φ2
b = ψ

1−ψ ) establishes that equations (96) and (98) are the

same.

Putting (88) in (85) establishes that s (t) is constant on the BGP, namely,

s (t) =

√√√√√ φ1+φ2
b

lv(t)m(t)
lp(t) + ψ

1−ψ
l(t)−lv(t)m(t)−lp(t)

lp(t)

κ
(
lp(t)
l(t)

)2 = s. (99)

Equation (72) tells that D (t) = χ
lp(t)
l(t) l (t) s (t)Q (t)

1
η−1 , which establishes that on the BGP,

gD = n+
1

η − 1
gQ =

b

φ1 + φ2

(gm − n) . (100)

Then, we know that

gm =

(
1 +

φ1 + φ2

b

)
n+

φ1 + φ2

b

1

η − 1
gQ ≡ z1n+ z2gQ, (101)

where

z1 ≡ 1 +
φ1 + φ2

b
, z2 ≡

φ1 + φ2

b

1

η − 1
.

Substituting (97) into (95), we have that at any time t,

gQ (t)
1
b = γ

1
bµ

1
1−ψ

lv (t)m (t)

l (t)− lv (t)m (t)− lp (t)
gm (t) .

Thus, on the BGP, we know that
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g
1
b
Q = γ

1
bµ

1
1−ψ

lv (t)m (t)

l (t)− lv (t)m (t)− lp (t)
gm. (102)

Define

x (t) ≡ lp (t)

lm (t)
=

Lp (t)

Lm (t)
, y (t) ≡ lv (t)m (t)

lm (t)
=

Lv (t)

Lm (t)
.

On the BGP, (93), (94), (101) and (102) turn out to an equation system for (x, y, gm, gQ):

(ρ− n) g−1
Q =

b

θ − 1

x

y
+
φ1 + φ2

η − 1
+

ψ

1− ψ
b

η − 1

b

y
, (103)

(ρ− n) g−1
m =

1

θ − 1
x− y − 1, (104)

gm = z1n+ z2gQ, (105)

g
1
b
Q = γ

1
bµ

1
1−ψ ygm. (106)

Substituting (104), (105), and (106) into (103) one by one, we obtain the equation pinning

down gQ:

(ρ− n) g
1
b
−1

Q −
(
b+ φ1+φ2

η−1

)
g
1
b
Q

(ρ− n) b+
(
b+ φ1+φ2

η−1

)
(z1n+ z2gQ)

= γ
1
bµ

1
1−ψ . (107)

By substitution, we have that

gm = z1n+ z2gQ,

y = γ−
1
bµ
− 1
1−ψ g

1
b
Q (z1n+ z2gQ)−1 ,

x = (θ − 1)

[(
ρ− n+ γ−

1
bµ
− 1
1−ψ g

1
b
Q

)
(z1n+ z2gQ)−1 + 1

]
.

Using x = Lp/Lm, y = Lv/Lm, and Lp + Lv + Lm = 1, we solve for

Lp =
x

x+ y + 1
, Lv =

y

x+ y + 1
, Lm =

1

x+ y + 1
. (108)

Using (96) and (105), we solve for

gD =
b

φ1 + φ2

[(z1 − 1)n+ z2gQ] . (109)
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From (79), we solve for

gc =
1

θ − 1
[z1n+ (z2 + 1) gQ] . (110)

Using (99), we have that

s =

√
φ1 + φ2

b

1− Lp
Lp

κ−1L−2
p . (111)

Plugging (111) in (80) gives rise to

d =

√
φ1 + φ2

bκ

1− Lp
Lp

. (112)

Using (108) and lp (t) = (θ − 1) e (t) l (t) /θ, we obtain

e =
θ

θ − 1
Lp. (113)

Thus, we complete the proof of Proposition 1. �

7.2 Appendix 8.2 Proof of Proposition 2

Proof of Proposition 2. First, we solve the households’problems. Each household’s problem is

summarized as follows:

max
{c(i,t),a(t)}

E0

[∫ +∞

t=0
e−(ρ−n)t

(
ln c (t)− κ

2
d (t)2

)
dt

]
,

subject to

da (t) = [(r (t)− n) a (t) + w (t)− e (t)] dt,

dm (t) =
·

m (t)dt,

dq (i, t) =

 γQ (t) dv (i, t)φ2 , lv (i, t)b dv (i, t)φ1 dt

0, 1− lv (i, t)b dv (i, t)φ1 dt
,

c (t) ≡
[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

] θ
θ−1

, e (t) ≡
∫ m(t)

i=0
p (i, t) c (i, t) di.

Define the value function J (t, a (t) ,m (t) , {q (i, t) , i ∈ [0,m (t)]}). The Bellman equation is
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written as follows:

(ρ− n) J = max
{c(i,t)}

 ln c (t)− κ
2d (t)2 + Jt + Ja [(r (t)− n) a (t) + w (t)− e (t)] + Jm

·
m (t)

+
∫m(t)
i=0 lv (i, t)b dv (i, t)φ1

[
J
(
q (i, t) + γQ (t) dv (i, t)φ2

)
− J (q (i, t))

]
 .

The first-order condition for c (i, t) is

(∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

)−1

q (i, t)
1
θ c (i, t)

θ−1
θ = Jap (i, t) c (i, t) . (114)

Integrating (114) with respect to i gives rise to

1 = Jae (t) . (115)

Taking powers θ and (θ − 1) in turn on both sides of (114) gives us

[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

]−θ
q (i, t) J−θa p (i, t)1−θ = c (i, t) , (116)

[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

]1−θ

q (i, t) J1−θ
a p (i, t)1−θ = q (i, t)

1
θ c (i, t)

θ−1
θ ,

respectively. Integrating the second equation leads to

[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

]−θ
J1−θ
a

∫ m(t)

i=0
q (i, t) p (i, t)1−θ di = 1. (117)

Combining (115) and (116) and using (115) and (117) give rise to

[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

]−θ
q (i, t) e (t)θ p (i, t)−θ = c (i, t) ,

[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

]−θ
e (t)θ−1

∫ m(t)

i=0
q (i, t) p (i, t)1−θ di = 1.

