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Abstract

Extending the results in Sargan (1976) and Tanaka (1984), we derive the asymptotic
expansions, of the Edgeworth and Nagar type, of the MM and QM L estimators
of the 1°* order autocorrelation and the M A parameter for the M A(1) model. It
turns out that the asymptotic properties of the estimators depend on whether the
mean of the process is known or estimated. A comparison of the Nagar expansions,
either in terms of bias or MSFE, reveals that there is not uniform superiority of
neither of the estimators, when the mean of the process is estimated. This is also
confirmed by simulations. In the zero-mean case, and on theoretical grounds, the
QM LFEs are superior to the M M ones in both bias and M SFE terms. The results
presented here are important for deciding on the estimation method we choose, as
well as for bias reduction and increasing the efficiency of the estimators.
Keywords: Edgeworth expansion, moving average process, method of mo-
ments, Quasi Maximum Likelihood, autocorrelation, asymptotic properties.

JEL: C10, C22



Edgeworth and Moment Expansions

1 Introduction

Techniques for approximating probability distributions like the Edgeworth expan-
sion have a long history in econometrics.! However, there are relatively few papers
concerning the limiting distribution of estimators of the Moving Average (M A)
parameters and their properties. Tanaka (1984) develops a technique for the first
order Edgeworth expansion of the normal M LFE's for autoregressive moving-average
(ARM A) models and presents the first order expansion of the M LE for the M A(1)
model with and without mean.? Developing a Nagar type expansion, Bao and Ullah
(2007) present the second order bias and Mean Square Error (M SE) of the Quasi
MLE (QMLE) for the M A(1) but without mean and they do not develop a valid
Edgeworth expansion.

In this paper we develop the second order Edgeworth expansions of two estima-
tors of 0, the M A parameter, and p, the 1% order autocorrelation, of the following

M A(1) model with mean, M A(1|u) say,
Yr = pb+ up + Oug_q, t=..,-1,0,1,..., |0|<1, wu U (0,0%),
where 6 is the true parameter value. The asymptotic distribution of the estimators
of § and p depends on whether the mean is estimated, or it is known and not
estimated. In the latter case, we set u = 0 without loss of generality, and we are
using M A(1) to denote the model.
The first estimator is the popular Quasi Maximum Likelihood Estimator (QM LE).

Its expansion is based on techniques developed in Mitrofanova (1967) (see also Lin-

ton 1997 and Corradi and Iglesias 2008) and applied in Tanaka (1984).> We denote

'Nagar (1959), Sargan (1974), Phillips (1977), Tanaka (1984), Sargan and Satchell (1986),
Kakizawa (1999) and Ogasawara (2006) to quote only a few papers. Rothenberg (1986) gives a re-
view on the asymptotic techniques employed in econometrics. For a book treatment of Edgeworth
expansions see e.g. Hall (1992), Barndorff-Nielsen and Cox (1989), and Taniguchi and Kakizawa
(2000).

2From now on we will refer to the up to n

1 .
2 order expansion as first order one and for the up

to n~! order as second order expansion, where n is the sample size.
3For an alternative methodology based on a Whittle type estimator see Taniguchi (1987),
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the QM LEs as 5, for the M A(1|x) model, and 0o when we consider the MA(1)
one. Employing 0 and évo we can evaluate the QM LEs of p and p,, denoted by

n= 1f52 and p, = %’ respectively (for the expansion of p,, only, see Ali 1984).
0

On the other hand, one could equate the sample 1% order autocorrelation, say

P, or p, when there is no mean, with the theoretical one and solve for the

0
? 14620
unknown parameter. We call these the M M estimators of 6 and 6, and denote them
by 0 and é;), respectively, although strictly speaking they are z — type estimators.
Notice that p is the Indirect estimator of p, when the true model is an AR(1) and
the auxiliary is an M A(1), where the parameter 6 is estimated by M M, or by M L
in the Constraint Indirect estimation setup (see Calzolari, Fiorentini and Sentana
2004). On the other hand, 6 is an Indirect estimator of § when the true model is an
MA(1) and the auxiliary is an AR(1) one (see Gourieroux, Monfort and Renault
1993).

Utilizing an extension of the result in Sargan (1976), presented in Section 2,
we develop the second order Edgeworth expansions of p, pg, 5, and HAO in Section
3, whereas Section 4 presents the expansions of the QM LEs. Employing these
expansions, we derive second order Nagar type expansions of all estimators. Notice
that this is the first time that second order Edgeworth and moment expansions of
5, HAU, 5, and p appear in the literature. In section 5, the expansions are employed
to compare all estimators in terms of bias and M SFE. These comparisons are com-

plemented by a simulation exercise. Section 6 concludes. All proofs, rather lengthy

and tedious, are collected in Appendices at the end.

2 Edgeworth Expansion

In general, let » be an estimator of ¢ and

T=Vn(@—¢)=f(Ag, A1, Ay, ..., A)

Lieberman et al (2003), and Andrews and Lieberman (2005).
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where f is a function of the statistics A;, i« = 0,1, ..., [, with the following assump-

tions:

Assumption 1 All the derivatives of f of order 4 and less are continuous, bounded
in a neighborhood of (0, ..., 0), such that f* = ;—i # 0 for some i = 0,1, ..., 1,
and that there are functions A% and h¥* independent of n such that f¥ =
%6{4]_ = \/iﬁhij, and fik = __OF __ _ Lhii% where all derivatives are

9A;0A,0Ay,
evaluated at (0, ...,0).

The Als are functions of the data standardized in such a way so that their

cumulants ¢; = cum (4;), ¢;; = cum (A;, A;), etc. obey the following assumption:

Assumption 2

c = n_%cgl) + n_lcl(-z) +o0 (n_l) y  Cij = cg) + n_%cg) + n_lcg’) + o0 (n_l) ,
Cijk = n_%cgjl.,)g + n_lc;}c +o (n_l) y  Cijkl = n_lcl(;,)d +o0 (n_l) , and
Cijkim = O <n’%) )
where CET), cg), cl(;,l and CE;,ZZ are independent of n, for r = 1,2, 3.

Assumption 3 (Cramer’s condition) If the characteristic function of A = (Ag, A1, ..., 4))/
is U(z) = [exp (iz/A) dF (A), then sz||>Kn°‘ U (2)]dz = O <n5’%) for all
K>0,0<ac< % and some ¢ < 0, and where F' is the distribution function
of A.

These are standard assumptions in the relevant literature (see Chambers 1967,
Sargan 1976, and Bhattacharya and Ghosh 1978). Under these assumptions we

have the following Theorem.

Theorem 1 Under Assumptions 1, 2 and 3, the second order Edgeworth expansion

of p is given by

™) (™) Yo+ Uy () + 4y () o). (1)

Pp<m)=2(— 3 4 5
(w GO s (B) H va (D) + s (T)
where m is any real number, ¢ (.) and ® (.) are the standard normal density and

distribution functions, and vy, ..., Vs, and w are given in Appendiz A.

3
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51) = 01(2) = cg) = CE?) = cg,)g = (. In this respect,

Sargan (1976) assumes that ¢
Theorem 1 is a necessary generalization needed in the expansions of all estimators
considered in this paper. Next, we have the following Lemma, which is very useful

for the evaluation of the cumulants of 3.

Lemma 1 Under Assumptions 1, 2 and 3, the second order approximate cumulants
of ¥ are

> ap) +2a e + 247

kY = + ’
2\/5 2n

@ 2 w® agl) +2 (af’)l) + a(71) +w® 4 2a§12))

kzlp = W + + 7
\/ﬁ 2n
(1) (1) (1) (1) 9 ¢ (912

/{;? _ agl) + 3@%1) N a§2) i 6aé2) k‘f _ ay’ +4ag’ +12 (as + aw) +9 (w( ))

VLD n n

where the so-called Edgeworth coefficients, ay), fori=1,2andj =1,..,12, w®,

fori =23, and w are given in the proof of Theorem 1 in Appendix A. Furthermore,

2
1 1
gl) aé(l )>

4n

R (2@
E (%) =k +

The proof of Lemma 1 is also given in Appendix A. We can now proceed in
finding the expansions of the M M estimators of p and 6. The expansions of the

MM and QM L estimators of u are not presented for space considerations.

3 The Expansions of the MM Estimators

The following analysis is based on Kakizawa (1999). Given observations y =

(Yo, ..., yn)', the MM estimators of p and u are given by:

n _ l n _ l n n
D ie1 (C‘/t & D ie1 yt)l(ytnl n Z;:l yt,1) and 7= 1 Z Vo1,
Zt:l (ytfl B Zt:l ytfl) n t=1

ﬁ:
Hence
V(- 1) = (140 At (1409 As = (10 +0°) (Ao
nr (140%)" A+ 220 (14 6°) Ay — 2 (14 0%) (A0)* + (1+6°)° 02

(2)

1
vn
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where
1 < Zn_ Up—1Ut—2

Ay = — _q — A === """""=

0 n - (yt 1 /L), 1 \/ﬁ )

(1 — 1) (Yo — p) — 002 + 037y wtty—2 + Unn_1 — urtig

4o L P R) (i o) o (15

= )

o (o — 1) = (yn — W] (1 +0) D20y ue—1 4 Oug — Oy + (yo — )]
n 2 2 62(’LL(Z)—O'Q)—GQ<U3L71—0’2)+[(y0—u)2—(1+92)02]

4 — o (Ui — 0%) + )

NLD
It is now obvious that \/n (p — p) is a function of A;7si =0, ..., 3, f (Ag, A1, Ag, A3)
say, with f(0,0,0,0) = 0. From Appendix B1l, where the cumulants of the A;/s are
presented, it is easily seen that Assumption 2 is satisfied and if F (u{°) is finite we
can apply Theorem 1. Notice that most of the second order cumulants of the A;/s
include terms of O (n™'). Hence, the generalization of Sargan (1976) presented in

section 2 is a necessary one. Let us now turn our attention to p.

3.1 The Expansion of the MM 1% Order Autocorrelation

Lemma 2 Under the Assumptions that u,s are identically and independently dis-
tributed, F (u{®) < oo, (ug,u?) satisfy the Cramer’s condition and 6 € (—1,1), the
second order asymptotic expansion of P (\/n(p — p) < m) is given by:
m m m m\ 2 my\3 m\®
G(m) = <_> —¢ (_) Yo+ 11— + 1y <_> + U3 <_> + 5 (_) , (3)
w w w w w w
where the polynomial coefficients ©;, i = 0,...,5 are as in Theorem 1 and the Edge-

worth coefficients are given in Appendix B2.

To evaluate the approximate bias, M.SFE and cumulants, needed in the sequel,
we employ Lemma 1. Letting x5 and x4 to denote the 3"¢ and 4** order cumulants
of ug, respectively, the cumulants of \/n (p — p) are:
0> +0+1

1
k= ——— (0*+20° — 20> + 20+ 1
! ( ) (6% +1)°

vn
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~ 1/~ - 3
B === (G, +&,) +o(n™)

o 024400165105 41 - ) ) 5 o (—40-0%+60°—120°+607—0°—40°+0'0+1) (0+1)
where w3 = —(1+92)4 , 1.e. the asymptotic variance, &5 ; = 2 @)
L L) N T R 2N
and {3, =4 (1+62)° ry (0>+1)" o)
SR P SN A it SR B Ut N L IS
K = 00" +1) ———+ N k340 (n7'),
NG GERRY (1+6%)

1.
= (i + 8+ 6hs).

—1+1062(1+0%)—300* (146'2) +1060° (1+0% ) —1290° (1+6* ) +216010—¢2°

where 5271 =6

(02+1)10 s
- 0(1—0%)%(1462)—100*(146%)+46°—2(1—62) (1—010
522 — 120 (64 + 1) ( ) ( ) ((92+1))9 ( )( )I{§7

> 4 6 8 10 12 16 .
and ¢}, = 5044 H%(;g‘wl)J 50 10 7+1 2 - Furthermore, the second order approxi-
) +

mate MSE (AMSE) is

2 (02 +641)°

~ 2_g4p l 4 3 9p2
E[Vn(p-p)] _k2+n(0 +26° — 20% + 260 + 1) T’

(4)

It is worth noticing first, that the sign of the asymmetry of the distribution of the
errors (k3) does not affect the AMSE, i.e. positively and negatively skewed error
distributions of the same magnitude have the same effect on the AMSFE. Second,
the AMSE is a decreasing function of k4, for any value of # in the admissible
region. It seems that higher probability of extreme values of the errors increases
the accuracy of the estimator. This is not true for the asymmetry parameter x3. For
positive (negative) values of 6, the AMSE of p is a decreasing (increasing) function
of k3. Further, for § = 0 and under elliptical error distributions, the presented
moments are known in the literature (see e.g. Kan and Wang 2010) Let us now

proceed to the expansion of the M M 1% order autocorrelation when the mean is 0.

3.1.1 The Zero-mean Expansion

In case that p is zero, or known and subtracted from the data, we have that

o = Z?:l YtYe—1
0 n .
Zt:1 thfl

6

Y
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Hence

(1+6%) Ay + (1+6%) A

- /\_ _ Y
v (po = p) (14+6%)7 LAy +20 (14 6%) A, + (14 6%)7 02

where the A;/s are now given by

> o U1 U2 1 (190 — 00%) + 0 377y wtty—o + untin—1 — urtg
A= SEE s n e, ) () (- (1400)0) |
(1+62)
Ay = - ” (ufy —0%) + —0" (ui = 0%) +6° (uf — 0®) + (4§ — (1 +6°) °)
\/ﬁ — t—1 (1 +92)

Notice that A; and Az are the same as in the non-zero mean case. However,
the term £ [(yo — ) — (Y — )] [(1 +0) Y7y we—1 + Oug — Oup—y + (yo — )] is not
included in A,. Furthermore, /n (p, — p) has the same functional form with respect
to A;, Ay and Ajz. Consequently, the derivatives are the same, but now all sums
determining the Edgeworth coefficients run from 7 = 1 up to 3.