Using the above two equations, we know that the optimal demand for good i is

c (i, t) =
q (i, t) p (i, t)−θ e (t)∫m(t)
i=0 q (i, t) p (i, t)1−θ di

. (118)
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Using the Envelope theorem with respect to a (t), we have that

(ρ− n) Ja =

 Jta + Jaa
·

a (t) + Ja (r (t)− n) + Jma
·

m (t)+∫m(t)
i=0 lv (i, t)b dv (i, t)φ1

[
Ja

(
q (i, t) + γQ (t) dv (i, t)φ2

)
− Ja (q (i, t))

]
 .

Taking the time derivatives on both sides of Ja = Ja (t, a (t) ,m (t) , {q (i, t) , i ∈ [0,m (t)]}), we

obtain

dJa
dt

= Jat+Jaa
·

a (t)+Jam
·

m (t)+

∫ m(t)

i=0
lv (i, t)b dv (i, t)φ1

[
Ja

(
q (i, t) + γQ (t) dv (i, t)φ2

)
− Ja (q (i, t))

]
.

Combining the above two equations and using (115), we obtain the Euler equation

ge (t) ≡
·

e (t)

e (t)
= r (t)− ρ. (119)

Second, we solve the production problem of the final goods. The owner of variety i’s profit-

maximizing problem is:

max
{p(i,t),c(i,t)}

[p (i, t)− 1] c (i, t) l (t) ,

subject to the market demand for good i, c (i, t) l (t), where c (i, t) satisfies (118). Putting (118)

in the above problem and solving the first-order condition wrt p (i, t) lead to the monopolistic

pricing rule

p (i, t) =
θ

θ − 1
= p (t) , (120)

and the optimal profits:

π (i, t) =
1

θ

q (i, t)

Q (t)

e (t) l (t)

m (t)
≡ 1

θ
α (i, t)λ (t) .

Plugging (120) in (118) gives rise to

c (i, t) = α (i, t)
e (t)

m (t)

θ − 1

θ
. (121)

Third, we solve the quality-enhancing innovators’problems. Using production profits and

revenues from data sales, the owner of variety i hires labor, lv (i, t), and purchases integrated
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data, dv (i, t), to improve product quality. Specifically, each variety solves the following problem:

J (α (i, t) , t) ≡ max
{lv ,dv ,s,pd}

Et

∫ +∞

u=t
e−
∫ u
τ=t r(τ)dτ

 (1− δ (s (i, u))) α(i,u)λ(u)
θ − lv (i, u)−

pvD (u) dv (i, u) + pd (i, u) s (i, u) c (i, u) l (u)

 du

 ,
subject to the evolutionary equation of its relative quality

dα (i, t) = −α (i, t) gQ (t) dt+
1

Q (t)
dq (i, t) , (122)

and the demand function for the original data,

pd (i, t) =

(
pvD (t)m (t) + phD (t)

·
m (t)

)
χ [Ξ]

1
η−1 m (t)

− 1
η q (i, t)

1
η (l (t) c (i, t) s (i, t))

− 1
η , (123)

where

Ξ ≡ m (t)−1/η
∫ m(t)

i=0
q (i, t)1/η (l (t) d (i, t))(η−1)/η di,

and δ (s (i, t)) = 0.5δ0s (i, t)2 stands for the profit loss of data sharing for variety i. To solve the

above problem, we write down the Bellman equation:

0 = max
{lv ,dv ,s}



e−
∫ t
u=0 r(u)du

 (1− δ (s (i, t)))π (i, t)− lv (i, t)−

pvD (t) dv (i, t) + pd (i, t) s (i, t) c (i, t) l (t)


−Jα (α (i, t) , t)α (i, t) gQ (t) + Jt (α (i, t) , t) +

lv (i, t)b dv (i, t)φ1
[
J
(
α (i, t) + γdv (i, t)φ2

)
− J (α (i, t))

]


.

This is a nonlinear differential equation with jump components, which cannot be solved directly.

Therefore, we will restrict our attention to balanced growth solutions, where all variables are

either constant or growing at constant rates. This will yield an autonomous problem that can

be solved. Similar to Dinopoulos and Thompson (1998), on the balanced growth path, we

assume that J (α (i) , t) = e−rtV (α (i) , λ (t) , pD (t)). To solve for the BGP, we set J (α (i) , t) =

e−rtV (α (i) , λ (t) , pD (t)) and substitute it into the above equation, leading to
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0 = max
{lv ,dv ,s,pd}


1−δ(s(i))

θ α (i)λ (t)− lv (i, t)− pvD (t) dv (i, t) + pd (i, t) s (i, t) c (i, t) l (t)−

(ρ+ ge)V + Vλ (ge + n− gm)λ (t) + VpvDgp
v
D
pvD (t)− α (i) gQVα+

lv (i, t)b dv (i, t)φ1
[
V
(
α (i) + γdv (i, t)φ2 , λ, pvD (t)

)
− V (α (i) , λ, pvD (t))

]
 .

(124)

The first-order necessary conditions with respect to lv (i, t), dv (i, t), and s (i, t) are:

1 = blv (i, t)b−1 dv (i, t)φ1
[
V
(
α (i) + γdv (i, t)φ2 , λ (t) , pvD (t)

)
− V (α (i) , λ (t) , pvD (t))

]
,

(125)

pvD (t) =

 φ1lv (i, t)b dv (i, t)φ1−1
[
V
(
α (i) + γdv (i, t)φ2

)
− V (α (i))

]
+γφ2lv (i, t)b dv (i, t)φ1+φ2−1 Vα

(
α (i) + γdv (i, t)φ2

)
 , (126)

δ0s (i, t)
α (i)λ

θ
=
η − 1

η
c (i, t) l (t) pd (i, t) . (127)

Putting (121) and (123) in (127) leads to

s (i, t)
1+ 1

η = δ−1
0

(
pvD (t)m+ phD (t)

·
m
)
χ [Ξ]

1
η−1 m (t)

− 1
η
η − 1

η

(
e (t) l (t)

m (t)Q (t)

θ − 1

θ

)− 1
η

(θ − 1) = s (t)1+1/η ,

(128)

which shows that all varieties sell the same share of original data, namely, s (i, t) = s (t). Thus,

we have that

s (t) = δ−1
0

(
pvD (t)m+ phD (t)

·
m
)
χQ (t)

1
η−1

η − 1

η
(θ − 1) . (129)

Using s (i, t) = s (t) in equation (123), we find that pd (i, t) is also independent of i, namely,

pd (i, t) =
(
pvD (t)m+ phD (t)

·
m
)
χQ (t)

1
η−1 = pd (t) . (130)

Combining (129) and (130) gives

s (t) = δ−1
0

η − 1

η
(θ − 1) pd (t) . (131)

We conjecture that the value function takes the following form:

V (α (i) , λ (t) , pvD (t)) = y1α (i)λ (t) + y2p
v
D (t)x1 λ (t)x2 . (132)
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Then, the first-order necessary conditions become:

lv (i, t) =
[
bγy1λ (t) dv (i, t)φ1+φ2

] 1
1−b

(= lv (t)) , (133)

dv (i, t) =

[
φ1 + φ2

b
pvD (t)−1 (bγy1λ (t))

1
1−b

] 1−b
1−b−(φ1+φ2)

= dv (t) , (134)

which establish that all varieties employ the same levels of labor and data for quality-enhancing

innovations.

Substituting equations (132)-(134) into the Bellman equation, we determine the undeter-

mined coeffi cients as follows:

x1 = − φ1 + φ2

1− b− (φ1 + φ2)
, x2 =

1

1− b− (φ1 + φ2)
, (135)

y1 =
1 + δ−1

0

(
1− 1

η

)
p2
d (θ − 1)2 (1− 2−1

(
1− η−1

))
θ (ρ+ ge − gλ + gQ)

, y2 =

1−b−(φ1+φ2)
b (γby1)x2

(
φ1+φ2
b

)−x1
ρ+ ge − x2gλ − x1gpvD

.

(136)

Thus, we obtain the solution to the Bellman equation (124).

Fourth, we solve the problem of variety-expanding innovators. Construct the Lagrangian:

L = lh (t) + phD (t) dh (t) + ϑ
[
µ− dh (t)ψ lh (t)1−ψ

]
,

where ϑ is the Lagrangian multiplier. The first-order necessary conditions are

1 = ϑdh (t)ψ (1− ψ) lh (t)−ψ , phD (t) = ϑψdh (t)ψ−1 lh (t)1−ψ .

Eliminating ϑ in the above two equations gives rise to

phD (t) =
ψ

1− ψ
lh (t)

dh (t)
. (137)

Combining (137) with µ = dh (t)ψ lh (t)1−ψ, we solve for the demand functions for the two

inputs:

lh (t) = µ

(
1− ψ
ψ

)ψ
phD (t)ψ , dh (t) = µ

(
ψ

1− ψ

)1−ψ
phD (t)ψ−1 . (138)

We assume that new entrants obtain the profit flows from all existing varieties who suffering
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from creative destruction. Using the linearity of V wrt α and (138), we have a zero-profit

condition for variety-expanding R&D, namely,

V (1, λ (t) , pvD (t)) =
1

1− ψµ
1

1−ψ dh (t)
− ψ
1−ψ −

∫m(t)
i=0 δ (s (i, t)) 1

θα (i, t)λ (t) di
·

m (t)

(139)

=
1

1− ψ lh (t)−
∫m(t)
i=0 δ (s (i, t)) 1

θα (i, t)λ (t) di
·

m (t)

=
1

ψ
dh (t) phD (t)−

∫m(t)
i=0 δ (s (i, t)) 1

θα (i, t)λ (t) di
·

m (t)

.

Fifth, the competitive data intermediary sector solves the following optimization problem:

max
{d(i,t)}

(
pvD (t)m+ phD (t)

·
m
)
D (t)−

∫ m(t)

i=0
pd (i, t) d (i, t) l (t) di,

subject to the data-integrating technology

D (t) = χ

[
m (t)−1/η

∫ m(t)

i=0
q (i, t)1/η (l (t) d (i, t))(η−1)/η di

]η/(η−1)

, η > 1. (140)

Solving the FOC w.r.t d (i, t) leads to the demand function for the original data

pd (i, t) =
(
pvD (t)m+ phD (t)

·
m
)
χ [Ξ]

1
η−1 m (t)

− 1
η q (i, t)

1
η (d (i, t) l (t))

− 1
η (141)

=
(
pvD (t)m+ phD (t)

·
m
)
χQ (t)

1
η−1 = pd (t) .

Free entry leads to zero profit in the data intermediary sector, namely,

(
pvD (t)m+ phD (t)

·
m
)
D (t) = pd (t) l (t) s (t) e (t)

θ − 1

θ
. (142)

Sixth, we impose the market-clearing conditions for labor and capital markets, namely,

l (t) =

∫ m(t)

i=0
c (i, t) l (t) di+

∫ m(t)

i=0
lv (i, t) di+

·
m (t)lh (t) =

θ − 1

θ
e (t) l (t)+lv (t)m (t)+

·
m (t)lh (t) ,

(143)

a (t) l (t) =

∫ m(t)

i=0
V (α (i) , λ (t) , pvD (t)) di = m (t)V (1, λ (t) , pvD (t)) . (144)
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Finally, we solve for the stationary equilibrium (or BGP), on which (gQ, gm, gλ, gD, gpD , pd,

r, e, s, d, Lp, Lv, Lm) are constant. Similar to Dinopoulos and Thompson (1998), the growth

rate of average quality level at any time t is given by

gQ (t) ≡
·

Q (t)

Q (t)
= γlv (t)bD (t)φ1+φ2 . (145)

Putting (133) in (145) tells that on the BGP,

λ (t) = γ−
1
b b−1g

1−b
b

Q y−1
1 D (t)−

φ1+φ2
b , (146)

and thus,

gλ = −φ1 + φ2

b
gD, (147)

since gQ is constant on the BGP.

Using the definitions of labor shares and substituting (121), (133) and (146) into them, we

find that along the BGP,

Lp =
θ − 1

θ
e, Lv = eby1gQ, Lm = 1− Lp − Lv. (148)

Substituting (133) and (146) into (134) leads to

pvD (t) =
φ1 + φ2

b
γ−

1
b g

1
b
QD (t)

−
(

1+
φ1+φ2
b

)
. (149)

Putting (146) and (149) in the value function (132) gives rise to

V (α (i) , λ (t) , pvD (t)) = γ−
1
b b−1g

1−b
b

Q D (t)−
φ1+φ2
b α (i)+

1− b− (φ1 + φ2)

b (ρ+ ge − x2gλ − x1gpD)
γ−

1
b g

1
b
QD (t)−

φ1+φ2
b .