Hence, the asymptotic variance of v/n (p, — p) is the same as the asymptotic
variance of /n (p — p), i.e. W%E =Wl = W. Further, all Edgeworth
coefficients are the same as in the non-zero mean case (see Appendix B2) apart
from agl), aél), a(71), and aél), which are also presented in Appendix B2.

We can now evaluate the bias, the M SE and the cumulants of \/n (g, — p). The

1%t order cumulant is

~ 5 1 (0 +1)° 2 0 +1 _
EO=k) — —(0-60>-1) -ty = —~f——+o(n ). (5)
1 1 \/ﬁ( ) (92+1)2 \/ﬁ (02+1>3 ( )
Comparing the absolute values of the two approximate biases (see Figure 1) it is
clear that for § € (—1,—0.2) the absolute bias of p , multiplied by \/n, is less than
the one of p,. The opposite is true for § € (—0.2,1).

The AMSE is

~ 2 ~ 2
EVn(py—p)] = E[Vn(p—p)
1 1)?
+= (1+89—76?2+66)3+894+695—7¢96+897+98)M
n

(6*+1)"
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151
10

05T

1 " 1 " ]

—t + Tt T+

.10 08 -06 -04 -02 00 02 04 06 % 1.0
eta

Figure 1: |E[n (p — p)]| (thick line) and |E [n (py — po)]|-

Obviously, the sign of the difference between the zero and the non-zero mean
case AMSEs depends on the sign of the 8" degree polynomial. As now the limit
of the polynomial is —32, for § — —1, and 24, for § — 1, it follows that that there
are intervals of 6, within (—1, 1), such that the AMSE of p, is lower than the one
of p and vice versa, for any number of observations, n. However, notice that the
asymmetry and kurtosis parameters, k3 and k4, have the same effect on the AMSFE,
for any values of 6 in the admissible region. Of course, the two AMSFEs are equal
to the common asymptotic variance w%, as n — 00.

Applying again Lemma 1, we get that the second order cumulant of \/n (py — p)

is given by:

kga:kg_ﬁ[(l—e) (1-6°) +§93} 0+ 1) o).
" (0° +1)

As now the Edgeworth coefficients involved in the evaluation of the 3"¢ and 4"
order cumulants are the same in the non-zero and the zero mean case (see Lemma
1), ie. l<;§5 = kg and k:f;’a = k:f, we can conclude that the non-normality of the

estimators of p is not affected by the estimation or not of the mean p, up to o (n™1).



Edgeworth and Moment Expansions

3.2 The Expansion of the MM MA Coefficient

For [p| < 0.5 the solution for 6 is:

1—+/1—4p° p 5_9_1—\/1—4ﬁ2_1—\/1—4p2_

6= — —
2p an 2p 2p

fp). (6)

Hence, given the cumulants of \/n (p — p) presented in Section 3.1, we can apply
Theorem 1. The Edgeworth coefficients of \/n <§ — 9) are given in Appendix B4.

Applying Lemma 1, we can prove the following Proposition:

Proposition 1 Under the Assumptions of Lemma 2 we have that the 1°¢ order

cumulant and the MSE of \/n (@ — 9) are

. 20° + 60° — 20" + 30° + 20° — 6° — ¢° — 1
1 (1-6%)°

+o(nt)

B

and

2 146 +40"+6°+ 6°
(1-6%)°

'~ ]_ —~ —~
E[ﬁ(&—eﬂ +E(§§+§Z>+o(n—1),
1 — 80 — 360% — 560° — 930* — 1500° + 20% — 19207 + 7476% — 726° + 30196'°
+1920M + 476502 + 41802 + 542160 + 3520° + 25390 + 2407 + 4600*®
9 _
where &3 = _916919 — 933620 — 21002 — 44262 — 960%° — 1410%* — 86% + 216% + 166%7 -

+290% + 66% + 36
(1-64)°

) _ _Ep2 3_aph 5_0p6_1 07108 9091 pl0 2 4__p6_ p8
and fi — _9Q=L+20-50°+50%-60"+20°—20 2+9 +68-269+6 K2 — 1+0%+40"~0°+0
(1-6%)"(1-0) (1-6%)

Ry4.

Notice first, that the approximate bias of 9 is not affected by the non-normality
of the errors, and second that the effect of x4 on the AMSE of 0 is the same as
the effect on the AMSE of p, i.e. the AMSE is a decreasing function of x4 for
all @ € (—1,1). However, for positive (negative) values of § the AMSE of 0 is an
increasing (decreasing) function of k3. This is exactly opposite from the effect that
k2 has on the AMSE of p. Let us now proceed to the expansion of the MM M A

coeflicient when the mean is 0.
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-06 -05 -04 -03 -02 -01 00 01 02 03 04 ﬁ'?et%6

Figure 2: ‘E [n </9\ - 9)] ‘ (thick line) and ‘E [n (9Ao - 9)] ’

3.2.1 The Zero-Mean Expansion

For the zero mean case, all Edgeworth coefficients are the same as in the non-zero

(1)

mean one, apart from w®, a}; and a%), which are given in Appendix A4. Conse-

quently, applying Lemma, 1 and keeping terms up to order O (n~!), the approximate
bias of /n (éz) — 9) is
i :k§+i(1+9) 1-0+6* 1 1+592+294+96—98'
vn 1-0 vn (1-6%)°
Plotting, again, the absolute values of the two approximate biases (multiplied
by /n), i.e. ‘E (n </9\ — 9))‘ and ‘E (n <9A0 — 9)) ‘, we observe that for values of
0 higher than about 0.3 the approximate bias of 9 is less than the one of HAO (see

(7)

Figure 2).
In terms of AMSE we have that, keeping the relevant terms,

V(o) =[50+

86 4 76 + 560° + 650" 4+ 1500° + 2046° + 19207 4 2976° + 726°
+5160' — 1920™ — 48102 — 418" — 6566'* — 3520 — 1999*°
—240 + 2850 + 2160 + 3276%° + 2100* + 1326%% + 966%*
—0%* + 80%° — 2306 — 166*" — 70 — 6% — 3
(1-0%)°

cating that, first, the non-normality of the errors affects the AMSFE of  and GAO in

where \ =

, indi-

10
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the same way and second, the asymptotic variance of 9 and é; is the same. However,
the sign of A depends on the sign of the numerator, a polynomial of 29" degree. As
the limit of this polynomial changes sign as § — £0.6, we can conclude that there
are values of 6, in its admissible interval, such that the AMSE of @ is less than the
one of éz). Let us now turn our attention to the expansions of the QM L estimators

of 8, u and p.

4 The Expansions of the QML Estimators

In this section we extend the analysis in Tanaka (1984) by dropping normality
and including terms of second order in the approximation of the QM LFE of the

M A (1| ) parameters, 6 and pu, say f and fi.* These are the solutions to the following

equations:
— 7 0:>—Zut<0 “+ut_1) =0 (8)
06 02 — 060 s
and
ol () 1 < Ouy
— = 0= — — =0
ol o? tzl e ou|
p=p
where
2
Uy
nlog(2mo? —
(0, ) = — g(2 ) - t_2102 and U =Yy — po— Oug_y.

In Appendix C1 we express /n (5 — 9) and \/n (t — p) as functions of the first,
second and third order derivatives of ¢ (6, ) standardized appropriately and evalu-
ated at the true parameter values. We also present their expectations. In Appendix
C2 we evaluate the needed cumulants of these derivatives, so that Theorem 1 can

be applied. Let us now turn our attention to the expansion of 0.

*For various approximations of the M LE see Davidson (1981).

11
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4.1 The Expansion of the QML MA Coefficient Estimator

Lemma 3 Under the Assumptions of Lemma 2, the second order Edgeworth ez-

pansion of P <\/ﬁ (5 — «9) < m) s given by:

Pm =0 (5) =0 () (w0 e+ () 0 (5) + 0 (3)).

where the coefficients v;, i = 0,...,5 are as in Theorem 1 and the Edgeworth coeffi-

cients are given in Appendix C3.

Applying Lemma 1 we get the first four approximate cumulants, up to o (n™1),
of \/n (5 — 9) as
5 20—1
K = :
vn

1 1 5
ky = Wi+~ (0+6)(2-0)+ -,

2
2 5 2_p_ 0 1—92 2
where w% =1-6° and & = 2—32_&&—(1%3) K3 — (1 -0 ) Kq.

-1 (1-6?)° ;1 1

where 52 = 129?:21’93 (1110:3)3/13 + <11_+9:2)3/@21.
It is worth noticing that the 3" approximate cumulant of 0 is positive even if the
errors u; s are negatively skewed, whereas is symmetrically distributed for symmetric
error distribution. Furthermore, k4§ is an increasing function of x2. Consequently,
for either platykurtic or leptokurtic error distribution, the distribution of 6 becomes
platykurtic.
The second order approximate AMSE of 0 is given by
0> —0—16(1—6%)°

—80 +360% +13+2
0> —0+1 1+6°

E[va(6-6)] =wier K2 (1— %) ry

(9)

Notice that the AMSE is a decreasing function of k4. This property of 0 is shared

with p and /9\, as well (see sections 3.1 and 3.3). Let us now proceed to the expansion

of the QML M A coefficient when the mean is 0.

12
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4.1.1 The Zero-Mean Expansion

Now for the case that 1 = 0, or known and subtracted from the data, we can repeat
the procedure of section 4.1, appropriately modified (see Appendix C3). Notice that
the derivatives with respect to g1, w11 and ¢111, and the cumulants of these variables
remain the same. Further, as in the expansion of p,, all Edgeworth coefficients are
the same as in the non-zero mean case apart from af), aél), a(71), and aél), which
are presented in Appendix C3.

In terms of cumulants, from Lemma 1, we have that the first order approximate

cumulant, up to o (n '), of \/n (670 — 9) is

5 1
K = Noa (10)

which is the same result as in Tanaka (1984), where the 15 order expansion is
presented, and Bao and Ullah (2007). Comparing with the non-zero mean case, it
is obvious that estimating the mean increases the absolute approximate bias of the
QM L estimator of 6 for § € (—1,0.3), whereas for § € (0.34,1) the approximate
bias of § is less than that of (9N0.

Further, the up to o (n~!) 2" order cumulant of \/n (50 - 9) is

4

k‘go:kg_ﬁ(l_e)a

whereas the 3" and 4" order approximate cumulants are the same as the ones of
NLD (5 — 9). This can be explained by the fact that these approximate cumulants

do not depend on any of the Edgeworth coefficients that change in the zero mean

case.

Finally, the second order AMSE of \/n <9N0 - 9) is

[y (i) - BV G- o) - 22

Comparing the above AMSE with the AMSFE of 6 we can conclude that the AMSE

n

of the estimator of § when we estimate the mean is higher than the one when the

mean is zero and not estimated, for all # € (—1,1). Let us now derive the expansion

of the p QM LE.

13
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4.2 The Expansion of the 1° order Autocorrelation QMLE

Let us define the QM LE of p as

- 0
p= 2
1+46
In Appendix C4 we present the Edgeworth coefficients of the second order ap-

proximation of the distribution of \/n (p — p). To find the approximate bias and
AMSE of \/n(p — p), up to o (n~!), we can apply Lemma 1 and get
(1—0) (1+260+36%) (1-6°)

kP = —
' Vn (1+6%)°
and
e (= 1L
B[Va (G- p) =EH—92;4+5(5§+55), (1)
5 (10046202403 6504 ~146°+240°+7) (1-62) 5 06 greta (1200)" 5
where &} = (1462)° and £, = 46 (6+1)(-6+62+1)" (1+92)5K3

(-07)
(=)

4.2.1 The Zero-Mean Case

k4. We next concentrate on the expansion in the zero-mean case.

For the zero mean case, all Edgeworth coefficients are the same as in the non-zero
mean one, apart from w®, agll) and a%) (see Appendix C4). Consequently, applying
Lemma 1 and keeping terms up to order O (n!), we can find the approximate bias

of /7l (i — p) as
Ve (1)t

It is obvious that the absolute values of the approximate bias of p is less than the

one of p.

In terms of AMSE we have that, keeping relevant terms,

E[Vn(py—p)] = E[a@-p)]

(140 + 876> — 126° — 700* — 260° + 316° + 14) (1—)6
(14 6%)

This is different from the non-zero mean case. However, notice that the asym-

1
n

metry and kurtosis parameters, k3 and k4, have the same effect on the AMSFE,
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for any values of ¢ in the admissible region. In fact, the AMSE of p, is always
lower than the one of p for all # € (—1,1). Of course, for higher values of n the two
AMSUFESs collapse to the common asymptotic variance. Let us now proceed with

the comparisons between all estimators.

5 Comparing the Estimators

To compare all estimators in terms of bias and M SE we run a simulation exercise.
We draw a random sample of n € {50,200} observations from a non-central Student-
t distribution with non-centrality parameter n € {—1,1} and v € {11, 20} degrees of
freedom. Notice that for these values of  and v we have that k3 € {£0.400, £0.17}
and k4 € {1.250,0.42}. For each random sample, we generate the M A(1|u) process
y; for 0 € {-0.9,-0.8,......,0.9}, p = 5.0 and 0® = 1.0. We evaluate p and if
the estimate is in the (—0.5,0.5) interval we estimate all estimators, otherwise we
throw away the sample and draw another one. This will introduce some bias in the
estimation of the biases and the M SFE's of the estimators, for which the closer 6 is
at the boundary of the admissible space the fiercer it will be. Furthermore, this will
probably affect more the estimation of bias and M SFE of the M M estimator of 6,
as the maximization of the quasi likelihood is not restricted in any way. For each
retained sample we evaluate the MM (p, 9, and i), the QML (5, p and 1) and the
feasibly bias corrected estimators, i.e. when the estimated value of 6 is employed for
bias correction, employing the approximate bias formulae of the previous sections
(see Iglesias and Phillips 2008, as well). We set the number of replications to 20000.