(150)

Putting (146) in (139) gives us

V (1, λ (t) , pvD (t)) =
1

1− ψµ
1

1−ψD (t)
− ψ
1−ψ − 1

θ
gm
−1δ (s) γ−

1
b b−1y−1

1 g
1−b
b

Q D (t)−
φ1+φ2
b . (151)

Taking α (i) = 1 in equation (150), using the knife-edge condition, and combining it with
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(151), we obtain

γ−
1
b b−1g

1−b
b

Q +
1− b− (φ1 + φ2)

b
(
ρ+ ge − x2gλ − x1gpvD

)γ− 1
b g

1
b
Q =

1

1− ψµ
1

1−ψ − 1

θ
gm
−1δ (s) γ−

1
b b−1y−1

1 g
1−b
b

Q .

(152)

Combining (147) and (149), we know that on the BGP,

gpvD = −
(

1 +
φ1 + φ2

b

)
gD =

(
1 +

b

φ1 + φ2

)
gλ. (153)

Substituting (121) into (140) leads to

D (t) = χ
θ − 1

θ
s (t) e (t) l (t)Q (t)

1
η−1 , (154)

which implies that on the BGP,

gD = n+
1

η − 1
gQ. (155)

Using (153) and (155), we have

gm =

(
1 +

φ1 + φ2

b

)
n+

φ1 + φ2

b

1

η − 1
gQ ≡ z1n+ z2gQ. (156)

Using (153) and (156), we have that

ρ+ ge − x2gλ − x1gpvD = ρ+ (z1 − 1)n+ z2gQ. (157)

From (145) and by definition, we know that

g
1
b
Q = γ

1
bLvl (t)m (t)−1D (t)

φ1+φ2
b , gm = g

1
b
Qγ
− 1
bµ
− 1
1−ψ

1− Lv − Lp
Lv

, (158)

which imply that

Lv =
1− θ−1

θ e

1 + (z1n+ z2gQ) g
− 1
b

Q γ
1
bµ

1
1−ψ

. (159)
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Combining (147) and (159) leads to

eby1gQ =
1− θ−1

θ e

1 + (z1n+ z2gQ) g
− 1
b

Q γ
1
bµ

1
1−ψ

. (160)

Plugging (160) in 1
θgm

−1δ (s) γ−
1
b b−1y−1

1 g
1−b
b

Q gives us

1

θ
gm
−1δ (s) γ−

1
b b−1y−1

1 g
1−b
b

Q =
1

2

η − 1

η

φ1 + φ2

b

(
g−1
m g

1
b
Qγ
− 1
b + µ

1
1−ψ

)
. (161)

Putting (157) and (161) in (152) yields us the key equation pinning down gQ:

γ−
1
b b−1g

1−b
b

Q +

1−b−(φ1+φ2)
b γ−

1
b g

1
b
Q

(ρ+ (z1 − 1)n+ z2gQ)
=
µ

1
1−ψ

1− ψ −
η − 1

2η

φ1 + φ2

b

(
g−1
m g

1
b
Qγ
− 1
b + µ

1
1−ψ

)
. (162)

Using (134), (137), and (141), we know that

pd =
φ1 + φ2

b

(
1− eθ − 1

θ

)
θ

θ − 1
s−1e−1. (163)

Combining (131) and (163) gives rise to

s2 = δ−1
0 (θ − 1)

η − 1

η

φ1 + φ2

b

(
1− eθ − 1

θ

)(
e
θ − 1

θ

)−1

. (164)

Using (160), (163), and (164), we obtain the equation pinning dow the steady state value of

e:

begQ
1 + (θ − 1)

[
1− 1

2

(
1− 1

η

)]
φ1+φ2
b

(
1− θ−1

θ e
) (

θ−1
θ e
)−1

θ [ρ+ (z1 − 1)n+ (z1 + 1) gQ]
=

1− θ−1
θ e

1 + (z1n+ z2gQ) g
−1/b
Q γ1/bµ1/(1−ψ)

.

By substition, we have the steady state expressions for other variables listed in Proposition

1.

Now we prove that pvD (t) and phD (t) have the same BGP growth rates, i.e., gpvD = gphD
.

Putting (133), (146), and (149) in Lv ≡ lv (t)m (t) /l (t) in turn leads to

Lv =

(
φ1 + φ2

b

)−1

D (t) pvD (t)m (t) l (t)−1 . (165)
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Plugging (137) in Lm ≡ lh (t)
·

m (t)/l (t) in turn gives rise to

Lm =
1− ψ
ψ

·
m (t)D (t) phD (t) l (t)−1 . (166)

Combining (165) and (166) and using (149) and (158) in turn, we have that

phD (t) =
φ1 + φ2

b
µ

1
1−ψD (t)

−
(

1+
φ1+φ2
b

)
. (167)

Taking the time derivatives on both sides of (167) and using (153), we obtain that

gphD
= −

(
1 +

φ1 + φ2

b

)
gD = gpvD .

Thus, we complete the proof of Proposition 2. �

7.3 Appendix 8.3 Proof of Proposition 3

Proof of Proposition 3. First, we solve the households’problems. Each household’s problem is

summarized as follows:

max
{c(i,t),a(t)}

E0

[∫ +∞

t=0
e−(ρ−n)t

(
ln c (t)− κ

2
d (t)2

)
dt

]
,

subject to

da (t) =

[
(r (t)− n) a (t) + w (t)− e (t) +

∫ m(t)

i=0
pd (i, t) d (i, t)

]
dt,

dm (t) =
·

m (t)dt,

dq (i, t) =

 γQ (t) dv (i, t)φ2 , lv (i, t)b dv (i, t)φ1 dt

0, 1− lv (i, t)b dv (i, t)φ1 dt
,

c (t) ≡
[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

] θ
θ−1

, e (t) ≡
∫ m(t)

i=0
p (i, t) c (i, t) di.

Define the value function J (t, a (t) ,m (t) , {q (i, t) , i ∈ [0,m (t)]}). The Bellman equation is
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written as follows:

(ρ− n) J = max
{c(i,t)}

 ln c (t)− κ
2d (t)2 + Jt + Ja

[
(r (t)− n) a (t) + w (t) +

∫m(t)
i=0 pd (i, t) d (i, t)− e (t)

]
+Jm

·
m (t) +

∫m(t)
i=0 lv (i, t)b dv (i, t)φ1

[
J
(
q (i, t) + γQ (t) dv (i, t)φ2

)
− J (q (i, t))

]
 .