Only the results for n € {50,200}, n = 1 and v € {11,20} are presented, as
first, the results with n = —1 and v € {11,20} are almost identical to the reported

ones, and second for space considerations.
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Figure 3: ‘E [n (5 — 0)} ’ (thick line) and ‘E [n (5 - 9)] ‘
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Figure 4: |E [n (p — p)]| (thick line) and |E [n (p — p)]|

5.1 Bias of the Estimators

On o (n~') approximations grounds, it is apparent that, when y is estimated, there
are areas of the admissible region of 6 that the MM estimators of either 6 or p
are less (approximately) biased than the QM LE's (see Figure 3 and Figure 4). For
example, for —.3 < 0 < 0, both  and p are less biased than f and p, respectively.
However, the opposite is true for 6§ > 0.

In terms of the simulation results, the same is more-or-less true for the estimated

values of the biases of § and (compare the 3" with the 6! column of Table 1,
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for non-central Student-t with v = 20, and the same ones in Table 2, for v = 11).
However, there are important differences between the two estimators. Regarding
the M M estimator, the approximate biases are far away from the estimated ones
for values of § near the ends of the admissible parameter region. In fact, for 6 lower
than —0.4 (for n = 50) and —0.5 (for n = 200), the approximate bias continuously
underestimates the estimated one. The opposite is true for € higher than 0.5 for
both samples. For § = —0.9 or # = 0.9, the under and over estimation is massive,
respectively. On the other hand, regarding the QM LFE, the estimated bias of 0 is
higher than the approximate one for # < 0.4, when n = 50, and for § < —0.4, when
n = 200. In terms of the bias corrected estimators, it is apparent that when the
approximate biases are close to the estimated ones, the corrected estimators are,
by all terms, unbiased. Furthermore, it seems that the decrease in the degrees of
freedom affects the estimated bias of 6 more than that of 6. This is an indication
that the assumption E (u”) is more important for the M M estimator of § than for
the QM LE.

For the estimators of p (see Tables 3 and 4), the estimated biases of the feasibly
corrected estimators of both estimators p and p are less, in absolute value, from
the equivalent ones of the estimated biases. Furthermore, the estimated biases of
the feasibly corrected p are less, in absolute values, than the ones of the feasibly
corrected p when 6 € [—0.3,0.0] for n = 50, and 6 € [—0.4,0.0] for n = 200, which
partly confirms Figure 4. It seems that near the ends of the admissible region of
0 the approximate bias of p is more accurate as compared with the one of p, i.e.
it is closer to the estimated bias. Finally, the decrease in the degrees of freedom
of the distribution of the errors affects the bias results, of both estimators, only
marginally.

However, for the zero-mean case notice that the QM LFEs of either § or p are
less (approximately) biased than the MM ones, for all § € (—1,1). To see this,
compare (7) with (10), and (5) with (12), respectively.

Hence, in terms of bias and when p is estimated, for negative values of 6, but
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Figure 5: MSE of /20 <5— 9) (thick) and V20 (5— 9), for k3 = 0.17 and k4 =
0.42.

close to 0, the approximations of  and p work better than those of  and p, whereas

for @ > 0 or 6 close to —1 the QM LE's approximations are better.

5.2 MSE of Estimators

In terms of second order AMSFEs, we plot the ones of the two estimators of 6 in
Figure 5 and the corresponding ones of the estimators of p in Figure 6. Notice that
in both graphs we set n = 20 and in both cases p is estimated. It is apparent that
there is not uniform superiority of neither the QM LE's nor the M M ones, over the
whole range of the admissible values of 6. In fact, it seems that for 6 € (—0.3,0.3),
and for the above sample size, the M SFE of the M M estimators are smaller than
the ones of the QM LFEs.

These findings can be explained by the following facts: i) the asymptotic variance
of 5, AV <5), is less than or equal to AV <§>, a well known result, and the same is
true for AV (p) and AV (p). In fact, only for 6 = 0 AV (5) = AV <§) and AV (p) =
AV (p), and we have strict inequality for all other values of 6. ii) For the 1 terms,

5 2
which do not include k3 or k4, and for § € (—0.5,0.6) the term of F [\/ﬁ <9 — 0)}

~ 2
is lower than the one of £ [\/ﬁ (0 — 0)} , for any sample size. The same is true
for the equivalent terms of the estimators of p for # € (—0.8,0.5). iii) For 6 €

. 2 - 2
(—1,0), £ [\/ﬁ (9 — 9)} is a decreasing function of k2, whereas F [\/ﬁ <6’ — 0)] ,
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Figure 6: MSE of /20 (p — p) (thick) and /20 (p — p), for k3 = 0.17 and x, = 0.42.

E[yn(—p)) and E[/n (5 — p)]” are increasing functions of x2. The opposite is
true for 6 € (0,1). iv) All MSEs are decreasing functions of k4, for 6 € (—1,1).
However, F [\/ﬁ @ — 9)} ’ and E [\/n (p — p)]° are decreasing at a higher rate.

In terms of the simulations, it is immediately obvious that the AMSFE's are close
to the estimated ones for the M M estimator of § (see Tables 5 and 6) in the middle
range of values of A, and are massively higher than the estimated ones at the two
ends of the admissible range. On the other hand, the estimated MSFEs of 6 are
almost always underestimated by the approximate ones over the whole interval of
. The underestimation is worse for values of § less than —0.6 and higher than 0.6.
For n = 50, the estimated M SE of 0 is less than the one of § for 0 € (—0.1,0.1),
partially confirming Figure 5. The estimated M S FEs of the bias corrected 0 are less
than the ones of 8 for all values of 0 apart for # = 0, and this is true for both sample
sizes. By decreasing the degrees of freedom of the error distribution, the estimated
MSEs are lower for § and higher for 0 (compare the 3" and 6 columns of Table
5 with the respective ones of Table 6). This is in agreement with the approximate
results for § but not for 6. Finally, apart from the central part of the admissible
range of 0, the M SFE of the corrected 6 is almost always less than the one of 0.

The estimated M SE's of p are close to the AMSFE ones (closer for n = 200 than
for n = 50) and they are more so for € (—0.6,0.6) (see Table 7 and Table 8). The
same is true for the MSFEs of p. Comparing the M SEs of p with those of p, for
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v = 20 and for both sample sizes, it is apparent that the estimated M SEs of p are
less than those of p, for § € (—0.1,0.1) partially confirming Figure 6. The same is
true for the M SFEs of the two estimators, for 11 degrees of freedom. The biased
corrected p has, more or less, a smaller M SE than the corrected p and for both
samples.

Hence, to conclude this section, we can say that in terms of M SFE and for small
sample size, the QM L method is more efficient for the estimation of 6 and p only

for the interval (—1.0, —0.6) U (0.0, 1.0).

6 Conclusions

This paper, by extending the results in Sargan (1976) and Tanaka (1984), derives
the asymptotic expansions of the MM and QM L estimators of the 1 order auto-
correlation and the M A parameter for the M A(1) model. First, the second order
Edgeworth and Nagar-type expansions of the M M estimators are derived in a more
general setup of Sargan (1976) and second, the first order expansions in Tanaka
(1984) are extended to include terms of second order for the QM L ones. It is worth
noticing that the second order approximate bias of all estimators is not affected by
the non-normality of the errors. A comparison of the expansions, either in terms of
approximate bias or AM SFE, reveals that there is not uniform superiority of neither
of the estimators of # and p, something which is also confirmed by the simulation
results. Furthermore, it seems that the approximations work well for the middle
rage of the admissible values of #, whereas when 6 takes values near the two ends,
—1 and +1, the approximation are very poor with the M M approximations being
affected more the QM LE ones. Finally, the approximate bias and AMSE of the
estimators depend on whether the mean of the process is known or estimated. In the
zero-mean case, and on approximate grounds, the QM LFEs of 6 and p are superior
the M M ones in both approximate bias and AMSE terms.

The results can be utilized to provide finer approximations of the distributions

of the estimators, as compared to the asymptotically normal ones. In fact, the bias
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results were employed to correct the up to O (n™!) bias of the estimators. It turned
out that the feasibly corrected p is, almost always, less biased than p, for the whole
interval of #, without considerable alteration of its M SFE. This indicates that the
presented expansion works well for as small sample size as 50. On the other end,
the approximation of 0 works well only for values of # close to 0, with even as much
as 200 observations. The presented approximations of 0 and p are somewhere in the
middle, i.e. work well for a large interval of values of . Furthermore, in the Indirect
Inference literature, our results constitute an application of the general results in
Arvanitis and Demos (2009).

The analysis presented here can be extended to any ARM A(p, q|p) model. How-
ever, the algebra involved is becoming extremely tedious even for small values of p
and ¢. Furthermore, one could consider the stochastic process y; = p + u; + Osu;_s,
where s = 1,2, .... For specific values of s, this class of models could capture sea-
sonal effects, e.g. for quarterly data s = 4, for monthly data s = 12, etc. (see e.g.

274 order,

Ghysels and Osborn 2001). In this case, the cumulants, at least up to
of the various statistics employed in sections 3 and 4 will become functions of s,
complicating further the evaluations of the Edgeworth coefficients and the moments
of the estimators.

Another interesting issue could be the expansion of the estimators as the pa-
rameter 6 reaches the boundary of the admissible region, i.e. when § — +1 (in
this respect see Andrews 1999, and Iglesias and Linton 2007). Furthermore, along
the lines of Durbin (1959) and Gourieroux et al. (1993), the properties of the M M
estimators can be improved by considering the expansions not only of the first order
autocorrelation but higher order ones. Finally, one could, utilising the presented
expansions, consider adjusted Box-Pierce tests along the lines of Kan and Wang
(2010), or develop asymptotic expansions of the error variance estimators, as well,

and consider expansions of various tests, e.g. Wald etc. We leave these issues for

future research.
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Appendix A
Proof of Theorem 1

As the validity of Theorem 1 is dealt in Sargan (1976) or Bhattacharya and Ghosh
(1978) we proceed with the coefficient derivation. Let us denote by cfz(s) the

characteristic function of . The Taylor series expansion of ¥ is:

Z]“AJF Zf”AAJr Zf”kAAAk+op(’1)

,7=0 zgk 0
2 3
where f¢ = 8A , fiU = A 8A , and fik = %, all evaluated at 0.

Adapting the summation convention, i.e. f9A4;A; = Z;FO fYA;A;, the char-
acteristic function of  is:

cf(s) :/ exp (isf'A) exp (5 7 Aid;)

e dF (A)+o(n™").
exp (%f”AiAjAk)

where A = (A, ..., A)’.
Now expanding exp (%SfiinAj) and exp (%fijkAiAjAk) around (0, ...,O)/ the

characteristic function of i becomes:

o is is st 2 i
cfz(s) = / {exp (zsf Ai) (1 + 2\/ﬁhJAiAj + ahjkAiAjAk ™ (hJAZ-Aj) )] dF (A)+o (n 1) ,

where h" = /nf% and h*F = nfik,
Setting s (flv ey fl)/ = 2 and noticing that

aCfA (Z) o / ./ a2cfA (2) _ / o/
o7, = iA; exp (iz/ A) dF (A), D0z A;Ajexp (iz/ A) dF (A),
PBefa(z) , -
m = —/zAiAjAk exp (iz/ A) dF (A) and
defa(z) -
we get

is pii cfa(2) _ 5 psk Pcfa(z)
2\/n 02,0z, 6n  020z;0%
2 4
5 i km d'cfa(?) ~1
8nh h 02;02;02,02y, to (n )

cfp(s) = cfa(z) - (app-1)
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By definition, the characteristic function of A is:

1 1 N 1
—Cji%iZ; — =CiikZiZiRk
2 J J J J 24

cfa(z) =exp (z'cizl- — 5

cukmzzzjzkzm> +o0 (n’l)

and expanding exp (ic;z;), exp( cwkzzzjzk) exp (;Zcijkmzizjzkzm) up to o(n71)

we get

X 1+ iciz — 3 (c;z)” + o CijkmZi %) 2k %m
cfa(z) = exp <—§Cz‘jzz‘zj) _écijkzz‘zjzk + & (cijrzizize) (ciz) +o(n™).

D) (kazzz] Zk)

Employing the above formula we can find the, up to 4" order, derivatives of the

characteristic function. Substituting into (app-1) and setting for z; = sf* we get:
52 o
cfz(s) = exp (—5%’]”]”)

11— %Czjkfzfjfk 2401]kmf fjfkfm ) (Czjkf fjf )
+%Cijkfif fE(eif) = S? (cif )" +isci f?
= (qufj) (epif?) +3 =

= (esif7) (i) (cqif?) (cpi 1)

_s*ppqprs
< hPih

1
+ (CqrCps + CprCys + CpgCrs)

with a remainder of o (n™1).
However as ¢;; = ( )2 (2) + nilc( )+ 0(n1) there are terms of O (n=1/2)

and O (n™1), in the exponentlal. Consequently, we have that

L5 (cquj) (ijkfjfk) - \/Lﬁcpq
%%4%f>@mﬁﬂv ’s&@fﬂ%ﬁﬂ®mﬂﬂﬁ)

_isppq
2 ~m (cpgrf*) + 6\/_561"1 (cisnf " F11*) + \S/_ﬁz (carf") (cpif?) (cif")
X _\/_aicp (cigf") — \/iﬁicpq (cif) — \/iﬁicq (cpif?)