The first order condition for c (i, t) is

(∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

)−1

q (i, t)
1
θ c (i, t)

θ−1
θ = Jap (i, t) c (i, t) . (168)

Integrating (168) with respect to i gives rise to

1 = Jae (t) . (169)

Taking powers θ and (θ − 1) on both sides of (168) gives us

[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

]−θ
q (i, t) J−θa p (i, t)1−θ = c (i, t) , (170)

[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

]1−θ

q (i, t) J1−θ
a p (i, t)1−θ = q (i, t)

1
θ c (i, t)

θ−1
θ .

Integrating the above second equation leads to

[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

]−θ
J1−θ
a

∫ m(t)

i=0
q (i, t) p (i, t)1−θ di = 1. (171)

Combining (169) and (170) and using (169) and (171) give rise to

[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

]−θ
q (i, t) e (t)θ p (i, t)−θ = c (i, t) ,

[∫ m(t)

i=0
q (i, t)

1
θ c (i, t)

θ−1
θ di

]−θ
e (t)θ−1

∫ m(t)

i=0
q (i, t) p (i, t)1−θ di = 1.

Using the above two equations, we know that

c (i, t) =
q (i, t) p (i, t)−θ e (t)∫m(t)
i=0 q (i, t) p (i, t)1−θ di

. (172)
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The first order condition with respect to d (i, t) gives us

κd (t) = Japd (i, t) .

Plugging (169) in the above equation leads to

pd (i, t) = κd (t) e (t) = pd (t) , (173)

which implies that the equilibrium prices of all original data are the same.

Using the Envelope theorem with respect to a (t), we have that

(ρ− n) Ja =

 Jta + Jaa
·

a (t) + Ja (r (t)− n) + Jma
·

m (t)+∫m(t)
i=0 lv (i, t)b dv (i, t)φ1

[
Ja

(
q (i, t) + γQ (t) dv (i, t)φ2

)
− Ja (q (i, t))

]
 .

Taking the time derivatives wrt t on both sides of Ja = Ja (t, a (t) ,m (t) , {q (i, t) , i ∈ [0,m (t)]}),

we obtain

dJa
dt

= Jat+Jaa
·

a (t)+Jam
·

m (t)+

∫ m(t)

i=0
lv (i, t)b dv (i, t)φ1

[
Ja

(
q (i, t) + γQ (t) dv (i, t)φ2

)
− Ja (q (i, t))

]
.

Combining the above two equations and using (169) gives rise to

ge (t) ≡
·

e (t)

e (t)
= r (t)− ρ. (174)

Second, we examine the production of each variety. The owner of variety i solves the

following profit-maximizing problem:

max
{p(i,t),c(i,t)}

[p (i, t)− 1] c (i, t) l (t) ,

subject to the market demand for variety i, c (i, t) l (t), where c (i, t) satisfies (172). Putting

(172) in the above problem and solving the first-order condition with respect to p (i, t) lead to

the monopolistic pricing rule:

p (i, t) =
θ

θ − 1
= p (t) , (175)

which implies that all varieties set the same monopoly price. Plugging (175) in (172) and the
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objective function of variety i, we obtain:

c (i, t) =
θ − 1

θ

α (i, t) e (t)

m (t)
, (176)

π (i, t) =
1

θ

q (i, t)

Q (t)

e (t) l (t)

m (t)
≡ 1

θ
α (i, t)λ (t) , (177)

which establish that the discrepancies of both optimal demands and profits among different

varieties hinge their relative quality levels.

Third, we address the problems faced by quality-enhancing innovators. Using the production

profits and the revenues from selling data, the owner of product line i hires a labor force, lv (i, t),

and purchases the integrated data, dv (i, t), to improve product quality. Specifically, any variety

i solves the following problem:

J (α (i, t) , t) ≡ max
{lv ,dv ,s,pd}

Et

[∫ +∞

u=t
e−
∫ u
τ=t r(τ)dτ

(
(1− δ (s (i, u)))

α (i, u)λ (u)

θ
− lv (i, u)− pvD (u) dv (i, u)

)
du

]
,

subject to the evolutionary equation of its relative quality

dα (i, t) = −α (i, t) gQ (t) dt+
1

Q (t)
dq (i, t) , (178)

where δ (s (i, t)) = 0.5δ0s (i, t)2 represents the profit losses of data sharing for variety i. To solve

the above problem, we write down the Bellman equation:

0 = max
{lv ,dv ,s}


e−
∫ t
u=0 r(u)du

(
(1− δ (s (i, t))) α(i,t)λ(t)

θ − lv (i, t)− pvD (t) dv (i, t)
)

−Jα (α (i, t) , t)α (i, t) gQ (t) + Jt (α (i, t) , t) +

lv (i, t)b dv (i, t)φ1
[
J
(
α (i, t) + γdv (i, t)φ2

)
− J (α (i, t))

]
 .

To solve for the BGP, setting J (α (i) , t) = e−rtV (α (i) , λ (t) , pvD (t)) and plugging it in the

above equation lead to

0 = max
{lv ,dv ,s,pd}


1−δ(s(i))

θ α (i)λ (t)− lv (i, t)− pvD (t) dv (i, t)− (ρ+ ge)V

+Vλ (ge + n− gm)λ (t) + VpvDgp
v
D
pvD (t)− α (i) gQVα+

lv (i, t)b dv (i, t)φ1
[
V
(
α (i) + γdv (i, t)φ2 , λ, pvD, pd (i, t)

)
− V (α (i) , λ, pvD, pd (i, t))

]
 .

(179)
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The first order necessary conditions w.r.t lv (i, t) and dv (i, t) are:

1 = blv (i, t)b−1 dv (i, t)φ1
[
V
(
α (i) + γdv (i, t)φ2

)
− V (α (i))

]
, (180)

pD (t) dv (i, t) =

 φ1lv (i, t)b dv (i, t)φ1
[
V
(
α (i) + γdv (i, t)φ2

)
− V (α (i))

]
+γφ2lv (i, t)b dv (i, t)φ1+φ2 Vα+γdvφ2

(
α (i) + γdv (i, t)φ2

)
 . (181)

Conjecture that the value function has the following form:

V (α (i) , λ (t) , pvD (t)) = y1α (i)λ (t) + y2p
v
D (t)x1 λ (t)x2 .