—gh"" <_% (crif?) (cqi f7) (cpi ) + > leqr (cpif7) + cpr (g f7) + Cpg (crj 17)]

i 7 [ear (i f7) + Cpr (cas ) + o (cri )]
— = [eng (i f7) (ni ) + s (ni f7) (Cp f7) + cps (crif7) (cqi f7)]

2

2
2 2V fifi 2d@pip @2Dpip st (A
exp <_%Cijfzfj) =exp( e ) E— f7_sa 1 + i’

2\/n 2n 8n
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and it follows that, with the same order of remainder,

2
cfz(s) = exp (—§w2>

N
i CRLR)

S S-hPipTs (c 01(95) + c,(ﬂ) cgs) + cé?cﬁ?)

—i—ﬁw(magl) + is w(Q)hpq,.y (1) (1)
1 1 1
o (cér)vé il s

1 1
FelAn) 4 0o

_ %hpch(gl),ygl) + g_;hpths

1), MW, M 4

) 2 (W) 1) | is (2)
+6—na§)a§1) 2n (agl)> +\fa§1)+ agl) Zgnw

1+ 52 al) + 24 - %w@) — 2B — & ppan)

383 1 3 (2 . (1 1 .3 1 2
—eﬁa§)—6—na§) TPy — i iy Pyl — g gD
L0 ¢ gl 1 S gl g

6 1 1 rs (1) _(1
x| o (W) - 732”( g)) S (D) s ppagrsy (0 (D (1) (1

1)
Céq)/%(” )>

oA

@)W

11
2 (1 (1 1
“ona ()agl + 5, hpq )’Y:El)agl)
where
W= P W =P W =P
1 1 2 2) pi pi 1 1) pipj ok em
o) = PP achEﬂlf P ay) = P
1) _ (1) k k _ (2) rk
51(0) - pjkfjf 71(01 fj 71(011 - quf 71(D2q)_ quf’
afll) = hpqcpz), afl hpqcp?, agl):cl(-l)fZ and aﬁ):cgz)f".
As now hpq’y() = hpq”y hpthscé}n) (18) = hpqhmcp cs, hpthsc )c$5) =

<hpqc ) hPARpTs~ 1)0&)7 hpqh”sc fyg )vp = (h” )(hquyq )

hpaprsy M el =

hpqhm’}/s Cér)'%g ) hpthSC(l)W(rl)’Yg() ) LPARTS ¢ ¢! )7541),%11), hpqh”ygl)%(n ),7((1 )'72 ) _

2
<hpq7§1)7,()1)> , it follows that
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1+ (el + £a? + 2al) + Laf?) is
Lall) 4 a(7)—|—2f()+ Lw® 4 Lal
. 2
—1—81n (ai”) + Eag + % (aﬁ?) + 2nafﬁ)a§1)
—is® | gmal” + ol + ol + Lol + 42 (a (”+2a
cfa (8) = exp ( %wQ) Ve 1 (1)6n (1)2f (1)n(1) 1 4721) 1, (1)
T (1,0 0w, 1w
+apaz ag + g (w(2)) + a0 Ay + 5,05 Ay
+is® ( w(2)a§1) + 13m L y@g ! )>
1 1 1)) 2
—s° (7;71 ( g )> + 12na§ )ai(’) )+ & (a:(a )>
where
ag) = AR aEf’ =YD, o) = hpqvélq% o) = Py,
a(71) —  ppar 1(7(1)7(1)’ — KPS (81) pr)%(l ) — KPS ((; I()i)y
a%) _ ﬁél)hpqvq and ag — P, 1) (1)

Inverting the characteristic function of © term by term, we deduce the corre-

_Jr;o exp (—isz) cfy (s) ds,

sponding asymptotic expansion of the density, say g(x) =

= Pr[vn(®—

Now the probability function G(m) is given as G(m) =

and the probability function G(m)

" ga

p) <

dard normal and the Hermite polynomials we get:

m

w

G(m)z@(

-

1
2fa4

(M aff) M

1
o a1y

+ 3 +f

a (0 1O\, 1) () peed k! (Z)d)(U)
8_< ) + a12 + 5, <a11> + 5,04 A1
U A
- L o) o (1) w2 (%) 0 ()
+Ew( )a4 + —w( )au
1) (1 1
24na§ = ZnG’gO) + 12na‘(1 )ag = 6na((3 = ZnG’é = 4nag )ai) 1 g (m) & (m)
- 1 1 A3 w
+8n ( (2)) + 60 ag )ag1) +3 ag )ag1)
(B ¢ o) 1, (2)6(2)
1 1 1 2 m m — m
(7;n ()" alaf? + & (o)) s (2) 0 (2) dibo (1) where H, (2)

the

29

+ an) 1¢(%

1
2w

m] as n — oo.

)

Pry/n (o —¢) <m]

)dx. Employing again the connection between the derivatives of the stan-

" order Hermite polynomial. Substituting the values of these polynomials we

)]
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get the Edgeworth approximation of the distribution function of v/n (¢ — ¢), writ-

ten compactly, as:

m = ()0 (5) [so+0r () + 0 () 0 () w0 (5) 0 (3) ]

where

1 2 1 2 1 2
Vo= v +30”s vr= e+ 2 = Joed 4 e
p (a (1)+3a§”) L 9@ (alV+3a)

2
1/}3 = lwl(’, )7 wS 72n w6 ) ¢4 = 12n wb )
PONENC)
7700 w{3(a§)+2a§11)>—<1 wz_S)},

(2) (2) g (1) (2) (1) w® (gt 4340
2 2 2 +6as + w +3w'ay
¢()——1 {3[@“4—2@”}— L 43 (1 3> )

0 7 6w 4 11 w? 2 w?

2
3 [4 (o + o+ + 208 + 200 + (208 + of!) ]

1) _ w®
1/}1 T 2w20 wl 24w2 ( (1)+3a(1)) ’
—3¢ + 5—3
(2) 2, 3, (2,1 2),,(1)
W ( <1>+3ag1>> @ 1 | @ + 6a;” + 2w ay’ + 3w'¥ayy
Uy =53 U =gs @ (o) 13450) 7
3
2 2
p® = 1 [10 (af"+3a5")" 3| andc — a5 +2(a{"+2a(Y) (a{? +30" ) +40f+12(af" +a(y) ) +3(w®)
3T T2w? w? ) w?

In Sargan (1976) we have that w® = w® = ~2 =0, a =0fori=1,23,4

and an) = aﬁ) = a%) = 0. Under these assumptions our coefficients become

identical to the ones in Sargan (1988) (the corrected version of the 1976 paper).

Proof of Lemma 1
To easy the notation, let w = ™. Then we would like to find d0 , d 1), dgl), and

d?, d?, d?, and d{? such that

B ) o (08" + 0w+ vu?) y
w) — w

(88 + v+ pPu? + p® + Pyt + ggud) o
- [w + (dé” +dMw + deg”) y+ (d((f) +dPw + wd? + dgz)w?’) yﬂ +o(n )
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where y = \/iﬁ Employing a Taylor series expansion of the right-hand side around

y = 0 and equating terms of the same order of y we get:

1 1 2 2 1 1 2 2 1 1 2
d) = =l AP ==, =l P ==+ 5 (o)
1 1 2 2 1 1
) = -, & =y + Py,
1 2
@) = =+ 5 (67) + v,
and

Wy =dPdV, and ¢, =

N | —

(&)
which are always true.

As ® [w + <d§” +dMw + w2d§1)) I+ (d((f) +dPw + wd? + d?)w?’) ﬂ +o(n )
one can find a standard normal variate, say z, such that z = w+ (d[()l) + dgl)w + w2d§1)> \/Lﬁ+
<dff) +dPw 4+ w2d? + d§2)w3) Lio(m™).

Let w = a + bz + cz? + e2® + 0 (n™') where the coefficients a, b, ¢, and e are to
be determined. Then substituting out z, by employing the above formula, letting

a=a% + fa(l) + a ) and the same for b, ¢, and e, and equating coefficients we

get a, b, ¢, and e as functions of the di s. Hence
2
w=—ddl+ 1 (dd — )+ (1 — a4 1 (zdg”dg” + (V) - d&”)) 2
2
+ (—\/iﬁdgl) + % <3d§1)d§” — d22)>) z2—|—% (2 (dé”) — dff)) z>+o0(n~1) or in terms

of the wy)s
w = wo o (00 + o)

- 1n (2%1%0 <¢§1)>2 NONS % <¢(()1)>2>) z

7’L
1
+(%¢” (3 + w01))z2
1
n

= (2(08) + 92 - (w&”)z—wé”wé”)z3+o<n‘1>-

Hence, employing the connection between the @/)g.i)s and the Edgeworth coeffi-

cients, al(k), setting w = P we get the results of Lemma 1.
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Appendix B1 cumulants needed for

Ag, A1, Ay, and A3 can be expressed as Ay =

n
Do Ut 1Ut—2

\/%; Yoy (g +0uy—), Ay

I
—0%2(u2 _ —02 ugu—_1+0%(u2 , —o2
) . Quiu_q + 0*ugu_q + 0> 7 5 utp—o + Uply—q — 0 (v )+(210+602) +0°(u2,-0%)
2= =
—i—% [(wo + Ou_1) — wy — Oup_q] [(L+60) > 1 w1 — Oup_y + Ou_yq]
762 u%71702 +20upgu_ +€2 u271702
and A, = 2t P )
3 v
It is obvious that
E(A) =E(A)=E(A3)=0, E(4A)=o0(n"),
and consequently
co=c=c3=0, and 62:0(71*1).
Hence
M= =0 for i=01,2,3
In terms of second moments, notice that £ (A2) = (1 + 60)* 0% — 2002 +0(n" '),
— 2 9o 4 _
(A%) =0 —74‘0(’” 1) (A%) =0 U4+E |:2mli4+0'4 ((9 + ].):| +O(’I’L 1)
2 'LL4 - 0'4
and F (A3) = o*ky + 20* — 22 (1+92)2/<a4 + o(n™t) where k4 = % Further-
more, F (AgA;) =0, E(AoAs) = 193012+1/£303+0( D), E(ApA3) = (1 +0) k3o —

Lo OtL jiso® + o(n7Y), E(A1A)

n” 9211

193(1 02)

" (1+6%)°
Hence

2
Coop — (]_ + 0) O' - —QO’ Co1 = 0, Cog = —0
n n

1 0+1
+1

Coz — (]_ + 9) 1{30'3 — —69

6

olky + o (nt) where k3 =

0(77,_1), E(AlAg) = 0 and E(AQA;;) =

E(u})
o3

6% + 1

_ o
/f303—|—0(n 1), 011204——,
n

Coy = 9204—#1 29—2/<a4+(94—|—1) 04+0(n_1),

(0 +1)
1 6
A Yo

For the cubes, F (A3) = % (1460)®c3ks+0(n"), E(A3) =

E(A3) = 1L 630'6163 +o(n™1),

04144 +o0 (n_l) .

E(A3A) = Z(1+0)° 0" +0(n”

32

16°(1-
»(1+67)

1

Y,

2

706/{3 +o(n-
E(A434,)

Clp = 0+o(n_1) , c3=0,
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Z=2(1+ 0)* 0o'+o0 (n "), E(A24,) = 2000540 (n"), E(AfAs) = J=20°V (uj)+
) E (AlAg) =0 (Tl_l), FE (A%Ag) = %9202‘/ (U%)‘i‘O (n_l) and F (A1A2A3) =
f)ym

Now, as E (A;) = 0 for all js, we have, up to o (n™'),

3

o(n”
(n~

o

2 1 1

1+06)°0° — —_(1460)%0", con = —=2(1+0)*00", c111 = —=05%]
(1+6)" k3, coon \/ﬁ( +0)" 0%, cooz Jn (1+6)"00%, cin 0 K3,
200° 202 005 2056

Ci12 = \/ﬁ , €113 = % (F&4 + 2), Cro2 = C123 = 0, Cgo0 = Wﬂg’ C223 = 7

Coo0 —

Si-

With some tedious algebra we get:
0'8 KZZ K
B (A4 = 3054 ZUE200412) 0oty B (A, 43) = o (nY), B (APAy) = 160052+

o(n7), E(A}) =30"c*+L1o® {9%3 + 120454% + 607 (30> +0* + 1)] , B (A242) =

208 4 158 | 130242401 £210516% 1 2 (492+394+2) -1 1
070"+ - (1) + 20°K3 + 2 1) }—i—o(n ), and E (Ap)
31+0) 't + L (1+0)'E(ul) —3(1+0) 0t +12(1+0) 0" —12(1+0)° o) +
o(n71h).

Please see Technical Appendix (TA) for detailed proof
(www.aueb.gr /users/demos/WorkingPapers/MA-TA.pdf).

n

Consequently, and due to zero mean we get

4
(1+6) ot o8
Coooo = ————— R4, Ci111 =

- (K] + 1264+ 18) ,  cozop =

6008

— (0%K3 + 120" ks + 186%)
n
(49254 +20°Kk5 + 126%),  cii12 = T/f?»,, C1222 =

o8
n
0

3|9,

C1122 =

with an error of order o (n™!).