The first order necessary conditions are changed as

lv (i, t) =
[
bγy1λ (t) dv (i, t)φ1+φ2

] 1
1−b

, (182)

pvD (t) dv (i, t) =
φ1 + φ2

b

[
bγy1λ (t) dv (i, t)φ1+φ2

] 1
1−b

=
φ1 + φ2

b
lv (i, t) . (183)

Substituting (182) and (183) into the Bellman equation (179) and equating the coeffi cients

and exponents, we obtain

x1 = − φ1 + φ2

1− b− (φ1 + φ2)
, x2 =

1

1− b− (φ1 + φ2)
,

y1 =
1− δ (s (i))

θ (ρ− n+ gm + gQ)
, y2 =

1−b−(φ1+φ2)
b (γby1)x2

(
φ1+φ2
b

)−x1
ρ+ ge − x2gλ − x1gpvD

.

Fourth, we solve the problem of variety-expanding innovators. Construct the Lagrangian:

L = lh (t) + phD (t) dh (t) + ϑ̂
[
µ− dh (t)ψ lh (t)1−ψ

]
,

where ϑ̂ is the Lagrangian multiplier. The first order necessary conditions are

1 = ϑ̂dh (t)ψ (1− ψ) lh (t)−ψ , phD (t) = ϑ̂ψdh (t)ψ−1 lh (t)1−ψ .
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Eliminating ϑ̂ in the above two equations gives rise to

phD (t) =
ψ

1− ψ
lh (t)

dh (t)
. (184)

Combining (184) with µ = dh (t)ψ lh (t)1−ψ, we solve for the demand functions for two inputs:

lh (t) = µ

(
1− ψ
ψ

)ψ
phD (t)ψ , dh (t) = µ

(
ψ

1− ψ

)1−ψ
phD (t)ψ−1 . (185)

Similar to the situation with firms owning data, we assume that new entrants receive profit

flows from all existing varieties affected by creative destruction. Utilizing the linearity of V

with respect to α and equation (185), we obtain a zero-profit condition for variety-expanding

R&D, specifically,

V (1, λ (t) , pvD (t)) =
1

1− ψµ
1

1−ψ dh (t)
− ψ
1−ψ −

∫m(t)
i=0 δ (s (i, t)) 1

θα (i, t)λ (t) di
·

m (t)

(186)

=
1

1− ψ lh (t)−
∫m(t)
i=0 δ (s (i, t)) 1

θα (i, t)λ (t) di
·

m (t)

=
1

ψ
dh (t) phD (t)−

∫m(t)
i=0 δ (s (i, t)) 1

θα (i, t)λ (t) di
·

m (t)

.

Five, a competitive data intermediary sector solves the following optimization problem:

max
{d(i,t)}

(
pvD (t)m (t) + phD (t)

·
m (t)

)
D (t)−

∫ m(t)

i=0
pd (i, t) d (i, t) l (t) di,

subject to the data-integrating technology

D (t) = χ

[
m (t)−1/η

∫ m(t)

i=0
q (i, t)1/η (l (t) d (i, t))(η−1)/η di

]η/(η−1)

, η > 1. (187)

Solving the FOC w.r.t d (i, t) leads to the demand function for the original data

pd (i, t) =

(
pvD (t)m (t) + phD (t)

·
m (t)

)
χ [Ξ]

1
η−1 m (t)

− 1
η q (i, t)

1
η (d (i, t) l (t))

− 1
η , (188)

where

Ξ ≡ m (t)−1/η
∫ m(t)

i=0
q (i, t)1/η (l (t) d (i, t))(η−1)/η di.
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Plugging d (i, t) = s (i, t) c (i, t), (176), and (173) in (188) leads to

pd (i, t) =

(
pvD (t)m (t) + phD (t)

·
m (t)

)
χ [Ξ]

1
η−1

(
θ − 1

θ
l (t) s (i, t) e (t)Q (t)

)− 1
η

= pd (t) = κd (t) e (t) ,

(189)

which implies that s (i, t) is independent of i, namley, s (i, t) = s (t). Thus, y1, y2, lv (i, t), and

dv (i, t) are independent of i. Substituting (183), (186), and (189) into the zero-profit condition

of the data intermediary sector gives rise to

κd (t)2 e (t) l (t) =
θ − 1

θ
lv (t)m (t) +

ψ

1− ψ
·

m (t)lh (t) . (190)

Six, we impose the market-clearing conditions for both labor and capital markets, namely,

l (t) =

∫ m(t)

i=0
c (i, t) l (t) di+

∫ m(t)

i=0
lv (i, t) di+

·
m (t)lh (t) =

θ − 1

θ
e (t) l (t)+lv (t)m (t)+

·
m (t)lh (t) ,

(191)

a (t) l (t) =

∫ m(t)

i=0
V (α (i) , λ (t) , pvD (t)) di = m (t)V (1, λ (t) , pvD (t)) . (192)

Finally, we solve for the stationary equilibrium (or the balanced growth path), in which gQ,

gm, gλ, gD, gpvD , pd, r, e, s, d, Lp, Lv, Lm are constant. Given the symmetry in the equilibrium

behaviors of all varieties, dq (i, t) and dQ (t) share the same distribution. Specifically,

gQ (t) ≡
·

Q (t)

Q (t)
= γlv (t)bD (t)φ1+φ2 . (193)

Putting (182) in (193) tells that on the BGP,

λ (t) = γ−
1
b b−1g

1−b
b

Q y−1
1 D (t)−

φ1+φ2
b , (194)

and thus,

gλ = −φ1 + φ2

b
gD. (195)

Using the definitions of labor shares and substituting (176), (182) and (194) into them, we

know that, on the BGP,

Lp =
θ − 1

θ
e, Lv = eby1gQ, Lm = 1− Lp − Lv. (196)
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Putting (190) in (191) leads to

l (t) =

(
θ − 1

θ
+

1− ψ
ψ

κd2

)
el (t) ,

which implies that on the BGP, the total original data sold by anyone are constant, namely,

d =

√(
e−1 − θ − 1

θ

)
ψ

1− ψκ
−1. (197)