Appendix B2 Expansion of p

As the validity of the approximation is established in Kakizawa (1999), let us con-

centrate on deriving the Edgeworth coefficients. As /n (p — p) = f (Ao, A1, Az, A3)
(1+9 ) 2o

oy I = Ty

and f3 = 0. The non-zero second order derivatives, evaluated at 0, are f%° =

by (2), the first derivatives evaluated at 0 are f* =0, f! =

1 —2(1-0+6%) . (1+0*) 12— 18— 1 (1+6%)
e o e 0
3= —\}W Consequently, h = \/nf", e.g. h% = % etc. Finally,
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(29—202+293+e4+1)
(02+1>304 ’
poo2 _ 12 F003 _ 19 (1-0+6%) 9+9) JE 92(1+9) fu2 1 s
" (146%) %04 n (1+92) a’ n? (1+92)4a ’ " (146%)°06
80(1+6") F128 oyl f188 — 9l (1+0%) p23 12
(1462)%06’ & (1462) 706’ 2 (1462) 706’ n (1+62)06
001 _ (29—292+203+94+1)
ROt =2 (92“)304
Now from Theorem 1 (Appendix A) we have w? = %
202(0%+1) g6
Ry4.
oy Py
Next a(l) _ 69(1+9422 (1+94)3+93(;+92)3/{§ a;l) _ /@21 594+496+1298+4910+5612+916+1
(1+6) (1+6°) ’ (02+1)°
(92+494‘:96+98+1) 11920 (9 L6 Lot o 2) (¢ +1)jK%_i_18492+1394+1696+2868+216€1(;+13912+4914+916+1,
ey (1) (1)
() _ (0 *iaj_fl}l)(a 0D = 9 (20— 267 +26° 1+ 6 +1) o oM —
B ( 01 0% 1 1) 50-+96° +60°+96" +50°+30° +3 49(”(’4):%3 Next
(92+1) (1+62)
ol = 2467 (62 + 40" + 6° + 6% + 1) ((‘9%11;0
a( ) 240+2392+693+2994+1405+6696+1497+2998+699+23910+4911+3912+3 + 6% +40*4+65+68+1
7 (62+1) (62+1)4 4
aé) _9 (92 40t 08 8 1) 1192+994+3096+908+11910+912+1 (92+494+96+;98+1)2 Ka,
(92+1) (6%+1)
as(,l) 80+502+303+804+405+1606+407+808+399+5010+911+912+1 ¥ 2%, (1+94)2+92 (1+02)27 -
(02+1) (1+92)
1 (92+494+96+08+1) 4 021031804 13051205 1307 +805+09 19101201242 o
nally, a;y = —2 (o 2 Kq—20 (9 + 1) (;HJ)rg + K3—

2 4 6 8 10 12 14 16 2 2 1 1
ATO2+110"+20094246%+29010 4116124761100 41 ) g ag) _ aé) _ a‘(L) ( ) _ agl) _ agz) _
(>+1)°

the non-zero third order derivatives, evaluated at 0, are %' = 12

113 1
=5

whereas hi/k = nfi* e.g. etc.

, the asymp-

totic variance of v/T (p — p). Further w® = 0 and w® =

+

0.

For the zero-mean case, all Edgeworth coefficients are the same as in the non-

zero mean one, apart from afll), aél), a(71), and agl), which now stand as: aff) =

0ir1 1) (1-0+62)(0+62+1) o(1+6")" , (1+6%) 162 (1462) (1)
() BT (?) (e BT (1:02)" 4 77 =
4992+994+2696+993+9910+912+1 292+494+06+98+1 4702+994+2206+998+7910+012+1+
62+1 62+1 0%+1
(1+94)2+(92<1+)92)2 ey 58
)

K4, and ag

2/%4
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Appendix B3 Expansion of 0

~ . S~ . . . af(p)
For |p| < 0.5 the solution for # is given in equation (6). Hence f (p) = 0, Tp

22 2 2\3
((11+_092>) 0, 823;(2[)) = 20(3(f )9(21;9 ) , and 2 a{gp = 694%;;39%1 It follows that

for = \/n (5— 9) we have

— 0 " 0? . 2 03 " 3 _1
= ];g))\/ﬁ(p )+$ 8]:(2 2 (i (5 - p)] +6in ;ﬁgp) Vi@ =p)] o (n™)

where the cumulants of /i1 (9 — p), k7, kL, kg and k%, are presented in section 3.1.

2)2 2 2\3
Hence Theorem 1 can be applied with f! = ((11+092)) , htt = W, hHt =
_ 0+0%+1)(20—2024-203+0*+1
60% 1192(159;2326“, and Cgl) — _( )((92+1)3 ), cﬁ) = 0%429;*10026;98“,
(8) 240074607 120° 16076164670 +1) (0+1)? _40(1+0%)° 2 Pragt a1, (1) _
11 (62_"_1)6 (1+02)5 3 (92+1)4 4, G111 —
Vi, vy =nkf, and o) = P = o) =0.
It follows that the Edgeworth coefficients are: w? = %,
LB — 2(—40-62+66° 1265166705409 46'041)(0+1)>  40(146%) 5 g2 g4 g6 g8 4
- 1-04)° T (1402)(1-02)2 3 1-02)° L
1 —69 (94 + 1) 694598+1) (1+94)3+93<1+92)(3 +2 )( ) ( )
“ = (02+1)(1-0?)° (1-62)° "3
1 — 106% + 306* — 1066° + 1290° — 2166™°
@ +1296" — 1060™* + 300" — 100" + 6*°
T (1) (1=07)"
—6 —20% — 0% + 100" + 26° — 465 + 267
8 9 10 11 12
—126 (6* + 1) 106" —6"—207 — 0" +207 +2 2 A0 126°040° 04567 4'0+1 2
(62+1)(1-02)" (1-02)" 4

1 oy (Pra0tet0841)° () N
ag’ =20 (3 ) (1+02)(1—02)5 J =20 (3 ) (1+02)(1_92>3 J

4, 98 1464 3+93 1+62 ?
al) = —126 (0* + 1) (3 - 6?) %Jﬂ@ (367 ( (1+)92)(1(92)4) w3, af)

694(1192_594+96+1)(92+494+96+98+1) (1) _ gyt 1202 =50" +0°+1 (92+494+‘96+98+1) o —
T A T L (s L
2 (a2 (Pra0t+05+05+1)° (1) 402(3-0%)" (0P +40'+05+05+1)°
49 (3 9) (1+02)2(1 02)8 9 a/9 - (1 02)6 (1+02)2 9

1) _ 2 (p4 2\ 604+6%+1 02+40*+05+063
aff) = 1207 (0" 1) (3 — 0°) S Pt
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+20 (3—6°) (1+6%) (146°)°+6°(146°)" g2 s ag 405 16541,

(1-6°)° ()"
1) (0+62+1)(20-202+20°+0%+1)
ayy = — (1=0%) 3
0l = = (0402 +1) (20— 207+ 20° + 0* 1) 2D Prwtoigan g ) -
e ()" ()" N
ag ) = a:(f) = af) = aﬁ) = 0.

For the zero mean case, all Edgeworth coefficients which are different from the

4 2
coefficients given above are: w®) = —2 (1*92)2 g 00+6Y) k2 s
(02+1) (1+62)(1-02)" "3 (1-6%) ;
a% = 2003 and a%) = —40? (3 _ g2) 0141 02440' 460 +0541

(02+1) (1-6%)" (1-02)"  (1+02)

Appendix C1 Expansion of QMLEs

Consider the first order conditions in equation (8). Now let = (51,52)/ =
_ / _ L
(\/ﬁ (9 - 9) /(o — u)) The Taylor expansion of \}ag(‘;o) where = (91, (92) =

~ N/
<9, ;7) around the true value ¢ = (61, 60,) = (6, 1)/ can be written as:

~

1L ¢ ( wils . 1 < i
0 = —=o-+ M-ﬁl)@ﬁ— (MZH ﬂ)eek
Vn 99, i=1 SERVAD 2\/5;1 ’ v

b S My 0y (n 1)),

Lk,i=1
= g] (QO7U)+OP <n7%)7 J _1727
- _ 1 (20 1 23(p) 1 d4(p)
where j = 1,2, Aij =~ (6%8@)’ Kjir = 3 E <69j30§99k)v Mji = 3 E (69jaeia§kael>7
8% (p 93¢ .o
W = \} (60 59, —nA; ), Gijk = \/Lﬁ (aejae%)ek —nKjik>, for 4,7,k = 1,2 and

all derivatives are evaluated at the true values. Let us define a vector A con-
taining the non-zero elements of \}69 . Wij, Qijk, for ¢,7,k = 1,2. As however
Wa2 = q1o2 = @222 = 0 (see below) we define A as A = (Al,Ag,Ag,A4,A5,A6)/ =
<\1f880€1 \}8‘9;2 wu,wlg,qm,qu)/. Solving for éj, and j = 1,2, as continuously

differentiable functions of A, gives:

0,(4) = a@ Lo~ 0% AL Ay + ~ OO AuyA, + 0, (n~
i(4) = §ZaAaAb b ZaAaAbaA pe P(”

a=1

6 6
= DSt 2\/— Z B A Ab+ o D MrAAA O, (n%)
a=1

a,b=1 a,b,c=1

36
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where [ = % (0), h“b NZD 0,0 and h“bc = 200 (employing the notation

9A.04, DAL 0A,0A,
of Theorem 1).

Now the derivatives can be found by solving the following system of equations,

forj,k: 1,2 and a,b,c=1,...,6:
0 — ZM]kfk 097(00 )

92g,(0,0) 82g;(0,0 a
OZZk 1( Zl 1 jklfzb 323599 )fk+2k 1 azjag)fk+f2k 1 chhkba nd

2
be Z 93 g] (0,0) 3 g] (0,0) D a
Z jikp fo L + 5 Z iy + 9A. aelaek aepaAbdekf fet

( p,l=1 p=1
2

ac 89 0,0) b 1 1 9°g;(0,0) ab
Z Miihi +Zaeajaka,4 fp) fHZ(ﬁZ kpfp+faA]89k>h

1o} c g ac abe.
f aef,j 8210) hbe+ - f Z ai\CJbe;)eO hyc+= Z M;.h$b. Notice that the first two equa-

k=1
tions are as in Tanaka (1984). However, the third is completely new (Tanaka 1984

[\

is developing a 1% order expansion).

9g1(0,0) __ 991(0,0) __
géA = 1, and galA =0

for a = 2,..,6. It follows that fi = 1 —6* and f2 = f} = fl = f} =

Hence, first consider j = 1 and observe that

f8 = 0. Applying the same logic and by the notation of Theorem 1 we find
that the non-zero second derivatives for j = 1 are: hi' = —66 (1 —6°), h{* =
(1- 92)2, h2 = 20%(1+60) (1-6), and A = 0?(1+6)"(1—6?), and also
P = (<124 726%) (1—67), h1'® = —180 (1—6%)", Al = (1-¢%)°, hi2 =
202 (1—170) (1+0) (1 —6%), hi* = 202 (2—30—50°) (1+0) (1—6%), hi* =
o2 (1407 (1—06%)7% 1 = 2(1-6%)°, B = 202 (1+0)* (1—6%)°, n2 =
o2 (1+6)* (1 - 92)2, hi% =202 (1+6) (1 - 02)2, whereas all the other derivatives
are (. For the expansion of 6§ we do not need the derivatives for 7 = 2. These can

be found in TA.

Appendix C2 cumulants needed for 0

Taking the derivatives of £ (6, 1) w.r.t. 6 and p, at the true parameter values we have

Ouy __ Oug—1 __ _ 00 i 2up But 1 Pur_1
that 28 = —u, y — 02l = = T (g)y, ,,, Dw oo _gPua  gPu
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22;}20 (Z + 1) (_0)1 Ui, 3y _ _382%571 _0831%3,1 S Zio (i+1)(i+2) (_9)2 U3,

803 262 a0 2
O = —4%at — 9ot — =AY (i 1) (i +2) (i +3) (—0) weag, G =
Oug—1 oo (2 2up . QPuy _ Pup 2up
-1-10 on _Zz‘:o(_e) - _1+re> %? - %;F’ - %wl =0, % - (1+19)27
anont = gy and gggts = 0. It follows that
1 (0% 1 1 (0% 0
My = —E( <;0>):_ 5 M111:—E< (20)):—6—2,
n 00 1—46 n 90 (1-6%)
1 (o4 1+ 36°
M = —E( <f)) = -2,
n o (1-6%)
1 [0% () 1 1 [9%(p) 1 (0% (p)
My, = —E = My = —E(—) = Mygpy = —E | ——1=
27 n < o2 ) (1+67%02 7 ( oy > “2 T ( oyt
Furthermore,
% 1 (9% () 1 836(@) 2
My =E E 0, M —E = ,
12 (auae) 112 (6928/1,) 122 n (898#2 (1 + 9)3 o2
and
1 (o4 1 (0% 1
M1112 - ( 3<S0)) 07 M1122 - E( 2(902> = - 4
n" \ 06°0u 06%0p (1+6)"0?
1 0% (o)
M —-E = 0.
1222 0 (898#3 ) 0

For the cumulants of v;s , the A;s in terms of Theorem 1, notice that in the
maximization of the likelihood we have that for any admissible § and ;1 we have
that u; = y; — p — Ouy,_q1, with ug drawn from the stationary distribution. Hence

we have that the derivatives of the u;/s with respect to the parameters ¢ and p

are: 24 = —u,_q — 9% == =3 (0w, for t > 1 and Quo = .
Pur Oug—1 Pup—1 _ t—=2 /. i Pug __ Pug __
W; = _QW_H 902 222':0 (Z + 1) (—0) Ut—2—4, fort > 2 and 902 — 002 0.
83Ut _ 82’U4t71 83ut,1 . t—3 (’i+l)(i+2) 7 Oug
00 = -3 502 0 205 — —6 Z’LZOT(_H) Ut—_3—4, for t > 3 and 50 —
2ur _ %us _ Our __ Oug_1 t—1 T 1-(=0)" 92wy __ Bus _ *up _
86’21 - 8922 =0. 3_ut =—-1-0 A _Zi:() (_9) - T T 119 > 3#; - aust - 3u4f — 07
and 2ut — D00 T -1 93wy t(E=1)(=0)" T 424 (t4 1) (=0)" T (1) (t42)(=0)" 2
o0 (1+6)2 > Aude? (140)3 ’
Bup
and 2602 = 0.