Putting (172) in the definition of d (t) =
∫m
i=0 d (i, t) di gives rise to

d (t) =
θ − 1

θ
s (t) e (t) . (198)

Combining (197) and (198) leads to

s (t) =
θ

θ − 1

d

e
= s. (199)

Plugging (172) and (199) in (187) gives us

D (t) = χse
θ − 1

θ
l (t)Q (t)

1
η−1 , (200)

which implies that on the BGP,

gD = n+
1

η − 1
gQ. (201)

Substituting (194) into (183) leads to

pD (t) =
φ1 + φ2

b
γ−

1
b g

1
b
QD (t)

−
(

1+
φ1+φ2
b

)
, (202)

which implies that on the BGP,

gP vD = −
(

1 +
φ1 + φ2

b

)
gD =

(
1 +

b

φ1 + φ2

)
gλ =

(
1 +

b

φ1 + φ2

)
(n− gm) . (203)

Combining (201) and (203) gives rise to

gm =

(
1 +

b

φ1 + φ2

)
n+

b

φ1 + φ2

1

η − 1
gQ ≡ z1n+ z2gQ. (204)
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Putting (183), (194), and α (i) = 1 in the conjectured value function gives rise to

V (1, λ (t) , pvD (t)) = γ−
1
b b−1g

1−b
b

Q D (t)−
φ1+φ2
b +

1− b− (φ1 + φ2)

b
(
ρ+ ge − x2gλ − x1gpvD

)γ− 1
b g

1
b
QD (t)−

φ1+φ2
b .

(205)

Combining (186) in (205) and using the knife-edge condition give us

γ−
1
b b−1g

1−b
b

Q +
1− b− (φ1 + φ2)

b
(
ρ+ ge − x2gλ − x1gpvD

)γ− 1
b g

1
b
Q =

µ
1

1−ψ

1− ψ −
δ (s)

θ
gm
−1γ−

1
b b−1y−1

1 g
1−b
b

Q . (206)

Using (184) and (185), we know that

g
1
b
Q = γ

1
bLvl (t)m (t)−1D (t)

φ1+φ2
b , gm = Lml (t)m (t)−1 µ

− 1
1−ψD (t)

ψ
1−ψ , (207)

which together imply that

Lv =
1− θ−1

θ e

1 + g
− 1
b

Q γ
1
bµ

1
1−ψ (z1n+ z2gQ)

. (208)

Combining (196) and (208) leads to

eby1gQ =
1− θ−1

θ e

1 + g
− 1
b

Q γ
1
bµ

1
1−ψ (z1n+ z2gQ)

. (209)

Putting (203), (204), (197), (199) and (209) in (206) and (209) yields us the equations

determining gQ and e:

(
1

bgQ
+

1− b− (φ1 + φ2)

b [ρ+ (z1 − 1)n+ z2gQ]

)
γ−

1
b g

1
b
Q =

µ
1

1−ψ

(1− ψ)
−δ0

2

(
θe−1

θ − 1

)2
ψκ−1

1− ψ

µ 1
1−ψ +

γ−
1
b g

1
b
Q

z1n+ z2gQ

 ,

(210)

bgQe
1− δ0

2

(
θe−1

θ−1

)2 (
e−1 − θ−1

θ

) ψκ−1
1−ψ

θ [ρ+ (z1 − 1)n+ (z2 + 1) gQ]
=

(
1− θ−1

θ e
)

1 + γ
1
b g
− 1
b

Q µ
1

1−ψ (z1n+ z2gQ)
. (211)

By substition, we obtain the steady-state expressions for the remaining variables, as listed

in Proposition 3.

Similar to the proof of Proposition 2, we can demonstrate that pvD (t) and phD (t) share the

same growth rates, i.e., gpvD = gpvD = gpD . This concludes the proof of Proposition 3. �
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7.4 Appendix 8.4: Modelling strategies of growth theories with data

The growth theories involving data in the literature employ different modelling strategies. We

summarize these strategies as follows:

Table 7: Modelling strategies for growth theories involving data

Literature Data modelling strategy

Farboodi & Veldkamp (2019)

(Data as prediction)

ait = E (θt|Iit) , Iit =
{
{saiτ}

t−1
τ=0 , {{siτm}

niτ
m=1}

t−1
τ=1

}
sait−1 = θt−1 + εait−1, sit−1m = θt + εit−1m

Jones&Tonetti (2020)

(Data as production)
Yit = Dη

itLit, Yt =

(∫ Nt
i=0 Y

σ−1
σ

it di

) σ
σ−1

Cong et al (2021)

(Data as variety innovation)

·
N (t) = ηN (t)ζ (ϕ (t)L (t))ξ LR (t)1−ξ

Y (t) = LE (t)β
∫ N(t)
υ=0 x (υ, t)1−β di

Cong et al (2022)

(Data as variety innovation and production)

·
N (t) = εN (t)LR (t)1−ξ LR (t)ξ

Y (υ, t) = LE (υ, t)D (υ, t)η

Y (t) =
(∫ N(t)

υ=0 Y (υ, t)
γ−1
γ dυ

) γ
γ−1

Our Model

(Data as innovation (quality and variety)

dq (i, t) =

 γQ (t)D (t)φ2 , lv (i, t)bD (t)φ1 dt

0, 1− lv (i, t)bD (t)φ1 dt

gQ (t) = γlv (i, t)bD (t)φ1+φ2 ,
·

m (t) = lm (t)µ
− 1
1−ψD (t)

ψ
1−ψ

7.5 Appendix 8.5: Growth effects of subsidies and taxes

In this appendix, we analyze the growth effects of subsidies and taxes when firms own data.

Specifically, we consider the impact of proportional subsidies, (svl , s
v
d), on quality-enhancing

expenditures, and
(
shl , s

h
d

)
on variety-expanding inputs. Suppose the government levies a

lump-sum tax on consumers to finance its transfers. Hence, the government’s balanced budget

constraint is

T (t) l (t) =

∫ m(t)

i=0
[svl lv (i, t) + svdp

v
D (t) dv (i, t)] di+

·
m (t)

[
shl lh (t) + shdp

h
D (t) dh (t)

]
, (212)

where T (t) is the per capita lump-sum tax. Introducing the government into this model al-

ters the representative household’s flow budget constraint but leaves its demand function for

good i and the Euler equation unchanged. In the objective function for variety i, the quality-

enhancing cost lv (i, t) + pvD (t) dv (i, t) is replaced with the subsidized cost (1− svl ) lv (i, t) +
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(1− svd) pvD (t) dv (i, t). Similarly, in the cost function of variety-expanding innovators, lh (t) +

dh (t) phD (t) is replaced with
(
1− shl

)
lh (t) +

(
1− shd

)
dh (t) phD (t). Following the same analysis

as before, the growth rate of the average quality level in the balanced growth path is implicitly

defined by

[
1− svl
bgQ

+
(1− svl ) (1− b− (φ1 + φ2))

b [ρ+ (z1 − 1)n+ z2gQ]

]
γ−

1
b g

1
b
Q =

(
1− shl

)
µ

1
1−ψ

1− ψ − (η − 1)ψ

2η (1− ψ)

 γ−
1
b g

1
b
Q

(z1n+ z2gQ)
+ µ

1
1−ψ

 .

(213)

The following result is obvious on inspection of (213):

Proposition A1 In the balanced growth equilibrium, when firms own data, the growth rate of

average quality depends not on the subsidies for data inputs in both innovation activities(
svd, s

h
d

)
, but on the subsidies for labor inputs in these activities

(
svl , s

h
l

)
.

Proof The proof is straightforward and available upon request. �

Proposition A1 establishes that subsidies for data inputs in both innovation activities have

no long-run effects on quality growth. This result reflects a knife-edge condition, highlighting a

homotheticity property of data’s influence on the macroeconomy. Unlike the existing literature,

equation (213) shows that both equal and unequal proportionate subsidies for labor inputs in

the two innovation activities have persistent effects on growth. Jones (1995) and Young (1998)

demonstrate that neither subsidies nor taxes/tariffs affects long-run growth. Dinopoulos and

Thompson (1998) argue that only unequal subsidies have long-run effects on quality growth.

In our model with big data, data sales induce creative destructions, from which new varieties

benefit, introducing a new term in the equation determining gQ (i.e., the second term in equation

(213)). Howitt (1997) also finds subsidies (whether equal or not) have long-run effects in settings

with constant returns to labor in quality-improving R&D, whereas in our model, we assume

diminishing returns.

To further examine how subsidies for labor inputs in both innnovation activities affect long-

run quality growth, we present Figure 11. The figure shows that quality growth increases with

subsidies for labor in quality-enhancing innovations, but decreases with subsidies for labor in

variety-expanding innovations. Intuitively, higher subsidies for labor in quality-enhancing inno-

vations attract more labor and data towards these activities, thereby boosting quality growth.

In constrast, increasing subsidies for labor in variety-expanding innovations diverts labor away

from quality-enhancing innovations, thereby dampening quality growth.
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[Insert Figure 11 here.]

We now examine the optimal intervention necessary for the equilibirum growth rate to

reach the optimal growth rate. By combining equation (213) with the equation determining the

optimal growth rate, we derive the following result:

Proposition A2 The optimal intervention along the balanced growth path satisfies the following

formula:

ν1 (1− svl ) + ν2

(
1− shl

)
= 1, (214)

where

ν1 ≡ − [ρ+ (z1 − 1)n+ (z2 + 1) gQ − bz1gQ]

bgQ [ρ+ (z1 − 1)n+ z2gQ]
v0 < 0,

ν2 ≡

[
(ρ− n) b−1g−1

Q − (z2 + 1)
]

bgQ [(ρ− n) + (1 + z2) (z1n+ z2gQ)]
v0 > 0,

ν0 ≡ 2η

η − 1

1− ψ
ψ

[ρ− n+ (1 + z2) (z1n+ z2gQ)] (z1n+ z2gQ)

(ρ− n)
[
b−1g−1

Q (z1n+ z2gQ) + 1
] .

Proof The proof is straightforward and available upon request. �
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Figure 1: Growth rates under three different allocations. It is shown that the optimal growth
rate (the dotted-dashed red line) is larger than the equilibrium growth rate when firms own
data (the dashed blue line) and the equilibrium growth rate when consumers own data (the
solid green line).
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Figure 2: Under benchmark parameter values, if the weight for privacy exceeds its critical value
(i.e., κ > κ∗) or the frequency of creative destructon is smaller than its critical value (i.e.,
δ0 < δ∗0), then quality growth under consumers property rights is larger than that under firm
property rights (i.e., gcQ > gfQ).
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Figure 3: Under benchmark parameter values, if the weight for privacy is smaller than its critical
value (i.e., κ < κ∗), then quality growth under consumer property rights is less than that under
firms property rights (i.e., gcQ < gfQ).
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Figure 4: Under benchmark parameter values, if the weight for privacy equals its critical value
(i.e., κ = κ∗), then quality growth under the two property right regimes is close to each other
(i.e., gcQ ≈ g

f
Q).
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Figure 5: Figure 5. Under benchmark parameter values, if the frequency of creative destructon
is smaller than its critical value (i.e., δ0 > δ∗0), then quality growth under consumer property
rights is less than that under firm property rights (i.e., gcQ < gfQ).
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Figure 6: Under benchmark parameter values, if the frequency of creative destructon equals its
critical value (i.e., δ0 = δ∗0), then quality growth under the two property right regimes is close
to each other (i.e., gcQ ≈ g

f
Q).
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Figure 7: Growth and data property rights. The Consumers Own Data allocation produces
higher growth in relatively large parameter ranges, where the difference gcQ − g

f
Q is positive. In

constrast, the Firms Own Data allocation leads to higher growth in relatively small parameter
ranges, where the difference gcQ − g

f
Q is negative.
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Figure 8: Welfare and data property rights. The Consumers Own Data allocation is superior
in relatively large parameter ranges, whereas the Firms Own Data allocation is superior in
relatively small parameter ranges.
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Figure 9: Endogenous growth with population growth. The average quality growth rates under
the two data property rights are increasing and a nonlinear funtion of the population growth
rate.
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Figure 10: Figure 10: Interactions between quality growth and variety growth. Both quality
growth and variety growth increase in population growth. And the direct/linear effect on variety
growth of population growth dominates the indirect/nonliear effect.
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Figure 11: Fiscal policy and growth. The figure shows that quality growth increases with
subsidies for labor in quality-enhancing innovations, but decreases with subsidies for labor in
variety-expanding innovations.
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