Hence, adapting the notation of Theorem 1, and as all first order cumulants

of the A;s are 0, we have that. cgl) = 052) =0 for i« = 1,..,6. The second order
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cumulants are: ¢\t = = =M= =0 )= —<1_4§2)2, Y =6 (3929‘;;
M _ 1 1 W _ 1 E(ud) ) _ 12 (1) _ 60

2 Ty B T TA -y T T w7 T (e
1 1 1 2 O

Céﬁ) = 6%(1_:9)47 Ci(’>3) 2(’;9 9—2;3 + K 4(1_192)27 64(14) = 02(1%’_9)47 C'Ej) = 0 for 1) =

1,...,6. From the cij s we need only ¢\2, mainly due to fact that f2 = f3 = fi =

3 2
f? = ff =0. Hence, cgl) = —(1_902)2.

Out of all 3"%order cumulants we only need ci11, c113, 0122 and cy94. Employing

the notation of Theorem 1, we have: c§1)1 = —6@ + mg, c§11)3 &L;r)sg +
20 1 9 2 2 1 _ 2 _ 1 1 _ _4_1 (2) _
1403 <1 7 1+63> BT e 2T 2wt Au T T e and cyj3 =
2 _ .2
Clap = C1gg = 0.
From all the 4* order cumulants we only need cji, i.e. cgll)n = K2 1—194 +
1 2 9 762+3
12(1792)2“4 121+93 K3 (1792 - 1+93> - 6(1 92)

Appendix C3 Expansion of 0

For the validity of the expansion we have that under the assumptions of Lemma 2,
A = (Ay, Ag, Ag, Ay, As, AG)/ is a martingale satisfying all the assumptions of Gétze
and Hipp (1983, 1994) and Hall and Horowitz (1996) (see also Corradi and Iglesias
2008).

Now applying the results of Theorem 1 (see Appendix A) we get: w? = (1 — 92),

2(1_ 3 _ 3
w® = —492; agl) = —60 (1 - 02) + H3(11+9(f) ’ agl) = ”421(11+9922) + 12( ) Ra —
2
129(;23) w3 (2 — i ) 16 (707 4+:3) (1= 0%), o =20 (1 6%), o) = 2(20 — 1),
92
=2 (40 — 30> — 10) 25560 (1- 0%)"+4 (e — 1) HE;Z; K3—4 (1 6%) ks,
=616, o) =4 (-20+6*+6)+2 (1 — 0*) ra, i) =2 (1 —6%) (0> +3)+
( —92) Kay a5,> =4(=204 6% +4) +2(1—0*) ka, aly = — (1-6%) (76> +8) —
L0 () o (16 and ) — o — o — of? — o) — af) -
a%) =0.
Now from Lemma 1 we get that
=2 o), H=u+2(0+6) 20+ 2 +o(n™).
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3 g1 0(1-0%)
where w? = 1 — #?, and &) = szizﬁ (Hag) K3 — (1 —6%) k.
Also

0> —0-16(1-6°)" ,

—80+362+13+292_9+1 T k3 — (1—60%) kel ,

B[vi(i-0)) = (- o)t

n

10— L(l__ﬂs,g +o(nh), K= 16 (1-6%) (6*+3) + 155 +o(n")
T vn o 1+6° oM Ty nt ’
5 1-62)° 1-02)°
where ¢ = 129?:31;3(1%3) K3+ <1+92) K-

For . = 0, we play the above procedure with the difference that now the vector A
is A = (A, As, Ag)/ = (g1, w11, qm)/. The coefficients which are different from the
above ones are: a5’ =20, al’) = —2 (0° +8) + 2:2122;90119;3)25% —4(1—6°) Ky,
a =2(0%+9) +2 (1 - 6%) k4, and af” =12+ 2 (1 - 6%) ka.

Hence

= g0,

NG
0> —0—16(1—6%)°
?—0+1 146

B[V 0) =16+

n

8+2 /<;§—(1—02)/-@4 ,

~ 1 1 ~
kgo = w4 = (8—02) +—§g—|—0(n_1),
n n
where w? and €) given above. Finally, k50 = k‘g and k9° = k:(f as neither of these
cumulants are functions of the Edgeworth coefficients which are different in the

. o 1
NON-Zero mean case, i.e. ai ), aé ), a; ) and ag ),

Appendix C4 Expansion of p

With the definition of p let us call m (5) = % — p, where p is the true value of

the parameter. Then we have that

S ImO) N L PmO) [ o
V(= p) = S /n (0-0) + —= Vi (7-0)] +

1 2m (0) [
90 2v/n

6n  gg° */5@_9)}3’
o)

= (1+92)27

and cgl) =20 — 1, cﬁ) =16 cﬁ) =

with a o (n™!) error. Consequently, we can apply Theorem 1 with f!

(1-62)"-46?

0(3-062)
-~ 7 (1+6’2>4 )

G M

Pt = -2
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p 1-0 2 1-6
(0+6) (2 0)+€, ol = U002 (D —6.(1 - 6%) (6 + 3) 4120222 00) 2
(1-07)°

W@, and all other cumulants being zero. Hence applying the formulae of Ap-

1-62
pendix A we get that the non-zero Edgeworth coefficients are: w? = (—)4, w® =

2 ()
{( 6) (2 0) + 2201 00 s () gy, % o) — %Ki
_ ( ) (07 +3) + 12002 (0) o <11j;>3,«ui) E;jj;i o) = p2)0) S
o = (5193)2 (10, o) = 2 Eh o) = ot O
o) = o e o = 4 e (), o) =S (o)
off = 2" kg, o) = 20— 1) 0k ana o) = 22 0 - 1) (0,

Hence By Lemma 1

S (1=0)(1+20+36%) (1-67)
Vn (1+6%)°

(1-6%)° 1 (340 + 2396% — 46° — 2456" — 386° + 696° 4 25) (1 — 6%)°

—+ J—
(1+62)" A (0 +1)°

616 (1—92)3(2;9+92+93;94)K§_ (1—92);4].
(1+6%)°(0°—0+1) (1+6%)

For the zero-mean case, notice that the Edgeworth coefficients that are different

1
4+ —
n

. ®) 2 100-0)" 2 (-0)°
from the ones given above are: w'®) = | 8 — 6~ + 2 9+1 rer H3 T (1 -0 )"434 (1162)"
(1) _ o (1=0%) 1) _ _50%(3-6%) (1-6%)°
ayy = m, and A9 = 2mm It follows that
0 (1—0%)°
2 (1-67)
1

and

(1-63)° 1 2 (3207 — 290" + 66° + 1) (),

(
— += 3
120 n | 44 (1-02)°(2-040210°—0*) ,  (1-0?)
( ) 6(1-9) (146%)° (6 —0+1)° ki (1+92)4H4

41



Edgeworth and Moment Expansions

THETA MM ‘ THETA QML
n =50, u, % non — central Student — t with 20 df, and non — centrality = 1
Theta | Appr. Bias Est. Bias Bias Feas. | Appr. Bias Est. Bias Bias Feas.

-0.9 -119.9542 2.6921 69.8340 -0.3960 -0.3219 -0.0355
-0.8 -12.4383 1.8054 157.3671 -0.3677 -0.2655 -0.0002
-0.7 -3.0324 1.0435 188.8647 -0.3394 -0.1749 0.0686
-0.6 -1.0691 0.4293 30.4886 -0.3111 -0.1310 0.0917
-0.5 -0.4825 0.0414 228.7782 -0.2828 -0.1381 0.0646
-0.4 -0.2715 -0.1237 5.1714 -0.2546 -0.1601 0.0231
-0.3 -0.1884 -0.1315 0.3206 -0.2263 -0.1631 0.0002
-0.2 -0.1553 -0.1129 0.0167 -0.1980 -0.1481 -0.0051
-0.1 -0.1437 -0.0998 0.0070 -0.1697 -0.1260 -0.0035

0 -0.1414 -0.0958 0.0055 -0.1414 -0.1037 -0.0016
0.1 -0.1419 -0.0944 0.0047 -0.1131 -0.0817 -0.0001
0.2 -0.1397 -0.0902 -0.0011 -0.0849 -0.0608 0.0004
0.3 -0.1249 -0.0781 -0.1714 -0.0566 -0.0434 -0.0025
0.4 -0.0737 -0.0995 -1.3525 -0.0283 -0.0454 -0.0245
0.5 0.0818 -0.2445 -53.2987 0.0000 -0.0691 -0.0677
0.6 0.5699 -0.5946 -49.9888 0.0283 -0.0959 -0.1140
0.7 2.3447 -1.1736 -475.2946 0.0566 -0.1032 -0.1411
0.8 11.3308 -1.9416 -99.9750 0.0849 -0.1070 -0.1648
0.9 117.4888 -2.8222 -179.6870 0.1131 -0.1636 -0.2403

n = 200, u; " non — central Student — t with 20 df, and non — centrality = 1

-0.9 -59.9771 3.0855 146.5577 -0.1980 -0.0446 0.1538
-0.8 -6.2191 1.8673 312.9910 -0.1838 -0.0733 0.1113
-0.7 -1.5162 0.8553 1457.2564 -0.1697 -0.0694 0.1010
-0.6 -0.5345 0.1583 23.1202 -0.1556 -0.0807 0.0757
-0.5 -0.2412 -0.1320 13.1220 -0.1414 -0.1141 0.0284
-0.4 -0.1357 -0.1449 0.1865 -0.1273 -0.1280 0.0006
-0.3 -0.0942 -0.1009 0.0095 -0.1131 -0.1183 -0.0040
-0.2 -0.0776 -0.0802 0.0017 -0.0990 -0.1041 -0.0041
-0.1 -0.0718 -0.0731 0.0002 -0.0849 -0.0891 -0.0033

0 -0.0707 -0.0716 -0.0005 -0.0707 -0.0735 -0.0020
0.1 -0.0709 -0.0716 -0.0010 -0.0566 -0.0581 -0.0009
0.2 -0.0698 -0.0701 -0.0021 -0.0424 -0.0435 -0.0006
0.3 -0.0624 -0.0611 -0.0083 -0.0283 -0.0300 -0.0015
0.4 -0.0368 -0.0365 -0.0953 -0.0141 -0.0209 -0.0065
0.5 0.0409 -0.0505 -8.2296 0.0000 -0.0315 -0.0312
0.6 0.2849 -0.3287 -61.1723 0.0141 -0.0623 -0.0758
0.7 1.1723 -0.9893 -603.7911 0.0283 -0.0833 -0.1108
0.8 5.6654 -1.9529 -1046.4400 0.0424 -0.0903 -0.1318
0.9 58.7444 -3.1666 -304.7226 0.0566 -0.1710 -0.2259

Table 1: Biases of the MA Coefficient Estimators
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THETA MM ‘ THETA QML
n =50, u, % non — central Student — t with 11 df, and non — centrality = 1
Theta | Appr. Bias Est. Bias Bias Feas. | Appr. Bias Est. Bias Bias Feas.

-0.9 -119.9542 2.3323 508.2411 -0.3960 -0.9820 -0.5467
-0.8 -12.4383 1.6906 3440.5556 -0.3677 -0.9269 -0.5221
-0.7 -3.0324 1.11025 194.5709 -0.3394 -0.6700 -0.3038
-0.6 -1.0691 0.61611 87.0193 -0.3111 -0.4516 -0.1224
-0.5 -0.4825 0.2364 915.3231 -0.2828 -0.3228 -0.0270
-0.4 -0.2715 -0.0088 46.2209 -0.2546 -0.2782 -0.0125
-0.3 -0.1884 -0.1279 2.2324 -0.2263 -0.2601 -0.0234
-0.2 -0.1553 -0.1583 10.1938 -0.1980 -0.2402 -0.0326
-0.1 -0.1437 -0.1565 14.6839 -0.1697 -0.2102 -0.0320

0 -0.1414 -0.1491 -0.0003 -0.1414 -0.1741 -0.0257
0.1 -0.1419 -0.1451 -0.0948 -0.1131 -0.1399 -0.0212
0.2 -0.1397 -0.14757 -1.5566 -0.0849 -0.1129 -0.0235
0.3 -0.1249 -0.1737 -8.4322 -0.0566 -0.1005 -0.0399
0.4 -0.0737 -0.2663 -15.5777 -0.0283 -0.1058 -0.0733
0.5 0.0818 -0.4777 -13.7759 0.0000 -0.1177 -0.1130
0.6 0.5699 -0.8195 -193.7762 0.0283 -0.1170 -0.1406
0.7 2.3447 -1.2831 -94.4679 0.0566 -0.0833 -0.1365
0.8 11.3308 -1.8498 -96.4860 0.0849 -0.0234 -0.1074
0.9 117.4888 -2.4850 -1230.0230 0.1131 0.0168 -0.0970

n = 200, u; " non — central Student — t with 11 df, and non — centrality = 1

-0.9 -59.9771 3.0777 2082.6805 -0.1980 -0.0479 0.1506
-0.8 -6.2191 1.8795 126.6579 -0.1838 -0.0718 0.1128
-0.7 -1.5162 0.8624 67.4715 -0.1697 -0.0666 0.1038
-0.6 -0.5345 0.1755 146.7298 -0.1556 -0.0757 0.0806
-0.5 -0.2412 -0.1280 16.4453 -0.1414 -0.1133 0.0292
-0.4 -0.1357 -0.1445 0.9975 -0.1273 -0.1251 0.0034
-0.3 -0.0942 -0.1004 0.0101 -0.1131 -0.1163 -0.0020
-0.2 -0.0776 -0.0793 0.0027 -0.0990 -0.1022 -0.0022
-0.1 -0.0718 -0.0720 0.0014 -0.0849 -0.0873 -0.0016

0 -0.0707 -0.0702 0.0010 -0.0707 -0.0719 -0.0004
0.1 -0.0709 -0.0700 0.0006 -0.0566 -0.0566 0.0006
0.2 -0.0698 -0.0681 -0.0001 -0.0424 -0.0421 0.0008
0.3 -0.0624 -0.0580 -0.0043 -0.0283 -0.0286 0.0000
0.4 -0.0368 -0.0297 -104.2074 -0.0141 -0.0199 -0.0055
0.5 0.0409 -0.0571 -2.3114 0.0000 -0.0342 -0.0339
0.6 0.2849 -0.3269 -26.6365 0.0141 -0.0653 -0.0788
0.7 1.1723 -0.9924 -43.5185 0.0283 -0.0813 -0.1088
0.8 5.6654 -1.9865 -52.7870 0.0424 -0.0926 -0.1341
0.9 58.7444 -3.1849 -111.6753 0.0566 -0.1725 -0.2274

Table 2: Biases of the MA Coefficient Estimators
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RHO MM ‘ RHO QML
n =50, u, % non — central Student — t with 20 df, and non — centrality = 1
Theta | Appr. Bias Est. Bias Bias Feas. | Appr. Bias Est. Bias Bias Feas.

-0.9 0.0699 0.5784 0.5426 -0.0140 0.0290 0.0357
-0.8 0.0672 0.5235 0.4886 -0.0274 0.0135 0.0301
-0.7 0.0617 0.4277 0.3951 -0.0397 0.0103 0.0365
-0.6 0.0522 0.2981 0.2697 -0.0507 0.0111 0.0458
-0.5 0.0373 0.1621 0.1413 -0.0611 -0.0018 0.0406
-0.4 0.0153 0.0565 0.0486 -0.0725 -0.0282 0.0224
-0.3 -0.0150 0.0017 0.0133 -0.0866 -0.0527 0.0079
-0.2 -0.0534 -0.0328 0.0041 -0.1043 -0.0713 0.0012
-0.1 -0.0972 -0.0628 0.0032 -0.1241 -0.0868 -0.0016

0 -0.1414 -0.0928 0.0026 -0.1414 -0.1001 -0.0041
0.1 -0.1801 -0.1194 0.0021 -0.1504 -0.1075 -0.0059
0.2 -0.2085 -0.1396 0.0017 -0.1468 -0.1068 -0.0072
0.3 -0.2250 -0.1550 -0.0015 -0.1301 -0.0987 -0.0093
0.4 -0.2309 -0.1890 -0.0300 -0.1041 -0.0939 -0.0206
0.5 -0.2297 -0.2625 -0.1023 -0.0747 -0.0914 -0.0368
0.6 -0.2250 -0.3687 -0.2091 -0.0472 -0.0808 -0.0444
0.7 -0.2197 -0.4822 -0.3233 -0.0253 -0.0595 -0.0387
0.8 -0.2154 -0.5719 -0.4136 -0.0104 -0.0402 -0.0305
0.9 -0.2129 -0.6231 -0.4651 -0.0024 -0.0321 -0.0285

n = 200, u; " non — central Student — t with 20 df, and non — centrality = 1

-0.9 0.0350 0.5627 0.5341 -0.0070 0.0119 0.0187
-0.8 0.0336 0.4860 0.4581 -0.0137 0.0068 0.0201
-0.7 0.0308 0.3535 0.3271 -0.0198 0.0078 0.0272
-0.6 0.0261 0.1948 0.1715 -0.0253 0.0041 0.0291
-0.5 0.0187 0.0700 0.0527 -0.0305 -0.0144 0.0158
-0.4 0.0077 0.0131 0.0061 -0.0362 -0.0332 0.0027
-0.3 -0.0075 -0.0079 -0.0001 -0.0433 -0.0439 -0.0009
-0.2 -0.0267 -0.0271 -0.0008 -0.0521 -0.0540 -0.0023
-0.1 -0.0486 -0.0487 -0.0012 -0.0620 -0.0641 -0.0030

0 -0.0707 -0.0705 -0.0016 -0.0707 -0.0723 -0.0031
0.1 -0.0901 -0.0896 -0.0017 -0.0752 -0.0764 -0.0028
0.2 -0.1043 -0.1037 -0.0017 -0.0734 -0.0747 -0.0028
0.3 -0.1125 -0.1122 -0.0017 -0.0650 -0.0673 -0.0032
0.4 -0.1154 -0.1191 -0.0052 -0.0521 -0.0576 -0.0057
0.5 -0.1148 -0.1537 -0.0399 -0.0373 -0.0537 -0.0158
0.6 -0.1125 -0.2564 -0.1436 -0.0236 -0.0517 -0.0271
0.7 -0.1098 -0.3964 -0.2847 -0.0127 -0.0410 -0.0273
0.8 -0.1077 -0.5122 -0.4012 -0.0052 -0.0260 -0.0200
0.9 -0.1065 -0.5876 -0.4770 -0.0012 -0.0194 -0.0176

Table 3: Biases of First Order Autocorrelation Estimators
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RHO MM ‘ RHO QML
n =50, u, % non — central Student — t with 11 df, and non — centrality = 1
Theta | Appr. Bias Est. Bias Bias Feas. | Appr. Bias Est. Bias Bias Feas.

-0.9 0.0699 0.5935 0.5529 -0.0140 0.0998 0.0956
-0.8 0.0672 0.5553 0.5163 -0.0274 0.0647 0.0743
-0.7 0.0617 0.4851 0.4493 -0.0397 0.0404 0.0670
-0.6 0.0522 0.3848 0.3547 -0.0507 0.0281 0.0705
-0.5 0.0373 0.2634 0.2431 -0.0611 0.0152 0.0716
-0.4 0.0153 0.1398 0.1353 -0.0725 -0.0164 0.0533
-0.3 -0.0150 0.0353 0.0546 -0.0866 -0.0601 0.0240
-0.2 -0.0534 -0.0390 0.0124 -0.1043 -0.1007 -0.0008
-0.1 -0.0972 -0.0949 -0.0058 -0.1241 -0.1348 -0.0188

0 -0.1414 -0.1396 -0.0114 -0.1414 -0.1585 -0.0292
0.1 -0.1801 -0.1780 -0.0145 -0.1504 -0.1732 -0.0368
0.2 -0.2085 -0.2129 -0.0219 -0.1468 -0.1785 -0.0441
0.3 -0.2250 -0.2539 -0.0447 -0.1301 -0.1777 -0.0547
0.4 -0.2309 -0.3129 -0.0939 -0.1041 -0.1723 -0.0684
0.5 -0.2297 -0.3959 -0.1727 -0.0747 -0.1580 -0.0775
0.6 -0.2250 -0.4851 -0.2606 -0.0472 -0.1300 -0.0740
0.7 -0.2197 -0.5661 -0.3414 -0.0253 -0.0979 -0.0636
0.8 -0.2154 -0.6258 -0.4011 -0.0104 -0.0750 -0.0565
0.9 -0.2129 -0.6590 -0.4345 -0.0024 -0.0724 -0.0619

n = 200, u; " non — central Student — t with 11 df, and non — centrality = 1

-0.9 0.0350 0.5606 0.5320 -0.0070 0.0117 0.0185
-0.8 0.0336 0.4873 0.4594 -0.0137 0.0067 0.0200
-0.7 0.0308 0.3568 0.3304 -0.0198 0.0082 0.0277
-0.6 0.0261 0.2008 0.1776 -0.0253 0.0058 0.0308
-0.5 0.0187 0.0725 0.0553 -0.0305 -0.0139 0.0164
-0.4 0.0077 0.0144 0.0075 -0.0362 -0.0312 0.0048
-0.3 -0.0075 -0.0066 0.0012 -0.0433 -0.0421 0.0010
-0.2 -0.0267 -0.0256 0.0007 -0.0521 -0.0520 -0.0003
-0.1 -0.0486 -0.0473 0.0003 -0.0620 -0.0623 -0.0011

0 -0.0707 -0.0691 -0.0001 -0.0707 -0.0707 -0.0014
0.1 -0.0901 -0.0883 -0.0004 -0.0752 -0.0751 -0.0016
0.2 -0.1043 -0.1025 -0.0005 -0.0734 -0.0739 -0.0020
0.3 -0.1125 -0.1109 -0.0005 -0.0650 -0.0668 -0.0027
0.4 -0.1154 -0.1178 -0.0040 -0.0521 -0.0575 -0.0056
0.5 -0.1148 -0.1564 -0.0425 -0.0373 -0.0553 -0.0174
0.6 -0.1125 -0.2564 -0.1437 -0.0236 -0.0531 -0.0285
0.7 -0.1098 -0.3976 -0.2859 -0.0127 -0.0406 -0.0269
0.8 -0.1077 -0.5192 -0.4081 -0.0052 -0.0264 -0.0205
0.9 -0.1065 -0.5911 -0.4804 -0.0012 -0.0196 -0.0179

Table 4: Biases of First Order Autocorrelation Estimators
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THETA MM ‘ THETA QML
n =50, u; Y non — central Student — t with 20 df, and non — centrality = 1
Theta | As. Var. AMSE Est. MSE MSE Feas. | As. Var. AMSE Est. MSE MSE Feas.

-0.9 149.4822  45798.7215 9.2603 3.0017x10° 0.1900 0.6248 1.6791 1.5143
-0.8 28.6136 484.4521 5.3034 1.4480x108 0.3600 0.7706 1.3503 1.2291
-0.7 10.0950 33.1730 3.1428 2.6871x108 0.5100 0.8973 1.0593 0.9926
-0.6 4.7409 6.7677 2.3402 2.3989x 108 0.6400 1.0051 0.9527 0.9069
-0.5 2.7014 2.8776 2.1187 8.8767x108 0.7500 1.0238 0.9517 0.8999
-0.4 1.7958 1.7794 1.9282 95072.049 0.8400 1.0827 1.0117 0.9476
-0.3 1.3564 1.3302 1.5380 400.5876 0.9100 1.1250 1.0847 1.0162
-0.2 1.1355 1.1157 1.2447 1.1304 0.9600 1.1505 1.1306 1.0648
-0.1 1.0309 1.0120 1.0824 1.0504 0.9900 1.1594 1.1455 1.0849

0 1.0000 0.9717 1.0316 1.0170 1.0000 1.1517 1.1420 1.0865
0.1 1.0309 0.9779 1.0612 1.0457 0.9900 1.1272 1.1188 1.0680
0.2 1.1355 1.0315 1.1868 1.1654 0.9600 1.0861 1.0779 1.0316
0.3 1.3564 1.1500 1.4654 128.0959 0.9100 1.0284 1.0163 0.9742
0.4 1.7958 1.3781 1.8267 3558.4082 0.8400 0.9541 0.9270 0.8889
0.5 2.7014 1.8718 2.1320 2.5005x 107 0.7500 0.8633 0.8386 0.8054
0.6 4.7409 3.7244 2.5099 1.6114x107 0.6400 0.7559 0.7542 0.7285
0.7 10.0950 20.8664 3.5297 2.6532x10? 0.5100 0.6319 0.6671 0.6504
0.8 28.6136 402.3640 5.8394 3.7682x 107 0.3600 0.4913 0.6040 0.5963
0.9 149.4822  44033.2160 10.0036 6.0477x107 0.1900 0.3340 0.6926 0.6972

n = 200, u; Y non — central Student — t with 20 df, and non — centrality = 1

-0.9 149.4822  11561.7921 12.4627 5.0189x 107 0.1900 0.2980 0.6478 0.6566
-0.8 28.6136 142.5732 6.5330 8.7613x 108 0.3600 0.4568 0.5673 0.5631
-0.7 10.0950 15.8645 3.8782 3.8452x1010 0.5100 0.5965 0.6426 0.6353
-0.6 4.7409 5.2476 3.2167 9.8300x10° 0.6400 0.7171 0.7293 0.7141
-0.5 2.7014 2.7454 2.8204 1.6813x106 0.7500 0.8185 0.8226 0.7942
-04 1.7958 1.7917 2.0722 25.0913 0.8400 0.9007 0.9177 0.8834
-0.3 1.3564 1.3498 1.4596 1.3486 0.9100 0.9637 0.9835 0.9503
-0.2 1.1355 1.1305 1.1697 1.1387 0.9600 1.0076 1.0270 0.9960
-0.1 1.0309 1.0262 1.0414 1.0296 0.9900 1.0324 1.0516 1.0229

0 1.0000 0.9929 1.0014 0.9952 1.0000 1.0379 1.0555 1.0293
0.1 1.0309 1.0177 1.0304 1.0240 0.9900 1.0243 1.0390 1.0150
0.2 1.1355 1.1095 1.1417 1.1271 0.9600 0.9915 1.0028 0.9810
0.3 1.3564 1.3048 1.3960 1.3386 0.9100 0.9396 0.9489 0.9292
0.4 1.7958 1.6914 1.9229 21.9595 0.8400 0.8685 0.8761 0.8583
0.5 2.7014 2.4940 2.7137 3.7218x10° 0.7500 0.7783 0.7795 0.7639
0.6 4.7409 4.4867 3.2293 2.1971x107 0.6400 0.6690 0.6760 0.6644
0.7 10.0950 12.7878 4.1397 5.6913x10? 0.5100 0.5405 0.5753 0.5693
0.8 28.6136 122.0512 6.9133 1.5682x 1010 0.3600 0.3928 0.4505 0.4509
0.9 149.4822  11120.4157 13.0629 8.0211x 108 0.1900 0.2260 0.3895 0.4041

Table 5: MSEs of the MA Coefficient Estimators
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Edgeworth and Moment Expansions

THETA MM ‘ THETA QML
n =50, u; Y non — central Student — t with 11 df, and non — centrality = 1
Theta | As. Var. AMSE Est. MSE MSE Feas. | As. Var. AMSE Est. MSE MSE Feas.

-0.9 149.4822  45796.7977 6.7796 3.1337x10? 0.1900 0.6223 4.8244 3.8564
-0.8 28.6136 484.0577 4.2198 4.3013x 10! 0.3600 0.7427 4.6397 3.7568
-0.7 10.0950 33.0270 2.6322 4.3913x108 0.5100 0.8496 3.7673 3.1505
-0.6 4.7409 6.6975 1.8382 3.5795x107 0.6400 0.9402 2.8431 2.4473
-0.5 2.7014 2.8377 1.5646 2.6715x1010 0.7500 1.0145 2.1713 1.9058
-0.4 1.7958 1.7535 1.5122 3.3288x107 0.8400 1.0724 1.7860 1.5748
-0.3 1.3564 1.3113 1.4555 5542.5185 0.9100 1.1139 1.5719 1.3869
-0.2 1.1355 1.1004 1.3234 3.4207x10° 0.9600 1.1389 1.4998 1.3301
-0.1 1.0309 0.9985 1.1855 8.5623x 108 0.9900 1.1473 1.4464 1.2934

0 1.0000 0.9591 1.1132 1.0635 1.0000 1.1391 1.3999 1.2629
0.1 1.0309 0.9653 1.1329 148.5750 0.9900 1.1143 1.3414 1.2186
0.2 1.1355 1.0182 1.2347 47993.0271 0.9600 1.0730 1.2802 1.1687
0.3 1.3564 1.1350 1.3926 1.8318 %106 0.9100 1.0155 1.1987 1.0970
0.4 1.7958 1.3605 1.5400 1.5703x 108 0.8400 0.9419 1.1269 1.0336
0.5 2.7014 1.8514 1.7182 6.3816x10° 0.7500 0.8522 1.0895 1.0041
0.6 4.7409 3.7094 2.1307 9.0900x 108 0.6400 0.7466 1.0673 0.9908
0.7 10.0950 20.9308 3.0811 3.0584x107 0.5100 0.6247 1.1649 1.0859
0.8 28.6136 403.3154 4.8125 6.5571x 107 0.3600 0.4864 1.4213 1.3209
0.9 149.4822  44059.5724 7.5403 3.2970x 1010 0.1900 0.3315 1.9286 1.7865

n = 200, u; % non — central Student — t with 11 df, and non — centrality = 1

-0.9 149.4822  11561.3110 12.4152 5.8496x 1010 0.1900 0.2974 0.6451 0.6527
-0.8 28.6136 142.4745 6.5224 1.1308x 108 0.3600 0.4557 0.5528 0.5494
-0.7 10.0950 15.8279 3.9224 8.6988x 108 0.5100 0.5949 0.6340 0.6278
-0.6 4.7409 5.2300 3.2107 1.8720x 108 0.6400 0.7151 0.7278 0.7142
-0.5 2.7014 2.7354 2.8316 1.4926x 106 0.7500 0.8161 0.8262 0.7980
-04 1.7958 1.7852 2.0949 9949.5922 0.8400 0.8981 0.9222 0.8886
-0.3 1.3564 1.3450 1.4791 1.3617 0.9100 0.9610 0.9909 0.9579
-0.2 1.1355 1.12672 1.1855 1.1542 0.9600 1.0047 1.0355 1.0047
-0.1 1.0309 1.0228 1.0562 1.0443 0.9900 1.0293 1.0614 1.0328

0 1.0000 0.9897 1.0161 1.0100 1.0000 1.0348 1.0663 1.0400
0.1 1.0309 1.0145 1.0458 1.0397 0.9900 1.0211 1.0509 1.0268
0.2 1.1355 1.1061 1.1591 1.1446 0.9600 0.9883 1.0153 0.9934
0.3 1.3564 1.3010 1.4205 1.3530 0.9100 0.9364 0.9616 0.9417
0.4 1.7958 1.6870 1.9883 2.1583x 108 0.8400 0.8655 0.8869 0.8689
0.5 2.7014 2.4889 2.6981 5142.8915 0.7500 0.7756 0.7847 0.7691
0.6 4.7409 4.4829 3.2454 3.7048x 108 0.6400 0.6666 0.6833 0.6717
0.7 10.0950 12.8039 4.1560 1.9465x 106 0.5100 0.5387 0.5780 0.5719
0.8 28.6136 122.2890 6.9785 3.1515x10° 0.3600 0.3916 0.4568 0.4572
0.9 149.4822  11127.0047 13.1387 2.3224x107 0.1900 0.2254 0.3954 0.4100

Table 6: MSEs of the MA Coefficient Estimators
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Edgeworth and Moment Expansions

RHO MM

|

RHO QML

n =50, u, % non — central Student — t with 20 df, and non — centrality = 1

Theta | As. Var. AMSE Est. MSE MSE Feas. | As. Var. AMSE Est. MSE MSE Feas.
-0.9 0.5028 0.5046 0.5528 0.5240 0.0006 0.0019 0.0043 0.0055
-0.8 0.5126 0.5135 0.5121 0.4894 0.0064 0.0125 0.0126 0.0151
-0.7 0.5327 0.5319 0.4569 0.4447 0.0269 0.0431 0.0402 0.0445
-0.6 0.5676 0.5637 0.4383 0.4413 0.0766 0.1094 0.0985 0.1050
-0.5 0.6224 0.6130 0.4896 0.5097 0.1728 0.2272 0.1990 0.2075
-0.4 0.6998 0.6819 0.6155 0.6515 0.3273 0.4031 0.3580 0.3686
-0.3 0.7957 0.7667 0.7486 0.7964 0.5338 0.6225 0.5763 0.5906
-0.2 0.8945 0.8556 0.8596 0.9148 0.7563 0.8461 0.8094 0.8277
-0.1 0.9710 0.9303 0.9348 0.9910 0.9324 1.0190 0.9912 1.0089

0 1.0000 0.9717 0.9692 1.0176 1.0000 1.0917 1.0656 1.0743
0.1 0.9710 0.9679 0.9531 0.9858 0.9324 1.0398 1.0058 0.9989
0.2 0.8945 0.9209 0.8922 0.9052 0.7563 0.8764 0.8338 0.8118
0.3 0.7957 0.8455 0.8011 0.7949 0.5338 0.6485 0.6054 0.5758
0.4 0.6998 0.7627 0.6816 0.6532 0.3273 0.4174 0.3840 0.3551
0.5 0.6224 0.6894 0.5697 0.5113 0.1728 0.2307 0.2173 0.1947
0.6 0.5676 0.6341 0.5191 0.4243 0.0766 0.1069 0.1095 0.0955
0.7 0.5327 0.5971 0.5373 0.4061 0.0269 0.0395 0.0458 0.0394
0.8 0.5126 0.5753 0.5864 0.4270 0.0064 0.0103 0.0152 0.0130
0.9 0.5028 0.5645 0.6280 0.4526 0.0006 0.0013 0.0050 0.0043

n = 200, u; % non — central Student — t with 20 df, and non — centrality = 1
-0.9 0.5028 0.5032 0.5272 0.5010 0.0006 0.0009 0.0021 0.0026
-0.8 0.5126 0.5128 0.4731 0.4526 0.0064 0.0080 0.0094 0.0104
-0.7 0.5327 0.5325 0.4187 0.4081 0.0269 0.0310 0.0333 0.0352
-0.6 0.5676 0.5666 0.4350 0.4367 0.0766 0.0848 0.0853 0.0880
-0.5 0.6224 0.6201 0.5460 0.5588 0.1728 0.1864 0.1818 0.1848
-0.4 0.6998 0.6954 0.6749 0.6947 0.3273 0.3463 0.3403 0.3442
-0.3 0.7957 0.7884 0.7760 0.8006 0.5338 0.5560 0.5499 0.5561
-0.2 0.8945 0.8848 0.8689 0.8968 0.7563 0.7787 0.7735 0.7822
-0.1 0.9710 0.9608 0.9415 0.9696 0.9324 0.9541 0.9516 0.9603

0 1.0000 0.9929 0.9714 0.9953 1.0000 1.0229 1.0222 1.0266
0.1 0.9710 0.9702 0.9484 0.9638 0.9324 0.9593 0.9583 0.9547
0.2 0.8945 0.9011 0.8809 0.8860 0.7563 0.7863 0.7842 0.7729
0.3 0.7957 0.8082 0.7903 0.7860 0.5338 0.5625 0.5607 0.5458
0.4 0.6998 0.7155 0.6939 0.6819 0.3273 0.3499 0.3496 0.3359
0.5 0.6224 0.6392 0.5808 0.5571 0.1728 0.1873 0.1890 0.1789
0.6 0.5676 0.5842 0.4808 0.4329 0.0766 0.0842 0.0889 0.0828
0.7 0.5327 0.5488 0.4689 0.3900 0.0269 0.0301 0.0352 0.0324
0.8 0.5126 0.5283 0.5145 0.4106 0.0064 0.0074 0.0101 0.0093
0.9 0.5028 0.5182 0.5697 0.4494 0.0006 0.0008 0.0024 0.0022

Table 7: MSEs of the First Order Autocorrelation Estimators
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Edgeworth and Moment Expansions

RHO MM

|

RHO QML

n =50, u, Y non — central Student — t with 11 df, and non — centrality = 1

Theta | As. Var. AMSE Est. MSE MSE Feas. | As. Var. AMSE Est. MSE MSE Feas.
-0.9 0.5028 0.5004 0.5794 0.5585 0.0006 0.0013 0.0236 0.0223
-0.8 0.5126 0.5090 0.5505 0.5361 0.0064 0.0105 0.0260 0.0307
-0.7 0.5327 0.5269 0.5074 0.5052 0.0269 0.0391 0.0560 0.0677
-0.6 0.5676 0.5581 0.4731 0.4890 0.0766 0.1034 0.1283 0.1470
-0.5 0.6224 0.6067 0.4812 0.5205 0.1728 0.2200 0.2469 0.2723
-0.4 0.6998 0.6747 0.5521 0.6171 0.3273 0.3970 0.4146 0.4455
-0.3 0.7957 0.7582 0.6823 0.7713 0.5338 0.6213 0.6332 0.6685
-0.2 0.8945 0.8456 0.8205 0.9255 0.7563 0.8538 0.8734 0.9108
-0.1 0.9710 0.9188 0.9220 1.0291 0.9324 1.0375 1.0707 1.1013

0 1.0000 0.9591 0.9691 1.0612 1.0000 1.1191 1.1615 1.1727
0.1 0.9710 0.9550 0.9604 1.0223 0.9324 1.0704 1.1167 1.0988
0.2 0.8945 0.9083 0.8990 0.9214 0.7563 0.9035 0.9542 0.9079
0.3 0.7957 0.8340 0.7986 0.7769 0.5338 0.6679 0.7241 0.6610
0.4 0.6998 0.7524 0.6893 0.6209 0.3273 0.4283 0.4912 0.4272
0.5 0.6224 0.6803 0.6198 0.5017 0.1728 0.2351 0.3023 0.2502
0.6 0.5676 0.6260 0.6035 0.4388 0.0766 0.1077 0.1663 0.1325
0.7 0.5327 0.5899 0.6297 0.4258 0.0269 0.0390 0.0799 0.0621
0.8 0.5126 0.5687 0.6663 0.4344 0.0064 0.0098 0.0342 0.0263
0.9 0.5028 0.5584 0.6920 0.4449 0.0006 0.0011 0.0199 0.0156

n = 200, u; % non — central Student — t with 11 df, and non — centrality = 1
-0.9 0.5028 0.5022 0.5236 0.4974 0.0006 0.0008 0.0022 0.0027
-0.8 0.5126 0.5117 0.4722 0.4516 0.0064 0.0075 0.0095 0.0105
-0.7 0.5327 0.5313 0.4213 0.4106 0.0269 0.0300 0.0333 0.0352
-0.6 0.5676 0.5652 0.4389 0.4404 0.0766 0.0833 0.0859 0.0887
-0.5 0.6224 0.6185 0.5487 0.5614 0.1728 0.1846 0.1832 0.1862
-0.4 0.6998 0.6935 0.6802 0.7002 0.3273 0.3447 0.3435 0.3475
-0.3 0.7957 0.7863 0.7845 0.8094 0.5338 0.5557 0.5554 0.5618
-0.2 0.8945 0.8823 0.8796 0.9080 0.7563 0.7806 0.7809 0.7899
-0.1 0.9710 0.9579 0.9541 0.9828 0.9324 0.9587 0.9606 0.9696

0 1.0000 0.9898 0.9851 1.0095 1.0000 1.0298 1.0322 1.0368
0.1 0.9710 0.9670 0.9619 0.9779 0.9324 0.9669 0.9687 0.9653
0.2 0.8945 0.8980 0.8933 0.8988 0.7563 0.7931 0.7940 0.7827
0.3 0.7957 0.8053 0.8014 0.7975 0.5338 0.5674 0.5687 0.5537
0.4 0.6998 0.7130 0.7032 0.6914 0.3273 0.3526 0.3546 0.3408
0.5 0.6224 0.6369 0.5834 0.5591 0.1728 0.1884 0.1910 0.1807
0.6 0.5676 0.5822 0.4825 0.4345 0.0766 0.0844 0.0900 0.0837
0.7 0.5327 0.5470 0.4675 0.3884 0.0269 0.0299 0.0351 0.0323
0.8 0.5126 0.5267 0.5188 0.4134 0.0064 0.0073 0.0102 0.0094
0.9 0.5028 0.5167 0.5732 0.4522 0.0006 0.0008 0.0026 0.0024

Table 8: MSEs of the First Order Autocorrelation Estimators
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